Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/61855

Registo completo
Campo DCValorIdioma
dc.contributor.authorSantos, Márcia S. S.por
dc.contributor.authorPeixoto, L.por
dc.contributor.authorAzevedo, Joãopor
dc.contributor.authorMonteiro, Ricardo A. R.por
dc.contributor.authorDias-Ferreira, Celiapor
dc.contributor.authorAlves, M. M.por
dc.contributor.authorMendes, Adéliopor
dc.date.accessioned2019-10-28T09:45:17Z-
dc.date.available2019-10-28T09:45:17Z-
dc.date.issued2020-
dc.identifier.citationMárcia S. S. Santos; Peixoto, L.; Azevedo, João; Monteiro, Ricardo A. R.; Dias-Ferreira, Celia; Alves, M. Madalena; Mendes, Adélio, Microbially-charged electrochemical fuel for energy storage in a redox flow cell. Journal of Power Sources, 445(227307), 2020por
dc.identifier.issn0378-7753por
dc.identifier.urihttps://hdl.handle.net/1822/61855-
dc.descriptionSupplementary data to this article can be found online at https://doi. org/10.1016/j.jpowsour.2019.227307.por
dc.description.abstractA Bioelectrochemical System (BES) is used for charging an electrochemical fuel to be used in a Redox Flow Cell (RFC), demonstrating the first proof of concept of a microbially-charged electrochemical fuel. Geobacter sulfurreducens, electroactive bacteria, was used to charge anthraquinone-2,6-disulfonate (2,6-AQDS) producing current densities of ca. 200500mAm2 and maximum power densities of ca. 33mWm2. The microbially-charged electrochemical fuel and potassium ferricyanide, K3[Fe(CN)6] were introduced in a RFC producing a potential difference of 0.62V, with a ca. 80% energy conversion efficiency. The use of a BES for charging the posilyte of a RFC is now envisioned. The bio-conversion of waste biomass energy into electrochemical fuels (microbially-charged electrochemical fuel for negalyte and posilyte) for later use in a RFC to produce electricity is a promising approach of converting biomass into storable and easy to use energy.por
dc.description.sponsorshipM.S.S. Santos is grateful to Portuguese Foundation for Science and Technology for her PhD fellow (reference: SFRH/BD/104087/2014). J. Azevedo is grateful to the FCT for is Postdoctoral Grant (Reference: SFRH/BPD/116648/2016) and for funding (CEECIND/03937/2017). Ricardo Monteiro was also grateful for their Postdoctoral Grant by FCT (Reference: SFRH/BPD/112900/2015). The authors would like to acknowledge to the FCT under the scope of the strategic funding of UID/BIO/04469 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund (ERDF), under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the Projects: i) POCI-01-0145-FEDER-006939 (LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy – UID/EQU/00511/2013), funded by the ERDF, through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI) and by nationals funds through FCT, ii) by the Project SunStorage - Harvesting and storage of solar energy”, with reference POCI-01-0145-FEDER-016387, funded by ERDF, through COMPETE 2020 –POCI), and by national funds, through FCT; (iii) Project PTDC/EQU-EQU/30510/2017 - POCI-01-0145-FEDER-030510 – Sunflow “Solar energy storage into redox flow batteries” funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES and iV) NORTE-01-0145-FEDER-000005 – LEPABE-2-ECO-INNOVATION, supported by North Portugal Regional Operational Programme (Norte 2020), under the Portugal 2020 Partnership Agreement, through the ERDF. The authors are indebted with all the colleagues who assisted in the laboratory work, in particular to Dr. Sónia Barbosa for help with microbial fuel cell operation.por
dc.language.isoengpor
dc.publisherElsevier 1por
dc.relationSFRH/BD/104087/2014por
dc.relationSFRH/BPD/116648/2016por
dc.relationCEECIND/03937/2017por
dc.relationSFRH/BPD/112900/2015por
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147337/PTpor
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147284/PTpor
dc.relationPTDC/EQU-EQU/30510/2017por
dc.rightsopenAccesspor
dc.subjectBioelectrochemical systemspor
dc.subjectRedox flow cellspor
dc.subjectEnergy conversionpor
dc.subjectBioenergypor
dc.subjectMicrobially-charged electrochemical fuelpor
dc.titleMicrobially-charged electrochemical fuel for energy storage in a redox flow cellpor
dc.typearticle-
dc.peerreviewedyespor
dc.relation.publisherversionhttps://www.journals.elsevier.com/journal-of-power-sourcespor
dc.commentsCEB52133por
oaire.citationVolume445por
dc.date.updated2019-10-26T12:56:47Z-
dc.identifier.doi10.1016/j.jpowsour.2019.227307por
dc.description.publicationversioninfo:eu-repo/semantics/publishedVersion-
dc.subject.wosScience & Technologypor
sdum.journalJournal of Power Sourcespor
Aparece nas coleções:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
document_52133_1.pdf1,73 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID