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Abstract

Metabolic reprogramming is recognized as a critical hallmark of cancer, influencing cancer initiation and

progression. Emerging evidence suggests that the metabolism of non-cancer cells within the tumor mi-

croenvironment plays a pivotal role in modulating tumor development, underscoring the importance of

metabolic variables for better understanding cancer.

The main goal of this study is to identify genes exhibiting differential expression in cancer, with a

specific emphasis on distinguishing between organs with high metabolic rates (brain, liver, and kidneys)

and organs with low metabolic rates (bladder, colon, and skin), particularly focusing on genes encoding

mitochondrial proteins.

For this, we used two databases containing RNA-seq samples from normal and cancer tissues, ob-

tained from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) projects,

respectively. General Linear Models (GLMs) were applied for differential expression analysis, and hierar-

chical clustering e soft fuzzy clustering to identify distinct gene expression profiles.

Our research showed that many of the differentially expressed mitochondrial genes, such as ACSM1

and ACSM5, and PRODH, represent potential adaptations of cancer cells to metabolic and micro-

environmental stress. Additionally, FDX2, a crucial player in iron-sulfur protein biogenesis, and ACSM2B,

responsible for catalyzing the activation of free fatty acids (FFAs) to CoA, showed substantial expression

differences, highlighting the importance of these two pathways for the oncogenic process. The most sub-

stantial genetic expression differences were observed between normal and cancer tissues, rather than

between high and low metabolic rate organs, suggesting that the signal from the metabolic rate could be

masked by the pronounced changes that cancer induces in cells.

Despite the unequal sample sizes and the usage of two different data sources, our findings provide

valuable insights into the complex interplay between metabolism and gene expression in cancer.

Keywords Cancer, Metabolic rate, Mitochondrial proteins, Differential gene expression, Clustering
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Resumo

A reprogramação metabólica é reconhecida como um hallmark do cancro, influenciando a sua iniciação

e progressão. Estudos recentes mostram que o metabolismo das células não cancerígenas desempenha

um papel crucial no microambiente tumoral e na modulação do seu desenvolvimento; demonstrando

a importância do metabolismo neste processo. Neste estudo identificaram-se genes mitocondriais que

exibem expressão diferencial em cancro, com particular ênfase na distinção entre órgãos com elevada

taxa metabólicas (cérebro, fígado e rins) e órgãos com baixa taxa metabólica (bexiga, cólon e pele).

Para tal, foram utilizados dados de RNA-seq provenientes de duas bases de dados: Genotype-Tissue

Expression (GTEx) e The Cancer Genome Atlas (TCGA), contendo amostras de tecidos normais e can-

cerígenos, respetivamente. Os genes diferencialmente expressos foram obtidos através de uma análise

de expressão diferencial usando General Linear Models (GLMs), e os perfis de expressão foram obtidos

por hierarchical clustering e soft fuzzy clustering.

Os resultados demonstraram que muitos dos genes mitocondriais diferencialmente expressos, tais

como ACSM1 e ACSM5, e PRODH, poderão representar potenciais adaptações das células cancerí-

genas ao stress metabólico e microambiental. Adicionalmente, a FDX2, uma proteína crucial para a

biogénese de proteínas ferro-enxofre, e a ACSM2B, responsável pela ativação de ácidos gordos livres

(FFAs) transformando-os em CoA, mostraram diferenças significativas de expressão, demonstrando a

importância destes dois processos na carcinogénese. As diferenças de expressão entre tecidos normais

e cancerígenos mostraram ser mais acentuadas do que entre órgãos com taxas metabólicas alternativas,

sugerindo que a magnitude do sinal gerado pelas diferenças moleculares produzidas pelo tipo de taxa

metabólica poderá não ser suficiente para se sobrepor à magnitude do sinal provocado pelo cancro.

Apesar do tamanho diferente das amostras, e da utilização de duas bases de dados diferentes, estes

resultados contribuem para elucidar a complexa relação entre metabolismo e expressão genética em

cancro.

Palavras-chave Cancro, Taxa metabólica, Proteínas mitocondriais, Expressão genética diferencial,

Clustering
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Chapter 1

Introduction

1.1 Motivation

Cancer is still one of the deadliest diseases in the world today. While there have been great advancements

in treatments, the mortality rate for many types of cancer remains high. To develop therapies to treat this

disease it is important to study its unique characteristics, which have been explored and described in detail

in the last decades [Hanahan and Weinberg, 2000]; [Hanahan and Weinberg, 2011]; [Hanahan, 2022].

In recent years, a greater understanding of the role of metabolic reprogramming in cancer development

has been gained. It has become clear that mitochondria play a central role in this process, as they

are responsible for energy metabolism, and are involved in other cellular functions relevant to cancer

progression, such as apoptosis, reactive oxygen species management, and cellular-stress signaling [Vyas

et al., 2016]. Therefore, mitochondrial dysfunction and abnormal metabolism can lead to uncontrolled cell

growth and proliferation.

