Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/93079

TítuloThermo-chemical characterization of organic phase change materials (PCMs) obtained from lost wax casting industry
Autor(es)Sarcinella, Antonella
Cunha, Sandra Raquel Leite
Aguiar, J. L. Barroso de
Frigione, Mariaenrica
Palavras-chavePhase change material (PCM)
Sustainable energy storage
Energy savings
Organic PCMs
Blended PCMs
By-product reuse
Lost wax casting industry
Data2024
EditoraMDPI
RevistaSustainability (MDPI)
Resumo(s)The high global energy demand drives the search for sustainable alternatives for energy production and storage. Among the most effective solutions are phase change materials (PCMs). In particular, organic PCMs offer a high capacity to store and release thermal energy in response to external thermal variations, even over a wide temperature range. They find profitable applications in various sectors, from construction to electronics, offering flexibility and considerable energy storage according to need. In the search for new and effective PCMs, reusing by-products from different industries would offer both economic and environmental benefits. With this goal in mind, several organic PCMs with different characteristics and origins were analyzed in the present study. Two of them were by-products of the lost wax casting industry. In fact, we wanted to verify whether this waste could be employed as an effective, low-cost PCM. For comparison purposes, two commercial PCMs were selected, namely a paraffin and a microencapsulated PCM. Finally, a PCM blend was produced by mixing a commercial PCM and a waxy by-product. The five selected or developed PCMs were subjected to different tests to investigate their chemical composition, thermal characteristics, and thermal stability before and after repeated (i.e., 100) cycles of melting and crystallization processes. The results demonstrated that the durability of the non-commercial PCMs with regard to thermal loads was not inferior, and was in some cases even superior, to commercial PCMs. This study therefore proposes an innovative path to reuse the by-products of different production processes to support the environment.
TipoArtigo
URIhttps://hdl.handle.net/1822/93079
DOI10.3390/su16167057
ISSN2071-1050
Versão da editorahttps://www.mdpi.com/2071-1050/16/16/7057
Arbitragem científicayes
AcessoAcesso aberto
Aparece nas coleções:C-TAC - Artigos em Revistas Internacionais


Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID