Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/47752

TítuloPostharvest dehydration induces variable changes in the primary metabolism of grape berries
Autor(es)Conde, Artur
Soares, Flávio
Breia, Richard
Gerós, H.
Palavras-chaveGrape berry
Postharvest dehydration
Metabolic changes
Sugars/polyols
Organic acids
Primary metabolism
Data2018
EditoraElsevier 1
RevistaFood Research International
CitaçãoConde, Artur; Soares, Flávio; Breia, Richard; Gerós, Hernâni, Postharvest dehydration induces variable changes in the primary metabolism of grape berries. Food Research International, 105, 261-270, 2018
Resumo(s)Postharvest dehydration causes changes in texture, color, taste and nutritional value of food due to the high temperatures and long drying times required. In grape berries, a gradual dehydration process is normally utilized for raisin production and for making special wines. Here we applied a raisin industry-mimicking dehydration process for eleven days at 50 °C to intact berry clusters from cv. Sémillon plants, and a set of molecular, cellular and biochemical analyses were performed to study the impact of postharvest dehydration in the primary metabolism. Transcriptional analyses by real time qPCR showed that several aquaporins (VvTIP1;2 and VvSIP1) and sugar transporters (VvHT1, VvSWEET11, VvSWEET15, VvTMT1, VvSUC12) genes were strongly upregulated. Moreover, the study of key enzymes of osmolytes metabolism, including mannitol dehydrogenase (VvMTD) and sorbitol dehydrogenase (VvSDH), at gene expression and protein activity level, together with the transcriptional analysis of the polyol transporter gene VvPLT1, showed an enhanced polyol biosynthesis capacity, which was supported by the detection of sorbitol in dehydrated grapes only. The metabolism of organic acids was also modulated, by the induction of transcriptional and biochemical activity modifications in malate dehydrogenases and malic enzymes that led to organic acid degradation, as demonstrated by HPLC analysis. Taken together, this study showed that primary metabolism of harvested berries was severely influenced in response to dehydration treatments towards lower organic acid and higher sorbitol concentrations, while sugar transporter and aquaporin genes were significantly upregulated.
TipoArtigo
URIhttps://hdl.handle.net/1822/47752
DOI10.1016/j.foodres.2017.11.052
ISSN0963-9969
Versão da editorahttp://www.journals.elsevier.com/food-research-international/
Arbitragem científicayes
AcessoAcesso restrito UMinho
Aparece nas coleções:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series
DBio - Artigos/Papers

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
document_47277_1.pdf
Acesso restrito!
1,08 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID