Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/52588

Registo completo
Campo DCValorIdioma
dc.contributor.authorLaadila, Mohamed Aminepor
dc.contributor.authorHegde, Krishnamoorthypor
dc.contributor.authorRouissi, Tarekpor
dc.contributor.authorBrar, Satinder Kaurpor
dc.contributor.authorGalvez, Rosapor
dc.contributor.authorSorelli, Lucapor
dc.contributor.authorCheikh, R. B.por
dc.contributor.authorPaiva, M. C.por
dc.contributor.authorAbokitse, Kofipor
dc.date.accessioned2018-03-16T11:55:06Z-
dc.date.available2018-03-16T11:55:06Z-
dc.date.issued2017-
dc.identifier.issn0959-6526por
dc.identifier.urihttps://hdl.handle.net/1822/52588-
dc.description.abstractThis study investigated mechanical properties of biocomposites developed from recycled polylactic acid (PLA) from packaging industry and treated cellulosic fibers from pulp and paper solid waste. Microwave and enzymatic treatments were used for extraction and surface modification of hydrophilic cellulosic fibers. Enzymatic treatment was specifically performed for activation of hydroxyl groups and improvement of adhesion between matrix and fibers including controlling the length of cellulosic fibers with size reduction of around 50% (142 and 127 mm for primary and mixed biosolids, respectively) as compared to microwave treatment. Microwave treatment produced cellulosic fibers of 293 and 341 mm, for primary and mixed biosolids, respectively. Mechanical properties of biocomposites with 2% (w/w) of treated cellulosic fibers (Young's Modulus 887.83 MPa with tensile strain at breakpoint of 7.22%, tensile stress at yield 41.35 MPa) was enhanced in comparison to the recycled PLA (Young's Modulus 644.47 ± 30.086 MPa with tensile strain at breakpoint of 6.01 ± 0.83%, tensile stress at yield of 29.49 ± 3.64 MPa). Scanning electron microscopy revealed size reduction of cellulosic fibers. X-ray diffraction and Fourier transform infrared spectroscopy confirmed strong mechanical properties of novel biocomposites.por
dc.description.sponsorshipThe authors are sincerely thankful to the Natural Sciences and Engineering Research Council of Canada (Discovery Grant 355254 and NSERC CRD Grant), and CRIBIQ for financial support. We would like to thank Mr. R. Fortin and Colin Jacob Vaillancourt from Gaudreau Environment for providing rPLA samples. Likewise, the support of Ozymes Inc. is equally appreciated for valuable comments during the experimental planning from industrial perspective. Financial assistance by the ‘Fonds de recherche du Quebec- Nature et technologies (FRQNT)’ and INRS-ETE has been thankfully acknowledged by K Hegde.por
dc.language.isoengpor
dc.publisherElsevier 1por
dc.rightsopenAccesspor
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/por
dc.subjectBiocompositepor
dc.subjectCellulosic fiberpor
dc.subjectMicrowave treatmentpor
dc.subjectEnzymatic treatmentpor
dc.subjectMechanical testpor
dc.subjectPolylactic acidpor
dc.titleGreen synthesis of novel biocomposites from treated cellulosic fibers and recycled bio-plastic polylactic acidpor
dc.typearticle-
dc.peerreviewedyespor
oaire.citationStartPage575por
oaire.citationEndPage586por
oaire.citationVolume164por
dc.identifier.eissn1879-1786por
dc.identifier.doi10.1016/j.jclepro.2017.06.235por
dc.subject.fosEngenharia e Tecnologia::Engenharia dos Materiaispor
dc.description.publicationversioninfo:eu-repo/semantics/publishedVersionpor
dc.subject.wosScience & Technologypor
sdum.journalJournal of Cleaner Productionpor
Aparece nas coleções:IPC - Artigos em revistas científicas internacionais com arbitragem

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
J Cleaner Production _2017.pdf2,71 MBAdobe PDFVer/Abrir

Este trabalho está licenciado sob uma Licença Creative Commons Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID