


N 7”7

I'\

Universidade do Minho
Escola de Ciéncias

Carolina Paula Baptista Ribeiro

Asymptotic derivation of models for anisotropic
piezoelectric beams and shallow arches

Tese de Doutoramento
Ciéncias

Trabalho efectuado sob a orientacao do
Professor Doutor Juan Manuel Viafio Rey
Universidade de Santiago de Compostela

Co-Orientador

Doutor Jorge Manuel da Silva Figueiredo
Universidade do Minho

Julho de 2009



Agradecimentos

Ao Professor Juan Viafio Rey, meu orientador, agradeco a oportunidade que me deu de
estudar sob a sua orientagao, a sugestao do tema que deu origem a esta tese, o facto de

me ter incutido o gosto pela Matematica Aplicada, os seus conselhos e recomendagoes.

Ao Prof. Jorge Figueiredo, meu co-orientador, agradeco o apoio e a colaboragao

prestada durante a realizacao deste trabalho, assim como a revisao do presente texto.

Aos meus colegas do Departamento de Matematica para a Ciéncia e Tecnologia que de
alguma forma contribuiram para a realizacao deste trabalho, devo também uma palavra

de apreco.

Dirijo também uma palavra de reconhecimento aos meus colegas do Departamento de
Matemaética Aplicada da Universidade de Santiago de Compostela, pelo apoio, amizade e

hospitalidade.
Também quero agradecer a minha familia, pelo apoio constante.

Adicionalmente, tenho de agradecer a algumas entidades: a Fundagao Calouste Gul-
benkian, pela bolsa de curta duracao que permitiu a minha estadia no Departamento de
Matematica Aplicada da Universidade de Santiago de Compostela, ao Departamento de
Matemaética Aplicada da Universidade de Santiago de Compostela que me acolheu du-
rante o referido periodo, ao projecto europeu “Smart System”, HPRN-CT-2002-00284,
o apoio financeiro que possibilitou a minha participagao em congressos da especialidade

e a Universidade do Minho, que me possibilitou a execucao deste trabalho.

iii






Abstract

Asymptotic derivation of models for anisotropic piezoelectric

beams and shallow arches

Due to the wide use of anisotropic solid structures, the study of anisotropic piezoelectri-
city becomes increasingly important. The purpose of this thesis is to extend the research
of Alvarez-Dios & Viano [1993, 1996, 2003] and Trabucho & Viafio [1996] to anisotropic
elastic beams, and present asymptotic models for anisotropic piezoelectric beams.

These models are derived in a rigorous way from a three-dimensional problem for an
anisotropic piezoelectric beam under an electric potential applied on one of two types of
boundary: first type when the electric potentials are applied in both extremities of the
beam and second type when the voltage acts on its lateral surface. In order to analyse
the asymptotic behaviour of the solution of the three-dimensional piezoelectricity problem
for a beam which has diameter of the cross section much smaller than the length, the
asymptotic method was implemented by considering the diameter as a small parameter.

We start by briefly introducing the three-dimensional equations that describe the
linear piezoelectricity theory: a coupled system of mechanical and electrical equilibrium
boundary value partial differential equations; weak and strong formulations. After, we
expand the solution as an expansion with respect to the small parameter and we obtain
a sequence of problems which allow us characterize some terms of the development. As
a result of this analysis, we establish the following models for piezoelectric anisotropic

beams:

e The one-dimensional beam theory from the three-dimensional problem for an
anisotropic piezoelectric beam of class 2 under an applied electric potential on both
ends is derived in Chapter 3. The characterization of the second-order displacements

is an essential step to achieve this model and to demonstrate the strong convergence.



e An approach for anisotropic piezoelectric beam of class 2 in response to an applied
electric potential acting on its lateral surface is derived in Chapter 4. The weak
convergence result is also discussed in this chapter for anisotropic piezoelectric beam
of the subclass 6mm, where it is concluded that the displacement vector field and
the electric potential weakly converge towards the leading terms of the displacement

- electric potential expansions.

e A zeroth-order model for a transversely isotropic - 6mm symmetry class - piezoele-
ctric shallow arch submitted to an electric potential at the both ends was determined
in Chapter 5 by the asymptotic expansion displacement - stress - electric potential

- electric displacement.
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Resumo

Determinacao assimptoética de modelos para vigas piezoeléctricas

anisotropicas

O estudo do fenémeno piezoeléctrico aumentou consideravelmente devido a crescente
utilizacdo dos materiais piezoeléctricos anisotrépicos em aplicacbes de engenharia. A
presente tese tem como principais objectivos, a determinagao e justificagao assimptotica
de modelos de vigas piezoeléctricas anisotrépicas, para, desta forma, generalizar a teoria
de vigas elasticas propostas por Alvarez-Dios & Viafio [1993, 1996, 2003] e Trabucho &
Viano [1996].

Os modelos desenvolvidos sao baseados na teoria da piezoelectricidade linearizada para
vigas feitas dum material piezoeléctrico anisotrépico, sujeitas a um potencial eléctrico
que actua em dois tipos de fronteira. No tipo I, o potencial eléctrico é aplicado nas
extremidades da viga e, no tipo II, a voltagem ¢ induzida numa &area lateral da viga.
Tendo em vista a analise do comportamento da solugao do problema piezoeléctrico, numa
viga em que o comprimento é muito maior do que as dimensoes da sua secgao transversal
e o diametro tende para zero, utiliza-se o método assimptotico, tomando-se o diametro
da viga como pequeno parametro.

Nesta documento, comeca-se por apresentar, de forma resumida, as equacoes tridimen-
sionais que descrevem a piezoelectricidade linear num sélido: equacgoes diferenciais parci-
ais do acoplamento electromecanico; formulagao forte e fraca. De seguida, expandindo a
solugao numa série assimptotica em funcao do pequeno parametro, obtemos uma série de
problemas através dos quais se caracterizam alguns termos do desenvolvimento. Como re-
sultado desta analise, propoe-se, nesta tese, os seguintes modelos para vigas piezoeléctricas

anisotropicas:

e Modelo unidimensional para o problema electromecanico, definido numa viga cujo
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material piezoeléctrico pertence a classe 2, e em resposta a um potencial eléctrico
induzido numa regiao do tipo I. A caracterizacao do segundo termo dos desloca-
mentos é essencial para a determinacao deste modelo e para a demonstracao da

convergéncia forte. Estes calculos encontram-se detalhados no Capitulo 3.

No Capitulo 4, é justificado um modelo para uma viga piezoeléctrica anisotropica
de classe 2 submetida a um potencial eléctrico numa area do tipo II. Demonstra-se
ainda que, se a viga ¢é feita de uma material piezoeléctrico pertencente a classe de
simetria 6mm, entao o vector dos deslocamentos e o potencial eléctrico convergem

fracamente para os primeiros termos dos respectivos desenvolvimentos.

Um modelo de primeira ordem para vigas, “debilmente” curvas, constituidas por
material piezoeléctrico transversalmente isotrépico - classe 6mm - e com potencial
eléctrico aplicado nos extremos da viga, é apresentado no Capitulo 5. A formulacao
mista, juntamente com o desenvolvimento do tipo deslocamento-potencial eléctrico-
tensao-deslocamento eléctrico, mostrou ser uma solucao eficaz na obtencao do res-

pectivo modelo e na demonstragao do resultado de convergéncia forte.
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Conventions and notations

The conventions and notations follow mostly Trabucho & Viano [1996] and Alvarez-Dios

& Viano [1996]. For the sake of completeness, the most relevant are summarized below.

Conventions

The notations follow in general these guidelines:

1. Tensors and vectors are denoted by boldface.

2. The standard Einstein summation is adopted, and Latin indices range over the
values 1,2,3 and Greek indices over the values 1,2.

3. The symbol “h” designates a parameter that is > 0 and approaches zero.

4. Superscripts h will be dropped when equal to one, so that
Q=0 w=w' z=2'=(v1,79,73), Tep=TLp,

5. Differential operators 0/0z%, 0/0x; are denoted by 9, 9;.
6. For functions z depending on the variable z3 we use the notations 2/, 2, ... for its

derivatives, and in some cases the alternative dsz, 033z,...

Notations

We collect here the definitions of some of the most frequently used symbols; others are

defined where they first appear in the text.

Piezoelectricity
e: the strain tensor in which the components are represented by (e;;) -
E: the electric vector field in which the components are represented by (E;) .

XV



Xvi List of Symbols

the stress tensor in which the components are represented by (o;;) .
the electric displacement in which the components are represented by (D;) .
the internal energy density.

the electric enthalpy function.

00
aekl :

the elastic tensor of the material of components Cjjn =

TaEFEa

_ 0Ooyj
T OE -

the piezoelectric tensor of components F;;

the dielectric tensor of the material of components ¢;; = %.
J

N ®

the elastic enthalpy function.

Q

the elastic tensor of components Cijkl-

an]

the piezoelectric tensor of the material of components Py;;.

L]}

the dielectric tensor of components &;;.

Lamé’s constants.

< >
R =

Young’s modulus and Poisson’s ratio.
the piezoelectric body.

deformation map.

id : the identity transformation.

T : a generic point in the set (2.

u(x) : the displacement vector at the point & in the body (2.

n: the unit vector outward normal to the surface.
€ : the symmetric positive permittivity tensor.
o - the dielectric impermeability.

Common notations

xr, x: the scalar € R, and vector & € R%.
u, u: the scalar valued function u, vector valued function w.
Q, I the bounded domain (open and connected subset of R?) with

sufficiently smooth boundary I' = 0.
Q=QuUoN: the closure of €.
0; : 0; = 0/0x;, ¢ = (x;) € Q.
(Q), C(Q) : the functions continuous in Q and Q, respectively.

Q
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L3(92) - the Lebesgue space of s-integrable functions u with the norm
ul| s ) = (/ |u|sdm) 1/8, 1<s<o0.

L*(Q) : the Lebesgue sgi)ace of scalar square-integrable functions on €.

ol loas Nl = (0 w)ia

(u, )20, (U, 0)0:  (w,v) 200 = (u,v)o = /Qu(x)'u(x)dx

H™(Q) : the Sobolev space

H™Q)={ue L*(Q):0ue L*Q), || =a1 + -+ a, <m}.
which is a Banach space for the norm
1/2
Qv 2
[l frmie) = [[wllma = (ngm/ﬂ |0%u(z)] dx) .
H}(Q), HY2(T'y) :  Sobolev spaces and subsets.

D(Q) : the linear space of infinitely differentiable functions, with
compact support in €.

D'(9) : the dual space of D(12).

div : the divergence operator, div u(z) = 30, 8%"76(20) for a vector
valued u = (uy(x), - - -, uq(x))? for z € R4

Vv: the gradient operator, Vu(x) = <8g§;:f)v T 8;;?) for € R

curl, curl (N =2): the rotational operator for distributions ¢ of D’(Q2) and w of
'D/(Q)Q’ curl (;5 = (ﬁ _%>’ curl u = vy Oun

dxz)  Om dx1  Oma”
curl (N =3): the rotational operator of a distribution w of D'(Q)?,
A: the Laplace operator, Au(x) = Zfil 82812‘—:(5) for x € R%.
Uy — U the converge in norm (strong convergence).
Up — U the weak convergence.
Cap (Tep) : the portion of the surface with mechanical (electrical)

Dirichlet boundary conditions.

Canv (Ten) : the portion of the surface with mechanical (electrical)
Neumann boundary conditions.

Vo(9) : the spaces of admissible displacements.

Vio(€2) : the space of admissible displacements which satisfy the weak

boundary conditions.
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the spaces of admissible electric potential

a closed and convex subset of H((Q).

the spaces of admissible electric potential.

the space Xo(2) = Vo x Wy, (Xo,w(2) = Vo X ¥y).

the space X;(€) = [L2(Q)]) x L2().

the space X5(2) = Vo x Wy (X3.4,(2) = Vipo x Uyp).

the volume element in 2.

the surface forces density at the extremities of the beam.
the body force density.

the surface traction density.

Piezoelectric beam

the domain in R? (open, bounded, connetected subset with
the Lipschitz - continuous boundary v = dw).

the length element along .

the measurable subset of v with length 5 > 0.

the length of the beam.

the left extremity of the beam.
the right extremity of the beam.

the electric boundary.

the portion of the surface where a beam is clamped.
the portion of the surface where is applied an electric potential .

the portion of the surface that is subjected to the action of

external applied forces (potential).

the displacement vector at a point " in the body Q". An

arbitrary admissible displacement vector is denoted v".

the electric potential vector at a point =" in the body Q. An

arbitrary admissible electric field is denoted ".

an extension of pl in H(Q").
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Chapter

Introduction

1.1 Background

Piezoelectric Solid (PS) has been defined in the literature as a solid that produce an
electric field when deformed and, conversely, undergo deformation when subjected to an
electric field [see e.g. Hwu et al., 2004]. The electromechanical coupling is the key physical
property of the piezoelectric materials and was investigated by Crawley & Luis [1987] via
experiments and analytic models. These piezoelectric materials are widely used as sensors
and actuators in many important applications, such as structural, aerospace, robotic, var-
ious medical purposes, etc. With the increasing successful technological applications of
piezoelectric actuators and sensors, piezoelectric solids have attracted considerable atten-
tion from scientific researchers, in order to understand the basic phenomena responsible
for their particular properties.

In mathematical terms the electromechanical coupling is described through a set of
partial differential equations of second order, in which the displacement components and
electric potential are taken as the essential unknowns (see e.g. Tiersten [1969], Jackson
[1975], Nye [1985], Ikeda [1990]). Due to the complexity of the coupling effect between
mechanical and electrical fields it is very difficult, if not impossible, to find an exact so-
lution to the piezoelectric problem. Many simplifying assumptions, such as simplification
of geometry and restrictions on the piezoelectric material’s electromechanical behavior,
have been made to obtain approximative solutions. Several approximations have been
developed by Robbins & Reddy [1991], Crawley & Luis [1987], Bisegna & Maceri [1996b],
Saravanos & Heyliger [1999], Vidoli & Batra [2000] and Vidoli et al. [2000] for modelling
of piezoelectric structures.

One way to generate models for piezoelectric problems in thin piezoelectric solids, in
which one or more dimensionals are small, compared to the others, is to reduce the original

problem to a new one, in a lower dimensional space, where the small dimensions disappear.



2 Chapter 1. Introduction

An approach is deduced by the study of the asymptotic behavior of the three-dimensional

problem depending on a small parameter, as this one goes to zero.

Based on this method, we intend, with this work, to derive and to mathematically
justify lower-dimensional equations for linearly piezoelectric beams and shallow arches, as

the diameter approaches zero.

We present next an overview that tries to cover the main techniques and results of

which we are aware and are most closely related to the aim of the present thesis.

The application of the asymptotic expansion to justify plate theories was initiated
in the pioneering work of Maugin & Attou [1990], where it was used to derive a two-
dimensional theory for piezoelectric plates belonging to the class 6 mm of piezoelectric
crystals. This method was also successfully applied by Bisegna & Maceri [1996a], Rah-
moune et al. [1998], Sene [2001], Miara [2001], Licht & Weller [2003], Weller & Licht
[2002], Raoult & Sene [2003], Figueiredo & Leal [2005] and Weller & Licht [2007] in deri-
ving two-dimensional models for thin piezoelectric plates. Extensions of this method can
be found in Collard & Miara [2003] for thin piezoelectric shells.

The classical mechanical Kirchhoff-Love theory for piezoelectric solids was established
by Maugin & Attou [1990] and successively found in many other works mentioned above.
Rahmoune et al. [1998] introduced the idea of dependence between the electric assum-
ptions and the electric boundary conditions. An uncoupled electromechanical problem
for homogeneous and orthorhombic piezoelectric plates was determined, for which only
the mechanical problem should be solved - the electric potentials can be entirely deduced

from the mechanical displacement.

The work of Sene [2001] justifies mathematically the theory of Destuynder et al. [1992]
(which is fully described in all admissible piezoelectric crystals) for a piezoelectric plate. In
this work, Sene [2001], states that the electric potential affects the mechanical equations
only through the difference of potential between the horizontal faces. This paper also
justifies the a priori assumptions that the electric potential is a second polynomial order
with respect to the thickness variable, assumption originally proposed by Bernadou &
Haenel [2003]. The paper by Raoult & Sene [2003] generalizes the previous model by
considering a magnetic effect accompanying the dynamic behavior. In the work by Licht &
Weller [2003] is shown that, according to the type of boundary conditions, the asymptotic
analysis of thin linearly piezoelectric plate as the thickness approaches zero leads to two
distinct models, linked to sensor or actuator behavior. Further, they proposed in Weller &
Licht [2007] four different models of linearly electromagnetic-elasticity thin plate according
to the type of electromagnetic boundary conditions. The lower-dimensional equations for
a nonhomogeneous anisotropic plates has been proposed by Figueiredo & Leal [2005],

which extends the previous work of Sene [2001] for homogeneous and isotropic materials.



1.2. Main results of this thesis 3

Latter papers by Collard & Miara [2003] and Sabu [2002, 2003] published two-
dimensional models for boundary value problems considering piezoelectric shells. A two-
dimensional nonlinear shell model was proposed by Collard & Miara [2003], where they
derived two-dimensional membrane equations and flexural models written on the middle
surface of the shell, and verified that the coupling between the electric limit displace-
ment field and the limit electric potential inherent to piezoelectricity appears only in the
membrane model. The two-dimensional theories for the vibrations of thin piezoelectric
flexural and shallow shells were proposed by Sabu [2002, 2003], by considering the limit,
as the thickness goes to zero, the eigenvalue problem for piezoelectric respective flexural
and shallow shells.

Pioneering work for modelling of thin linearly isotropic piezoelectric beams was per-
formed by Viano et al. [2005a,b], where a purely mechanical Bernoulli-Navier beam the-
ory emerges. Recent models of the phenomena piezoelectric beams were described by
Figueiredo & Leal [2006], Viriyasrisuwattana et al. [2007] and Weller & Licht [2008]. A new
mathematical model for a linearly nonhomogeneous anisotropic thin beam was proposed
by Figueiredo & Leal [2005], which is a system of coupled equations, with generalized
Bernoulli-Navier equations and reduced Maxwell-Gauss equations but it was not possi-
ble to prove the uniqueness of the solution for the limit equations. A one-dimensional
asymptotic models for a linearly piezoelectric slender beams can be found in Weller &
Licht [2008].

In this work, we take advantage of previous experience, varying the applied boundary
electric conditions as suggested by Weller & Licht [2002] and using the asymptotic method
mentioned above, and we find various models for linearly piezoelectric beams and shallow
arches as the diameter of its cross section approaches zero. We complete the asymptotic
analysis, proving weak and strong convergence results and characterizing completely the

limit models, closing several open questions form above mentioned papers.

1.2 Main results of this thesis

We present next, in a simple setting, the principal aspects of this thesis.

Consider the three-dimensional piezoelectric beam (as illustrated in Figure 1.1)

QF = wh x (0, L)
where h is a small positive number representing the diameter of the cross section w”, a
bounded domain of R? with a Lipschitz-continuous boundary +". The boundary of the
domain Q" I = 9Q", is composed of I'" = Th UTh, Th NT" = & for the mechanical

boundary conditions and T'* = Th, U T%,, T, NT?, = @ for the electrical boundary
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conditions. We assume that the beam is clamped along the boundary %, and subjected

to an electric potential ¢! on T'",. The beam is also subjected to applied body forces of
h

density (fF): Q" — R3 acting inside Q" and on surface forces (¢g/') on I'*\. We denote a
typical point in Q" by x" = (2!, z3).

We denote by C" = (Clin), P" = (P}) and " = el respectively, the elastic tensor
field, the piezoelectric tensor field, and the dielectric tensor field that characterize the

material.

In the framework of small deformations and linear piezoelectricity, the three-dimensi-
onal static equations for the piezoelectric solid " are the following: Find a displacement
vector field u” : Q" — R3 and an electric potential ©" : Q" — R such that (see Chapter
2 with h = 1)

ol (Uha @h) = C‘}}kzel/ﬁl(uh) - P/Z‘jEig(‘Ph) in Qh>

1J %

Dy (ul, ") = Plel(u") + 6ZjEj(<ph) in Q"

ij€ij
and
8]’70% (uh,goh) = fih in Q" aﬁD? (uh,cph) =0, in Q"
azhj (uh,goh) n;‘ = g" in T, D} ('u,h, cph) ny =0 in T,
uj =0, on Igp, Pt =¢; on Tep,
where e;(u") = 1/2(9]'u” 4+ 0}'u}’) denote the components of the linearized strain tensor,

E!M™) is the components of the static electric vector field defined by ElM (") = —;",
and (n!') is the unit outer normal vector along I'". This problem can be put in a variational
form, which consists in finding (u”, ") € VJ*(Q") x H*(Q") such that ¢" = ¢} on T",

(a) General view. (b) Cross-section.

Figure 1.1: Notations for a piezoelectric beam.
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and (Section 2.3.2.1)
| [Clulu(u?) = Phyy B ()] e oo

b [ Phgeh) e B () B (o) dat = [ giutaat [ ghfart,
Qh 774 Qh Th

dN

for all
v e V= VO = {'vh € [Hl(Qh)]3 cv" =0 on FZD},
Phe Uy =0 = {¢" e HY(Q") :¢" =0 on T?
In Section 2.3.2.1 we show that if there is an extension @" of ¢! in H'(Q"), then the
solution (u”, ") is derived from p" = @"+@" with (u”, p") € VI(Q") x Uh(Q") satisfying:
| [Clulutu?) = Phiy B (7)) e oo

+ [ [Phy e )+ < B () B (07) da

:/ [fvi + Py Ee(@")els (0") — e Ei(@") By (v")] da” / givdl™.
Qn o

dN

The existence and uniqueness of solution (u”, ") and (u”, ") follows from the classical
Korn’s and Poincaré’s inequalities, by assuming some regularity to the data (see Propo-

sition 1 and Corollary 1).

In Chapter 3, we consider that the beam is made of a piezoelectric crystal material of

class 2 which the components of the elastic, piezoelectric and dielectric material satisfy
(cf. (3.4))

m] #0, C/}cllk;l # 0, for k #1,

Pg};ﬁ # 0, Pofjgﬁ £0, PRk, #0, sgﬁ £0, b #£0.

We also assume that the beam is weakly clamped (clamped in mean) along at one end T'},

i.e. the displacement field u” being such that

ul dw" =0, (:E?u? — x?u?) dw" =0,
Iy r}
0 0

which we denote by (u) = 0 on T, the other end being controlled by surface forces
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p" = (pl'). Furthermore, the electric potentials of® and i (constants) are induced on
both ends T := w" x {0} and T := w" x {L}, respectively. So, the boundary sets should
be defined by ') = Tt and ', = Th UT%, where I't, = " x (0, L) and T, = Th U T,
and the variational equations become: find (u", ") € VJ;L,O X Wk such that
/Q [CZklekz( ")~ wa Ey, (80 )} e?j('vh)dwh
[ [Pl ety e B ()] B (07 de

/ fholdah + / ) groldl™ + / ) plotdl, V(o' ") e VI x g,
T T

N L
where Vho and W8 are defined by (see Section 3.3)

Vio: = Vito(@") = {w e [ (@)’

. (v) =0 on rdD}, (1.1)
Uh=0h(Qh) = {9 e H(Q") 1" — p" e Uy} (1.2)

The existence and unicity of solution is also obtained by classical results of elliptic varia-

tional equations.

In Section 3.2 we define an equivalent problem, but now posed over set Q = @ x (0, L),
which is independent of h. We denote by @ = (71, 22, ¥3) a generic point in , and with

each point « € Q, we associate the point 2" € Q" through the bijection
" x = (z1, 29, 23) € Q — x" = (hay, hay, 23) € Q" (1.3)

Then, the unknowns are scaled, by letting

ap(@") = Woas(h) (@), o3a(h)(®) = h7log,(2"),  oss(h)(@) = og(a”),

Do(h)(zx) = k™' Dy(a"),  Ds(h)(x) = Dy ("),

and it is assumed that there exists functions f; € L*(Q), g; € L*(Ty), p; € L*(T'z) and
¢o € H?(I',p) independent of h, such that:

Mz = hf(x), [fMz") = f3(x), forall zh =1I"(z) € Q"
go(x") = h?go(x), g5(x") = hgs(x), forall " =I"(x) € T,

pi(xh) = hpo(x), ph(xh) =ps(x), for all " =T1"(x) € T}
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Cgkl(wh) = Cyjn(z), P,Z-j(zch) = Pyj(x), el(z") = g;(x), for all " € Q"

v

Q"(zh) = p(w3), for all zh € [0, L],

where p(z3) = (L — x3)¢) + Tx305 € H'(Q) is an extension of ¢y € H/*(T.p) and
define p(h) = @(h) + ¢.

It is found in this fashion that the scaled unknown (w(h), ¢(h)) satisfies a variational

problem of the form (Proposition 2 in Section 3.2)
( Find (u(h),(h)) € Vo x Wy such that

h74a—4((u7 90)7 (v> w)) + hiQCL_Q(('U,, 90)7 (v’ ¢)) + aO((u’ 90)’ (’Ua W) = l(va ¢)>

V('v7w) € ‘/E),w X \Ij())

\

where the bilinear forms a_4, a_s and ag and the linear forms [ are defined in Chapter 3

and are independent of h.

The specific form of this variational problem suggests that we use the method of formal

asymptotic expansion, i.e., we let

w(h) = u’ + h?u? +hot., u' € Vp,,

p(h) =" + h2? + hot, ¢°— @, ¢P € Ty, with p > 1,

in the variational equations, and then we equate to zero the factors of h?, ¢ > —4. We

0 u? and ¢ (see Theorem 4 in Section 3.4) to yield the

need to characterize the terms u
complete determination of the leading terms. We then establish in Section 3.3 the main
results of the chapter by showing that the scaled unknown (w(h), ¢(h)) strongly converges
in [H'(Q)]? x H(Q) to the leading term (u, ©°) (see Theorem 7 ) and it is obtained by

solving a one-dimensional problem:

0

(i) The vector field u° is a Bernoulli-Navier displacement field, i.e.: the functions u?

depend only on z3 and displacement u§ takes the form u§(z1, z2, x3) = &3(w3) — xaE5(23),
with & € H'(0, L) satisfying &(0) = 0, and &z € H?(0, L) satisfying £3(0) = £5(0) = 0.

(ii) The scalar function ©°(zy, 29, x3) = 23(w3) with 23 € H(0, L), satisfying 23(0) =
¢ and 23(L) = ¢!

(iii) The vector field (&;, z3) solves a one-dimensional coupled boundary value problem
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which represents the one-dimensional piezoelectric model in the fixed domain:
[ —C A(w) &) — PjA(W) 24 = F5 in (0, L),
SAW) 2 — PIAW)E =0 in (0,L),

£3(0) =0, =23(0) =¢p, 2(L) =g,

Cis Aw) &(L) + Py A(w) z4(L) = Fy
and (no sum on [3)
(G156 = Fy+ M} in (0,1),

€3 (0) =0, &(0) =0,

| Cislp&p(L) = —My,  —Cylp&y(L) = Fy — Ms(L),
where the constants, defined in Theorem 5, are given by

O35 = Css33 — C3ap [éaﬁppcpp33 + éaﬁ1201233] = AS3Ess,
P; = Ps33 — Cs308 [éaﬁppp3pp + éaﬁ12p312] = A§3P333,
€5 = €33 + Piop [éaﬁppcpp33 + éaﬁ1201233] = A§363333,

and the loading dependent terms are defined by

E:/fzdw+/ gzd’% Ma:/xadew+/ xag3d77
w YN w TN

Mz = / (T2f1 — 21 f2) dw +/ (T291 — 7192) d,

TN
-F;L:/pz dwa

M£ = / Taps dw, Mf = / (x9p1 — x1p2) dw.

Naturally, these equation have to be “de-scaled”, so as to be expressed in terms of

“physical” unknowns and data. These equations are presented in Section 3.5.

In Chapter 4, we suppose that the beam is made of a piezoelectric crystal material
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that satisfy:

h h h h h h
03;)33 = CBGaﬁ =0, P@po = P33, = P33 =0, 5 =0,

and that the beam is weakly clamped at the extremities TfUT? ie. (v) =0 on THUT:.
As shown in Figure 1.2, we assume that the beam has electric potential ¢} on T, =
Ay x (0, L) with 4%, € v* and measure(y",) > 0. Due to the force loading and electric
potential, the pair (u”", ¢") is derived from " = @¢" + " with (u”, ") satisfying the
problem (2.62) defined in Section 2.3.2.1 for Q"

Like the variational problem in Section 3.2, the problem (2.62) is then transformed
into an analogous one, but now posed over the fixed domain € := @ x (0, L). As in Section

3.2, we apply the bijection
" : x = (21,29, 23) € Q — x" = (hay, hay, 23) € Q" (1.4)

and we take a new scaling to electrical part. In other words, we use the appropriate

scalings
p(h)(x) =h7'g"(x"),  Da(h)(x) = Dy(a"),  Ds(h)(x) =hDs(="),
and adequate assumptions on the data:
o"(x") = hp(h)(x), for all 2" = 11" (x) € Q"

o(h) € HY(Q) a trace lifting of ¢y and define ¢(h) = @(h) + @(h).

Figure 1.2: Electrical boundary in each cross-section.
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In this way, the scaled principle virtual work reads: Find (u(h),p(h)) € X such that
/aij(h)eij('v) dx + /Dk;(h)Ek;(w) dx = /fzvz dx —f-/ g;V; dr’, \V/(’U,w) € Xy,
0 0 0 Ty

where o(h) = o(h)(u(h),p(h)) and D(h) = D(h)(u(h), p(h)) are given by

—~

ap(h) = h™'Cagopegp(u(h)) + h™*Cagssess(w(h)) — W™ PaagEs(0(h)),
03a(h) = 2072 Caazpesp(u(h)) — h™ Pasa Es(p(h)),

033(h) = h™*Cazageap(u(h)) + Cazssess(w(h)) — hPsss Es(o(h)),
Dq(h) = 2h7" Pasgess(u(h)) + easEp(p(h)),
(

Dy(h) = h ' Psageqs(u(h)) + hPsssess(u(h)) + hPess Es(¢(h)),

and Xy = Vo x ¥, or X¢=Vy, x V¥,. Inserting the developments mentioned above into
the previous problem results in a set of variational equations that must be satisfied for
all h > 0 and consequently the terms at the successive powers of h must be zero. This
procedure allows to show that the negative terms can be cancelled, and consequently to
get the characterization of the terms u° (Theorem 10), u' (Theorem 11) and u? (Theorem
14) of the development of w(h). Summarizing, we show that:

(i) The first term in the asymptotic expansion of the scaled displacement field
u’ = (u?) € H'(Q) is a Bernoulli-Navier displacement field as defined above, where
the transverse components &, and the stretch component &3 of the zeroth order displace-
ment field are, respectively, the unique solutions of the following variational problems (no

sum on «):

(¢, € H3(0,L),

L L L
/ YI,£0X" des = / FoXadrs — / M., dxs, for all x, € HZ(0, L),
\ Jo 0 0

(¢ € HL0, L),

L L
/ Y A(w)&sxs ds = / F3x3 dus, for all x5 € Hy(0, L),
\ 0 0

where Y = %, and C', M and N are defined in Sect.4.3.0.2.

(ii) The leading term in asymptotic expansion of the scaled electric potential is deter-
mined by the pair (r, ¢°) where

(r,@") (21, 22) = %/0 (r, @) (w1, 9, 8)ds
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is the unique solution of the following 2D variational problem:
(r,¢") € T(w) = Q(w) x S(w) such that
/ Cgaggaﬁfaap dw + / Eagaagoagw dw + / nga(aafagw — %QO&Ip) dw

= / P33005 Oap dw —/eaﬁaa%aﬁw dw, for all (p,¢) €T.

The spaces Q(w), S(w), the function w and the torsion constant J > 0 are defined in
Section 4.3.0.3. In particular, we have that, for a beam of class 6mm material, the electric

potential satisfies the following Laplace’s equation,

@° € S(w) such that a.e. a3 € [0, L],

P, P,
/ (1314i + €11> aﬁ@oaﬁwdw = —/ (1314i + €11> Oppodppdw,
w Cu w Cu

for all ¢ € S(w).

(iii) The families (k(h))n>o and (Y (h))n>0, defined in Section 4.2 by (4.16) and (4.17),
weakly converge to k and 9. By Korn’s inequality and Poincaré-Friedrichs’s inequality,
we then establish that the family (w(h))nso and (¢(h))nso converge weakly in the spaces
[H'(Q)]? and L*(Q), respectively, to w and ¢ as h — 0. Thus, the limits r33 and 9 are

characterized with respect to w and ¢, respectively.

(iv) In Section 4.4.2 we prove that, for a beam of class 2 material, the sequence
(u(h))p=o converges weakly to the first terms the asymptotic expansion of the scaled
displacement field, u°, while that for the homogeneous transversely isotropic beam model,
we show that the sequence (u(h), p(h))n>o converges weakly towards the unique solution

(u®, ") of the variational equations derived in Section 4.3.

For the homogeneous transversely isotropic beam model, we prove the uniqueness of
weak solution which improve some results given by Figueiredo & Leal [2006]. However,
as in the work of Figueiredo & Leal [2006], the strong convergence does not emerge in our

study.

Let us now briefly outline the content of Chapter 5. In Section 5.2, we consider a three-
dimensional linearly piezoelectric shallow arch occupying in its reference configuration
the set {Q"}~ = @), where Q" == ©"(Q"), Q" = W' x (0,L), and the mapping
Q" O - R is given by

©" (z") = ¢" () + ain*(zs) +a5b" (x3) € {2},
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where ¢"(z3) are given functions verifying ¢" € C3[0, L], and n* and b* are the normal
and the binormal vectors of the Frenet trihedron (t*,n*, b*) associated to the curve C"
defined by ¢! (see Section 5.1). The shallow arch is clamped on the portion I, = Il
and submitted to a mechanical volume force of density j’h in ", to a mechanical surface
force g" in lateral surface f?v and to a surface force p" on the end fh A prescribed
electrical potential <p0 h(#3) on rh ¢p is imposed. Then, the body undergoes a mechanical
displacement field " = (a?) : " — R? and an electrical potential ¢ : Q" — R satisfying

the following mixed variational equations:

[ (Gt + BlyDE) e+ [ (~Blyoly+ 2, D) dias® = [ i) st
Qh Qh Qh
+ [ B da

V]

for all (+",d") € X

/Qh&j; & (") da” DI EM) de" /fh”hda: /“h“hdl“h

Qh
+/ <h vh th
rh

L

hY o h
for all (d",y") € X0

ih h
where C7y), P

iy and £, are the elastic, piezoelectric and dielectric tensor field that cha-

racterize the material by the following behavior law

h h Sh Ak
&"(u") = ngklakl+PkijDk

E (@h) = _Pz}l;l &1131 + 5@] Dh

obtained from the elastic enthalpy function, defined in Section 2.1.3.

Let Q = w x (0, L). We define the scaled displacement field w(h), the scaled electric
potential p(h), the scaled stress tensor o (h) and the scaled electric displacement D(h)
by, for all &" = @" (II"(x)) € {Q"}~,

0as(h)(x) = h72505(2"), o3(h)(x) = h7'54,(&"), o3s(h)(x) = o4 (2"),

Do(h)(@) = h ' Di(&"), Dy(h)(z) = Dj(&").
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We also assume that the data is such that
fa@) =hfa(®), [(@&") = fix), forall 2" =0 (II'(x)) € {Q"}",
Ga(®") = 1* ga(x), G5(&") = hgs(x), forall 2" = © (I"(2)) € [},
PR(E") = B2 pa(z), Ph(E") = hps(z), forall #" = © (II"(z)) € I,

and

"
9

#5) = (),
i) = hogo(zs) for all 2% € [0, L.

As we referred in the last chapter, the constants of the material satisfy the following

conditions:

Cl(ah) = Cij(),
Bl (ah) = Py(x),  for all #" = © (IT"(x)) € {2}

éﬁ‘j(wh) = ¢g;j(x).

As a consequence of these scalings and assumptions, the scaled unknowns satisfy the

mixed scaled problem, described in Section 5.3,
( Find ((o(h), D(R)), (w(h), ¢(h))) € X1 x X3, such that
amo ((o(h), D(h)), (,d)) + h*arz ((o(h), D(h)), (T, d))

+ h4aH,4 ((U(h)> D(h))> (T’ d)) + bu ((T> d)’ (u(h)> @(h))) =0, V(T> d) S Xla

\ bH ((U(h)aD(h))a (’U>¢)) = lH(”ﬂﬁ)a V(’Uﬂﬁ) € XO,un
with XO,w = ‘/O,w X \Ilo, X1 = [L2(Q)]2 X L2(Q) and X2,w = ‘/O,w X \IIQ, where

Vow = Vou(®) = {v € (@)

:(v) =0on FdD},
Uo=Uo(Q) ={pe H(Q):b=00nTep},
Uy =Uy(Q) ={ve H(Q) : ¢ — ¢ € Uy},

and ag;(-,-) : X1 x X7 — Rand by (-,-) : X1 X Xow — R defined in Section 5.3.
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Assuming that the scaled unknowns can be expanded as
(o(h),D(h)) =h~* (e, D" ) +h*(e7*, D)+ (¢°, D) +. ..
and
(w(h), p(h)) = (u® + h*u? + ..., " + R** +..), (uo, — g?;) , (uzp, <p2p) € Xow,

we find that the leading term satisfy, ((o, D°), ((u’, ¢°)) € X1 x X,

e

ap o ((0'0, DO), (T, d)) = —apg> ((0'*2, sz), (T, d))
—QH4 ((0_47 D_4)a (7-7 d)) —bu ((7-7 d)v (uoa 900))

~a}(h,¢) (672, D7?),(1,d)), V(T,d) € X\,

| b (6%, D°), (v,¢)) = lu(v,¢),  Y(v,¢) € Xou.

In Section 5.5.2.1 we show that the cancelation of the factors of h?, —4 < ¢ < —1,
implies that the formal expansion of the tensor and electric displacement does not contain
any negative powers of h, and consequently we derive an expression for the components
u? of the displacement u?, taking into account that u° and ¢" belong respectively to the

spaces Viy and ¢ + U¢ defined by
Viy = {v:Q—R3:vg(xy, 29, 73) = (uls), (o € VE(0, L),
U3($1,9€2>$3) = C3($3) - XZ(%JQJ:&)C&(?%% (3 € Vol(O, L)} )

G+ =p+ {v € H'(Q) : (21,22, 25) = 2(23), 2z € Hy(0,L)},

and
bo = OL) (B2 + (¢)2)2, B +B2=1,

Xl{(%, Ty, T3) _ bi(zz) —ba(x3) T
Xg($1, Ty, T3) ba(wz)  bi(w3) T2
The last mixed variational equations become

Ao ((0'0, DY), (T, D)) + by ((T, d), (u®, @0)) =0, forall (7,d) € Xy,

bir ((0°, D°), (v,9)) = lu(v,v), forall (v,¢) € Xo = Vi x V3,
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and then lead to show that the leading terms can be fully identified solving a one-

dimensional problem. In Section 5.4 is proved that there is a constant C' such that
Wl = [ESW)| = Clwla, wews,
3 0,2 ’

and therefore we also obtain the existence and uniqueness of the solution of the previous
limit problem in Vg N X \Iff Our main result (Theorem 20) then consists in showing that
the family (w(h))n>o and (¢(h))nso strongly converge in the spaces [H1(Q)]? and H'(Q),
respectively, as h — 0, and that (u’,¢°) = flzli% (u(h),¢(h)) can be obtained from the
solution of a coupled one-dimensional problem; more concretely, we prove that:

(i) The element (&,,&3,q3) € [VE(0, L)]*x Vi1 (0, L) x (p+ H'(0, L)) solves the following

variational equations:
( Find &3 € VZ(0, L) such that
L L
L [ Gy €iGyoa+ A(w) [ 1G5 (& + 6465) + Piai} o
0 0

\

L
= / (Fo+ M) Gads — Mo (L)L (L) + FyCa(L) + My G (L), V¢ € Vi (0, L),
0

( Find (&,q3) € V0, L) x (¢ + HY(0, L))
L
A(w) / (C3, (6 + 84Ey) + Pias )} ooy

L
“AW) / [P (€4 08h) — e3ab )} s

L
:/p%mﬁﬂmwx ¥ (Cs, 25) € V(0, L) x HL(0,L).
0

\
where the admissible spaces V' (0, L), VZ(0, L) and ¢ + H'(0, L) defined by
Vo (0,L) = {n € H'(0, L) : n(0) = 0},
V5 (0,L) = {n € H*(0, L) : (0) = n/(0) = 0},
¢+H'(0,L):={2€ H'(0,L) : z— ¢ € Hy(0,L)},

and the reduced constants read

1
Ci333833 + Ps33Psaz’

* = d * D d * 9 d d
Csy = E33A453, Py = Pas3Ass, €3 = COszazAs;, Agy =






Chapter

Piezoelectricity theory

For a better description of the piezoelectrical phenomena we discuss in this chapter some
relevant theoretical aspects. In recent years a vast literature has flourished describing
the piezoelectric effect [see e.g. Tkeda, 1990; Nye, 1985; Taylor et al., 1985; Royer &
Dieulesaint, 2000].

Section 2.1.1 begins with a short description of the piezoelectric phenomena and a
review of the constitutive equations that describe the piezoelectric’s response, based on
thermodynamical principles. Simplifications of the coupling matrices due to crystal sym-
metries are also presented in this section. The field equations governing linear piezoelectric
solids are given in Section 2.2. Section 2.3.2 gives the primal and mixed variational formu-
lation for electromechanical boundary value problem as well as the existence, uniqueness

and regularity results for the weak solutions.

2.1 Material laws

2.1.1 Piezoelectric material

A piezoelectric material has the ability to produce an electric field when subjected to
mechanical stress [see e.g. Rovenski et al., 2007]. This phenomenon is known as the
“direct” effect (the word comes from the Greek piezein which means “to press ”) and
was first discovered in 1880 by Jacques and Pierre Curie. The “converse” (or indirect)
piezoelectric effect, by which certain materials deform when subjected to an electric field,
was mathematically deduced from fundamental thermodynamical principles in 1881 by

Lippmann and confirmed experimentally by the Curie brothers.

17
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2.1.2 Crystal classes

The two piezoelectric effects are specific to the piezoelectric’s crystals’ structure that
lacks a center of symmetry [Boor & Tabaka, 2008]. Of the total 32 crystal classes, 21 are
noncentrosymmetric and with the exception of one class, all of these are piezoelectric. The
32 classes are divided into seven groups: triclinic, monoclinic, orthorhombic, tetragonal,
trigonal, hexagonal and cubic. There is a relationship between these groups and the elastic
nature of the material: triclinic represents anisotropic material, orthorhombic represents
orthotropic material and cubic are usually isotropic materials.

Using Maugin and Hermann’s notation, the 20 piezo-classes are: triclinic class 1;
monoclinic classes 2 and m; orthorhombic classes 222 and mm2; tetragonal classes 4, —4,
422, 4mm, and —42m; trigonal classes 3, 32, and 3m; hexagonal classes 6, —6, 622, 6mm,
and —62m; and cubic classes 23 and —43m.

To understand the mechanism that causes a material to possess piezoelectric properties
it is necessary to consider its behavior at the molecular level. The crystal structure of
a material or the arrangement of atoms in a crystal can be composed of a lattice of
atoms, which can be deformed by an applied force or change in electric field. Figure 2.1
illustrates a cube with one negatively charged atom at each corner and a single positively
charged atom in the center. If the positive atom is exactly at the center of the cube
(figure 2.1(a)), then the center of positive and negative charge remains fixed when a force
is applied because of the center, and therefore the material is not piezoelectric. In acentric

crystals (figure 2.1(b)), the center of the positive and negative charge are displaced by an

(a) Structure is non piezoelectric. (b) Structure is piezoelectric.

Figure 2.1: Configuration of the structure.
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applied force, and therefore, the crystal may possess polarization or net electric charge.

More detail about piezoelectric material equations can be found in Nye [1985], Ikeda
[1990] and Royer & Dieulesaint [2000].

2.1.3 Thermodynamic description of piezoelectricity

For piezoelectric materials the constitutive equations, which relate the strain tensor e
and the electric field vector E to the stress tensor o and the electric displacement D,
are derived from thermodynamic potentials and they are described in detail in several
texts [see e.g. Maugin, 1988; Tiersten, 1969; Mechkour, 2004; Royer & Dieulesaint, 2000].
Following these works we can observe that the constitutive equations can assume different
forms depending on the state field. We take the strain tensor components e;; and the
electric field components Ej as independent variables; that is to say, the state of the
crystal, and in particular the stress tensor components o;; and the electric displacement
components Dy, are determined when the quantities e;; and Ej, are given. Accordingly,
we may write

00, 00, oD oD
%4 g, D= S 5 B (2.1)
J

0F,
which are known by piezoelectric constitutive relationship and were first given by Voigt.

One way is to define a function
H(e,E)=U—-ED, (2.2)

where U represents the internal energy density. From the first law of thermodynamics for

piezoelectric continuum we have

To obtain U with respect to the variables e;; and Ej, we build the first derivative of
(2.2) and apply (2.3)

0OH 0U OE; 0D; oe;; OF;
ot ot ot o~ "o ot (24)
Hence H defined in (2.2) is also a function of (e;;, E)) and we may write

(2.5)
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and, by comparing coeflicients in equations (2.4) and (2.5), we deduce that

oOH oH

=\ D= . 2.6
i aeij 6EZ ( )
Hence, by further differentiations,
0*H 00 oD
8Ekael-j 8Ek 861-]-
In a similar way,
82H 8az~j 6akl 62H
aeijc?ekl aekl akl ki aeij 8eklaeij ( )
0?H oD; 0D; O?H
OE,0E; OE; OE; OLE;0F;
From (2.7)-(2.9), equations (2.1) may now be written as follows
0ij = Cijriers — PrijEy, Dy, = Pyjeij + ex by,
(2.10)
1<14,5,k <3,

where C = (Cjj) is the forth-order elasticity tensor, P = (Py;;) is the third-order piezo-

electric tensor and € = (g;;) is the second-order dielectric tensor.

When the matrices in equations (2.10) are denoted by single letters we finally have

the following compact expression:

o=Ce—- PE, D = Pe+¢€FE.

Now, substituting (2.10) into equation (2.6), and integrating both equations of (2.6)

with respect to mechanical and electrical strains, respectively, yields,

1
H(e) = §Cz'jkl€kz€ij — PyijErei; (2.11)

and ,
H(E) = —Py;Eyei; — Ci bk (2.12)

Combining both conservative fields, the electric enthalpy reads

1 1
H(e, E) = §Cz‘jk;leklez‘j — P]m‘jEkez‘j — igijEiEj' (213)
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Other symmetries are implied by the symmetry of the strain tensor, such as

(H§1) Cijrs = Cjirs = Cijors Prij = Prji.
(2.14)

For stable materials, both C and € are positive definite, i.e., there exists a constant ¢; > 0

3 3
(HSQ) C@'jlez’kal > Z(sz)Z, gijdz'dj > Z(di)27 (2-15)
ij=1 i=1

for all d = (d;) € R* and 7 = (1;5) € R, 7, = 75s.

2.1.3.1 Matrix notation

The array A;; written out as

C(1111 C11211 C11122 C11113 C11123 C11133 _Plll _P211 _P311
C’1112 C11212 C11222 C11213 C11223 C11233 _P112 _P212 _P312
CY1122 C(1222 C(2222 C(2213 C(2223 C(2233 _P122 _P222 _P322
CY1113 C(1213 C(2213 C(3131 C(3132 C(3133 _P113 _P213 _P313
A= C’1123 C11223 C12223 C13132 03232 C13233 _P123 _P223 _P323
CY1133 C(1233 C(2233 C(3133 C(3233 C(3333 _P133 _P233 _P333

Pin Py Piae Pisi Pia Piss €11 €12 €13
Py Pyo Pyy  Pozi Pz Pasg €12 €22 €23
Pyiy Paio Py Ps31 Pazo Pisg €13 €23 €33

is a matrix of coefficients on the right-side of equations (2.10). Consequently, the be-

haviour law (2.10) reads:

<;>:A<E) A:<1€_ST>- (216)

The simplifications introduced by (2.8)-(2.9) and (2.14) mean that the corresponding

matrix A has at most 45 independent coefficients as follows:

€11 €12 €13 P11 Pra P Pus P Piss
€= €22 €23 | P = Poi1 Poia Payy Pois Pas Pass |, (2'17)

sym. €33 Ps11n Psia Psao Pz Psaz Psss
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C(1111 C(1112 CY1122 CY1113 CY1123 CY1133
C(1212 CY1222 CY1213 CY1223 CY1233
C(2222 C(2213 C(2222 C(2233

C = . (2.18)
Ciz13 Chazs Chsss
sym. Cazaz Caass
Cs333

The material is referred to as triclinic material.
Combining the properties (2.8)-(2.9) with conditions (H$,) and (H$,) we can expressed

the strain tensor and the electric vector field by the following way
e c P’ o
= _ , (2.19)
E —-P & D

E=(e+PC'P")!, P=ePC'andC=CYI—-P"ePC™). (2.20)

where

The blocks of the constitutive matrix A~! that characterize the constitutive equation
(2.19) has similar expressions to the matrix A, i.e., the blocks C, P, & are of the form
(2.17)-(2.18).

The effect of increasing crystal symmetry and the choice of reference axes allows us to
reduce the number of independent components needed to specify completely the properties
of the crystal.

In this research work we will consider, at most, the monoclinic crystal structural -
class 2. This means that it can be anything up to crystal symmetry class 2, including the
most popular piezoceramics and piezopolymers - the Lead Zirconate Titanate (PZT) and
the Polyvinylidene Fluoride (PVDF).

In next sections, we give a brief summary of the properties of the material that crys-
talize in the monoclinic crystal system (class 2 and class m) and in the class 6mm of the

hexagonal crystal system.

2.1.3.2 Monoclinic crystal system

As already mentioned, there are 3 crystallographic classes in the monoclinic group: 2/m,
m and 2. The class 2 and the class m for which the corresponding elasticity tensor has

at most thirteen non-null components [see e.g. Royer & Dieulesaint, 2000]

CY11117 C(11127 C(11227 011337 C(12127 012227 012337 C(22227 022137 CY13137 C(13237 023237 033337
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and four non-null components of the permittivity tensor

€11, €12, €22, €33,

whereas the piezoelectric stress tensor has eight non-null components if the material be-

longs to class 2:
P3117 P3127 P3227 P3337 P1137 P1237 P2137 ) P2237

and ten non-null components if the material belongs to class m:

Pllla P112a P1227 P2117 P212a P222a P1337 P2337 P313a P323~

2.1.3.3 Transversely isotropic crystal - 6mm symmetric class

A transversely isotropic structures of hexagonal symmetry - 6mm symmetric class -
is characterized by ten non-zero independent matrix elements consisting of 5 indepen-
dent elastic constants, 3 independent piezoelectric constants and 2 independent dielectric
constants. For these materials, the reduced matrix form of the above constitutive rela-

tionships can now be written as:

011 0 013 0 C116
Cui—C
Cu_Ca 0 0
C 0 C
C— 11 16 :
Cu O 0
sym. Cy O
| C(66 i
0 0 0 Py 0 O en 0 0
P = 0 0 0 0 P14 0 , €= €11 0 )

P31 0 P31 0 0 P36 sym. £33

where the non-zero components are given by the following relations

Cll = C11111 = C12222; C113 = Cll22a C116 = C11133 = C(22337 (22]—)
C’11 - C’13

Cu = Ciz13 = Caga3,  Choin = — 5 Co6 = Csass, (2.22)

Py = P13 = P, P31 = P311 = P3g2, Pss = Pass. (2.23)
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2.2 Field quantities and equations

The mechanical behavior of any material is governed by certain physical laws, which relate
stress, strain, electric fields and electric displacement together. In any points, including
points on the boundary, it must satisfy three basic equations which are Cauchy’s equations

of motion, kinematics equations and constitutive equations (defined before).

2.2.1 Strains and electric fields

We consider a piezoelectric body continuum occupying a region {2 in a ”stress-free” con-
figuration (in the absence of any electric field or mechanical load), henceforth called the
reference configuration of the body. The goal of this section is to describe the deformation
in response to given forces.

Let x =td+u:x € Q+—— (x+ u(x)) € R? be a standard C'-deformation, with
u = u(x) denoting the mechanical displacement at & € ). Let us denote the electric
potential at point € € Q as p(x). We let * = (x;) denote a generic point in the set
2. The associated generalized deformations are the linearized strain e and the electric
field E, which are expressed as a function of w and ¢ through the following equations of

kinematical compatibility:

e (u) = (e (1)) = G (O, + ajui)> , (2.24)
E(p):=(-0p), (static), (2.25)

where 0; = 0/0x;, x = (x;) € Q. The expression (2.25) will be deduced in Section 2.2.3.

2.2.2 Mechanical balance laws

One the basic principles of mechanics is the balance of momentum. In the presence of a

body force f, this law takes the form (static case)
—dive = f, (2.26)

or, in componentwise,
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2.2.3 Maxwell’s equations

In this section, we deduce the main Maxwell’s equations for the electric field variables in

the absence of magnetic fields, free currents and electric charges.

The Maxwell’s equations of electromagnetism are written as

curl H = 0,D + J, (2.28)
curl £ = —0,B, (2.29)

div B = 0, (2.30)
—divD =0, (2.31)

where E denotes the electric field as before, D the electric displacement, H the magnetic
field, B the magnetic induction and J the current density. The magnetic filed and the

magnetic induction are related by
B = M()(H + M)7

where M is the magnetic field (will be neglected) and g is the dielectric impermeability.

The electric field and the electric displacement are related by
D =¢FE+ P,

where P is the electric polarization and ¢ is the (symmetric positive definite) permittivity

tensor. From equation (2.30) we deduce the existence of A such that

B = curlA.

oA

The previous equation together with (2.29) imply that E + %

admits a rotational null,

derives of one scalar electrical potential ¢, and therefore

where V = (8@, g, (9@). As the magnetic part is neglected, the following conditions are
T y z
considered for magnetic part

A:O7 MOZO,

and the electric field can be treated as quasi-static [see Gantner, 2005]. Therefore, the
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Maxwell equation (2.29) reads
curl £ =0,

and the electric field can be represented as the gradient of an electric scalar potential

according to
E = -V, (2.33)

in which the electric field is represented by the negative gradient of the electric potential
. We also assume that the body is a perfect dielectric, i.e., non charge electric in (2.31).

Thus, the only relevant Maxwell equation is
div D = 0. (2.34)

Combining all the above, we have the so-called field equations for linear piezoelectric

problems:
(V-u+(V-'u,)T), E=-Vop,

e=;
o =Ce— PE, D = Pe+¢€E, (2.35)

—dive = f, divD =

2.2.4 Boundary conditions

System (2.35) is not a well-posted problem unless we provide it with appropriate boundary

conditions.

Let €2 be a region occupied by a piezoelectric body. The set €2 is assumed to be an
open bounded subset of R? with a Lipschitz continuous boundary. On the surface 92 of
the solid, mechanical and electrical boundary conditions are applied. We consider that

the surface I' = 0f2 is composed by

['=T4wUT4p,  TanNlap =0,
for the mechanical boundary conditions and

I =TeyUlep,  TenNlep =0,

for the electric boundary conditions. An illustration of this decomposition is depicted in
Figures 2.2 and 2.3, where n is the unit vector, normal to a surface element 0f2. The

boundary conditions for the displacements, the surface traction, g = (g;), the electric
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potential, and the electric charge, ¢ are defined by

u;=0 on I'yp and oyn; =g on Iy,
(2.36)
p=wy on I'.p and Dpny=¢q on [.y.

In our case, we also assume that ¢ = 0. Note that the lower subscripts .n and .p in
ey and T'ep refer to electric (e), Neumann (N) and Dirichelet (D) boundary conditions,
respectively, while the lower subscripts 4n and 4p in 'y and I'yp refer to displacement

(Neumann and Dirichelet) boundary conditions.

Figure 2.2: Mechanical boundary conditions Figure 2.3: Electrical boundary conditions

2.3 Equations for a piezoelectric problem

In this section, we derive the Boundary Value Problem (BVP) for the piezoelectric problem

described before and its variational formulation.

2.3.1 Coupled piezoelectric equations

Combining equations (2.26), (2.34) with previous mechanical and electrical boundary
conditions (2.36), we arrive at the BVP for piezoelectricity:

BVP 1 In a domain Q C R3, find the displacement field u : Q@ — R3 and the scalar
¢ : Q — R satisfying

p

_ajaij ('u’790) = fz in Qa

oij (u,o)n; = ¢ on Dy, (2.37)

U; = 0 on Iyp,
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[ ODi(up) = 0 in
Dy (u,o)ny = 0 on Doy, (2.38)
2 = Yo Oon 1-‘eD-

Hypotheses 1 Throughout this work, we are going to make the following standard as-

sumptions on the data:

Ciju € L™ (Q) , Prij € L™ (Q) , €y €L (Q) ; (2.39)

fell2QP, gell*(Tan)?, o€ H*(T.p). (2.40)

2.3.2 Variational formulation: existence and uniqueness of a so-

lution

There are two different ways to formulate the variational formulation of the BVP 1,
defined in previous section: the primal variational principle and the mixed variational
principle. We begin by introducing the appropriate spaces and then derive a variational

(weak) formulation of our system of partial differential equations.

2.3.2.1 Primal formulation

Let H'(Q) be the usual Sobolev space of functions, whose generalized derivatives of order
at most 1 are squared integrable, that is, they belong to L?(Q2). Let the essential spaces

for the piezoelectric problem be given by
1 3
Vo = V() = {v e [H'(Q)]":v=0 on rdD}, (2.41)
Wy :=Up(Q) ={p e H(Q):¢»=0 on Lep}. (2.42)
We also introduce the non-empty closed convex subset Wy of H'(£2)

Uy :=Uy(Q) ={ve H(Q): ¥ =y on Lep}. (2.43)
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The spaces V;(€2) and Wy(€2) are equipped with norms

1/2
lv]lv, = le(v)loq = (Z i (v Iog> ;Yo e (D), (2.44)

i,j=1

[¥llwo = [[¥l[a1@), Vi € Wo(82). (2.45)

Let v € V} be the test vector function. Take the scalar product of the first equation of

the system (2.37) with the test vector function v € V;, and integrate it over €2, one have

aO'Z'j

o 0z

Apply the generalized divergence theorem to the left hand side of (2.46), and get

_/ ’UZ‘O'Z‘jnde—/ viaijnjdf+/alj Ov; dm—/fzvlda: (2.47)
Tan Cap Oz

Since v € Vf, which implies v = 0 on ['yp, the second term on the right hand side is

zero. Then using the Newmann mechanical boundary condition, the previous equation

Ov;
—/ vigz'dF—l—/al-j—Uda::/fividw. (2.48)
Fay o Oz Q

Next, using the fact that o;; = 0;;, we obtain that

becomes

8vz~ . 1 8vz~ an .
mja—xj = %ij5 (6—% + axi) = o€ (v), (2.49)

and consequently, we get

/Uz'jez'j(’v)de/ gividFJr/fmda:. (2.50)
Q Tan Q

Applying constitutive laws (2.10), we achieve

/ [C’ijklekl(u) — PmijEm ((p)] €Z'j('l))dw = / fzvzd:v —f-/ gledF (251)
Q Q

Tan

Analogously, let v € ¥, Multiplying both sides of the first equation of (2.38) and

integrating it over a domain € it leads to

/ div D(u, ¢)ydx = 0.
0



30 Chapter 2. Piezoelectricity theory

Combining the Green’s formula with Neumann’s electric boundary conditions (2.38).
Q Ten Q Q
and substituting the electric displacement by expression (2.10), we obtain
Q

Adding equations (2.51) and (2.52), we obtain the variational formulations to the problem
(2.37)-(2.38) [see Haenel, 2000]:

{ Find (u,y) € Vo x Uy such that
(2.53)
a’((ua 90) ) (’U, w)) = l (’U, 1/}) ) V(’U, 1/}) € ‘/O X \I]07
where
af(u,0) , (0, ) = /"K@memun-—PaME%«wnemundw
Q
+3/Wf%memuw-+emiﬂau»JEﬁ<¢>mu (2.54)
Q

dN

Now we give an alternative variational formulation which derives from the non-

homogeneous condition (2.36).

From hypothesis o € HY?(T.p), there exists an extension ¢ of ¢y in HY(Q), i.e. a
function ¢ € H'(Q) such that ¢ = gy on Tep.

We define
p=p—pel, (2.55)

and substituting (2.55) into laws (2.10), we obtain

0ij(u, o) = 0ij(w, @) — PrijEp(#),  Di(u, ) = Di(u, p) + e Ei(9), (2.56)
and consequently equations (2.37) and (2.38) become

—0;0i(u, @) = fi = 0 (Pri Ex(@)),  OcDi(w, @) =0k (enEi(9)),  (2.57)
with the following boundary conditions

u=0 on [yp, =0 on I.p, (2.58)
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and

O'ij('u, ()5) nj = 3G + PkwEk(é)nJ on FdN7 (259)

Dk(u, ()5) ng = —sklEl(cﬁ)nk on FeN- (260)

We first consider the equilibrium equations (2.57). Multiplication of both sides of the
equations (2.57) by respectively test functions v € Vj and ¥ € ¥, and integration over a

domain 2 lead to

/ 0,045 (w, @) v + 0Dy, @) o) dao
Q

- / s i — 0 (P Ex(@)) v + Ok (enFr()) )] da

Integration by parts of the first term of the above equations results in
[t eswrde — [ Dutus) Bule) da
Q Q

—/ oij(u, @)n;v; dF—l—/ Dy (u, @)ngtp dU°
Tan Cen

(2.61)
:/Q[fivz'—i-PkijEk(@)ez'j(U)—€szl(¢)Ek(1/f)] dx

Tan Ten

Substituting the stress tensor and the electric displacement by expressions (2.10) and
using (2.59)-(2.60) we deduce that [see e.g. Haenel, 2000; Mechkour, 2004] the solution
(u, @) of (2.53)-(2.54) is derived from ¢ = ¢ + ¢ with (u, @) satisfying:

Find (u, ) € Vi x ¥q such that

(2.62)
a((uw, @), (u,¥)) = b(v,y)  V(v,¥) € Vo x ¥y

where the bilinear form a(-,-) was defined in (2.54) and the linear form I5(-) reads

lh(v,9) = /Q [fivi + PrijEr(@)ei;(v) — emEy(@) Ex ()] da + / gividl. (2.63)

Fan

Remark 1 From (2.43) and (2.55) we have

U=+ Vo={p e H(Q) : ¥ —peVp}.
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An equivalent formulation problem of (2.53)-(2.54) is the following variational inequality
(see Viriyasrisuwattana et al. [2007]):
Find (u, p) € Vo x Uy such that

CL((U,(,D),('U,Q#—(,D)) > l(’U,@Z)—Qp), V('U,@/)) € ‘/0 X 1112~ (264)

We note that the problem (2.64) is equivalent to the problem (2.53)-(2.54).

2.3.2.2 Existence and uniqueness of solution

Let us first introduce some results to the linear and bilinear forms (see Haenel [2000] and
Mechkour [2004]), which allow us to guarantee the existence and uniqueness of solution to
the problem (2.53)-(2.54) by applying the Lax-Milgram’s Lemma (see Viriyasrisuwattana
et al. [2007], Weller & Licht [2008]).

Lemma 1 Assume that f = (f;) € [L2(Q)]° and g = (¢;) € [L* (Tyn)]’. Then the linear
form ly : Vo x Wy — R defined in (2.63) is continuous.

Lemma 2 Assume that meas (I'yp) > 0, meas (I'.p) > 0. Then the bilinear form a(-,-)

18 continuous and Vi X Vg - elliptic.

Proposition 1 Assume that meas (Igp) > 0, meas (Tep) > 0, f = (f;) € [L*(Q)]°,
g =(g:) € [L*(Tan)]>. Then (2.62)-(2.63) has a unique solution (u, @) € Vo x Uy,

Corollary 1 Assume the hypotheses of Proposition 1 and also ¢y € HY*(I',p). Then
the variational problem (2.53)-(2.54) has one and only one solution (u,p) € Vp x Ws.
Moreover, ¢ = ¢ + ¢, where (u, @) is the only solution of problem (2.62)-(2.63) and
¢ € HY(Q) is an extension of py.

2.3.2.3 Mixed formulation

In this section, we establish a mixed variational formulation of problem (2.37)-(2.38) using
the spaces X1, X and X5:

11/2
X1 = X1(Q) = (L@ < 229, 16 = [ Baey 1 [aw)]
9 9 11/2
Xo = Xo(Q) = Vo x Uy, 1Mo = (1 1B+ 11 Wney]
9 9 11/2

Xz = Xa(Q) = Vo x s, 1Yo = {11 1B + 11 1oy
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To deduce the mixed variational formulation of BVP 1, we write the constitutive law

for piezoelectric material in the inverse formulation as follows (cf. (2.19)-(2.20))
eij = Cijriow + Prij Dy, E; = —Pyow + €. Dy, (2.65)

From properties of coerciveness and symmetry of tensors Cj;; and €;;, and symmetry

of Py;;, the following properties are derived:

(H?") Cij = Criij = Cjirt,  €ij = Eji,  Prij = Pujii-

(H3") There exists ¢ > Osuch that, for any d = (d;) € R?, 7 = (7;;) € R>,

3 3
éijleikal Z C Z (Tij)Qa gijdidj Z CZ(dZ)2 (266)
2,5=1 i=1

The constitutive equation (2.65) is now considered. The weak form of this equation,
obtained by multiplying both sides of the equation (2.65) by a test function (7,d) € X,

and integrating by parts over 2, reads as follows

/ (Cijklakl + PkijDk) Ti; dT + / (_Pkijaij + €kl Dl) dpdx
Q Q

_/ eij(w)Tij de—/ Ey(p)dy de = 0.
Q

Q

Combining the previous equation with the equation (2.61) we obtain
[ Find ((o, D), (u, ) € X x X,

ag (o, D), (T,d)) + by ((7,d), (u,p)) =0, forall (r,d) € X,

\ by ((o, D), (v,v)) =ly(v,v), forall (v,¥) e X,

where

ay ((0’, D), (’T, d)) = /Q (C’ijklakl + p]mJDk) Tij dx
+ / (_Pkijaij + glel) dk dax (267)

Q
by ((7,d), (u, ) = —/ e;j(u)7; de — /Q Ex(@)dy dx (2.68)

Q
lH(’U,w):—/sz'Uidw—/F g; v; dT, (2.69)
dN
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which is the Hellinger-Reissner variational principle for problem (2.37)-(2.38).

Using the relation ¢ = @ + ¢ established in Section 2.3.2.1, the mixed problem (2.67)-
(2.69) is: Find ((o, D), (u,9)) € X1 x X, such that

( Find (o,D),(u,p)) € X1 x Xy such that

ag ((0,D),(7,d)) + by ((7,4d), (w,9)) =lLiu(T,d), VY(r,d)eX, (2.70)

| bu (0, D), (v,9)) = loa(v,¥), V(v,¥) € X

where

lLH(T,d) :/Ek(@dkdw,
Q
(2.71)
l =1 = 0;d 0 dl.
i (0,0) = (v, ) /va w+/Fngv

2.3.2.4 Existence and uniqueness of solution

To show the existence and uniqueness of solution for the above mixed formulation, it is

enough to show that:

Theorem 1 An unique solution ((o, D), (u,9)) € X1 x X, to the problem defined by
equations (2.70) and (2.71) exists, provided that

1. K - ellipticity of ag. That is, there exists a constant 3y > 0 such that
|aH ((T’ d)’ (T> d))| > ﬁ1||(‘l', d)”%(l V(T’ d) € KO’ (2'72)

where
Ky)={(r,d) € X, :bg((7,d), (v,0)) =0 V(v,¢) € Xo}.

2. (Babuska-Brezzi condition) Given (v,1) € Xq there exists a constant 3y such that

_bH ((Ta d)a (’U, w>>
i, NN d)[[x,

= BQ”(”aw”‘Xo' (273)
Proof. Letting (7,d) = (e(v), E(¢))) € X, in the bilinear form bg(-,-), by virtue of
Poincaré’s and Korn’s inequalities, we prove the existence of 35 > 0 satisfying the above

inf-sup condition (2.73). The elliptic property (2.72) is obvious since the ellipticity of C
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and €

ag ((7,d), (7,d)) = / (Cijm T ij + Er dy di) dex
O
> ¢ (Il + ldle) . V(T d) € Xo.
We are now in a position to apply Babuska-Brezzi’'s Theorem (see e.g. Girault &

Raviart [1986]): there exists a unique pair of functions ((o, D), (u,®)) € X; x X
satisfying (2.70)-(2.71). =






Chapter

One-dimensional piezoelectric model for a
cantilever beam with electric potential

applied on both ends.

In this chapter we initiate the asymptotic study of the piezoelectric problem for a linear
beam that belongs to crystal symmetry class 2 in response to an electric potential acting
on both ends. Through this analysis we derive a one-dimensional model for piezoelectric
beams as the cross sectional goes to zero.

The analysis in this chapter uses asymptotic methods employed, in this field, by Mau-
gin & Attou [1990]. Following Trabucho & Viano [1996], we organize this chapter as
follows. In Section 3.1, we recall the three-dimensional piezoelectricity problem and the
equilibrium equations are written in the variational form (principle of virtual work). In
Section 3.2, a set of scalings is used to maintain constant the beam diameter, and assign
appropriate orders to the components of the displacement, the stress, the electric potential
and the electric displacement. The scaled variational formulation of the three-dimensional
problem posed over a fixed domain is also defined in this section. The weak convergence
of the solution to this problem and the “limit” variational problem are studied in Sec-
tion 3.3, as the small parameter tends to zero. In Section 3.4, we introduce the scaled
principle of virtual work, and applying the displacement-electric potential approach, we
prove that the scaled stress and electric displacement developments do not contain any
negative power of h. In Section 3.4.0.2, we obtain the limit model whose leading term
of the development is unknown, as expected. In Theorem 7, established in Section 3.4.1,
the strong convergence results follows. Finally in Section 3.5, we find the boundary value
problem to the limit, which consist in two partial differential equation of fourth order and

two coupled partial differential equation of second order, posed over the one-dimensional
set (0, L).

37
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3.1 The mechanical problem

Here, we are going to study the BVP 1, introduced in Section 2.3, for a family of a linearly

piezoelectric beams.

3.1.1 Reference configuration, loading and boundary conditions

In its reference configuration, the beam occupies the domain
Q" =W x [0, L],

having L as length and w”" C R? as its cross-section. We assume that w" = hw, where
w C R? is a bounded, open set of R?, of area A = A(w) and boundary v = dw Lipschitz
continuous. Then, the area of cross section w” is A" = h?2A and the diameter of order h

is assumed very small when compared with L.

An arbitrary point of Q" will be denoted by z" = (2 2% 2%) and the unit outer

normal vector to the boundary I'* = 9Q" by n" = (n!*). The coordinate system Ozxlzh

will be assumed a principal system of inertia associated to w”, which means that
/ ot dw" = / ohal dw™ = 0. (3.1)
wh wh

We consider two decompositions of the boundary I'* = 99", which correspond to the

mechanical and electrical boundary conditions:
" =o00" =14, urh, with Th, NT"% =0 and meas(I'}) > 0,
M =o00" =1, uTh, with ", NT" =0 and meas(I'",) > 0.
Further we define the boundary sets:
It =ah x {0}, the left end of the beam,
I =oh x {L}, the right end of the beam,

I = 0w" x (0, L), the lateral surface.

In this Chapter, we assume the following loadings to the system (as illustrated in Figure
3.1.1):

i) The beam is weakly clamped at ', = " which means that it is clamped in mean,
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Figure 3.1: Schematic representation of the solid domain and their mechanical and elec-
trical boundary conditions.

and reads (see e.g. Trabucho & Viano [1996]),

h
0

/ ul dw" =0, / (:E?u? — x;‘u?) dw" = 0; (3.2)
rh r
We abbreviate the conditions (3.2) to

(u")py = 0. (3.3)

ii) The surface forces g" are acting on I'% and p" on T'}. This corresponds to put
rh—Th UTh,

iii) An electric potential ¢! is applied on T, = T UT%. More specifically, we denote

h, h,L
6l = 20" = ¢4+, 0) and |, = 05" = ¢f(, -, L).

Remark 2 As we will see, the use of the “average clamping” condition (3.3) instead of
a strong clamping condition such as u" = 0 on 'l allows to avoid the “boundary layer
problem” (see Lions [1973]) that arises when a strong clamping condition is used - which
turns out to be related to the fact that in general a strong clamping of the beam is physically
impossible (see e.g. Trabucho & Viano [1996] and references therein).

We denote by C’{ijl, P,fij and &7, the components of elasticity tensor, piezoelectric
tensor and dielectric tensor of the material, where Q" is made of a monoclinic piezoelectric

material of class 2, i.e., the components C{‘jkl, e, and Pl satisfy the following conditions:

kij

Ci?a@p = 093304 = 61310[ = Phﬁp = P:S}?Sa = P(il33 =0. (34)

Q

The conditions C:?agp = (O, = 0 reflet that the longitudinal axis Ozs is a princi-

pal directional of piezoelectricity (see Lekhnitskii [1981]), Royer & Dieulesaint [2000])

Therefore the stress tensor o = (azhj

D" = (D}') : " — R? are related to the linear strain tensor, e} (u") = §(9/u/+0}u}’), and

) : Q" — R? and the electric displacement vector
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and
el (u”) Clii 20t Cliss Clisy —Piiy - oty (u”, ")
ey (u”) Chii 201, Cly Clagy —Piiy oy (u", o)
ep(uh) [ = Chi 2051, Ch Clyy —Pih o5 (u”, ")
el (u") Clyn 2CH1s Ciyss Clsgy —Pii o (u", ")
B (") Piy 2P, Ph, Py el Dy (u", o)
On the other hand from (2.19)-(2.20) we have
e, = 2C% a9 0% + Phs, D}, in Q"
Eh= —2ph s O+ Ehg D, in QF,
ehy = Clyss oty + Clgg, 04, + Phhg Dy, in Q" (3.8)
ey = Cligg 085 + Cazgp0f, + Pisy DY, in Q"
Eh — P s O — Ph.oh +&h, Db in Q)
and therefore we arrive (see (2.65))
03049/) C(33304 = 53a = Paﬁp P! a33 = P?ga =0, (3.9)
Chsi Chyy —Ply —Ply 205 2C%5 —Ply —Phy o
Cly Chyzr —Plyy —Piy B 2083 2Chs, —Plyy —Piy
Py Py & b 2Pl 2P, el ey |
Py Py &y £l 2Py 2P, eh €h
_ _ _ _ _ -1
Chin Chi Cha Chly Py Clin 201 Cliyy Cligs —Piy
Clan Otz Clase Chay Pt Clyi 20Ty, Clyyy Clagy —Piiy
Chi Oy Chayy  Chyy Pio |=| Chann 2Chs Chap Clyy —Pioy
Chnn Oy Clasy  Clyy  Pitg Clyn 2041, Clyy Clygy —Pii
—Pjy —Pi, —Phy, —Phy & Pl 2P}, Py Py el

To guarantee the regularity to the data we increase one condition to the Hypothesis 1
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introduced in previous chapter:

Hypotheses 2 p" € [L?(T'")]3.

3.1.2 Variational problem: primal and mixed formulation

As a consequence of the weakly clamped condition the functional spaces of admissible

displacements and electric potential take the form:
UUNS [Hl(Qh)}B : / vl dwh =0,
wh x{0}

/ (2o — zfvl) dw™ = 0
whx {0} (3.10)

UG = U5(Q") = {g" € H'(Q") 19" =0 on T7p},

Vorw = Vo (2") =

W = WA = {0 € HY(QY) 0 = g on T,

The spaces Vi, (Q") and W (Q") equipped with the norms

1/2
||vh||V0}fw(Qh = (Z Hem HO Qh> ) v,vh € ‘/O},Lw(Qh)a

2,7=1
HwhH\pg(m) = |V |[o.on, VO" € WH(QM),

becomes Hilbert spaces (Mechkour [2004]).

The mechanical problem corresponds to the following variational problem (see (2.53)-
(2.54)):

Find (uh, <ph) € VJ}w X \I!g,
a"((u", "), (", ") = 1"(", "), V(" 9" e Vi, x ¥, (3.11)

where

a"((u", "), (v",9")) ey (") dz" + | Di(u", ") By (¢") da”

[ o
Qh Qh
= [O?jkle]gl( ) ph E! (‘P ) h("’h) dx"

mij—m =
A J J

2

+ [ Phach) + BB 2t (312
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and
(o, yh) = / ol dz" + / gl drh + / pholdrh, (3.13)
Qh e rk

which corresponds to the principle of virtual work.

Remark 3 In this formulation, the only difference with the strong clamped condition is
Vil x Wb that replaces Vi x W (V)" defined in Chapter 2).

Next, we prove that the problem (3.11) has an unique solution. We remark that the

BVP associated with (3.11) is not simple to write. In fact, we obtain:

(

ool ) = S
()l = gt o T
(ul) = 0 on It (3.14)
o (uhye") = i on T
[oblent = 0 wewew,
I's
[ OhD! (uhph) = 0 in O
DI (u",")n} = 0 on Iy, (3.15)
©" = ¢ on I{p.

The condition (3.14)5 imposes a restriction on the form of ¢ on I'!' that cannot be

expressed in a strong way.

Remark 4 Let ¢" € H' () be an extension of of € HY*(T',). For simplicity we take

the xh - interpolant

) 1 1
(H3,) @ (x5) = 7 (L — af)ep” + Tl (3.16)

To achieve the limit problem we will suppose that the electric potential applied in both

ends of the beam is constant and independent on x" and x&. Therefore,
oh® and " are constants, (3.17)

and therefore @" depends only on variable x%.
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To summarize, we have
Uh = Wh(Q) = " + W), (3.18)

and

="+ ", " e vl (3.19)

Moreover, (u, ¢") is the unique solution of the following problem:

(u”, @") € Vgh, x Vg,

a"((u", @"), (0", ")) = I3 (0", "), V(" 9") € Vi, x W, o
where
I3 (0", ") = (0", 9") = a"((0,6"), (v", "))
= / flol dah + / givf dr™ + / piof dl™
Qh rh rh
- [ BB W aet + [ P B el (o) dat
+/Qh PélaﬁEg(@h)eZﬁ(vh) dz". (3.21)

3.1.2.1 Existence and uniqueness of solution

Theorem 2 The problem (3.20) has an unique solution (u", @") € Vi, x ¥{.

Proof. Firstly, we need to prove that I" is a continuous linear form on V', x ¥§, which

is an elementary conclusion from hypothesis:
(HY) FrelLQNP, g" e [LATY)P, e [LATD)P. (3.22)

Next, we need to prove that a" is a Vo’fw x Wh-elliptic. This is a consequence of Korn’s
and Poincaré’s inequalities because of Korn’s inequality is still valid in Vj,,, space that
contains Vj (see Trabucho & Viafio [1996]). Then, the Lax-Milgram’s Lemma can be

applied to conclude. m
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3.1.2.2 Mixed formulation

Following the same steps done in Section 2.3.2.4 we obtain the mixed formulation of
problem (3.20)-(3.21). Defining

X7 =LA x [LXQY], X, = Voo, x U5 and X3, = Vg, x U3,
we have (see (2.67)):

Find ((o", D"), (u",¢")) € X} x X1}, such that

(

aly ((e", D"), (7", d")) + by (7", d"), (u", ")) =0
(3.23)
| forall (7",d") € X}
(bl (o7, D), (vh,4")) = Uy (0", )
(3.24)
\ for all ('vh,@/)h) € Xg’w
where
a’; ((i’h, ah (" dh Ukl o+ P,fmdh) T dx"
+ / ( Pk}:LZJ _z]; + Ekl dl ) dh d.’B (325)
by (7. d") (vh,wh)) —— [ ahewhaat — [ & B ast, (3.26)
Qh

Uy (v / flrol de” / gl vlar’ — / plotdl™. (3.27)
Fh‘

L

Existence and uniqueness of solution of the problem (3.23)-(3.27) is obtained as in
Theorem 2 because all arguments are valid replacing X7}, (X ’g}w) by X% (X)), respec-
tively

3.2 Change of variable to the reference beam ()

The major geometric feature of a three-dimensional beam is the fact that the largest
cross sectional dimension is very small compared to its length (h < L), causing ill-
conditioning of the three-dimensional problem. We take advantage of this property to use
an asymptotic expansion method (see Lions [1973]) with respect to the small parameter
h as usually done in the elastic beam case (see e.g. Bermidez & Viano [1984], Trabucho

& Viano [1996] and references therein). We will study the dependence of the solution
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('u,h, gph) with respect to h. The technique of change of variable to a fixed domain and
subsequent rescalling of the displacement and electric potential will allow us to derive a
variational problem equivalent to (3.11)-(3.13) or (3.20)-(3.21) where h shows up in an
explicit way in the rescaled equations.

To start, we perform a change of variable to the reference domain 2 = w x (0, L)

through the following transformation (Figure 3.2)

Hh L= (33'1,.1'2,.%'3) € Q
- (3.28)
— " =T"(x) = (2, 2}, 28) = (hay, hay, 23) € Q"

All notations refereed to domain € are obtained from Q" for h = 1 and this index is

dropped. For example:
=00 Ty=Tj=wx{0}, T'n=~vx][0,L]

Furthermore, condition (3.1) becomes now

/xa dw :/xlxg dw = 0, (3.29)

is a principal system of inertia for Q. In the view of (3.2)

Y

that is, the system “Oxixors’

we will represent the boundary condition

/ v; dw = 0, / (xjv; — 2v5) dw = 0,
Fo I—‘O

by (v) = 0 on I'y, that is, taking (3.29) into account,

/ v dw = 0, / 0qVq dw = 0, /xavg dw =0, (3.30)
Fo I—‘O

To

w wh

- —
Hh
—
>? *'h
L X

Q Qn

\_/ —~—

Figure 3.2: Change of variable between the set {2 and the set Q.
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where 6; (21, T2) = 2, 05(21,72) = —x1. We now define the spaces (cf. (3.10))
Vo = Vou(Q) = {v € [H(Q)]*: (v)|,, = 0},
Uy :=U(Q)={p e H'(Q) :¢p=00n TyUT}, (3.31)
Uy = Uy (Q) = ¢+ Vo(Q) = {v € HY(Q) : p — ¢ € Uy}, (3.32)
Xow = Xow(2) = Vo,u(2) x Uo(02),

X2,w = X2,w(Q) = Vb,w(Q) X \PQ(Q),

endowed with the following norms equivalent to the usual Sobolev norms:

1/2
2 2
10ll,,, = le@lons  1¥lle, = Vel 10 9)lxy0 = (I0lF,, + 1213,)

and
() = (ey(0)) exi(v) = 50 + Dyvi).

Remark 5 In what follows we shall make use of the following decomposition of Vj.,(§2)
(cf. Trabucho & Viano [1996])

Vo,w(§2) = Wi(Q2) x Wa(12), (3.33)

tmanz{neH%m:/ n:/‘ Lm:o}, (3.34)
wx{0} wx{0}
@) = {p=( e @ [ = [ @) =0} @)
wx{0} wx{0}
In order to obtain a problem in 2 equivalent to (3.11) we associate it to the unknowns
and test displacement fields u", v" in Volfw, the (unknown and test) scaled displacement

fields w(h) = (u;(h)) and v(h) = (v;(h)) in V;,, defined by the following scalings valid for
all h = 11" (x), = € Q:

ua(h) (@) = hug(a"),  us(h)(x) = uz(2"), (3.36)
va(h) (@) = hvp(a"),  vs(h) (@) = vy (a"). (3.37)

Similarly, the electric potential ¢" and the test function ¥ in ¥} are associated to the

scaled potential p(h) and the scaled (test) function 1 (h) in ¥, using the following scaling
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for all " = I1"(x), = € Q:

p(h)(x) = "(&"),  U(h)(x) =" (z"). (3.38)

h

Moreover, to the stress tensor o = (o

ij
D" = (DF) : Q" — R? we associate, respectively, the scaled stress tensor field o(h) =
(0:;(h)) : © — R? and the electric displacement vector D(h) = (Dy(h)) : @ — R? defined

by

)+ " — RY and to the electric displacement

ohs(x") = Poas(h)(x), ol (x") = hos(h)(z), o5(a") = o33(h)(),
(3.39)
Di(z") = hDo(h)(z), Dji(x") = Ds(h)(),

valid for all " = IT"(x), £ € Q. Furthermore, we consider the following hypothesis on

the magnitude of the data with respect to the diameter of the beam cross-section h:

1. There exist functions f; € L*(Q), g; € L*(I'y) and p; € L*(T'1,), independent of h,
such that:

(@) = hfau(z), fi(z") = fs(z), for all 2" = II'(x) € Q",

gi(x") = h2g.(x), gh(x") = hgs(x), for all " =T11"(x) € ', (3.40)

\ pi(xh) = hpo(x), ph(xh) =ps(x), for all 2" = 11" (x) € T,

2. There exists a function ¢ € H*(0, L), independent of h, such that:
~ _ ~h(. h h _ 11h
P(xg) = @"(xy), for all g = I1"(z3), x5 € [0, L]. (3.41)

As mentioned before, ¢ is the trace lifting of ¢q. If $" is given by condition (HY,),
then

. 1 1
Plws) = 7 (L — z3)¢0 + 77300 (3.42)

3. The piezoelectric constants are such that

Clu(@") = Cyu(m), Pli(a") = Puj(x), el(@") =cy(x), xeQ, (3.43)

ij

where Cjjk1, Pri; and €;; are independent of the size of the cross section and satisfy

Hypothesis 1.

Combining (3.28) with the notations (3.36)-(3.38) we have for all v" € V" | 4" € ¥l and

,w
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zh = 11" (x), x € O
[ cas(v(h))(@) = h?elg(v") (@), ess(v(h))(x) = heiz(v") ("),
(3.44)
| ess(v(h))(@) = el (v") ("),
[ Ba(0()(@) = ~0a(0(1)(@) = —holu" (@) = REL(") ("),
(3.45)

Es((h)(w) = —03(v(h))(x) = —050" (x") = E5(y")(z").

\

Using the scalings defined previously for the displacement vector and for the electric

potential together with the above assumptions, we can reformulate the variational problem

(3.11)-(3.13) into another variational problem posed in the domain 2 independent of h.

We have the following result:

Proposition 2 The scaled pair (u(h), p(h)) is the unique solution of the following prob-

lem

(

(u(h>790(h>> € X2,w = %,w X \1127
h™ta_y((u(h), ¢ (h)), (v,9)) + b 2a_s((u(h), (h)), (v,v))

—|—a0((’u(h), (p(h)), (an)) = l(’Uﬂ/J)a f07“ all (’Uﬂ?) € XO,w = VO,w X \1107

\

where the bilinear forms a_4(-,+), a_s(-,-) and ag(-,-) are defined by

Q
2
S
S
£}
S

I

/ Caﬁ@peﬁp(u)eaﬂ(v) da"a
Q

a—s((u, ), (v,¢)) = / Copss (e33(u)eap(v) + cap(u)ess(v)) da

Q

+ 4/ Caszpeszo(u)esy (v) do + /egaEa(go)Eg(w) dx
Q Q

- / Pros E()eas (0) — eas () Es ()] dat
o / Prsal Bo(9) €30 (v) — e30(u) Ey(¥)] daz,

ao(u,0), (v,0) = /

903333633(U)€33(v) dx + /533E3(<P)E3(¢)d33

Q

_ /QP333[E3(90>€33(’U) — 633(U)E3(1/})] dz,

(3.46)

(3.47)

(3.48)

(3.49)
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and the linear form reads
(v, 9) z/fm dcc+/ 9ivi dF+/ piv;dr. (3.50)
Q 'y rL

The existence and uniqueness of solution of the problem (3.46)-(3.50) is due to Lax-
Milgram’s Lemma since both a and [ are X ,-continuous and a is X ,-elliptic as the
reader can easily check having in mind properties (3.22), conditions (H$;)-(HS,) and
(2.39)-(2.40) for C, P, €, and that 0 < h < 1.

Remark 6 We note that the restrictions (3.4) about the material coefficients Cijri, Phij
and ;5 allow us to avoid the odd powers for h in (3.46). This is a fundamental fact because
it eliminates some coupled effects in the beam and is the basis to order to complete the
following asymptotic analysis. This analysis would be far more complicated if (3.4) was
not satisfied.

Next we write problem (3.46)-(3.50) in an equivalent form that exhibits the following

scaled principle of virtual work and scaled constitutive law.

Proposition 3 Problem (3.46)-(3.50) is formally equivalent to

(U(h), (,O(h)) € X2,w = ‘/O,w X \1127

[ostiesto)dw+ [ DB do= [ fundo+ [ guiar 351)

N

_'_/ DPil; dF7 v (Ivaw> S XO,w = %,w X \DOa
T

where the scaled stress tensor o(h) = (0;;(h)) and the scaled electrical displacement
D(h) = (Dg(h)) are related to (u(h),p(h)) by the following scaled constitutive piezo-
electric law (compatible with (3.39), (3.44) and (3.45))

ag(h) := h™*Capopop(u(h)) + h™*Capssess(w(h)) — h™*PsagEs(o(h)),

03a(h) 1= 2h"*Cassgeso(w(h)) — b= PpasEg(p(h)),

033(h) = h™*Cssppe9p(w(h)) + Cssssess(u(h)) — Pass Es(p(h)), (3.52)
Dg(h) := 202 Pp3peza(u(h)) + h2cpa Eo(¢(h)),

Dy(h) := h™?Psopeap(u(h)) 4+ Psszess(u(h)) + e33Es(@(h)).
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3.2.0.3 The scaled mixed formulation

The following mixed formulation of scaled problem is immediately obtained from (3.38)-
(3.39), (3.44) and (3.51).

The scaled unknown ((o(h),D(h)),(u(h),p(h))) satisfies the following variational
problem: Find ((o(h),D(h)),(u(h),¢(h))) € X1 x X, such that

(

ano ((o(h), D(h)), (7,d)) + h*apz ((o(h), D(h)), (1, d))
thlama ((o(h), D(h)), (T,d)) + by (7. d), (u(h),¢(h))) =0, (3.53)

| forall (7,d) € Xy,

(b ((a(h), D(h)), (v, ) = Lu(v, ),
(3.54)

\ for all (v,v) € X,

where by (+,) : X1 X X, — Rand ay,; (+,-) : X1 x X; — R are the following bilinear

form

ba((r,d). (v.6)) = = [ myeo)do— [ duBulo)da, (3.59)
apga((7,d), (T,d)) = /QCaﬁGp TopTap Az, (3.56)
aso((7.d), (v, d)) = /Q (Cusss Tas + Prods) 7y + /Q Gy Toprsa ot

+2 /Q (2C3030 T30 + Psadp) T3a dx — /Q Psop Tap ds dz
+ /Q (—2Pssa Tsa + Epa do) do d (3.57)
amo((7,d), (1,d)) = /Q (63333 T33 + P333J3) T33 AT
+ /Q (—Ps33733 + £33 d3) ds dex, (3.58)
and the linear form [ (-) : X, — R read

lH('v,w):—/invidw—/F gividf—/r p; v; dT. (3.59)
dN L

The pair ((o(h), D(h)), (u(h), p(h))) can also characterized as the unique solution of this

problem thanks to the Babuska-Brezzi condition.
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3.3 Convergence of the scaled unknowns as h — 0.

3.3.1 Weak convergence

In this section we prove that the family (u(h),p(h)),., weakly converge to (u,¢) in
[HY(Q)]? x HY(Q), as h — 0, and identify the “limit” variational problem solved by

(u, ¢). We follow the method introduced by Trabucho & Viano [1996].

Then the following weak convergence are guaranteed.

Proposition 4 There exists C' > 0, independent of h, such that for all 0 < h <1 the

solution ((o(h), D(h)), (u(h),¢(h))) of problem (3.53)-(3.59) verifies

|733(h)p0 < C hloas(h)lpq < C, R loas(h)lyq < C,

h |Da(h)|o,ﬂ < Oa |D3(h)|0,§2 < O’
I(u(h), p(h)llx, , <C: llulh),¢(h)llx, <C.

Proof. Let S(h) € [L*(Q)]? and T'(h) € [L*(2)]? be the following elements:

Sgg(h) = Ugg(h), Sga(h) = hO’ga(h), Saﬁ(h) = h20'aﬂ(h),
Ty(h) = hDa(h), Ty(h) = Ds(h).
We have

ar ((S(h),T(h)),(S(h), T(h))) := ano ((S(h), T(h)), (S(h),T(h)))

+anz (S(h), T(h)),(S(h), T(h))) + ama((S(h), T(h)),(S(h), T(h)))

= aro ((o(h), D(h)), (a(h),d(h)) + h*apz ((o(h), D(h)), (a(h), D(h)))

+ apa ((o(h), D(h)). (o(h), D(h))).

Hence letting (7,d) = (o(h), D(h)) in equation (3.53) we obtain

ar((S(h),T(h)), (S(h),T(h))) :/[03333533(h)533(h)+533T3(h)T3(h)]dw

Q

Lo / (ClasaSan (1) Sss () + ACh050 Ssp () Sse ()] dat
Q
+/§a9T9(h)Ta(h)dﬁC—|—/CaﬁgpSQP(h)Saﬁ(h)dw
(9] Q

= —by((a(h), D(h)), (u(h), ¢(h)))

(3.60)
(3.61)

(3.62)

(3.63)

(3.64)
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and from (v,v) = (u(h),p(h)) € Xo, in equation (3.54) with (v,v¢) = (u(h), ¢(h)) €
Xo.w (note that ¢(h) = ¢(h) — ¢) one has

or(SULTM). (SI).TM) = [ frw(wyiz + | gas(yr

+ / piui(h)dl’ + / Ds(h)Es(¢)de. (3.65)
Using properties (2.66) for Cyjp;, £;;, we have

ar((S(h),T(h)), (S(h),T(h)) = Cl|(S(h), T(h))lls.0 = CII(S(R), T(W)lk,,  (3.66)
on the one hand. On the other hand, from (3.65), we deduce that

ar((S(h), T(h)), (S(h), T(h)))

< C(Ifllog + llgllory + lIpllor.) lw(h)l1e + Cll@lonlDs(h) oo

< Clluly o+ ClTs(h) e < Cli(u(h), 6(h)l x,,, + CIS(h), T(h))x,.  (3.67)

Combining (3.66) with (3.67), and using the inequality 2ab < % +mb*, m > 0, we deduce

the existence of the constants C' such that

I(S(h). T(h)Ix, < Cll(w(h), (M) x,,, +C- (3.68)

On the other hand, taking (7,d) = (e(h), E(h)) € X in equation (3.53) we have

—bu ((e(h), E(h)), (u(h),#(h))) = —bu ((e(h), E(h)), (u(h),¢(h) — &(h)))

+h'ama ((a(h), D(h)), (e(h), E(h))) + by ((e(h), E(h)), (0, $(h))) , (3.69)

and taking into account the fact that 0 < h < 1 we guarantee the existence of a positive

constant C' satisfying
| = bu((e(h), E(h)), (w(h), &(h)))|
< C[I(S(h), T (1)l x, lI(e(h), E(h))|x, + Cll(e(h), E(h))| x,

< [CI(S(h), T(h))llx, + C] lI(w(h), &(h))l x0...- (3.70)

Expliciting in (3.70) the bilinear form b(-,-) and using the inequalities of Korn and
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Poincaré we have

_bH((e(h>7 E(h)>7 (

‘6|
{o\

i (w(h))es; (u(h)) da + / Bu(@(h) E(@(h)) da

= lle(u(h) 5o + IVER)IG 0

> Cllu(b)[l0 + Cleh) e = Cll(w(h), &(h))| xo,.,-  (3.71)
From (3.70) and (3.71) we deduce
I(w(h), @(h)l xo., < ClI(S(h), T(h))l x, +C. (3.72)
Combining (3.71) and (3.72) we obtain that
I(S(h), T(h)llx, <C,  l[(w(h),¢(h))lx,., <C. (3.73)
Finally, we have:

[(w(h), o(h)l[x,. = (w(h), @(R)) + (0, 5(h)) | xs,.

< Cll(u(h), &(h))llx0. + Cllla o) (3.74)

Corollary 2 There exists a subsequence, still parameterized by h, and there exist u €
Vow, X € [LQ(Q)]g, o € LA(Q) and® € [L2(N)]°, such that the following weak convergence

hold when h tends to zero:

o33(h) — Yas, hoas(h) = Sas,  hPoas(h) — Sag,  in L*(Q) (3.75)
hDy(h) = D, Ds(h) — D3, in L*(92) (3.76)
u(h) — wu, in Vo(€), (3.77)
o(h) = ¢, in Uy (2), (3.78)
o(h) = ¢ =9 — ¢, in Wo(Q).  (3.79)

Moreover, the limits 3, ®, u and ¢ satisfy the following properties:

es3(w) = Ci30209, + Ca33333 + PagsDs, (3.80)

esa(u) = eqp(u) =0, (3.81)
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E3(p) = —Psp,X0p — Ps33Zas + £3303, (3.82)
E.(p) =0, (3.83)
CopopSop + Capzzas + PrasDs = 0, (3.84)
2C5030230 + Pp3a®g = 0, (3.85)
Z9aDp — 2Pp3e N30 = 0. (3.86)
/Eaﬁeag(v)dw =0, Vv=(v1,09,0) € Vj,(22), (3.87)
/Eaﬁdw = / Ty Yagdw =0, (3.88)
/©3E3(1/1)dw =0, V¢ e Hy(0,L), (3.89)

Proof. We immediately see from the previous theorem, the existence of a subsequence,
still indexed by h, and there exists an element denoted by (3%, ®,u, ¢) such that conver-
gences (3.75)-(3.79) hold. Passing equation (3.53) to the limit as h goes to zero, we obtain
the relations (3.80)-(3.83) in L?(2). To derive (3.84) we take 733 = d3 = 0 in the first
equation of the mixed problem (3.53), multiplying by h~2 and passing to the limit taking
into account that ez,(u) = eqp(u) = E,(p) = 0. Now, we choose 733 = 7,3 = d3 = 0
in (3.53). Multiplying by h~! and passing to the limit we deduce (3.85) and (3.86). To
prove (3.87) we multiply equation (3.51) by h? and pass to the limit as h goes to zero.
Choosing appropriate test functions v; € V4, in (3.87) we obtain immediately (3.88) (see
Trabucho & Viano [1996]). The properties (3.89) are obtained from (3.51) choosing v = 0

and passing to the limit for appropriate ¥,. =
From (3.81) we have that the limit displacement w is a Bernoulli-Navier displacement,
ie.:
Ven(2) = {u € Vi, : eap(u) = e34(u) = 0}. (3.90)

In Trabucho & Viano [1996] this space was characterized by the following equivalent

definition:

Van @ = Ven(Q) = {v = (v;) : va(z1, 22, 73) = Xa(z3) € V5(0, L),

v3(11, T, 3) = X3(73) — $6X/g(903)> X3 € V01(07 L)} ) (3.91)
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where
Vg (0,L) ={ne H'(0,L):n(0) =0}, (3.92)
Vi (0,L) = {n e H*(0,L) : n(0) =7'(0) =0} . (3.93)
Consequently, we have

ua(x17x27 x3) = fa(9€3), ga € VOZ(O? L)7
us(x1, T2, 23) = E3(3) — 2ol (23), & € V5 (0, L).

(3.94)

Now, we define U3 to be the space of the electric potential satisfying the condition

(3.83), i.e.,
U =0%Q) = {v e H'(Q) : E,(¢) =0} . (3.95)
From (3.83) we deduce that ¢ only depends on variable x3, that is,
(21, 79, 73) = 23(x3), 23 € HY(0,L). (3.96)

By other hand, ¢ = ¢ on 'y UT', = T'.p, which give us (see (3.42))

23(0) = (1, T2,0) = $(0) = 3, (1, 72) € w, (3.97)
z3(L) = @1, 9, L) = (L) = op", (21, 13) € w. (3.98)

with
oo’ and @p"  constants. (3.99)

In this case, ¢ has the following from
(21, T9, T3) = 23(x3), 23 € H'Y(0,L), 2(0) = gpé’o, z3(L) = cp(l)’L. (3.100)
Obviously, it is possible to give an equivalent definition of ¥3 as follows

VP =+ UQ) =+ {w € HY(Q) : (a1, 29, 23) = 2z3(x3), 23 € HOI(O,L)} ,

= {Y(x1, 22, 23) = 23(x3), 23 € H'(0,L) : ) —p € ¥} (3.101)
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Consequently, we have

pE P+ TN (3.102)

- _ . _ 1 10 1 1,L

P21, 9, 23) = (a1, 22, 03) = P(23) = 25(23) — (L —23)90” — Ta390”,  (3.103)

E(p) = =03 = —23, (3.104)
1

Es3(p) = —03p = —25 + E(@(l)’L — 90(1{0)- (3.105)

Theorem 3 Let us that the beam is made of a class 2 piezoelectric material whose coeffi-

cients A3 A% 5 and % (Psap — A§3P333AS5) do not depend on xo. The limit (u, @) is the

Q

solution of the following problem:
/ Agg [&:33633('11,) — pgggEg(QO)} 633('0)(150
Q
+/ ASy [Pssess(u) + Cagss Es()] Es(v)da (3.106)
Q

= / fz vid:c ‘I—/ g; U; dl’ +/ Di U; dF, V('U,@Z)) c VBN X \Ifg
Q I'n I'r

where
1

3= = A =5
E33C3333 + Ps33P333

Aj

Proof. Taking now v € Vpx(Q) and ¢ € ¥3(Q) in second equation of the mixed problem
(3.53) we obtain

/O’gg(h) 633(’0)d£13+/D3(h) Eg(@/))dm:/fzvzdm—k/ glvzdf—k/ pividf,
Q Q Q I'n T

and passing to the limit when h — 0, we get

/Egg@gg(’U)diB—l—/@gEg(@Z))dw:/fividm+/ gzvzdfd—I—/ pividf, (3]_07)
Q Q Q I'n

ry

for all (v,v) € Vpy x ¥3. Using (3.80) and (3.82), one has

233 = A§3 [533633('11,) — P333E3((,0) — AgﬁEaﬂ} s (3108)
_ _ 1 .- _
D3 = ASy Psgzess(u) + AS3Caz33 E3(0) — = [Psg, — A3 Psss Al 5] Sap, (3.109)
33
1 _ _
Ass Ags = €3303305 + Ps33P34p. (3.110)

- — ~ — B )
€33C3333 + Ps33Ps33
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Putting these expressions into (3.107) we obtain

/Q ASy(E33ess(u) — Psgz Es())ess(v)da

L L
_/ (/ A§3Agﬁ2agdw) Cédl’g‘l—/ (/ A3 AGs waagdw) (Jds
0 w 0 w

+ / ASs(Psgsess(u) + Cazss Bs()) B3 (1))
Q

L

1 _ _

"‘/ |:/ _5_‘ (Pgaﬁ — A§3P333Agﬁ) Zagda):| qul'g
0 w <33

:/fividw+/ gz"UidF—i‘/ pi v dl’,
Q I'n rg

Then, if we use conditions (3.88) and the fact that the coefficients are independent of z,,
we get (3.106). m

Corollary 3 Any function (u, ) solves (3.106) if and only if it has the form

Uo (1, T2, 3) = Ea(T3), uz(z1, 12, v3) = §3(T3) — xﬁf'g(%)a (3.111)

p(1, w2, 23) = 23(73), (3.112)

with &, € VE(0, L), & € Vi (0, L) and z3 € H'(0,L), z3(0) = gpé’o, z3(L) = gpé’L, and &

and z3 solving the following variational problem (no sum on «):

(

L L
/ Iy A" dry = / ( / fodu + / G 0 Codls
0 0 w

TN

_/OL(/W Tof3 dw+/w Tog3 dy)C drs + (/wpa dw)Co(L) (3.113)

~( / tappd)CL(L),  for all Co € V2(0, L)

\
p

L
/ A(w) A53[(E3385 + Paazzy) Gy — (Paasés — Csaazzs)qs)das
0

— /OL(/W fsdw+/w ggd*y)g“gdxgju(/wpgdw)gg(m’ (3.114)

L V(3 € ‘/Ol(O,L), qs € Hol(O,L)

We remark that the limit model, expressed by equations (3.113) and (3.114), is now

written over (0, L) as was considered initially. We note that the flexion model (3.113) is
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independent of the electric potential, and therefore can be compared with the classical
bending model for an elastic beam. By other hand, the axial displacement is coupled with
electrical potential as can be see in variational problem (3.114).

Our study could stop at this stage, however we intend to prove, in the next section, the
strong convergence and, for that, we need to obtain additional information about limits

mentioned in Corollary 2, using the asymptotic expansions method.

3.4 The method of formal asymptotic expansions:

the displacement - electric potential approach

In order to complete this study, and be able to establish the strong convergence of sequence
(w(h),o(h)),~o, We next assume that the solution of the problem (3.46)-(3.50) can be

expressed in the form
(u(h),o(h)) = (u®, ¢°) + h? (u?, ¢*) + h.o.t., (3.115)
where
(u’, 0" — @) € Vo x W, (U, ") € Vo x Vg, p > 1, (3.116)

and the successive coefficients of the powers of h are independent of h. We note that only
the leading term is required to satisfy the electric boundary condition found in definition
of the space V,, x WUy.

The assumption (3.115) induces the following expansion (see (3.52))

(o(h),D(h)) :=h™*(c™*, D) +h % c™*, D?) + (¢°,D° + - -, (3.117)

where the tensor fields (o, D?), ¢ > —4, are independent of h.
Applying the displacements - electric potential approach to the scaled principle of

0

virtual work (3.51)-(3.52), we try to characterize the terms u°, u? and ¢ in the formal

expansions in order to compute (u’, ¢°).

3.4.0.1 Cancelation of the factors of h%, —4 < ¢ < 0, in the scaled three-

dimensional problem.

In this section we show that the factors of h?, —4 < ¢ < 0 disappear, and therefore the
formal expansions (3.117) do not contain any negative terms. For the sake of clarity, the

proof is divided in five parts.
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From (3.115)-(3.117) and (3.52) we have
oap(h) = h*4a;g +h7 %05+ 005+ hot.,
030(h) = h %032 + 03, + h.o.t.,
o33(h) = h %037 + o5, +ho.t.,
Do(h) =h?D.? + D? + hot.,

D3(h) = h2D3?% 4+ DY + h.o.t.,

with
05 = Capopeop(u’), (3.118)
0&5 = 0059069/)(“2) + Caﬁ33€33(uo) - P3aﬁE3(<,00), (3.119)
003 = Cagopeop(u’) + Cogszess(u?) — PaagEs(p?), (3.120)
0ot = Capapeop(u?*) + Capgsess (W??) = PoagEs(9™*?), p>1, (3.121)
T3 = 2C3035€35(u”) — Prsa By(¢°), (3.122)
T30 = 2Caz3030(u”) — PyzaEp(¢?), (3.123)
o5 = 2Cass0€30 (W T?) — Pasa Bp(0™*?), p > 1, (3.124)
035 = Cizapeap(u’), (3.125)
03 = Caspeop(u?) + Cazazess(u’) — PaszBs(¢”), (3.126)
U§§ = 033aﬁeaﬁ(u2p+2) + Cyaszess(u??) — PygsE3(p*), p > 1, (3.127)
D5? = Paapeas(u’), (3.128)
Dy = Psapeas(u’) + Pagzess(u’) + g3 Es(¢°), (3.129)
Dgp = P3aﬁ€aﬁ(up+2) + Psgzess(u®) + ez F3(0™), p>1, (3.130)
D.? = 2Pp30e30(u’) + 05 Es(¢°), (3.131)
D° = 2Pysne30(u?) + 9o Eu(©?) (3.132)

D? = 2Pp3ne30(u®) + c9aBu(0™), p>1, (3.133)
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From (3.51) we have
| o de dx + h™? “2eii(v)d D 2E, () d
o ap(v) dx + ;5 ¢eij(v) dx + v Er(¢)dx
Q Q Q
+ [/Q oy (V) d:c—l—/QD,gEk(w) dw} + h.o.t. (3.134)
= / fividx +/ giV; dF+/ p;v; dI, V (v,9) € Vo x Y.
Q I'n g

It follows that

/Qa;geaﬁ('v) der = LCaggpegp(uO)eaﬁ(v) dz, forall v € V. (3.135)
Taking v = u°, we deduce from the coerciveness of C, that
eap(u’) =0, (3.136)
and therefore
0.5 =05 = D3? =0 (3.137)

Consequently, equation (3.134) becomes, from (3.136) and (3.137),
2/05363a(v)dm+/0a526a5(v) dm+/D92E9(w) dx = 0, (3.138)
Q Q Q
for all (v,v¢) € Vp, x Uy (3.139)

Putting v = u® € Vj,, and ¥ = ¢ — @ € ¥y in (3.139) and combining the resulting
equation with the constitutive laws (3.122) and (3.131), we deduce

2 / (2Chasse35(w’) — PrgEo(¢)) esa(u) da
Q

+ / (2Pa35635(u0) + 5aﬁEg(<p0)) Eg(goo —¢)dx = 0. (3.140)
Q
Since . .
P(x3) = E(L - 953)@%’0 + Z$3@é’L,

with ¢ and @p" constants, then the previous equation becomes

4/ Cgagﬂegﬂ(uo)egg(uo) dx + / 5aﬁEﬁ(§00)Ea((,00) dx = 0. (3141)
Q Q
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From the coerciveness of C' and € we obtain

ezp(u’) =0, (3.142)
Oap’ = 0. (3.143)
Consequently, we deduce
030 = D2 =0, (3.144)
and equation (3.139) becomes:
/Qaageaﬁ('v) de =0, forallveV,, (3.145)
with
0.5 = Capnpeop(u”) + Copszess(u’) — PaapEs(¢”). (3.146)

Condition (3.116) will allow us to prove that it is not possible to obtain a solution u? of
(3.145) in the space V; except for some particular cases. This fact is at the origin of a
boundary layer phenomenon as seen in Trabucho & Viano [1996], Irago [1999] and Irago
& Viano [2002].

Next, we prove that there exists @ € Vp,, such that
Cagop€op(W) + Capszess(u’) — PyagEs(”) = 0. (3.147)
Then, from (3.119) we obtain
0.5 = Capopeop(t — u’), (3.148)

and therefore, from (3.145),

/ Capop (€op(u® — @) eap(v) dz = 0. (3.149)
0
Taking u = u? — @ we conclude that eg,(u® — w) = 0, and finally, from (3.148):

0.5 =0. (3.150)

We remark that from (3.119) and (3.150) we deduce that u? is also solution of equation
(3.147). In other words, 0;5 = 0 if and only if the following problem has at least one
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solution in V{ ,:

Cagopeop(t) = —Copzeas(u’) + PrapEs(¢°), (3.151)
that is,
Ciinn 2C112 Chise 611(U2) —01133633(’“0) + P311E3(<P0)
Cio11 2Ch1212 Chan 612(u2) = —01233633(u0) + P312E3(<P0) . (3~152)
Ca1 20512 Cagoo 622(u2) —02233633(u0) + P322E3(<P0)

By a simple inversion of the matrix we have

611(U2) 61111 61112 61122 —01133633(’&0) + P311E3(<,00)
612(U2) = 61211 61212 61222 —01233633(’&0) + P312E3(<,00) , (3.153)
622(u2) 02211 62212 62222 —02233633(’“0) + P322E3(900)
where ) ) ) .
Cunr Ciiz Chuze Cunr 2Ci12 Cua
Ciati Craiz Crasa | = | Ciann 2C1212 Cham : (3.154)
Coai1 Cozz Cozay Cao11 20212 Caza

In this way, we have established that

cap(u®) = éaﬁpp [PBPPEB(SOO) - Cpp33€33(u0)]

+ éaﬁw [P312E3((,00) — 01233633(’1110)} . (3155)

From (3.136) and (3.142) we have that u° is a Bernoulli-Navier displacement, i.e., u’ €
Ven () (see (3.90) and (3.91)). Then, there exist functions &, and &3 depending only on

variable x3 such that:

Uo (T1, 2, 23) = Ea(T3), £a € VF(0, L),

(3.156)
UB(xth’xfﬂ) = §3(ZL‘3) - xag&(x?’)’ §3 € ‘/01(07L)'

By consequence:

esz(u’) = & — x,8l. (3.157)
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On the other hand, from (3.143) we deduce that ©° depends only on variable x3, that is,
(a1, 29, 23) = 2z3(x3), 23 € H'(0,L). (3.158)
Since ¢* = $ on T'.p =Ty UL, then (cf. (3.99))
25(0) = p(21,72,0) = $(0) = 5", z(L) = @(w1, 25, L) = @(x1, 22, L) = g (3.159)
Consequently, ©° has the following form:
(21, 9, 23) = 23(x3), 23 € HY0,L), 2(0) =y, 23(L) = 3", (3.160)
and

. 1 1
PO (w1, w2, w3) = 9" (w1, w0, w3) — P(w3) = 23(w3) — 7L~ 3)pp" — z$390c1)’L, (3.161)
E3(p) = —0sp = —23, (3.162)

1
E3(p) = —0sp = —23 + z(@é’L — @g"). (3.163)
Then, expression (3.155) becomes

€aﬁ(u2) = éaﬁpp [_Piippzé - Cpp33(§§ - xﬁglﬂ/)]

+ éaﬁ12 [—Pglzzé — Chass(&3 — xﬁf’g’)} (3.164)

In order to characterize the transverse components of u?, we begin by introducing the

following constants and functions characterizing the geometry of the cross section w.

(a) The constants I, are given by

I, = /xi dw.

(b) For each (z1,x2) € w we define the components of the matrices
A(z1,22) = (M) (71, 72), A($1,$2) = (/_\a)($1,!7€2), z(21,72) = (208) (71, T2)
as follows

A = xl(éllppcppfﬂ?) + 0111201233) + $2(é12pp0pp33 + 6121201233)7

Ay = x1(012pp0pp33 + 0121201233) + xQ(éQQppCpp33 + 6221201233)7
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A= 951(@22ppp3pp + 62212]3312) + xZ(OIQppP3pp + 61212]3312),
Ay = xZ(CYQprPBpp + 62212]3312) + xl(OIQppP3pp + 61212]3312),
x3 - ~ 3~ >
211 = E(Cllppcpp:«:zs + C1112C233) — 5(022ppp3pp + C212P312),
212 = 2$1$2(é12pp0pp33 + 6121201233) + $1$2(é11pp0pp33 + 6111201233),
291 = 2$1$2(é12pp0pp33 + 6121201233) + $1$2(é22pp0pp33 + 6221201233),

2 - = Ty, A
222 = ?2(022pp0pp33 + Co912C"1233) — El(ollppp3pp + Cri112P312).

(c) Constants X3, Ya, Z and L are defined by
Xaﬂ :/Zaﬂ dw, Ya :/zaﬁég dw,

7 = /Aaéa dw, L= /Aaéa dw.

Theorem 4 Let u’ € Vgy and ©° € ¢+ U9 be given by (3.156) and (3.160), respectively,
and if £, € H3(0, L) and &3, 25 € H?(0, L), then every element u € Wy is of the form

Ug = So + 008 + 2ap€ — Nl — Moz, (3.165)

where s, s, € H'(0, L) are such that

1

3a(0) =~y Xasth (0).
X (3.166)
5(0) = == (Va5 0) = 285 (0) = L4(0)).

Proof. From (3.147) and (3.155) we have
alu% = _Zé(éllppr}pp + C~'1112P312) - (5;’», - 'rﬁg,ﬂ/)(éllppcpp&?) + 6111201233)
3210% = _Zé(GQQppP3pp + 0221213312) - (5;’», - $ﬁfg)(é22pp0pp33 + 6221201233)7

3110% + 3210% = _225/3(612ppp3pp + 6'1212P312) - Q(fé - $ﬁfg)(émpp0pp3g + CNY1212(J1233).
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A direct integration of the first two equations gives

~ 232 ~ ~
Uy = k1(9€27 373) - (lﬁlfé - 7151/ - $1$2f§/)(011pp0pp33 + 0111201233)

— 2421 (Ca9pp Papp + Coz1a Ps1a),
3 PP Opp (3167)

Uy = k2(9€17333) - (162% - 951»’3251, 125 )(022;);) pp33 T 0221201233)

_Zéx2(622ppp3pp + 02212]3312)-

Substituting these expressions in the third equation, we show that there exists a function

s, depending only on z3, such that

Ookr1 (22, 3) = 5 — x2§f(622ppp3pp + 62212]3312) + 2$1€§/(612pp0pp33 + 0121201233)
- Zé(élzpppz«;pp + 6121213312) - 55(012pp0pp33 + C~Y121201233)7

Orka(21,23) = —5 — xlfg(énpppzspp + 61112P312) + 2x2€1,(612pp0pp33 + 6121201233)
- Zé(CIQppP3pp + 0121213312) - fg(émppcpp:sg + 6121201233)~

Thus,

Uy = 51 + 5Ty — [Ifl(émpppgpp + 6'2212P312) + x2(012ppp3pp + 61212P312)} z

M2 ~ 22 . B
+ ?l(cllppcppgwf} + Cr112C233) — ?2(022ppp3pp + 02212P312)] &

+ 2x1x2(012pp0pp33 + 6121201233) + xle(éllppCpp33 + 6111201233)] &

— |1 (éllppcpp33 + CN(1112611233) + xQ(CIQppCpp?)B + CN112126’1233):| 5;’,7

Uy = S9 — ST — [x2(é22ppp3pp + 62212]3312) + xl(OIQppP3pp + 6'1212]3312)} z

+ 2x1x2(012pp0pp33 + 6121201233) + xle(éQprCpp33 + 6221201233)] 3

_:L‘z B _ ZL‘2 R 5
+ 52(022pp0pp33 + C212C11233) — ?l(cllppPlSpp + 01112P312)] &

- xl(OIQppCpp33 + 6121201233) + xQ(OZQppCpp33 + 0221201233)} &
Therefore, the component wu, is given by the following expression

Uy = So + 00S + zaﬁﬁ'ﬁ’ A&y — O,z3
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Let U, € L*(Q). Then [ 1, dw, [ dgujdw, &), &, 25 € L*(0,L) and (3.29) together
with (3.165) lead to s,, s € L*(0, L).

Since we must have u2 € Wy (Q), we deduce that
/ui dw € V5 (0, L),
/ (zoui — z1u3) dw € V' (0, L)
from which we obtain, after substituting (3.165),

A(w)sa + Xaply € V5 (0, L),

(I, + 1) s + Yp&) — Z&, — L2y € Vi (0, L),

and consequently
§o € H*(0,L), &,23€ H*(0,L).

On the other hand, using the weakly clamping condition

/u?l dw = / (:cguf — xlug) dw = 0,

we have s, s, € H'(0, L) verify

1 1

54(0) = ——Xaﬁf/ﬁ, (0), s(0) = L+ 1

Aw) (Y5€4 (0) — 25 (0) — Lz5(0)) .

Corollary 4 (u2) € Wy are of the form (5.165) and consequently ‘7;/? =0 if and only if
u® € Vpy is such that &, € H3(0, L), &, 23 € H*(0, L).

3.4.0.2 Identification of a one-dimensional variational problem satisfied by

the leading term (u®, ¢°)

The analysis of Section 3.4.0.1 culminated in Corollary 4, where it was shown that 0;5 =0,

and consequently the variational problem (3.134) can be written as follows
/a?jeij('v) dx + / DYE (1) de + h.o.t.
Q Q

= / fﬂ)z‘ dx ‘I—/ g;U; dl’ ‘I—/ Div; dF, i (’U, @Z)) € %,w X \I/(). (3168)
Q 'y I'p
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Letting (v,1) € Vgy X U3 in the variational equations of problem (3.168) shows that

Q 9) Q 'y I'p

where

083 = O339p€9p(u2) + 03333633(’&0) - P333E3(<P0),

Dy = Psupeas(u®) + Pagzeas(u”) + e33F3(¢°).

We have established that eg,(u?), found in the expressions for 695 and Dj, is in fact known
function of u” and ¢°, and therefore the unknowns of the previous variational problem

are u’ € Vpy and ¢° € ¢ + U3,

Theorem 5 We suppose that the applied forces are such that

foz S LQ(Q)’ Ja € Lz(FN)

(3.170)
fs€ H'[L*(W)],  gs € H[L*(w)],  pi € L*(Tp) = L*(w),

then, in the displacement-electric-potential approach, the leading term (u®, ©°) of the for-
mal expansion of the scaled displacement and electric potential (u(h),p(h)) solves the

following problem

u’ € Vpn = {v : eqp(v) = e30(v) = 0} (3.171)

' ep+ =0+ {ve H(Q) : ¥(x1,22,23) = 2(x3), 23 € Hy(0,L)} (3.172)

/Ug3€33( dCB-F\/D E3 dw—/fz’ljz d:c—i—/ giU; dF+/ Piv; dl’ (3173)
Q

for allv € Vgy, 1 € U}, (3.174)

0 0 '
where o35 and D3 are given by

089y = Cizess(u’) — Py Es(¢°),

(3.175)
D§ = Pjess(u®) 4 e5Es(¢"),

and the new constants read

O35 = U333 — C3ap [éaﬂppcpp33 + éaﬁ1201233]a
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P; = P333 - C33aﬁ [éaﬁppPBpp + CNYO:£'312P312] = P333 + P3aﬁ [éaﬁppPBpp + CNYozﬁ?12P£*‘;12]7

g;’ = €33 -+ P3Ozﬁ [Caﬁppcpp33 + éaﬁl201233]7

where C35 and €3 are positive and bounded.

Any function (u®, ©°) solves this problem if and only if it has the form
Ug(!ﬁ, Ty, 13) = Eu(T3), Ug(9€1> Ty, w3) = &3(w3) — 176§,g($3)> (3.176)
@ (1, 22, 73) = 23(3), (3.177)

with ga S ‘/02(07[/)7 53 S ‘/01(07[/> and 23 € Hl(oa L)a 23(0) = 905707 ZB(L) = ¢57L7 and fz

and z3 solving the following variational problem (no sum on «):

( L L
/uﬁﬁng/X/mmﬁ/%mmmg
0 0 w YN

L
- ofsd g3 dy)C.d - dw)Co(L 3.178
/0(/wxf3w+/wxg3fy)g“ :c3+(/wp w)Ca(L) ( )
—(/ Top3 dw)C. (L), for all {, € Voz(O,L)

( L
A AW)(Col+ PL)C — (PLE, — i) dh)ds

— /OL(/” fadw + /W g3dry)(adas + (/wpgdw)gg(L), (3.179)

L VC;; € %I(O,L) qs € H&(O, L),

where the zeroth order bending moment and axial force components are given by
m= [ ofdo = A@) (C&i + Py,

My = / Ty 095 dw = —1,05,€", (no sum on «)

di= [ Ddo = Aw) (Pig - ei%).

Proof. Let functions v = (v;) € Vgy and ¢ = 0 € ¥] in problem (3.173) be of the

particular form

v = (0,0,Cg(l'g)), C3 € ‘/01(07 L)
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We obtain

/Qag?’cé dx = /S;fggg d«’B-'-/I:N 93C3 dF—i—/ p3C3 drl’. (3180)

N3
Next, let the function v = (v;) € Vpy and ¢ € ¥ in problem (3.173) be of the particular
form
v = (Cl(x?’)’ €2(173), _$ﬁ€ﬂ(l‘3)), gﬂ € ‘/E)Q(Oa L)a (3181)

¢ - QB(x3)> UERS Hl(oa L)a (3182)

which gives

[ esctscide+ [ wsDiuidn = [ fagydet [ gstadr [ pGoar (asy
'y

rp

- / g f3Cs do — / 2595C5 dl — / pssCsdl, (3.184)
Q FN FL

or, equivalently, we have

L L
—/ mandxgz/ (/ fadw+/ Jo dy)Codxs
0 0 w IN

- /oL(/w To f dw + /W To93 dy)C dxs (3.185)

+(/wpa dw)Ca(L) — (/w s dw) (L)
/OLngCédxg_ /0 L dsgydrs = /OL( /w fadw + / gady)das + ( / Pedw)Ca(L)  (3.186)

TN w
Conversely, if functions solve the variational problem (3.178))-(3.179), one sees that
(u®, %) € Vpy x U3, with u® = (,, ud = (3 — z5C; and @Y = z3, solves problem (3.173).
|
We note that on the other hand, using regularity results for variational problem (3.178)

and (3.179) together with (3.170) guarantees the regularity to &, € H?(0, L) and &3, 23 €
H?(0, L).

Theorem 6 The limit problem (3.178)-(3.179) admits a unique solution in the space
[V2(0, L)]> x V20, L) x (¢ + H'(0,L)). Moreover, it is equivalent to the following differ-
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ential problems:

[ —AW)(C3 & + Pizg) = Fi, in (0, L),
Aw)(e325 — P3&y) = 0, in (0, L),
(3.187)
(0) =0, 2z(0) =g 2=(L) =,
| Aw) [C53 &(L) + P5 z3(L)] = Fy,
and (no sum on 3)
(i, 156l = Fy+ My, in (0, L),
£(0) =0, €(0) =0, (3.189)
| CLlagL) = MY, —ClLa€i(L) = FE — My(L),
where

[ﬁz/(xﬁ)2 dw, Fz:/f@-der/ gid,
w w YN
Ma:/xafgdw+/ ZTag3 dy,

w YN

FZ-L:/pl-dw, ME :/xapgdw.

Proof. Since C; > 0, equation (3.178) has an unique solution &g € VZ(0, L). In order

to prove the existence and uniqueness of the solution of (3.179), we write it problem as

follows
(€3, 23) € V5 (0, L) x (¢ + H'(0, L)), (3.189)
L C'* P ! L
A(w)/ (G2 | 2 7 ) duy :/ (Fy+ FE0) [ % des,  (3.190)
0 Py —e3 d3 0 a3
V(s3,03) € Vg (0, L) x Hy(0, L), (3.191)

The bilinear form is V' (0, L) x Hj (0, L)-elliptic, due to the positive definiteness of the

C* P*

matrix 3. 73 By the Lax-Milgram Lemma, there exists a unique solution
3 €3

(&3,23) € V{(0,L) x (¢ + H'(0,L)) which satisfies the variational equations (3.187).
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Remark 7 We remark that
C33 = Ajs&as, Py = AS3Ps33, 5 = A53C3333.
To prove this we use the algebraic software tools.

Corollary 5 The sequences (w(h))pso and (p(h))n=o weakly converge to the first term of

the asymptotic expansions u® and @°, respectively, i.e.,

u(h) = u’, in V., (3.192)
o(h) = ¢° in L*(Q). (3.193)

3.4.1 Strong convergence

One of the objectives of this section is to analyze the strong convergence of the solution
(u(h),@(h)) of the scaled problem (3.46)-(3.50) as h — 0. A brief summary of results,
which will help us to prove the convergence, is showed here. The pair ((c%;, DY), (u®, ©°))

solves
(033, Dg), (u®, %) € [L2(Q))* x (VB x (¢ + ¥7))

/ (63333 O'g3 + P333Dg) ngdil? + / (—ngga'g3 + 533 Dg) dgda,'
Q Q

= / 733 egg(uo)dw + dg Eg(QOO)dIB, (3194)
Q Q

for all (733, ds) € [L*(Q))?,
Q Q Q 'y 'y
for all (v,v) € Vgy x U},

Theorem 7 Let us that the beam is made of a class 2 piezoelectric material whose coef-
ficients C_'a5330§3 + PgaﬁPg‘ and C_’aggng‘ — pgaﬁsg do not depend on x,. For 0 < h <1,
let ((o(h),D(h)), (u(h),p(h))) € X1 x X, be the solution of (3.53)-(3.59), then the

following strong converges hold, when h — 0 :
[(w(h), o(h)) — (u®,¢°) ||, — 0, (3.196)
|o3s(h) — 053}0’9 — 0, |hosa(h)|gq — 0, }hQO'aﬁ(h)’Oﬁ — 0, (3.197)

|hDg(R)]g o — 0, | Ds(h) — D5, ¢, — 0 (3.198)
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Proof. Let §(h),5° € [L*(Q)]? and T(h), D° € [L*(Q)]? be defined by

0 _ 0 0 _ 0o _ A _ o N
033 = O33; U3ﬁ—0a Uaﬁ_oa D3 = D3, D,=0,

and
S(h) = (Sy) , T(h) = (T3;)
5'33 = 5337 5304 = hSBou Saﬁ = hQSaﬁa T3 = T37 Ta = hTa-

Let

ar ((S(h), T (1)), (S(h), T(h))) = ano ((S(h), T(h)), (S(h), T(h)))

+h*ans (S(h), T(h)), (S(h), T(h))) + hlama ((S(h), T(h)), (S(h),T(h)), (3.199)

to be the left-side of the equation (3.53). Take (7,d) = (S(h),T(h)) into (3.53)-(3.59).
By coercivity argument, we infer that the following inequality holds for all h > 0

ar ((S(h). (), (S(h), T()) 2 C {lomh) — %o+ H osa(W) g
(3.200)
+ht Gas(B) o + B [Dalh)o g + [Ds(h) — DYl o}

Let us examine the behavior of the left-hand side of this inequality as h — 0. First, a

simple computation based on variational equation (3.53) shows that
A(h) = ar ((S(h), T(h)), (S(h), T(h)))
= ~bu((a(h), D(h), (w(h), @(h) + () + bu (", D°), (u(h), 2(h) + ¢))

— ao((8°, D°), (S(h). T(h))) - Waa((6°, D), (S(h), T(h)))

~ hlag((8°,D°), (S(h), T(h))) = Ay(h) + As(R), (3.201)

where
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and

Ag(h) = —ano((6°, D°), (8(h), T(h))) — K*anz((", D°), (S(h), T(h)))

— h'aya((a°, D°), (S(h), T(h)).

Using the variational equation in problem (3.54) and the definition (3.55), we have

A / Faus(h)da + / gu(h)dT + / prats(h)dT + / Dy(h) Ex(3)da
I'n

/0'33633 dIB—/DOEg dIB—/DOEg

and using the weak convergences established in Section 3.3.1 as h — 0, we next have
Q T'n rL Q
- [ Ahenutyin— [ DiEi(ia - / DYE(¢)da
Q Q
/ D3E3(Q)dx — / DYEs3(p (3.202)

Applying expressions (3.56)-(3.58), the function Ay(h) can be written in following expan-

sive way

As(h) = —apo((6°, D), (8(h), T(h))) — h*ans((”, D°), (S(h), T(h)))
— Wlapa((6°, D), (S(h), T(h)))
—— | (Coma oy + PuaD8) (o2 (h) — ) de
- /Q (~Pyssoly + 233 DY) (Ds () — DY) dax
- h2/ﬂ (Capss 935 + PaagDy) 0ap(h)de,
which becomes, as h goes to zero,
[ /Q (Casss 0% + PgsD2) (S5 — o) dac

_ / (—Pugso + 235 DY) (D5 — D) da — / (Coirs 0% + Proy DY) Sasda.
Q Q
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Moreover, it is noted that
/ (éaﬁgg O'gg + PgaﬁDg) Eaﬁdw =0
Q
under assumptions (3.88) and (3.175). Furthermore, we are supposing that the test func-

tions appearing in (3.194) are of the form 733 = 033 — 093 and d3 = D3 — DY , then the

previous limit reads
AQ = / (233 — ag3)633(u0)d:13+/(@3 — Dg)Eg(QOO)dIB
Q Q
:/ Zggegg(uo)dw—i—/©3E3(<p0)dzc—/ aggegg(uo)dw—/DgEg(wo)dw,
Q Q Q Q

where ¢° = @" + ¢. Choosing now v = u® € Vpy and ¢ = ¢° — ¢ € U3 as test functions
n (3.107) and (3.195), we deduce

/Zggegg(uo)dw—l—/@g E3(<p0—¢)d:c:/fiu?d:c—|—/ giu?dF—l—/ pauddl (3.203)
Q Q Q I'n Iy
and
0 0 0 0 A\Jm — 0 0 0

/033633(u )d:z:—i—/DgEg(go —@)dw—/fiuid:cjt/ giuidl“—l—/ piu; dl', (3.204)

Q Q Q I'n 'y
respectively. Combining (3.203) with (3.204), we obtain

Ay = / (D) — D) By () dv.
Q

We thus infer from these relations that the remaining terms the left-hand side of the

inequality (3.200) converge to zero, i.e.,
We next show (3.196). First, we clearly have

— by (((7,d), (w(h) —u’,0(h) — ")) ==bn (7, d), (w(h), o(h))+br (T, d), (u’,¢"))
= amo ((0(h), D(h)), (,d)) + h*ags ((a(h), D(h)), (7. d))

+hapa((o(h), D(h / T33 €33(U — / ds E3(°) dz, (3.205)
Q Q
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we thus deduce from continuity of bilinear forms ag ;(-,-) that

- bH (((Ta d)a (U’(h) - ,uO’ (p(h) - 900)) (3206)
9 ) 1/2
|D3(h) — D3loq + loss(h) — o8s]5.0
<C I(m dlx, . (3.207)
+h? [Da(h)[5. + h? [0a3(h)[5.0 + 1 [oas(B)lg g

where C'is a positive constant; secondly, putting (7, d) = (es3(u(h) — u®), E3(o(h) — ¢°))
into
b (7, @) , (u(h) — u’,p(h) — "))
sup
(md)eX H(Tad)Hxl

2 2
|D3(h) — D3|y q + loss(h) — 053]0 o + h ‘Da(h)‘g,g

(3.208)

<C
+h? |‘7a3(h)|(2),§2 + ht |0aﬁ(h)|§7g

and applying Korn’s inequality and Poincaré’s inequality, we find

[(u(h) = u®o(h) = ") | &, ,

|Ds(h) — Do o + loss(h) — 035 + h? | Da(h)]p
<C )
+h? |‘7a3(h)|g,ﬂ +ht |‘7aﬁ(h)‘(2),g

when h — 0. This way, we finished to prove that (w(h))s~o and (@(h))n>o converge
strongly. m

3.5 The limit model on the original domain; formu-

lation as a boundary value problem

Since u°, ¢°, ¢° and D" are approximations of w(h), ¢(h), o(h) and D(h), respectively,
as h tends to zero, undoing the change of variables (3.28) and the scaling in the different
field, we get the fields

w"(a") = (b~ ug(x), us(a)) PMO(@") = (),
o"(a") = (hogs(®) hosy (@), o55(®)),  D"(a") = (hDy(=), Ds(x))

defined in Q" can be considered approximations of u”, ¢", & and D", solutions of
problem (2.37)-(2.38).



3.5. The limit model on the original domain

77

We can then enunciate the following result as an immediate consequence of Theorem

0o _ho0

Corollary 6 The approzimations (u™°, "0 o33 ,Dg ’0) are uniquely characterized as fol-

lows:

where

up” = &a(ws), & € V5(0,L),

uy? =€ —z 08¢k, € e V0, L),

o)

(ph’o prmng Zga Zg E H1(07L>7 Zg(o) = 9087 &

h,0 _ h,O_O
Uaﬂ =03 =Y,

o5y = Ciges3(u’) — Py B3 (M),

DQL,O = P3*€33(’U,h’0) + 8§E3 (gDh’O) R

(L) = ¢f,

€alrs) =h7 6a(ws), & (ag) = &(ay),

Zg(l‘g) = 23(.%'3),

(3.209)
(3.210)
(3.211)
(3.212)
(3.213)

(3.214)

and (€",21) is the solution of the following boundary value problem (no sum on (3):

(i1l (h)™ = Fj + (M)
¢h(0)=0, (&5 (0)=0,

Ciy 15 (68)" (L) = — (MF)",

—C3, 14 (€)' (D) = (F§)" — MA(L),
—AW") (G (eD)"+ Pi ()] = 2,
A" <5 ()" - Py (64)"] =0,

:}SL(O) =0, ZQ(O) = 9087 ZQ(L) = 906?

Afwh) [Ca (€)' (1) + P () (1)] =

in (0, L),

(F)".

in (0, L),

in (0, L),

(3.215)

(3.216)
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where A(w") is the area of the actual beam cross section and

La=t/‘(x2dewh, 1#l=t/'f?dwh+i/§g?dv%
wh wh A

My = [ ahgpast s [ atghar

wh ~h

(Ff)”:/ hl duw', (Mof)h:/ rahll du”.
wh wh

The normal force and bending moments are given, respectively, by the expressions

/%ww—aw>@wﬁ<>@c

/ 033 dw" = —C Il (&))" (no sum on 3).

It is important to observe that the limit model is described by a system of three partial
differential equations, posed over the one-dimensional set (0, L), two of the fourth order
with respect to the unknowns £ describing bending in an elastic beam, and two of the

second order with respect to the axial displacement £} and electric potential 2.

Now we shall examine the particular case of a transversely isotropic piezoelectric beam
load on one of its end and verify that our asymptotic piezoelectric model is consistent
with asymptotic elastic beam theory. As in the work of Trabucho & Viano [1996], we

assume that the resultant of the applied loads P is parallel to axis Ox3, so that, we have

fl=0, gl'=0, AK=0 h;=0,

Rl =P,
then, we obtain
WINED" =0 W (0,L), [ Cul&)"=0 i (0,L),
&r(0) = (&1)'(0) =0, €r(0) = (€)' (0) =0
Ca (€)' (L) = 0, Ci, Ih(EM (L) =0,
—Cg ()" (L) =0 | —Cyl5(Eh) (L) = P
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and

(AN O — Pi(h)] =0 in (0,L),
A [Pyl +e3(z)] =0 in (0,L),

50)=0,  #(0) =", (L) =¢",

| A" [C55(83) (L) — Pi(24)(L)] = 0.

For the asymptotic model, one has, form Corollary 6,

0 h h 72
“ h,L h,0 h
R0 h hyehy 3 o, Yo — %0 P L3 h
Ug" = §3 — ’ + — — L ,
3 &3 2(&9) Cs, ( o T I 953) I§C§‘3 (2 )$3$2
(ph,L B (ph,o
(ph _ Zg _ 90101,0 1 %o - 0 xg’

and consequently the stress tensor component and the electric displacement give

P
h
330 = [—g@g — L)y,
P P P h,L —  _h0
ho %/ h h 3173 «\ %o Yo
Dy = I§C§3P3 (x5 — L)xy + ( e +83) —

If we ignore the electric field, we can verify that these equations coincide with the asymp-
totic model established by Trabucho & Viano [1996]. We can conclude, from this example,
that the asymptotic model for a transversely isotropic beam yields the corresponding cla-

ssical models of engineering literature.






Chapter

Asymptotic analysis of a beam with electric

potential applied to lateral surface

The main goal of this chapter is to characterize the asymptotic behavior of a family of
scaled displacements and electric potentials that solve the three-dimensional problem for
an anisotropic linearly beam of class 2 subject to an electric potential acting along its
lateral surface. We assume that the beam is now assumed to be weakly clamped at both

ends; to avoid the boundary layer phenomenon.

In this chapter, an attempt to point out the differences between the model obtained
by asymptotic expansion method and the model obtained by convergence analysis, is
presented. The convergence results are adapted from the work introduced by Figueiredo

& Leal [2006], for a linear nonhomogeneous anisotropic thin rod.

The outline of the chapter is as follows: in Section 4.1 we recall the 3D piezoelectric
problem to be studied and formulate it in the form of the principle of virtual work.
In Section 4.2 the problem is posed over a domain independent of h where the scaled
unknowns can be written in the form of asymptotic developments. Section 4.3 concerns
the asymptotic study of the problem; in particular, we calculate the first terms in the
asymptotic expansions and derive the limit model. Here, the equations for a transversally

isotropic (of type of class 6mm) homogeneous linearly piezoelectric beam are also studied.

The weak convergence is studied in Section 4.4. We start by establishing, for a homo-
geneous anisotropic beam of class 2, the weak convergence of the scaled displacement field
to the leading term of the asymptotic expansion. For a homogeneous anisotropic beam of
class 6mm, we also show, in Section 4.4.2.2, that the electric potential weakly converges

to the leading term of the expansion.

The physical interpretation of the results is done in Section 4.5.

81
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4.1 Mathematical analysis of the piezoelectric prob-

lem

In this section we describe the boundary conditions and the mechanical problem that will

be the focus of this chapter.

4.1.1 The mechanical and mathematical problem

Let us consider the following assumptions with the notations already introduced:

(H4,) The beam is weakly clamped at the extremities TfUT? that is to say I, = Thul?
with meas(I',) > 0.

(H4,) The surface traction g" = (g!) act on 't =Tk,
(HY) We assume I = 4%, x (0, L) with meas(y") > 0, and Ty = 9"Q"\T'l;,.
(HY,) The electric potential ¢l is applied on ', (see figure 4.1.1).

(H4;) The constants of the material CJ%,,, Pl

(H$,) detailed in Chapter 2 and the following conditions:

and e satisfy the conditions (H$,) and

O£p33 = Cgﬁaﬁ = 0’ PG}Z)J = P?ga = ngﬂi’) = 0’ 81316 =0. (41)

(Ffe) f'=L*(Q"), g € L*(Tiy), and @ € H'2(TLp).

As the beam is weakly clamped at the extremities T UT% the displacement field w”

satisfies the condition

/u?dwh:O, /(x?u?—x?u?)dwhzo, a=0,L. (4.2)
e e
0
fs y o,
N =
| Y A h
0 A Q 'y
w}

Figure 4.1: Schematic representation of the solid domain detailing the electrical
boundary conditions.
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In the following we will represent this boundary condition by <uh> =0on "%,

Remark 8 Condition (Hi;) means that the beam is made of a piezoelectric material
having crystal symmetry corresponding to one of the following classes (see e.g. Refs. Royer
€9 Dieulesaint [2000] and Nye [1985]): monoclinic system (except class m), orthorhombic

system, tetragonal system, hexagonal system (except classes 6 and 6m2), and cubic system.

Let us now define the following closed subspaces of the Sobolev space of order one
[H'(QM]™, m > 1:
Vi = Vi, Q) = {v" € [HY(QM)]”: (v") =0 on T},
(4.3)
Uh = wh(Qh) = {ph € HY(Q) : " =0 on T!p}.

Since meas(T,)) > 0 and meas(T'",) > 0, it follows from Korn’s and Poincaré-Friedrichs’
inequalities that the following norms are equivalent to the standard Sobolev norms on

Vi, and W, respectively,
19", = [€" @] [0 = V"¢ |-

Defining ¢" = " — ", where p" is a trace lifting in H(2") of the boundary potential
acting on ', we obtain that the solution (u”,¢") is derived from ¢" = @" + ¢" with
(u”, p") satisfying:

Find (u”, ") € Vi, x ¥} such that (4.4)

a((u",@"), (", ¥") = L("¥") V(" ¥") e Vg, x T
where the bilinear form a(-,-) and l5(-) are defined in Chapter 2 as follow
ol (w0 (0" 01)) = [ [Cuucy(u?) = Posy B ()] e o) o'
# [ [Pyl 4 2 B ()] BB (07) da (45)
(ot v) = [ [l + PusBLE el (o) — cuBl (@M B ("] ot
+ / grolrar’. (4.6)
TCin

The existence and uniqueness is ensured from Lax-Milgram Lemma.
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Remark 9 The derivation of (4.4) follows closely the steps presented in [Bernadou &
Haenel, 2003]’s work for the strong clamping case with minor changing to accommodate

the weak clamping condition adopted here.

We now consider that the displacement field u”, the electric potential ¢", the stress
tensor field o and the electric displacement field D" satisfy the following problem, con-

sisting of the principle of virtual work (cf. (3.13)):
(u, ") € X5 = Vg, x ¥}

(O’h,Dh) c X? = {(‘T,d) = (Tijadk) - [LQ(Qh)]B X Lz(Qh) . Tij = le‘},

(4.7)

[ onesonydat + [ eyt = [ idats [ gtart
QOh Qh Qh Tt

dN

for all (v",¢") € X§,, = Vi, x Uh.

4.2 Transformation into a problem posed over a do-
main independent of h; fundamental scalings of

the unknowns and assumptions on the data

As in Section 3.2, we need to transform problem (4.7) into a problem posed over a set

that does not depend on h. Accordingly, we let
Q:=wx(0,L),

and with each point & € Q, we associate the point " € Q" through the bijection II",
defined in Chapter 3 by (3.28). Then, one has

Dhy = I (Ta),  Th=T(Ty), T = I14(Ty),
n(x) =n"(a"), Tiy=1"TCw). vp=T"(rp), Tip=1"(Tep),
where n is the unit outer normal to the set 0Q =Typ Ul'yny = T'ep UT' .y and
Fey=ToUTYy, (4.8)

FeD = YeDp X (0, L), meaS(%D) > 0. (49)
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We define the spaces
Vo = Vou(Q) = {v € [H'(Q) : (v)],, =0},
Wy = Ug(@) = (v € HYQ) : ¥y, =0} (4.10)

equipped with the following norms equivalent to the usual Sobolev norms:

lolly = le()loqo, ¥l =1V¥lq,

where
e(v) = (e5(0))  ei(v) = 5 (Dot + Opu).

Here, (v)|p, = 0 stands for the boundary condition (cf. (3.30))

/ u; dw = 0, / (riu; — xju;))dw =0, a=0,L. (4.11)
wx{a} wx{a}

With the unknown and test displacement fields u”, " in V({Lw, we associate the (un-
known and test) scaled displacement fields w(h) = (u;(h)) and v(h) = (v;(h)) in Vo,
defined in (3.36)-(3.37). In this chapter, the electric potential ¢" and the test function
Y™ in WP are associated to the scaled potential @(h) and the scaled (test) function (k)

in U, using the following scaling for all " = I1"(x), « € Q:
p(h)(x) =h7"(@"),  Y(h)(x) =hY"("). (4.12)

We make the following assumptions on the data: We assume that the constants of the
material, the applied body force density, the applied surface force density and the applied

electric potential are the following form:

1. There exist functions f; € L*(Q2) and g; € L*(T'4x), independent of h, such that:

@) = hfy(x), fH(xh)= f3(x), forall " =T"(x) € Q"

(4.13)
gi(x") = h2g.(x), g¢h(xh) = hgs(x), for all " =11"(x) € Ty
2. There exists a function ¢ € H'(), independent of h, such that:
O"(x") = ho(x), for all 2" =1I"(z) € Q". (4.14)

We also denote by ¢ € H'(Q2) a trace lifting of ¢y and define p(h) = ¢(h) + ¢.
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The scaled strain tensor e(v(h))(x) is defined as in (3.44); while that the electric field
E((h))(z) is given by, for all " € U2 and =" = 1"(x), = € O

—0a(¢(h))(®) = Ea((h))(),
—hds(¢(h))(x) = hE3(¢(h))(x).

{ EN ") (") = =0k (x")
E} ") (x") = o4 (a")

Motivated by these identities we define for any (v,v) € VJ}w x HY(Q") the tensor
k(h;v) and the vector ¥(h; 1) as follows:

Kap(h;v) := h%e05(v), rK3s(h;v) :=h tess(v), kaz(h;v) = es3(v), (4.16)

193(h; ¢) = haﬂﬁ, ﬁa(h; w) = aaqu)' (417)

For simplicity we abbreviate the notation for the special cases v = wu(h), ¥ = @(h),

Y = (g, writing

We remark that

and define

Using the scalings of the unknown and the assumptions on the data, we reformulate,

in the next two theorems, the problems (4.4) and (4.7) now posed over the set Q.

The variational problem (4.4) becomes

Find (u(h), o(h)) € Vo x ¥ such that

(4.19)
&((U(h), @(h))a (’U>¢)) = l2(’“>¢)a V(’an) € %,w X 11107
where the bilinear form a and the linear form [, are defined by
a((u, @), (v,9)) = / Cijr ki (h; w) ki (h; v) dx + / €ij @i(hQ Y) Ej(hS Y)dx
Q Q
[ P05 P 1 0) = (s @) ) d (4.20)

Q
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52(U>¢):/fivid$+/ gividr_/gz‘j{g\iﬁj(h§¢)dm
Q Ty Q
_/Pkij;’\k m-j(h;'v) dx (421)
Q

Proposition 5 Assume that (u", ") € Vi, x H(Q") is solution of problem (4.7).
(a) The scaled unknowns (u(h), o(h)) € Vo, x HY(Q) satisfy the following variational

problem, called the scaled three-dimensional problem of a piezoelectric clamped beam:

(u(h), o(h)) € Xow,

/Q i (h)eij(v) do + /Q Dy (h) E(¢) dae = /Q i dw + /F givi dr, (4.22)

dN

for all (v,%) € Xo.u,
where
0ap(h) = h™'Capopeop(u(h)) + h™?Cagssess(w(h)) — W™ PaagEs(o(h),
03a(h) = 2h7*Csasgesp(u(h)) — h™' Pasa Eg(o(h)),
033(h) = h™*Cszapeap(u(h)) + Cssszess(w(h)) — hPsssEs(o(h)), (4.23)

Da(h) = 2h™" Pasgess(u(h)) + easEs(e(h)),

D3(h) = h™! Psageqp(u(h)) + hPsszess(u(h)) + h*ess Es(p(h)).

\

(b) The functions (o;;(h)) € L*() and (D;(h)) € L*(Q2) defined in (a) are also related to
the components (o;;(h)) € L*(Q) and (D;(h)) € L*(Q) by (cf. (3.59) )

Tas(@") = hoas(h)(), of,(z") = hosa(h)(®), of3(x") = o33(h) (),
(4.24)
Dg(x") = Do(h)(z), Di(x") = h™'Ds(h)(x).

Proof. The proof of (a) reduces to simple computations, based on the displacement, the

assumptions on the data, and the formulas 9" = h=19,, 0% = 95, and

/ 0"dz" = n’ / (0" o 1) dex, /
Qh Q T

the formulas in part (b) follow from the definitions of the functions o;;(h) and D;(h) given

" dr" = n’ / (0" o TI") dT".
Tan

h
dN

in part (a). m
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Alternatively, we could also have used the scaled inverted constitutive equation defined

by (cf. (3.8))

can(w(R)) = 212Coasy 30 (k) + hPase Da(h),

Eo(¢(h)) = —2hP.sga3s(h) + &ap Dp(h),

eap(u(h)) = h*Capg 33(h) + h*Capap 00(h) + hPsap D3(h), (4.25)
ess(u(h)) = Csa33 033(h) + h?Chs0, 0, (h) + hPs33 D3(h),

Es3(¢p(h)) = —hPsapoas(h) — h™ Pz 033(h) + h™2&33 D3(h).

As in the displacement - electric potential approach, the dependence on parameter h is

now explicit and “polynomial”: more specifically, problem (2.67) reads
h™?a_s ((a(h), D(h)), (r,d)) + h~'a_1 ((e(h), D(h)), (1, d))

+ao ((o(h), D(h)), (T, d)) + hay (o (h), D(h)), (T, d))

(4.26)
+h*ay ((o(h), D(R)), (T,d)) + h'as ((o(h), D(h)), (T,d))
+by (((h), D(R)), (w(h), p(h))) = 0, forall (r,d)€ X,
by ((a(h), D(R)), (v,4)) = ly(v,%), for all (v,v) € X, (4.27)

where the bilinear forms a_s, a_1, ag, a1, as, ay and by, and the linear form [ are defined

by

a— ((o, D), (7,d)) :/533D3d3d50, (4.28)
0
a1 ((o,D),(7,d)) Z/ Py33D3735 d — / Psg3033d3de, (4.29)
0 0
ap ((o, D), (1,d)) :/ C3333033T33 dw+/€aﬁDﬁdade, (4.30)
0 0

a1 ((o, D), (1,d)) =2 /Q Py30, D35, dc + /Q Py D35 dx

— /Q Pyop0apdsda — 2 /Q Po3pospdade, (4.31)
as ((o, D), (T,d)) = /Q (3303005733 T + 4/Q C3033033T30 AT

+ /Q Cop33033Tag de, (4.32)

aq ((Ua D)a (T> d)) = / éaﬁ@pgﬂpTaﬂ diB, (433)
Q
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by ((, D), (v,v)) = —/Q oij €ij(v)dx —/Q Dy Ex(v) de. (4.35)

4.3 The method of formal asymptotic expansions:

the displacement-electric potential approach

In this section we intend to study the behavior of the solution to the problem (4.22)-(4.24)
when h — 0. This study is based on formal asymptotic expansions method.

We now assume that the solution of the problem (4.19)-(4.21) can be expressed in the

form

u(h) = u’ + hu' + h*u? + ..., u' € Vo, (4.36)

o(h) =@ + h@' + h2@* + ..., @' €, (4.37)

where the successive coefficients of the power of h are independent of h. Since @(h) =
¢(h) — ¢, then
o(h) = @+ h@' + h2@* + ..., (4.38)

with ¢ = ¢ + @.

The asymptotic developments (4.36) and (4.38) induce the following formal expansions
for tensors o(h) and D(h) (cf. (4.23))

oh)=h™tc™* +h3c3+h 2072+ ..,
(4.39)
D(h)=h'D '+ D" +hD"+ ...,

with 67 = (o7;) and D? = (D]) independent of h. Inserting developments (4.36)-(4.39)
into problem (4.22) results in a set of variational equations that must be satisfied for
all h > 0 and consequently the terms at the successive powers of h must be zero. This
procedure yields the following problems at the successive powers of h for all (v,) €
Vow X Wo:

(P~ /Qa;geaﬁ('v) dx =0, (4.40)

(P73 : /Qaageaﬁ(v) dx =0, (4.41)
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(P2 : / aifeij('v) dz =0,
Q
(P - /Q o7ty (v) de + /Q D By() das = 0,

(P°) : / opiei;(v) dx + / DE(¢) dz = / fivi dx + / giv; dl,
Q Q Q Tan

0.5 = Cagopeop(u’),

0.5 = Cagopeop(u'),

0o = Cagopeop(u”) + Capszess(u),

0oz = Capooop(u’) + Capnezs(u') — PrapBFa(¢?),

0h5 = Capopcop(u™) + Capazess(u*?) — PaapBa(¢"™), p >0,
T30 = 2C3035¢35(u’),

T30 = 2C3035€35(u') — Pyza ("),

The = 2C3a3pea5(u™?) — Paaa (@), p >0,

35 = Cazapeap(u’),

033 = Cazapeap(u'),

09y = Czapas(u”) + Cazzzess(u’),

033 = Cazapas(u®) + Cazzzess(u') — Pizz E3(°),

3 = Cszapeap(ul™?) + Caggzess(uP) — PagaBs(¢"™1), p>2,
D' = 2P,35e35(u’),

Diy = 2Pupesp(u’) + capEp(¢°),

DP = 2P s5e35(uPth) + eapEs(@’), p>1,
Dy = Piageas(u’),

Dy = Papeas(u'),

Dj = Psopea3(u”) + Pissess(u®),

(4.42)
(4.43)

(4.44)

(4.45)
(4.46)
(4.47)

(4.48)

(4.49)

(4.50)

(4.51)
(4.52)
(4.53)

(4.54)

(4.55)

(4.56)

(4.57)
(4.58)

(4.59)
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D} = Pyppeas(u’) + Pagsess(u') + es3E3(¢"),

Df = P3aﬁeaﬁ(up+l> + Psgzess(ul™!) + e33F3(¢77%), p> 3.

4.3.0.1 Cancelation of the factors of hi, —4 < ¢ < 0.

Let Vgn be the space of Bernoulli-Navier displacements defined by
Veny = Van(Q2) = {v € Vo : €aﬁ(’0) = €3ﬁ(”) =0}, (4.60)

equipped with the norm |[[v[[,, = |e(v)|y. The space Vpy can be equivalently defined
by (see e.g. Ref. Trabucho & Viafio [1996])

Ven ={v € Vo : va(21, 2, 23) = Xa(23),  Xa € HS(0, L),
(4.61)
v3(x1, 22, w3) = x3(x3) — 2px(23), X3 € Hy(0,L)}.

Now, in order to obtain some properties of u” and u?, we will show that some terms of
the developments (4.39) are null. We start with problem (P~*) and prove that o_; = 0.
For such, we consider (4.40) and (4.45), and take v = u® yielding

/QC'aﬁgpegp(uO)eaﬁ(uo) dx = 0.
The coerciveness of C' leads straightforwardly to
cap(u’) =0, (4.62)
and therefore (cf. (4.45), (4.51) and (4.57))
0,3 =03 =0, Dy'=0. (4.63)

We turn now to problem (P~?). Taking v = u° in (4.42) and bearing in mind (4.62) and
(4.63) we obtain

/ Ciaspess(u’)esq (u’) de = 0,
0

which implies
ez (u’) =0, (4.64)

and therefore (cf. (4.49) and (4.55))

0;2=0, D;'=0. (4.65)

«
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As we have seen previously, conditions (4.62) and (4.64) are equivalent to (4.60) and (4.61),

0

i.e. u” is an element of the space of Bernoulli-Navier displacements and consequently

Ug,(ﬂfl, X2, .’L’g) = fa(.%'g), ug(xla T2, .%'3) = §3(x3> - xﬁflﬁ(xi’*)?
(4.66)

ga € Hg(07L>7 §3 € H01(07L>

In the following we will establish necessary and sufficient conditions for 0;5 = 0. This
will allow to characterize the transverse components of the second order displacement u?.
As a result, we will be able to obtain variational problems that have £, and &3 as unique

solutions.

Theorem 8 A necessary and sufficient condition for 0;5 = 0 is that there exists u € Vjy,,
such that
Caﬂgpegp(’a) + Caﬂggegg(’u,o) =0. (467)

Proof. From (4.63) and (4.65) problem (P~?) can be written

/Qaageaﬁ('v) de =0, forallveV,.
In the view of (4.47) the previous equality becomes

/Q (Caggpegp(’u,Z) + Caﬁggegg(uo)) eqp(v)dx =0,
equivalent to
/Q (Capopeop(u?) = Capapeop(W) + Capopop(W) + Capazess(u’)) eap(v) dz = 0.

If w € Vp,, verifies (4.67), then the previous equation reads

/QC’aﬁgp (egp(u2 — 17,)) eqp(v)dx =0,

and therefore taking v = u?—u € Vj,, in this equation leads to & = u? by the coerciveness

of C, implying 0;5 = 0. Inversely, if 0;5 = 0 then (4.67) holds with ©w = u* =

Remark 10 From Theorem 8 and (4.47) we conclude that if equation (4.67) has solutions
then u? is a solution of (4.67). Next we charaterize the solutions of (4.67)
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4.3.0.2 Characterization of u° and u?

Firstly, we define the following reduced symmetric matrices:

Ciin Cion Cux
M = Cioi1 Craiz Chrox ) N = (
Crizz Clizoz Caox

Cunn Cionn Cize 0 0 Cuss

Cion Ciziz Craz 0 0 Chass

Criaz Cizoz Cozr 0 0 Cass
0 0 0 Csiz1 Caizz 0
0 0 0  Csizp Cz32 0

Crsz Chazz Cozz 0 0 Csass

The hypothesis (HS;) and (H$,), introduced in Section 2.1.3, imply that these matrices
are definite positive and therefore det C' > 0, det M > 0 and det N > 0.

Before proceeding, we now define some functions that will be useful in the characteri-
zation of the elements of Vj,, that verify (4.67).

We define the geometry functions A, (zy,z9) and ® = (®,3) defined by

= det Maﬁ
Aa ) e — )
(21, 22) det M e
1
@11 = m(det MH.I'% — det MQQZL‘%),
det M 9 det Mo
= ————— Tl = —TpT
12 det M 642, 21 det M 641,
1
(1)22 — m(det Mlll'% —det MQQJZ'%)
where
CY1133 CY1112 CY1122 Cllll C(1112 C(1133
Mll = 01233 01212 01222 ) M22 = C11112 C11212 C11233 )
CY2233 CY1222 CY2222 C(1122 C(1222 C(2233

C11111 C11133 C11122
M12 = M21 = 5 C11112 C11233 C11222
C(1122 C(2233 C(2222

We also introduce the following constants that depend only on the geometry of the cross
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section,

Ia:/xidw, Yaﬁ:/cbaﬁdw, ?a:/cbaﬁéﬁdw, ?:/Xaéadw.

Theorem 9 Let u’ € Vgy be given by (4.66). Then every element (u,) € [L*(Q)]? is a
solution of (4.67) if and only if has the following form:

o = S + 0as + Oopll + Ko, (4.68)

with s, sq € L*(0, L) depending only on x3.

Proof. Let us consider (4.67) in the following form

Caﬁ@p(?@p('a) = - aﬁ33€33(u0)7
or, equivalently,
( e det M11
) N "ol ’
1U1 det M ( a 3)
~ det M22 y /
. 4.69
oty dot M (%fa fg), ( )
~ ~ _detM12+detM21 " ’
\ O1uy + Oy = dot M (Tala — &3) -

A direct integration of the first two equations gives

~ det M
Uy = 5 de t]\;( {4 2x1298) — 22185) + ki (22, 23),
M (4.70)
~ e
Uy = 22( 5 1 201098 — 22985) + ko(w1, 73).

2det M

Substituting these expressions in the third equation of (4.69), we obtain

det M det M
ot e —ﬁz\f@xa&é’—&gwaﬂl(@,%)
_det M
T de t]\/_}1 né + d tM = (28] — &) — Ouka(1, 23).

Since the left (resp. right) hand term depends only on variables x5 (resp. z7)and x3, we

conclude that

_ det M5, det M5
82k1<x2,x3)—8_ dtM g dtM (
detMn

et Mo,
31/€2(371,9€3):—3—dtM 18y + dtM( 18 — &)

233'2&5 - gé) )
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Thus,

det M22 22 det M12

Tdenr 26— 7).

“det M (w383

ki(z2,23) = 51+ 225 —

(4.71)
det M11 2 det M21

Sdet M S T e ar (T8 T &)

k?g(l’l,l'g) = S9 — I1S —

where s, are arbitrary functions depending only on x3. Combining (4.70) with (4.71)
leads to (4.68).

Let Uy € L*(Q). Then [ tgdw, [ dgugdw, £, & € L? (0, L) and (3.29) together with
(4.68) lead to s,, s € L*(0,L). m

Corollary 7 Let (u,) € [L*(2)]* a solution of (4.67) using the form (4.68). Then, a
necessary and sufficient condition for problem (4.67) to have solutions w € Vp,, is that
u® € Vpy be such that &, € H*(0,L), & € H?*(0,L), and that s, s, € H'(0, L) verify
1 —
su(a) =~ Ko 0).
(4.72)

1 _
s(0) =~ (Vs (@) + 78 ()
with a =0, L.

Proof. Let u2, the transverse components of w4 € Vj,, be the solution of (4.67). From
Theorem 9 it follows that u, is of the form (4.68), verifying (4.69). Therefore, using (3.29)

we obtain

~ det M, ,
/w@aua dw = —WA(w)Sg (no sum on «),

~ det M .., . _,
/wxaaaua dw = Wlafa (no sum on «).

Since U, € H'(Q), then [ Onliadw, | 2404tadw € H'(0,L) (no sum on «) and con-
sequently &, € H3(0,L), & € H?*(0,L). On the other hand, identity (4.68) allows to

write
/ﬂa dw = A(w)sq + Xapés € H'(0, L),
/55@3 dw = ([1 —+ [2) S —F?gfg -+ Z&I)’ < Hl(O, L)

Hence, the previous regularity results lead to s, s, € H'(0, L). Furthermore, the boundary
condition for u, (cf. (4.11)) leads to (4.72).
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Conversely, taking u® € Vgy such that &, € H?(0,L), & € H?(0,L), and s, s, €
H'(0,L) of the form (4.72), then (4.68) implies that u? € H'(Q) verifies the boundary
condition (4.11). =

Corollary 8 The components u? of the displacement u* € Vy,, are of the form (4.68)
with s, s, € H'Y(0, L) satisfying (4.72) (and consequently 0;5 =0) if and only if u® € Vpy
is such that &, € H*(0, L), & € H*(0, L).

Remark 11 From (4.68) it follows that in general u? is not null at the beam ends, for that
would require that both §§ and & vanish there. Therefore, if we had chosen strong boundary
conditions in the definition of Vg, then we would not have been able to ensure that u* € V

(the well-known “boundary layer phenomenon”) and consequently that a;ﬁ = 0.

For now we can only ensure that &, € HZ(0,L), & € H(0,L). The additional
regularity required by the previous corollary will follow from the variational problems to

which &,, & obey. We have the following results.

Theorem 10 Let u’ € Vgy given by (4.66) and f; € L*(Q), g; € L*(Tyn). Then u® is

the unique solution of the following variational problem:

/ ogse33(v) dx = / fiv; dee +/ g;iv; dI',  for all v € Vpy, (4.73)
Q Q Tan
where 035 is given by
Ug:s = Y€33(u0) = Y(fé - xa€g>7 (4.74)
and det O
e
- = 4.75
det M det N ( )

18 positive and bounded.

Proof. Problem (4.73) follows from the variational equation (4.44) taking v € Vpy and
¢ = 0. From Corollary 8 we get that u2 is of the form (4.68), and consequently (4.53)
becomes (4.74). m

Corollary 9 The transverse components &, and the stretch component &5 of the zeroth
order displacement field are respectively the unique solutions of the following variational

problems (no sum on «):
& € HF(0, L),

L L L
/ YI,8X" dus = / FoXadrs — / M., dxs, for all x, € Hg(O, L), (4.76)
0 0 0



4.3. The method of formal asymptotic expansions 97

and
& € Hy(0, L),
L L
/ Y A(w)&sxs dws = / Fsxs ds, for all x5 € Hy (0, L), (4.77)
0 0
with
Filzs) = / £ duw +/ gidy € T2(0, L), (4.78)
w YdN
M, (z3) = /l'afg dw +/ Tog3dy € L*(0,L). (4.79)
w YdN

Proof. We consider (4.73) with the test function v € Vgy of the form (4.61), implying
ess(v) = x4(x3) — zoxy(z3). Then, taking successively xy = 0 and y3 = 0 in the resulting
equation we obtain (4.76) and (4.77), respectively. m

The following regularity result (see e.g. Ref. Brezis [1983]) ensures the regularity

requirements for &, and &3 in Theorem 10.

Corollary 10 The solutions of (4.76) and (4.77) are unique and &, € H3*(0,L), & €
H?(0,L).

Corollary 11 The components u2 of u* verify (4.68) and consequently 0';52 = 0.

Corollary 12 The component D} of D" is given by
Dj = Peg(u’) = P (& — wa&)) € H'(Q),

with
det Maﬁ

P=Paa =3 ar Do

(4.80)

Proof. This result follows straightforwardly from (4.59) taking into account that u?
verifies (4.69) and that (4.74) holds. =

4.3.0.3 Characterization of u' and ¢°

Let Vi be the space
Vi=Wi(Q)={v eV :epv)=0}.

We have, as in Trabucho & Viano [1996], some equivalent expressions for V; .
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Lemma 3 [t may verified that:

‘/1 = {’U S ‘/O,w : Ua(xla T2, .’L’g) = Ca (xB) + 504C (.%'3) ) Caac € Hé(oa L)} (481)

We can now introduce the spaces

Q=Qw)={ge H'(w): [ gdw=0} (4.82)
S=Sw)={Ye H(w):¢¥=0ony.p}. (4.83)
with its natural norms
1/2 1/2
Ipllg = (Ipl2 + 01012 + 102pI2) ", llls = (12 + 1ol + 1002)

which are equivalent (thank to the Poincaré-Friedrichs inequality in w) to the following

norms
Iollg = (19102 +10202)"", llls = (006l +10a2) .
We equip the product space
T:=T(w)=Q(w) x S(w) (4.84)
with the norm

(o, )lI7 = llpllg + 115 = 181012 + 102pl2 + 100012 + 02017
Finally, let ¥; be the space

U =0(Q) = {¢ € L*(Q) : Oatp € LX(Q)} = L*(0, L; H' (w)), (4.85)
and let us define its subspaces

R=R(Q) =L*0,L;Q(w)), and ;5= L*(0,L;S(w)). (4.86)

We now define the warping function w(z1, x2) as the unique solution of the variational

problem:
w € @ such that

4.87
/Cgaggagwaaij dw = /Cgagﬁéﬁaav dw, forall v e HY(w), (487)

w
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as well as the torsion constant J > 0:

J= / s (35 — D) (5 — Dutw) o — / Chas (05 — Do) do (4.88)

w

Finally, let » € R be the unique solution of

r(z3) € @ such that Vaz € [0, L] :
(4.89)
/CgaggaﬂT(fL‘g)aaU dw = /ngaﬁggpo(:pg)aav dw, forall v e Q.

Having the previous definitions in mind, we turn to the characterization of u' and ¢°.
For that, we start considering problem (P~?). Combining (4.41) with (4.46) we get

/ Copopeop(u')eas(v)de =0 for all v € Vg, (4.90)
Q
The previous equation for v = u' € Vg, is written:

/QCaggpegp(ul)eag(ul) dx = 0,
then ey,s(u') = 0. Hence, u! = (u}) € V; and we write (cf. (4.81))
UL = 24 + 002, 2o,z € Hy(0,L). (4.91)
Thus (cf. (4.46), (4.52) and (4.58))
a;é’ =05 =0, DJ=0.

Equation (4.43) evaluated in v € V; and equation (4.44) for v = 0 in (4.44), and consid-
ering (4.50) and (4.56) are given by

/ (QCgaggegﬁ(ul) + ngaagcpo) eso(v)dxr =0, forallve V], (4.92)
Q

/ (2Pg3acsa(u') — £ap0a¢”) Ot dz = 0,  for all ¢ € Wy, (4.93)
0

which show that ! and ¢° are coupled. In fact, we have the following result.

Theorem 11 Let ¢° € U, and @ € [L2(Q)]® be of the form (4.91). Then @ is a solution

of (4.92) if and only if
Us = —1 — 23 — Tazh, — W2, (4.94)
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where v € R solves (4.89), w is the warping function and 23 € L*(0,L) is an arbitrary

function of xs.
Proof. Assuming that @ is a solution of (4.92) and in view of (4.91) we conclude that 3
verifies

/ (Csa3s (0513 + 2 + 052") 4 Ppsa0p”) €sa(v) dx =0, for all v € V4. (4.95)
Q

We restrict (4.95) to v = (0,0, x(x3)v(x1,79)), x € H3(0,L), v € Q and combining it
with (4.87), we get a.e. x3 € (0, L)

/ Cgaggaﬁag(l'g)aoﬂj dw = — / Cgaggag(l'gzllg(l'g) + wz’(xg))ﬁav dw

w

— / Pi3a05¢° (23)00v dw, for all v € Q.

Therefore,
U =1z + xpzy + w2’ (4.96)
is a solution a.e. x3 € (0, L) of
/CgaggagU(fL’g)aaU dw = — / ngaagcpo(xg)ﬁav dw, Yu € Q (497)

Hence, if 7 is the solution of (4.89) then
U=—r—z;, ae x3€(0,L), (4.98)

where z3 is an arbitrary function of z3, leading to (4.94). From (4.94) we conclude that
since r € L*(0,L; H'(w)), 2,2 € Hj(0,L) and w € H'(w), then 23 € L*(0,L). The

converse result is immediate. =

Corollary 13 Let ul, the transverse component of u', be of the form (4.91) and let u'
verify (4.92). Then the axial component u} is such that

Uy = —1 — 23 — T2 — w2 € Wy, (4.99)

where zz € HY(0, L) is an arbitrary function of xs. Furthermore, the component D of
D is given by
D° = —Pagg(agT + 72 (agw — 55)) — €a585§00 S LQ(Q)

«

Proof. The expression for D? is obtained from (4.56) taking (4.99) into account. m
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In view of the previous regularity result we conclude that although (4.91) implies
that u), € H'(Q), we can only ensure that uj € L*(0, L; H'(w)). Furthermore, [ ujdw
vanishes at the beam ends as long as z3 € Hj(0, L), but in general this is not the case
for fw roul dw. Therefore, we cannot ensure that u' € Vj,,, traducing a “boundary layer
phenomenon”. On the other hand, the regularity result obtained for u} implies that
U e L*(0,L; H (w)) - cf. (4.96) - and therefore from (4.97) we can only guarantee that
Y is in ¥; not in Wy, Hence, @° = ¥ — ¢y € Wyg.

Still, the characterization of u' done so far is valid, in particular as far as equations
(4.91) and (4.99) are concerned. This will allow to use equations (4.92) and (4.93) to
derive a variational problem for ¢° and r posed in each cross section w x {x3}. In this
context it will be useful to consider for a generic function 1 :  — R its average along the

rg-axis, that will be denoted

1 L
n(ry, w2) = Z/ n(xy, x2, s) ds, (4.100)
0
as well as the corresponding deviation
NP (x1, T2, T3) = n(x1, T2, 13) — N(T1, T2). (4.101)

We have a first variational equation relating the unknowns °, r and 2’

Theorem 12 Let u' be such that (4.91) and (4.99) hold and let (r,¢°) € R x U, verify
(4.89) and (4.93). Then, @°, r and z verify a.e. x3 € (0, L)

(r(25), @ (23)) € T, =(x3) € HL(0, L) such that
/ Chasssr (3)Oap ds + / 50 ()0t deo + 2 (3) / P (Batr — 62) Dyt doo
+ /w Pp30(0ar(23)05% — 050° (13)00p) dw (4.102)
_ /w Pasasip0(i3)dup ds — /w o500 (3) 05t dw,  for all (p, ) € T,
Proof. Starting from (4.91) and (4.99) we obtain

2e30(u') = =041 — 2/ (04w — 8a) , (4.103)

which plugged into (4.93) yields

/ (nga(ﬁar + 2 (Oaw — 84)) + €ag8ag00) 851Zdzc =0, forall zz e Vv,
0
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Taking @Z = (21, 22) x(23), ¥ € S, x € H'(0, L) in the previous equation we have a.e.
T3 € (0, L)

/ (Pﬂga(aar(xg) + 2/ (x3) (Oaw — 04)) + 5a56a<,00(9c3)) Oppdw =0, forally €S,

which combined with (4.89) and ¢° = @" + ¢q leads to (4.102). =

Corollary 14 Let us consider (r,°) € T the element obtained from (r, %) € T using

the definition(4.100). If the material the beam is such that the coefficients Csa3s, Pssa and
Eap do not depend on w3, then (r, QO) 15 the unique solution of the following 2D variational

problem,

(r,3") € T such that

/ ChassOsrdup dus + / 500 D) dis + / Pisa(Dardsth — 050°0np) dow (4.104)

w

= / Ps3005p Oap dw —/eagﬁafoﬁgw dw, for all (p,¢) € T.

Proof. The variational problem is obtained straightforwardly from (4.102) integrating
both sides of this equation over (0, L) and taking into account that z € H}(0, L). The
uniqueness of solution follows from Lax-Milgram Lemma since properties (H$,) imply

that there exists positive constants ci, co and c3 such that

/03a3ﬁaﬂpaapdw + / eaplatpOpt dw > c1 |pllg + e2 [Il5 = esll(p. )17,

for all (p,¢) €T. m

We are now in conditions to express z’ as a function of the electric potential.

Theorem 13 Let u' be such that (4.91) and (4.99) - and therefore (4.103) - hold. Then
z € H}(0,L) is such that

(as) = % / Pt — 6,)05(0"P (25)) dw, .. w5 € (0, L), (4.105)

or

2 (x3) = %/nga(ﬁaw —04)03(P" (x3) + 08 (23)) dw, a.e. w3 € (0,L).  (4.106)
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Proof. Taking (4.103) into account, equation (4.91) can be rewritten as
/ (Cgagg(zl (65 — Ogw) — Ogr) + Ps3a03¢") €30(v) dx =0, for all v € V4.
Q
Taking v = (x(73)z2, —x(73)x1,0), x € Hi(0, L) in the previous equation we get

/ (Cgagg(zl ((55 — c%w) — 857’) + ngaag(po) 5&)(, dx = 0.
Q

Since the coefficients (5,35 do not depend on z3, we can reduce previous equation to

2" (x3) / Cs033(05 — 0pw)d, dw
d

= dzs (Csa33057 (23) — Py3a0s9’(23)) 0o dw, a.e. z3 € (0, L),

or, in view of (4.87)-(4.89),

JZ" (x3) = di% / P30 (0w — 84)05¢"(73) dw, a.e. x3 € (0,L). (4.107)

Integrating both sides of (4.107) and taking into account that the coefficients Pgs, not

depend on z3 we obtain
J (x3) = / Pp30(00w — 64)050" (23) dw + ¢, a.e.. z3 € (0,L).

The expression for the constant c, is obtained integrating both sides of the previous
equation over (0,L) and taking into account that z vanishes at the beam ends. This
leads to (4.105). The alternative expression (4.106) is obtained from (4.105) taking into
account that ¢° = @° + g implies (cf. (4.101)) °P? =P + pl. =

Remark 12 From the previous result we conclude that in general it is not possible to
obtain the elasticity result z = 0 (see Alvarez-Dios [1992]).

Equation (4.106) allows to obtain the following set of 2D variational problems yielding

the electric potential.

Theorem 14 Let
(r,@°) = (1, @°) + (r”, @"7) € R x Wy, (4.108)

where (r, ") is the unique solution of the variational problem (4.104). Then element
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(rP, g°P) € R x Wyq is the unique solution of the following variational problem

(rP(zs), " (x3)) € T, such that a.e. x3 € (0, L),

a((r®(ws), §°7 (x3)), (0, 9) = L (p,¥) (4.109)

for all (p,v) €T,

where the bilinear form a and the linear functional 1 are given by
a2 (00 = |
1

o /w Posy (B0 — 0,03 duw) ( /w P00 — 6,)005 dw) (4.110)

+ / nga(ﬁa'ﬁ?gz/; — 85558(1,0) dw

Cgagﬁag?ﬁapdw+/eaﬁﬁﬁ(ﬁ&lwdw

and

[(p0) = [ Pl @)0up o~ [ candalof(aa))0ut e
L w (4.111)

=5 Pras@ = 8,)00(e8 (@2)) do) [ Pona(000 = 5:)050 )

w

has unique solution.

Proof. The variational problem (4.109)-(4.111) is obtained substituting (4.105) in (4.102)
and combining the resulting variational equation with (4.104). Both @ and [ are continuous
due to the boundness of C, P and e. The ellipticity of a is obtained straightforwardly if
we take into account the proof of Corollary 14 and the fact that

. (/ Pa3o(0aw — 64)01b5 dw)? > 0.

J
Hence, the uniqueness of solution of the variational problem (4.109)-(4.111) follows from

Lax-Milgram Lemma. m

Remark 13 It is worth noting that some of the terms appearing in the bilinear form
and linear functional that define problem (4.109)-(4.111) coincide with the corresponding
ones appearing in (4.104). On the other hand, the set of problems (4.109)-(4.111) has
two important particularities: cross sections having the same electric potential applied
on the boundary have the same solution ™. These properties can be rather useful when

solving the whole problem numerically (e.g. finite elements). Finally, the “decomposition”
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° = QO + @°P, allows to see the electric potential @° as the sum of two components: a

global one go and a local one @°P.

4.3.0.4 Model for a beam belonging to the class 6mm of piezoelectric crystals

In this section we will to derive a model for a special case in which the beam is made
of an anisotropic homogeneous material of class 6mm. The crystal class 6mm represents
an important class of piezo-materials (Ceramic PZT-4, Zinc oxide (Zn0O) and Cadmium
sulphide (CdS) are examples of piezoelectric materials belonging to the 6mm class) and
it is contained in crystal class 2. The interest in obtaining this model, is due to the fact

that this type of material (class 6mm) is widely used in engineering applications.

Theorem 15 Let us consider that the beam is made of an anisotropic homogeneous mate-
rial of class 6mm where the piezo-elastic-dielectric coefficients satisfy (2.21)-(2.23). Then,
equations (4.44) determine in a unique way (u®, ¢°) € Vo, X Vg, through the following

ETPTEeSSIONS:

1. The displacement components u; are of the form:

ud (w1, 9, 73) = Ealws), (4.112)

uy(w1, 02, 23) = &3(23) — 2l (23), (4.113)

where functions &, and &3 are determine by:

(a) The additional bending component &, depends on x3 only and they are the

unique solution to the following problem
£a € HG(0, L),

L L L
/ YI,8/X" dus = / FoXadzs —/ M., dxs, for all x, € Hg(O,L),
0 0 0
(4.114)

(b) The additional stretching &3 depends only on x3, and is the unique solution to

the following problem
& € Hy(0, L),

L L
/ Y A(w)&sxs dag = / F3xsdxs, for all x5 € Hy(0,L), (4.115)
0 0
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with
det C
= M At N (4.116)
Fi(x3) = / fidw +/ gidy € L*(0, L), (4.117)
w YdN

M, (z3) = / Tofzdw +/ Tog3dy € L*(0, L). (4.118)

w YdN

2. The first-order displacement u' is of the form

ul (21, 09, 13) = 24(23), (4.119)

Ué(ﬁl, Ty, 73) = 23(73) — xﬂzéa(%) - C—M¢O($3)($17$2)> (4.120)

where z3 € H}(0, L) and the electric potential @°(x1, z9,x3) = ©°(x3)(21, T2) is the

only solution of

@° € S(w) such that a.e. z3 € [0, L],
Py ~0 o Py .
P14— + €11 agQO 8g1/1dw = — P14— + €11 8gg085wdw, (4121)
w Cus w om

for all ¢ € S(w).

Proof. Let us consider the equation (4.92) for v = u' , we obtain

/ Copopeop(u')eap(u') de = 0, (4.122)
Q
and, therefore,

ul (z1, 29, 73) = 20(73) + 602(23), 24,2z € Hy(0, L),

that is, v € V;. Now, taking v € V; in equation (4.122) leads to

/ (03539 (&;u;ﬁ -+ Zé -+ 592’) + P93589g00> 635(’0) dx = 0. (4.123)
Q
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Taking v = (0,0, x(z3)¢(x1,72)), x € H3(0,L), ¥ € Q(w) in the previous equation we
get

/ Cap300pus Opth dw = — / (Csps0 (29 + 002") + Po3pOp”) Optpdw, for all o € Q,
} ? (4.124)
valid a.e. z3 € (0, L). For a homogeneous anisotropic piezoelectric beam whose constants
of the materials satisfy (2.21)-(2.23), the equation (4.124) takes the following form

P
/c%ué Ot dw = — / (25 + 0p2") Optb dw — 0—14 p0° Opp dw, for all ¥ € Q, (4.125)
w w 44 J

Therefore, (4.124) and the fact that u} € L*(0, L; H'(w)) lead to

P
—014 O(xs)(z1,20),  (4.126)
44

ul (21, T2, 73) = 23(x3) — wa25(3) — w (w1, 32) 2 (23) —

where 23 € H}(0, L) and the warping function w(x3) (z1,xs) of w as the unique solution

of the problem

w e H' (w),

/8aw8axdw = / $a0axdw, for all x € H'(w), (4.127)

/wdw:O.

where 0; = o, 09 = —x1.
Taking v = (x(x3)xa, —x(x3)71,0), x € Hi(0, L) in (4.123) we get
P,
044/ (z’ (0g — Dpw) — i@ggoo) doX' dx = —P14/ 09 69y dex,
) Cus )

that is
/ (66 — Opw) G 2'X' dx =0, x € Hy(0,L)
Q

or, equivalently,
L
/ JZX de =0, x € Hy(0,L) (4.128)
0

where

w

J = _/ (6 — Dow) Spdw = — / (22020 + 21010) dw = Z/de.
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Therefore, we deduce that z = 0 and

P
Qesq(ul) = —PMC—M@a(pO. (4.129)
44

Hence we may also write equation (4.93) as follows

P ~ ~
/ (PMC—M ) + 6113a<p0) Ou0dx =0, for all ¥ € U,.
44

Taking J = (z1,12) X(23), ¥ € S(w), x € Hy(0, L) in the previous equation we have

P
/ (PMC— + 811) (%cpo(xg)agw dw =0, ae. in (0,L),
44

which combined with (4.127) and ¢° = ¢° + ¢, leads to (4.121).

4.4 Convergence of the scaled unknowns as h — 0

In this section we are going to establish the convergence results justifying the formal

asymptotic expansions.

4.4.1 A priory estimations and weak convergence

Following Sene [2001], we establish that the scaled displacement and the scaled elec-
tric potential are bounded. Its first published proof for piezoelectric beam appeared in
Figueiredo & Leal [2006].

Taking (v,%) = (u(h), (h)) in problem (4.19)-(4.21) we obtain

CL(( Oijkl I{kl(h) /iz‘j(h) dx + / Eij Ez(h) Ej(h) dx

Q

B)., @(h)), ((h), 3(R))) = /
/fzuZ dx—l—/ giui(h) dF—/awﬂ(h)5 (h) dx (4.130)
= [ Py Do) () e = L) 1)

Lemma 4 There exists ¢ > 0 such that

al(u(®), p(1), (w(h), 5(0) = ¢ (@G + [BM[R) . forallh >0, (1131)
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Proof. From condition (HS,), i.e., the ellipticity properties of C and e, we get

a((u(h), p(h)), (w(h), §(h))) = /

Cijkl Hij(h) Hkl(h) dx + / Eij @Z(h) @J(h) dx
Q

Q

3

zcl/ﬂi(ﬁij(h)fdx+c2/QZ(5i(h))2dx

i,5=1 =1
> c (Il + [B)]5)

where ¢ = min(cy, ) > 0. =

In the following lemmas we will use the inequality:
2 1 2 2 +
2ab < ma®+ —b*, for all (a,b,m) € R* x R™.
m

Lemma 5 There exists a constant ¢ > 0 such that

[rudes [ guar] <m s+ laf,) + 5 le®lf, . @413
Q Fan m

for all hy, m > 0.

Proof. Here we invoke the continuity of the trace operator, the fact that f and g
belong to [L*(Q)]* and [L? (Tyn)]?, respectively, and the fact that [-[ly, =—and [|[| gy

are equivalent norms, to obtain

_l_

/fiui(h)d17+/ giui(h)df‘ <
Q Fan

/sz‘ ui(h) dw /FdN giui(h) dF‘

m 2 1 2 m., 9 1 2
<3 |flo + o [u(h)g + 5 glr,, + o [T,
m 2 2 C1 2
< b (Iflg + |g|FdN) +— ||u(h)||[H1(Q)}3
m
c
<m(|flg+lglf,.) + — (B3, -

for all h,m > 0. m

Lemma 6 There exists ¢ > 0 such that

/ £i;0:(h) 8;(h) dz| < em + Qi [9(h)|,,  for all hym > 0. (4.133)
Q m
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Proof. Let 7 = sup,; ;3 |€;]. Since J(h) is bounded in [L%(€2)]?, one has

3

<y (% B+ 5 @(h)%)

ij=1

TZZW \Q+—Zw

= S—er 19(h) % + im }E(h)}; <em+ % }E(h)};,

/ ey 0:(h) U, (h) do
Q

for all h,m > 0. m

Lemma 7 There exists ¢ > 0 such that

<ecm+ Qi \k(h)[Z,  for all h,m > 0. (4.134)
m

Q

Proof. Let p = sup,.; ;<3| P;|. Since 9(h) is bounded in [L2(Q2)]3, one has

3
m o ~ 1
< 3 (FR B0+ 5 Ieul)

igl=1
MM = 3 <
= 72922 9 (R)[S + o PRE QI
=1

9m2

Py 0,(h) 5 (h) da
Q

3 3
B+ 5 I < am+ 2 |s()3,

forall A,m >0. m

Proposition 6 There exists ¢ > 0 such that
lalB)I, . + W)+ B < e, forall he (0,1). (4.135)
Proof. Korn’s inequality and the fact that 0 < h < 1 allows to write

c1 M)y < le(h)lg < |k(h)lg,

or, since [|-[|y; ~and |||l 1 (qys are equivalent norms,

ez [u(h)l,, < le(h)lg < |k(h)g.
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This result and the estimate (4.131) lead to
es (M3, + calk(m)[G + cs [B(R)[ < al(w(h), @(h), (w(h), §(h)). (4.136)

On the other hand, (4.130) and (4.132) - (4.134) can be combined to yield

a(w(h), @), (u(h), () < csm+ < Jum, + 2 () + [B0]).

which, together with (4.136), lead to

Cr

2 3 2 3\ 5,2
(63 — E> ”u(h)”vo,w + (04 — %) |k(h)|g + (05 — %) }19(11)}9 < em.
Taking m large enough in this expression we obtain the estimate
— 2
()3, + 1s(h)ls + [9(h)], < e,

forall h € (0,1). m

Corollary 15 There exists ¢ > 0 such that
lu()|IF,, + KRG + [O(R)[G < e, forall h e (0,1).
Proof. The previous result follows from (4.135) and (cf. 4.18)
I(h) = 9(h) + 9 = O(h) + (01p, 0o, h 050),

in a straightforward way, since ¢ € H'(Q2). m

Corollary 16 Let p(h) € V. Then there exists ¢ > 0 such that

le(h)|a <e¢, forallhe(0,1). (4.137)
Proof. The Poincaré—Friedrichs inequality allows to write, for any s fixed in (0, L)

/wwxﬁﬂwwzwwxﬁwmw

< Cw) [Ilal@(h)('>'>8)lliz(w) +102p(R) (-, 9) 72 | -
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Hence,

[2(h)[5 =A[¢(h)(x1,x2,x3)]2dx=A {/[cp(h)(-,-,s)]Zdw} ds
< C(w)/o [Hal@(h)(v i S)HiQ(w) + ”8295(h><7 ) S)H?ﬁ(w)} ds
= C(w) [|010(h)lg +1020(h)]g] -

Now, the estimation (4.137) is obtained from (4.135). m

Lemma 8 There exists a subsequence of (w(h),k(h), d(h),9(h))och<1, still parameter-
ized by h, and there exist u € Vi, k € [L2(Q)]°, @ € [L2(Q)] and 9 € [L2(Q)]°, such

that the following weak convergence results hold when h tends to zero:

u(h) = w in [H'(Q)], (4.138)
k(h) = r in [L3(9)]°, (4.139)
o(h) = @ in L*(Q), (4.140)
I(h) = 9 in [L2(Q)]°. (4.141)

Proof. Due to the Lemma 15 we show that there exists subsequences (w(h)),.,
(K(h)ps0r (@(h))h=0> (E(h))bo and functions u, k , @ and 9 satisfying (4.138)-(4.141).
n

Lemma 9 There exists a subsequence of (p(h), d(h))o<n<1, still parameterized by h, and
there exist ¢ € LX), ¥ € [LA(Q)]°, such that

p(h) = ¢ in L*(Q),
O(h) =9 in [LA(Q)]°,

as h tends to zero. Moreover,
o=3"+py, O9=0+0, where V= (01, 020, 0).

Proof. These results follow straightforwardly from (4.140)-(4.141) taking into account
that o(h) = @(h) 4 o and 9(h) = F(h) + 9. m
We define (cf. 4.24)

a-(h) = (h2aaﬂ(h)> h03a(h)a 033(h))7 (4142)
D(h) = (Dy(h), k" Ds(h)), (4.143)
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that is (cf. (4.16)-(4.17)

Fap(h) = 10as(h) = Capoptiop(h) + Capsshiza(h) + Pragdz(h) (4.144)
a0 (h) = hosa(h) = 2Cs030k30(h) + Posal(h) (4.145)
033(h) = 033(h) = Cssppr0,(h) + Cszzrizz(h) + Psszs(h), (4.146)
Ds(h) = h™'Ds(h) = Psg,rg,(h) 4 Psssress(h) — e3395(h), (4.147)
Dy(h) = Dg(h) = 2Pssprss(h) — e9599(h). (4.148)

From equalities (4.142)-(4.148) and Lemmas 8 and 9, we conclude that the sequences

(D(R))o<n<1 and (& (h))ocn<r are bounded in [L2(Q)]* and [L2(Q)]°, respectively. There-
fore, one has the following result.

Corollary 17 There exists a subsequence of (ﬁ(h), o (h))o<n<1, still parameterized by h,

and there ezist ® € [L*(Q)]” and = € [LZ(Q)]Z, such that the following weak convergence
hold in L*(Y) when h tends to zero:

( ~

Uocﬁ(h) ( ) - Eaﬁ = Oaﬂep/fep + Oaﬁ33/f33,
G3a(h) = hosa(h) = Y30 = 2Csa39k30 + Pozaly,
G33(h) = 033(h) = B33 = Cs3epkie, + Cs333k33, (4.149)

S

s(h)

( Dg(h) — Dp = 2Pp3gk39 — €95V,
\ 3(h) = 1D3( ) = D3 = Psgpkop + Pagskizs — €3303.

Proof. Properties (4.149) are obtained from (4.142)-(4.148) taking the limit as h tends
to zero.

4.4.2 Identification of the limit problem and the weak conver-

gence of the scaled displacement and electric potential to

the leading terms

The aim of this section is to derive the limit models for a homogeneous anisotropic material

of class 2 and class 6mm and to compare with the equations found in Section 4.3 .
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4.4.2.1 For a beam belonging to the class 2 of piezoelectric crystals

In order to identify the limit model, we consider all the notation defined in Section 4.3,
and denote by V{,,(£2) = W1 () x W5(Q) the space of scaled displacements as follow

Wi(Q) = {77 c H'Y(Q): /Ma} n= /MO} 1o =0, a= O,L} (4.150)
Wa(Q) = {ﬁ: (pa) € [H'(Q)]: /Ma} Pa = /Ma} Pala =0, a= O,L} (4.151)

with 0; = —x5 and d, = z1. We know that Vzy can be equally defined by

Ven ={v = (v;) € V i v, 22, 23) = Xalx3), o € H3(0, L),
BN ={v = (v;) (71,72, 23) = Xa(T3), X 0(0,L) (4.152)

v3(1, T2, T3) = X3(T3) — xﬁX’g(%)a X3 € Hol(OaL)}-

Corollary 18 Let us that the beam is made of an anisotropic piezoelectric material of
class 2 material whose coefficients A33 Ag, 5 do not depend on xy and xa. Then, the following

properties hold:

/Q Y3a0,0dx =0, Yo' € Wi (Q), (4.153)
/Q Sapavgda = 0, Yoy € Wa(Q), (4.154)
/xvzaﬁ = /zaﬁ =0, (4.155)
u € Vpy: eap(u) = esp(u) =0, (4.156)
Kaz(u) = esz(u), (4.157)
9 = (01, 0p,0)", (4.158)
¥ = (01, 0ap, 0)7, (4.159)
Sy = A§ [E33es3(u) — ASpSag] (4.160)
Eo() = —PasoXs0 + EapDp, (4.161)
A3 = £a3 Ay = 3303308 + Pi33 Pyag (4.162)

— —~ T _ )
€33C3333 + Ps33Ps33

where w € Vpy is the solution of the following problem:

/ A§3§33€33(’U/)€33('v)dw = / fﬂ}ldw —|—/ g; v; dF, Yv € VBN- (4163)
Q Q Tan
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Proof. From the weak convergence w(h) — w in [H'(€)]?, since u(h) € Vy,, we deduce

that w € V4 ,,. Moreover,
eij(u(h)) = e;(u) in L*(Q). (4.164)
In addition, from identities (4.16) and from weak convergence of Lemma 8 we have
can(ul(h)) = B kap(h) = 0 in L2(Q),
esg(u(h)) = hrgg(h) = 0 in L*(Q), (4.165)
esz(w(h)) = Kkaz(h) = K3z in L*(Q).

The uniqueness of the limits appearing in (4.164)-(4.165) implies (4.157) besides eqs(uw) =
esa(u) = 0. Now, from (4.140) we conclude that

%ip(h) — 0ip = Oip in H'(Q). (4.166)

On the other hand, in the view of (4.17) and (4.141), we get

(Va(h), 93(h)) = (0ap(h), hOsp(h)) = (Va,Us) in [L*(Q)]*.

Therefore, given (4.166) and the uniqueness of the limit appearing in the right-hand side
of (4.141) we conclude that

(5017@3) = (0a,0),
that is (4.158), which implies (4.159).

In order to establish (4.156)-(4.157), we consider the following equation obtained from
(4.26) by setting d; = 0 and passing to the limit when i — 0:

/ (63333233 + ngaﬁzaﬁ + ngg@g) 733 dm = / eij('u,)nj dm, (4167)
Q Q

which implies
es3(w) = Cs33%33 + Cs3050p + PagsDs, (4.168)

e30(1) = eas(u) = 0. (4.169)

Letting o = 0 in (4.26) and multiplying by h, we likewise find that we arrive at

/ (_P:Saﬁzaﬁ — P333%33 + 5_33@3) dzdx = 0,
Q
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and thus )
D3 = — (pBaﬂEaﬂ + P333E33) .
€33

Substituting the last expression in (4.168), we deduce

P333

2 (PsapXas + Pi33¥33) ,
€33

ess(u) = Ci333%33 + 633aﬁzaﬁ +

from which we arrive at (4.160) with

1
£33C5333 + Ps33 Psaz’

Ay = ALp = £33C3308 + Ps33 Psag.

Setting v = (v, v9,0) and d; = 0 in (4.27) and multiplying by h? one obtains

h2/ 0as(h) eqs(v)de + 2h2/ 030 (h) €3 (v)dx = h? [/ fividzx —1—/ 9 V; df} .
Q Q Q Fan
Hence passing to the limit A — 0 gives
/ YapOqvpdx =0, for all vg € Wy (4.170)
Q

which implies (for vg = 250°, vg = 3220°, vg = 21200 with ©° € H{(0, L)) that

/ Ty Yap dw = / Yapdw = 0. (4.171)

In a similar way, taking v = (0,0, v3) and d; = 0 in (4.27) and multiplying by h one has

h\/ﬂ Ugg(h) 633('0)(150 + Qh\/ﬂ Uga(h> ega('v)dw =h |:/Q fﬂ}ldw —|—/F gi U; dF:| .

Taking the limit h — 0 gives (4.153).

Now we put 7 = 0 and d3 = 0 into (4.26). Passing to the limit as h — 0, we thus find

/ (—paggzgg + gagﬁg) dodx = / E,(¢)d.dx
Q Q

and we infer that

Eo(p) = —PazpZap + EapDp. (4.172)
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Let us now consider the restriction of equation (4.26) to v € Vgy. Then since ez, (u) =

eqp(u) = 0 we obtain

\/Q O'33(h) 633('0)(150 + /Q Dk(h)Ek(w) de = /szvlda: + /F gi V; dF,

dN

Passing to the limit when h — 0 gives

/ 233 633(’0)dw —|—/ QaEa(w> dx = / fﬂ}ldw —|—/ g; U; dF, (4173)
Q Q Q Pan
for all (u, 1) € Vpy x ¥y. Taking d; = 0 and substituting (4.160) in the previous equation
we deduce
/ A§3 [&:33633('11,) — Agﬁzag} 633(’0)dw :/fl'l)@dw +/ gi U; dF, (4174)
Q Q Tan

for all w € Vpy. For homogeneous anisotropic material, the coefficient Ag;3Ag 5 does not

depend either on x; or x5 and therefore equation (4.174) becomes, by property (4.171),

/A§3533€33('U,)633(’U)d£13 = / fzvldm ‘I—/ g; U; dF, Yo € VBN- (4175)
Q Q Fan

Using algebraic software tools we prove that

B det C _ ge s
T det Mdet N 3

and consequently the unicity of solution of the problem (4.175) follows.
Setting v = 0 in (4.173) we get

/ Do E. () dx =0, for all ¢ € V. (4.176)
Q

Corollary 19 Sequences (u(h))n=o satisfy as h — 0
w(h) = u’  in [HY(Q)P, (4.177)

Proof. From uniqueness of solution of (4.114) and comparing with (4.163) we conclude
that u, = v and uz = u§ and therefore u = u’. In section 4.4.1 it was showed that
(u(h)) is weakly convergent in Vj,,(2). By unicity of the limit this implies that the whole

sequence (wu(h))nso converges to u’. m

Remark 14 We note that the variational problem (4.176) cannot be expressed in order
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to ¢ and r. Consequently, we cannot guarantee the weak convergence of the sequence
(o(h))nso to ¢°.

4.4.2.2 For the homogeneous transversely isotropic case - 6mm symmetry

class

We shall now establish the weak convergence of sequence (u(h),p(h))n=o to the first
term of the asymptotic expansion (u’, ¢°) € V4, X W, for the anisotropic homogeneous

material of class 6mm.

Theorem 16 Let us consider that the beam is made of a material anisotropic of class

6mm. Sequences (u(h))pso and (@(h))p=o satisfy as h — 0

w(h) = u”  in [HY(Q)], (4.178)
o(h) = ¢° in L*(Q) (4.179)

O € Vpn is the Bernoulli-Navier characterized by equations (4.113) and which

where u
is the first term in the asymptotic expansion of the scaled displacement field (4.36), and
©° € Wy satisfies (4.121) and is the first term in the asymptotic expansion of the scaled

electric potential (4.37).

Proof. From (2.21)-(2.23) and using some algebraic software tools, we show that

C111 = C’1111 = C12222; C113 = Cll22a C116 = C11133 = 0223?”

611 - C713 =~

044 = 01313 = 02323, C(1212 = 9 ) C(66 = CY33337

Py = Pi31 = Paga, P31 = P31 = Pso, Psg = Pags, €11 = E2.

Consequently, equation (4.163) may now be written as

€33
—— —— —e33(u)ess (v dm:/fividm—i—/ giv; dl. 4.180
/{2533066+P36P36 () (v) Q Cun ( )

and relations (4.161) verify
Ei(p) = —Pi31331 + 21194, Ey(p) = — Py3o330 + £299 (4.181)

or equivalently,

1 . 1 _
D= —(Bi(@) + Pula), o= —(Ea(p) + Pulp). (4.182)
11 11
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Substituting these expressions into (4.173) we obtain

/Q [L(El (90) + P131231)]E1 (w> dx + /Q [_L(EQ(QP) -+ ngzzgg)]Ez(i/J) dx = O, (4.183)

€1 €99

for all v € W,. If, in the previous situation, we consider the 6mm material case, or,

equivalently

€11

/ LE'OC(Q)O)EQ(@Z)) dx —f-/ P1423aEa(77Z)) dx = 0, for all w € \I/(). (4184)
Q Q

Choosing in (4.184) test functions of the form ¢ = ¢(x1, x5)0(x3) with ¢ € Hj, (w)
and o € H}(0, L), we have

L L
/ (/ }Ea(cp)ﬁagb dw) odrs +/ Py (/ 330040 dw) odrs =0, (4.185)
0 w ©11 0 w

and consequently we find that ¢ is a solution of the following problem a.e. in [0,L]

/ ;Ea(go)aagb dw + PM/ Y3000¢ dw = 0, (4.186)

€11

for all ¢ € Hy,,(w). For the homogeneous case, the coefficient Pi4 is independent on z;
and xs, then from property (4.153) satisfied by function X3, we obtain the second term
of (4.186) is identically zero and the equation reads

/ L OO du = 0, (4.187)

€11

for all ¢ € Hy,,,,(w). We prove, using algebraic manipulation software tools, that

1 Py Py
—=fut—
11 Cés

M)

and therefore the previous equation coincides with (4.121).

From the unicity of the limits u, = uY, uz = u} and ¢ = ¢° we conclude that the weak
convergence (4.178) and (4.178) hold for the whole sequence u(h) and ¢(h), respectively.
]

4.5 The limit model on the actual beam )"

This section is subdivided in two section in which models for materials of class 2 and 6mm

will be written for the original beam Q".
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4.5.1 Model for a beam belonging to the class 2 of piezoelectric

crystals

We now return to the actual beam Q" and define the following spaces (cf. (4.82)-(4.85)):

Q" = Q") = {p e H'W") /

w

pdw" = 0},
h

Sh=S5"w") = {¢ € H'(W") :9p =0 on 5},
T" = Thw") = Q" x S™,
U =07 (Q") = L0, Ly H' (w")),
R" = R"Q") = L*(0, L; Q" (")),
Ut = W (Q") = L*(0, L; S"(w")).
Given the scalings (3.36), (4.12) and (4.24), the developments (4.36), (4.38 and (4.39)
induce formal developments on u”, @", " and D", respectively, whose leading terms

we will identify and characterize in the following. For that we will undo the change of

variable " = I1"(x) and accordingly define the de-scaled quantities:
gg(l‘g) = h_lga(l‘fﬂ)? gg(l‘g) = 53(173)’
(@) =he’ (), ") =hr(2),
as well as the warping function
w' = wh(2?, 2h) = hPw(zy, zs),

which is the unique solution of (cf. (4.87))

w" € Q" such that

/ C3a3ﬂagwhagvh dw" = / C’gagﬁégﬁgvh dw", for all v" € H'(w"), (4.188)
wh wh
the torsion constant (cf. (4.88))

Jh=ntJ = / Csa35(0) — Ohw™) (01 — Ot w") dw” = / Csa35(0) — Ofw™) 0% dw”, (4.189)
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and the second moment of area of the cross section with respect to axis Ozj (a # f3)

where 6 (xf, xb) = xf, 08 (ah, 2h) = —a. We also define the resultant of the applied loads
and moments in each cross section (cf. (4.78)-(4.79)):

PN = 1Fa(g) = [ pabababyd+ [ ghialiabal) i € 20,1,

'VQLN
F;L(a:g) = hQFg(.T3> = /h fél(:c'f,xg,xg) dw™ + /h gg(x’f,:cg,xg) dy" e LQ(O,L),
w Van

Mi(ah) = WMa(eg) = [ sbfiGaliaiabadt o [ alglahal o) it € 20,0)
w v,

h
dN

For a generic function n" : Q" — R we define its average along the zh-axis (cf. (4.100))

1 L
Pl = ¢ [l ds
0
and consider the deviation (cf. (4.101))
(x5, 25) = 0" (a1, 25, 25) — 0"(a1, 7).

Finally, we define 2" = 2"(2%) = h™12 (x3), implying (cf. (4.106))

, 1
(Y (ah) =5 [ Prsa(Ohu’ = EOHAM o) + AP () Aot ae. af € (0,L)

and also (r", ") € T", the unique solution of the variational problem

(r", ") € T" such that

[ Comadla"dhpdit + [ conthg ot
wh h -

w

+ / Ppso (Ohr" Ol — 943" 0o p) dw”

:/ ngaﬁﬁgog&gpdw —/h €ag82£gﬁgwdwh,

(4.190)

for all (p,1)) € T".
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4.5.2 For a beam belonging to the class 6mm of piezoelectric

crystals

We assume that the piezoelectric material is anisotropic and of a type of transversely

isotropic (hexagonal crystal system, class 6mm).

—h
Firstly, we introduce auxiliary functions A, @Zﬁ depending on the geometry of the

cross section w”. Then, the following properties hold

:h pu—
Ao (a2, 2h) = g (21, 22), (4.191)

Op 5 (), 25) = h2®ap(1, 22), (4.192)

where

~ ___Cw
Ci+Ci b
— _ _Ce
Cii + Cis ?

2

(a2—a3)
016 L2 T1T2
(ﬁ(xlax2> = (q)aﬁ)(xlva) = (Cll +013) ( ’ (z3—a3) ) ’

T122 5

h .h

The warping function warping function w”(z%, 2) as the unique solution of the vari-

ational problem:

wh € HY(Wh), / w" =0
wh

(4.193)
/ Ipwhd, 0" dwh = / (xhohuh — 2hohuh) dwh,  for all v" € HY(wWh).
wh

wh

Corollary 20 The approximations (uh’o,@h’o,agéo,DZ’o) are uniquely characterized as
follows:
ug® = &h(x3), & € Hy(0,L), (4.194)
ui}SL’O = fz - xa(&Z)/('x3)7 f:? S H01(07 L)7 (4195)
ult =2 e Hy(0, L), (4.196)
mi_ o h ohpohy P14 po
U3’ =23 — xa(za) — =¥ (4197)
Cla

G0 = 0 ph 0 e gl (4.198)
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ond = o4 =0, (4.199)
o33 =Y egg(u?) = Y[(Eh) — wa(€h)" (w5)], (4.200)
DM = — Ry O™, (4.201)

where (£, o"0) is the solution of the following boundary value problem:

(

~Y AWM (e8)" = F} in (0,L),

§5(0) = &4 (L) =0,

(4.202)
4 r
y It (€)Y = Fi+ (M) in (0,L),
/ /
| §5(0) =&5(L) =0, (&) (0) = (&) (L) =0,
("0 e HY(w) such that a.e. in (0, L)
—Ryy 9™ =0 in W,
(4.203)
Ry a’é‘ﬁh’o nZ =0 only,
| "= onalp,
where Young’s modulus Y > 0 is given by (cf. Subsection 2.1.3.3)
Y = (205 + C11Ces + C13Ce6) = —=——=——= 4.204
Ci + 013( R ) E33C66 + P36 Psg’ ( )
P 1
Ry = PMC—:i +en = o (4.205)

We note that for the homogeneous transversely isotropic beam model, the electrical
and mechanical phenomena are decoupled. The boundary problems found in (4.194)-
(4.202) of Corollary 20 are respectively called the one-dimensional bending equations and
the one-dimensional stretching equations of a linearly elastic beam. Together with the
property that u(0) is a Bernoulli-Navier displacement field (Theorem 15), they constitute
the linear Bernoulli-Navier model of a linearly elastic beam. Furthermore, the electric
potential can be obtained through a two-dimensional Laplace’s equation, expressed by

the boundary value problem (4.203).






Chapter

Shallow arch theory with an electric potential

applied at both ends

4

In many applications “weakly” curved beams are used instead of straight beams. In this
chapter, a “weakly” curved beams is a beam which the length of the centreline much
greater than the diameter of the cross section and the curvature is of the order of the
diameter of the cross section. This type of curved beams are also known as shallow arches.
We present a zeroth-order model for a transversely isotropic - 6mm symmetric class -
piezoelectric shallow arch under the influence of an applied electric potential on both end

faces, obtained by asymptotic methods.

Let us briefly outline the content of this chapter, which closely follows Alvarez-Dios
& Viano [1996]. In the next two sections we introduce the notation and present the
piezoelectricity problem in its Hellinger-Reissner variational principle. In Section 5.3 we
rescale the three-dimensional problem posed in a straight reference rod. In Sections 5.5
and 5.5.2, using the same results of Alvarez-Dios & Viafio [1998], we study the limit be-
havior of the unknowns (displacement, stress, electric potential and electric displacement)
when the cross-sectional diameter of the beam tends to zero. Based on the asymptotic ex-
pansion method, we prove in Section 5.5.3 that, when the cross-sectional diameter tends
to zero the scaled solution of the three-dimensional problem strongly converges to the
leading term of its asymptotic expansion. A key idea to prove the strong convergence is
to take for the limits the first terms of the developments identified in Section 5.5.2. The
one-dimensional equations of the coupled mechanical and electrical field in the original

domain are established in Section 5.7 and they are written as a BVP.

125
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ends

5.1 Geometry of shallow arch

As before, let h and L be two positive scalars and let w" denote an open bounded, simply

connected subset of R?, with Lipschitz continuous boundary bounded ~" having area

A(wh) = h%. We suppose that system Ox"zhzs is a principal system of inertia associated

to w", therefore axis Oz passes through the mass center of w” x {x3}, which means that

A curved rod can be represented by a space curve

{¢ (x3) (gbl (z3), O (23), l’g) cR?: 23 €0, L]}

parameterized by its arc length s"(x3), z3 € [0, L]. The Frenet trihedron (

is formed by the tangent, normal and binormal vectors of the curve,

1
£ = (17 = —— (V).

h
n*{ | Ahgb’f” _ ¢?/¢2/¢le
h *,h — h thit ht bt Lkt
nt = ny === A"¢)" — 5o} ¢ )
h h « o
nk h AMB _(bh/(bh”
3 a o
*7h h
bl . o 2//
peh — b;h — (bh”
*h VB ht Lhit ht Lkt 7
bs V'R — ¢y’ Y

where

.Ah — ‘¢h/| _ ¢Z/¢Z/ + 1,

h// h// h//
+ (o

‘(bh/ % ¢h//|2 ¢h// ) )

The trihedron is given by the Frenet equations (s" = s"(x3)):

dt*,h
— — lih’n*’h,
S
dn*,h
T — —Hht*’h —FThb*’h,
S
*,h
db h, *h

dsh =—TNn"’,

*,h
",

(5.1)

n*,h’ b*,h)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)
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where k"(s"(z3)) = k"(x3) and 7"(s"(x3)) = 7"(x3) are the centreline’s curvature and

torsion. The curvature and torsion are extracted from the curve parametrization as follows

|¢hl X ¢h”| Bh
¥l =g
h/// h/ h//
) 1
”m*jﬂiiﬁﬂ)=@w?¢—@ww

As assumed in Alvarez-Dios & Viafio [1998], the family of curves C*, 0 < h < 1,
satisfies the following hypothesis:

(HC1) ¢! e C?0, L).
(HC2) For all z3 € [0, L], (t*",n*", b*") is a positive oriented orthonormal basis of R,
(HC3) Frenet equations (5.7)-(5.9) hold for curvature " and 7" belonging to C[0, L].

Now we define the map " : " — @"(Q") C R? in the following manner (Figure 5.1)
©" (") = ((¢1(zs). 8 ws), a0) + alm™ (as) + bt (zs)) (510

which is a C'-diffeomorphism [Alvarez—Dios & Viano, 1998, see Theorem 1.1-1].

For each h > 0 and each x" € Q) let V"®"(x") denote the Jacobian matrix
(0" (x")) and let

bi(a") = (V'e"(z")™), forall z"e Q"
o'(x") == det {V"O"(z")} forall z" € Q"

where the scalar o"(2") and the vectors bl (x"), 2" € Q" are of the form (see Alvarez-Dios
& Viaiio [1998))

VB

o (xh) = VA (1 — 2l = \/ﬁ—xlw, (5.11)
bl (x") =" + %mxgtj’h, (5.12)
o (xh) = b — Th;/hﬁ:c?t;h, (5.13)
b (x") = Ly (5.14)



Chapter 5. Shallow arch theory with an electric potential applied at both
128 ends

where the map ©" is assumed to be an orientation-preserving map, that is,
o"(x") > 0, for all " € Q"

The beam in study occupies the volume {Qh}* = O(Q") which is well-known as a

weakly curved rod of axis C™.

" r
Iy I8 : L
\.x ....... W ............ :' /

Figure 5.1: The reference configuration of the shallow arch described in curvilinear and
Cartesian coordinates, and in a fixed domain.

The boundary of Q" 9"Q)", is the union of the end faces I = @"(w" x {0}), T =
O"(w" x {L}) and the lateral surface I'%, = @"(y" x (0, L)).
This boundary is the disjoint union of ng and T, on the one hand and on the other

hand, it is the union of I, and I'", where
fZD - @h(Fg), fZN - @h(FZN)a fZD - @h(FZN), ng - @h(r}ﬁ/)a
with
Thy=Tyulh, T, =T{uTlt.

The reference configuration of the shallow arch can thus be described in terms of
the three-dimensional curvilinear coordinates, or in terms of the Cartesian coordinates
i ¥ %5, of the same point " = @ (") € {Q"}~. Let " := 9/dz! (hence & := §/dxh)
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and Eih will stand for the differential operator 9/92. In an analogous way, we denote by
1" a function defined in Qh, n" a function defined in Q" and 7 a function defined in €,

related by
i@ =n"(x") =n(®), &=6("); " =T"(x).

5.2 Three-dimensional equations of a linearly piezo-
electric clamped Shallow Arch in Cartesian coor-

dinates

We now review the formulation of the linearly piezoelectric problem in the set {Q"}~.
We assume that the shallow arch, whose reference configuration is éh, is clamped on the
portion fZD = f’g and submitted to a mechanical volume force of density }'h in Q" to a
mechanical surface force §" on I'% and to a surface force " on the end I''. We denote
the outward unit normal to 9Q" by 7. An electric potential is applied on the left end,
with value @, and on the right end, with value 3¢"", which means that I, = TF UT".
The left end of the beam is weakly clamped, and therefore the boundary condition (3.2),

introduced in Chapter 3, is also assumed.

Then, the body undergoes a mechanical displacement field a = (al) - Q" — R? and

an electrical potential 3" : Q" — R satisfying the following equilibrium equations:

(_Shsh(mh o shy _ F i b
—0; Uz’j(u 9" = fi in Q
Sh(xmh 2hy ¥h . =h h
oy(u’, ") ny = g' on I , (5.15)
Sho(gh gh _ Ph
o(a’, @) = p; on I7
\
( v,v v
h (b shy h
DY(a",¢") = 0 in Q
Ah (b 3h) % Ph
Di(a",¢")n = 0 on I'ly , (5.16)
%h — 2k rh
\ @ = ¢; on I'lp
where we denote the second-order strain tensor é?j('&h) = L(Oruf + OFul) and electric

vector El'(@h) = —dP@" are linearly related to the piezoelectric stress tensor &" = ()
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o h o
and electric displacement field D" = (D?) by the constitutive law :

Egl = _1%:?99 Gt — Pis3 0% + el DQL in Q"
El = —2pPh gh 4 & Dh in Q" (5.17)
Egl = 2P e O + £, Dh in ",
and (no sum on «)

Cha = Cliazs 083 + Caa@@ Go + P 3haa D in Q"

ey = 201212 oy in Q"

&y =2Ch,, & + P, Db in Q" (5.18)

¢ = 25§232 G5 + P2h32 D} in Q"

“h  _ ARk <h ~ “h Ph PR o Ok
€33 = Cia33 033 + Csage 0gg + P33 D3 in Q.

These constitutive equations describe piezoelectric materials of crystal class 6mm in which
the components of the elastic, piezoelectric and dielectric material satisfy (cf. (3.8) in
Chapter 3)

Chii #0, Clya #0 for k#1
v (5.19)
Pho#0 Pl #0, Py #0, 2 #0,
(no summation over repeated indices). The remaining coefficients
ngk;la ]%i?w and f?j vanish. (5.20)

Remark 15 The condition (5.20) is used only when strictly required.

The hypothesis (H}") and (HY"), established in Section 2.3.2.3, are also assumed in
this chapter.
Now, we define the following spaces for the admissible displacements and admissible

electric potentials
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We have already defined the spaces )V(g = Vi, x Uk and X1 [L2(M))9 x L2(Q)

equipped with the norms,

1/2
Voh + ||¢h||H1 Qh ) ’

= (I

. vh . 1/2
1" d g = (17" gy 1 B

18", ")l &

v

respectively, and H'f:hH(/Oh = |€h('f’h)‘o Qh -
W ’

As in Remark 4 established in Section 3.1.2, we admit the existence of a function

¢" e HY(Q") such that @" = @l on T

In addition, the closed convex set on H'(Q") is defined by
W= Wh(O) = gt e HNOY) gt - e B

v _h V) v
and consequently we have X, , = V" x 5.

Finally we assume the following regularity assumptions on the data:

Freuhe @] gt =wh e [ah)] L B = e [rah)

To obtain the mixed problem, we multiply by d € L2(2") the equations (5.17) and by
7 e L2(Q") in (5.18). If we multiply the first equation of (5.15) and (5.16) by " € %’fw
and " € \Ilg, respectively, and integrate over Q" and apply the divergence theorem, then

we obtain the Hellinger-Reissner mixed variational formulation of problem (5.15)-(5.18):

Find (8", D"), (@", ")) such that

(
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where
(@ D). (¢ d) = [ (Clyoly + PLDL) 7 aa”
+/m< Pl + &, Dl> " dz", (5.22)
(7, dY, (8", ) = — / #h et (o) dih — /Q h 4" BMh dz", (5.23)

Ly (8", ") / flrop da" — / gr o dr — / P dih, (5.24)
rh

L

As we mentioned in Chapter 3, the pair ((&", ﬁh), (", ¢") e X X X » 18 the unique

solution of the problem (5.21)-(5.24).

5.2.1 Formulation in curvilinear coordinates

Now our objective is to transform the problem (5.21)-(5.24) expressed in Cartesian co-
ordinates into another problem in curvilinear coordinates. We define the transformation

from the old to the new test functions,
,ﬁh c [Hl(()h)]?, N ,vh _ ,ﬁh o @h c [Hl(Qh)]g’
Ot e HY(Y) — ot = ¢gho@" € HY(QY),

v

which in turn induce a bijection between the spaces %’fw(flh), Uh(Qh) and Wh(Q"), and
the respectively spaces defined by

Vi = Vi (@) = {o" € [H@"]" : (0} oy = 0},
Uk = wh(Qh) = {w e H'(Q") : 4" =0 on FQD},
Uh = 0h(Q") = {¢" e H'(Q") " — ¢" € U}
We define the spaces X{,,, = Vi, x Uk, X} = [L*(Q")]? x L*(Q") and X}, = V!, x ¥h.

The transformation ®" implies the following relations:

v

(a) The volume element d&" at &" = ©"(x") € Q" is given in terms of the volume
element dz" at " € Q" by
di" = o' (x") dx". (5.25)
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(b) The area of elements along Q" and Q" is given by

Al = o (x")o" (x)dT" on I'%, (5.26)
AT = o (") /bl ()bl (ah)dT" on hUT!, (5.27)

where
\/bh )k (@), (@)n(h), (5.28)

Consequently, we have from (5.14) the relations (see Alvarez-Dios & Viafio [1998))

Al = o (x") o (x)dT" on I'%, (5.29)
dl' = ar’ on ThuTh, (5.30)

(c) Using the formulas
O (") = b O (") Ot (&") = b (") ol (2"), (5.31)
and the following definitions

1
el (vh) = 5(6@8,?@? + sza,i;vf), V" € Vi ("), (5.32)

]

Bl @) = b o, gt € Wo (), (5.33)

b (5P — b (aph Ph (R — R (gt
we obtain €;(v") = e (v") and B} (") = B} (")

From all these above, the next theorem follows, which gives a new formulation of the

piezoelectric problem in curvilinear coordinates (cf. Alvarez-Dios & Viafio [1998]).

Theorem 17 ©" : Q" — {Q"}~ be a C'-diffeomorphism satisfying the orientation pre-
serving condition
o (x") > 0,

for all " € Q" . Then the field ((e", D"}, (u", ")) € X" x X defined by
1 2,w

u'(2") = a(@), ') =¢"&"), (") =s"E"), D'(")=D ("),
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for all " = @"(xh) € {1, satisfies the following variational problem:

Find ((o",D"), (u" ¢")) € X} x ngw such that

(

a¥y ((e", D"}, (v",d")) + by ((7",d") , (u", ")) =0,
(5.34)
\ for all (Th,dh) e X",
[ by (o, D), (v",0)) = Uy (0", "),
(5.35)
\ for all ('vh,z/Jh) € Xg’w,

where
alﬁ((fha&h)a (v, d")) = /Qh (C;ijl Ty + P]?ijjfkl) Ti}JL' o' (") dx"
+ / (“BLh 1 ey @) dio'(zh)da”,  (5.36)
Qh

iJ "1j

by (7, d"), (o", ) :—/ el (vh)oh(:ch)da:h—/ drEr (Mo (x")dz",  (5.37)
Qh

Qh
o) == [ gt @hdal — [ gholiot @) a)ar
N
—/ plrotol(x™)dr", (5.38)
Fh‘

I
where f* = (fF): Q" = R? |, g" = (g}) : T% — R? and p" = (p}) : T} — R? are given by
izt = fr @) for all &' = O" (") € O,
gl (@") = gh@")  for all 8" = ©"(x") € T},
pi(@") = pr(E")  for all 8" = ©" (") € T},

and the constants characterizing the material satisfy (see (5.19)
églij(mh) = élglij(ih)a
Pl (ah) = P (&), vE"=e"(@"), " e "

eyy(@h) = ely(@"),
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5.3 Transformation into a problem posed over a do-
main independent of h; fundamental scalings of

the unknowns and assumptions on the data

As usual, our first task is to define a problem equivalent to problem (5.34)-(5.38), but now
posed over a domain that does not depend on h. For such, we use the transformation (3.28)
introduced in Chapter 3, and consequently the scalings (3.36)-(3.39) to the unknowns and
the assumptions (3.40)-(3.43) on the data. The scalings for the functions b;;(h) : @ — R
and o(h) : Q — R are defined by:

bij(h)(x) = b?j(zch), o(h)(x) := o"(x"), 6(h)(x) := " (x"), (5.39)

for all " ="(x), = € Q. Let the function ¢" be such that

" (x3) = hoo(xs) for all 25 € [0, L] (5.40)

where ¢, € C?(0, L] is independent of h.

Using the scalings and the assumptions on the data, we can recast the variational
problem (5.34)-(5.38) in the following equivalent form.

Find a pair ((o(h), D(h)), (u(h),p(h))) € X1 x Xa,, such that

(

ano ((o(h), D(h)), (r,d)) + h*arz ((o(h), D(h)), (T, d))
+h4aH,4 ((U(h)7 D(h))> (T’ d)) + by ((T7 d)> (u(h)> @(h))) =0, (5'41)

| forall (.d) € X,

(b ((a(h), D(h)), (v,8)) = Lu(v, ),
(5.42)

\ for all (v,v) € X,

where ag; (+,-) : X1 x X7 = Rand b(-,-) : X1 x X, — R are the following bilinear

forms,
MWJMMWZ—LW%WMWM—A%MWMWM

an&vdna/mwmmwwm,
Q
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ana((7,d), (1,d)) :/

Q

(Oaﬂ33 T33 + P3046J3) Tap 0(h)dx + / C's30p TopT33 0(h)dex
Q

+ 2/ (2630[39 7_'39 -+ P@gajg) T3a o(h)dw
Q

— / Psop Top d3 o(h)dx + / (—2]593a Taa + Ega cfa) dg o(h)dzx,
Q Q

amo((7,d), (7, d)) = / (Ciass Tas + Pagads) 733 0(h)da
Q

+ / (—Ps33733 + &35 d3) ds o(h)de,
Q

and the linear form ly (-) : X, — R reads

lH('v,z/J):—/infuio(h) daf:—/F givio(h)o(h) dF—/ piv;o(h)dl, (5.43)

ry

and

Uo(Q) ={veH(Q):¢y=00nTep}, (5.44)
Wa(€) = {6 € H'(Q): ¥ — o € Wo(©)} (5.45)
Vo(Q) = {'v e [H(Q)]”: (v) =0 on rdD} . (5.46)

The pair ((o(h), D(h)), (u(h),p(h))) can also be characterized as the unique solution

of this problem thanks to the Lions-Stampachia’s theorem and the Lax-Milgram’s Lemma.

In the next three theorems there will be established some geometrical, mechanical
and electrical preliminaries needed in the sequel for the asymptotic analysis of linearly
piezoelectric shallow arches. The geometrical preliminaries results are due to Alvarez-Dios

& Viano [1998] and are summarized in the next two Lemmas.

Lemma 10 (Alvarez-Dios & Viano [1998]) Let ¢" € C*(0,L;R®) be such that its
Frenet trihedron (%" n*" b*’h) is a positively oriented basis of R and satisfies Frenet
equations for curvature k" and torsion T". If ¢! satisfies (5.40) then, for all h > 0, we

have:
{AM™ =14 h2s¢(h, ¢), 7 €R,
’%h = h{C + h231(h7 ¢)}7 Th = d + h232(h7 (b)a

Tff’h =b + h283(h> ?), n;’h =by + h234(ha }), n;’h = h{hy + h285(h> ®)}
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bl = —by + h2sg(h, @), by = by + h2s:(h, @), b = h{hy + h2ss(h, )},

0 = h{ts 4+ B2so(h, 0)} 15" = Wity + h2s1o(h, 9)}, 15" = ts + h2s11(h, ),
where s;, 1 =1,...,11, are uniformly bounded constants on h > 0:

sup max |s;(h, ¢)(x3)] < +00,
(5.47)

h>0 r3€ [OvL]

and ¢, d, by, he and t; are functions defined in [0, L], independent of h and satisfying the

following properties:
(HY) b3+ b3 =1,

(HY) bihy — byhy = —t; = — ¢},
(H2) bihy + bohy = —ty = — ¢,
(HY) by = —dby, b, =db,.

Moreover, if ¢{(x3)dh(x3) # 0 for all z3 € [0, L], then we have k(x3) # 0, for all h > 0
and for all x3 € [0, L], and also

¢ =V (1) + (¢3)? (5.48)
ba = du/c, (5.49)
By — —<b’1¢’1’c+ ¢’2¢’2” hy — %! ,2/;¢,2¢/1,’ (5.50)
to = .., ts =1, (5.51)
g 9192 — $07 (5.52)

2
We note that the limits of these functions for h = 0 are functions of x3 € [0, L] only, i.e.,

the limits are independent of the transversal variable x,,.

Lemma 11 (Alvarez-Dios & Viano [1998]) There exists hy = ho(, ¢, d, b, he) such
that the Jacobian matriz V"O"(x") is non-singular for all " € Q" and for all h < hy,

and O" is an orientation-preserving map for all h < hg. We have for all " € Q" and

for all h < hy:
o(h) =1+ h%*o*(h,¢), o(h) =1+ h?67(h, o), (5.53)

b(h)(z) = Co(@) + hCi(z) + h*CF (h, ¢)(@) + h*CY (b, ¢)(2), (5.54)
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where

bl($3> bg(xg) 0

Colz) = | —bo(xs) bi(ay) 0 |, (5.55)
0 0 1
0 0 hi(z3) + z2d(z3)
Ci(x) = 0 0  ho(zs) —xd(zs) | (5.56)
t1(xs) ta(xs) 0

iy (h,¢) bh(h,¢) 0

CH(h.¢)(x) = | bhi(h,¢) Vh(h¢) 0 : (5.57)
0 0 bs(h, o)
0 0 v (h, @)

C¥ (h,¢)(z) = 0 0 b(ho) |, (5.58)

bii(h,9)(®) Vhy(h,¢) O

and there ezists a constant Cy(¢) such that

sup max max \bf;(h,¢)(zc)|§00(¢),

(5.59)
0<h<hg i,j zeQ
sup  max [o¥(h, ¢)(z)| < Co(9),
7 (5.60)
0<h<hg x€
sup  max |67 (h, ¢)(z)| < Co(9).
(5.61)

0<h<hg xeQ

Using all these results we establish a relation for the electric vector field in Q" with
respect to the electric vector field in Q" and complete the Lemma 4.4. introduced by
Alvarez-Dios & Viaiio [1998].

Lemma 12 Let the functions v, ¢" € H'(Q"), and 0, p(h) € H(Q) be related by the
bijection vl = T)ih 0 @" Yh =ho@" HY(Q") and the scalings

va(h) (@) = hop(x"), vs(h)(z) = v5(z"), $(h)(@) =" ("),
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for all 2" = ©"11" () € {O"}~. Then

. (D191 — byDoth) + W2, Bst)p + h207, (h, §)Dut)
oyt (2") =h! T ’ (5.62)
+h*0; (h, 9)050
. (ba0y 1) + by Oyt)) + h2hdzeh + h2b, (h, §)Dat)
Gt (") =t ’ (5.63)
+h*0% (h, 9)050
Oul" (&) = { (hn + 22d) 0100 + (he = 21) 000 + O + W], azw} (5.64)
. (010105 — byByvg) + W2, D3vs + W2, (h, ¢)av
Gt @) =n2d . ’ (5.65)
+h10, (h, §) v
(019105 — badyvs) + K2 Dsvs + h26%, (h, ¢)av
8177§ (:f:h) _ g 101U3 202U3 3U3 3 (5.66)
+h40d, (h, ¢)dyvs
y (by1v5 + b19yvg) + h2Phd505 + 207, (h, §)D4v
Gt (") =2y r ’ (5.67)
+h*b (h, §)svs
2 2
aszg (‘,ih) _ h*l (6281’03 + blagvg) + h (ang'Ug + h=b 8 U3 (568)
+h4b32( ¢)83v3
b O3v3 + (h1 + 22d)01v5 + (he — x1d)Oqv
Gt (&) =t 0 T Ty, (5.69)
+h2b% (h, ¢)divs

dyil (2") = {agvg + (hy + 22d)Bv3 + (hy — 21d)davs + W2 (R, ¢)aw3} (@). (5.70)

Consequently, we obtain

EXM)(@") = {Ea(h)()}(®),  ES(W")(@") = Es(h)(¥)(=), (5.71)
and
el (8")(2") = h*{eap(h)(v) } (=),
(5 (8") = b esa(h)(0) () (0). (5.72)
&y (8")(&") = eas(h) (v) (),
where

cij(h)(v) = e (v) + BPefi(h,div),  Ei(h) () = Ef () + WP E] (h,d59),  (5.73)
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with ef;(v) and E{(¢) given by
EY () = =11 — bodath),  ES(¢) = —(baO1t) + b10a9)), (5.74)
EJ(1) = — [(h1 + 22d)O1) + (hy — 21d)0at) + 59, (5.75)
e (V) = b1O1vy — bydhvy, €5 (V) = badyvs + b1 Doy, (5.76)
% () = % [51(D1vs + Dav1) + ba(Byor — Dva)] (5.77)
%, (v) = % b0 — bydsvs + Bsvr + (b1 + 2ad)Orvs + (hs — rd)dsvn],  (5.78)
() = 5 adhes + bidhs + Oy + (in + 2oy + (hs — mad)ova] . (579)
€2, (v) = D3v3 + (hy 4 x2d)dyvs + (hy — 21d)vs, (5.80)
and ef;(h, ¢;v) and EJ (h, ¢;1) defined by
B (h, ¢5v) = — (9100 + b (h, 6)0u + W26 (, 6)050) (5.81)
B (h,6:6) = — (00w + b, 0)0atd + W20 (h. 0)00 ) (5.82)
EY (b, ¢30) = 0}y (h, ¢)0:0), (5.83)
et (h, ¢;v) = @050y + b7, (h, 3) Doy + h20F, (R, ¢)Dsvy, (5.84)
o) — ( &, D30 + 501 + b (h, 0)Oavs + b, (h, 0)Davy ) | 555
+h2b, (h, $) sy + h2bi, (h, ¢) D50,
X (h, ¢:v) = ¢hdsvy + by (h, §)Davy + h2bT,(h, ¢)Dsvs, (5.86)
et (h, ¢;v) = (gb Dyvs + b (h, 3)Dvs + b (h, §)Drva + h20E (B, qs)agvg) . (5.87)
el (h, ¢;v) = bl (h, ¢)dus. (5.88)
Furthermore, there exists a constant c,(¢) such that
031;0 majtx e (h, ¢30)]0.0 < C1(9)]v]1.0, (5.59)
sup - max | EF (b ¢:9)log < Co(0)[[¢] 10 (5.90

0<h<hg

i
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Proof. From (5.62) we get

v

MY (") = by (") O™ = byy (&™) OPY" + by (™) Op" 4 bay () Ol

Using the scalings established in Chapter 3 to the unknowns as well as the two last

Lemmas, we obtain (5.62)-(5.64), and consequently (5.71) where the tensors E and

E#(h, ¢;%) are defined by (5.73), (5.74)-(5.75) and (5.81)-(5.83). Due to Lemma 11, in
particular the inequality (5.59), we obtain

O (&) = b { (0rv — bador) + W2rF (6 ) + W'st (i)} (@), (5.90)
O (&) = ! { (badvos + b1000) + W0 (b 65 0) + W5 (b 630) | (@),
O (&) = { (4 2ad)Oh0 + (ha — 01d)O + D00 + Wrf (h, 630) } (@),
and show that there exists a constant C;(¢) such that
sup max [rf (h,¢i¢)oe + sup max [sE(h,¢;9)|oe
0<h<hi i 0<h<hy o (5.92)

< Ci(@)|[Y],0

Consequently, we deduce a new formulation for the scaled three-dimensional problem
of a linearly piezoelectric shallow arch.

Theorem 18 Let the scalings to the unknown and to the data be as above. Then, for each
h < hy, the scaled unknown ((o(h), D(h)), (u(h), p(h))) satisfies the following variational

problem (cf. (5.41)-(5.43)):
Find a pair((o(h), D(h)), (u(h),p(h))) € X1 x X, such that
[ W'y, (0(h), D(h), (7, ) + hafy, (o(h), D(h)), (7, d))

tag (o(h), D(h)), (1. d)) + W*af;(h, 6) (o(h), D(R)), (T, d))

(5.93)
+b%; (7, d), (w(h), o(h))) + h*bj (b, ¢) (T, d), (u(h), p(h))) = 0

| for all (7,d) € X1,
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by ((o(h), D(R)), (v, 4)) + h*0};(h, ¢) (o (h), D(h)), (v,))

e

= 15 (v, ) + B2 (h, ) (v, ) (5.94)

| for all (v, ) € X,
where the continuous bilinear and linear forms are expressed by
Vil(rd). (0.6)) = = [ 7o) do— [ B w)da,

a%,zl((%a C_l)a (T> d)) = /Q Caﬂ@p 77—9/) Taps dm,

dal(7 ). (r.d)) = [

(Caﬁ33 T33 + p3aﬁd3) Top AT + / 6339;) Top T33 dx
Q Q

+2/ (2C3030 T30 + Posadp) T3a dx — / PsoTap ds dz
0 0

+/ (_2p030477—3a + €6a Ja) d@ dCB,
Q
and

(63333 T33 + P333J3) T33dx + / (_P3337*—33 +E33 673) dzdz,
Q

@waav@»a/

Q

lﬁ(v,w)Z—/ﬂfividm—/F givz‘dr—/r pi v dI.
N L

The bounded bilinear forms b (h, ¢)(-,-),a%(-,-) and the linear form 1% (h,$) are defined
by

Vi (h,9)((7,d), (v,9)) = —/Tm ¢ij(v) o* (h, ¢)dw—/dk Ey()o* (h, ¢)dz,  (5.95)
Q Q

G’I#I((i—a C_l)a (Ta d)) =h' /g; éaﬁ@pfepTaﬁ o dx + h? /g; Pga[ﬂ_'aﬁ ds o™ dx

+m4@ergwmwﬁm+w4@@mm_%mhwmm

+ h? /Q Cl330,70,T33 0" dx + h? /Q (2Py3aTsa + h*Epa do) dp o7 de

+ /Q (63333 T33 — P333J3) T33 0 dx + /Q (P33377'33 + €33 J:s) d3 0¥ dz, (5.96)
1 0)(0,0) == [ frvo (oo = [ gufo¥ (o) + ¥ (h o)ar

N

— / p; v;0™ (h, ¢)dT — h? / g; vi0™ (h, ¢)67 (h, ¢)dT. (5.97)
I'p

'y
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Applying inequalities (5.60) and (5.61), it is easy to verify that the last bilinear and linear

forms are bounded.

5.4 Generalized Korn’s and Poincaré’s inequalities

Let us denote by Vg v (§2) the space of generalized Bernoulli-Navier displacement defined
by
Vi = Vi (@) = {v € Vot e5(0) = ey (v) = 0},

which can be equivalently defined by (see Alvarez-Dios & Viafio [1998))

Viy ={v:Q = R®:v,(21, 79, 73) = Cal3), Ca € VEO, L),

5.98
vs(1, w2, 3) = C3(m3) — X0 (21, T2, w3) (L (23), (s € V' (0,L)}, o
where
Vo (0,L)={ne H'(0,L):n(0) =0}, (5.99)
V5'(0,L) = {n € H*(0,L) : n(0) = n'(0) = 0}, (5.100)
and
(%mwm®>:<M%)%mw><m>’ (5.101)
Xo(x1, T2, x3) ba(x3)  by(x3) To
b = O , (5.102)
(07) + (#5)?
by + b3 = 1. (5.103)
This space is endowed with the norm |v|$§N = €% (V) |0.0.

In Alvarez-Dios & Viafio [1998] we can see the proof of the following equivalence

between the norms

|"’|¢v)gN = )653(’”)‘079 > Cy(9) [vlly g, Vv € Viy. (5.104)

In addition, the admissible electric potential spaces are defined by

U= w0() = {9 € IXQ) B (9) € X))
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and
Uy =05(Q) ={ye¥?Q): =0 onTep=ToUT,},

respectively, equipped with norm

) 1/2
il = {mé Y \Em)\m} .
k ,

Theorem 19 Let Q2 be a domain in R® and let T.p C 0 be such that meas (Lep) > 0.
Then, there exists a constant C3(¢) such that

2

1/2
V15 = B )]0 = {Z )E;f(@/))) } > Cy(e) [l g, V¥ EWE (5.105)

0,0

Proof. We proceed in several steps:

(i) Firstly, we need to prove that the spaces ¥¢ and H'(€2) coincide. Clearly, H*(Q) C
WU?. To establish the other inclusion, let ¢ € ¥?. Since ¢, EZ(¢) € L*(Q) and due to
relations (5.74)-(5.75), then

XY b b 0\ [ —EY)

ot | = b, b0 —B3(p) | e [HO),
D39 (h1 + 22d)  (hy —a1d) 1 - B§(¢)

Bt boo—by 0 0\ [ —&EXQ)

O | | 0 0 b —b — 0, E?(¢) e ()"

D11 b, b 0 0 — 0 ES(¢)

Doot) 0 0 by b — 0 ES ()

Given the regularity of ¢ (the assumption ¢ € C3[0, L]) we have that d,51 € H ' (Q).
Now, deriving (5.75) with respect to the variables x; and x5, respectively, we deduce from

previous conditions that

0519 = (h1 + 22d) 0110 + (hy — 21d) 029 — 81E§(¢),

0301 = (h1 + 22od) 0129 + (hy — 21d) 029 — 82E§(¢),
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and consequently 03,1 € H~1(Q). Using similar arguments we deduce that

03310 = (h1 + 22d)013 + (he — 21d)0a31) — 33E§)(¢) e H'(Q).

In work of Duvaut & Lions [1976], it is shown that any w € H~1(2) such that d;w €
HYQ) in fact belongs to L*(€2), and so (i) is proved.

(ii) Tt is easy to show that the identity mapping from H'(£2) equipped with |||,
into ¥¢ equipped with ||||§¢ is continuous, since there clearly exists a constant d such
that Hng(Zb < di ||l g forally € H'(Q), and surjective, thanks to the step (i). The
inverse mapping ¢ € H1(Q) — E?(¢)) € ¥? is continuous, that is

1]l q < dal¥ll5, for all € T2,

or equivalently, such that

[Wlog + 1B (¥)60 > dy" ¥l g,

for all vp € H'(Q2). The conclusions thus follows from the closed graph Theorem, since
the space ¥¢ = H'(Q) is a Hilbert space when it is equipped with the norm ||||§,¢ :

(iii) We establish that, if 1y € W§ satisfies ¢) = 0 on [y UT, then ¢ = 0. Seminorm
is actually a norm over the space W?. Let us consider any ) € \I/g such that |77/)|$¢ =
|E?(1))]q = 0. From step (i), the condition E?(+)) = 0 implies

1

@jw =0 in Q.
Solving 0% = 0 with boundary condition ¢» = 0 on I'y U 'y, we arrive to
Y (21, 29, 13) = 2(x3), 2 € Hy (0,L).

The condition 0331 = 0 gives
2" (x3) = 0,

and therefore z(x3) = ¢. Since the boundary conditions ¢ (z1,x2,0) = ¢ (21,22, L) = 0,

we conclude that ¢ = 0 and ¢ (21, x2, z3) = 0 as required. =

We introduce the space of admissible electric potentials

Vg = {¢ e L*(Q) : B2() = 0},
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which it is equivalently defined by (see next lemma):
U = {¢: Q— R (a1, 22, 23) = 2(23), 2€ Hy(0,L)}.

Lemma 13 Let ¢ € \I/g. Then, the following conditions are equivalent:

(i) —E3(4) =0,

(ii) ¢ € VS,

Proof. It is clear that every element of W$ satisfies (i). Conversely, if 1 € U) satisfies

(i), then from conditions (5.74) we deduce

b1O11p — bydyth = 0, (5.106)
byd11b + by Bytp = 0. (5.107)
Combining (5.106) and (5.107) we obtain
by (D11) — Do) — by(Dh + Dy1) = 0, (5.108)
by(D11) — Dat)) + by (D11 + Dyt)) = 0. (5.109)

Multiplying equations (5.108) by b; (respectively by by) and (5.109) by by (respectively

by b;) and after algebraic manipulations, we obtain

Deriving with respect to x; and x5, one obtain

Oy — Oy =0, O + I = 0, (5.111)
and
O — Oap =0, D129 + Oaatp = 0. (5.112)
Consequently one has
all¢ = a22w = Oa

whose solution is given by

Y (21, 9, 3) = 21(23) + 2122(23) + 223(23).
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From (5.110), we deduce

2o(x3) = z3(x3), z9(x3) = —23(23).

Consequently there exists a function z depending only on variable x3 such that

Va1, T2, 23) = 2(x3). (5.113)

Since 1) € lllg, the boundary conditions give us z € Hj(0,L). =

Corollary 21 There exists a constant C' such that

Wl = [ESW)| 2 C g, w0 ews (5.114)

0,2

Corollary 22 There exists a constant C' > 0 such that

SUD = v or all (v,v) € x U,
(T, d)eX |(T,d)| 1,0 10 BN 3

5.5 Convergence of the scaled unknowns as h — 0.

Repeating the argument used in Section 3.3, we can see that the scaled unknowns
(u(h), o(h)) given in problem (5.41)-(5.43) converge in [H'(Q)]* x HY(Q) as h — 0 to-
ward a limit (u, ¢) and this limit can be identified with the solution of a one-dimensional

variational problem, which will be later identified.

5.5.1 Weak convergence

The following weak convergence hold.

Proposition 7 There exists C' > 0, independent of h, such that for all 0 < h <1 the
solution ((o(h), D(h)), (u(h),¢(h))) of problem (5.41)-(5.43) verifies

o33 (A)loq < C(0),  hloas(h)loq < C(0), h*loas(h)lyq < C(9), (5.115)
h|Da(h)]gq < C(0),  |Ds(h)lpq < C(9), (5.116)

[(u(h), p(h) x,,, < C(@),  [[(u(h), (M)l x,, < C(®). (5.117)
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Proof. Replacing (7, d) by (S(h), T(h)), with
Sss(h) = o33(h), Ssa(h) = hosa(h), Sas(h) = h2045(h), (5.118)
Ty(h) = hDa(h), Ty(h) = Ds(h), (5.119)
in the first equation of (5.41), it reads
a* ((S(h),T(h)), (S(h),T(h))) := ano ((S(h), T(h)),(S(h),T(h)))
+anz ((8(h), T(h)), (S(h), T (1)) + ana ((S(h), T(h)), (S(h), T(h)))
= —by ((S(h),T(h)), (w(h),(h)))

or, equivalently, we have

— by ((S(h), T(h)), (u(h), ¢(h))) = /Q [(C3333553(h) Sa3(h) + £33T3(h)T5(h)] o(h)da

‘l—/ﬂ [égggpSQp(h)Sgg(h)+403a39539(h)53a(h)] O(h)dil,'
4 /Q CrasssSizs (1) Sus (W)o(h)da + /Q 2o Ty (W) T(h)o(h)dz
‘l—/QOaggpSQP(h)Sag(h)O(h)dm.

Using the estimate on |07 (h, ¢)(x)| and the estimates on |67 (h, ¢)(zx)| established in

Lemma 11, the properties of the coefficients of the material and the inequality

[0* (h,9)]”
207 (h, ¢) > B

— h, (5.120)
we infer, from the two last equations, that
a* ((S(h), T(h)),(S(h), T(h)))

> (G~ 3Cut?) [ [Sy(0)S(h) + T Tih) de
. (5.121)

10,k /Q 1S,5(1)Sy(h) + Tu(W)Tu(h)] [0 (h, ¢)]? dee

> [C1 — §Coh® — LCahCo(9)] [(S(h), T(h))]5 -
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Setting (v, %) = (u(h), ¢(h) — @) € X, in equation of (5.42), one obtain
—bu ((§(h), T(h)), (u(h), o(h)) + ¢(h))) = /sz‘ui(h)(l +hPo")da

+ Jr, giwi(h)(1+ h?0%)(1 + h?6#)dl + / piui(h)(1 + h?o%)dl (5.122)

+/D3(h)E3(¢)(1+h20#)da;.

Using the estimates (5.60) and (5.61) for 6% and o#, respectively, the Young’s inequality
2ab < % + mb? for m > 0 and the fact that f; € L*(Q), ¢: € L*(Tn), pi € L*(T'z) and
$ € HY(0, L), we obtain

= bu((S(h), T(h)), (u(h), p(h)))
< (Cs +07Co(9)) (1 fllog + lIgllor + Ipllor) l(h)[h0
+ (i + 1*Co(9)) 12(W)ll, 0.1 Ds(R) o
< (G5 +h2Cs5(0) [I(w(h), (h))llx, , + (Cias + h*Ca(d)) [ Ds(M) 0.0

< (Cs + B2C3(0) (). @) x,., + Ly .,

Combining the previous inequality with (5.121), we deduce the existence of h; small

enough, when m is large enough, and of constant Cy(¢) such that
1(S(R), T(A))IIx, < Cr(&) l(u(h), &(W)x,, . if 0<h< h (5.123)
Now, putting (7,d) = (e, E) € X in equation (5.41) we get
—br((e?, E), (u(h),o(h))) = —bu((e’, E), (w(h), ¢(h))) + bu((e?, E), (0, $(h)))
=a*((S(h),T(h), (e, E)) + br((e?, E), (0, $(h))),
(5.124)

and taking into account bound (5.60) for o (h,¢) and the fact that 0 < h < 1 we

guarantee the existence of hg small enough and of constant Cy(¢) satisfying

|—bu((e. E), (u(h), a(h)| < Cs(8)(I(S(h), T(h))llx, + (e, E)o.

< (Co(9) [I(S(h), T(h))lIx, + Co(#)) [(u(h), ()l x,,, - (5.125)
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thanks to inequalities (5.89), (5.90) and (5.105). On the other hand, we have

= bl (e B) (), p )] = [ e ul)ess(0) (ul))o(h) i
+ [ Bp)Bue)oln)de
_ /Q [t () um) + Wef(h.gu)} (14 ¥ (b, 0))da
+ [ {Brom) + B 6 p)]}) (14 RoHh e (5.120)

By Alvarez-Dios & Viafio [1998] we have

o@Dl = | eshulh)es () ulh)de
Q
= [ {esmtimn) + 1w} da > Cualo) [u®l o (5.127)

Using the same argument and applying (5.105), we prove the existence of hq; small enough
and C11(¢) such that

B0 = [ {B2e0) +12BE (o o)} do
> BB 0+ KB (b s @(1) 3o — MIBLG)E0 — B (. 6: 52

1 ~ h? _
> §|E;f(90(h))|3,n - 5|E;f(h, o @(h))[5 o

1/ 1 \> & S . o
= {5 (03(¢)> -5 [Ci(9)] }H@(h)lh,g > Cu(@) PRl e, (5.128)

if 0 < h < hyy. Therefore, we prove the existence of hy3 small enough and Ci3(¢) such
that

= bulle B).(wt), o)) = Coate) ( [ (ehtuti) e+ |

Q

<Ez?<¢><h>>>2dw)
> Cus() | (u(h), (h)[%, .. if 0<h < his. (5.129)

Combining (5.125) with (5.129), and applying Babuska-Brezzi condition, we deduce the

existence of hy4 small enough and C4(¢) such that

|—bu((e, E), (u(h),#(h)))]
I(w(h), (M)l x,

I(u(h), (W)l x,,, < < Cu(@) [[(S(h), T(h))lx, -
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if 0 < h < hyy. The previous inequality together with (5.123) allows to obtain,
ICu(h), (W)l x,,, < C(9), (5.130)
I(w(h), o()llx,,, = [(u(h), &(h)) + (0, &(h))l x,
< [[(w(h), e(h)llx,,, + 1Py 0,0y < C(9) (5.131)

The weak convergence of (S(h), T (h)) follows by (5.123) and (5.131). =

Corollary 23 We assume hypothesis (5.40), conditions (HC1)-(HC3) for ¢" and
(t" m*" b*") and that coefficients Ay (833C330,+ Psaz Pag,) and Al (— Ps33Cs39,+E33P36))
do not depend on x,. Then, there exists a subsequence, still parameterized by h, and there
exist w € Vo, B € [L2(Q)], ¢ € LA(Q) and ® € [L2(Q)]°, such that the following weak

convergence hold

when h tends to zero:

o33(h) — Xas, hous(h) = X3, hzaag(h) — Y0,
hD,(h) — D, D3(h) — D3,
u(h) = u,
e(h) = ¢,
@(h) = ¢ — &,

with the following properties:

in L*(Q)
in L*(2)

in Vow(€),

/Zageﬁﬂ('v)dw =0, forallv = (v1,v2,0) € V5, (),

/Zagdw :/%Zagdw =0,

e (1) = Ci30,X0, + Ca333533 + Pa3yDs,
e5q(u) = eaﬁ(u) =0

ES(p) = —P3p, %0, — PsssXas + €330s,

EZ(¢) =0,

efﬁ(h, 0:u) = Capgplop + CapszXss + PsasDs,

203430230 + Py3aDg = 0, £0aD0 — 2Pp30 34

=0,

(5.132)
(5.133)
(5.134)
(5.135)

(5.136)

(5.137)
(5.138)

(5.139)
(5.140)
(5.141)
(5.142)
(5.143)

(5.144)
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and the limit variational equations read

/QAg3533€§3(u)€§3(”) /QA33P333 [633( )Ed)(w) E¢(90)€33('U)} da

+ / A4, C333 B3 () ES (1) d — / (egg(u)ng + E;;S((p)dg) do =0, (5.145)
Q

Q

for all 733,d3 € L*(9),

/233€§3(U)+/@3E§5(¢) dm:/fivi dfl?+/ gividr+/ pi v; dI’,
Q Q Q I'n I'r

for all (v,4) € Vi x U§,

(5.146)

1
C3333833+P333P333 °

d _
where Ay =

Proof. From the previous estimates, we conclude the existence of a subsequence
(2,0, u, ) verifying (5.132) and (5.136).
On the other hand, using the same ideas as in proof of Proposition 4, and passing to
the limit the first equation of (5.41), we obtain the relations (5.139)-(5.142) in L? ().
In particular, taking 733 = d3 = 0 in equation (5.42), multiplying by 2~ and passing

to the limit, we obtain
efﬂ(ha 0;u) = CopopXop + Capssas + PiapDs,

since €5, (u) = eﬁﬁ(u) = E?(p) = 0. Setting 733 = 7,5 = d3 = 0 in equation (5.42) and
multiplying it by A~ and passing to the limit we deduce (5.144).

We multiply equation (5.42) by h?. Taking the limit when A — 0 we obtain (5.137)
when h goes to zero. Choosing now ¢» = 0 and the test functions (v;) € Vg, as in
Theorem 5.3. of Alvarez-Dios & Viafio [1998] in equation (5.42), we obtain immediately
(5.138).

Taking now v € Vi and ¢ € ¥¢ in (5.42) we obtain

[ o) [edy(w)+ B, ov0)] oh)do + 20 | oaalh) ez 0)o()i

Q
1 [ auslt) el d50)ol)da -+ 1 [ Da(hEL (. 6:0)o(0)do
+ [ Da) [E50) + 128 650 ol

:/waio(h)d:ch/FN givio(h)é(h)dF+/ pivso(h)a(R)dT,

rp
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and passing to the limit when h — 0, we get

/ s €5y (v) da + / Sas €, d;v) da + / DB (V) d = / fivi da
Q Q Q Q

+/ gividF—F/ p;v; dl,
Cn Ty

which becomes (from (5.84) and (5.86))

/ s €55 (v) da + / Sag ¢hChda + / D3EL (V) da = / fiv; de
Q Q Q Q

I'n 'y

From (5.138) we obtain that the second term in the above equation vanishes, and therefore

(5.147)

the previous equation reads.

Q Q Q r T'r

_ _ —1 _
Y33 _ C3333 P33 6?3(“) - 0339;)29,) (5 148)
Ds —Ps33  E33 E:?(‘P) — P3p,20,

Applying properties (5.138) and taking into account that the coefficients Ady(—£33C330, +

where

Py33Psg,) and A%s(Ps33C330, + £33P59,) do not depend on ,, we obtain mixed variational
problem (5.145)-(5.146). m

5.5.2 The asymptotic expansion method

In order to be able to show that the coefficient ¥y, vanishes in expressions (5.139) and
(5.141), we use now the displacement-electric potential-stress-electric displacement ap-

proach instead of the displacement-electric potential approach used in Section 3.4.

We assume that the solution of a problem (5.93)-(5.97) can be expressed as the asymp-

totic developments
oh)=h 0+ h 202+ +h%c* + ... oij € L*(9), (5.149)
D) =h"D*+h D2+ D+ 1h*D*+ ..., Dy, € L*(Q), (5.150)

(u(h), p(h)) = (u’ + h*u® + ... " + h2p® +...), (5.151)



Chapter 5. Shallow arch theory with an electric potential applied at both
154 ends

where (u?, ") € Xa,, (U, ¢?) € Xgu, p > 1 and the successive coefficients of the
powers of h are independent of h. The need to start the development with terms in h~*
comes from the scaling of (3.36)-(3.39) (see Chapter 3). Inserting these developments into
problems (5.93)-(5.97) results in variational equations that must be satisfied whatever h,
and consequently, the successive powers must be zero. The problems at the successive
orders are

Problem P~* is given by:

aﬁr,o ((0-74a D74)7 (Ta d)) =0 bg ((0-74a D74)7 ('U, ¢)) =0
for all (7,d) € X1, for all (v,¢) € X -

(5.152)

Problem P2 is specified by:

atro (672, D7%), (7, d)) = —af;, (6=, D), (7,d))

—ajj(h,¢) (e~", D7), (7.d)), (5.153)
for all (r,d) € X1,
by (072, D7%), (v,¢)) =0

(5.154)
for all (v,¢) € Xo.u-
Problem P reads:
(%o ((6°, D%, (1,D)) = —afy, (672, D7?), (7, d))
—a?ﬂ ((0_47 D_4)’ (T> d)) - b% ((T’ d)’ (’U,O, 4:00)) (5 155)
~ajy(h.¢) (72, D7%),(7.d)).
| for all (7,d) € X4,
by ((0°, D), (v,9)) = 15 (v,4), (5.156)
for all (v,¢) € X .-
Problem P? reads:
( GZ,O ((02’ Dz)’ (T> D)) = —GZ’Q ((UO’ DO)’ (T’ d))
_a%A ((0_27 D_2>7 (Tv D)) - bif ((Tv d)? ('U'Za 902)) (5 157)

_aﬁ(ha ¢) ((UO’ DO)’ (T> d)) )
| for all (7,d) € Xy,

{ 04 (6% D), (0,9)) = [5(v,0), ¥(v,0) € Xy, (5.158)
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Furthermore, we have
003 = Capapey,(u°), (5.159)
0';52 = Caﬁepegp(UQ) + Ca533€§3(u0) — P3aﬁE ( ) + Caﬁepeﬁp( (ba ), (5160)

Ui% = Caﬁ(?peg)p( ) 4 Caﬁ33€33( ) — P 3aﬁE§) (%12

+ Cagopehy,(h, p;u?), p >0, (5.161)

030 =0, (5.162)
50 = 2Cs03¢55(u’) — Posa 5 ("), (5.163)
090 = 2Cs030e5(u?) — Posa B (£%), (5.164)

02 = 2Cs03pe5 (UPT2) — Pyso ES (0*P12), p>1, (5.165)

o3 =0, (5.166)
051 = Cazapely(u’), (5.167)
gy = C330p€gp(u2) + 03333€§3(U0) - P333E§5(<,00), (5.168)

U§§ = 033aﬁ€ﬁg(u2p+2) + 033336;?3(“21?) — P333E;§25(§02p), p>1, (5.169)

D;* =0, (5.170)
Dy® = 2Ppsacl, (u°) + 295 E5 (), (5.171)
Df = 2Ppacl, (u®) + c0a EL(9%), (5.172)

Dy = 2Ppsacl, (u™?) + £ga ES(9™), p>1,

D;* =0, (5.173)
D5* = Paagely(u), (5.174)
D§ = Paagel(u?) + Paggels(u®) + 53 E5 (0°), (5.175)

D = PBaﬁeiﬁ( )+ Pysely(u™) + e ES (9™), p> 1. (5.176)
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5.5.2.1 Cancelation of the factors of h™*, —4 < ¢ < 0, in the scaled tensors

In this section we show that the formal expansion of the tensor (5.149) and (5.150) induced
by (5.151) do not contain any negative powers of h.

Choosing 733 = 03_34 and d3 = Dy 4 for the test functions in the first equation of (5.152)
we obtain
03 = D3 =0in L*(Q).

From (5.155) we deduce the following relations in L? (€2):

ehs(u’) =0, (5.177)
¢ (u’) =0, (5.178)
egg(uo) = C339p 09;2 + 633330;?3 + 15333D§, (5.179)
Ej (&) =0, (5.180)
E:?(SO )= P3aﬁ0 P333033 + €33 Dg, (5.181)
and consequently
0.5 =D3% =03 =0, and o3 =D, =0. (5.182)

Choosing an appropriate test function in (5.155) we establish the following condition
ed5(u®) + el 5(h, ;u’) = Cagop 0, + Capsz 035 + PragDy, in L?(Q), (5.183)
or, equivalently,
caﬁGp 05,;2 = eig(uz) + eaﬂ( O u ) - aﬁ33 ‘733 P3aﬁD37 (5.184)

with Cjiz3 = P31 = 0 (see Remark 15).

Proceeding as in Chapter 3 we now establish that 0;5 = 0. For such, we need to prove

the existence of w € V4, such that

efl(ﬂ') + 611
612( )+ elQ(h o;u )

622( ) + 622

1133 095 + P311D§) =0

- (C
0 : (5.185)
- (C

2933 095 + Psoa DY) = 0
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to conclude that equation (5.184) becomes,
el 5(1t — u?) = Cagg,0,,. (5.186)

Then choosing 73; = 0 and d; = 0 in (5.155) we get, after some algebraic manipulations,

(Caﬁ33 095 + Pgang) — (eﬁﬁ('&) + efﬁ(h, o; u0)>
/ Tapd = 0,
Q

— (o) + (b o) + () + ey (o)

for all 7,5 € L*(Q2). After some algebraic manipulations, the previous equation reads
/ [ — <eflﬁ(u2) + efﬁ(h, o; u0)> + <€zg("_") + efﬁ(h, gb;uo)) ] Tapdx = 0,
Q

for all 7,5 € L*(2). Putting 7,5 = eﬁﬂ(ﬂ — u?) we obtain that eﬁﬂ(ﬂ —u?) = 0, and
therefore w = u?. Substituting @ by u? in (5.186) we get

-2
Oup = 0.

We assume then that ‘7;/? = 0, which is equivalent to saying that w? satisfies (5.185). Then,

combining the previous equation with the expressions (5.179) and (5.181), we obtain

Ci133 833 + Pa11 Pass) efs(u®)
) = el gty 4 ag [ (et ) 6 - (5187
+ (=Cl133 Pyss + Ps11Cls33) E5(¢°)

efo(u?) = —efy(h, d;u°), (5.188)
(62233 €33 + P322P333) 6?3(’“0)
652(1"2) = —632(]1, ¢; ,uO) + AgB — _ — — b/ 0 ) (5189)
+ (—02233P333 + P32203333) ES(¢7)
with
Ady = — L (5.190)
B Caz33ss + Paga Pass
5.5.2.2 Identification of the leading term (u°, ©°)
Corollary 24 The displacement u® and the electric potential ©° are given by
Ug(xla .I'Q,l'g) = fa(l';g), ga € ‘/02(07 L)7
u’ € Viy: (5.191)

u§(w1, T2, 73) = Es(ws) — Xo&L(w3), &3 € Vi(0, L),
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()00:237 Z3 EHl(OaL)a

€@+ UL 0 WOz, m9,0) = $(0) = ¢, (5.192)

@O(xl,xz, L) = @(L) = S0617

( X} (21, 22, 73) ) _ ( bi(z3) —ba(x3) ) ( T ) | (5.193)
Xb(21, T2, T3) ba(xs)  bi(ws) T2

b+ b3 = 1. (5.194)

where

and

Proof. Taking into account relations (5.177)-(5.178) we get expressions (5.191) for the
components of u® such as in Alvarez-Dios & Viafio [1998]. Condition (5.192) follows from
equation (5.180) taking into account the electric boundary potentials acting at both ends

of the beam. =

Substituting the relations (5.191)-(5.192) into (5.187)-(5.189) and taking into account
the definitions of eﬁﬂ('u?), equation (5.76), we can evaluate u? as a function of the field
(S, S &iy 23) that it is independent on variables x; and x5. The following relationships are

a consequence of previous corollary and they will be used in the next proof

Up = Eas Uy =& — Xohs &a € V5(0,L), &€ V4 (0,L), (5.195)
ef(ud) = & — XoEL + dLEL (5.196)
©° = z3, 23 € H'(0, L) and satisfying 23(0) = ¢f), 23(L) = gpé, (5.197)
BJ(¢°) = —05¢° = —24, (5.198)
() = ~0s7" = 24 + (g — D), (5199)
o =bizy — bowy, X5 = bowy + byaa. (5.200)

Lemma 14 Let u® € Vi and ©° € ¢ + U8 be given by (5.191) and (5.192), then every
element u? € L*(Q) satisfying (5.185) is such that

s1(3) + 5-x58(x3) + 521 (Cony — Cezh) + 170 (23)

= /! 1t /! 1t " ’ (5'201)
+2101 (9585 — ¢1€1) — 1by (165 + u81) + P1pés
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sa(3) — ﬁxlfs(%) + ﬁﬂb (Cn&s — Cezz) + 210 (23)

uj = : (5.202)
—x1by (9585 — 91&1) — 211 (185 + 9581) + Papél

where s4, 8,2 € L*(0, L) are arbitrary functions depending only on the variable x3 and
1 1
19(a5) = -Con (05 + 61E1) — - 010 — b1 (6565 — G160 + b (0165 + 6561,

while ® = (®,3) denotes the symmetric matriz with components

[ ;73 2 2

D1y = Cpy | 2b2b1 2179 + 5 "5 (=07 +b3) |, (5.203)
[ 2 2 ;73

D1y = Cyy |T122 (05 — b]) — 2b1b2 (5 — 5)} , (5.204)
[ x5 o 2 2

@21 = Cm ngbl ? - 5 + 292y (_bl + b2) s (5205)
. 172 :L‘2

Dyy = Cy (52 — 51) (b3 —07) — 2b1b2:p2x1} . (5.206)

The constants C,, and C, are given by

Cp = Al (Chiss €33 + Psi1Pass)

Ce = Ag?, (_61133P333 + P31163333) .

Proof. Equations (5.187)-(5.189) become, from (5.76),

b1yt — bydou} = Crefy(u®) + CoES (¢°) — €] (h, ¢ u), (5.207)
(b1 (Dru3 + Oyui) + ba(dru; — Dyu3)] = —2ef5(h, s u”), (5.208)
bydiu2 + b1y = Crnelhy(u’) + CLES(O°) — el (h, ¢; u?). (5.209)

From (5.207) and (5.209) we get the following relations
b (1] + Dyu3) + by (O3 — Dyuf) = 2C,e83(u’) + 2C. B3 (¢°)
= chi(h, g3 ) — ey (h, 60", (5.210)

by (O1uf — Oou3) — by (Oouf + O1u3) = X (h, ¢ ul) — e (h, p; u®). (5.211)
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Multiplying both equations (5.210) and (5.211) by b; and b, we get
biby (B2 — 9o1i2) — b3 (Oas? + Ohul) = by (622( Loy ul) — et (B, u )) . (5.212)
by (Orui — Byuz) — biby (Ooui + O1u3) = by (622( L¢3 u’) — ey (h, d;u )) , o (5:213)

and, by using equation (5.208), we arrive at the following relations

bzbl (81u§ + 82’&%) —+ bg(@lul 82’&2) 262612( s ¢, 110), (5214)
bf(@lug + 327,@) + blbz(aﬂL% — 82u§) = —leeﬁ(h, ¢, 110), (5215)

respectively. Adding up equation (5.213) with (5.214) and subtracting equation (5.215)
o (5.212) we obtain

Ot — Dyud = by [edy(h, 650) = efi (b, 65u°)| = 2baeti(h, 61 u?), (5.216)
and
62u% + 61U§ = _lee?;(ha o;u ) — by [622( ;05 u ) 1(h> é; UO)] . (5.217)

Differentiating (5.216) with respect to x; and x5, respectively, and (5.217) in order to

x1 and x5 we obtain the following homogeneous system

Onut — Oyus =0, (5.218)
Orpui — Opus = 0, (5.219)
Oout + Onyus =0, (5.220)
Oopui} + Oypu = 0. (5.221)

Multiplying (5.207) by b; and deriving with respect to x1, we have
b2811u1 == blbgalgul — b181 (gb 51 me?fg( 0) — CCE??((,DO)> s (5222)
and applying (5.219), (5.209) and (5.198), we deduce

bionu; = ba0y (b182u2) — b0 <¢1§1 megg( %) - CeE:(f(‘PO)>

= — D20y u2 + by Cr D€y (1) 4 by Crrndy e (ul).



5.5. Convergence of the scaled unknowns as h — 0. 161

This expression can be written as follows, from (5.191) and ( 5.194),
Onui = Cpn [(—07 +05) &) — 2b1ba&s] - (5.223)

Consequently, there exist functions k; and ky such that

2

T

To characterize the component u2, we return to equation (5.209). Multiplying it by

b, and deriving in order to x5 we have
b1byOr2u; + biOuz = —b1 0 (45/255 — Cnefy(u’) — CeEg)@PO))

which, from (5.218)-(5.220), leads to

biO2uy = —b1bad1pu; — b10, (45/2% — Oy (u’) — CeEg)(@O))

= —by01 (b101u?) + b1CrDoels (1)
= —boh (badud — (81€] = Cnely(u®) = CLEF(¢")) ) + biCrdiely(w)
= —b500u3 + Oy, (—bgalegg(uo) + b182e§3(u0)) )

Using again the relations (5.191), (5.193) and (5.194) we conclude that

Oaguy = Cy [2b2b1 &Y + (b5 — b7) &3] .

Solving this differential equation, we prove that there exist functions s; and s, such that

2

u% = k‘Q(fL'Q, 1'3) + IL‘lkfl (1'2, IL‘3) + %Cm [(—b% + b%) 1, - 2b1b2£g} s (5225)
2
T

U% = 82(1'1, .’L’g) + .TQSl(l'l, .’L’g) + Esz [ngblﬁf + (b% — b%) g] . (5226)

Putting in (5.218) and (5.219) the components (5.225) and (5.226) we get

8181(1'1, IL‘3) == Cm [(—b% + b%) 51 - 2b1b2§;] s (5227)

Dok (3, w3) = Chyy [2b20:1€] + (b5 — b7) & (5.228)
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and therefore, there exist s3(x3) and k3(x3) such that
s1(w1, 23) = s3(ws) + 11Cy, [(—7 + b3) & — 2b1b285 ], (5.229)
ki(za, 25) = k3(xs) + 22Ch 2020167 + (05 — b7) &3] - (5.230)
Consequently, the expressions (5.225) and (5.226) become

ui = k(22 x3) + w1ks(a3) + 21220, [2b2b:&] + (b5 — b7) &5

2
+ SO [(=8F +83) & = 2hibogy] (5.231)

2
T
ug = 82(1'1, IL‘3) + 1'283(1'3) + fcm [ngblgil + (b% — b%) g}

+ 2001 Cr [ (=07 + b3) & — 2010265 . (5.232)

Substituting these expressions in (5.220) and (5.221), we obtain

822]{72(.1'2,33'3> = —Cm [(—b? + bg) 1/ - lebggg] s (5233)
81182(.%'1,33'3) = —Cm [ngblff + (bg - b%) g] s (5234)

and therefore, we prove the existence of the functions ky(x3), ks(x3), ss(z3), Ss5(x3) such
that

xz

ko(z9, 23) = ks(23) + moky(w3) — gcm [(=0] +b3) & — 2b1b285] (5.235)
2
X

82(1'1, {L‘g) = 85(1'3) + ZL‘184(ZL‘3) - Elcm [ngblgg + (b% - b%) g] . (5236)

Hence

Ui = ks(x3) + woka(ws) + z1ks(23) + T122C, [202016] + (b5 — b7) &3]

3 a2l
H(Z-2) o (-0 + ) - 2mugl] (5.257)

2 2
+ (ﬁ - ﬁ) O [2b2b1&7 + (b5 — b7) &3] - (5.238)
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Applying in (5.216) and (5.217) the components u? we obtain

ks(ws) = s3(ws) + b1 (9585 — ¢1€1) — ba (9165 + d5E1) (5.239)
sa(w3) = —ka(ws) — ba (6585 — H1&1) — b1 (9185 + 95€1) (5.240)

so that we have
ui = ks(w3) + woka(w3) + 2183(23) + 2101 ($5€5 — $1€1) (5.241)

— 21by (1€) + 5E1) 4 1 22Cly [202b1 €7 + (b5 — 17) &5 ]

(3B en il 212

uj = s5(x3) — w1ka(ws) + wa53(w3) — 2102 (PhEL — P& — 1by ($1€) + PHEY)

xy  af " 2 2\ ¢
i (5 _ 5) Co [20ab1€! + (5 — 1) €]

Substituting these expressions into (5.210) we conclude

by

83(33'3) :b_l

1
—%j%$+¢ﬁﬁ—Uﬁ—@ﬂ%%—¢£b+%mﬂ%%+¢%b-

1
ky(w3) + by (Cmés — Cezy) + C (¢85 + ¢161)

Defining the function 7° by
1 1
r(xs) = b—Cm (9565 + ¢161) — o (955 + #161)
1 1
— (b — 03) (6485 — 91&1) + 2buba (16} + 431,

we may express us and u3 as follows

1
by

+ 211 (9585 — $1E1) + 21220, [2b2b1 ] + (b3 — bT) &5

1 / /
(ZL‘le —+ ZL‘lbg) k’4(l’3) —I ( mgg — 0623) + 1'17”0(1‘3)

ui = ks(zs) + b

2 2

— 21ba ($1&5 + ¢5€1) + (ﬁ - ﬂ) Co [(—02 +02) € — 201bo€3],  (5.244)
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1

1
U% = s5(73) — b_1 (x1by — 29by) kg(x3) + b—1$2 (Cmfé - Cezé) + 9027“0@3)

— 21by (55 — $1€L) + w1 Cry [ (=T + 13) & — 2b1brE5 |

2 2
— ayby (8,6} + BHEL) + (”’”— ~a

5 2)0m (2020167 + (b3 = 07) &5] . (5.245)

We evaluate now the equation (5.156) for test functions in spaces (v, ) € Vi x U5,
Then, there exists u? satisfying (5.185), and consequently 0;5 = 0. Clearly, (5.179) and
(5.181) become

€§3(u0) = 6_133330':?3 + ngng, Eg((po) = —P3330'g3 + 533 Dg, (5246)

respectively. The positivity hypothesis (HS,) guarantees that

C P.
3333 Laas | 0, (5.247)
P33z E33
and therefore, we have
o33 = Af <533€§3(u0) - P333E§)(900)> : (5.248)
Dy = A, <p333€§3(u0) + (73333E;?(900)) ; (5.249)
where
Ay = = S (5.250)
P Cus338ss + Pagy Py’
efs(u®) = & — X0€h(ws) + 9LEL,  ES(¢°) = —4. (5.251)

Furthermore, the variational problem (5.155)-(5.156) becomes,

/ (Csss3 035 + Pss3 DY) Tasda + / (—Ps330% + &33 D3 ) dsd
Q Q
(5.252)

—/ Tag €94 (u’)da — / ds ES(%)dx = 0, for all (733, d3) € L*()
Q Q

/0g3€§3(v)dm+/DgEg)(@/))dm:/fividm—i—/ g;v;dIl’
Q 0 Q r

N

(5.253)
+/ pividl, for all (v,v) € Viy x U3,
I'p
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5.5.3 Strong convergence

As in Section 3.4.1, and using similar techniques, we prove the following result.

Theorem 20 For(0 < h <1, let ((o(h), D(h)), (u(h),p(h))) € X1 xXy be the solution of
(54])—(543), and Ag3(<€_'336339p + pgggpggp) and Agg(—pgggégggp + gggpggp) b@ independent

on x,. Then:

u(h) — u®, strongly in [H'(Q))?,  (5.254)
o(h) — ¢°, strongly in H'(Q),  (5.255)
o33(h) — 0%, hosza(h) — 0, h*oas(h) — 0, strongly in L*(Q),  (5.256)
hD,(h) — 0, Ds(h) — D§, strongly in L*(Q).  (5.257)

Proof. For any (7,d) € X, one has

amo (7,d), (F.d)) + ans (7. d), (F,d)) + ans ((7.d), (7,d)) > C||(7,d)|%,. (5.258)
Replacing (7, d) in equation (5.41) by (S(h),T(h)), where
Ssa = hS3a;  Sap=h"Sas, T3=Ts, T,=hT,,

with

S(h) = o(h)—&°,  T(h)=D(h) - D

095 = 0%, 093=0, Gog=0, Dy=Dj Dy=0, (5.259)

equality (5.258) reads

CIS(H), Tk, = C {|oss(h) = o s + 1 losa ()0 (5.260)
+h* 0as (MG o + B2 [Dalh)[fq + [ Da(h) = D5, b

< ano ((o(h) = 5", D(h) = D). (a(h) - &". T(h) — D"))

~ Waps ((o(h) = &, D(h) = D°), (o(h) = &, D(h) - D"))

~ hlaga <(U(h) — 5%, D(h) — D°), (a(h) — &°, D(h) — DO)) = A(h).  (5.261)
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From problems (5.41), (5.42) and (5.155), and taking into account that (6'*4,D_4) =
(&_Q,DJ) = (0,0), A(h) may be written as

A() = =ty ((o(h) = &°, D(R) = D°), (u(h), ¢ (h))
~ano ((&°. D). (o(h) = &, D(h) - D"))
~ Way ((6°,D°),(a(h) — &, D(n) — D))
~ hlag. <(6’0, D), (o(h) —&°, D(h) — D ))
or equivalently, it reads
A(h) = =by ((o(h) = &°, D(h) = D°), (u(h), o(h))
+bir(((h) = 6°, D(h) = D), (u’,¢"))
—h? /Q (Capss 093 + PsapD) oas(h)o(h)de, (5.262)

Taking (v,9) = (u(h), ¢(h) — @) in equation (5.42), we have the following expression for

the term

:/fiui(h)o(h)dm—k/ giui(h)o(h)é(h)df—k/ piui(h)o(h)o(h)dl’
Q 'y

i / Dy(h) Es((h))o(h)dz — / oSyesa (u(h))o(h)dz — / DY, (@ + ¢)(ho(h)dz.

Due to the weak convergence result, and to the assumed estimates for f;, g;, p; and o7,

one has, as h — 0,
Ay —>/fl-ul-dzc—|—/ giuidf+/ pl-ul-dFjL/@gEg)(@)dw
Q Ty rL Q
_/ng«:e?&:(uo)dw—/DgE:?(SOO‘f‘@)dw
Q Q

= / D3 (p)dx — / DYES(¢)da. (5.263)
Q Q
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On the other hand, the two last terms of (5.262) can be written in the following expansive

way
Ao(R)=by((a(h) — &°, D(h) — D), (u°, ¢°)) — h? /Q (Capsz 095 + PsagDy) oag(h)o(h)da
—— [ ult) — o) s (wlolh)da — [ (Da(h) — DY S olh)da
— h? /Q (Capss 035 + PsasDY) 0ap(h)o(h)de.
which become, as h goes to zero,

Ay = _/ (Sa3 — 035) €55 (u”)dz — /(@3 — D) E5(¢)da
Q Q

- / (Caﬁ33 033 + Psang) Yapdr.
Q

Choosing now v = u € Vi and 1 = ¢ — ¢ € ¥§ as test functions in (5.146) and
(5.253) we conclude that

Ay = — / g3 ey (ul)da — / D3 E3(o°)dx + / 09 55 (u’)dax + / DY E(°)dx
Q Q Q Q
= —/ fiu?dm —/ giu?df — / piu?df — / D3 Ef(aﬁ)da:
Q Cn Iy Q
+ / fiulddx + / guddl + / pyu;dl + / DY ES(p)da
Q Cn Iy Q
— [ (08 - 20) B9,
and consequently, by combining the two limits, we have
A=A +Ay= / DB (@) dx — / DYES(p)dx + /(Dg —D3) ES($)dx = 0.
Q Q Q
From (5.41) one has
—bu(((7,d), (u(h) —u’, o(h) — ¢°)) = amo ((o(h), D(h)), (T, d))
+h*ams ((a(h), D(h)), (T,d)) + h*aga ((o(h), D(h)), (T,d)) (5.264)

_ /Q 735 €33 (u0)o(h) dar — / dy By(o")o(h) da.

Q
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From inequalities (5.60), (5.89)-(5.90) and (5.117) we obtain

— by (((7,d), (w(h) — u°, 5(h) — "))
| Ds(h) — DYoo + loss(h) — o%sloq

+1? [Da(h)|gq + 1 [0as (W)l o + h* 0as(R)5 g

1/2

< (Cy + h2Co(¢)) (7, d)llx,

+(Co + W Co(9) (7. d)|Ix, ,

which together with the Babuska-Brezzi (inf-sup) condition allows us to prove the exis-
tence the existence of D;(¢) such that

1t (o). () — . o) — )

_ o|?
(r.d)eX (T, d)|x, SDl(cb){}Dg(h) D5,

2
+[oa3(h) — 053, + 1 | Da(h)[g o+ h* |oas(h)]gq + 1 \Uaﬁ(h)\?),g} + D1(9),

if 0 < h < hy. Now, putting (7,d) = (els(u(h) — u°), EJ(p(h) — ¢°)) in the previous in-
equality and applying Korn’s and Poincaré’s inequalities, and evoking inequalities (5.127)
and (5.128), we obtain

2 2
H (u(h) - uo’ ‘P(h) - 900) ng,w < Dl((b) {’Di’*(h) B Dg‘on + ’033<h) B 0:93‘079
12 [Da(W) g + ¥ oas (W) + 1 loaa (Wi o } + Di(@),
when h — 0. In this way, we finished to prove that (u(h))n~o and (¢(h))s=0 converge

strongly. m

5.6 The limit scaled one-dimensional problem: exis-

tence and uniqueness of the solution

Substituting equations (5.248) and (5.249) in the variational equation (5.253) we have
[ 4% (zusehw) ~ PusBS() ey (v)de
Q
b [ Al (Prascly ) + Cuam S () Ef (0)de
Q

:/fividzcjt/ gividFjL/ piv;dl, (v,9) € VgN X \Ilgs, (5.265)
Q I'n I'z

as the equation to be satisfied by (u®, %) € Vi x (¢ + ¥9)
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Lemma 15 The problem (5.265) has one and only one solution.

Proof. In order to prove the ellipticity of the bilinear form of the problem (5.265) we

take into account Korn’s inequality: there exists a constant ¢ > 0 such that (cf. (5.104))
1e?(V)|a = e (V)|a > ¢(0)||V]l1a, for all v e Viy. (5.266)

The properties of the coefficients £33 and Csass and the inequality (5.114) together guar-

antee that
/Q Ay (ey(v))? dx + / Ay Chags (B2 (6))dx > erlely(v)[2 + cal 2 ()2

> () (VIR + 1015 0)

for all (v, 1) € Vi x 5.
Using Stampacchia’s Theorem and Lax-Milgramm Lemma, the existence and unique-

ness of solution of problem (5.265) is guaranteed. =

Putting now & = 0, v = 0 and (, = 0, ¥ = 0 successively in (5.265) and taking into
account the relations (5.195)-(5.200) we get the following result.

Corollary 25 The element (€;,&y, &3, 23) € [VE(0, L)]? x V0, L) x (¢ + HE(0, L)) is the
unique solution of the following coupled variational problem:
( Find &3 € VE(0, L), such that
L L
| AznaduagiGians + [ A {2 (6 + 605) + Punch} A6y

0 L r 70 (5.267)
= / FaCade - / MaC;de =+ FOI;Ca(L> - MoI;C;(L)a
0 0

| forall (s € VE(0, L),

( Find (&,2) € V0, L) x (¢ + HY0, L)) such that
/OL Ay {E33 (&5 + 0E5) + Passzs | Alidas
- /OL A§3 {P333 (éé + ¢Qa§f3) — C_Y33332§} Adsdas (5.268)
= /OL Fy(adas + Fy Gs(L),

| for all (¢3,q3) € Vi (0, L) x HY(0, L),
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where the transversal resultants are defined by

F,= / fidw + / gidry, Mg = / X5 fadw + / Xp9sdy,
w YN w YN
FE = / pidw, MY = / Vopsdeo,

Iagz/x(blxbﬁdw.

5.7 The one-dimensional equations of a transversely
anisotropic shallow arch; formulation as a boun-

dary value problem

In this section our goal is to give an approach to the piezoelectric shallow arch occupying

the volume {Q"}~. In view of the scalings

Calws) =07 Calws),  G3(xs) == Golws),  z5(ws) = z(wy), inw,
@ (0)(&") = (h™" ug (), u3(x)),

2" (0)(2") = ¢"(2),

(Gap(0)(&"), 754 (0)(&"), 553(0) (x")) = (h*og5(x), hos, (@), o5 ()),
(DA(0)(&"), D5 (0)(&")) = (hD (), D3()),

for all " = (&, #h, &), where the mappings ®" : Q — Q" and ©" : Q" — {0}~ are

those defined in Sections 5.2.1 and 5.3, we obtain the following corollary.

Corollary 26 (a) The de-scaled functions are given by

ak(0)(@") =&k, €L e Vi, L), (5.269)

o)

ah(0)(&") = & — XM, &b e Vi, L), (5.270)

PhO)(E") =2, 24 e H'(0,L), 2(0)=¢y" #(L)=¢" (5.271)
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Gap(0) = 63,(0) = 0, (5.272)
G35(0) = Ag:sh {“533 [(53) — XGM(ED)" + (0h)'(€0) ] + Py, :}«:”} ) (5.273)
Dj(0) = Ay’ {Pz«%g [(&5) — xa™ (&) + (95)'(€0)'] — Ciaas g/} ; (5.274)

for every point &" = © (mh)

(b) The mechanical and electrical field (€0, 28°) is the solution of the following one-
dimensional boundary problems (cf. (5.267)):

( <mg°) _ (n’;vo%)' = P+ (M2) in (0, 1),
£5(0) = (£5)'(0) = 0,
—my" (L) = —Mg",

{ —Co37 1 (Eh)" (L) + ng (L) (o) (L) = Fl — MJ(L)

([~ (% 0) (déf’O)/ — B, in (0, L),

50)=0, 240)=¢p" (L) =g,

ns(L) = Fy"", dg®(0) = dg”(L) = 0

where
b = [ shoyat = ar {cly (€ + @] + P,
mls? = / Nl (0) dutt = —Cliy T (€,

25 = [ Dloydst =4t {Pr [y + @y €hy] - b}

—h
Cgé* = AhL  =h =53 Sh Dh §3h5§3
C3333833 + Pass Pass
~h
51317* = A 7h03333_h >h géhé§333>
C3333833 + Pssg Pass
Ph _
P s = ATl

=~ Ak -h h Dh
Clygaths + Plhg Py
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and
h bh bh 3 h
[aﬁ:/ Xo Xg dw”,
wh

i) = [ gt [ gas ) = [ stads [ dbar

e w o

FEMa) = [ s, aEhed) = [l dot
wh wh
bh __ h h bh _ _h h
X1 = $1bl(9€3) - $252($3)> X2 = 90152@3) + $251($3)'

A major conclusion is thus that we have been able to rigorously justify one-dimensional
equations for piezoelectric shallow arches by showing that (up to appropriate scalings)
their solution can be identified (in the sense of Corollary 26(a)) with the [H(Q)]* x H'(£2)-
limit of the three-dimensional solution as the diameter of the cross section of the beam
approaches zero.

We observe, in first place, that if we ignore the electric field considering a linearly

elastic beam, whose material satisfies the conditions

1
h,* h,x h,*
€33 = By =0, 033:C'h—’

3333
the one-dimensional model found here does indeed coincide with the linearly elastic sha-
llow arch model derived by Alvarez-Dios & Viafio [1998]. On the other hand, we note
that our asymptotic shallow arch model also coincides with asymptotic straight rod model

derived in Chapter 3, taking the subclass 6mm of the anisotropic piezoelectric material.



Chapter

Conclusions and future research

The primary goal of this research work was to develop mathematical lower-dimensional
models for anisotropic piezoelectric beams. This chapter summarizes the conclusions of

the work and suggests possible areas of future research.

6.0.1 Conclusions

The present research proposes three asymptotic models for anisotropic piezoelectric beams
submitted to an electric potential. In the three cases, the procedure starts with a change
of variable that is used to establish the original 3-D piezoelectricity problem in a fixed
reference domain, which does not depend on the diameter of the beam cross section
Then, the asymptotic method introduced by Lions (Lions [1973]) is used to perform a
mathematically rigorous dimensional reduction.

The main contributions of the present work towards the development of reduced

anisotropic beam models are the following;:

e An interesting approach to the three-dimensional piezoelectricity problem for an
anisotropic beam of class 2 with one end fixed and subjected to an electric potential
applied on the right and left ends of the beam has been presented in the thesis. In
this approach the piezoelectric beam is modeled as a one-dimensional domain. It is
required that the displacements satisfy a weak clamping boundary condition to avoid
the boundary layer phenomenon. The expression of the displacement second order
term has been used to identify the limit model and to prove the strong convergence
result, see Section 3.4.0.1 and Section 3.4.1.

e An asymptotically piezoelectric beam model for anisotropic materials of class 2 in
response to an applied electric potential acting on the lateral surface has been con-

structed, see Chapter 4. The weak boundary condition has eliminated the difficulties
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commonly associated with the characterization of the higher-order terms of the dis-
placements (see Theorem 9). Furthermore, two additional functions (the warping
function is one of them) turned out to be necessary to write the expression of the

first-order term of the axial displacement, according to Theorem 11.

We have reduced the three-dimensional piezoelectricity problem to the zeroth-order
model (Corollary 25) for a transversely isotropic piezoelectric shallow arch subjected
to an electric potential applied at both ends of the beam by considering a displace-
ment - stress - electric potential - electric displacement asymptotic expansion (see
Section 5.7).

6.0.2 Some perfectives for future research

The present work can be considered as a starting point for the derivation of models for

anisotropic piezoelectric beams using the Asymptotic Method as a tool. Moreover, there

are still vast uncharted areas where the asymptotic method would be adequate to justify

lower-dimensional models in a rigorous way. To complete and extend the present research,

a number of future tasks could be performed:

e To complete our analysis, the most urgent work is to prove that, for the anisotropic

piezoelectric beam of class 2, the displacement vector field and the electric potential
weakly (and strongly) converge towards the leading terms of the electric potential

expansions.

Study the contribution of higher-order terms (correctors) of the asymptotic dis-
placement - electric potential expansions in order to allow the construction of higher

order models.

To focus on the development of numerical experiments to validate the efficiency
of the asymptotic models obtained and to compare the corresponding results with

other existing approximations.

There are various engineering applications that use piezoelectric layers for the vi-
bration control in beams. The models used to describe the behavior of the materials
are generally obtained by ad hoc assumptions. To justify these assumptions it is
recommended to develop and justify in a rigorous way lower-dimensional models of

sandwich piezoelectric beams.
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