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Abstract 

 

Pain is a multidimensional experience with sensory-discriminative and motivational-affective 

dimensions. Neuropathic pain is caused by a primary lesion or dysfunction of the nervous tissue 

that leads to an anomalous nociceptive processing in pain centers. It results from a process of 

peripheral and central sensitization and is characterized by prolonged hyperalgesia, allodynia and 

spontaneous pain. The maintenance of these nerve injury-induced symptoms depends on 

abnormal discharge from peripheral nerves and pronociceptive changes in spinal and supraspinal 

mechanisms mediating and modulating pain-related signals. The aims of this work were: first, to 

elucidate what is the relative contribution of rostroventromedial medulla (RVM) ON- and OFF-cells 

to hypersensitivity observed in neuropathic pain; second, to evaluate if emotional disturbances 

and structural alterations in the amygdala (AMY) observed in human patients, were produced 

when inducing neuropathic pain to rats; third, to determine if structural alterations of the 

amygdala, associated to the peripheral nerve injury, influences RVM regulation of nociception; 

and finally, to analyze the alterations in response properties of amygdala nociceptive neurons to 

peripherally-evoked stimulation and what is the cortical influence in the neuropathic process.  

In this work, we provide evidence that reinforce data indicating that RVM ON-cells are the 

main responsible for neuropathic hypersensitivity. Although both ON- and OFF- RVM cells were 

found to respond significantly more in neuropathic animals at a basal state, only ON-cell 

response was significantly different from Sham animals following noxious and non-noxious 

stimulation. The peripheral stimuli applied were: tail pinch and cold, since clinical studies 

indicate that hypersensitivity to these somatic stimuli are frequent after traumatic nerve injuries; 

and colo-rectal distention (CRD), because not much is known about the influence of somatic 

neuropathy on visceral processing. As RVM ON-cells are considered to be pronociceptive, they 

should have a major contribution in the hypersensitivity to peripheral stimulation observed in 

neuropathic animals. 

We have demonstrated, for the first time, that animals with a peripheral neuropathy show 

depressive-like behaviour associated to AMY neuroplasticity. Importantly, AMY structural changes 

are mediated, at least in part, by an increase in the number of neurons, as a result of cell 

proliferation. Besides depressive-like behaviour, we also observed an increase in affective pain-

related behaviour in neuropathic animals, assessed through the aversive place-conditioning test, 

which reinforces the association between prolonged neuropathic pain and altered emotional 
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behaviour. Moreover, emotional pain-related behaviour increased after AMY administration of a 

metabotropic glutamate receptor 1 and 5 (mGluR1/5) agonist and decrease after the local injection 

of a metabotropic glutamate receptor 1 (mGluR1) antagonist. The AMY administration of an 

mGluR1/5 agonist has also induced an increase in the discharge rate of ON-cells in the RVM of 

nerve-injured animals, which was mainly due to the activation of mGluR1. In what concerns the 

activity of AMY neurons, plastic alterations were present after neuropathy, with an increased 

spontaneous activity and a general decrease after peripheral stimulation.  

When evaluating the cortical influence upon nociceptive behaviour of the neuropathic rat, the 

injection of glutamate (Glu) and of an NMDA-receptor (NMDA-r) antagonist in the rostral anterior 

cingulate cortex (rACC) produced, respectively, an increase and a decrease in affective pain-

related behaviour. When evaluating AMY neuronal discharge rate after the injection of the same 

reported drugs in the ACC, only glutamate had a significant effect, inducing an increase of AMY 

neuronal activity. 

The set of studies performed for this thesis allowed the following conclusions: I) the activity of 

both RVM ON- and OFF-cells in neuropathic animals is altered towards promoting pronociception, 

but only ON-cell type appears to be a major role in the increased hypersensitivity observed; II) the 

structural plasticity observed in the AMY of nerve-injured animals - increased AMY volume as a 

result of local newborn neurons – is paralleled with the development of depressive-like behaviour; 

III) emotional pain-related behaviour in neuropathic animals is dependent, at least in part, on the 

activation of mGluR1/5 in the AMY and of NMDAr in the ACC; IV) the activation of mGluR1 in the 

AMY of neuropathic animals causes an increase in the activity of pronociceptive RVM ON-cells.  
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Resumo 

 

A dor é uma experiência multidimensional desagradável, envolvendo não só uma componente 

sensorial mas também uma componente emocional. A dor neuropática resulta de uma lesão 

primária ou disfunção do tecido nervoso, que origina o envio incorrecto de sinais para os centros 

de modulação da dor. A dor neuropática origina hiperalgesia e alodínia prolongadas e dor 

espontânea, e resulta de um processo de sensitização periférica e central. A continuidade dos 

sintomas induzidos pela lesão nervosa depende de descargas anormais dos nervos periféricos e 

de alterações pronociceptivas nos mecanismos espinhais e supraspinhais de mediação e 

modulação da nocicepção. Os objectivos deste trabalho consistiram em: primeiro elucidar qual a 

contribuição relativa das células “ON” e “OFF” do bolbo rostral ventromedial (RVM) para a 

hipersensibilidade observada em animais com dor neuropática; segundo, avaliar se a indução de 

dor neuropática no rato resultava simultaneamente em distúrbios emocionais e alterações 

estruturais na amígdala (AMY), tal como no Homens; terceiro, determinar se a plasticidade 

neuronal da AMY, associada à lesão nervosa periférica influenciava o papel do RVM na regulação 

da dor; finalmente, avaliar as alterações nas respostas dos neurónios nociceptivos da AMY a 

estímulos periféricos induzidos pela neuropatia e, adicionalmente, avaliar a influência de 

estruturas corticais na dor neuropática.  

Neste trabalho confirmámos a ideia já existente de que as células pronociceptivas do RVM, as 

células “ON”, são as principais responsáveis pela hipersensibilidade observada em animais 

neuropáticos. Embora ambos os tipos de células “ON” e “OFF” tenham maior actividade 

espontânea no estado basal, a aplicação de estimulação nóxica e não-nóxica alterava apenas a 

resposta das células ON de modo significativo. Dado que há evidências clínicas indicativas de 

que a hipersensibilidade a estímulos mecânicos e de frio é comum depois de lesões nervosas 

traumáticas, e dado que há pouca informação sobre a influência da neuropatia somática em 

percepção visceral, os estímulos periféricos aplicados foram o beliscadura da cauda, o frio e a 

distensão colo-rectal. Como as células ON são consideradas pronociceptivas, podemos assumir, 

a partir dos nossos resultados, que estas células deverão ter um papel relevante na 

hipersensibilidade à estimulação periférica observada nos animais neuropáticos.  

Aqui demonstrámos pela primeira vez, que animais com neuropatia periférica apresentam 

alterações estruturais na AMY associadas, simultaneamente, à expressão de um comportamento 

tipo depressivo. É de salientar que a plasticidade observada na AMY resultou, pelo menos em 
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parte, do número de neurónios, resultante de proliferação celular. Foi também observado um 

aumento do comportamento afectivo relativo à dor, avaliado através do teste aversivo de 

condicionamento-de-lugar. Este comportamento aumentou depois da administração, na AMY, de 

um agonista de receptores metabotrópicos do glutamato 1 e 5 (mGluR1/5) e diminuiu depois da 

administração de um antagonista de receptores metabotrópicos do glutamato 1 (mGluR1). A 

administração de um agonista de mGluR1/5 provocou também um aumento na actividade das 

células “ON” do RVM dos animais neuropáticos, causado principalmente pela activação dos 

receptores metabotrópicos tipo 1 do glutamato (mGluR1). O outro modo de plasticidade 

observada foi a alteração na taxa de actividade da AMY que, nos animais neuropáticos, 

aumentou nos níveis basais e diminuiu após estimulação periférica.  

Na avaliação da influência cortical na neuropatia dos ratos, verificou-se que a injecção de 

glutamato (Glu) e de um antagonista do receptor NMDA (NMDAr) no cortex cingulado anterior 

rostral (rACC) provocou, respectivamente, um aumento e uma diminuição no comportamento 

afectivo relativo à dor nos animais neuropáticos, também avaliado pelo teste aversivo de 

condicionamento-de-lugar. Ao analisar a actividade neuronal da AMY depois da injecção dos 

mesmos fármacos no ACC, verificámos que apenas o glutamato teve um efeito significativo, 

provocando um aumento dessa actividade.  

Depois de realizado este trabalho, podemos concluir que: I) a actividade das células “ON” e 

“OFF” do RVM está alterada nos animais neuropáticos no sentido de promover a pronocicepção, 

mas apenas as células ON aparentam ser as responsáveis pelo aumento de hipersensibilidade 

associada à neuropatia; II) há plasticidade estrutural na AMY dos animais neuropáticos – 

aumento de volume, resultante de neurónios recém-formados, que ocorre em paralelo com 

comportamento do tipo depressivo; III) nos animais neuropáticos, o comportamento afectivo 

relativo à dor depende, pelo menos, da activação dos mGluR1/5 na AMY e dos NMDAr no ACC; IV) 

a activação dos mGluR1 na AMY provoca um aumento da actividade das células ON nos animais 

neuropáticos. 
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Chapter 1 

 

INTRODUCTION 

1
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1.1 Pain Control 

1.1.1 Pain definition 

Pain is usually defined as an unpleasant sensory and emotional experience associated with 

actual or potential tissue damage or described in terms of such damage [International 

Association for the Study of Pain (IASP) - 1994 definition, reviewed in 2008]. Pain 

unpleasantness exists so the body can recognize that something is threatening it and leads to 

behaviour that will remove the organism from the source of potential injury (Landrieu et al., 

1990). Individuals congenitally insensitive to pain are easily injured and most of them die at an 

early age (Nagazako et al., 2003). Pain is a key process for our nervous system to learn from and 

react to the environment (King et al., 1997). Actual pain, or the threat of it, usually leads to 

behavioural arousal, endocrine responses and sympathetic activation which, together with 

temporary antinociception, allows escaping from harmful situations that may potentially be life 

threatening (Millan, 1986; Wiertelak et al., 1994; Traub, 1997). 

 

1.1.2 Pain pathways  

Peripheral afferent fibers (PAF) can be classified in three main types on the basis of their 

diameter, structure and conduction velocity: 1) C, thin (0.4-1.2 m in diameter), unmyelinated 

and slowly-conducting (0.5-2.0 m sec-1); 2) A, medium (2-6 M), myelinated and of intermediate 

velocity (12-30 m sec-1). 3) A, large (>10 M), myelinated and fast (30-100 m sec-1) (Millan, 

1999). Each of these classes of PAF encodes sensory information, but they are differentially 

sensitive to noxious and innocuous stimuli; although all these three types of fibers can transmit 

non-nociceptive information, only C and A fibers transmit nociceptive information (nociceptors; 

Giordano, 2005). 

Nociception is defined as the neural process that encodes and processes a noxious stimulus 

(Loeser and Treede, 2008) and that can be measured with electrophysiological techniques.  

(Schaible and Richter, 2004). Noxious stimuli activate primary nociceptive neurons with free 

nerve endings (Aδ and C nociceptors) at the periphery. Most nociceptors respond to noxious 

mechanical, thermal (heat or cold) and chemical stimuli (polymodal; Belmonte and Cervero 

1996). Nociceptors can also have efferent functions in the injured tissue through the release of 

neuropeptides [substance P (SP), calcitonin gene-related peptide (CGRP)] from their endings, 
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inducing neurogenic inflammation (Lynn 1996; Schaible et al. 2005). Nociceptors project to the 

spinal cord and form synapses with second order neurons in the grey matter of the dorsal horn. 

A proportion of second-order neurons have ascending axons and project to the brainstem or to 

the thalamocortical system, triggering the production of the conscious pain response by relaying 

nociceptive input to the limbic system and sensory cortex (Millan, 1986).  

There are two major ascending pathways that make different contributions to the various 

components of pain perception (Figure 1a): the lateral pain system, which projects through 

specific lateral thalamic nuclei to the somatosensory cortex and the medial pain system, which 

projects though medial thalamic nuclei to the anterior cingulate cortex and insula (Treede et al., 

1999). The lateral system mediates the sensory-discriminative component of pain, while the 

medial system is responsible for processing the affective response to a painful stimulus (Carlsson 

et al., 2006). Loss of peripheral afferents would be expected to cause deficits in both the sensory 

discrimination of pain and in the affective response to it. However, a localized abnormality, such 

as a lesion in a specific brain region, might selectively impair only one component of pain 

processing and cause a more subtle deficit in pain perception (Ploghaus et al., 1999). 

Descending tracts reduce or facilitate the spinal nociceptive processing, thus influencing pain 

processing. Descending projections are formed by pathways that originate from brainstem nuclei 

and descend mainly in the dorsolateral funiculus of the spinal cord (Willis and Westlund, 1997; 

Millan, 1999; Almeida et al., 2006). Pain control results, at least in part, from the balance 

between descending inhibitory and facilitatory modulation actions upon spinal nociceptive 

transmissions (Urban and Gebhart, 1999; Porreca et al., 2002; Vanegas and Schaible, 2004). 

 

1.1.3 Pain modulation 

In the present state-of the art, pain modulation is explained by two theories that complement 

each other: the "Gate Control" theory (Melzack and Wall, 1965) and the neuromatrix model of 

pain (Melzack, 1999). 

The "Gate Control" theory was proposed by Melzack and Wall in 1965 and originally proposed 

that ramifications of the large sensory fibers (Afibers) that transmit innocuous cutaneous 

sensory information activates spinal inhibitory interneurons, which will partially inhibit nociceptive 

transmission carried by nociceptors. Thus, nociception (and pain) is suppressed by non-noxious 

stimuli, which “close the gate” to nociceptors activated by noxious stimulation.  
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The endogenous pain modulatory system is a complex network of brain areas that control 

nociceptive transmission at the spinal cord by inhibitory and facilitatory actions. Impulses 

descend from brain stem nuclei to the spinal cord and modulate the transmission of nociceptive 

signals at the dorsal horn (Fields and Basbaum, 1978; Ossipov and Porreca, 2005; Figure 1b). 

The periaqueductal grey matter (PAG), a key region in descending inhibition, projects to the 

rostral ventromedial medulla (RVM), which includes the serotonin-rich nucleus raphe magnus 

(NRM), the nucleus reticularis gigantocellularis pars alpha and the nucleus paragigantocellularis 

lateralis (Fields et al. 1991), and receives inputs from the hypothalamus, cortical regions and the 

limbic system (involved in the processing of emotion, behaviour, cognition) (Ossipov and Porreca, 

2005). Concerning their response to nociceptive stimuli, RVM cells are classified as ON-cells, if 

they give an excitatory response to noxious stimulation just prior to nociceptive withdrawal reflex 

(considered to have a pronociceptive role), OFF-cells, if give an inhibitory response to noxious 

stimulation (considered to have an antinociceptive role) (Heinricher et al., 1994; Fields et al., 

2006) and NEUTRAL-cells, if give no response to noxious stimulation (Mason, 2006). RVM ON- 

and OFF-cells then project, through the spinal dorsolateral funiculus, to the dorsal horn (Field et 

al., 1995), where they cause facilitation and/or inhibition of nociceptive transmission (Fields et 

al., 1991). Therefore, the RVM is a brain area that is capable of causing antinociception and/or 

facilitation of spinal nociceptive transmission (Gebhart, 2004; Ossipov and Porreca, 2005), an 

effect that can be directly exerted by descending projections to the spinal dorsal horn, where the 

nociceptors synapse (D'Mello and Dickenson, 2008). The complexity of nociceptive modulation at 

dorsal horn level is further increased due to the multiple synaptic connections that descending 

fibers and nociceptors make with both excitatory and inhibitory local spinal interneurons (Millan, 

1999).  
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 Figure 1 – Pathways of pain transmission and modulation. a) The two major ascending pain pathways: the lateral 

pain system (green arrow) projects through specific lateral thalamic nuclei (LT) to the somatosensory cortex (SC) and 

the medial pain system (red arrow) projects through the parabrachial nuclei (PB) to the central nuclei of amygdala 

(CeA) and ventromedial hypothalamic nuclei (VMH); b) The descending pain pathway: the CeA and the VMH project 

to the periaqueductal grey matter (PAG), which projects to the rostroventromedial medulla (RVM) ON and OFF cells, 

which in turn project to the spinal cord dorsal horn. 

 

 

1.1.4 Types of pain  

Pain can be primarily classified as acute and chronic. Although there are additional 

differences between these two types of pain than their time extent, acute pain is defined for 

having a short duration, whereas chronic pain must be present for more than three-six months to 

be classified as such (Russo and Brose 1998). Acute pain arises suddenly in response to a 

specific injury, has a predictable prognosis, and treatment usually includes analgesics (Viallona et 

al., 2008). It protects tissue from being (further) damaged because withdrawal reflexes are 

usually elicited and body protection is triggered. On the other hand, most chronic pain cases 

a) b) 
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have an unpredictable prognosis, a possibly unclear pathology, and treatment, when existent, 

should be multidisciplinary, since analgesics are inefficient, and pain control involves drugs like 

antidepressants and anticonvulsants (Buchner et al., 2007; Scascighini et al., 2008). In many 

chronic pain states there is no causal relation between nociception and pain, which persists 

beyond local recovery/healing and thus does not reflect tissue damage (Cervero and Laird, 

1991). In contrast, emotional and cognitive factors seem to influence pain in acute pain states 

(Rhudy and Meagher, 2000) and mainly in complex cases of chronic pain (Kendall, 1999; Choi 

et al., 2007; Price, 2000), by neuroendocrine dysregulation, fatigue, dysphoria, and impaired 

physical and mental performance (Chapman and Gavrin 1999).  

Regarding its origin, pain can be classified as nociceptive and neuropathic. Nociceptive pain 

arises from activation of nociceptors after noxious stimulation, following detection by specialized 

transducers inserted in the plasma membrane of A and C fibers (Schaible, 2007). Therefore, 

nociceptive information is transmitted by normal physiologic pathways, and also during reversible 

inflammatory processing. Nociceptive pain can be somatic or visceral, the first originating from 

an irritation or damage to the soma (e.g., skin, muscle or joints), and the second being diffused, 

poorly localized, and often referred to a soma (Dunckley et al., 2005; Fairhurst et al., 2007 

Schaible, 2007). The term, nociceptive pain, is applied when pain is perceived as proportional to 

tissue damage and chronic nociceptive pain is thought to be the result of continuous activation of 

nociceptors (Usunoff, 2006).  On the other hand, when the tissue is inflamed or injured, 

pathophysiological nociceptive pain develops (Schaible and Richter, 2004). It may result in 

spontaneous pain (pain in the absence of any identifiable stimulation), hyperalgesia and/or 

allodynia. Hyperalgesia is the higher pain intensity felt upon an already painful noxious 

stimulation (Marchand et al., 2005), whereas allodynia is the sensation of pain elicited by stimuli 

that are normally below pain threshold (Wasner et al., 2007). 

On the other hand, neuropathic pain arises as a direct consequence of a lesion or disease 

affecting the somatosensory system (IASP, 2008). While nociceptive pain is elicited by 

stimulation of the sensory endings in the tissue, neuropathic pain results from injury or disease of 

neurons in the peripheral or central nervous system (Schaible and Richter, 2004). This type of 

pain usually occurs within days, weeks, or months after the injury and tends to occur in waves of 

frequency and intensity (Biondi, 2006). The main signs of neuropathic pain are spontaneous 

and/or evoked pain (Rasmussen et al., 2004): spontaneous components include usually electric-
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like and paroxysmal pain, burning pain (constant and superficial) and aching pain (Herr, 

2004); evoked pain components include hyperalgesia and allodynia. As compared to acute pain, 

less is known about the etiology of chronic pain, as it often occurs with the presence of no illness 

or after its healing is completed.   

 

1.1.5 Neuropathic pain  

Neuropathic pain processing begins after nerve injury, with the degeneration of the axon distal 

to the site of transaction, the Wallerian degeneration. It consists in an initial reaction at the site of 

injury followed by progressive degeneration and phagocytosis of myelin and axons distal to the 

injury (Stoll et al., 2002). Wallerian degeneration is fundamental to neuropathology and it is 

tightly correlated with the development of neuropathic pain (Myers et al., 2006). Following 

Wallerian degeneration, nociceptors become increasingly sensitized to external mechanical and 

thermal stimuli (peripheral sensitization). Injured C-fiber nociceptors can also develop new 

adrenergic receptors and sensitivity, which helps to the sympathetic maintenance of pain.  

Additionally, there is neurogenic inflammation (vasodilation, plasma protein extravasation, release 

of vasoactive peptides), which leads to the release of several neurotransmitters [e.g., 

norepinephrine, serotonin, SP, neurokinin A (NKA), and CGRP] from nociceptive afferent fibers 

and resulting in chemosensitivity contributing to peripheral sensitization.  

Peripheral nerve injury also results in central sensitization, which relates to changes within the 

spinal cord that increase the output of neurons within the nociceptive pathway (Woolf, 1983). The 

firing of C-fibers releases glutamate, activating alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPA), kainate and postsynaptic metabotropic glutamate 

(mGLU) receptors (Jones and Sorkin, 2003). The group I mGLU (mGLU1 and mGLU5; Conn and 

Pin, 1997) links to intracellular guanosine nucleotide proteins (G-proteins), potentiating the 

effects of AMPA/kainate receptor activation and contributing to the development of hyperalgesia 

(Meller et al., 1993; Meller and Gebhart, 1994). Aditionnally, higher stimulus intensities induce 

increased release of SP and NKA from primary afferent terminals (Duggan et al., 1990, 1995), 

which activate spinal neurokinin 1 (NK-1) receptors (McLean et al., 1993; Radhakrishnan and 

Henry, 1995, 1997; Hastrup and Schwartz, 1996) and mediate nociceptive transmission and 

spinal sensitization (Traub, 1996; Abbadie et al., 1997; Doyle and Hunt, 1999). Consequently, 

there is a polymodal depolarization of postsynaptic neurons, facilitating the removal of a voltage-

dependent magnesium ion (Mg2+) block from the glutamate ionotropic NMDA receptor (NMDAr). 
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This, in turn, results in additional neuronal depolarization by large calcium-ion (Ca2+) influx 

through the NMDAr channel (Jones and Sorkin, 2003). Calcium then acts as an important 

secondary messenger, leading to immediate early gene expression (e.g., c-fos), and 

phosphorylation of numerous receptors at the level of the dorsal horn, including NMDA receptors, 

which leads to a decreased threshold of dorsal horn neurons (Ji, 2004; Zimmermann, 2001).   

Neuropathic pain can have are numerous causes (Table 1), the most common having a 

peripheral origin. These include axotomy, nerve plexus damage, metabolic diseases such as 

diabetes mellitus, or herpes zoster. Damage to central neurons (e.g. in the thalamus) can result 

in central neuropathic pain. 

 

 

 

 

1.1.6 Animal models  

As the mechanisms underlying neuropathic pain are still not entirely understood, the search 

for new animal models that reproduce, as close as possible, this painful condition in humans, 

still continues (Kim et al., 1997). These animal models must reproduce sensory deficits 

(allodynia, hyperalgesia, and spontaneous pain) over a sustained period of time to allow 

evaluation by sensory testing (Dowdall et al., 2005). There are several animal models using 

mechanical peripheral nerve injury. The first model was developed by Wall and colleagues 

Table 1– Summary and some examples of Neuropathic Pain causes 
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(1979). It involved complete transection (CT) of the sciatic nerve at midthigh level, and resulted 

in autotomy, used to quantify the degree of neuropathic pain. However, due to animal health care 

issues, this model is rarely used. The chronic constriction injury (CCI) model (Bennett and Xie, 

1988), involves four ligatures loosely tied around the sciatic nerve proximal to the sciatic 

trifurcation. This constriction of the nerve leads to intraneural oedema, a focal ischemia, and 

Wallerian degeneration. This model results in chemical and heat-evoked hyperalgesia, cold and 

mechanical allodynia and some symptoms of spontaneous pain that extend for more than 2 

months (Bennett and Xie, 1988; Attal et al., 1990). Seltzer et al. (1990) developed the partial 

sciatic nerve ligation (PSL) model by tightly ligating 1/3 to 1/2 of the sciatic nerve with a single 

ligature. The result is mechanical allodynia, heat-evoked hyperalgesia, and spontaneous pain, 

present for up to 7 months. The spinal nerve ligation (SNL) model, developed by Kim and Chung 

(1992), results from a tightly ligation of the L5 and L6 spinal nerves close to their respective 

ganglia. Mechanical and heat-evoked hyperalgesia together with spontaneous pain lasting at least 

4 months are observed (Choi et al., 1994). Lee and colleagues (2000) developed a model where 

different combinations of the three branches of the sciatic nerve are transected (tibial, sural, and 

common peroneal), in order to investigate which combination produced the most robust and 

stable degrees of allodynia and hyperalgesia. Reportedly, sectioning the tibial and sural nerves 

resulted in the largest amount of mechanical allodynia, chemical hypperreactivity, and 

spontaneous pain. Almost simultaneously, Decosterd and Woolf (2000) developed the spared 

nerve injury model (SNI), which consists of an axotomy and ligation of the tibial and common 

peroneal nerves leaving the sural nerve intact. The SNI model produces mechanical allodynia, 

mechanical hyperalgesia, no change in thermal heat threshold, a hyper-responsiveness to a 

suprathreshold heat stimulus and cold allodynia, considered to be representative of many of the 

symptoms present in human patients with neuropathic pain (Woolf and Mannion, 1999). 

 

1.2 Amygdala and pain 

1.2.1 Limbic system  

The limbic system was first defined by Paul Broca (1878), mainly to designate the areas 

included in this convolution: the great limbic lobe, the limbic fissure, the superior or inferior 

limbic arch. Later, functional studies by Klüver and Bucy (1939) started to show an association 

between the limbic lobe and complex emotions and motivational processes. In the early 1950s, 
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MacLean (1949, 1954) named these cortical and subcortical systems and their fibers as the 

‘‘limbic system’’.  

The limbic system is constituted by a group of brain structures considered to be evolutionarily 

primitive, located on top of the brainstem and basal to the cortex (Franks, 2006): amygdala, 

hippocampus, hypothalamus, thalamus, fornix, parahippocampal gyrus, cingulate gyrus, olfactory 

cortex, orbitofrontal and medialfrontal cortices (medial prefrontal cortex, mPFC), septal nucleus, 

ventral tegmental area, and some brainstem nuclei. These brain structures have major roles in 

the processing of the emotions, motivations and even pleasure, particularly when those are 

related to survival, like fear, anger, and emotions related to sexual behavior and feeding (Burgdorf 

and Panksepp, 2006). The limbic system also has important functions in memory processing: 

the amygdala is responsible for determining which memories are kept and where they are stored 

in the brain (this determination is based on how big an emotional response is invoked by an 

event; Markowitsch, 1995; Paz et al., 2006); the hippocampus sends memories out to the 

appropriate part of the cerebral hemisphere for long-term storage and retrieves them when 

necessary (damage to this area of the brain may result in an inability to form new memories; 

Dash and Moore, 2007). The hippocampus sends information through the fornix to the mamillary 

bodies, which then project to the anterior nucleus of the thalamus in the mamilothalamic tract, 

path that is classically known as the circuit of Papez (Amaral and Witter, 1995). 

The limbic system also includes the diencephalon, which is located in the subcortical region 

and contains the thalamus and hypothalamus (Jacobson and Marcus, 2008). The thalamus is 

involved in sensory perception and regulation of motor functions (i.e., movement; Basso et al., 

2005). The hypothalamus is also a component of the diencephalon and plays a major role in 

regulating hormones, the pituitary gland, body temperature, the adrenal glands, and many other 

vital activities (Butler and Hodos, 2005).  

The septal nuclei are composed of medium-sized neurons and have a role in autonomic 

function and in emotional behavior (Panksepp, 1986). Lesions of the septal nuclei cause a 

variety of behavioral changes, like alterations in sexual behaviour, foraging behaviour and 

emotional behaviour (Date et al., 1998). The mPFC collects and integrates of behaviorally 

relevant information and has constant plasticity, allowing the adaptation to new tasks. Therefore, 

it has the properties needed to sustain cognitive processing.  The mPFC contributes to the 

regulation of affective behaviors, namely through efferent projections to the AMY, which regulate 

AMY plasticity and responses to previously conditioned stimuli (Rosenkranz et al., 2003). 
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1.2.2. Amygdala  

1.2.2.1 Anatomy and functional significance 

It is known that, in humans, the experience of pain is enhanced by unpleasant emotional 

states (Chapman and Gavrin, 1993; Melzack and Chapman, 1975), and reduced by pleasant 

emotions (Chaves and Barber, 1974; Zillmann et al., 1996). The amygdala (AMY), as part of the 

limbic system, plays a key role in the affective and autonomic aspects of behavior, the evaluation 

of the emotional significance of sensory stimuli, emotional learning and memory, fear, anxiety 

and depression, and stress responses (Cahill, 1999; Davidson et al., 1999; Davis 1994, 1998; 

Gallagher and Chiba, 1996; Gallagher and Schoenbaum, 1999; Rasia-Filho et al., 2000; Rolls, 

2000). 

The AMY is includes approximately 12 different regions, which can be divided into several 

subregions (LeDoux, 2000). Different systems have been used to classify the amygdala areas, 

most of them are very similar. Amaral and colleagues (1992) classified AMY of the primate brain, 

and this classification has been widely used since then, and even applied to the rat brain 

(Pitkänen et al., 1997; LeDoux, 2000). In this classification, the most relevant areas are the 

lateral (La), basal (B), accessory basal (AB), and central (CeA) nuclei and the connections 

between them. In Paxinos and Watson classification (1998; Figure 2), Amaral’s B is named 

basolateral nucleus (BL), and AB is the basomedial nucleus (BM). The term basolateral complex 

is sometimes used to refer the La and B (and sometimes AB) together. The CeA is the same in 

both classifications. Since the Paxinos and Watson classification (1998) was completely 

performed in adult rats, this was the classification used in all studies presented in this thesis. 
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Figure 2 – AMY division as in Paxinos and Watson classification (1998). In this section, we can find the most 

relevant nuclei: central (CeA), lateral (La), basolateral anterior (BLA), posterior (BLP) and ventral (BLV), basomedial 

(in its anterior part, BMA) and medial (Me) nuclei.  

 

The CeA modulates various effector systems involved in the expression of emotional 

responses through widespread connections with the forebrain and brainstem (Cassell et al. 

1986; Krettek and Price 1979; LeDoux 2000; Price and Amaral 1981). The CeA receives a wide 

range of sensory information from descending cortical inputs and ascending thalamic and 

brainstem inputs (Fallon and Moore, 1978). More specifically, the CeA receives inputs from main 

and accessory olfactory systems (Pitkänen et al., 1997;  Canteras et al., 1992; Petrovich et al., 

1996), from mPFC, agranular insular and ventral subicular (Ottersen, 1982) cortical regions, 

from the solitary tract (Ricardo and Koh, 1978) and parabrachial nuclei (Bernard et al., 1993), 

and from the perigeniculate thalamus (probably transmitting somatosensory and auditory 

information; LeDoux et al., 1990; Yasui et al., 1991). Additionally, CeA receives inputs from the 

thalamic paraventricular nucleus (Moga et al., 1995) and from the LA and BLA. The latter also 

project to widespread, differentiated regions of the striatum, including the caudoputamen, 

nucleus accumbens and CeA (Swanson and Petrovich, 1998). These connections between La, 

BLA, and CeA were extensively studied and confirmed through studies in diferent species, 

including rats, cats, and primates (Pitkänen et al., 1997; Paré et al., 1995; Amaral et al., 1992; 

Cassell et al., 1999).  
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It is known that the BLA modulates memory consolidation by interacting with other brain 

areas (McGaugh, 2004). BLA has been described essential to memory-modulatory effects of 

drugs infused into other brain regions, including the hippocampus (Roozendaal and McGaugh, 

1997; Roozendaal et al; 1999), entorhinal cortex (Roesler et al.; 2002), medial prefrontal cortex 

(Roozendaal et al.; 2004), insular cortex (Miranda & McGaugh, 2004) and nucleus accumbens 

(Roozendaal et al; 2001).  

 

1.2.2.2 Role in pain modulation 

The AMY is a major receiver of nociceptive information through the spino-parabrachio-amygdaloid 

pain pathway, which originates from lamina I neurons in the spinal cord and trigeminal nucleus 

caudalis and provides purely nociceptive input to the CeA (Bernard and Bandler, 1998; 

Bourgeais et al., 2001). Aditionally, spinal neurons in the deep dorsal horn and/or the area 

around the central canal form monosynaptic connections with AMY neurons and may provide 

sensory, including nociceptive, input to the AMY (Burstein and Potrebic, 1993; Newman et al., 

1996; Wang et al., 1999). Finally, the CeA also receives nociceptive information from thalamic 

and cortical areas through connections with the lateral (La) and basolateral (BLA) amygdaloid 

nuclei (Bourgeais et al., 2001; Doron and LeDoux, 1999; LeDoux, 2000; Linke et al., 1999; 

Pitkanen et al., 1997; Savander et al., 1995; Shi and Cassell, 1998; Smith et al., 2000). The 

latero-capsular part of the CeA has been defined as the ‘nociceptive amygdala’ because of its 

high content of nociceptive neurons (Han and Neugebauer, 2004; Bernard et al., 1996; 

Neugebauer and Li, 2002). Lesion or inactivation of the AMY decreases emotional pain reactions 

(Borszcz, 1999; Calvino et al., 1982; Werka 1997), without affecting normal behavior or baseline 

nociceptive responses (Calvino et al., 1982; Fox and Sorenson, 1994; Helmstetter, 1992; 

Helmstetter and Bellgowan, 1993; Pavlovic et al., 1996a; Tershner and Helmstetter, 2000; 

Watkins et al., 1993, 1998). Thus, the AMY plays a major role in the processing of the 

motivational-affective component of pain. As the output nucleus for major amygdala functions, 

the CeA has important projections that terminate in several brainstem centers, which modulate 

pain through descending projections to the spinal dorsal horn and control of spinal transmission; 

these include the PAG (Vianna and Brandão, 2003), the RVM (Pavlovic et al., 1996b; Helmstetter 

et al., 1998), the dorsal reticular nucleus (DRt; Almeida et al., 1996, 1999, 2002) and the 

nucleus of the solitary tract (NST; Gamboa-Esteves et al., 2001). 
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Although it has not been entirely clarified, BLA seems also to have a role in pain modulation. 

Hasanein and colleagues suggested the existence of a cannabinoid-mediated inhibitory system in 

the BLA, which normally has no tonic effect on the response threshold to acute and tonic noxious 

stimuli, but that decreases the response to these stimuli when activated (2007). Additionally, it 

has been recently shown that opioid receptors are also involved in the CGRP-induced 

antinociception in the BLA (Li et al., 2008). 

 

1.3 Affective disorders and persistent pain 

1.3.1 Chronic pain and depression 

It has been clearly demonstrated that pain has a negative impact upon the quality of life of a 

person (Hunfeld et al., 2001). Pain impairs the capacity to concentrate, work, socialize, perform 

daily tasks and sleep, which usually results in isolation, loss of self esteem and depression. Since 

chronic pain encloses not only its physical symptoms (like allodynia and hyperalgesia), but also 

mood disorders like depression, these should be carefully evaluated in all patients with chronic 

pain (Dworkin and Gitlin, 1991). In 1993, Magni and colleagues developed a study based on US 

household survey, where estimated rates of depression were of 16.4% in individuals with chronic 

pain, compared with 8% in individuals without chronic pain. A survey in the UK demonstrated that 

psychological distress is more frequent in persons with chronic low back pain than pain-free 

individuals (Croft et al., 1995). Additionally, data from a World Health Organization (WHO) study 

on psychological conditions in primary care (Sartorious et al., 1996) showed that 32% of patients 

with a somatosensory pain disorder also met criteria for a depressive disorder (Von Korff and 

Simon, 1996). These epidemiological studies clearly show that depression is more common in 

persons with chronic pain. 

On the other hand, evidences have also shown that depressed patients are not only more 

prone to develop pain (Dickens et al., 2003), but also have significantly lower pain tolerance 

(Willoughby et al., 2002). It has been reported that depression symptoms are both emotional and 

physical (Stahl, 2002). The fact the depressed patients feel more pain is thought to be related 

with a common pathway between the two, which involves serotonin (5-HT) and norepinephrine 

(NE) neurotransmitter systems (Delgado, 2004). Ascending serotonergic and noradrenergic 

pathways mediate the emotional symptoms of depression and can be targets for serotonin and 

norepinephrine reuptake inhibitors to obtain relief of these symptoms (Stahl and Briley, 2004). 

Descending serotonergic and noradrenergic pathways may regulate the painful physical 
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symptoms of depression, and when targeted by serotonin and norepinephrine reuptake inhibitors 

(like antidepressants), these symptoms are also relieved (Stahl and Briley, 2004).  

Drepressive-like behaviour has been previously observed associated with chronic mild stress 

(Bessa et al., 2008), acute stress (Simmons and Broderick, 2005), drug addiction (Cryan et al., 

2003) and even maternal separation (Marais et al., 2008) in the rat. However, the simultaneous 

evaluation of pain and depressive like behaviour in rats is sparse, if not absent. Zeng and 

colleagues (2008) have recently reported that a subset of Wistar-Kyoto (WKY) rats, a genetic 

variation of the Wistar strain (Porsolt et al., 1978) that has been used as preclinical model of 

depression, showed an increase in mechanical allodynia in WKY rats with chronic pain (induced 

by CCI; 2008). In comparison with normal Wistar rats, WKY rats demonstrate hormonal, 

behavioural, and physiological changes similar to those found in patients with clinical depression.  

 

1.3.2 Neuroplasticity induced by chronic pain 

As mentioned before, peripheral and central sensitization contributes to chronic pain 

development. Previous experimental research has shown that long-term plastic changes 

occurring along sensory pathways after an insult are the main origin of chronic pain (Flor, 2008; 

Nichols et al., 1999; Svendsen et al., 1999). These plastic changes (e.g., increased activity, loss 

of grey matter) take place in peripheral nociceptors, spinal dorsal horn, subcortical areas (ex.: 

thalamus) and also in cortical areas (ex.: insular cortex, primary and secondary somatosensory 

cortex, mPFC, ACC) that are involved in the processing of painful information (Zhuo, 2008; 

Apkarian et al., 2004; Schmidt-Wilcke et al.; 2006). Prior studies have shown that in neuropathic 

pain, there is a decrease in the discriminative physiological function of pain (Hofbauer et al., 

2006; Witting et al., 2006; Pukall et al., 2005; Kwan et al., 2005). One of the advantages of 

human studies is that they allow the determination of brain activity during spontaneous pain in 

patients. In one of these studies, Stern and colleagues (2006) showed that sustained high levels 

of spontaneous pain result in increases in activity within the mPFC, including the ACC. Phantom 

pain, a form of neuropathic pain physically caused by amputation, is believed to be due to 

cortical plasticity and reorganization (studies performed in animals; Wei and Zhuo, 2001; Kaas et 

al. 1999; Flor et al., 2006). It has been reported that chronic back pain is associated with the 

decrease of gray matter in the prefrontal, thalamus, brainstem, somatosensory cortex, ACC and 

mPFC (Apkarian et al. 2004; Schmidt-Wilcke et al. 2006, Kuchinad et al., 2007). Higher 
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activation is consistently reported in cortical areas (S1, parietal, hindlimb, cingulate and 

retrosplenial cortical areas) related to pain processing in patients with phantom pain or other 

forms of chronic pain (Paulson et al., 2000; Mao et al., 1993). However, it is still unclear if these 

structural changes are a consequence of chronic pain or, on the other hand, changes are due to 

affective disorders related to chronic pain, such as depression (Zhuo, 2008).  

In the AMY, the first observation of synaptic plasticity was performed by Racine and 

colleagues (1983) in awake, behaving rats. In this study, tetanic long-term potentiation was 

induced in the amygdala though the application of high-frequency electrical stimuli to the 

pyriform cortex. Since then, different studies demonstrated that AMY exhibits a high degree of 

synaptic plasticity in models of tetanic and pharmacologically induced plasticity (McKernan and 

Shinnick-Gallagher, 1997; Maren, 1999; Wang and Gean, 1999; LeDoux, 2000; Bauer et al., 

2001; Blair et al., 2001; Lin et al., 2001). Neugebauer and colleagues have also consistently 

reported that the AMY exhibits long-term modification of synaptic transmission in rats with 

kindling or knee-joint input (Neugebauer et al., 1997, 2000, 2003). Additionally, plasticity in AMY 

(changes in volumes) has also been reported in humans with affective disorders (Altshuler et al., 

1998, Altshuler et al., 2000; Mervaala et al., 2000; Sheline et al., 1998; Strakowski et al., 1999; 

Tebartz van Elst et al., 2000). Increased amygdala volumes have been reported also in patients 

with temporal lobe epilepsy and comorbid depression (Tebartz van Elst et al 2000), and in 

patients with bipolar disorders (Altshuler et al., 1998; Strakowski et al., 1999). Furthermore, 

studies performed in humans have shown that the amygdalar volume was enlarged in patients 

with depressive disorders, as opposed to the controls (Frodl et al., 2002, 2003; Lange and Irle, 

2004).  

 

1.4 Aims and Methodology 

Neuropathic pain development entails significant changes in pain pathways. These changes 

are translated in significant alterations in the pain modulation systems peripherally, spinally and 

supra-spinally. At the supraspinal level, RVM ON- and OFF-cells have pronociceptive and 

antinociceptive action, respectively; however, their precise contribution for neuropathy 

hypersensitivity is not clearly known (Burgess et al., 2002). Additionally, neuropathic pain is 

strongly related with mood disorders, like depression (Strouse, 2007). Plastic changes have been 

observed in the limbic system, namely in AMY, which is implicated in both emotion and pain 
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processing, both in neuropathic pain and depressive patients. Importantly, until now, no studies 

have analyzed these changes at the structural level in brains of patients (or animals) with 

peripheral neuropathy and depression. Moreover, it is yet to clarify how these changes in the 

AMY influence pain processing and modulation, namely at the level of the supraspinal pain 

control system. 

 

In summary, this thesis aims to: 

 

1. Assess the contribution of RVM ON- and OFF-cells to acute and prolonged neuropathy 

induced by the spared nerve injury (SNI) model, through an electrophysiological study (Chapter 

2.1), in which four groups of animals were included: (i) Sham group tested 1 week after 

operation; (ii) sham group tested 8 weeks after operation; (iii) SNI group tested 1 week after 

operation; and (iv) SNI group tested 8 weeks after operation. The surgery consisted in the 

unilateral axotomy and ligation of the tibial and common peroneal nerves was performed under 

pentobarbitone anaesthesia (50 mg ⁄ kg i.p.) as described in detail earlier (Decosterd & Woolf, 

2000). In each animal of these groups, the development of hypersensitivity was verified daily for 

2–3 days after the surgery, through mechanical hyperalgesia and allodynia assessement. In 

order to perform the electrophysiological recordings, the animals were under anaesthesia, 

induced by pentobarbitone and then placed in a standard stereotaxic frame. The microelectrode 

was lowered to the RVM [according to the atlas of Paxinos & Watson (1998)] and, after a single 

cell has been found, its spontaneous activity was recorded for 2–3 min. Additionally, the activity 

was recorded after application of peripheral stimulati to the lateral side of the hind paw 

innervated by the sural nerve: cold stimulation (peak stimulus temperature, 4ºC; baseline 

temperature, 35ºC) and mechanical stimulation of the skin (applied through an a haemostatic 

clamp to the tail for 5 s), and noxious visceral stimulation [colorectal distension (CRD) at a 

noxious intensity (80 mmHg) (Ness et al., 1991)]. At the end of the experiment, an electrolytic 

lesion was made in the RVM recording site, the animals were given a lethal dose of 

pentobarbitone and the brains were removed for verification of recording sites.  

 

2. Evaluate if chronic pain induces emotional disturbances that are associated with 

neuroplasticity of the amygdaloid complex (Chapter 2.2), through behavioural, structural and 

immunohistochemical analysis. The animals were subjected to the SNI model of chronic 
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neuropathic pain (Decosterd and Woolf, 2000), and tested for mechanical allodynia and 

hyperalgesia a day before and two days after the surgery procedure, followed by testing every two 

days then forward, during the two months of experimental period. Anxiety-like behaviour was 

evaluated by the elevated plus-maze (EPM) test, depression-like behaviour by the forced 

swimming test (FST), and motor activity and exploratory behaviour through the open field (OF) 

test. Structural studies performed were: a) stereological analysis of the AMY, which was 

subdivided in its nuclear components - CeA, La, BLA, BLP, BMA and BMP nuclei (Paxinos and 

Watson (1998); b) nuclei volume and cell number estimation of AMY, obtained through the 

Cavalieri's principle and optical fractionator method; c) 3D-morphologycal analysis of dendrites 

through the observation, at the optical microscope, of brain sections stained with the Golgi-Cox 

method, analysis of completely stained AMY neurons, and drawing of their dendrites and spines. 

In the immunohistochemical analysis of the AMY nuclei, all quantifications of markers for cell 

division and neuronal fate were performed in the AMY, positive controls were confirmed analyzing 

the subgranular zone (SGZ) of the hippocampus, and to achieve negative controls, the primary 

antibody was not included in the protocol of each reaction. The immunohistochemistry reactions 

were performed to reveal the following markers: (i) bromodeoxyuridine (BrdU; an analogue of 

thymidine, incorporated into the newly synthesized DNA of replicating cells), (ii) BrdU and GFAP 

(glial fibrillary acidic protein; a marker of astrocyte glial cells) double-labeling, (iii) BrdU and NeuN 

(protein expressed exclusively in mature neurons) double-labeling and (v) BrdU and Calb 

(Calbindin; a calcium binding protein present in functional mature neurons) double-labeling. The 

cells that stained positively to the referred markers were localized and counted in the AMY and 

nearby telencephalic areas. 

 

3. Reproduce the behaviour results obtain in Chapter 2.2 and elucidate the actual origin of 

the newborn neurons observed in the AMY (Chapter 2.3). Eight weeks after SNI model induction 

to a group of animals, behavioural tests were performed to assess mechanical allodynia (von 

Frey filaments), hyperalgesia (pin-prick test), depressive-like behaviour (forced swimming test) 

and anxiety-like behaviour (elevated plus-maze). Immunohistochemical analysis were then 

performed in order to detect cells staining the following markers: doublecortin (DCX; protein 

expressed in migrating and differentiating neurons) + Ki-67 (nuclear protein expressed in 

proliferating cells in all phases of the active cell cycle); PSA-NCAM (specifically expressed in 

committed neuronal precursors present in regions that are undergoing some kind of structural 

19



 

 

plasticity) + GFAP (glial fibrillary acidic protein); and nestin (protein markers for immature neural 

cells) + GFAP.  

 

4. Determine if neural plasticity of the AMY induced by peripheral nerve injury (SNI model) 

influences RVM regulation of pain using an electrophysiological approach (Chapter 2.4). After SNI 

induction, the development of hypersensitivity was verified daily for 2–3 days after the surgery 

through mechanical hyperalgesia and allodynia assessment. In order to perform the 

electrophysiological recordings, anaesthetized animals were placed in a standard stereotaxic 

frame according to the atlas of Paxinos & Watson (1998) and had a guide cannula for drug 

administration inserted into the AMY ipsilateral to the SNI or sham-operated limb (left side), 

except for one group that had the cannula contralateral to the nerve injury (right side), and a 

control group that had the cannula in the hippocampus. Additionally, a group of animals tested in 

behavioral experiments only had a bilateral guide cannula for drug injections into the central 

nucleus of the amygdala. The microelectrode was lowered to the RVM and, after a single cell had 

been found, its spontaneous activity was recorded for 2–3 min. Then different drugs (a 

glutamatergic agonist or a glutamatergic antagonist) or saline (control) was then administered in 

a determined order to the amygdala and the spontaneous activity was recorded for up to 30 min. 

Finally, and in order to obtain a measure of affective pain induced by mechanical stimulation of 

the neuropathic hind paw, the place avoidance test was performed in three experimental groups 

of rats i) SNI animals with amygdaloid injections ipsilateral to the nerve injury, ii) SNI animals 

with bilateral amygdaloid injections, iii) sham-operated animals with amygdaloid injections 

ipsilateral to the sham operation.  

 

5. Evaluate the response properties of amygdala nociceptive neurons in peripherally-evoked 

stimulation and what is the cortical influence upon their activity in the neuropathic rat (Chapter 

2.5). The animals were subjected to SNI surgery and, under the same light anaesthesia, a 

cannula was placed in the rostral anterior cingulate cortex (rACC) of all animals, according to the 

atlas of Paxinos & Watson (1998). Nociceptive tests were performed a day before (baseline) and 

every two days after the surgery procedure, in order to verify the development of hypersensitivity. 

The place escape/avoidance testing was performed one or eight weeks after surgical 

implantation of the cannulas. Finally, the spontaneous activity and the peripherally-evoked 

20



 

 

noxious stimulation response of BLA and CeA neurons was recorded using the electrophysiology 

technique described previously. 
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Abstract

The spared nerve injury (SNI) model of peripheral neuropathy produces a robust and long-lasting hypersensitivity. Previous
behavioural studies suggest that brainstem–spinal pathways originating in or relaying through the rostroventromedial medulla (RVM)
contribute to neuropathic hypersensitivity. We determined whether SNI induces changes in response properties of RVM neurons that
might influence descending modulation of nociception. RVM neurons included in the study were classified into presumably
pronociceptive ON-cells and antinociceptive OFF-cells (giving excitatory or inhibitory responses to noxious stimulation, respectively).
Spontaneous activity and the response to cold, pinch and colorectal distension were assessed under light anaesthesia in the rat,
1 week and 8 weeks following nerve injury or sham operation. Spontaneous activity was increased 1 week but not 8 weeks after
nerve injury in ON-cells but decreased in OFF-cells at both time points. In the SNI group, cold-evoked responses were enhanced
particularly in ON-cells, independent of the postoperative time point. Responses of ON-cells to pinch and visceral stimulation were
enhanced 8 weeks but not 1 week following nerve injury, whereas OFF-cell responses to pinch or colorectal distension were not
changed. The results indicate that SNI induces pronociceptive changes in spontaneous activities of ON-cells and OFF-cells and
peripherally evoked responses of ON-cells that vary with the postoperative time point. Increased ON-cell activity and decreased
OFF-cell activity in the RVM are likely to enhance spinal nociception in a tonic fashion, whereas increased responses of ON-cells
to peripheral stimulation are likely to enhance ascending nociceptive signals by a positive feedback following peripheral
noxious stimulation.

Introduction

Peripheral nerve injuries may produce long-lasting neuropathic pain
and hypersensitivity that is particularly prominent with mechanical
and cold stimulation of the skin (Scadding & Koltzenburg, 2006). The
maintenance of these nerve injury-induced symptoms depends on
abnormal discharge from peripheral nerves (Devor, 2006) and
pronociceptive changes in the spinal segmental mechanisms mediating
and modulating pain-related signals (Woolf & Salter, 2006). Addi-
tionally, changes in descending pain modulation contribute to
neuropathic symptoms (Pertovaara, 2000; Porreca et al., 2002;
Ossipov et al., 2006). The rostroventromedial medulla (RVM),
consisting of the raphe magnus and its adjacent reticular nuclei, is a
final common pathway for many descending pathways and is involved
in descending facilitation as well as inhibition of pain-related spinal
responses (Gebhart, 2004; Vanegas & Schaible, 2004). Among the
various cell types of the RVM, one giving an excitatory response to
noxious stimulation just prior to nociceptive withdrawal reflex
(ON-cell) is considered to have a pronociceptive role, whereas one
giving an inhibitory response to noxious stimulation (OFF-cell) is
considered to have an antinociceptive role (Fields et al., 2006). A

third cell type of the RVM giving no response to noxious stimulation
(NEUTRAL-cell) has a less clear role, although it has been proposed
to contribute to tonic modulation of various spinal processes (Mason,
2006), possibly including nociception. Whereas there is accumulating
behavioural evidence indicating that the RVM contributes to neuro-
pathic hypersensitivity through descending pathways, the contribution
of various cell types of the RVM to hypersensitivity during an early
vs. a later phase of neuropathy is only partly known (see Discussion
for references).
In this study, we assessed the contribution of presumably pro- and

antinociceptive RVM cells to acute and prolonged neuropathy by
determining their response properties at two different postoperative
time points in sham-operated controls vs. in animals with a spared
nerve injury (SNI) model of peripheral neuropathy (Decosterd &
Woolf, 2000). This model of neuropathy provides stable and long-
lasting symptoms mimicking those observed in clinical conditions.

Materials and methods

The experiments were performed in adult, male Hannover-Wistar rats
weighing 180–190 g at the beginning of the experiment (Harlan,
Horst, The Netherlands). The experimental protocol was accepted
by the Institutional Ethics Committee and the experiments were
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performed according to the guidelines of European Communities
Council Directive of 24 November 1986 (86 ⁄ 609 ⁄ EEC).

Techniques for producing neuropathy

The unilateral axotomy and ligation of the tibial and common
peroneal nerves was performed under pentobarbitone anaesthesia
(50 mg ⁄ kg i.p.) as described in detail earlier (Decosterd & Woolf,
2000). Briefly, the skin of the lateral surface of the thigh was incised
and a section made directly through the biceps femoris muscle
exposing the sciatic nerve and its three terminal branches. Following
ligation and removal of 2–4 mm of the distal nerve stumps of the
tibial and common peroneal nerves, muscle and skin were closed in
two layers. In sham-operated animals, the surgical procedure was
identical, except that the tibial and common peroneal nerves were
not ligated or sectioned.

Behavioural verification of neuropathy

Development of hypersensitivity was verified behaviourally in
animals habituated to the experimental conditions 1–2 h daily for
2–3 days. For assessment of tactile allodynia, the hind limb
withdrawal threshold was determined by stimulating the sural nerve
area in the hind paw of the operated limb with monofilaments. The
calibrated series of monofilaments used in this study produced
forces ranging from 0.16 to 15 g (North Coast Medical, Inc. Morgan
Hill, CA, USA). The monofilaments were applied to the foot pad
with increasing force until the rat withdrew its hind limb. The
lowest force producing a withdrawal response was considered the
threshold. The threshold for each hind paw of each rat was based on
three separate measurements and the median of these values was
considered to represent the threshold. Threshold values £1 g were
considered to represent hypersensitivity. It should be noted that the
currently used strain of rats delivered by Harlan (Horst, The
Netherlands) has an exceptionally low withdrawal threshold to
monofilament stimulation in the baseline (unoperated) condition: in
10 unoperated control animals, the lowest withdrawal threshold was
only 4 g, and therefore the criterion for hypersensitivity was set to
as low as £1 g in this study.

Electrophysiological recordings

For electrophysiological recordings, the anaesthesia was induced by
pentobarbitone at a dose of 50 mg ⁄ kg i.p. and the animal was placed
in a standard stereotaxic frame according to the atlas of Paxinos &
Watson (1998). Anaesthesia was maintained by infusing pentobarbi-
tone (15–20 mg ⁄ kg ⁄ h). The level of anaesthesia was frequently
monitored by observing the size of the pupils and by assessing
withdrawal responses to noxious stimulation. When necessary, the
infusion rate of pentobarbitone was increased. The rats were
spontaneously breathing. A warming blanket was used to maintain
body temperature within the physiological range. Peripheral perfusion
was checked by evaluating the colour of ears and extremities. The
skull was exposed and a hole drilled for placement of a recording
electrode in the RVM. The desired recording site in the RVM was 1.8–
2.3 mm posterior from the ear bar, 0.0–0.9 mm lateral from the
midline, and 8.9–10.7 mm ventral from the dura mater.

Single neuron activity was recorded extracellularly with lacquer-
coated tungsten electrodes (tip impedance 3–10 MW at 1 kHz) and
then amplified and filtered using standard techniques. Data sampling
was performed with a computer connected to a CED Micro 1401

interface and using Spike 2 software (Cambridge Electronic Design,
Cambridge, UK).
Actual recordings did not start until the animal was under light

anaesthesia; that is, the animals gave a brief withdrawal response to a
noxious pinch, but the pinch did not produce any longer-lasting motor
activity, and nor did the animals have spontaneous limb movements.
Neurons were classified on the basis of their response to noxious pinch
of the tail with a haemostatic clamp. This stimulus was painful when
applied to the finger of the experimenters. Neurons giving excitatory
responses to pinch were considered ON-cells, those giving inhibitory
responses were considered OFF-cells and neurons showing no or only
a negligible (<10%) change in their discharge rates as a response to
pinch were considered NEUTRAL-cells. This classification scheme of
medullary neurons was modified from that described by Fields et al.
(2006). A noteworthy difference is that we did not verify whether
pinch-evoked responses of RVM neurons were associated with spinal
reflex responses as in the original classification scheme (Fields et al.,
2006). Therefore, the populations of ON- and OFF-cells in this study
may not be identical with those in a study in which cells are classified
strictly according to the classification scheme of Fields et al. (2006).
Our previous results suggest, however, that there is only little
difference in the classification of RVM neurons whether or not spinal
reflex responses are concurrently measured in lightly anaesthetized
animals (Pertovaara et al., 2001).

Peripheral test stimuli

In electrophysiological experiments, cold stimuli (peak stimulus
temperature, 4 �C; baseline temperature, 35 �C; rate of stimulus
temperature decrease, 4 �C ⁄ s; duration of the peak temperature of
4 �C, 10 s) were applied with a feedback-controlled Peltier device
(LTS-3 Stimulator; Thermal Devices Inc., Golden Valley, MN, USA)
to the lateral side of the hind paw innervated by the sural nerve.
Whereas some models of neuropathy may be associated with
significant skin temperature changes that provide a confounding
factor to assessment of thermal responses, particularly when using
radiant heat for stimulation (Luukko et al., 1994), applying thermal
stimuli with a contact thermostimulator and starting from a standard
adapting temperature reduces the possibility that a neuropathy-
associated change in skin temperature will influence the results.
ON- and OFF-neurons in the RVM typically have very large

receptive fields covering almost the whole body and allowing
testing of not only responses evoked by stimulating the operated
limb but also responses evoked by the nonoperated region within
the same neurons. In this study, responses evoked by stimulating
the tail and the viscera were assessed to observe potential nerve
injury-induced changes outside of the injured region. Mechanical
stimulation of the skin consisted of applying a haemostatic clamp to
the tail for 5 s. When applied to the experimenter’s hand, this
stimulus produced a painful pinch sensation. Noxious visceral
stimulation consisted of colorectal distension (CRD) at a noxious
intensity (80 mmHg) (Ness et al., 1991). CRD was applied for 10 s
by inflating with air a 7–8-cm flexible latex balloon inserted
transanally into the descending colon and rectum. The pressure in
the balloon was controlled by an electronic device (Anderson et al.,
1987).
When the stimulus-evoked responses were analysed, the baseline

discharge frequency recorded during a corresponding period just
before the stimulation was subtracted from the discharge frequencies
determined during stimulation; that is, positive values represent
excitatory responses evoked by peripheral stimulation and negative
ones inhibitory responses.
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Course of the study

Four groups of animals were included in the electrophysiological
study: (i) sham group tested 1 week after operation; (ii) sham group
tested 8 weeks after operation; (iii) SNI group tested 1 week after
operation; and (iv) SNI group tested 8 weeks after operation. In each
of these groups, behavioural assessment of sensitivity to monofilament
stimulation was performed before the start of the electrophysiological
experiment.
After induction of anaesthesia, the microelectrode was lowered to

the RVM. After a single cell had been found, its spontaneous activity
was recorded for 2–3 min. Then, cold stimulation was applied to the
sural nerve area in the operated limb followed by pinch of the tail and
CRD at 1-min intervals. The testing procedure, including the order of
testing different submodalities of nociception, was the same in all
experimental groups. To minimize serial effects, every other animal
tested in this series belonged to the sham group and every other to the
SNI group.
At the completion of the study, an electrolytic lesion was made in

the recording site, the animals were given a lethal dose of pentobar-
bitone and the brains were removed for verification of recording and
microinjection sites.

Statistics

Data are presented as mean ± SEM. For assessment of differences in
incidence of various types of neurons in different experimental
conditions, the chi-squared test was used. Two-way anova followed
by the Student–Newman–Keuls test was used for assessing differences
in neuronal responses between the experimental conditions. P < 0.05
was considered to represent a significant difference.

Results

All animals with SNI showed mechanical hypersensitivity both
1 week and 8 weeks following surgery, as indicated by hind limb
withdrawal thresholds that were £1.0 g ipsilateral to the nerve injury.
In contrast, sham-operated animals did not develop mechanical
hypersensitivity and their hind limb withdrawal thresholds were
significantly higher than those in the SNI group (F1,28 ¼ 40,
P < 0.0001), independent of the postoperative time point (1 or
8 weeks, Fig. 1).

In general, ON-cells gave excitatory and OFF-cells inhibitory
responses to noxious stimulation. Their receptive fields covered
bilaterally wide areas of the body and all extremities. NEUTRAL-
cells, in contrast, gave no marked responses to noxious stimulation of
the extremities, and they were not further studied here. Distributions of
RVM cells with different types of response properties were not
significantly different between SNI and sham groups at either 1 week
or 8 weeks following surgery (chi-square test; Table 1).

Spontaneous activity

The spontaneous discharge rate of ON-cells was significantly changed
from 1 week to 8 weeks postoperatively (F1,69 ¼ 8.9, P < 0.005;
Fig. 2A), and the change in the discharge rate varied with the
experimental group (Sham vs. SNI animals; F1,69 ¼ 4.8, P < 0.04).
One week following the operation, the spontaneous discharge rate of
ON-cells was significantly higher in the SNI than in the Sham group.
By the 8-week postoperative time point, the spontaneous discharge
rate of ON-cells was significantly decreased in the SNI group only.
Consequently, the spontaneous discharge rate of ON-cells 8 weeks
following the operation was no longer higher in the SNI than in the
Sham group, but was, if anything, the opposite.
The spontaneous discharge of the OFF-cells tended to increase from

the 1-week to the 8-week postoperative time point (F1,69 ¼ 14.8,
P < 0.0005; Fig. 2B). The spontaneous discharge rate of OFF-cells
was significantly lower in the SNI group than in the Sham group
(F1,69 ¼ 8.5, P < 0.005; Fig. 2B), independent of the postoperative
time point (1 week vs. 8 weeks; F1,69 ¼ 14.8, P < 0.0005).

Peripherally evoked responses

Application of cold (4 �C) to the sural nerve area in the operated hind
limb evoked markedly stronger excitatory responses in ON-cells of the
SNI than of the Sham group (F1,87 ¼ 116, P < 0.0001; Figs 3 and
4A), independent of the postoperative time point (F1,87 ¼ 0.67). Cold-
evoked responses of ON-cells did not vary with elapsed time from the
surgery (1 week vs. 8 weeks; F1,87 ¼ 0.9). Cold stimulation induced
stronger inhibitory responses in the OFF-cells of the SNI than in the
Sham group (F1,53 ¼ 64.6, P < 0.0001; Fig. 4B). Postoperative time
(1 week vs. 8 weeks) did not influence the magnitude of the cold-
evoked inhibitory response in OFF-cells (F1,53 ¼ 0.8).
Noxious tail pinch produced significantly stronger excitatory

responses in ON-cells of the SNI than of the sham group
(F1,87 ¼ 54, P < 0.0001; Figs 5 and 6A), and this difference in the
response magnitude was significantly larger at 8 weeks than at 1 week
after the operation (F1,87 ¼ 17.4, P < 0.0001). There were
no significant differences in pinch-evoked inhibitory responses of

Fig. 1. Hind limb withdrawal thresholds evoked by monofilament stimulation
of the operated limb determined in nerve-injured (SNI) and sham-operated
(Sham) animals 1 week and 8 weeks following the operation. Thresholds were
determined prior to induction of anaesthesia. The error bars represent SEM
(n ¼ 7–9). ***P < 0.005 (Student–Newman–Keuls test).

Table 1. Numbers of different types of rostroventromedial medullary neurons
studied in different experimental groups

ON-cells OFF-cells Neutral-cells

Sham
1 week 17 11 6
8 weeks 27 18 10

SNI
1 week 18 12 5
8 weeks 29 16 8

SNI, spared nerve injury; Sham, sham operation; 1 week and 8 weeks refer to
the postoperative time point of the study.
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OFF-cells between the SNI and the Sham groups (F1,53 ¼ 3.2;
Fig. 6B). Pinch-evoked inhibitory responses in OFF-cells, however,
were stronger at 8 weeks than at 1 week after the operation
(F1,53 ¼ 6.7, P < 0.02), independent of nerve injury (F1,53 ¼ 0.4).

CRD at a noxious intensity (80 mmHg) evoked significantly
stronger excitatory responses in ON-cells of the SNI than of the
Sham group (F1,87 ¼ 7.2, P < 0.01; Figs 6C and 7), and this
difference in the response magnitudes was significantly larger at
8 weeks than at 1 week following the operation (F1,87 ¼ 10.7,
P < 0.005). One week following the operation, ON-cell responses
evoked by CRD were minor ones and not different between the
experimental groups, whereas at 8 weeks following operation, the
CRD-evoked ON-cell response was significantly increased in the SNI
group only (see Fig. 6C for detailed results of post hoc tests). In OFF-
cells, the inhibitory response evoked by CRD was not significantly
different between the SNI and Sham groups (F1,53 ¼ 2.4; Fig. 6D),

and the magnitude of the response evoked by CRD in OFF-cells was
not significantly different when assessed 1 week vs. 8 weeks postop-
eratively (F1,53 ¼ 1.8).

Recording sites

Figure 8 shows the recording sites in the medulla.

Discussion

The results indicate that the SNI model of peripheral neuropathy
induces marked pronociceptive changes in response properties of cells
in the RVM, a nucleus with an important role in descending
modulation of pain (Pertovaara & Almeida, 2006). These plastic
changes vary with elapsed postoperative time and they are likely to
contribute to maintenance of neuropathic hypersensitivity.

Spontaneous activity and peripherally evoked responses

Spontaneous discharge rate of RVM ON-cells, which are known to
have an excitatory effect on nociceptive transmission (Fields et al.,
2006), was significantly increased 1 week but not 8 weeks after nerve
injury. The spontaneous discharge rate of RVM OFF-cells, which have
an inhibitory effect on nociceptive transmission (Fields et al., 2006),
was decreased both 1 week and 8 weeks following nerve injury.
Taken together, these findings suggest that both ON- and OFF-cell

Fig. 3. Examples of original recordings of cold-evoked responses of ON-cells
in a sham-operated animal and a nerve-injured (SNI) animal 8 weeks following
the operation. Cold stimulation was applied to the skin of the sural nerve area in
the operated limb. The peristimulus time histogram of the neuronal response
(above) and the change of stimulus temperature from 35 �C to 4 �C (below) are
shown for each neuron. The calibration bar for the peristimulus time histogram
represents 10 impulses ⁄ s and the horizontal calibration bar represents 25 s for
the Sham condition and 20 s for the SNI condition.

Fig. 2. Mean spontaneous activities of ON-cells (A) and OFF-cells (B) in
the RVM of sham-operated (Sham) and nerve-injured (SNI) animals 1 week
and 8 weeks following sham operation or nerve injury. The error bars represent
SEM (n ¼ 11–29). *P < 0.05 (Student–Newman–Keuls test; reference, the
corresponding value in the Sham group), +P < 0.05 (Student–Newman–Keuls
test; reference, the corresponding value in the 1-week group).
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activities in the RVM promote neuropathic hypersensitivity in a tonic
fashion during the first week following nerve injury. At a later phase of
neuropathy, however, only the OFF-cell activity has a tonic prono-
ciceptive effect, as a result of its decreased activity.
When assessing responses of RVM cells to peripheral stimulation,

we focused on mechanical and cold stimulation, because clinical
studies indicate that hypersensitivity to mechanical stimulation and
cold are frequent and prominent symptoms after traumatic nerve
injuries, whereas hyperalgesia to heat occurs only occasionally under
neuropathic conditions (Scadding & Koltzenburg, 2006). Importantly,
hypersensitivity to cold and mechanical stimulation is also a
prominent finding in rats with the SNI model of neuropathy
(Decosterd & Woolf, 2000). Because very little is known about the
possible influence of somatic neuropathy on visceral sensations, we
also determined responses of RVM cells to CRD.
The results indicate that SNI produced a significant hypersensitivity

to cold in both ON- and OFF-cells throughout the observation period

of 8 weeks. It should be noted, however, that the increase of excitatory
responses to cold was considerably stronger in ON-cells than the
increase of inhibitory ones in OFF-cells. Possibly, the SNI-induced
reduction in the spontaneous activity of OFF-cells limited the amount
of a further stimulus-evoked inhibition of OFF-cells. Responses to
cutaneous pinch and visceral stimulation were markedly enhanced in
ON-cells 8 weeks but not 1 week following nerve injury, whereas
OFF-cell responses to pinch or visceral stimulation were not
influenced by SNI. The present finding that hypersensitivity to
peripheral stimulation was observed predominantly in presumably
pronociceptive ON-cells of the RVM is in line with the hypothesis that
a positive feedback loop involving ON-cells in the RVM is involved in
promoting neuropathic hypersensitivity to peripheral stimulation. This
hypothesis is further supported by the earlier behavioural findings
indicating that nerve injury-induced hypersensitivity to mechanical
stimulation (Pertovaara, 2000; Porreca et al., 2002) and cold (Urban
et al., 2003) is dependent on descending facilitatory influence from the
RVM. Moreover, it is noteworthy that although behaviourally assessed
mechanical hypersensitivity develops within 24 h in the SNI model of
neuropathy, it may not be fully developed until the second postop-
erative week (Decosterd & Woolf, 2000), whereas hypersensitivity to
cold is fully developed within a week (Allchorne et al., 2005). These
behavioural findings parallel the present neurophysiological results
with ON-cells. However, when considering the potential behavioural
significance of SNI-induced changes in stimulus-evoked responses of
RVM neurons in the present study, one should note that assessments of
neuronal responses to noxious peripheral stimulation were not

Fig. 4. Mean changes of ON-cell (A) and OFF-cell (B) discharge rates
induced by cold applied to the sural nerve area in the operated limb 1 week and
89 weeks following the operation. SNI, spared nerve-injury group; Sham,
sham-operated group. **P < 0.01, ***P < 0.005 (Student–Newman–Keuls
test; reference, the corresponding Sham group). The error bars represent SEM
(n ¼ 11–29).

Fig. 5. Examples of original recordings of tail pinch-evoked responses of
ON-cells in a sham-operated animal and a nerve-injured (SNI) animal
8 weeks following the operation. The arrows show the duration of stimulation
(5 s). The vertical calibration bars represent 20 impulses ⁄ s.
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accompanied by simultaneous assessments of corresponding behavio-
ural responses. Moreover, behavioural responses of SNI animals to
two of the currently used stimuli (pinch of an uninjured tail and CRD)
have not been assessed in any previous study.

Comparison with previous studies

In line with the present findings, it has been shown earlier that
ON-cells in the RVM have a pronociceptive role in acute inflammation
as indicated by the association of their discharge rate with heat
hypersensitivity induced by mustard oil (Kincaid et al., 2006;
Xu et al., 2007). Previous studies addressing the contribution of
RVM cells to neuropathic hypersensitivity have given partly contra-
dictory results. It has been reported that chemical ablation of RVM
cells expressing the l-opioid receptor both prevents and reverses

Fig. 7. Examples of original recordings of CRD-induced responses of ON-cells
in a sham-operated animal and a nerve-injured (SNI) animal 8 weeks following
the operation. The peristimulus time histogram of the neuronal response (above)
and the change of stimulus intensity from 0 mmHg to 80 mmHg and back
(below) are shown for each neuron. The calibration bar for the peristimulus time
histogram represents 30 impulses ⁄ s. The duration of the CRD is 10 s.

Fig. 8. Schematic diagram showing recording sites in the RVM.

Fig. 6. Mean changes of ON-cell (A and C) and OFF-cell (B and D) discharge rates induced by noxious pinch of the tail or CRD at a noxious intensity (80 mmHg)
1 week and 8 weeks following sham operation or nerve injury. SNI, spared nerve-injury group; Sham, sham-operated group. ***P < 0.005 (Student–Newman–
Keuls test; reference, the corresponding Sham group). +++P < 0.005 (Student–Newman–Keuls test; reference, the corresponding group 1 week following operation).
The error bars represent SEM (n ¼ 11–29).
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spinal nerve ligation-induced experimental neuropathy (Porreca et al.,
2001). Because ON-cells are the only RVM neurons responding
directly to l-opioid agonists (Heinricher et al., 1992), the selective
reversal of neuropathic hypersensitivity by ablation of medullary cells
expressing l-opioid receptors suggests, in line with the present results,
that ON-cells promote neuropathic hypersensitivity. On the other
hand, the results of our previous electrophysiological study (Pertova-
ara et al., 2001) suggested that spinal nerve ligation-induced
neuropathy of 2–3 weeks’ duration may not produce as marked
pronociceptive changes in response properties of RVM cells as the
SNI model of neuropathy in the present study or acute inflammation in
other studies (Kincaid et al., 2006; Xu et al., 2007). Among possible
explanations of the difference between the results of our present and
earlier study (Pertovaara et al., 2001) are the differences in the genetic
background of the animals, model of neuropathy, and postoperative
time point of study. Interestingly, the sciatic constriction-induced
model of neuropathy had no significant influence on response
properties of RVM cells giving excitatory responses to noxious
stimulation (Luukko & Pertovaara, 1993), whereas complete dener-
vation of the sciatic area, as opposed to incomplete denervation in the
present study, produced an enhancement of excitatory responses of
RVM cells to peripheral stimulation of the adjacent intact skin area
(Pertovaara & Kauppila, 1989). Together, these findings support the
hypothesis that the magnitude or time course of the change in the
response properties of RVM cells may vary with the model of
peripheral neuropathy, with models involving sectioning of the
peripheral nervous system resulting in strong neuropathic changes of
the supraspinal pain control system. As anatomical feedback loops
implicated in the crosstalk between the brainstem and spinal cord are
essential for pain modulation (Almeida et al., 2006), the drastic
changes associated with the afferent barrage of nociceptive messages
after nerve fibre sectioning may have a role in the differences observed
between models. In the specific case of the RVM, a clear anatomical
basis for reciprocal interaction exists, as it receives direct projections
from the spinal cord (Chaouch et al., 1983) and ON- and OFF-cells are
known to project directly to dorsal horn laminae I–II and V (Fields
et al., 1995) and modulate spinal nociceptive transmission (Fields
et al., 2006).
Various models of peripheral neuropathy may increase spontaneous

discharge rates and responses to somatic stimulation in nociceptive
spinal dorsal horn neurons (e.g. Palecek et al., 1992; Laird & Bennett,
1993; Takaishi et al., 1996; Pertovaara et al., 1997), whereas their
responses to visceral stimulation were not influenced 2–3 weeks after
spinal nerve injury (Kalmari et al., 2001). It remains to be studied
whether the SNI-induced changes in response properties of RVM cells
observed in the present study reflect corresponding changes in
response properties of spinal dorsal horn neurons, changes in
supraspinal processing of nociceptive signals, or both.

Conclusions

The SNI model of peripheral neuropathy induced pronociceptive
changes in response properties of RVM neurons that are considered to
have an important role in descending regulation of pain. These
pronociceptive changes included an increased baseline discharge rate
in presumably pronociceptive ON-cells and a decreased baseline
discharge rate in presumably antinociceptive OFF-cells. Moreover,
responses to mechanical stimulation and cold were markedly enhanced
in the pronociceptive cell type. It is proposed that the SNI-induced
changes in spontaneous discharge rates of ON- and OFF-neurons of
the RVM make a tonic contribution to maintenance of neuropathic

hypersensitivity, whereas the enhanced responses of pronociceptive
ON-cells to peripheral stimulation promote hypersensitivity via a
positive feedback loop.
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ith the development of affective disorders but the underlying mechanisms are not
fully understood. Changes in brain centres implicated in both emotional and pain processing are likely to be
critical in the interplay of pain control and affective emotional behaviour. In the present study, we assessed
emotional behaviour and performed a structural analysis of the amygdala (AMY) in neuropathic rats after two
months of hyperalgesia and allodynia, induced by the spared nerve injury model (SNI). When compared with
Sham-controls, SNI animals displayed signs of depressive-like behaviour. In addition, we found an increased
amygdalar volume in SNI rats. No alterations were found in the dendritic arborizations of AMY neurons but,
surprisingly, the amygdalar hypertrophy was associated with an increased cell proliferation [bromodeoxyur-
idine (BrdU)-positive cells] in the central (CeA) and basolateral (BLA) amygdaloid nuclei. The phenotypic
analysis of the newly-acquired cells revealed that they co-label for neuronal markers (BrdU+NeuN and BrdU+
Calbindin), but not for differentiated glial cells (BrdU+glial fibrillary acidic protein).
We demonstrate that neuropathic pain promotes generation of newneurons in the AMY. Given the established
role of the AMY in emotional behaviour, we propose that these neuroplastic changes might contribute for the
development of depressive-like symptoms that are usually present in prolonged pain syndromes in humans.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Pain is a multidimensional experiencewith sensitive–discriminative
and motivational-affective dimensions (Anand and Craig, 1996).
Persistent pain, including chronic pain syndromes (Tal and Bennett,
1994), is a commoncondition associated to awide spectrumof disorders
including cancer, inflammation and neuropathic pain. Neuropathic pain
(NP) is caused by a primary lesion or dysfunction of the nervous tissue
(Merskey and Bogduk, 1994) and results in prolonged hyperalgesia,
allodynia and spontaneous pain (Devor, 2006). NP results froma process
of peripheral and central sensitization that generates an enhanced
transmission of nociceptive input to the brain (Gao et al., 2005; Ren and
Dubner, 1996), which may impair the endogenous supraspinal pain
control system (Danziger et al., 2001; Kauppila et al., 1998; Pertovaara,
2000; Rasmussen et al., 2004; Tal and Bennett, 1994).

The amygdala (AMY) is a central component of the limbic system
and plays a crucial role in behavioural responses to emotional stimuli
(Davis and Whalen, 2001; Han and Neugebauer, 2004; Neugebauer
and Li, 1992). Moreover, the AMY is deeply involved in processing the
emotional component of pain, probably through a modulatory role
meida).
eurc/index.htm (A. Almeida).

l rights reserved.
upon major supraspinal pain control centres (SPCC) (Manning and
Mayer,1995; Manning,1998; Manning et al., 2001). On the other hand,
it is possible that neuroplasticity in higher centres controlling SPCC
may contribute to alterations in the fine control of pain. In fact, an
imbalance between inhibiting and facilitating descending modulation
of nociceptive transmission may underlie, at least in part, the
development of chronic pain (Almeida et al., 2006; Lima and Almeida,
2002; Pertovaara, 2000; Porreca et al., 2002; Schaible et al., 1991).
Accordingly, arthritic and neuropathic pain enhance synaptic trans-
missionof nociceptive-specific input to theAMY (Han andNeugebauer,
2004; Neugebauer and Li, 1992; Neugebauer et al., 2003), which
reinforces the potential role of AMY in SPCC alterations resulting from
prolonged pain syndromes.

Chronic pain induces mood disorders, including depression and
anxiety (Rasmussen and Rummans, 2002). In addition, the adverseness
of pain is amplified or reduced depending on the emotional environ-
ment (Merskey, 1965), and conditions of increased anxiety (Rhudy and
Meagher, 2000) anddepression (Merskey,1965;Willoughbyet al., 2002;
Zelmanet al.,1991) are usually associatedwithdecreasedpain tolerance.
This vicious circle may trigger, or even result from, neuronal changes in
the limbic system. Accordingly, imaging studies indicate that gross
structural changes may occur in the AMY in situations of major
depression (Altshuler et al., 2005; Bremner et al., 2000; Frodl et al.,
2002; Strakowski et al., 1999; Tebartz van Elst et al., 2000).
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Fig. 1. Mechanical allodynia assessed by von Frey filaments (A) and mechanical
hyperalgesia assessed by the pin-prick test (B) before and after surgery in SNI and
Sham groups (dotted line indicates the day of SNI surgery). (A) Note that the pre-
surgery threshold to von Frey filaments was similar in both SNI and Sham groups and
in both hind paws; after surgery, the withdrawal threshold of the SNI group decreased
within 24 h and remained low until the end of the 2 month experimental period. In
Sham animals, the withdrawal threshold to von Frey filaments was decreased during
the first postoperative days but returned to baseline values. (B) In the pin-prick test,
SNI animals showed a strong hyperalgesia from the first postoperative day onwards,
whereas Sham animals showed no hyperalgesia. The symbols and error bars represent
mean+S.D.
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As a rationale for the present study, we hypothesized that chronic
pain induces emotional disturbances that are associated with
neuroplasticity of the amygdaloid complex. To assess this hypothesis,
we performed behavioural, stereological and immunocytochemical
analysis during or after the induction of a two month neuropathy
following themodel of Decosterd andWoolf (2000). Part of the present
results have already been published in abstract form (Gonçalves et al.,
2006).

Materials and methods

Animals

All procedures were performed on adult (200–250 g, 55–65 days)
male Wistar–Han rats. Animals were housed under standard labora-
tory conditions (12 h light cycle; 22 °C, 55% humidity; food and water
available ad libitum). Experiments were conducted in accordance with
local regulations, European Union Directive 86/609/EEC, NIH guide-
lines on animal care experimentation and IASP ethical guidelines for
pain experimentation on awaken animals (Zimmermann, 1983). Sixty
animalswere divided in twomain experimental groups of 30 rats each:
spared nerve injury (SNI) and sham operated (Sham). A set of rats
(n=18 each group) received one injection of the cell proliferation
marker bromodeoxyuridine (BrdU; Miller and Nowakowski, 1988),
50 mg/kg body weight, i.p. (Sigma, St. Louis, MO) for three consecutive
days before their death (see below), twomonths after SNI induction or
Sham surgery.

Spared nerve injury surgery

The SNImodel of chronic neuropathic pain included an axotomy and
ligation of two of the three peripheral ramifications of the sciatic nerve,
the tibial and common peroneal nerves and leaving the sural nerve
intact, as described elsewhere (Decosterd andWoolf, 2000). The animals
were lightly anesthetized with pentobarbital 0.5% (Eutasil, Ceva Saúde
Animal, Portugal). The common peroneal and tibial nerves were tight-
ligated with 5.0 silk and sectioned distal to the ligation, removing 2–
4 mm of the distal nerve stump. Great care was taken to avoid any
contactwithor stretchingof the intact sural nerve.Muscle and skinwere
closed in two layers. Sham-controls involved exposure of the sciatic
nerve and its branches without performing any manipulation.

Nociceptive tests

Nociceptive testswere performed in all animals a day before and two
days after the surgery procedure, followed by testing every two days
then forward, during the two months of experimental period. Both the
ipsilateral (right hind paw) and the contralateral hind paw were tested
in order to evaluate the presence of “mirror pain”, described elsewhere
as present in neuropathic pain pathologies (Tal and Bennett, 1994).

Mechanical allodynia
Animals were placed on an elevated wire grid and the lateral

plantar surface of the paw stimulated with a series of ascending force
von Frey monofilaments. The nociceptive threshold was taken as the
lowest force that evoked a brisk withdrawal response to one of five
repetitive stimuli (Tal and Bennett, 1994).

Mechanical hyperalgesia
With the animals on the elevated grid, a pin-prick test was

performed using a safety pin. The lateral part of the plantar surface
of the paw was briefly stimulated at intensity sufficient to touch but
not penetrate the skin (Decosterd et al., 1998). The duration of paw
withdrawal was measured, with an arbitrary minimal time of
0.5 seconds (s) (for the brief normal response) and maximal cut-off
of 20 s (Tal and Bennett, 1994).
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Assessment of emotional behaviour

All behavioural tests were performed five days preceding animal
sacrifice during light period (9am to 6pm) in a restricted group of
animals (n=18 each group).

Anxiety-like behaviour — elevated plus-maze test (EPM)
Anxiety-like behaviour was evaluated in the EPM test through

an apparatus consisting of two open and two closed arms (50.8×
10.2×40.6 cm each arm) (MedAssociates Inc., St. Albans, Vermont,
USA). Each rat was placed in the centre of the elevated plus-maze
facing one of the open arms, and the time spent (s) in the open or
closed arms was recorded during a 5-min test period (Mesquita et al.,
2006; Sousa et al., 2006). The elevated plus-maze was carefully
cleaned with 10% ethanol before each animal was placed on the
equipment.

Depressive-like behaviour — forced-swimming test (FST)
The test was performed as in the original method described

elsewhere (Porsolt et al., 1977, 1978). On day 1 (conditioning, pre-
test session), rats were individually placed in a clear Plexiglass
cylinder (29 cm in diameter and 50 cm in height) containing 30 cm
of water (25+0.5 °C) and left to swim for 5 min. The rats were then
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removed from water and towel-dried, placed under a heating lamp
for 5 min, and finally returned to their home cage. Twenty-four
hours later, the rats were tested under the same conditions for 5 min
(test session). Rats were judged to be immobile when both hind legs
were not moving, and the rat was slightly bent forward (Mesquita
et al., 2006).

Locomotion and exploratory behaviour — open field test (OF)
Motor activity and exploratory behaviour were evaluated by

placing the rat into an infrared photobeam controlled open field
activity test chamber in a brightly illuminated (white light) room.
Animals were tested for 10 min in an arena (43.2 cm×43.2 cm
transparent acrylic walls and white floor) (MedAssociates Inc., St.
Albans, Vermont) thatwas divided into a central and a peripheral zone.
The time spent by each animal in the central and peripheral (residual)
zone and its vertical activity (rearings) were the parameters evaluated
in this test (Mesquita et al., 2006). Environmental odours were
removed with 10% ethanol solution.

Tissue preparation

Both the SNI and Sham groups were divided as follows: i) in the
first group (n=6 each), designated to stereological analysis, the
animals were anaesthetized with pentobarbital and perfused with
4% paraformaldehyde (PFA), the brains were removed, embedded in
2-hydroxyethyl glycol methacrylate, serially sectioned in a micro-
tome at 30 μm and stained with Giemsa; ii) in the second group (n=6
each), designated to 3D-morphologycal analyses of dendritic arbo-
rization of AMY neurons, the animals were anesthetized with pento-
barbital, perfused with saline and the brains were removed and
processed for posterior staining following the Golgi-Cox method
(Gibb and Kolb, 1998) and slicing in a vibratome at 100 μm; iii) in
the third group (n=18 each), processed for immunocytochemistry
for detection of BrdU, GFAP (glial fibrillary acidic protein), NeuN
Fig. 2. Performance of SNI and Sham groups during behavioural tests. No differences were obse
closedarms. In the FST (B), the timeof activitywas lower inSNI animals,which indicates thepres
of the parameters evaluated.
(neuronal nuclei) and Calb (Calbindin), the animals were decapi-
tated, the brains dissected, frozen in liquid nitrogen and sectioned in
a cryostat (−14 °C).

Stereological procedures

The amygdaloid complex was subdivided in its nuclear compo-
nents as in Paxinos and Watson (1998): central (CeA), lateral (La),
basolateral anterior (BLA) and posterior (BLP), basomedial anterior
(BMA) and posterior (BMP) nuclei. The nuclei volume and cell number
estimation in AMY nuclei in every 8th section stained with Giemsa
was obtained through the Cavalieri's principle and optical fractionator
methods using the Stereoinvestigator software (MicroBrightField, Inc.,
Williston, VT, USA).

3D-morphologycal analysis of dendrites

The brain sections stained with the Golgi-Cox method were
observed at the optical microscope and multipolar and bipolar AMY
neurons completely and perfectly stained (Cerqueira et al., 2007) were
considered for further analysis using the Neurolucida software
(MicroBrightField, Inc., Williston, VT, USA). The dendrites and spines
of 6 AMY neurons per animal were drawn.

Immunohistochemical procedures

All quantifications of markers for cell division and neuronal fate
were performed in the AMY. Positive controls for histochemical
reactions were confirmed by analysing the subgranular zone (SGZ) of
the hippocampus, since neuronal proliferation is known to occur in
this area (Gould et al., 1999a). As negative controls of immunocyto-
chemical reactions, the primary antibody was not included in the
protocol of each reaction; no specific immunoreaction was observed
following negative controls.
rved between the two groups in the EPM test (A), neither in the time spent in the open or
enceof depressive-likebehaviour.Nodifferenceswere observed for theOF test (C, C′) in any

59



Fig. 3.Morphological analysis of AMY nuclei. (A) Volumes of different AMY nuclei were
higher in neuropathic animals when compared to Sham, with differences being
statistically significant for the CeA and BLA nuclei. (B) Cell number is also higher in all
amygdalar nuclei of SNI animals, with differences being significant again in the CeA and
BLA nuclei. (C) Structural analysis through Golgi-Cox method showed no differences in
cell body volume and dendrite length of AMY neurons between SNI and Sham groups.
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BrdU immunohistochemistry and quantification of BrdU-labelled cells
Bromodeoxyuridine (BrdU; an analogue of thymidine, incorpo-

rated into the newly synthesized DNA of replicating cells) incor-
poration was detected by immunocytochemistry on every 8th serial
brain section containing the amygdaloid complex. Briefly, sections
were fixed in 4% PFA for 30 minutes (min), permeabilized for
10 min in a solution containing 0.2% Triton X-100 in Tris buffer
saline (TBS) after a 3×3 min wash in TBS, heated during 20 min in
citrate buffer 0.1 M following a 3×3 min wash and acidified in HCl
2 M for 30 min after rinsing in distillated water. Endogenous per-
oxidase activity was blocked with 3% H2O2 in TBS for 10 min after a
3×3 min wash in TBS, followed by immersion in 4% bovine serum
albumin (BSA) in TBS for 30 min (to block non-specific staining)
after a 3×3 min wash. After another 3×3 min wash in TBS, the tissue
was incubated overnight with a primary monoclonal anti-BrdU
antibody raised in mouse (1:50, Dako, Glostrup, DK) and stained
cells were detected using a universal detection system (BioGenex,
San Ramon, CA, USA) and diaminobenzidine (DAB 0.025% and H2O2
0.5% in Tris–HCl 0.05M pH 7.2), after a 3×2 min wash in TBS and a
1×3 min wash in Tris–HCl, followed by counterstaining with
haematoxylin. BrdU-positive cells were counted throughout the
entire AMY area.

Immunofluorescence and quantification of double-labelled cells
Double-staining immunofluorescent reactions were performed in

order to reveal three different groups: (i) BrdU andGFAP (glialfibrillary
acidic protein; a marker of astrocyte glial cells; Reeves et al., 1989), (ii)
BrdU and NeuN (protein expressed exclusively in mature neurons;
Mullen et al., 1992) and (iii) BrdU and Calb (Calbindin; a calcium-
binding protein present in functional mature neurons; Meguro et al.,
2004). The following primary antibody dilutions were used: rat anti-
BrdU (1:500, Accurrate,Westbury,MA),mouse anti-GFAP (1:500, Dako
Glostrup, Denmark), mouse anti-NeuN (1:500, Chemicon Interna-
tional, Temecula, CA, USA) and rabbit anti-Calb (1:200, Chemicon
International, Temecula, CA, USA). The initial protocol procedure (until
the primary antibody incubation) was the same in the first three
groups and similar to that described above for revealing BrdU. The
following specific procedures for each double-staining method are
explained briefly and separately for each group.

Brain sections were mounted in slides with Vectashield (Vector
Laboratories, Burlingame, CA, USA) to delay fluorescence decay, and
observed two days later in a fluorescence microscope. Data were con-
firmed posteriorly using confocal microscopy (Olympus FluoViewTM
FV1000, OLYMPUS).

i) BrdU and GFAP
After overnight incubation with the primary antibody anti-BrdU

raised in rat, sectionswerewashed 3×2min in TBS and then incubated
with a fluorescent Alexa 568 secondary antibody (goat anti-rat, 1:200;
Molecular Probes, Eugene, OR, USA) for 1 h. Following a 3×3minwash
in TBS, sections were incubated during 3 h with the primary antibody
mouse anti-GFAP, followed by the fluorescent Alexa 488 secondary
antibody (goat anti-mouse, 1:100, Molecular Probes, Eugene, OR, USA)
for 1 h. The sections were finally washed 2×2 min in TBS and 2 min in
distillate water before being mounted in slides.

ii) BrdU and NeuN
Sections were incubated overnight with the primary antibody anti-

BrdU raised in rat followed by the fluorescent Alexa 568 secondary
antibody (goat anti-rat, 1:200; Molecular Probes, Eugene, OR, USA) for
1 h, after a 3×3minwash in TBS. Then, sections were immersed for 3 h
with the primary antibody anti-NeuN raised in mouse (1:500) and
washed 3×3 min. Subsequently, they were incubated with biotiny-
lated secondary antibody anti-mouse (1:200) for 1 h and, after a
3×3 min wash, incubated with Alexa Streptavidine 488 (1:100,
Molecular Probes, Eugene, OR, USA) for one final hour. The sections
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were washed in TBS and distillate water as above and mounted in
slides.

iii) BrdU and Calb
Sections were incubated overnight with the rat anti-BrdU and

mouse anti-Calb primary antibodies. In the next day, after a 3×3 min
wash in TBS sections were firstly incubated with fluorescent Alexa 568
(goat anti-mouse, 1:200) secondary antibody for 1 h and then with
fluorescent Alexa 488 (goat anti-rat, 1:200; Molecular Probes, Eugene,
OR, USA) secondary antibody, after a 3×3minwash. The sections were
washed in TBS and distillate water and mounted in slides.

Statistic analysis

For the analysis of baseline thresholds of SNI/Sham and ipsi/
contralateral hind paws in the von Frey and pin-prick tests, one-way
analysis of variance (ANOVA) was performed. Considering that in the
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rest of this study only comparisons between two groups were
performed, the Student's t test was used to analyse the results
of all tests and procedures. The results were considered to be
statistically different when pb0.05. Data are presented as mean±
standard deviation (SD).

Results

The spared nerve injury model induces hypersensitivity for at least
2 months

Assessment of mechanical allodynia and hyperalgesia using,
respectively, von Frey filament and pin-prick tests, were performed
twice before the SNI surgery (baseline measurements) and every two
days afterwards (during a two month period). Both neuropathic (SNI
group) and sham-control (Sham group) animals presented a similar
baseline withdrawal threshold measured by von Frey filaments (SNI:
ipsilateral 38±6.1 g, contralateral 25±8.2 g; Sham: ipsilateral 36±7.3 g,
contralateral 35±5.1 g; Fig. 1A). A bilateral decrease in nociceptive
threshold was observed in neuropathic animals within 24 h after
surgery. This threshold decrease reached the level of 0–5 g four days
after the surgery, a value that remained constant until the end of the
twomonth experimental period. These data showed that the SNI group
developed and maintained a strongmechanical allodynia in both hind
Fig. 4. Cell fate resulting from amygdalar neuroplasticity. (A) The number of cells that were BrdU
number of BrdU+GFAP double-labelled cells between SNI and Sham groups. (A′) Representati
double-labelled cells were present only in AMY nuclei, being absent in Sham animals. (B′) Re
double-stained cells were also present only in neuropathic animals. (C′) Representative images of
paws, as a consequence of the surgery. On the contrary, nociceptive
threshold in Sham animals decreased slightly with the sham surgery,
returning to baseline values within a week, never reaching thresholds
as lowas those presented by SNI animals (Fig.1A). Inwhat concerns the
pin-prick test, the baseline duration of hyperalgesic behaviourwas less
than 1 s in all animals, and there were no differences between groups
(SNI: ipsilateral 0.17±0.17 s, contralateral 0.11±0.8 s; Sham: ipsilateral
0.13±1.11 s, contralateral 0.2±0.2; Fig. 1B). Within 24 h from the
surgery, SNI animals reached the maximal duration of hyperalgesic
behaviour in both hind paws (20 s) whereas no changeswere observed
in Sham animals (Fig. 1B). These data showed that the SNI group
developed and maintained a clear hyperalgesic state during virtually
the entire experimental period. In summary, data on pain-related
behaviour demonstrated that SNI animals developed a clear neuro-
pathy that extended throughout the complete experimental period.

Neuropathic animals develop a depressive-like behaviour but do not
display signs of increased anxiety

Emotional behaviour was assessed seven weeks after the surgery.
EPM was performed to evaluate anxious behaviour, FST to assess
depressive-like behaviour and the OF test to determine locomotion
and exploratory behaviour (Mesquita et al., 2006). In the EPM, no
differences were found in the behavioural responses between SNI and
-positivewas significantly superior in SNI animals, but no differences were observed in the
ve images of GFAP, BrdU and GFAP+BrdU (double-stained)-positive cells. (B) BrdU+NeuN
presentative images of BrdU, NeuN and NeuN+BrdU double-stained cells. (C) Calb+BrdU
BrdU, Calb and Calb+BrdU double-stained cells. Magnification bar: 60 μm (A′), 20 μm (B′, C′).
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Sham groups (Fig. 2A), thereby showing that the anxiety levels were
unaltered by induction of SNI. On the other hand, the FST revealed
significant differences between experimental groups (Fig. 2B): while
Sham animals were active for 230±27 s, SNI animals only tried to
escape/swim for 180±38 s (p=0.012), which indicates the presence
of a learned helplessness (depressive-like) behaviour in neuropathic
animals. Since FST test includes movement of the paws and
neuropathic animals are hyperalgesic and allodynic in both ipsilateral
and contralateral hind paws, the OF test was performed in order to
validate the FST test. This test revealed that the SNI group had no
differences in the locomotion ability when compared with Sham
group and it also revealed that the number of rearings (an indicator of
exploratory behaviour) did not differ between experimental groups
(Figs. 2C,C′). The absence of differences in the time spent in central vs.
peripheral part of the OF arena also indicates the absence of altered
anxiety behaviour in neuropathic animals. In summary, these
behavioural studies demonstrate that a 2 month neuropathy induced
a depressive-like, but not anxious-like, behaviour.

Volume and cell number are increased in amygdaloid nuclei

After animal perfusion, 6 brains of each experimental group were
prepared for stereological analysis and other 6 SNI and Sham brains
were processed for tri-dimensional morphological analysis. For
stereological analysis the AMY was divided in 6 nuclei (Paxinos and
Watson, 1998): central (CeA), lateral (La), basolateral anterior (BLA)
and posterior (BLP), basomedial anterior (BMA) and posterior (BMP).
Fig. 5. (A–D) Microphotograph showing examples of BrdU+NeuN double-labelled cells in t
nucleus is outlined by a continuous line. CPu — caudate putamen (striatum); MePD — me
Magnification bar: 100 μm (A), 20 μm (B–F).
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We found a general increase in the volume of all these nuclei in SNI
neuropathic animals, with a significant increase being observed in CeA
(p=0.02) and BLA (p=0.019) nuclei (Fig. 3A). In order to determine the
causes for these structural changes of AMY, we analysed potential
alterations in cell numbers and cellular volumes. SNI neuropathic
animals showed a general increase in the number of cells in all AMY
nuclei, with a significant difference being present again in CeA
(p=0.015) and BLA (p=0.016) nuclei (Fig. 3B). On the contrary, 3D-
morphological analysis revealed no significant differences in dendritic
lengths (Fig. 3C) or perikarya areas (Fig. 3D) between neuropathic and
Sham animals, both in bipolar and multipolar AMY neurons. Taken
together, these results indicate that the significant increase observed
in CeA and BLA nuclear volumes of SNI animals was due, at least in
part, to an increase in cell numbers.

Newborn neurons contribute to increased cell numbers in AMY

Rats received one injection of the cell proliferation marker
bromodeoxyuridine (BrdU) in the three consecutive days before
their sacrifice. The aim of this procedure was to determine if cell
proliferationwas responsible for the higher number of cells observed
in the CeA and BLA nuclei in SNI animals. Immunohistochemistry
revealed the presence of BrdU-positive cells in the AMY of both
SNI and Sham groups, but with significantly higher numbers in
neuropathic animals (p=0.001; Fig. 4A). In order to identify the
phenotype of these newly-acquired cells, two different double-
staining immunohistochemistry reactions were performed: BrdU+
he CeA. The rectangle in micrograph A is magnified in figures B–D; the border of CeA
dial amygdaloid nucleus, posterodorsal part; ic — internal capsule; opt — optic tract.



Fig. 6. Examples of BrdU+NeuN (A) and BrdU+GFAP (B) double-labelled cells (arrows)
obtained in positive-control sections from the subgranular zone of the dentate gyrus of
the hippocampus. Magnification bar: 20 μm (A), 10 μm (B).
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glial fibrillary acidic protein marker (GFAP) and BrdU+post-mitotic
neuronal marker (NeuN). The number of BrdU+GFAP-positive cells
was similar between the SNI and Sham groups. On the other hand,
BrdU+NeuN double-labelled cells were observed only in the SNI
group; interestingly, they were mainly located in the CeA and BLA
nuclei (Figs. 4B, B′, 5). These findings indicate the presence of newly
proliferating neurons in the AMY after prolonged SNI, as further
demonstrated by the presence of BrdU+Calbindin-positive cells in
the AMYof neuropathic animals (Fig. 4C,C′). Positive control sections
obtained from the subgranular zone of the hippocampal dentate
gyrus showed the presence of both BrdU+NeuN and BrdU+GFAP
double-labelled cells (Fig. 6).

In summary, data demonstrate not only that recently-divided
newborn neurons are formed in the AMY of chronic pain animals, but
also that these neurons reach a physiologicallymature (i.e., functional)
state.

Discussion

After two months of neuropathic pain, SNI animals exhibited
signs of sustained persistent pain associated with a significant
depressive-like behaviour. At the CNS level, a structural reorganiza-
tion of the amygdaloid complex was observed that was associated
with a significant increase in the volume of the basolateral (BLA) and
central (CeA) AMY nuclei. The volume increase was due to an in-
creased number of AMY cells, and not to hypertrophy of dendrites or
perikarya of amygdalar neurons. The present study is the first dem-
onstrating cell proliferation in a limbic area, as a result of chronic
neuropathic pain. Earlier, only electrophysiological studies have
shown chronic pain-related neuroplasticity of AMY neurons in per-
sistent arthritis, visceral pain (Han and Neugebauer, 2004) or neuro-
pathy (Ikeda et al., 2007). Moreover, this is the first study
demonstrating that chronic pain results in depressive-like behaviour
associated with neuroplasticity in a major brain centre implicated in
the control of both emotions and pain.
Changes in emotional behaviour and neuroplasticity in the AMY

Morphological plasticity in the AMY was previously suggested in
cases of prolonged emotional disturbance, as shown by increased AMY
volumes measured by structural magnetic resonance in patients with
depression and anxiety (Frodl et al., 2002; Tebartz van Elst et al., 2000).
Clinical data also reveal that prolonged pain conditions are associated
with a high incidence of emotional disorders, including anxiety and
depression (Rasmussen et al., 2004). Herein, we show that in the rat, a
two month neuropathy resulted also in a depressive-like behaviour
measured by the forced-swimming test (FST), but no alterations in
anxiety levels were detected in the elevated plus-maze and open field
tests. We also show that increased immobility time in the FST should
not be ascribed to motor impairments as there were no changes in
locomotor activity and exploratory behavior. As in humans, SNI
neuropathy associated with emotional alterations may result from,
or contribute to, the structural changes observed in the AMY. It has
been proposed that the increase in AMY volume observed in de-
pressive patients was a consequence of the continuous prolonged
activation of this area (Frodl et al., 2002). Following the same rationale,
the present increase in AMY volume may result from the continuous
flow of nociceptive information into AMY regions receiving sensory
information (including the BLA) and the consequent prolonged activity
of AMY neurons triggering the appropriate response action (CeA is the
main effector of AMY). Especially relevant is the increase in the CeA
volume, as its latero-capsular part is defined as the ‘nociceptive
amygdala’ due to its high content in neurons implicated in nociceptive
processing (Bernard et al., 1996; Neugebauer and Li, 1992; Neugebauer
et al., 2004).

The volume increase in the AMY after two months of neuropathic
pain may have resulted from one or various different processes: cell
size (soma and dendritic size) increase, cell number (neurons or glial
cells) increase, or increased extracellular volume. However, subse-
quent analysis revealed that the increased volume of the AMY in SNI
animals could not be ascribed to cell size variations, but rather to an
increase in cell number. Interestingly, such increase in cell numbers
was confirmed by the observation of newly proliferating cells in AMY
nuclei of SNI animals. Although the presence of newborn neurons in
the adult brain of mammals is considered to be restricted to two areas,
the subgranular zone (SGZ) of the hippocampus and the subventricular
zone (SVZ) (Doetsch et al., 1997; Gould et al., 1999b; Kempermann and
Gage, 2000), the possibility of neurogenesis in the AMY has already
been raised in a study showing evidence for the presence of newly
generated neurons in the AMY of adult primates, at basal conditions
(Bernier et al., 2002). The results of double-immunoreactions (BrdU+
NeuN) performed in the present study demonstrate that a significant
number of these newly-born cells undergo a neuronal phenotype.
Thus, the genesis of newborn neurons is responsible, at least in part,
for the increase in cell number underlying the increase of volume
observed in the AMY of SNI animals. In contrast, the number of cells
stained simultaneously formarkers of cell proliferation (BrdU) and glia
(GFAP) revealed no additional glial cell proliferation in the AMY
following SNI induction; this indicates that SNI results only in ad-
ditional neuronal proliferation, with a similar basal rate of astrocyte
cell division being common to both Sham and SNI animals.

Neurogenesis and the AMY

Our observation of NeuN and BrdU co-localization in AMY cells
indicate that newly generated cells reached neuronal maturation in the
amygdaloid complex. This is in accordance with the time points for
expression of neuronal differentiation markers described by Kemper-
mann et al. (2004) and Steiner et al. (2004): in the hippocampus of adult
mice NeuN expression becomes higher than immature-neuron
markers 3 days after cell division. Additionally, the presence of BrdU+
Calb double-labelled neurons in the AMY confirms the maturation and
63
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phenotypical differentiation of newborn neurons in definitive AMY of
SNI animals.

Whether these newly-born cells observed in the AMY of SNI rats
result from local progenitor cells or migrate from adjacent neurogenic
regions is still not known. However, several studies have shown that
besides the normal migration of proliferative cells from the SVZ to the
olfactory bulb (through the rostral migratory stream, RMS) or from the
SGZ to other areas of the DG, they can migrate from the SVZ to injured
areas of the brain (Iwai et al., 2003; Parent et al., 2002; Van Kampen
et al., 2004). Therefore, it is possible that the new neurons here
observed have their origin in SVZ progenitor cells that, through
migration, reached the amygdaloid complex following the prolonged
pain syndrome induced by the SNI model. Supporting this hypothesis,
post-natal neurogenesis in the SVZ and SGZ can be regulated positively
through the enhancement of the survival of newly generated cells and
negatively through the down regulation of cell proliferation (Gould
and Gross, 2002) following different stimuli (Jin et al., 2001). On the
other hand, a growing amount of evidence supports the notion that the
CNS itself is not as static as once believed: BrdU-positive cells were
shown to be present in several regions of the adult CNS currently
thought to be mitotically quiescent (Rietze et al., 2000); studies report
that neurogenesis is prone to occur in other areas of adult mammals,
like the neocortex (Gould et al., 1999a; Takemura, 2005), the striatum
(Van Kampen et al., 2004; Bedard et al., 2006), the substantia nigra
(Yoshimi et al., 2005) and the amygdala itself (Bernier et al., 2002).
Taking into account these data, it should not be excluded the possibility
that neural stem cells could be present in the AMY and proliferate
following the prolonged neuropathy resulting from the SNI model.
Further experimental procedures must be performed to elucidate this
issue.

Roles of AMY in pain and emotional processing

Several data implicate the AMY in pain modulation, as shown by
changes in pain tolerance induced by AMY manipulation (Manning,
1998). Moreover, the AMY has a role in both pain inhibition and pain
facilitation (Manning and Mayer, 1995; Manning et al., 2001;
Tershner and Helmstetter, 2000). This dual effect may result from
direct AMY projections to brainstem areas implicated in both de-
scending antinociception and pronociception (Almeida et al., 1999;
Bouhassira et al., 1992; Porreca et al., 2002). As a balance between
descending inhibiting (antinociceptive) and facilitating (pronocicep-
tive) actions upon spinal nociceptive transmission can contribute to
the normal control of pain perception (Lima and Almeida, 2002;
Pertovaara, 2000; Porreca et al., 2002; Ren and Dubner, 1996;
Schaible et al., 1991), the AMY may have a crucial role as a higher
centre modulating the brainstem pain centres responsible for the
fine regulation of the spinal nociceptive transmission. Thus, it is
possible that the here observed amygdalar neuroplasticity may con-
tribute not only to emotional changes but also to alterations in
nociception. In support of this hypothesis, volume changes of AMYwere
already shown in imaging studies of patients with a major depression
(Drevets, 2000) and changes in synaptic function of nociceptive AMY
neurons have been described in sustained pain conditions (Han and
Neugebauer, 2004; Ikeda et al., 2007). Additionally, the neuronal
proliferation observed in AMY areas involved in afferent (BLA) and
efferent (CeA) nociceptive processing may disrupt fine neuronal
networks between high brain centres, which provide a structural basis
for deregulation of emotional behaviour.

Conclusion

In conclusion, this study shows that besidesmechanical hyperalgesia
and allodynia, animals subjected to the SNI model of neuropathic pain
during a two month period developed a depressive-like behaviour
associatedwith an increased volumeof AMYnuclei that results fromcell
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proliferation. Importantly, this is the first study providing evidence for
the presence of newly-born cells in the amygdaloid complex as a
consequence of a sustained chronic (neuropathic) pain condition. We
hypothesize that these neuroplastic changes of the AMY could be
associated with the development of depressive-like behaviour in
neuropathic animals. Nonetheless, future studies on the origin of
newborn neurons and their integration in the pre-existing synaptic
network shouldbeperformed in order todetermine the relevanceof this
phenomenon.
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ABSTRACT  

 

Neuropathic pain is strongly associated with the development of affective disorders like 

depression. The amygdala (AMY) has a significant role in the processing of emotions and is an 

important area in pain modulation and in emotional response to pain. Affective disorders (i.e. 

depression) resulting from chronic pain conditions are associated with structural plasticity in the 

AMY. We have previously described that after eight weeks of neuropathic pain induced by the 

spared nerve injury model (SNI) in rats, newborn neurons are present in the AMY, in association 

with a depressive-like behaviour. The aim of this study was to replicate the behaviour results and 

clarify what is the actual origin of these newborn neurons observed in the AMY. The SNI model 

was induced in a group of animals and prolonged during eight weeks. Behavioural tests were 

performed to assess mechanical allodynia (von Frey filaments), hyperalgesia (pin-prick test), 

depressive-like behaviour (forced swimming test) and anxiety-like behaviour (elevated plus-maze). 

Immunohistochemical analysis was performed in order to detect, in the rat brain, the location of 

different markers: doublecortin (DCX; protein expressed in migrating and differentiating neurons) 

+ Ki-67 (nuclear protein expressed in proliferating cells in all phases of the active cell cycle); PSA-

NCAM (specifically expressed in committed neuronal precursors present in regions that are 

undergoing some kind of structural plasticity) + GFAP (glial fibrillary acidic protein); and nestin 

(protein marker for immature neural cells) + GFAP. Depressive-like behaviour was confirmed, as 

well as the absence of anxious-like behaviour, after eight weeks of induced neuropathy. 

Additionally, we observed in basal and central AMY nuclei DCX+Ki-67-positive cells (co-localizing), 

PSA-NCAM-positive and GFAP-positive cells (not co-localizing), and nestin-positive and GFAP-

positive cells (not co-localizing). These data strongly indicate that the cell division inducing 

newborn neurons in the central nucleus of the AMY after 8 weeks SNI neuropathy took place in 
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the amygdalar region and did not result from a long distance migration from other regions of the 

brain. 

 

 

 

 

 

Figure 1 – Some examples of the immunohistochemical reacted sections observed through confocal microscope. A) 

Representative images of Ki-67-positive cells in the central nucleus of the AMY (CeA); B) Representative images of 

DCX-positive cells in the CeA; C) Representative images of Ki-67+DCX-double positive cells in the CeA; D) 

Representative images of GFAP-positive cells in the CeA; E) Representative images of PSA-NCAM-positive cells in the 

CeA; F) Representative images of GFAP+PSA-NCAM-double positive cells in the CeA; G) Representative images of 

GFAP-positive cells in CeA; H) Representative images of nestin-positive cells in the CeA; I) Representative images of 

GFAP+nestin-double positive cells in the CeA. Magnification bar: 20 µm. 
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been associated with structural and functional changes of the amygdala, a key
player in emotions. Here we study whether peripheral neuropathy influences pain regulation by the
amygdala. For this purpose, we determined discharge rates of presumably pro- and antinociceptive pain-
regulatory neurons in the rostral ventromedial medulla (RVM) following microinjection of various
glutamatergic compounds into the central nucleus of the amygdala. RVM neurons were recorded in
pentobarbitone-anesthetized rats with a peripheral nerve injury or sham-operation. In a separate
behavioral experiment, we determined whether the influence of amygdaloid administration of a
glutamatergic compound on affective pain-related behavior, as assessed by an aversive place-conditioning
test, is changed by neuropathy. While glutamate or an NMDA receptor antagonist in the amygdala failed to
induce marked changes in discharge rates of RVM cells, amygdaloid administration of DHPG, a group I
metabotropic glutamate receptor (mGluR) agonist acting on mGluR1 and mGluR5, increased discharge rates
of presumably pronociceptive RVM ON-cells in nerve-injured but not sham-operated animals. This
pronociceptive effect of DHPG was reversed by MPEP (mGluR5 antagonist) and CPCCOEt (mGluR1

antagonist). CHPG, an mGluR5 agonist, failed to influence ON-cell activity and DHPG failed to influence
activity of presumably antinociceptive RVM OFF-cells. Amygdaloid administration of DHPG increased and
that of CPCCOEt decreased affective pain-related behavior in nerve-injured animals. The results suggest
that following nerve injury, the amygdaloid group I mGluR, particularly subtype mGluR1, has an enhanced
pronociceptive effect providing a potential mechanism for emotional enhancement of pain in peripheral
neuropathy.

