Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/67252

TítuloGastrointestinal dysfunction in patients and mice expressing the autism-associated R451C mutation in neuroligin-3
Autor(es)Hosie, Suzanne
Ellis, Melina
Swaminathan, Mathusi
Ramalhosa, Fatima
Seger, Gracia O.
Balasuriya, Gayathri K.
Gillberg, Christopher
Råstam, Maria
Churilov, Leonid
McKeown, Sonja J.
Palavras-chaveAnimals
Autistic Disorder
Cell Adhesion Molecules, Neuronal
Comorbidity
Gastrointestinal Diseases
Gastrointestinal Microbiome
Gastrointestinal Transit
Gene Expression
Humans
Male
Membrane Proteins
Mice
Myenteric Plexus
Nerve Tissue Proteins
Neurons
Phenotype
DNA Mutational Analysis
Autism
Gastrointestinal symptoms
Gut motility
Immunofluorescence
Mouse
Neuroligin-3
Data2019
EditoraWiley
RevistaAutism Research
Resumo(s)Gastrointestinal (GI) problems constitute an important comorbidity in many patients with autism. Multiple mutations in the neuroligin family of synaptic adhesion molecules are implicated in autism, however whether they are expressed and impact GI function via changes in the enteric nervous system is unknown. We report the GI symptoms of two brothers with autism and an R451C mutation in Nlgn3 encoding the synaptic adhesion protein, neuroligin-3. We confirm the presence of an array of synaptic genes in the murine GI tract and investigate the impact of impaired synaptic protein expression in mice carrying the human neuroligin-3 R451C missense mutation (NL3R451C ). Assessing in vivo gut dysfunction, we report faster small intestinal transit in NL3R451C compared to wild-type mice. Using an ex vivo colonic motility assay, we show increased sensitivity to GABAA receptor modulation in NL3R451C mice, a well-established Central Nervous System (CNS) feature associated with this mutation. We further show increased numbers of small intestine myenteric neurons in NL3R451C mice. Although we observed altered sensitivity to GABAA receptor modulators in the colon, there was no change in colonic neuronal numbers including the number of GABA-immunoreactive myenteric neurons. We further identified altered fecal microbial communities in NL3R451C mice. These results suggest that the R451C mutation affects small intestinal and colonic function and alter neuronal numbers in the small intestine as well as impact fecal microbes. Our findings identify a novel GI phenotype associated with the R451C mutation and highlight NL3R451C mice as a useful preclinical model of GI dysfunction in autism. LAY SUMMARY: People with autism commonly experience gastrointestinal problems, however the cause is unknown. We report gut symptoms in patients with the autism-associated R451C mutation encoding the neuroligin-3 protein. We show that many of the genes implicated in autism are expressed in mouse gut. The neuroligin-3 R451C mutation alters the enteric nervous system, causes gastrointestinal dysfunction, and disrupts gut microbe populations in mice. Gut dysfunction in autism could be due to mutations that affect neuronal communication.
TipoArtigo
URIhttps://hdl.handle.net/1822/67252
DOI10.1002/aur.2127
ISSN1939-3792
e-ISSN1939-3806
Arbitragem científicayes
AcessoAcesso aberto
Aparece nas coleções:ICVS - Artigos em revistas internacionais / Papers in international journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Hosie-2019-Gastrointestinal-dysfunction-in-pat.pdf1,84 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID