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Abstract. This paper introduces a modification on the movement force vector of the Birbil and Fang’s electromagnetism-like
algorithm [1] for solving global optimization problems with bounded variables. The proposed movement vector combines
the total force exerted on each point of the population, at the current iteration, with the rate of change in the force vector of
a previous iteration. Several widely used benchmark problems were solved to compare the proposed modification with the
original algorithm. A performance profile assessment shows the efficiency and robustness of the proposed modification.
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INTRODUCTION

In this paper, we analyse the performance of a modification introduced in the movement force vector of the
electromagnetism-like (EM) algorithm to compute a global solution of a nonlinear optimization problem. The al-
gorithm as outline in [1], simulates the electromagnetism theory of physics by considering each point in a population
as an electrical charge. The EM algorithm starts with a population of randomly generated points from the feasible
region. The method uses an attraction-repulsion mechanism to move a population of points towards optimality. The
charge of each point is related to the objective function value and determines the magnitude of attraction of the point
over the population. The better the objective function value, the higher the magnitude of attraction. Each point is
moved according to a vector that reflects the objective function value of the corresponding point relative to the other
points in the population. Here, we denote the vector that is used to move each point in the population by movement
force vector. The general scheme of the EM algorithm is presented below. We refer to [1, 2] for details.

Algorithm 1 (original EM algorithm)
Randomly generate a population of points in the feasible region
iteration ← 1
while termination criterion is not satisfied do
Compute total force Fiteration exerted on each point by other points in the population
Move points, except the best one, according to Fiteration
Locally explore the best point of the population
iteration ← iteration + 1

end while

To improve the algorithm search ability and efficiency, a modification on the movement force vector is introduced in
the original EM algorithm. This vector combines the total force exerted on the point, at the current iteration, with the
rate of change in the force vector of a previous iteration. The proposed algorithm modification has been extensively
experimented on a well-known benchmark problems set [3]. Performance profile plots, as outline in [4], have been
made to assess the best behavior of the proposed modifications on the movement force vector when compared with
the original EM algorithm.

The class of problems that we consider in this comparative study has the following form:

minimize f (x) subject to x ∈Ω, (1)

where f : Rn → R is a nonlinear function and Ω = {x ∈ Rn :−∞ < lk ≤ xk ≤ uk < ∞,k = 1, . . . ,n} is a bounded feasible
region. We assume that the objective function f is not convex and possesses many local minima in the set Ω. This
class of global optimization problems is very important in engineering applications.



DETAILS OF THE ALGORITHM

In the paper, xi ∈ Rn denotes the ith point of the population. At each iteration of the original EM algorithm, the total
force vector F i

iteration exerted on each point xi is calculated by adding the individual component forces, F i
j , between

any pair of points xi and x j. According to the electromagnetism theory, each force F i
j is inversely proportional to the

square of the distance between the points and directly proportional to the product of their charges. The charges of the
points are computed according to their objective function values.

Each point xi is then moved in the direction of a force, herein simply denoted by F i, by a random step length and in
a way that feasibility is maintained (see [1] for details). Thus, for each point xi in the population, except the best one,

xi
k =





xi
k +λ F i

k
‖F i‖ (uk− xi

k) if F i
k > 0

xi
k +λ F i

k
‖F i‖ (x

i
k− lk) otherwise

, k = 1,2, . . . ,n. (2)

The random step length λ is assumed to be uniformly distributed between 0 and 1. In the original EM algorithm, each
force F i is the total force exerted on the point computed at the current iteration, thus F i = F i

iteration.
A particle swarm optimization (PSO) algorithm, like the EM algorithm, is an easy to implement and computationally

inexpensive population-based technique, that has been widely used to solve problem (1). Recently, Liu and Lin
proposed in [5] a modification to the PSO algorithm that detects the velocity changes for each particle by including a
delta momentum rule in the velocity updating equation.

Based on this idea, we propose a modification to the movement force vector, in the EM algorithm, so that past
information on force vectors can be used to improve efficiency. Since F i

iteration represents the total force exerted on the
point xi, at the current time step iteration, the vector used to move the point may include a term for the rate of change
in force. If we define the change in force, at a particular iteration I, by ∆F i

I = F i
I −F i

I−1 then the proposed movement
vector can be written as

F i = F i
iteration +β∆F i

I (3)

where 0 ≤ β < 1 is a memory constant that controls the rate of change in force vector. Note that when β = 0, (3)
resumes to the original EM. If information on the force of just one previous time step is to be considered then
I = iteration. However, if information on two previous time steps are to be integrated in the movement vector then
I = iteration−1 is set in (3).

NUMERICAL EXPERIMENTS AND CONCLUSIONS

In this section, we report the numerical results obtained by running the modified EM algorithm on a collection of 50
benchmark global optimization test problems. Appendix B in [3] presents the problems in full detail. In ten problems,
two values of the dimension (n) are tested, and in one, five values of n were tried, giving the final number of 64
problems. We compare the herein proposed modification on the movement force, as outline in the previous section -
with both time steps - with the original EM algorithm, described in Algorithm 1.

In our implementation, the algorithms terminate when the number of objective function evaluations exceeds 100n2.
The study also sets the number of points in the population to min{200,10n}. The EM algorithms were repeated for
30 runs for each problem. The following comparative study sets the memory constant β to 0.1 based on the parameter
sensitivity analysis presented later on in the paper.

This comparison is based on the Dolan and Moré’s performance profile approach as outline in [4]. The performance
profiles give, for every τ ≥ 1, the proportion ρ(τ) of test problems on which each algorithm under comparison has a
performance within a factor τ of the best. An explanation of our implementation of this approach follows.

Let P be the set of all problems and S the set of solvers used in the comparative study. Let m(p,s) be the
performance metric found by solver s ∈ S on problem p ∈ P after a fixed number of function evaluations. Here,
we use a metric that measures the relative improvement of the function values, a scaled distance to the known optimal
function value fopt , defined in [3] by m(p,s) = ( fbest (p,s)− fopt)/( fworst − fopt), where fworst denotes the worst function
value found among all solvers on the problem p and fbest (p,s) is the best function value found by solver s on problem
p, after 100n2 function evaluations and over 30 runs.

Then, the overall assessment of the performance of a particular solver s is defined by ρs(τ) = 1
nP

size{p ∈ P :
r(p,s) ≤ τ}, where nP is the number of problems in the set P and "size" is the number of problems in the set such that
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FIGURE 1. Performance profile on fbest with 100n2 function evaluations (β = 0.1).
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FIGURE 2. MAE comparison for three values of β

the performance ratio r(p,s) is less than or equal to τ for solver s. Hence, ρs(τ) is the probability (for solver s ∈S )
that the performance ratio r(p,s) is within a factor τ ∈ R of the best possible ratio. The performance ratio adopted for
this comparative study is

r(p,s) =

{
1+m(p,s)−min{m(p,s) : s ∈S }, if min{m(p,s) : s ∈S }< ε

m(p,s)
min{m(p,s):s∈S } , otherwise ,

since min{m(p,s) : s ∈S } may eventually be zero, for p ∈P,s ∈S and ε = 0.00001. We refer to [6] for details.
Using the performance profile plot one can compare how well a solver can estimate the optimum relative to the

others. The value of ρs(1) gives the probability that the solver s will win over the others in the set. However, for large
values of τ , the ρs(τ) measures the solver robustness.

Figure 1 contains the performance profiles on fbest for the three tested movement force vectors formulae. It shows
that the modification introduced in the movement force that relies on the force variation ∆F i

iteration performs better than
the other two in comparison. It is also the most robust solving all problems to optimality. The figure also shows that
the other two fail on approximately 1% of the problems for small values of τ .

To access the accuracy of the solutions found by an algorithm, the mean absolute error, MAE, defined by (| fopt −
favg|)/n is usually used [5], where favg is the average best function values obtained after 100n2 function evaluations
over a certain number of runs. Here, we use MAE to determine the effect of the memory constant on the algorithm
efficiency. This analysis is focused only on the algorithm that performed better in the previous study. Three values of



TABLE 1. Numerical results obtained by Modified EM, GA, PSO and PS-EA

Problem n Modified EM GA PSO PS-EA
favg SD favg SD favg SD favg SD

Ackley 10 0.001 0.000 0.593 0.225 0.000 0.000 0.192 0.195
30 0.000 0.000 1.099 0.250 0.000 0.000 0.377 0.099

Griewank 10 0.196 0.134 0.050 0.030 0.079 0.033 0.222 0.078
30 0.105 0.046 1.234 0.110 0.011 0.014 0.821 0.140

Rastrigin 10 0.498 1.003 1.393 0.763 2.656 1.390 0.434 0.255
30 0.332 0.708 10.439 2.639 32.476 6.995 3.053 0.999

Rosenbrock 10 4.859 0.717 46.318 33.822 4.371 2.381 25.303 29.796
30 22.758 0.637 166.283 59.510 402.540 633.650 98.407 35.579

Schwefel 10 196.655 143.334 1.952 1.304 161.870 144.160 0.320 1.619
30 4534.698 627.143 13.535 4.953 990.770 581.140 3.272 1.619

β were tested: 0.1, 0.5 and 0.9. Figure 2 is a 100% stacked column chart for the MAE values obtained by the three β
values. For each problem, we can compare the percentage that each β value contributes to the total. Hence, the smaller
the MAE (smaller the percentage) the better. Overall, the area of the bars corresponding to β = 0.1 is smaller than
the others - 27% in contrast with 39% and 34% of the total - which indicates that 0.1 is the most efficient choice for
β . It seems that larger values drive the points to new areas, instead of exploring locally, and prevent convergence to
the solution. In the problem "exp", MAE is zero for the tested β values. A similar analysis carried out with the force
variation ∆F i

iteration−1 generated the areas 27%, 35% and 38% of the total, for the β values 0.1, 0.5 and 0.9 respectively.
To compare the performance of our most efficient implementation with three other algorithms, the Genetic Algo-

rithm (GA), the Particle Swarm Optimization (PSO) and a hybrid model of Evolutionary Algorithm and PSO (PS-EA),
we use five benchmark problems: Ackley, Griewank, Rastrigin, Rosenbrock and Schwefel, with global function values
0. To be able to compare with the published results [7] for GA, PSO and PS-EA, we repeat the experiments using the
same parameters therein used: population size is set to 125 and the maximum number of iterations is 500 when n = 10,
and 1000 when n = 30. Each experiment is repeated 30 times with different random seeds. Table 1 contains the favg
and SD (unbiased standard deviation of the computed function values). The modified EM algorithm outperforms GA
in 6, out of 10 cases; outperforms PSO in 3 and is comparable in 4; and outperforms PS-EA in 6 problems.

This work proposes a modification on the movement force vector of the electromagnetism-like mechanism, inclu-
ding past force changes, for solving global optimization problems like (1), which improves on Birbil and Fang’s EM
algorithm. The modification is tested with a set of problems and compared using the Dolan and Moré’s performance
profiles. A sensitivity study is conducted to identify a good choice for the memory constant β . A performance
assessment of the proposed algorithm when compared with other algorithms (GA, PSO and PS-EA) is also included.
Future work will involve the extension of the proposed algorithm to constrained optimization problems.
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