© 2008 Elsevier Inc. All rights reserved.
Introduction
The amygdala is a major player in emotions (Phelps and LeDoux,
2005). It also receives ascending nociceptive signals (Bernard et al.,
1996) and it has efferent projections to structures that are involved in
pain modulation (e.g., Rizvi et al., 1991; Van Bockstaele et al., 1996).
These findings, together with chemical or electrical stimulation and
lesion studies (see below), indicate that the amygdala has a role in
pain modulation. Interestingly, the role is a dual one varying from
antinociception (Helmstetter and Bellgowan, 1993; Helmstetter et al.,
1998; Manning and Mayer, 1995; McGaraughty and Heinricher, 2002;
Mena et al., 1995; Nandigama and Borszcz, 2003) to pronociception
(Greenwood-Van Meerveld et al., 2001; Manning, 1998; Quin et al.,
2003).

Sustainednociceptionproduces synaptic plasticity in the amygdala.
This has been shown in electrophysiological recordings performed in
animals with inflammatory pain (Neugebauer et al., 2004; Neuge-
bauer, 2006) and in control animals following tetanic stimulation of
ovaara).

l rights reserved.
the parabrachial nucleus that relays nociceptive inputs to the amygdala
(Lopez de Armentia and Sah, 2007). Peripheral nerve injuries may
cause chronic neuropathic pain that is associated with plastic changes
in pain-mediating (Woolf and Salter, 2006) and -regulating (Almeida
et al., 2006; Pertovaara, 2000; Porreca et al., 2002) pathways. Recent
studies indicate that peripheral nerve injury induces neural plasticity
in the amygdala, as shown by increased postsynaptic currents evoked
by ascending inputs (Ikeda et al., 2007) and generation of new
amygdala neurons (Gonçalves et al., 2008). These findings still leave
open whether the pain regulatory role of the amygdala is changed by
peripheral nerve injury.

In the present study we test a hypothesis that peripheral nerve
injury influences pain regulation by the amygdala. Partial support for
this hypothesis is provided by a recent finding showing that
amygdaloid activation by glutamate suppressed presumably antino-
ciceptive neurons in the noradrenergic locus coeruleus of nerve-
injured animals (Viisanen and Pertovaara, 2007). To test further this
hypothesis, we determined whether administration of glutamatergic
compounds into the amygdala has a differential influence on
discharge rates of putative pain-regulatory neurons in the rostroven-
tromedial medulla (RVM) of nerve-injured versus sham-operated
73

mailto:Antti.Pertovaara@helsinki.fi
http://dx.doi.org/10.1016/j.expneurol.2008.11.005
http://www.sciencedirect.com/science/journal/00144886


Fig. 1. Microelectrode recording sites in the RVM (left column) and microinjection sites
in the amygdala (right column). The upper row shows an example of an electrolytic
lesion made by the recording electrode in the RVM (left) and the track of the injection
cannula in the amygdala (right). The rectangle and the circle in the schematic graphs of
the lower row indicate the dorsolateral extent of areas, across several anteroposterior
sections, in which the tips of medullary recording electrodes and amygdaloid
microinjection cannulae were located, respectively. RVM=rostroventromedial medulla,
CeA=central nucleus of the amygdala, Rmg=raphe magnus.
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animals. For this purpose, we recorded discharge rates of presumably
pronociceptive ON-cells and antinociceptive OFF-cells in the RVM
(Fields et al., 2006). Moreover, we assessed whether the effect by
amygdaloid administration of a glutamatergic compound on affective
pain-related behavior in an aversive place-conditioning test is
changed following peripheral nerve injury.

Materials and methods

The experiments were performed in adult, male Hannover-Wistar
rats weighing 180–190 g at the beginning of the experiment (Harlan,
Horst, the Netherlands). The experimental protocol was accepted by
the Institutional Ethics Committee and the experiments were
performed according to the guidelines of the European Communities
Council Directive of 24 November 1986 (86/609/EEC). All efforts were
made to minimize animal suffering and to use only the number of
animals necessary to produce reliable scientific data.

Techniques for producing neuropathy

The unilateral axotomy and ligation of the tibial and common
peroneal nerves was performed under pentobarbitone anesthesia
(50 mg/kg i.p.) as described in detail earlier (Decosterd and Woolf,
2000; Gonçalves et al., 2007). Briefly, the skin of the lateral surface of
the thigh was incised and a section made directly through the biceps
femoris muscle exposing the sciatic nerve and its three terminal
branches. Following ligation and removing 2–4 mm of the distal nerve
stumps of the tibial and common peroneal nerves, muscle and skin
were closed in two layers. In sham-operated animals, the surgical
procedure was identical, except that the tibial and common peroneal
nerves were not ligated or sectioned. After the surgery, the animals
were allowed to recover before the actual testing that was performed
either 1 or 8 weeks after the operation.

Behavioral verification of neuropathy

Development of hypersensitivity was verified behaviorally in
animals habituated to the experimental conditions 1–2 h daily for 2
to 3 days. For assessment of tactile allodynia, the hind limb
withdrawal threshold was determined stimulating the sural nerve
area in the hind paw of the operated limb with monofilaments. The
calibrated series of monofilaments used in this study produced forces
ranging from 0.16 to 15 g (North Coast Medical, Inc. Morgan Hill, CA,
USA). Themonofilaments were applied to the foot pad with increasing
force until the rat withdrew its hind limb. The lowest force producing
a withdrawal response was considered the threshold. The threshold
for each hind paw of each rat was based on three separate
measurements and the median of these values was considered to
represent the threshold. Threshold values b1 g were considered to
represent hypersensitivity. It should be noted that the currently used
strain of rats delivered by Harlan (Horst, the Netherlands) has an
exceptionally low withdrawal threshold to monofilament stimulation
in baseline (unoperated) condition: in ten unoperated control animals
the lowest withdrawal threshold was only 4 g and therefore, the
criterion for hypersensitivity was set to as low as b1 g in this study as
we did earlier with the same strain of animals (Gonçalves et al., 2007).

Electrophysiological recordings

For electrophysiological recordings the anesthesia was induced by
pentobarbitone at a dose of 50mg/kg i.p. and the animal was placed in
a standard stereotaxic frame according to the atlas of Paxinos and
Watson (1998). Anesthesia was maintained by infusing pentobarbi-
tone (15–20 mg/kg/h). The level of anesthesia was frequently
monitored by observing the size of the pupils and by assessing
withdrawal responses to noxious stimulation. When necessary, the
74
infusion rate of pentobarbitone was adjusted to keep the level of
anesthesia steady. Although a change in the level of anesthesia may
significantly influence neuronal responses, anesthesia is not likely to
explain differences among different experimental groups and drug
treatments in the present study. This is because anesthesia was
induced and maintained in an identical manner in all experimental
conditions. The rats were spontaneously breathing. A warming
blanket was used to maintain body temperature within physiological
range. Peripheral perfusion was checked by evaluating the color of
ears and extremities. The skull was exposed and a hole drilled for
placement of recording electrode in the RVM. The desired recording
site in the RVM was 1.8–2.3 mm posterior from the ear bar, 0.4–
0.9 mm lateral from the midline, and 8.9–10.7 mm ventral from the
dura mater (Fig. 1).

Single neuron activity was recorded extracellularly with lacquer-
coated tungsten electrodes (tip impedance 3–10 MΩ at 1 kHz) and
then amplified and filtered using standard techniques. Data sampling
was performed with a computer connected to a CED Micro 1401
interface and using Spike 2 software (Cambridge Electronic Design,
Cambridge, U.K.).

Actual recordings did not start until the animal was under light
anesthesia; i.e., the animals gave a brief withdrawal response to
noxious pinch, but the pinch did not produce any longer lasting motor
activity, nor did the animals have spontaneous limb movements.
Neurons were classified based on their response to noxious pinch of
the tail with a hemostatic clamp (Fig. 2). This stimulus was painful
when applied to the finger of the experimenters. Neurons giving
excitatory responses to pinch were considered ON-cells, those giving
inhibitory responses were considered OFF-cells and neurons showing
no or only a negligible (b10%) change in their discharge rates as a
response to pinch were considered NEUTRAL-cells. This classification
scheme of medullary neurons was modified from that described by
Fields et al., (2006). A noteworthy difference is that we did not verify
whether pinch-evoked responses of RVM neurons were associated
with spinal reflex responses as in the original classification scheme
(Fields et al., 2006). Therefore, the populations of ON- and OFF-cells in
this studymay not be identical with those in a study inwhich cells are
classified strictly according to the classification scheme of Fields et al.,



Fig. 2. Examples of an RVM ON-cell (upper graph) and OFF-cell (lower graph) response
to noxious pinch of the tail in a neuropathic animal. P P indicates the duration of
noxious tail pinch. The horizontal bars indicating tail pinch represent 5 s and the
vertical calibration bars for the peristimulus time histograms represent 50 impulses/s.
The insets show the shapes of the action potential.

68 O.B. Ansah et al. / Experimental Neurology 216 (2009) 66–74
(2006). Our previous results suggest, however, that there is only a
little difference in the classification of RVM neurons whether or not
spinal reflex responses are concurrently measured in lightly anesthe-
tized animals (Pertovaara et al., 2001).

Intracerebral drug injections

The animals had a guide cannula for drug administrations into the
amygdala ipsilateral to the spared nerve injury or sham-operated limb
(left side), except for one group that had the cannula contralateral to
the nerve injury (right side), and a control group that had the cannula
in the hippocampus. Additionally, a group of animals tested in
behavioral experiments only had a bilateral guide cannula for drug
injections into the central nucleus of the amygdala. For placement of
the guide cannula (26 gauge), the skull was exposed and a hole drilled
for its placement. The desired injection site was in the central nucleus
of the amygdala: 7.12 mm anterior from the ear bar, 3.40 mm lateral
from the midline, and 8.00 mmventral from the dura mater. A control
injection site in a group of neuropathic animals was in the
hippocampus, ipsilateral to nerve injury: 6.20 mm anterior from the
ear bar, 1.00 mm lateral from the midline, and 3.20 mm ventral from
the dura mater. The tip of the guide cannula was positioned 2 mm
above the desired injection site. The cannula was fixed into the skull
using a dental screw and dental cement. Drug administration to the
brain and experimental protocols were performed 1 week after
fixation of the guide cannula to the skull. When testing animals at the
one-week postoperative time point, the guide cannula for amygdala
injections was installed in the same operating session as sham or
nerve surgery. When testing animals at the eight-week postoperative
time point, the guide cannula was installed in a separate session at
least 1 week prior to electrophysiological recordings.
Drugs or saline control were microinjected into the amygdala
through a 33-gauge stainless steel injection cannula inserted through
and protruding 2 mm beyond the tip of the guide cannula. The
microinjection was made using a 10 µl Hamilton syringe that was
connected to the injection cannula by a length of polyethylene (PE-10)
tubing. The volume of injection was 0.5 µl. At this volume, the spread
of the injected drugs within the brainwas at least 1mm (Myers,1966).
The efficacy of injectionwas monitored by watching the movement of
a small air bubble through the tubing. The injection lasted 30 s and the
injection cannula was left in place for an additional 30 s to minimize
flow of the drug solution back up the injector track. At the completion
of the experiment, the microinjection sites were histologically verified
and plotted on a standardized section derived from the stereotaxic
atlas of Paxinos and Watson (1998).

Course of the electrophysiological study

There were four groups of animals that were included in the
electrophysiological study and had a guide cannula for amygdala
injections ipsilateral to nerve injury or sham operation: i) sham group
tested 1 week after operation, ii) sham group tested 8 weeks after
operation, iii) SNI group tested 1 week after operation, and iv) SNI
group tested 8 weeks after operation. Additionally, there was a fifth
group of SNI animals tested 1 week after operation that had the guide
cannula for amygdala injections contralateral to nerve injury, and a
sixth group of animals with neuropathy of 1 week duration that had
the guide cannula for drug injections into a control site in the
hippocampus ipsilateral to nerve injury. In each of these groups,
neuropathic hypersensitivity was verified with the monofilament test
(see above) before the start of the electrophysiological experiment.

After induction of anesthesia, the microelectrode was lowered to
the RVM. After finding a single cell, it was first classified based on its
response to noxious tail pinch (see above) and then its spontaneous
activity was recorded for 2 to 3 min. Next, one of the studied drugs or
saline control was administered in a varied order to the amygdala and
the spontaneous activity was recorded for up to 30 min (except with
glutamate and MK-801 for 6 min). One to two drug conditions were
tested in one cell, and one to four cells were tested in each animal. The
minimum interval to the next drug testing condition was 30 min
following saline or glutamate, while it was 60 min following other
drugs, except for MK-801 that was always the last drug tested in each
animal. When attempting to reverse the effect induced by the
glutamatergic agonist DHPG, the antagonist was injected into the
amygdala immediately (MPEP) or 15min (CPCCOEt) before the agonist.
In the data analysis, the discharge rate before injection was compared
with the discharge rate determined after the injection. This was done
by subtracting the mean post-injection discharge frequency during
1 min at various time points following microinjection from the mean
discharge frequency before microinjection; i.e., a positive value
represents increase of activity in the RVM by amygdala injection, and
vice versa.

Assessment of aversive avoidance behavior and its modulation
by glutamatergic receptors of the amygdala

Place avoidance test was performed, as described earlier (LaBuda
and Fuchs, 2000), to obtain a measure of affective pain induced by
mechanical stimulation of the neuropathic hind paw. Before testing,
the animals were habituated to the test conditions by spending 1 to
2 h daily for 2 days in the test box. In the actual testing, the rat was
placed within a Plexiglas chamber (60×30×30 cm; one half of which
was painted black on the external surface) placed upon an elevated
metal grid. The rats were placed over the midline of the chamber and
stimulation of the plantar surface of the hind paw initiated with a 60 g
monofilament once every 15 s for 15 min. When residing within the
dark side of the chamber the injured or sham-operated hind paw was
75



Fig. 3. Spontaneous discharge rates of RVM ON-cells (a) and OFF-cells (b) in nerve-
injured (SNI) and sham-operated animals. 1 and 8 weeks refer to the postoperative time
point of testing. ⁎Pb0.05 (reference: the corresponding value in the sham-operated
group at the same postoperative time point). +Pb0.05, +++Pb0.005 (Student-Newman-
Keuls test; reference: the corresponding value at an earlier postoperative time point).
Error bars represent S.E.M. (n=19–29).
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stimulated. Conversely, the non-operated hind paw was stimulated
when residing within the light side of the chamber. Throughout the
30 min test period rats were allowed unrestricted movement
throughout the chamber. The percent time spent in the light side of
the chamber during the 30 min observation period was determined in
each condition for each animal. It is assumed that the more aversive
the mechanical stimulation of the hind paw, the more the animal
spends time in the light side of the chamber; i.e., the place avoidance
test is considered to assess affective-emotional pain behavior (LaBuda
and Fuchs, 2000).

Three experimental groups of rats were tested in the place
avoidance test: i) SNI animals with amygdaloid injections ipsilateral
to the nerve injury ii) SNI animals with bilateral amygdaloid
injections, iii) sham-operated animals with amygdaloid injections
ipsilateral to the sham operation. In the bilateral treatment group, the
drug conditions were saline, DHPG at the dose of 5 nmol or 10 nmol/
amygdala (10 nmol or 20 nmol/animal, respectively), and CPCCOEt at
the dose of 20 nmol or 40 nmol/amygdala (40 nmol or 80 nmol/
animal/respectively). In the ipsilateral treatment groups, drug condi-
tions were saline, 10 nmol of DHPG, or 40 nmol of CPCCOEt. In all
experimental conditions, drugs were administered into the amygdala
immediately before the start of the place avoidance test. In each
experimental group, each drug condition was assessed in a separate
day, 1 to 2 weeks following nerve or sham injury. Each animal
participated in three to four drug testing sessions, the interval in
testing different drug conditions in one animal was at least 2 days. The
order of testing different drug conditions was varied within the
groups to avoid serial effects.

Drugs

(S)-3,5-Dihydroxyphenylglycine (DHPG; an mGluR1 and mGluR5

agonist), (RS)-2-Chloro-5-hydroxy (CHPG; an mGluR5 agonist), 6-
Methyl-2-(phenylethynyl)pyridine (MPEP; an mGluR5 antagonist),
(+)-MK-801 hydrogen maleate (MK-801; an NMDA-R antagonist) and
glutamate were purchased from Sigma (St. Louis, MO) and 7-
Hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester
(CPCCOEt; an mGluR1 antagonist) was purchased from Tocris (Bristol,
U.K.). Physiological saline (OrionPharma, Espoo, Finland) was used for
control injections. Drugs were dissolved in saline, except for CPCCOEt
that was dissolved in DMSO.

Previous studies indicate that DHPG and CPCCOEt at the currently
used dose of 10 nmol have proved effective in activating group I
mGluRs within the currently used observation period of 30 min
following intracerebral administration in the rat (e.g., Kim et al., 2007;
Renoldi et al., 2007). Previous studies indicate that the currently used
doses of glutamate (50 nmol) and MK-801 (3 nmol) induce a
significant antinociception (Zhuo and Gebhart, 1997) or antiallodynia
(Pertovaara and Wei, 2003), respectively, following supraspinal
microinjection. The maximum antinociceptive effect induced by
central injection of glutamate has been obtained within 2 min (Zhuo
and Gebhart, 1997), whereas the maximum antiallodynic effect
induced by central injection of MK-801 was reached within 15 min
(Pertovaara and Wei, 2003). Thus, the currently used observation
period of 6 min following the injection of glutamate in the amygdala
was appropriate for detecting the maximum effect induced by
glutamate but only a submaximal effect induced by MK-801.

At the completion of the study, an electrolytic lesion was made in
the recording site, the animals were given a lethal dose of
pentobarbitone and the brains removed for verification of recording
and microinjection sites.

Statistics

Data are presented as mean±S.E.M. One- or two-way ANOVA
followed by Student-Newman-Keuls test or t-test (differences
76
between two groups) were used for assessing differences between
the experimental conditions. Grubb's test was used to exclude
potential outliers (www.graphpad.com/quickcalcs/). Pb0.05 was
considered to represent a significant difference.

Results

Response characteristics of RVM neurons

Spontaneous activity of RVM ON-cells was significantly influ-
enced by SNI (F1,131=4.79, P=0.030; 2-w-ANOVA) and postoperative
time point of testing (F1,131=4.19, P=0.043; 2-w-ANOVA). Post hoc
tests indicated that the spontaneous discharge rate of ON-cells was
increased in the SNI group 1 week after nerve injury, while 8 weeks
following injury it was reduced to the same level as in sham
controls (Fig. 3a). Spontaneous activity of RVM OFF-cells was
influenced by postoperative time point of testing (F1,100=8.0,
P=0.0057; 2-w-ANOVA), and this time-dependent effect varied
with the experimental group (SNI versus sham; F1,100=4.50,
P=0.036; 2-w-ANOVA). Post hoc tests indicated that the discharge
rate of OFF-cells was significantly decreased 1 week following nerve
injury, while 8 weeks following injury it was at the same level as in
sham controls (Fig. 3b). In the present sample of neurons,
postoperative time point of testing (one versus 8 weeks) had no
significant influence on spontaneous discharge rates of ON- or OFF-
cells in the sham control group (Fig. 3).

Discharge rates of RVM cells following amygdaloid administration of
glutamatergic compounds

When studying the influence of glutamatergic compounds on
discharge rates of RVM cells, the studied compounds were micro-
injected at a volume of 0.5 µl into the amygdala ipsilateral to nerve
injury or sham operation, except for one group inwhich it was injected

http://www.graphpad.com/quickcalcs/


Fig. 4. Influence of DHPG (10 nmol; left column) or saline (right column) injection into the amygdala on the discharge rate of an RVM ON-cell in a neuropathic animal 1 week
following the nerve injury. Time point of testing before and after the injection is shown above each row. The horizontal calibration bar represents 10 s and the vertical one
50 impulses/s.
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into the amygdala contralateral to nerve injury. Microinjection of
DHPG, an agonist of group I metabotropic glutamate receptor
(mGluR) subtypes mGluR1 and mGluR5, at a dose of 10 nmol
produced a significant increase in the discharge rate of RVM ON-
Fig. 5. Discharge rates of RVM ON-cells in nerve-injured (SNI) animals following administr
to the nerve injury. (a) Time course of the effect by DHPG (10 nmol), an mGluR1 and mG
Reversal of the DHPG-induced increase in the discharge rate by MPEP (50 nmol), an mG
CPCCOEt (40 nmol), anmGluR1 antagonist.1 and 8weeks refer to the postoperative time point o
or CPCCOEt co-administeredwithDHPG. ⁎Pb0.05, ⁎⁎Pb0.01, ⁎⁎⁎Pb0.005 (Student-Newman-Ke
group. In c and d, reference is the DHPG group). Error bars represent S.E.M. (nsal=16, nDHPG_
horizontal line) represents the pre-injection discharge rate.
cells in the SNI group (Fig. 4). DHPG induced the maximum increase
in the discharge rate of ON-cells within 5 min, and the increase was
of equal magnitude 1 and 8 weeks following nerve injury (Figs. 5a,
b). The increase in the discharge rate of RVM ON-cells by 10 nmol of
ation of group I metabotropic glutamatergic compounds into the amygdala ipsilateral
luR5 agonist. (b) The effect by DHPG versus CHPG (10 nmol), an mGluR5 agonist. (c)
luR5 antagonist. (d) Reversal of the DHPG-induced increase in the discharge rate by
f testing. Sal=saline.MPEP=MPEPalone, CPCCO=CPCCOEt alone, +MPEP or +CPCCO=MPEP
uls test; in a, reference is the corresponding pre-injection value. In b, reference is the saline
1wk=8, nDHPG_8wk=14, nCHPG=4, nMPEP=5, n+MPEP=6, nCPCCO=10, n+CPCCO=8). 100% (dotted
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DHPG was of equal magnitude following its microinjection into the
amygdala ipsi- (n=14) as contralateral (n=4) to the nerve injury in
animals that were operated 8 weeks before time point of testing
(F=0.05; 2-w-ANOVA; not shown). CHPG, an mGluR5 agonist
(10 nmol), failed to influence the discharge rate of RVM ON-cells
in nerve-injured animals (Fig. 5b). The DHPG-induced increase of
ON-cell activity in nerve-injured animals was completely reversed
by pretreatment of the amygdala with MPEP, an mGluR5 antagonist,
at a dose of 50 nmol that produced no significant effect when
administered alone (Fig. 5c). The DHPG-induced increase of ON-cell
activity in nerve-injured animals was also completely reversed by
pretreatment of the amygdala with CPCCOEt, an mGluR1 antagonist,
at a dose (40 nmol) that failed to produce a change in ON-cell
discharge rate when administered alone (Fig. 5d). Administration of
DHPG at the dose of 10 nmol into a control site, the hippocampus,
failed to produce any significant change on the discharge rate of five
ON-cells (not shown) in neuropathic animals, while in one ON-cell
DHPG administration into the hippocampus was followed at a
15 min post-injection time point by a sudden increase of the
discharge rate from the pre-injection baseline rate by 384% (not
shown). According to Grubb's test, the RVM ON-cell with a sudden
increase in the discharge rate 15 min following hippocampal
injection of DHPG was a significant outlier (Pb0.05) and therefore,
it was not included in the statistical assessment of the over-all
effect.

DHPG (10 nmol) in the amygdala failed to influence OFF-cell
activity in the SNI group, independent of postoperative time point
(Fig. 6a). Moreover, DHPG (10 nmol) in the amygdala had no
significant effect on discharge rates of ON- or OFF-cells in the sham
group (Fig. 6b).

Microinjections of glutamate at a dose of 50 nmol or MK-801, an
NMDA receptor (NMDA-R) antagonist, at a dose of 3 nmol failed to
produce significant changes in the discharge rates of ON- or OFF-cells
in the SNI or sham group (Fig. 7).
Fig. 6. (a) Discharge rates of RVM OFF-cells in nerve-injured (SNI) animals following
administration of saline (Sal) or DHPG (10 nmol), an mGluR1 and mGluR5 agonist,
into the amygdala. (b) Discharge rates of RVM ON- and OFF-cells in sham-operated
animals following amygdaloid administration of saline or DHPG. 1 and 8 weeks refer
to the postoperative time point of testing. Error bars represent S.E.M. (In a, nSal=6,
nDHPG_1wk=9, nDHPG_8wk=6. In b, nSal=8, nDHPG_ON-cell =8, nDHPG_OFF-cell =5). 100%
represents the pre-injection discharge rate.

Fig. 7. Discharge rates of RVM cells following administration of glutamate (50 nmol) or
MK-801 (3 nmol), an NMDA-R antagonist, into the amygdala. (a) ON-cells in nerve-
injured (SNI) animals. (b) OFF-cells in nerve-injured animals. (c) ON- and OFF-cells in
sham-operated animals. 1 and 8 weeks refer to the postoperative time point of testing.
Sal=saline Error bars represent S.E.M. (n=6–10). 100% represents the pre-injection
discharge rate.
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Affective pain-related behavior following amygdaloid administration of
DHPG or CPCCOEt

A behavioral place avoidance paradigmwas used to assess whether
amygdaloid administration of DHPG or CPCCOEt influences aversive
quality of mechanical stimulation of the neuropathic hind paw. In
sham-operated animals, mechanical stimulation of the operated hind
paw induced no or negligible avoidance behavior, independent
whether saline or DHPG (10 nmol) was injected into the ipsilateral
amygdala (Fig. 8). In nerve-injured animals, mechanical stimulation of
the neuropathic hind paw induced a marked avoidance behavior (as
revealed by increased time spent in light) that was increased by
administration of DHPG into the amygdala: while the increase of
avoidance behavior induced by ipsilateral injection of 10 nmol of
DHPG was short of significance, bilateral administration of DHPG
produced a dose-related increase in place avoidance (F2,14=8.7,
Pb0.01; 1-w-ANOVA) that was significant at a dose of 10 nmol of
DHPG/amygdala, corresponding to 20 nmol of DHPG/animal (Fig. 8a).
In contrast, avoidance behavior was reduced by administration of
CPCCOEt in the amygdala: while the decrease of avoidance behavior
was short of significance following ipsilateral administration of
40 nmol of CPCCOEt, bilateral administration of CPCCOEt produced a



Fig. 8. Behavior in aversive place-conditioning test following administration DHPG, an
mGluR1 and mGluR5 agonist (a), or CPCCOEt, an mGluR1 antagonist (b), into the
amygdala in nerve-injured (SNI) or sham-operated animals. An increase in time spent
in light is considered to reflect an increase in affective pain induced by monofilament
stimulation of the hind paw. ipsi=amygdaloid injection was performed only ipsilateral
to the nerve injury/sham operation, bilat=amygdaloid injection was performed
bilaterally. In the Y-axis, doses represent the dose/side; e.g., the dose 10 nmol
represents 10 nmol/animal with ipsilateral injections and 20 nmol/animal with
bilateral injections. ⁎Pb0.05 (Student-Newman-Keuls test; reference: the correspond-
ing saline condition). Error bars represent S.E.M. (In a, nSNI-ipsi=9, nSNI-bilat=5, nSham-ipsi=5.
In b, nSNI-ipsi=4, nSNI-bilat=4, nSham-ipsi=5).
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dose-related decrease in place avoidance (F2,10=4.86, Pb0.04; 1-w-
ANOVA) that was significant at a dose of 40 nmol of CPCCOEt/
amygdala (Fig. 8b).

Discussion

In the present study, amygdaloid administration of DHPG, an
mGluR1/5 agonist, increased the discharge rate of presumably
pronociceptive ON-cells in the RVM of nerve-injured but not
sham-operated animals. This enhanced pronociceptive effect was
at least due to action on the amygdaloid mGluR1, since DHPG, an
agonist of the mGluR1 and mGluR5, but not CHPG, an mGluR5

agonist, increased discharge rates of RVM ON-cells and this DHPG-
induced effect was reversed by CPCCOEt, an mGluR1 antagonist.
However, since MPEP, an mGluR5 antagonist, applied at a high dose
also reversed the DHPG-induced increase of the ON-cell discharge
rate, we cannot exclude contribution of the mGluR5 to the DHPG-
induced pronociception. Administration of DHPG into a control site,
the hippocampus, failed to produce a change in the discharge rate of
RVM ON-cells in neuropathic animals. Amygdaloid administration of
DHPG also failed to influence discharge rates of presumably
antinociceptive OFF-cells of the RVM indicating that the nerve
injury-induced change was selective for the pronociceptive cell type.
Since amygdaloid administration of NMDA-R or group I mGluR
antagonists alone failed to influence discharge rates of pro- or
antinociceptive RVM cells, the amygdaloid NMDA-R or group I
mGluRs may not contribute to tonic maintenance of neuropathic
pain and hypersensitivity.
In behavioral experiments of the present study, affective pain of
nerve-injured animals was increased by amygdaloid administration
of DHPG and decreased by CPCCOEt. Since the aversive place-
conditioning test used in assessing affective pain-related behavior
(LaBuda and Fuchs, 2000) provides an emotional challenge putatively
activating the amygdala, the decrease of affective pain by amygdaloid
administration of an mGluR1 antagonist is in line with the hypothesis
that emotions processed by the amygdala may enhance pain in
nerve-injured animals, due to action on the amygdaloid mGluR1.

Interaction between the amygdala and pain

Psychophysical studies suggest that emotions presumably pro-
cessed by the amygdala produce significant changes in human pain
reactivity (Craig, 2006). The direction of the change has varied from
pain facilitation in anxious subjects to suppression of pain sensitivity
in subjects with intense fear (Rhudy and Meagher, 2000 & 2003). In
line with this, previous studies in non-neuropathic animals have
shown that the amygdala has a dual role in the regulation of
nociception varying from pronociception to antinociception (see the
Introduction). There is accumulating evidence indicating that sus-
tained pain induces plastic changes in the amygdala (Neugebauer,
2006). Pain-induced neural plasticity of the amygdala may influence
its pain regulatory action as indicated by a recent study showing that
activation of the extracellular signal-regulated kinase in the amygdala
contributes to inflammatory hypersensitivity (Carrasquillo and Ger-
eau, 2007). In addition to inflammation, peripheral neuropathy
induces neural plasticity in the amygdala as shown by the findings
that postsynaptic currents evoked by ascending inputs in the central
amygdala were enhanced (Ikeda et al., 2007) and new amygdala
neurons were generated (Gonçalves et al., 2008) following periph-
eral nerve injury. While the enhanced synaptic responses to
ascending signals indicate that the relay of pain-related signals to
the amygdala is facilitated in neuropathy (Ikeda et al., 2007), these
previous results still leave open whether the amygdala-induced pain
regulation is changed by peripheral nerve injury.

In neuropathic animals, not only pain processing within the
amygdala (Ikeda et al., 2007) but also pain regulatory influence of the
amygdala may be changed as suggested by the following findings.
Amygdaloid administration of a GABAA receptor agonist suppressed
aversive pain-related behavior and hypersensitive spinal reflex
responses in nerve-injured animals (Pedersen et al., 2007). This
behavioral finding suggests that the amygdala may contribute to
regulation of neuropathic hypersensitivity, possibly through action on
descending pathways relaying in the RVM. Also, amygdaloid admin-
istration of glutamate suppressed presumably antinociceptive neu-
rons in the noradrenergic locus coeruleus of nerve-injured but not
sham-operated animals suggesting that activation of the amygdala
may have a pronociceptive effect in peripheral neuropathy (Viisanen
and Pertovaara, 2007). In line with this, the present results suggest
that activation of the group I mGluR in the amygdala of nerve-injured
animals promotes activity of presumably pronociceptive neurons in
the RVM. Together these results suggest that the amygdala-induced
pain modulation is changed in neuropathy. In neuropathic animals,
activation of the amygdala may promote hypersensitivity by, at least,
two different types of actions on brain regulatory nuclei of the
brainstem: by facilitating pronociceptive neurons in the RVM and by
inhibiting antinociceptive neurons in the locus coeruleus. While the
pronociceptive influence by the amygdala may be partly tonic in
peripheral neuropathy (Pedersen et al., 2007), the present results with
amygdaloid administrations of specific receptor antagonists alone
suggest that the amygdaloid NMDA-R or group I mGluR do not explain
the tonic pronociceptive action of the amygdala.

Interestingly, while the enhancement of synaptic currents evoked
by afferent inputs to the amygdala occurred predominantly in the
central nucleus of the amygdala contralateral to peripheral nerve
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injury (Ikeda et al., 2007), the pronociceptive action of DHPG on the
RVM was obtained following its amygdaloid administration ipsi- as
well as contralateral to peripheral nerve injury. This result is in line
with the earlier finding that activation of the amygdala ipsilateral to
nerve injury attenuated presumably antinociceptive locus coeruleus
neurons (Viisanen and Pertovaara, 2007) and it also fits the finding
that the amygdala receives ascending nociceptive inputs from the ipsi-
as well as contralateral body half (Bernard et al., 1996). It may be
proposed that the enhancement of contralateral afferent inputs in the
amygdala (Ikeda et al., 2007) and the pronociceptive change in the
amygdala-induced pain regulatory effect that was observed also
ipsilateral to nerve injury (Viisanen and Pertovaara, 2007; the present
results) have, at least partly, different underlying mechanisms.

Glutamatergic receptor types sensitized in the amygdala

Earlier results indicate that in arthritis, the responses of multi-
receptive neurons in the central nucleus of the amygdala are
sensitized to administration of DHPG, an mGluR1 and mGluR5 agonist
but not to CHPG, an mGluR5 agonist (Li and Neugebauer, 2004b;
Neugebauer et al., 2003). This finding suggests that the amygdaloid
mGluR1 plays a role in arthritic pain-related sensitization (Li and
Neugebauer, 2004b; Neugebauer et al., 2003). The present results on
the amygdaloid influence on the RVM and affective pain-related
behavior extend this earlier finding by showing that a change in the
function of the amygdaloid group I mGluR, and particularly the
subtype mGluR1, may contribute to pain-related sensitization in
peripheral neuropathy as well as in arthritis. In contrast, while the
NMDA-R contributes to pain-related sensitization of amygdala
neurons in arthritis (Li and Neugebauer, 2004a), a recent study
indicated that sensitization of amygdala neurons in peripheral
neuropathy is not dependent on the NMDA-R (Ikeda et al., 2007). In
line with this, amygdaloid administration of an NMDA-R antagonist
failed to induce a change in the discharge rate of RVM neurons in
nerve-injured animals of the present study. While studies performed
in non-neuropathic animals have provided evidence suggesting that
the central nucleus of the amygdala plays a significant role in
promoting affective pain behavior induced by noxious visceral
stimulation, its lesion has attenuated place aversion induced by
noxious cutaneous stimulation, too (Tanimoto et al., 2003), a finding
which is in line with the present results. It should be noted, however,
that the currently administered injection volume of 0.5 µl into the
central nucleus of the amygdala is likely to spread also to immediately
adjacent areas (Myers, 1966), particularly other amygdaloid subnuclei.
Therefore, we cannot exclude the possibility that the group I mGluRs
e.g. in the basolateral nucleus of the amygdala contribute to the DHPG-
induced pronociceptive effect in the present study. In a distant control
site, the hippocampus, DHPG, however, had no pronociceptive effect
indicating that the pronociceptive effect was region-specific.

Influence of the amygdala on discharge rates of RVM cells

An earlier study showed that microinjection of morphine into the
basolateral nucleus of the amygdala produced antinociception that
was accompanied by a decrease in the discharge rate of RVM ON-cells
and an increase in the discharge rate of RVM OFF-cells, while
morphine in the central or lateral nuclei of the amygdala failed to
influence pain-related behavior or discharge rates of RVM ON- or OFF-
cells (McGaraughty and Heinricher, 2002). Since the main amygdaloid
output nucleus is the central nucleus receiving convergent informa-
tion from various amygdaloid nuclei (Pitkänen et al., 1997), the
antinociceptive effect by morphine in the basolateral nucleus was
likely to be relayed to the RVM via the amygdaloid central nucleus. In
the present study, DHPGwas microinjected into the central nucleus of
the amygdala, although the results do not allow excluding that group I
mGluRs in adjacent amygdaloid subnuclei contributed to its prono-
80
ciceptive effect. Together, earlier (McGaraughty and Heinricher, 2002)
and the present results indicate that the amygdala has an influence on
neuronal discharge rates in the RVM, a major pain regulatory region
(Gebhart, 2004). The pain-regulatory effect originating in or relaying
through the amygdala may have been mediated to the RVM directly
(Hermann et al., 1997) or indirectly through the periaqueductal gray
(Rizvi et al., 1991). Moreover, efferent pathways other than those
projecting directly or indirectly to the RVM may contribute to pain
regulation by the amygdala. It should also be noted that the increased
affective pain response to mechanical stimulation of the neuropathic
limb in the aversive place-conditioning task by the amygdaloid
mGluR1 may reflect increased afferent barrage evoked by the
mechanical test stimulus due to increased RVM ON-cell activity, a
distinct mechanism facilitating affective pain, or both.

Spontaneous discharge rate of RVM cells following nerve injury

Increase in the ongoing discharge rate of RVM ON-cells and a
decrease in the ongoing discharge rate of RVM OFF-cells have been
associated with sustained hyperalgesia induced by inflammation
(Kincaid et al., 2006). The cumulative results of the present and our
preceding study (Gonçalves et al., 2007) support the hypothesis that
an increased spontaneous discharge rate of RVM ON-cells and a
decreased discharge rate of RVM OFF-cells contribute to maintenance
of hypersensitivity also during the early phase (first week) of
peripheral neuropathy in animals with SNI. During the late phase
(eighthweek) of neuropathy, the discharge rates of RVMON- and OFF-
cells were returned to control levels indicating that an abnormality in
the ongoing discharge rate of RVM ON- or OFF-cells may not explain
hypersensitivity induced by SNI. The return of the ongoing discharge
rate to control levels during the late phase of SNI-induced neuropathy,
however, does not exclude the possibility that the RVM ON- or OFF-
cells contributed to maintenance of hypersensitivity through a change
in the synaptic efficacy of their efferent connections. A change in the
ongoing discharge rates of RVM ON- and OFF-cells is not pathognomic
for the early phase of peripheral neuropathy in all experimental
models as indicated by observations made in animals with ligation of
the spinal nerves (Carlson et al., 2007; Pertovaara et al., 2001) or
chronic constriction of the sciatic nerve (Luukko and Pertovaara,
1993). Additionally, peripheral nerve injury may induce enhanced
responses of RVM cells to peripheral stimulation that potentially
contributes to abnormal feedback regulation of ascending nociceptive
signals (Carlson et al., 2007; Gonçalves et al., 2007).

Conclusions

Present results indicate that group I mGluRs in the amygdala may
promote nociception in nerve-injured animals. This was shown by
increased excitation of pronociceptive RVM ON-cells following
amygdaloid administration of a group I mGluR agonist in neuropathic
animals. Since the amygdala has a key role in processing emotions and
since the administration of glutamatergic compounds into the
amygdala potentially mimics emotional activation of the amygdala,
it may be proposed that activation of the amygdaloid group I mGluR,
provides a possible mechanism for emotional enhancement of nerve
injury-related hypersensitivity and pain. This proposal is supported by
the behavioral finding indicating that amygdaloid administration of an
mGluR1/5 agonist increased and that of an mGluR1 antagonist
decreased affective pain-related behavior when the nerve-injured
animal was exposed to an emotional challenge provided by the
aversive place-conditioning test.

Acknowledgments

This work was supported by the Academy of Finland and the Sigrid
Jusélius Foundation, Helsinki, Finland, and the Portuguese Foundation



74 O.B. Ansah et al. / Experimental Neurology 216 (2009) 66–74
for Science and Technology and the Gulbenkian Foundation, Lisbon,
Portugal.

References

Almeida, A., Leite-Almeida, H., Tavares, I., 2006. Medullary control of nociceptive
transmission: reciprocal dual communication with the spinal cord. Drug Discov.
Today Dis. Mech. 3, 305–312.

Bernard, J.F., Bester, H., Besson, J.M., 1996. Involvement of the spino-parabrachio-
amygdaloid and -hypothalamic pathways in the autonomic and affective emotional
aspects of pain. Prog. Brain Res. 107, 243–255.

Carlson, J.D., Maire, J.J., Martenson, M.E., Heinricher, M.M., 2007. Sensitization of pain-
modulating neurons in the rostral ventromedial medulla after peripheral nerve
injury. J. Neurosci. 27, 13222–13231.

Carrasquillo, Y., Gereau IV, R.W., 2007. Activation of the extracellular signal-related
kinase in the amygdala modulates pain perception. J. Neurosci. 27, 1543–1551.

Craig, K.D., 2006. Emotions and psychobiology, In: McMahon, S.B., Koltzenburg, M.
(Eds.), Wall and Melzack's Textbook of Pain, fifth ed. Elsevier, China, pp. 231–239.

Decosterd, I., Woolf, C.J., 2000. Spared nerve injury: an animal model of persistent
peripheral neuropathic pain. Pain 87, 149–158.

Fields, H.L., Basbaum, A.I., Heinricher, M.M., 2006. Central nervous system mechanisms
of pain modulation, In: McMahon, S.B., Koltzenburg, M. (Eds.), fifth ed. Elsevier,
China, pp. 125–142.

Gebhart, G.F., 2004. Descendingmodulation of pain. Neurosci. Biobehav. Rev. 27, 729–737.
Gonçalves, L., Almeida, A., Pertovaara, A., 2007. Pronociceptive changes in response

properties of rostroventromedial medullary neurons in a rat model of peripheral
neuropathy. Eur. J. Neurosci. 26, 2188–2195.

Gonçalves, L., Silva, R., Pinto-Ribeiro, F., Pêgo, J.M., Bessa, J.M., Pertovaara, A., Sousa, N.,
Almeida, A., 2008. Neuropathic pain is associated with depressive behaviour and
induces neuroplasticity in the amygdala of the rat. Exp. Neurol. 213, 48–56.

Greenwood-Van Meerveld, B., Gibson, M., Gunder, W., Shepard, J., Foreman, R., Myers,
D., 2001. Stereotaxic delivery of corticosterone to the amygdala modulates colonic
sensitivity in rats. Brain Res. 893, 135–142.

Helmstetter, F.J., Bellgowan, P.S., 1993. Lesions of the amygdala block conditional
hypoalgesia on the tail flick test. Brain Res. 612, 253–257.

Helmstetter, F.J., Tershner, S.A., Poore, L.H., Bellgowan, P.S., 1998. Antinociception
following opioid stimulation of the basolateral amygdala is expressed through the
periaqueductal gray and rostral ventromedial medulla. Brain Res. 779, 104–118.

Hermann, D., Luppi, P., Peyron, C., Hinckel, P., Jouvet, M.,1997. Afferent projections to the
rat nuclei raphe magnus, raphe pallidus, and reticularis gigantocellularis pars alpha
demonstrated by iontophoretic application of choleratoxin. J. Chem. Neuroanat. 13,
1–21.

Ikeda, R., Takahashi, Y., Inoue, K., Kato, F., 2007. NMDA receptor-independent synaptic
plasticity in thecentral amygdala in theratmodelofneuropathicpain. Pain127,161–172.

Kim, J., Lee, S., Park, H., Song, B., Hong, I., Geum, D., Shin, K., Choi, S., 2007. Blockade of
amygdala metabotropic glutamate receptor subtype 1 impairs fear extinction.
Biochem. Biophys. Res. Comm. 355, 188–193.

Kincaid, W., Neubert, M.J., Xu, M., Kim, C.J., Heinricher, M.M., 2006. Role of medullary
pain facilitating neurons in secondary thermal hyperalgesia. J. Neurophysiol. 95,
33–41.

LaBuda, C.J., Fuchs, P.N., 2000. A behavioral test paradigm to measure the aversive
quality of inflammatory and neuropathic pain in rats. Exp. Neurol. 163, 490–494.

Li, W., Neugebauer, V., 2004a. Block of NMDA and non-NMDA receptor activation results
in reduced background and evoked activity of central amygdala neurons in a model
of arthritic pain. Pain 110, 112–122.

Li, W., Neugebauer, V., 2004b. Differential roles of mGluR1 and mGluR5 in brief and
prolonged nociceptive processing in central amygdala neurons. J. Neurophysiol. 91,
13–24.

Lopez de Armentia, M., Sah, P., 2007. Bidirectional synaptic plasticity at nociceptive
afferents in the rat central amygdala. J. Physiol. (Lond.) 581, 961–970.

Luukko, M., Pertovaara, A., 1993. Influence of an experimental peripheral mononeuro-
pathy on the responses of medial bulboreticular neurons to noxious skin
stimulation and the modulation of the responses by an α2-adrenoceptor agonist
in the rat. Exp. Neurol. 124, 390–394.

Manning, B.H., 1998. A lateralized deficit in morphine antinociception after unilateral
inactivation of the central amygdala. J. Neurosci. 18, 9453–9470.
Manning, B.H., Mayer, D.J., 1995. The central nucleus of the amygdala contributes to the
production of morphine antinociception in the rat tail-flick test. J. Neurosci. 15,
8199–8213.

McGaraughty, S., Heinricher, M.M., 2002. Microinjection of morphine into various
amygdaloid nuclei differentially affects nociceptive responsiveness and RVM
neuronal activity. Pain 96, 153–162.

Mena, N.B., Mathur, R., Nayar, U., 1995. Amygdaloid involvement in pain. Indian J.
Physiol. Pharmacol. 39, 339–346.

Myers, R.D., 1966. Injection of solutions into cerebral tissue: relation between volume
and diffusion. Physiol. Behav. 1, 171–174.

Nandigama, P., Borszcz, G.S., 2003. Affective analgesia following the administration of
morphine into the amygdala of rats. Brain Res. 959, 343–354.

Neugebauer, V., 2006. Subcortical processing of nociceptive information: basal ganglia
and amygdala. In: Cervero, F., Jensen, T.S. (Eds.), Handbook of Clinical Neurology,
vol. 81. Elsevier, Amsterdam, pp. 141–158.

Neugebauer, V., Li, W., Bird, G.C., Bhave, G., Gereau IV, R.W., 2003. Synaptic plasticity in
the amygdala in a model of arthritic pain: differential roles of metabotropic
glutamate receptors 1 and 5. J. Neurosci. 23, 52–63.

Neugebauer, V., Li, W., Bird, G.C., Han, J.S., 2004. The amygdala and persistent pain.
Neuroscientist 10, 221–234.

Paxinos, G., Watson, C., 1998. The Rat Brain in Stereotaxic Coordinates. Academic Press,
New York.

Pedersen, L.H., Scheel-Kruger, J., Blackburn-Munro, G., 2007. Amygdala GABA-A
receptor involvement in mediating sensory-discriminative and affective-
motivational pain responses in a rat model of peripheral nerve injury. Pain
127, 17–26.

Pertovaara, A., 2000. Plasticity in descending pain modulatory systems. Prog. Brain Res.
129, 231–242.

Pertovaara, A., Wei, H., 2003. A dissociative change in the efficacy of supraspinal versus
spinal morphine in the neuropathic rat. Pain 101, 237–250.

Pertovaara, A., Keski-Vakkuri, U., Kalmari, J., Wei, H., Panula, P., 2001. Response
properties of neurons in the rostroventromedial medulla of neuropathic rats:
attempted modulation of responses by [1DMe]NPYF, a neuropeptide FF analogue.
Neuroscience 105, 457–468.

Phelps, E.A., LeDoux, J.E., 2005. Contributions of the amygdala to emotion processing:
from animal models to human behavior. Neuron 48, 175–187.

Pitkänen, A., Savander, V., LeDoux, J.E., 1997. Organization of intra-amygdaloid
circuitries in the rat: an emerging framework for understanding functions of the
amygdala. Trends Neurosci. 20, 517–523.

Porreca, F., Ossipov, M.H., Gebhart, G.H., 2002. Chronic pain and medullary descending
facilitation. Trends Neurosci. 25, 319–325.

Quin, C., Greenwood-Van Meerveld, B., Myers, D.A., Foreman, R.D., 2003. Corticosterone
acts directly at the amygdala to alter spinal neuronal activity in response to
colorectal distension. J. Neurophysiol. 89, 1343–1352.

Renoldi, G., Calcagno, E., Borsini, F., Invernizzi, R.W., 2007. Stimulation of group I mGlu
receptors in the ventrotegmental area enhances extracellular dopamine in the rat
medial prefrontal cortex. J. Neurochem. 100, 1658–1666.

Rhudy, J.L., Meagher, M.W., 2000. Fear and anxiety: divergent effects on human pain
thresholds. Pain 84, 65–75.

Rizvi, T.A., Ennis, M., Behbehani, M.M., Shipley, M.T., 1991. Connections between the
central nucleus of the amygdala and the midbrain periaqueductal gray: topography
and reciprocity. J. Comp. Neurol. 303, 121–131.

Tanimoto, S., Nakagawa, T., Yamauchi, Y., Minami, M., Satoh, M., 2003. Differential
contributions of the basolateral and central nuclei of the amygdala in the negative
affective component of chemical somatic and visceral pains in rats. Eur. J. Neurosci.
18, 2343–2350.

Van Bockstaele, E.J., Chan, J., Pickel, V.M., 1996. Input from central nucleus of the
amygdala efferents to pericoerulear dendrites, some of which contain tyrosine
hydroxylase immunoreactivity. J. Neurosci. Res. 45, 289–302.

Viisanen, H., Pertovaara, A., 2007. Influence of peripheral nerve injury on response
properties of locus coeruleus neurons and coeruleospinal antinociception in the rat.
Neuroscience 146, 1785–1794.

Woolf, C.J., Salter, M.W., 2006. Plasticity and pain: role of the dorsal horn, In: McMahon,
S.B., Koltzenburg, M. (Eds.), Wall and Melzack's Textbook of Pain, fifth ed. Elsevier,
China, pp. 91–106.

Zhuo, M., Gebhart, G.F., 1997. Biphasic modulation of spinal nociceptive transmission
from the medullary raphe nuclei in the rat. J. Neurophysiol. 78, 746–758.
81



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2.5 

 

Gonçalves L, Ansah OB, Almeida A, Pertovaara A 

Response Properties of Amygdala Nociceptive Neurons to Peripherally-Evoked 

Stimulation and Cortical Influence in the Neuropathic Rat 

 (Manuscript in preparation) 

 

83



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

84



 

 

 

 

Response Properties of Amygdala Nociceptive Neurons to Peripherally-Evoked 

Stimulation and Cortical Influence in the Neuropathic Rat 

 

Gonçalves L1,2, Ansah O1, Almeida A2, Pertovaara A1 

1Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland 

2Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 

Braga, Portugal 

 

 

Running title: BLA-CeA plasticity from 1 to 8 weeks SNI 

Key-words: Basolateral amygdalar nucleus; central amygdalar nucleus; spared nerve injury 

(SNI); peripherally-evoked neuroanal activity; anterior cingulate cortex; NMDA receptors 

 

 

85



 

 

 

ABSTRACT (271 words) 

 

The amygdala (AMY) receives nociceptive inputs from the periphery and central modulatory 

influence from various limbic sites, including the anterior cingulate cortex (ACC). However, the 

influence of neuropathic pain on AMY neurons is poorly known. We determined the response 

characteristics of AMY nociceptive neurons to peripheral stimulation and their modulation by ACC 

manipulation following induction (1 week - 1W) or sustained (8 weeks – 8W) spared nerve injury 

(SNI) neuropathy. Additionally, in order to determine behavioural correlates for neuronal findings, 

the aversive quality of noxious stimulation was evaluated.  

After 1W, but not 8W SNI, ACC inhibition with the NMDA-receptor antagonist MK-801 

decreased the aversive behaviour resulting from noxious stimulation of the lesioned hindpaw. 

Concerning the activity of nociceptive neurons from basolateral (BLA) and central (CeA) AMY 

nuclei: (I) their spontaneous activity generally increased in both nuclei following 1W and 8W 

neuropathy; (II) after 1W SNI, the peripherally-evoked activity of ipsilateral BLA neurons 

decreased more strongly and that of CeA neurons less  strongly following all types of noxious 

stimuli, when compared with Sham group, whereas in contralateral SNI neurons the decrease of 

the activity was the opposite in BLA and CeA neurons; (III) ACC glutamate stimulation increased 

neuronal activity of ipsilateral BLA neurons after 8W SNI, an effect that was reverted by MK-801 

block of the ACC.. 

Results indicate that SNI results in (i) alterations of BLA and CeA neuronal activity from a 

short to a sustained neuropathic period and in (ii) opposite neuronal changes in the activity of 

BLA / CeA and ipsilateral / contralateral AMY neurons. These alterations are discussed 

integrating the different modulatory roles of BLA and in pain processing. 
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INTRODUCTION (591 words) 

 

Pain is a multidimensional experience with sensitive-discriminative and motivational-affective 

components. While encoding of the sensory quality of pain is conveyed by the “lateral pain 

system” through specific thalamocortical connections, pathways implicated in the emotional 

processing of pain are far from being firmly established (Treede et al, 1999; Craig, 2003). This 

“medial pain system” relays diffusely in intralaminar and midline thalamic nuclei (Cliffer et al, 

1991) and projects massively to areas like the amygdala (AMY; Su & Bentivoglio, 1990) and 

anterior cingulate cortex (ACC; Hoover & Vertes, 2007), major telencephalic areas implicated in 

pain processing (Rainville, 2002; Lowe et al, 2007). 

The rostral ACC has been implicated in the encoding of the affective component of pain or 

unpleasantness of noxious stimulation, as its integrity is necessary for the “aversiveness” 

reaction to nociception (Johansen et al, 2001) and the negative affect associated with 

neuropathy-induced hypersensitivity (LaGraize et al, 2004, LaBuda and Fuchs, 2005) without 

inducing changes on sensory processing. Since the ACC receives and integrates nociceptive 

information to regulate behaviour, it is a potential source of descending nociceptive modulation. 

Accordingly, the ACC has a pain facilitating effect mediated by projections to the medullary dorsal 

reticular nucleus (Zhang et al, 2005), an area reciprocally connected with the spinal cord and 

implicated in nociceptive facilitation (Lima & Almeida, 2002). The ACC role in pain modulation 

seems to be mediated, at least in part, by NMDA-receptors (Lei et al, 2004; Tang et al, 2005; 

Zhang et al, 2005). 

There is considerable evidence that the amygdala is involved in fear conditioning (LeDoux, 

1995; Maren et al., 1996), consolidation of inhibitory avoidance memory (Malin et al, 2007), 

pain processing (Bernard and Besson, 1990; Neugebauer and Li, 2002) and pain modulation 

(Manning & Mayer, 1995). The BLA is a storage site for affective information, including negative 

pain affect (Tanimoto et al, 2003), and fear-related memories (LeDoux, 2000), whereas the CeA 

projects to the brainstem and controls arousal and response systems (Cardinal et al, 2002). The 

AMY modulatory role upon the supraspinal control system is mediated by projections to the 

brainstem, which contains centres of descending circuitries that facilitate or inhibit nociception 

(Xu et al, 2003; Han & Neugebauer, 2005; Han et al, 2005). The AMY is also associated with the 
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synaptic plasticity underlying painful memories as nociceptive inputs innervating the lateral and 

capsular regions of the CeA (Bernard et al. 1993) undergo long-term changes following persistent 

peripheral pain (Neugebauer & Li, 2003; Neugebauer et al, 2003; Ikeda et al, 2007). 

Additionally, structural neuroplasticity of the BLA and CeA associated to depressive-like behaviour 

was shown to develop following a peripheral neuropathy (Gonçalves et al, 2008). 

The ACC and AMY are integrated in the limbic corticostriatal loop regulating emotions 

(Cardinal et al, 2002). The ACC terminate on AMY interneurons that are largely inhibitory and 

regulates AMY emotional responses through conscious evaluation, whereas AMY projections back 

to ACC influence directly cortical output (Hariri et al, 2003). The anatomical (Gabbott et al, 2005; 

Hoover & Vertes, 2007) and functional (Malin et al, 2007) interactions between the ACC and 

AMY should contribute to the regulation of the endogenous pain modulatory systems (Rainville, 

2002). However, little is known about the close interaction between these higher centres for 

controlling the emotional component of pain. 

The objective of the present study was to analyse (I) alterations in the activity of BLA and CeA 

amygdalar neurons resulting from a one-week (induction) or 8-weeks (sustained) peripheral 

neuropathy and (II) the influence that the rostral ACC may have in these alterations, by local 

cortical glutamate stimulation or NMDA-antagonist inhibition. 

 

MATERIAL AND METHODS 

 

Animals 

All procedures were performed in adult, male Hannover-Wistar rats weighing 180–190 g at 

the beginning of the experiment (Harlan, Horst, The Netherlands). The experimental protocol was 

accepted by the Institutional Ethics Committee and the experiments were performed according to 

the guidelines of European Communities Council Directive of 24 November 1986 (86 ⁄ 609 ⁄ 

EEC) and IASP ethical guidelines for pain experimentation in awake animals (Zimmerman, 1983).  

 

Neuropathy induction 

Neuropathy was induced through the Spared Nerve Injury (SNI) model, as described earlier by 

Decosterd & Woolf (2000). Briefly, the sciatic nerve and its three terminal branches were 
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exposed through a small surgery, followed by the ligation and removal of 2–4 mm of the distal 

nerve stumps of the tibial and common peroneal nerves and leaving the sural nerve intact. The 

surgery was performed only after the animals were anaesthetised with pentobarbitone (50 mg ⁄ 

kg i.p.). In Sham-operated animals, the surgical procedure was identical, except that the tibial 

and common peroneal nerves were not ligated or sectioned. 

 

Placement of cannulas in the rACC 

A cannula was placed in the rostral anterior cingulate cortex (rACC) of all animals, under light 

anaesthesia, according to the atlas of Paxinos & Watson (1998; coordinates 1.56 mm 

rostrocaudally from Bregma, 0.0 mm laterally and 2.0–3.0 mm dorsoventrally). In the group 

submitted to one week neuropathy, surgical implantation of a cannula was performed in the 

same operation as ligation of nerves. In those animals subjected to 8 weeks experiment, surgical 

implantation of cannulas was performed 5 weeks after SNI induction.  

 

Nociceptive tests 

Nociceptive tests were performed a day before (baseline) and every two days after the surgery 

procedure, in order to verify the development of hypersensitivity. For assessment of tactile 

mechanical allodynia, the hind limb withdrawal threshold was determined by stimulating the hind 

paw of the operated limb with von Frey monofilaments in the area innervated by the sural nerve. 

The calibrated series of monofilaments used produced forces ranging from 0.16 to 15 g (North 

Coast Medical, Inc. Morgan Hill, CA, USA) and were applied to the foot pad with increasing force 

until the rat withdrew its hind limb. The lowest force producing a withdrawal response was 

considered the mechanical nociceptive threshold. For assessment of tactile mechanical 

hyperalgesia, the sural nerve area in the hind paw of the operated limb was briefly stimulated 

with a safety pin with an intensity sufficient to touch but not penetrate the skin (Pin Prick test). 

The duration of paw withdrawal was measured, with an arbitrary minimal time of 0.5 seconds 

(sec) (for the brief normal response) and maximal cut-off of 20 sec (for tissue protection) (Tal and 

Bennett, 1994).  

  

Place escape/avoidance test  
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The place escape/avoidance testing (LaBuda and Fuchs, 2000a,b, 2001, 2005; LaGraize et 

al., 2003a,b, 2004a,b, 2006) was performed 1 week after surgical implantation of a cannula in 

the rACC. No training is necessary for this behavioural test. Animals were placed within a 

16×40.5×30.5 cm Plexiglas chamber that was positioned on top of a grid. One half of the 

chamber is transparent (light area), and the other half of the chamber is painted black (dark 

area). During behavioural testing, animals were allowed unrestricted movement throughout the 

test chamber for the duration of a 30min test period. The animal is placed inside the chamber, 

between the two areas and the test begins following pre-microinjection withdrawal threshold 

testing and drug administration (saline, glutamate and MK-801), starting afterwards the 

suprathreshold mechanical stimulation (0.07g von Frey monofilament) applied to the plantar 

surface of the hindpaws at 15seconds intervals. The mechanical stimulus was applied to the right 

paw (ipsilateral to ligation) when the animal was within the preferred dark area of the test 

chamber and the left paw (contralateral to injury) when the animal was within the non-preferred 

light area of the test chamber. Sham-ligated animals were mechanically stimulated in an identical 

manner as the experimental group. The location of the animal at each 15-s interval when it is 

stimulated is recorded and converted to the percentage of time spent in the light side of the 

chamber.  

 

Electrophysiological recordings 

For electrophysiological recordings, the animals were lightly anaesthetized with 

pentobarbitone at a dose of 50mg⁄kg i.p., and maintained anaesthetized by infusing 

pentobarbitone (15–20 mg⁄kg⁄h). The level of anaesthesia was frequently monitored by 

observing the size of the pupils and by assessing withdrawal responses to noxious stimulation. 

When necessary, the infusion rate of pentobarbitone was increased. The rats were spontaneously 

breathing. A warming blanket was used to maintain body temperature within the physiological 

range. Peripheral perfusion was checked by evaluating the colour of ears and extremities. The 

animals were placed in a standard stereotaxic frame, the skull was exposed and holes drilled for: 

placement of recording electrodes in the basolateral (BLA; coordinates -2.28 mm rostrocaudally 

from Bregma, 5 or -5 mm laterally and 8.6 mm dorsoventrally, according to the atlas of Paxinos 

& Watson, 1998) and central amygdala (CeA; coordinates -2.16 mm rostrocaudally from Bregma, 
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4.2 or -4.2 mm laterally and 8.2 mm dorsoventrally) nuclei, and a guide cannula placed at the 

rACC (coordinates 2.7 mm rostrocaudally from Bregma, 0.5 or -0.5 mm laterally and -1.5 mm 

dorsoventrally), but kept 2 mm above the target. Single neuron activity was recorded 

extracellularly with lacquer-coated tungsten electrodes (tip impedance 3–10 MW at 1 kHz) and 

then amplified and filtered using standard techniques. Data sampling was performed with a 

computer connected to a CED Micro 1401 interface and using Spike 2 software (Cambridge 

Electronic Design, Cambridge, UK). Actual recordings did not start until the animal was under 

light anaesthesia; that is, the animals gave a brief withdrawal response to a noxious pinch, but 

the pinch did not produce any longer-lasting motor activity, and nor did the animals have 

spontaneous limb movements.  

 

Peripheral stimulation and drug administration 

In electrophysiological experiments, heat stimuli (peak stimulus temperature, 40ºC; baseline 

temperature, 35ºC; rate of stimulus temperature increase, 4ºC⁄s; duration of the peak 

temperature of 40ºC, 10 s) and cold stimuli (peak stimulus temperature, 4ºC; baseline 

temperature, 35ºC; rate of stimulus temperature decrease, 4ºC⁄s; duration of the peak 

temperature of 4ºC, 10 s) were applied with a feedback-controlled Peltier device (LTS-3 

Stimulator; Thermal Devices Inc., Golden Valley, MN, USA) to the lateral side of the lesioned hind 

paw innervated by the sural nerve. Whereas some models of neuropathy may be associated with 

significant skin temperature changes that provide a confounding factor to assessment of thermal 

responses, particularly when using radiant heat for stimulation (Luukko et al., 1994), applying 

thermal stimuli with a contact thermo-stimulator and starting from a standard adapting 

temperature reduces the possibility that a neuropathy associated change in skin temperature will 

influence the results (Gonçalves et al., 2007). Mechanical stimulation of the skin consisted of 

applying a haemostatic clamp to the tail for 5 seconds. When applied to the experimenter’s hand, 

this stimulus produced a painful pinch sensation. Noxious visceral stimulation consisted of 

colorectal distension (CRD) at a noxious intensity (80 mmHg) (Ness et al., 1991). CRD was 

applied for 10 seconds by inflating with air a 7–8-cm flexible latex balloon inserted transanally 

into the descending colon and rectum. The pressure in the balloon was controlled by an 

electronic device (Anderson et al., 1987). Administration of glutamate (5 nmol; Sigma, St.Louis, 
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MO) and the NMDA-receptor antagonist MK-801 (3 nmol; Sigma, St.Louis, MO) into rACC was 

performed by an injection syringe inserted through the guide cannula, but 2 mm longer than the 

latter in order to reach the target. Neuronal recording started immediately after glutamate 

injection and during 5 minutes, and 5 min after MK-801 injection, during 10 minutes. When the 

stimulus-evoked responses were analysed, the baseline discharge frequency recorded during a 

corresponding period just before the stimulation was subtracted from the discharge frequencies 

determined during stimulation; that is, positive values represent excitatory responses evoked by 

peripheral stimulation and negative ones inhibitory responses.  

 

Course of the study  

Four groups of animals were included in the electrophysiological study: (i) Sham group tested 

1 week after surgery (1W Sham); (ii) sham group tested 8 weeks after surgery (8W Sham); (iii) 

SNI group tested 1 week after surgery (1W SNI); and (iv) SNI group tested 8 weeks after surgery 

(8W SNI). In each of these groups, behavioural assessment of sensitivity to monofilament and 

pin-prick stimulation was performed before the surgery, every two days then forward and before 

the start of the electrophysiological experiment. After induction of anaesthesia, the 

microelectrode was lowered to the ipsilateral or contralateral BLA. After a single cell had been 

found, its spontaneous activity was recorded for 2–3 min. Then, cold stimulation was applied to 

the sural nerve area in the operated limb followed by pinch of the tail and CRD at 1-min intervals. 

The testing procedure, including the order of testing different sub-modalities of nociception, was 

the same in all experimental groups.  

To minimize serial effects, every other animal tested in this series belonged to the Sham group 

and every other to the SNI group. At the completion of the study, an electrolytic lesion was made 

in the recording site, the animals were given a lethal dose of pentobarbitone and the brains were 

removed for verification of recording and microinjection sites. 

 

Statistic analysis 

Data are presented as mean ± standard deviation (S.D.). For evaluation of differences 

between Sham, 1W SNI and 8W SNI groups, in the avoidance paradigm test, ANOVA and Tukey 

post-hoc test were performed. In the evaluation of the differences of the activity of various types 
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of neurons in different experimental conditions, the t-test was used. p< 0.05 was considered to 

represent a significant difference.  

 

RESULTS 

 

1. Avoidance paradigm test 

 

The emotional component of pain-like behaviour was evaluated by the time spent by the 

animals in the light chamber (Fig. 1). Although it is clear that Sham animals preferred the dark 

chamber in all three experimental situations, neuropathic animals showed different results when 

evaluated after 1 or 8 weeks of SNI. After 1 week neuropathy, SNI animals spent most of the 

time in the light chamber after saline and glutamate injection in the rACC. However, after MK-

801 injection in the rACC, the behaviour changed drastically and the animals spent most of the 

time in the dark chamber (decreased avoidance behaviour to pain). The group tested 8 weeks 

after the SNI surgery still preferred the light side of the chamber and was not affected byMK-801 

administered to the ACC (Fig. 1). 

 

2. Changes in BLA and CeA neuronal activity induced by SNI 

 

The activity of nociceptive BLA and CeA AMY neurons was recorded in a baseline state 

(spontaneous activity), after different somatic and visceral peripheral stimulation and after 

pharmacological stimulation of the rACC.  

 

2.1.1. Spontaneous neuronal activity of AMY neurons 

Spontaneous activity in BLA neurons recorded in SNI animals is changed, when compared 

with Sham animals. In the ipsilateral side, neuronal activity in SNI animals with 1 week 

neuropathy increased significantly, while in the 8 week SNI group the spontaneous activity was 

significantly decreased. In the contralateral side, the activity of the neurons of SNI animals was 

significantly increased only after a 8 week neuropathy (Fig. 2A). Concerning the spontaneous 
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activity of CeA neurons recorded in SNI groups, it was always significantly increased, when 

compared with Sham groups (Fig. 2B).  

 

2.1.2. Peripherally-evoked neuronal activity 

AMY neurons decreased their activity after peripheral noxious stimulation. After 1W SNI, 

contralateral BLA neurons showed a clear higher response than corresponding neurons in the 

sham group to any type of peripheral stimulation (Fig. 3A), whereas the opposite occurred in 

neurons recorded in the contralateral CeA (Fig. 3B). Peripheral stimulation induced a stronger 

decrease in the activity of ipsilateral BLA neurons of SNI animals than in Sham to most of the 

noxa (cold, tail-pinch, CRD and von Frey) (Fig 3C), whereas the opposite occurred after cold 

noxious stimulation (Fig. 3D) in the CeA. 

After a prolonged neuropathy (8W), almost no differences were present between SNI and 

Sham neuronal responses to peripheral stimuli in the 8 week group of contralateral BLA neurons 

(Fig. 4A), whereas concerning contralateral CeA neurons, SNI neuronal responses were variable, 

showing a significantly higher response after cold and tail-pinch stimuli and a weaker one after 

CRD stimulation (Fig. 4B). On the other side of the AMY, after 8W SNI, the BLA neuronal 

responses were variable, being weaker than Sham group after heat and tail-pinch stimuli, and 

weaker than Sham group after cold and CRD stimuli (Fig. 4C)     

In what concerns CeA neurons, 1 week group ipsilateral neuropathic neurons responded less 

strongly, specially to cold stimuli, than Sham neurons (Fig. 3D), whereas 8 week group 

neuropathic neurons responded with higher activity to peripheral stimuli than Sham neurons, 

with differences being significant after thermal (heat and cold) stimulation (Fig. 4D). 

Contralaterally, CeA neuronal responses to peripheral stimulation 1 week after the surgery were 

significantly stronger in the neuropathic than in Sham animals (Fig. 4C).  

 

3. Changes in BLA neuronal activity induced by rACC manipulation 

 

3.1. Effect on neuropathic BLA neurons after Glutamate injection in the rACC 

In 8W SNI neuropathic animals, BLA ipsilateral neurons responded to glutamate activation of 

the rACC with a progressive greater increase than correspondent Sham neurons (Fig. 5A), 

94



 

 

 

reaching its maximum 2-5 minutes after the beginning of the injection and returning to control 

levels after 6 minutes.  

 

3.2. Effect on neuropathic BLA neurons after MK-801 injection in the rACC 

The injection of the glutamate NMDA-receptor antagonist MK-801 in the rACC in 8W SNI 

animals resulted in a constant decreased activity of BLA neurons during the entire recording 

period, when compared with BLA neurons of Sham-operated animals (Fig. 5B).  

 

DISCUSSION (1912 words) 

In this study we analysed the changes induced by neuropathic pain upon spontaneous and 

peripherally-evoked neuronal activity of BLA and CeA amygdalar nuclei, and also the influence 

that the rACC has in these alterations following a short (1W) or prolonged (8W) neuropathic 

condition. Neuropathic pain increased the emotional aversive behaviour after both 1W and 8W 

SNI, with a NMDA-receptor pathway centred in the ACC mediatingthis behaviour (LaGraize et al, 

2004; Lei et al, 2004) only at the initial (1W SNI) neuropathic period. At the cellular level, there 

was an increased spontaneous activity of ipsilateral BLA neurons from 1W SNI rats and ipsi- and 

contralateral CeA neurons from 1W and 8W SNI, when compared with neurons recorded from 

Sham-operated animals. Additionally, the response activity of these AMY neurons to peripheral 

noxious stimulation was also significantly changed in the passage from 1W to 8W SNI, not only 

when SNI and Sham animals were compared but also between SNI ipsilateral and contralateral 

BLA/CeA neurons of SNI. These alterations may reflect the morphological and functional plastic 

changes occurring in the AMY following chronic pain (Neugebauer at al, 2003; Ikeda et al, 2007; 

Gonçalves et al, 2008). Finally,manipulation of NMDA receptors in the ACC revealed an influence 

of these receptors in modulating the activity of BLA neurons after 8W SNI, which was not 

relevant, however, to drive the aversive pain behaviour at this SNI period. This suggests that after 

8W SNI, other brain areas or other neurotransmitter systems in the ACC should mediate the 

aversive behaviour induced by the place escape/avoidance test (LaBuda and Fuchs, 2000). 

 

Aversive behaviour induced by SNI is partly modulated by the rACC 
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In order to measure the aversive nature of neuropathic pain, the avoidance of a preferred 

location was analyzed using the place avoidance paradigm test (LaBuda and Fuchs, 2000). This 

test evaluates the affective-motivational component of pain, rather than the 

sensory/discriminative dimension. This is a relevant approach for the present study, as the 

amygdala is mainly associated with behavioural responses to emotional stimuli (Davis and 

Whalen, 2001; Han and Neugebauer, 2001; Neugebauer and Li, 1992), and is also deeply 

involved in nociceptive modulation (Manning and Mayer, 1995; Manning, 1998; Manning et al., 

2001). There is evidence that the rACC is involved in modulating the storage of emotional events 

and aversive learning and direct connections between the rACC and BLA suggest that these 

areas may interact in consolidating aversive memories In this test, both 1W and 8W SNI animals 

remained more time in the light area after both saline and glutamate injection in the rACC. These 

results are in accordance with literature, since SNI animals seem to prefer the light chamber to 

the dark one, with the intention of avoiding the noxious stimulus (LaBuda and Fuchs, 2000). 

However, after MK-801 injection into the rACC, the response of 1W and 8W SNI animals was 

different. While the 8W group still remained more time in the light chamber, blocking rACC 

NMDA-r in 1W SNI animals inverted the aversive effect of pain to sham levels, as they stayed now 

more time in the dark chamber. It has been previously described that NMDArs in the ACC play 

an important role in the induction and expression of neuropathic pain (Zhuo M, 2004). These 

receptors are probably activated in an activity-dependent manner or via abnormal neuronal 

activities triggered under pathological conditions (Zhuo, 2006) that result in permanent 

alterations in the CNS, including structural changes in the ACC (Zhao et al, 2006) and AMY 

(Gonçalves et al, 2008). Accordingly, we hypothesize that the lack of effect of rACC NMDA-r 

manipulation after 8Wdeveloping neuropathic pain, central mechanisms may have changed in 

such a way that: (i) rACC influence in the “neuropathic pain system” is diminished, (ii) NMDArs 

number in the rACC is reduced, (iii) NMDArs functional role in the rACC is diminished, or (iv) 

other brain areas have now a major role in the control of the aversive pain behaviour.  

 

Spontaneous activity of AMY nociceptive neurons increases with SNI 

Electrophysiological recordings revealed that the spontaneous activity of BLA and CeA 

nociceptive neurons was higher in SNI group after 1 and 8W neuropathies, with the only 
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exception of 8W ipsilateral BLA recordings.  In the BLA nucleus, the major changes observed 

were in the ipsilateral side. Interestingly, there was a shift from great increase to great decrease 

in this ipsilateral BLA, from 1 week to 8 weeks after surgery. After 1 week of SNI surgery, 

neuropathy signs were already present, as mechanical allodynia and hyperalgesia are clearly 

perceptible. BLA is responsible for the facilitation of memory consolidation produced by moderate 

emotional arousal (McGaugh et al., 2002; Wingard and Packard, 2008). BLA heavily projects to 

the hippocampus, main responsible for memory formation and preservation (Petrovich et al., 

2001). It was described that after an emotionally arousing event, the firing rate of BLA neurons 

increases for several hours (Pelletier et al., 2005; Popescu et al., 2007), which may be seen in 

our ipsilateral neurons recordings, 1 week after surgery. On the contrary, the neuronal activity of 

ipsilateral BLA neurons recorded 8 weeks after the surgery is decreased. We think this may turn 

out because after a long-term time neuropathy, pain memory is already consolidated. The 

increased activity of contralateral BLA neurons may reflect ongoing nociceptive input arriving 

polyssynaptically to the BLA (Barnett et al, 1995). Concerning the increase of CeA spontaneous 

activity obtained in SNI animals, it is in accordance with literature, as it has been previously 

described (i) an increase in the input and output of neurotransmission at the pontine 

parabrachial area (PB)-CeA synapse (indicative of plasticity and enhanced processing of incoming 

signals to the CeA) and (ii) an increase in neuronal excitability (increased action potential 

frequency) of CeA neurons in neuropathic models (Han and Neugebauer, 2004). 

 

Peripherally-induced activity of AMY neurons changes differently after 1 or 8W SNI 

After 1W sham or SNI, the peripheral-induced activity of virtually all recorded neurons was 

diminished, comparatively to baseline activity. At this time point, in SNI animals, contralateral 

BLA neurons showed an increase of activation and contralateral CeA neurons were deeply 

inhibited following most types of noxious stimuli when compared with Sham group neurons, 

whereas in ipsilateral BLA and ipsilateral CeA SNI group neurons the opposite occurred. 

Nociceptive information reaching the AMY involves (i) the polymodal information arriving from the 

thalamus and cortex that reaches the lateral-BLA nuclei (McDonald, 1998; Neugebauer et al, 

2004) and the spino-parabrachio-AMY pathway and the ascending input from the spinal dorsal 

horn, both targeting the contralateral CeA (Cliffer et al, 1991; Garieu and Bernard, 2002, 2004). 
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The CeA is also the major output source of AMY projections to brainstem nuclei linked to the 

supraspinal pain control system, such as the periaqueductal gray matter (PAG), parabrachial 

nuclei (PBN), locus coeruleus (Pitkänen, 2000) and dorsal reticular nucleus (DRt; Almeida et al, 

2002), which make it a major regulator of endogenous nociception. Since the BLA projects to 

CeA (Swanson and Petrovich, 1998), it would be expected that, after peripheral stimulation, the 

response of neurons in both nuclei was similar. However, not only the CeA receives input from 

other brain areas (Swanson and Petrovich, 1998) that could had a overcome input, but also it 

has been described that the projections BLACeA can be inhibitory (Rosenkranz et al., 2006; 

Royer et al 1999) by the presence of intercalated cell masses (ICM; Royer et al 1999; Sun et al 

1994), a band of �-aminobutyric acid (GABA)-containing inhibitory neurons present between the 

BLA and the CeA. Furthermore, CeA neurons targeting autonomic regions are GABAergic- (Batten 

et al 2002; Jia et al, 2005) and more likely to inhibit downstream targets that mediate affective 

responses. Thus, it is possible that the BLA output suppresses CeA neuronal activity and that this 

suppression of activity allows disinhibition of downstream targets. This would allow the 

production of an affective response and justify the opposite activity shown by BLA and CeA 

neurons following peripheral stimulation, mainly after 1W SNI. Interestingly, neuronal recordings 

in the AMY showed that approximately the same percentage of CeA neurons were excited and 

inhibited (46/34%) after peripheral noxious stimulation (Bernard et al., 1992). On the other hand, 

after 8W SNI the response of both BLA and CeA nociceptive neurons was clearly changed, with 

the disappearance of the opposite interaction between BLA and CeA neuronal activity. These 

alterations may represent the consequence of plastic changes occurring in the AMY following the 

same period of neuropathic pain induced by the SNI model (Gonçalves et al., 2008). 

 

rACC-induced activity of BLA neurons is NMDA-r mediated after 8W SNI 

Glutamate stimulation of the rACC showed an increase in neuronal activity of ipsilateral BLA 

neurons in SNI animals 8 weeks after the surgery, an effect that was reduced by MK-801 activity 

in the ACC. Since the ACC has a major projection to the BLA (McDonald, 1998), we can 

conclude that a rAACBLA pathway mediated by NMDA-r is still present after 8W SNI. However, 

an MK-801 injection into the rACC did not affect aversive behaviour after this neuropathic time 

period (8W; see above); this suggests that, although NMDA receptors in the anterior cingulate 
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cortex mediate pain-related aversion (Lei et al, 2004) probably through the BLA (Deyama et al, 

2007), alterations induced by prolonged chronic pain may have altered modulatory pain 

pathways. In accordance with this hypothesis, an enhanced synaptic transmission of nociceptive 

specific inputs (PBCeA synapse) and polymodal sensory inputs (BLACeA synapse) has been 

demonstrated already in a persistent pain model of arthritis (Neugebauer et al, 2003). CeA 

neurons from arthritic rats developed also increased excitability compared with control CeA 

neurons, as synaptic plasticity in the CeA was accompanied by increased presynaptic mGluR1 

function and upregulation of mGluR1 metabotropic glutamate receptors (Neugebauer et al, 

2003). These plastic changes probably explain the lack of effect of rACC administration of MK-

801, a NMDA ionotropic glutamate receptor, in emotional pain-like behaviour after 8W SNI (see 

above). However, we cannot exclude that other neurotransmitters acting in the BLA same area, 

or other brain areas can influence the results observed in the avoidance paradigm test. In fact, 

the ACC is known to project to the AMY (McDonald, 1998), but also to exert descending pain 

modulatory actions through the DRt (Zhang et al., 2005) and areas that have been consistently 

implicated in the pain facilitation that is associated with neuropathic pain, namely the RVM 

(Calajesan et al, 2000 Burgess et al, 2002). Further studies are needed to elucidate this 

essential point of neuroplasticity in the higher processing of nociceptive information observed 

between 1 and 8 weeks of neuropathic pain. 

 

Conclusion 

BLA and CeA neuronal basal activity is increased in animals with peripheral neuropathy, 1 

and 8 weeks after the SNI model induction. This result was somehow expected, due to the known 

neuronal hyperexcitabilty that is present in neuropathic pain (Bleakman et al., 2006). However, 

as far as we know, the neuronal basal activity at these amygdalar nuclei in animal models of 

neuropathy has not been described before. The peripheral induced activity revealed that, not only 

the BLA influence over the CeA is inhibitory, but also that the BLA is not the strongest influence 

in the CeA in this neuropathy model. These effects are not so linear in the longest period of time 

here analysed. This observation, together with the behaviour results and previous experimental 

work published by our and other groups (Gonçalves et al., 2008) lead us to believe that, after a 
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long period of time developing neuropathy, there are central changes in the pain modulatory 

system, which is subsequently expressed in other systems.   
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Figure 1 – The aversive nature of neuropathic pain was assessed in SNI and Sham groups, 1 and 8 weeks after 

surgery, by the place escape/avoidance test following the injection of saline, glutamate or MK-801 in the rACC. Note 

that the time spent by both 1W and 8W SNI groups in the light chamber was similar, but significantly higher when 

compared with Sham group after saline or glutamate injection in the rACC (ANOVA<0.05; 1W SNI x Sham, p<0.05; 

8W SNI x Sham, p<0.05, Tukey tests); on the other hand, after MK-801 injection in the rACC, a significantly higher 

avoidance behaviour was still observed in 8W SNI animals when compared with Sham group, but this aversive 

behaviour was reverted to Sham levels in 1W SNI animals (ANOVA<0.05; 1W SNI x 1W SNI, p<0.05; 1W SNI x 

Sham, p>0.05; 8W SNI x Sham, p<0.05, Tukey tests). The symbols and error bars represent mean ± S.D. in this 

and subsequent figures. 

 

 

 

 

 

 

106



 

 

 

 

 

 

 

 

 

            

 

 

Figure 2 – Spontaneous activity recordings of amygdalar neurons. (A) Basal activity of ipsilateral BLA neurons is 

significantly increased 1 week after the SNI surgery (1W SNI BLAipsi x Sham, p<0.01, t-test) and significantly 

decreased 8 week after the surgery (8W SNI BLAipsi x Sham, p<0.05, t-test). In contralateral BLA, basal activity is 

increased after both 1 and 8 weeks SNI, with differences from BLA Sham neurons being statistically different only 

after a prolonged neuropathy  (1W SNI BLAcont x Sham, p=0.08; 8W SNI BLAcont x Sham, p<0.05,, t-tests) . (B) In the 

CeA nucleus, spontaneous activity was increased in both sides, at both time neuropathic periods (1W SNI CeAipsi x 

Sham, p<0.05; 8W SNI CeAipsi x Sham, p<0.05; 1W SNI CeAcont x Sham, p<0.05; 8W SNI CeAcont x Sham, p<0.01, t-

tests).  
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Figure 3 – Peripherally-evoked changes in basal activity of BLA and CeA neurons induced by somatic and visceral 

stimulation, 1 week after SNI or Sham surgery. Neuronal activity graphic representation is always compared with its 

relative basal (spontaneous) activity, shown in the graphs has a 0 (zero) Hz line. Note that the activity of most AMY 

neurons recorded, both from SNI or Sham animals, from any side of the brain or after 1W or 8W surgery, decreased 

after peripheral noxious stimulation when compared with their original basal activity. (A) Although the activity of 

contralateral BLA neurons decreased in both Sham and SNI groups, the SNI group changed the least after all the 

stimuli and were always more active than Sham neurons. The differences between Sham and SNI groups are 

statistically significant for all the stimuli (p<0.05, t-tests). (B) The activity of contralateral CeA neurons was almost 

unchanged in Sham animals following peripheral stimulation, whereas that of SNI neurons was significantly higher 

inhibited after any type of noxa applied (p<0.05, t-tests). (C) The activity of ipsilateral BLA neurons decreased in both 

Sham and SNI groups, with the strongest inhibition being that of SNI animals after all stimuli (p<0.05, t-test), with 

the exception of heat stimulation. (D) The activity of ipsilateral CeA activity decreased in both Sham and SNI groups, 

with no relevant differences between Sham and SNI groups, with exception of the cold stimulus response, where SNI 

neurons were higher activated than Sham cells (p<0.05, t-test) 
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Figure 4 – Peripherally-evoked changes in basal activity of BLA and CeA neurons induced by somatic and visceral 

stimulation, 8 weeks after SNI or Sham surgery. Neuronal activity graphic representation is always compared with its 

relative basal (spontaneous) activity, shown in the graphs has a 0 (zero) Hz line. Note that again, with very few 

exceptions, the activity of AMY neurons recorded, both from SNI or Sham animals, from any side of the brain or after 

1W or 8W surgery, decreased after peripheral noxious stimulation when compared with their original basal activity. 

Importantly, the response pattern of BLA and CeA neurons in 8W SNI versus Sham groups, did not remain as clearly 

similar along the different noxa as after 1W SNI (Fig. 3). (A) Contralateral BLA activity decreased in both Sham and 

SNI groups, with no relevant differences between Sham and SNI groups, with exception of the heat stimulus 

response, where SNI neurons showed a higher decrease (p<0.05, t-test). (B) Contralateral CeA activity decreased in 

both Sham and SNI groups to all the stimuli, except for neuropathic nerons responding to tail-pinch, where the 

evoked-activity was higher than the basal (spontaneous) one; the response of CeA SNI neurons was significantly 

higher than Sham after cold and tail-pinch stimuli (p<0.05, t-tests) and significantly decreased after CRD stimulation. 

(C) Ipsilateral BLA activity decreased in both Sham and SNI groups, with a significant stronger decrease of SNI 

neurons after heat and tail pinch stimuli (p<0.05, t-tests), whereas after cold and CRD stimulation SNI neurons were 

more activated than Sham (p<0.05, t-tests).  (D) Ipsilateral CeA activity decreased in both Sham and SNI groups, 

with significantly stronger decreases in the activity of SNI cells after heat and cold stimuli responses (p<0.05, t-tests).  
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Figure 5 – Microinjection of Glutamate and MK-801 into the rACC produces changes in BLA neuronal spontaneous 

activity, 8 weeks after SNI induction. (A) Glutamate produced a significant variation in SNI neuronal activity relatively 

to baseline (0 Hz), and, more importantly, a statistically different response when compared with Sham neuronal 

activity (p<0.05, t-test), which has a strongest response to the NMDArs agonist. (B) MK-801 also induced a 

significant variation in SNI neuronal activity relatively to baseline (0 Hz), and a statistically different response when 

compared with Sham neuronal activity (p<0.05, t-test). 
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The mechanisms underlying the development of neuropathic pain are far from being entirely 

revealed. Nonetheless, the state of the art provides a considerable amount of knowledge that 

contributes to the comprehension of this painful condition. In this thesis, the intention was to 

analyze changes in the interaction between the limbic and supraspinal pain control systems 

following a persistent neuropathic pain condition. The discussion focuses on evaluating the most 

significant anatomical, electrophysiological and behavioural results and how they may contribute 

to understand changes in supraspinal processing following the development of neuropathic pain.   

 

3.1 Neuropathy induces pain- and emotional-like behavioural alterations 

3.1.1 Sensory and emotional changes  

In this work we compared different behavioural parameters in neuropathic- and sham-

operated animals, using several different tests. These tests showed that neuropathic animals 

have both sensory and emotional components of pain-like behaviour altered: they consistently 

presented mechanical allodynia and hyperalgesia, depressive-like behaviour and an increase in 

emotional pain-like behaviour. However, no anxiety-like behaviour was detected.  

Clinical studies have shown that neuropathic pain has hallmark characteristics: spontaneous 

and evoked pain (such as allodynia, hyperalgesia; Jensen et al., 2001; Herrero et al., 2000). In 

rats, the spared nerve injury (SNI) model of neuropathy that we used (Decosterd and Woolf, 

2000) is characterized by a marked hypersensitivity to normally innocuous mechanical stimuli 

(allodynia), as well as a marked hyper-responsiveness to a suprathreshold pin-prick 

(hyperalgesia). Consequently, Von Frey and pin-prick tests were performed in every experiment to 

verify the presence of allodynia and hyperalgesia respectively, and they confirmed the success of 

the SNI surgery (Chapter 2.2). 

Although not all chronic pain patients develop affective disorders (McBeth et al., 2002), there 

is a high incidence of these emotional conditions, most notably depression and anxiety disorders, 

in chronic pain patients (Bennett et al., 1996). Clinical studies have shown clearly the importance 

of chronic painful physical conditions in subjects with major depressive disorder: chronic pain is 

strongly associated with major depressive disorder, whereas occurrence of chronic painful 

physical conditions increased the likelihood of having a major depressive disorder (Barsky et al., 

1986; Macfarlane et al., 1999; Ohayon and Schatzberg, 2003). We have shown here that a two 

month neuropathy resulted also in a depressive-like behaviour in the rat, measured by the forced-

swimming test (FST). The open field (OF) test confirmed that differences found in FST were not 
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due to neuropathy-induced motor impairments, as there were no changes in locomotor activity 

and exploratory behavior. As mentioned before, although depressive-like behaviour in rats has 

been extensively studied in association with several different factors (chronic mild stress, acute 

stress, drug addiction, maternal separation), there is a lack of information in what concerns 

depressive-like behaviour associated with pain in animals. Wistar-Kyoto (WKY) rats, used as 

preclinical model of depression, show mechanical allodynia (Zeng et al., 2008). In this study, 

intra-ACC administration of melatonin (used as antidepressant) decreased mechanical allodynia 

and depression-like behavior in WKY rats without changing the nociceptive response in normal 

Wistar rats. In this thesis, we observed depressive-like behaviour in rats, 8 weeks after 

neuropathy induction. Differently from Zeng and colleagues study, we observed neuropathic pain 

signs 2-6 days after surgery and depressive-like behaviour only 8 weeks after the surgery. 

Although it can be argued that we did not assessed depressive-like behaviour in animals at an 

earlier stage, a previous study by Kontinen and colleagues reported no depressive-like behaviour 

in animals subjected to the SNL model, 14 days after the nerve lesion (1999). Additionally, a 

more recent study showed, also with the SNL model, that changes in affective behaviour were 

detectable at 15 days and, more obviously, at 30 days after surgery (Suzuki et al., 2007). 

Consequently, we can conclude there is definitely a connection in the processing of neuropathic 

pain and depressive-like behaviour (Chapter 2.2). After our experiments and existent literature, 

we hypothesize that neuropathic pain leads to depressive-like behaviour in the rat. 

 

 Regarding anxiety assessment, however, no alterations were detected in the elevated plus-

maze or in the OF tests (Chapter 2.2). Although anxiety symptoms in neuropathic pain patients 

have been reported (Bair et al., 2008; Keller et al; 2008), studies that assess anxiety-like 

behaviour in different models of experimental neuropathy pain have shown different results. 

Hasnie and colleagues (2007) described a positive correlation between mechanical 

hypersensitivity and anxiety-like behaviour in a rat model of varicella zoster virus (VZV)-associated 

pain. However, in the same study, it is shown that while animals subjected to VZV and spinal 

nerve transection (SNT) models presented anxiety-like behaviour, the same was not true to those 

subjected to partial sciatic nerve injury (PSNI) model (Hasnie et al., 2007). Furthermore, anxiety-

like behaviour was observed in a rodent model for human immunodeficiency virus (HIV)-related 

neuropathic pain (Wallace et al., 2007) and in animals subjected to chronic constriction injury 
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(CCI), whereas in partial nerve ligation (PNL) animals no anxiety-like behavior was observed. As 

far as we know, herein we present the first results concerning anxiety behaviour assessment in 

animals subjected to SNI model. As previously described before (see Introduction, section 

1.1.1.6), the existent animal models for neuropathic pain develop and express differently and do 

not superimpose totally with humans states.  

 

3.1.2 Pharmacological basis for increased emotional pain 

In order to measure the aversive nature of neuropathic pain, the avoidance of a preferred 

location was analyzed using the place avoidance paradigm (PAP) test (LaBuda and Fuchs, 2000). 

This test evaluates the affective-motivational component of pain, rather than the 

sensory/discriminative dimension. This is a relevant approach for the present study, as the 

amygdala (AMY) is mainly associated with behavioural responses to emotional stimuli (Davis and 

Whalen, 2001; Han and Neugebauer, 2005), and is also deeply involved in nociceptive 

modulation (Manning and Mayer, 1995; Manning, 1998; Manning et al., 2001). In the herein 

presented work, affective pain in nerve-injured animals was increased by amygdaloid 

administration of an mGluR1/5 agonist and decreased by an mGluR1 antagonist, whereas no effect 

was observed in Sham-operated animals (Chapter 2.4). These results point to a role of 

amygdaloid mGluR1 in mediating the increased emotional pain component observed in nerve-

injured animals and are in accordance with previous studies involving these receptors in 

amygdalar plasticity following neuropathic pain. In fact, metabotropic glutamate receptors have 

also been shown to modulate the induction and/or maintenance of central sensitization, through 

pre- or postsynaptic action (Armstrong and Gouaux, 2000). Group I metabotropic glutamate 

receptors (mGluRs), which comprise mGluR1 and mGluR5 subtypes, are involved in neuroplasticity 

associated with normal brain functions and with neurological and psychiatric disorders (Fundytus, 

2001; Neugebauer, 2001, 2002). Additionally, Neugebauer and colleagues (2003) reported that, 

in a model of arthritic pain, a group mGluR1/5 agonist potentiated synaptic transmission at the 

PBCeA synapse (a connection “par excellence” in nociceptive processing at the AMY), while a 

selective mGluR1 antagonist reduced transmission in CeA neurons.  

It has been reported that the rostral anterior cingulate cortex (rACC) is involved in the 

processing of the affective component of pain, as its integrity is necessary for the “aversive” 

reaction to nociception (Johansen et al, 2001) and to the negative affect associated with 
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neuropathy-induced hypersensitivity (LaGraize et al, 2004; LaBuda and Fuchs, 2005), but not to 

sensory processing. Also part of the limbic system, the ACC is strongly reciprocally connected 

with the basolateral amygdala (BLA; Gabbott et al, 2005; Hoover & Vertes, 2007). It has been 

shown that NMDA receptors play important roles in various forms of plasticity in the nervous 

system (Dingledine et al., 1999; Hollmann and Heinemann, 1994; Malenka and Nicoll, 1999), 

and in disorders affecting and in peripheral and spinal pain mechanisms (Carlton, 2001; 

Fundytus, 2001; Schaible et al., 2002; Varney and Gereau, 2002). The rACC is involved in pain-

related fear memory and in pain-related aversive behaviours through NMDA-receptors (Lei et al, 

2004; Tang et al, 2005; Zhang et al, 2005). 

There is evidence that the rACC is involved in the storage of emotional events and aversive 

learning (Farr et al., 2000; Johansen and Fields, 2004) and direct connections between the rACC 

and BLA suggest that these areas may interact for the consolidation of aversive memories (Malin 

et al., 2007). In the place avoidance paradigm (PAP), SNI animals remained more time in the 

light area after both saline and glutamate injection in the rACC, when compared with sham 

operated rats, both after 1W or 8W neuropathy (Chapter 2.5). These results are in accordance 

with literature, since SNI animals seem to prefer the light chamber to the dark one, with the 

intention of avoiding noxious stimulation (LaBuda and Fuchs, 2000). These data suggest an 

association between depressive-like behaviour of SNI animals (see above) and an increase in the 

emotional component of the pain response. This is in accordance with increasing evidence that 

the emotional state of a patient with chronic pain increases the possibility of an associated 

depressive condition, as deeply depressed patients have pain as an important associated 

symptom (Peveler et al., 2006). Contrary to glutamate/saline rACC injection, the administration 

of an NMDAr antagonist to the rACC resulted in a different behavioural response of SNI animals 

one (1W) versus eight (8W) weeks after injury: while the 8W group still remained more time in the 

light chamber, the 1W SNI animals inverted the aversive effect of pain in comparison with sham 

levels, by preferring the dark chamber. It has been reported that NMDA receptors (NMDArs) play 

important roles in nervous system plasticity and various forms of disorders (Dingledine et al., 

1999; Hollmann and Heinemann, 1994; Malenka and Nicoll, 1999), and in peripheral and spinal 

pain mechanisms (Carlton, 2001; Fundytus, 2001; Schaible et al., 2002; Varney and Gereau, 

2002). NMDAr activation in the ACC mediates excitatory synaptic transmission (Sah and Nicoll, 

1991; Wei et al., 1999, 2001) and mediates pain-related aversion (Lei et al, 2004). Importantly, 

while MK-801 is a specific antagonist for NMDArs, glutamate activates not only NMDAr, but also 
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AMPA and kainate receptors (Gong et al., 2005). AMPA receptor-mediated synaptic inputs are 

involved in descending facilitatory pathways from AMY and ACC to the periaqueductal grey (PAG) 

and the RVM (Huang et al., 2006), while kainate participate in  pain signaling in the BLA (Li et 

al., 2001). Curiously, the occurrence of central sensitization in chronic pain seems to occur 

mostly within the glutamatergic pathways in supraspinal nociceptive regions (Huang et al., 2006) 

and to be primarily expressed as alterations in the biophysical properties of ionotropic glutamate 

receptors (NMDA, AMPA and kainate receptors) and/or promotion of AMPA receptor trafficking to 

the postsynaptic membrane (Bleakman et al., 2006). Furthermore, as the metabotropic 

glutamate receptors (mGluRs) present in the in the ACC also play an important role in pain 

regulation (Tang et al., 2005; Calejesan et al., 2000), and analyzing in our results, we cannot 

exclude the contribution of the mGluRs in pain regulation originating in the ACC. Hence, we 

propose that our data showing differences of NMDAr-antagonist effect on pain behaviour after 1W 

but not 8W is based on the effect of preferential activation of non-NMDA ionotropic glutamate 

receptors in the ACC after prolonged neuropathy (8W), when major plastic changes have also 

occurred in other brain areas (Chapter 2.5); on the contrary, after a shorter period neuropathy 

(1W), ionotropic glutamate receptors in the ACC probably activate preferentially the NMDArs. 

 

3.2 Neuropathy induces brain neuroplasticity towards pronociception  

3.2.1 Alterations in the supraspinal pain control system - the RVM  

The evidence of endogenous pain-modulating mechanisms is well established, but during 

decades research has been concentrated in the descending antinociceptive system (Basbaum 

and Fields, 1984). Although the presence of descending nociceptive facilitating pathways is now 

perfectly accepted (Almeida et al., 2002; Porreca et al., 2002; Vanegas and Schaible, 2004), the 

exact mechanisms by which descending projections facilitate pain transmission are not yet 

clarified (Watkins and Mayer, 1982; Mason et al., 1999; Vanegas and Schaible, 2004; Suzuki et 

al., 2002). Nonetheless, the presence of pain facilitation mechanisms emphasizes the fact that 

their abnormal sustained activity should contribute to the development of chronic pain (Vanderah 

et al., 2001). 

One of the main observations of this thesis is that hypersensitivity to peripheral stimulation is 

predominantly observed in ON-cells of the RVM, considered to have a pronociceptive role, by 

increasing pain perception through facilitation of spinal nociceptive transmission (Chapter 2.1). 
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This is in accordance with the hypothesis that ON-cells are involved in promoting neuropathic 

hypersensitivity to peripheral stimulation. Previous studies have shown that lidocaine 

microinjections in RVM blocked persistent nerve injury-induced pain (Pertovaara et al., 1996; 

Kovelowski et al., 2000). These and other studies have provided evidence for the hypothesis that 

it is the tonic activity of descending facilitatory cells that mediates nociceptive descending 

facilitation (Fields et al., 1991; Fields, 1992). ON-cells have been previously accountable for the 

descending facilitation of nociception, having their pericarya within the RVM and descending 

axons projecting to the spinal dorsal horn (Fields et al., 1991; Heinricher et al., 1992; Fields et 

al, 1995).  

As mentioned before, after nerve injury there are changes in central processing, with an increase 

of nociceptive barrage to the dorsal horn (Lu et al., 2007). This, in turn, leads to alterations in 

brainstem processing, which eventually contributes to the increased activity of RVM ON-cells 

(Burgess et al., 2002; Carlson et al., 2007), and the resulting selective descending action upon 

the spinal cord that is dependent on the type of peripheral input (Bee and Dickenson, 2008). As 

our results showed that SNI produces a different hypersensitivity to cold and mechanical stimuli, 

we conclude that they are in accordance with the hypothesis that descending facilitatory neurons 

discriminate between stimulus modality (Bee and Dickenson, 2008).  

This is also supported by earlier behavioural studies showing that nerve injury-induced 

hypersensitivity to mechanical stimulation (Pertovaara, 2000; Porreca et al., 2002) and cold 

(Urban et al., 2003) is dependent on descending facilitatory influence from the RVM. Additionally, 

clinical studies have shown that hypersensitivity to mechanical stimulation and cold are frequent 

and prominent symptoms after nerve injuries, whereas hyperalgesia to heat occurs only 

occasionally after neuropathic conditions (Scadding & Koltzenburg, 2006). Hypersensitivity to 

cold and mechanical stimulation is also a prominent finding in rats with the SNI model of 

neuropathy (Decosterd & Woolf, 2000). Therefore, we conclude that our data are in accordance 

with the existence literature and reinforce the fact that, after prolonged neuropathy, sensitivity 

and its enhancement varies with the submodality of stimulation (Chapter 2.1). 

 

3.2.2 Alterations in the limbic system - the AMY 

3.2.2.1 Physiological plasticity 

CeA receives highly processed polymodal sensory information from other AMY nuclei and 

from the thalamus and cortex via the BLA (Paré et al., 2004), as well as nociceptive-specific 
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information from the spino-PB pathway via the PB tract (Bernard and Besson, 1990; Jasmin et 

al., 1997; Gauriau and Bernard, 2002; Neugebauer et al., 2004). Importantly, the CeA is the 

output nucleus for major amygdala functions and regulates behavior through widespread 

projections to forebrain and brainstem areas (Bernard et al., 1996; Davis, 1998; LeDoux, 2000). 

The latero-capsular part of CeA is defined as the ‘nociceptive amygdala’ due to its high content in 

neurons implicated in nociceptive processing (Bernard et al., 1996; Neugebauer et al., 2004). 

Previous studies have shown increased neurotransmission activity in the PB-CeA synapse, which 

is indicative of plasticity and enhanced processing of incoming signals to the CeA and leads to an 

increased activity of CeA neurons and an enhancement of the nucleus outputs (Han and 

Neugebauer, 2004). Synaptic transmission at the BLA-CeA synapse was shown not to be 

significantly altered in the visceral pain state (Han and Neugebauer, 2004). In the arthritis pain 

model, however, enhanced synaptic transmission was measured both at the PB-CeA synapse and 

the BLA-CeA synapse (Neugebauer et al., 2003). Finally, Ikeda and colleagues found that 

unilateral neuropathic pain potentiated contralateral PB–CeA transmission and, to a lesser 

extent, bilateral BLA–CeA transmission (2007). Taking together, these results indicated that pain-

related synaptic plasticity in the CeA, although depending both on the type of pain and on 

pathway, always converges to an augmented output activity of the central nucleus. In the present 

work, CeA spontaneous (basal) activity was increased bilaterally in animals with peripheral 

neuropathy in both time points (1W and 8W), while BLA spontaneous activity was increased only 

at the ipsilateral side after 1W and on the contralateral side after 8W SNI. These observations are 

partially in accordance with Ikeda and colleagues results (2007), which stated that there is a 

consolidation of the PB-CeA synapse in persistent neuropathic pain; the increase of CeA activity 

is most probably due to PB–CeA synapses and less to the BLA–CeA transmission, since BLA and 

CeA activities changed with different patterns. Additionally, our observations showed an increase 

in ipsilateral CeA activity at 8W that might be due to an increase in PB–CeA transmission, as the 

ipsilateral BLA activity, at that time point, was decreased. Finally, our results show not only that 

the highest significant increase in CeA neuronal basal activity after 8W was on the contralateral 

side, but also that, after peripheral stimulation, contralateral CeA neurons showed all significant 

changes recorded at both time points (Chapter 2.5).  

We found that all peripherally evoked stimuli did not activate the BLA, but resulted in a 

decrease in the activity of BLA and CeA neurons of SNI neuropathic animals. Previous studies 

revealed the involvement of several different brain regions in the processing of mechanical and 
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cold allodynia, such as insular cortex, ACC, S1 and S2, thalamus, cerebellum, parietal 

association areas and the midbrain, but not the AMY (Bushnell et al., 1993; Craig et al., 2000; 

Davis et al., 1998; Tracey et al., 2000; Seifert and Maihöfner, 2007). Curiously, in an fMRI study 

of imagined allodynia, Krämer and colleagues have shown activation of AMY and other limbic 

structures, only if subjects had a previous knowledge of the allodynic sensation (2008). In 

summary, there seems to be no specific AMY activation during cold or mechanical allodynia 

stimulation in neuropathic pain (Chapter 2.5). 

 

3.2.2.1 Structural plasticity  

In addition to physiological alterations of amygdalar nociceptive neurons, a profound structural 

plasticity in the AMY was also found, mainly in BLA and CeA. Human studies have previously 

shown changes in different brain areas, usually related with different conditions: stress-related 

increase of hippocampus volume (Czéh et al., 2001), bilateral volume reduction of insular cortex 

gray matter in first-episode patients with schizophrenia (Lee et al., 2002), volume reduction in left 

temporal pole gray matter and absence of normal left-greater-than-right asymmetry gray matter in 

first-episode psychosis groups (Hirayasu, et al., 1999), and increased AMY volumes measured by 

structural magnetic resonance in patients with depression and anxiety (Frodl et al., 2002; Tebartz 

van Elst et al., 2000). Clinical data also reveal that prolonged pain conditions are associated with 

a high incidence of emotional disorders, including anxiety and depression (Rasmussen et al., 

2004; Campbell et al., 2003; Baliki et al., 2003). As our results showed depressive-like 

behaviour in rats after prolonged neuropathic pain, we decided to evaluate AMY structural 

changes. We found a significant increase in the volume of BLA and CeA nuclei after 8 weeks of 

neuropathy. The 3D morphological analysis showed that this increased volume in SNI animals 

was not due to differences in pericarya size, dendritic length or spine number, but to the 

presence of newly proliferating cells in these AMY nuclei. Furthermore, double-immunoreactions 

(BrdU+NeuN) confirmed that the increased number of newborn cells in SNI animals were 

neurons, demonstrating that these neurons were responsible, at least in part, for the higher cell 

number and the increase of AMY volume of SNI- in comparison with Sham-operated animals. 

This was the first time that newborn neurons were observed in association with the development 

of a neuropathic pain condition (Chapter 2.2). Importantly, these new neurons reach synaptic 

integrity within the neuronal network, as shown by the present of BrdU+Calb double-labeled cells 
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in the AMY of neuropathic animals (Figure 3). Although we cannot establish a clear link between 

persistent neuropathic pain and depressive-like behaviour associated to neuroplasticity of the 

AMY, it is also the first time that these three characteristics are observed simultaneously in 

animals where plasticity in the AMY is described.  

An additional novelty presented in this study is given by our most recent results, which 

indicate that cell divisions originating new neurons in the AMY of neuropathic rats occurred inside 

the limits of the AMY (Chapter 2.3). It is known that doublecortin (DCX), present in migrating 

neuroblasts and young neurons, promotes microtubule polymerization (Gleeson et al. 1999; 

Francis et al. 1999) and can serve as a marker of adult neurogenesis in the hippocampus (von 

Bohlen und Halbach, 2007). Hence, the observation of DCX+Ki-67-positive cells in the BLA and 

CeA only in SNI animals, show that the cell division had occurred recently. Supporting our 

observations, Shapiro and colleagues observed DCX-positive cells not only in the AMY, but also in 

other “non-neurogenic” areas, in naive rats (2009). Also in the adult brain, the polysialylated 

form of the neural cell adhesion molecule (PSA-NCAM) is only present in regions that are 

undergoing some kind of structural plasticity, such as the hypothalamo-neurohypophyseal system 

(Theodosis et al., 1994), the olfactory bulb (Miragall et al., 1988) or the piriform and entorhinal 

cortices or the hippocampus (Seki and Arai, 1991a,b). PSA-NCAM has also been previously 

observed in the adult AMY, confirming structural plasticity associated to memory consolidation 

(Nacher et al., 2002). In our results, the presence of PSA-NCAM only in SNI animals reflects both 

structural plasticity, and the formation of new neurons.  Finally, nestin-positive newborn cells are 

known to identify cells involved in neurogenesis (Doyle et al. 2001; Yue et al. 2006), and nestin-

positive cell spheres are thought to differentiate into neurons and glial cells (Figure 3; Itoh et al. 

2006). Additionally, it is also known that only nestin-positive but not the astrocyte (GFAP)-positive 

precursors are involved in neurogenesis (Cao et al. 2006), since GFAP expression is restricted to 

astrocyte (glial cells). On the other hand, there are reports of nestin expression in many cell types 

in the CNS, including non-neural cells (Nakagawa et al., 2004). All together, we propose that our 

observations, point to the fact that cell proliferation giving rise to new neurons in the AMY of 

neuropathic animals occurred inside AMY borders (Chapter 2.3).  
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Adapted from Bohlen and Halbach, Cell Tissue Res (2007) 329:409–420 

 

Figure 3 - Stages of adult neurogenesis in the dentate gyrus (DG) and expression pattern of specific markers. 

Generation of new neurons within the granular layer of the DG can be subdivided into five developmental stages. A 

stem cell might be located outside the SVZ (1, blue). The generated precursors start to proliferate and give rise to 

transient amplifying cells (2, green), which differentiate into immature neurons. At stage 3 (3, yellow), the immature 

neurons migrate over a short distance to reach the granular layer of the DG. During stage 4 (4, orange), the 

immature and postmitotic neurons extend their axons toward the pyramidal layer of the hippocampal area CA3 and 

send their dendrites in the direction of the molecular layer of the DG. By stage 5 (5, red), the new granule cells are 

synaptically integrated into the network of the hippocampal formation, receiving inputs from the entorhinal cortex 

and sending outputs to the hippocampal area CA3 and the hilus.  

 

 

3.2.3 Alterations in the interaction between limbic and pain control systems 

As mentioned before (see section 3.1.2), mGluR1/5 are involved in the main processes of 

neuropathic pain development. In the present work, after mGluR1/5 agonist administration in the 

CeA, the discharge rate of pronociceptive ON-cells in the RVM increased in neuropathic animals 

only, an effect reversed by an mGluR1 and by an mGluR5 antagonist. It has been reported that the 

systemic administration of selective mGluR1 or mGluR5 blockers reduces mechanical allodynia in 

the CCI and SNL models of persistent pain (Varty et al., 2005; Zhu et a., 2004), and that an 

mGluR5 antagonist completely reverses thermal hyperalgesia in the SNL (Dogrul et al., 2000). 
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These data add evidence to the already present notion that the amygdala contributes to the 

modulation of neuropathic hypersensitivity and to the pronociceptive effect in peripheral 

neuropathy, namely through action on descending pathways relaying in the RVM: Pedersen and 

colleagues showed suppression of aversive pain-related behavior and hypersensitive spinal reflex 

responses in nerve-injured animals after injecting a GABA-A receptor agonist in the AMY (2007); 

also, glutamate administered in the AMY suppressed antinociceptive neurons in the 

noradrenergic locus coeruleus of nerve-injured but not sham-operated animals (Viisanen and 

Pertovaara, 2007). Accordingly, our results propose that activation of the group I mGluR in the 

amygdala of SNI animals enhances ON-cells activity in the RVM, indicating the occurrence of 

neuropathic changes in the interplay between the limbic and pain control systems following 

neuropathic pain (Chapter 2.4). 
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With this work we have established that: 

 

1. The activity of both RVM ON- and OFF-cells, located in a major centre of pain modulation is 

altered towards pronociception in neuropathic animals. However, ON-cells appear to be the 

main responsible for the increased hypersensitivity of SNI animals, as their activity increases 

greatly during hyperalgesia and allodynia. 

 

2. Neuropathic pain induces changes in CeA and BLA, main afferent and efferent nuclei of a 

major area implicated in both emotional and pain processing. Neuroplasticity was present as 

an increased AMY volume resulting, at least in part, from the generation of newborn neurons. 

Importantly, AMY plasticity is paralleled with depressive-like behaviour.  

 

3. Emotional pain-related behaviour increases in neuropathic animals. At the pharmacological 

level, this behaviour is mediated, at least in part, by the activation of NMDArs in the ACC and 

mGluR1/5 in the CeA. The activation of mGluR1 in the CeA induces an increase in RVM ON-cells 

activity and, therefore, an increase in hypersensitivity, which may constitute a mechanism 

contributing to emotional pain. 

 

4. BLA and CeA neuronal basal activity are increased in neuropathic animals. Since these nuclei 

project to the RVM, this may contribute to the increase of basal hypersensitivity observed in 

animals with peripheral nerve injury.   

 

 

Although we consider that this work has given answers to most of the questions that we had 

at the beginning of the project, this study also raised many new questions. Therefore, in the 

future, one of the priority goals is to verify if the newborn neurons also result from the 

proliferation of neural stem cells located outside the AMY. Additionally, we intend to evaluate if 

the administration of antidepressants to animals subjected to the SNI model reverses the 

neuropathic pain signs, the depressive-like behaviour, and/or the formation of new neurons and 

structural changes of the AMY. Finally, it will be very interesting to analyze if the expression of 

139



 

 

different glutamate receptors is altered in, at least, the ACC, the AMY, and the RVM during 

neuropathy, and how it would be reverted with antidepressant therapy. 
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