Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/73478

TítuloAcetotrophic sulfate-reducing consortia develop active biofilms on zeolite and glass beads in batch cultures at initial pH 3
Autor(es)Campos-Quevedo, Nohemi
Moreno-Perlin, Tonatiuh
Razo-Flores, Elías
Stams, Alfons Johannes Maria
Celis, Lourdes B.
Sánchez-Andrea, Irene
Palavras-chaveAcidic pH
Acidophilic consortium
Acetate biodegradation
Glass beads
Sulfate reduction
Zeolite
Data14-Jun-2021
EditoraSpringer Nature
RevistaApplied Microbiology and Biotechnology
CitaçãoCampos-Quevedo, Nohemi; Moreno-Perlin, Tonatiuh; Razo-Flores, Elías; Stams, A. J. M.; Celis, Lourdes B.; Sánchez-Andrea, Irene, Acetotrophic sulfate-reducing consortia develop active biofilms on zeolite and glass beads in batch cultures at initial pH 3. Applied Microbiology and Biotechnology, 105(12), 5213-5227, 2021
Resumo(s)Sulfate-reducing microbial communities remain a suitable option for the remediation of acid mine drainage using several types of carrier materials and appropriate reactor configurations. However, acetate prevails as a product derived from the incomplete oxidation of most organic substrates by sulfate reducers, limiting the efficiency of the whole process. An established sulfate-reducing consortium, able to degrade acetate at initial acidic pH (3.0), was used to develop biofilms over granular activated carbon (GAC), glass beads, and zeolite as carrier materials. In batch assays using glycerol, biofilms successfully formed on zeolite, glass beads, and GAC with sulfide production rates of 0.32, 0.26, and 0.14 mmol H2S/L\textperiodcenteredd, respectively, but only with glass beads and zeolite, acetate was degraded completely. The planktonic and biofilm communities were determined by the 16S rRNA gene analysis to evaluate the microbial selectivity of the carrier materials. In total, 46 OTUs (family level) composed the microbial communities. Ruminococcaceae and Clostridiaceae families were present in zeolite and glass beads, whereas Peptococcaceae was mostly enriched on zeolite and Desulfovibrionaceae on glass beads. The most abundant sulfate reducer in the biofilm of zeolite was Desulfotomaculum sp., while Desulfatirhabdium sp. abounded in the planktonic community. With glass beads, Desulfovibrio sp. dominated the biofilm and the planktonic communities. Our results indicate that both materials (glass beads and zeolite) selected different key sulfate-reducing microorganisms able to oxidize glycerol completely at initial acidic pH, which is relevant for a future application of the consortium in continuous bioreactors to treat acidic streams.
TipoArtigo
URIhttps://hdl.handle.net/1822/73478
DOI10.1007/s00253-021-11365-0
ISSN0175-7598
Versão da editorahttps://link.springer.com/article/10.1007/s00253-021-11365-0
Arbitragem científicayes
AcessoAcesso restrito UMinho
Aparece nas coleções:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
document_54489_1.pdf
Acesso restrito!
689,5 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID