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Abstract. This paper presents a new reduction-type method for solving semi-inflnite programming problems, where the 
multi-local optimization is carried out with a sequential simulated annealing algorithm, and the finite reduced problem is 
solved by a penalty technique based on an hyperbolic function. Global convergence is ensured by a line search filter method. 
Numerical experiments with a set of known problems show that the algorithm is promising. 
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INTRODUCTION 

The purpose of this paper is to present some numerical experiments with a reduction-type method on solving nonlinear 
semi-inflnite programming (SIP) problems. The SIP problem is an optimization problem, with flnitely many decision 
variables x G R" and a feasible set described by inflnitely many constraints, with the form 

min /(x) subject to g{x,t) < 0, for every t GT (1) 

where T C R™ is an inflnite index set, / : R" ^ R and ^ : R" x T ^ R are twice continuously differentiable functions 
with respect to x, and ^ is a continuously differentiable function with respect to t. There exists a wide range of 
engineering appflcations that can be formulated as SIP problems. See, for example, [5, 13, 15, 16, 18]. At present, 
there are a large variety of numerical methods to solve (1). The reader is referred to the interesting surveys [3, 7] and 
to the references therein included. A reduction method is based on the local reduction theory presented in [4]. Under 
some mild assumptions, a reduction method replaces the SIP problem by a locaUy reduced flnite problem. Thus, the 
SIP problem can be locally reduced to a flnite one. First, aU the local maximizers of the constraints have to be computed 
so that the inflnite consfl̂ aints of the SIP problem are replaced by a flnite set of constraints that are locally sufflcient to 
deflne the feasible region. This is known as a multi-local optimization procedure. Then, a flnite programming method 
is used to solve the reduced flnite optimization problem. If a globalization procedure is included in the algorithm, the 
iterative process is then called a global reduction method. Classical line search methods to globaflze the algorithms 
use merit functions to enforce progress towards the solution. As an alternative to merit functions, Fletcher and Leyffer 
[2] proposed a fllter method, as a tool to guarantee global convergence in algorithms for nonlinear constrained flnite 
optimization. 

Here, a reduction-type method that refles on a line search fllter method combined with an hyperbolic penalty method 
is proposed to solve nonlinear SIP problems. The method uses a sequential simulated annealing algorithm to compute 
the local maximizers of the constraints, a penalty method based on the hyperboflc penalty function to approximately 
solve the reduced flnite optimization problem and the fllter technique to ensure progress to optimality. 

THE GLOBAL REDUCTION PARADIGM 

In this section, we flrst briefly discuss the local reduction theory [4]. Here, we consider only problems where the set 
T does not depend on the decision variables. For an approximation to the solution of (1), x G R", we consider the 
so-called lower-level problem 

max^(x,0 (2) 
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and the set T* = {f \ . . . , t^} that contains the local solutions to (2) that satisfy 

\gixy)-g*\<e,l = l,...,l, (3) 

where L represents the number of local maximizers found in (2), £ is a positive constant and g* is the global solution 
value of (2). The use of condition (3) aims to generate a finite problem with few constraints that is, locally, equivalent 
to the SIP problem. If we assume that problem (2) ir regular, the SIP problem can be replaced locally by the following 
finite reduced problem: 

min /(x) subject to ^' (x) = ^(x, f' (x)) < 0, / = 1,..., L (4) 
xeU(x) 

where U{x) is an open neighborhood of x. Thus, the main steps of a global reduction-type algorithm are as follows: 
(i) compute the set T^; (ii) compute a descent direction by approximately solving (4); (iii) implement a line search 
method to guarantee convergence from an arbitrary initial approximation. The remaining part of this section presents 
details of the proposed algorithm. 

Multi-local procedure 

Our multi-local procedure to compute the set T^ is a sequential simulated annealing algorithm, meaning that a 
sequence of global optimization problems is solved to compute sequentially the local solutions of the problem (2) 
that satisfy (3). The objective function of each optimization problem is obtained by applying a function stretching 
technique, as outline in [9], to the objective function of the previous problem in the sequence. This technique aims to 
stretch the neighborhood of an already computed solution downwards assigning lower function values to those points 
to prevent the convergence of the global optimization method to that computed solution [10]. Each global optimization 
problem of the sequence is solved by ASA, a well-known variant of the simulated annealing algorithm [6]. The multi-
local procedure terminates when for a predefined set of consecutive iterations no other solution is encountered. 

Hyperbolic penalty framework 

The most used methods for solving (4) are Sequential Quadratic Programming, with Li and L^ merit functions, 
and projected Lagrangian methods [1, 14]. Our proposal here is to use the 2-parameter hyperbolic penalty function 
[19]. This is a continuously differentiable function, and at most K^ax iterations of a BFGS quasi-Newton method are 
implemented to compute a direction d that yields a decrease on the hyperbolic penalty function 

P(X) = / ( x ) + £ W ( x ) + J V [ ^ ' ( X ) ] 2 + T2 (5) 
1=1 

where A/ > 0 and T/ > 0, for / = 1,... ,L, are penalty parameters. These parameters are updated for each / = 1,... ,L 
as below 

f A/̂ +i = r V and if+i = TK if max ^'(x) > 0 

[ T; + = qxf and A; + = Xf, otherwise 

After the search direction d has been computed, a line search technique chooses a step size and determines the new 
approximation x = x + ad. The procedure herein implemented to decide which trial step size is accepted is a line 
search filter method. We remark that when solving the reduced problem (4), the selection of iTmax = 1 guarantees that 
the optimal set T* does not change. When iTmax > 1 is chosen, the values of the maximizers f \ ..., f̂  may change 
as long as x changes in the iterative process, even if L does not change. Thus, a local adaptation procedure should be 
incorporated into the algorithm. Our implementation of this adaptation procedure randomly generates 5m points in a 
predefined neighborhood of each maximizer, f', and the one with largest g value will replace the maximizer f' if the 
corresponding function value exceeds ^'(x). This type of procedure has produced efficient algorithms [5, 10]. 
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The line search filter method 

Traditionally, in a line search method, a trial step size is accepted if the corresponding approximation provides a 
sufficient reduction of a merit function [10]. This type of function depends on a positive penalty parameter that aims 
to make the constraints violation of the same order of the objective function value. Exponential and L2-exponential 
penalty functions have been successfully used in the past [10]. However, the choice of proper penalty parameter values 
throughout the iterative process is a complex and not totally defined issue. To avoid the use of a merit function and 
the updating of the penalty parameter, while promoting global convergence from arbitrary initial approximations, 
Fletcher and Leyffer [2] proposed a filter technique. The notion of a filter is based on that of dominance presented in 
multi-objective optimization. A point x is said to dominate a point y if f{x) < f{y) and 0(x) < 0{y), where / is the 
objective function and 0(x) = ||max(0,^(x,f)||2 is used to measure constraints violation. In a filter framework, anew 

approximation to the solution is accepted if it is not dominated by any other approximations in the filter. Thus, a filter 
is a set that contains pairs (0 , / ) that are prohibited for a successful approximation. The implementation of a filter 
method within a line search strategy considers a backtracking procedure, where a decreasing sequence of positive step 
sizes a^, J = 0 ,1 , . . . is tried until a new trial iterate x^ = x+a^d is acceptable according to appropriate acceptance 
conditions. These conditions impose a sufficient decrease in one of the following measures: 

eixJ) < (1 - 7e)0(x) or /(xJ) < f{x) - 7/0(x) (6) 

where Ye,Yf G (0,1) are fixed constants. On the other hand, if 

0(x) < ^in, V/(x)^rf < 0 and a-''(-V/(x)^rf)'/ > 5{e{x)y\ (7) 

are satisfied, for fixed positive constants ©mm, 8 and sg > \,Sf > 2s9, then the trial approximation x̂  is acceptable 
only if a sufficient decrease in / is verified 

/(x^ ')</(x) + M/a^V/(x)^rf (8) 

for Hf G (0,0.5) [17]. The filter is initiahzed with pairs that have 9 > ©max > 0. If the acceptable approximation 
satisfies the condition (6), the filter is augmented; otherwise (conditions (7) and (8) hold) it remains unchanged. The 
reader is referred to [8, 11] for more details concerning the filter strategy. 

NUMERICAL EXPERIMENTS AND CONCLUSIONS 

The herein proposed reduction method based on an hyperbohc penalty line search filter method was implemented 
in the C programming language on a Pentium 11, Celeron 466 Mhz with 64Mb of RAM. For the computational 
tests we selected eight test problems - problems 1, 2, 3, 4, 5, 6, 7, 14 (c = 1.1) - described in full detail in the 
Appendix of [1] (using the initial approximations therein reported). The coded algorithm terminates when the norm of 
directional derivative of the Lagrangian function and the maximum constraint violation are both sufficiently small (with 
a tolerance of 10^^). A limit on the number of iterations is also imposed (100). The values for the other parameters in 
the algorithm are: e = 5.0, Xj^ = 10 and if = 10, for all/ = 1,... ,L, r = A/10, ^ = 0.1, ^ax = lO'̂ max {l, 0(x°)}, 
0mm = lO-'^max{1,0(x°)}, 79 = 7/ = 10"^ 5 = I, S9 = 1.1, Sf = 2.3 andHf = 10^1 

TABLE 1. Computational results for ̂max = 5 

P# n I |T*| f N™ N„i 

1 
2 
3 
4 
5 
6 
7 
14 

2 
2 
3 
6 
3 
2 
3 
2 

2 
2 
2 
2 
2 
1 
1 
1 

-2.50395£'-01 
2.43089£' + 00 
7.49903£' + 00 
2.70016£' + 00 
8.25798£' + 00 
9.71591£' + 01 
1.00027£' + 00 
2.20021£' + 00 

19 
3 
12 
35 
6 
3 
3 
2 

44 
4 
13 
47 
7 
4 
4 
3 

Table 1 presents the results obtained when î max = 5. In the table, P# refers to the problem number, |T*| represents 
the number of maximizers satisfying (3) at the final iterate, {* is the objective function value at the final iterate, N™ 
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and Nm/ give the number of iterations needed by the reduction method and the number of iterations in the multi-
local optimization, respectively. We also include Table 2 so that a comparison between the herein proposed reduction 
method and a selection of other well-known reduction methods is possible. The superscripts PF a), PF b), PC, TFI and 
CW refer to the results obtained in our previous works [10, 11], in Price and Coope [12], in Tanaka, Fukushima and 
Ibaraki [14] and in Coope and Watson [1], respectively. In the table,"-" means unavailable information. 

TABLE 2. Results from other reduction methods 

P# N PFa N: N 
PFb) 

N' 
PFb) 
ml N' PC N TFI M T F I N' CW 

1 
2 
3 
4 
5 
6 
7 
14 

2 
2 
3 
6 
3 
2 
3 
2 

1 
2 
1 
1 
1 
1 
2 
1 

48 
3 
3 
74 
41 
7 
8 
10 

60 
38 
13 
1203 
1000 
8 
9 
95 

47 
4 
21 
38 
-
8 
7 
-

81 
5 
105 
52 
-
9 
8 
-

17 
8 
11 
57 
8 
27 
9 
6 

21 
10 
23 
119 
14 
87 
14 
7 

17 
5 
9 
8 
4 
16 
2 
5 

19 
11 
12 
27 
9 
19 
4 
8 

16 
7 
10 
20 
4 
9 
3 
5 

We have implemented an hyperbolic penalty function and incorporated a line search filter strategy into a reduction-
type method for solving nonlinear SIP problems. The preliminary numerical tests with a set of small problems are 
encouraging. Further experiments, in particular with problems with more than one constraint function g, and with 
practical engineering applications are required. Another future challenge is the extension of this type of reduction 
method to the generalized SIP problem. 
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