However, we still have a very limited understanding of the different mitochondrial metabolic states

present in cancers from different organs. Since each healthy organ has a different baseline metabolic-rate

[Elia, 1992], by comparing the expression profiles of mitochondrial proteins across cancers from different

organs (high versus low metabolic-rate organs), we can gain insights into the mitochondrial metabolic state

in those cancers.

Overall, this analysis can potentially provide a better understanding of the molecular mechanisms

driving differences in cancer metabolism, energy production, and organ dysfunction in cancer.

1



1.2 Main goal of this work

Knowing that high metabolism organs such as the liver, brain, or kidneys provide a tumor microenvironment

that contains mitochondria already primed for the production of high amounts of energy, the main goal of

this work is to find mitochondrial expression profiles (mitoprofiles) using data obtained from both normal

tissues and cancer tissues and compare them to verify whether there are unique patterns of expression

characteristic of organs with high metabolic-rate.

1.3 Thesis outline

Chapter II, ’State of the art’, provides an overview of the subject areas addressed in this work. It begins

with cancer and mitochondrion overview, with a brief description of the interactions between them and

the importance that this can have for future discoveries about the disease. The chapter ends with a brief

explanation of what kind of methodologies will be used to achieve the goal.

Chapter III, ’Materials and methods’, contains a detailed description of the workflow for this research.

The chapter starts with the collection of the transcriptomic data from the TCGA and the GTEx databases

and their preparation for the statistical analyses. Subsequently, a differential gene expression analysis was

performed between the normal and cancer samples for each organ, followed by a clustering analysis to

build profiles for the differentially expressed genes.

Chapter IV, ’Results and Discussion’, covers the findings from this study and discusses the major

results.

Chapter V, ’Conclusions and Future work’, summarizes the work highlighting what was found in this

thesis as well as providing perspectives on future work to better understand the role of the mitochondria

in cancer.
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Chapter 2

State of the art

2.1 Cancer

Cancer is a complex disease characterized by genetic and epigenetic changes that result in the uncon-

trolled growth and division of cells with the potential to spread to other parts of the body. These changes,

such as mutations in DNA, changes in DNA methylation or histone modification patterns, and alterations

in non-coding DNA expression, can occur in oncogenes (genes that promote cell division) or tumor sup-

pressor genes (genes that regulate cell division and prevent uncontrolled growth), as weel as DNA repair

mechanisms, or cellular signaling pathways [Holland, 1996], impacting cell type regulation, cell division,

apoptosis, angiogenesis, and metabolism.

Cancer development is influenced by a complex interplay of genetic and environmental factors. A

few cancers are inherited and run in families, while others are caused by mutations that occur during a

person’s lifetime. Environmental factors, such as exposure to radiation, chemicals, or certain viruses, can

also increase the risk of developing cancer [Anand et al., 2008].

The sequence of genetic and cellular events underlying cancer onset and development typically involves

several key steps (Figure 1). Firstly there is the initiation: in this step, normal cells undergo genetic

changes that result in the acquisition of malignant traits. These changes can be caused by mutations in

DNA, changes in DNA methylation patterns, or alterations in the expression of non-coding RNAs; then

the promotion step occurs when the cells start to divide and grow uncontrollably, leading to the formation

of a tumor mass; followed by the progression, where cells acquire additional genetic changes that allow

them to invade nearby tissues and spread to other parts of the body. The final step is the metastasis: a

process in which cancer cells spread from the primary tumor to other parts of the body, forming secondary

tumors [Hamidi and Ivaska, 2018].
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Initiation

Promotion

Progression

Metastasis

Figure 1: Four key steps in cancer development. Adapted from: [Vyas et al., 2016]

2.1.1 Prevalence and mortality of cancer worldwide

Looking at the most recent statistics made by GLOBOCAN in 2020 we can observe cancer incidence and

mortality, with a focus on geographic variability across 20 world regions. They estimated there were 19.3

million new cancer cases and 9.96 million cancer deaths in that same year worldwide.

Looking at both genders combined, breast cancer is the most commonly diagnosed cancer (11.7%

of the total cases) and lung cancer the leading cause of cancer death (18% of the total cancer deaths).

The next most incident cancers are lung cancer (11.4%), colorectal cancer (10%) and prostate cancer

(7.3%), and the most lethal are colorectal cancer (9.4%), liver cancer (8.3%) and stomach cancer (7.7%),

(Figure 2 A). However, if we look at the statistics for each gender, we can see that for males lung cancer

is the most frequent and is quickly followed by prostate and colorectal cancer. The most deadly cancer in

males is lung, followed by liver and colorectal cancer (Figure 2 B). Among females, breast cancer is the

most commonly diagnosed cancer, followed by colorectal and lung cancer, these being also the leading

mortality cancers in females (Figure 2 C).

Cancer incidence and mortality are rapidly growing worldwide. The reasons can be complex but in

general, they reflect both aging and growth of the population, as well as changes in the prevalence and
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Figure 2: Cancer incidence and mortality for the 10 Most Common Cancers in 2020 for (A) Both Genders,

(B) Males, and (C) Females. For each gender, the area of the pie chart reflects the proportion of the total

number of cases (incidence) or deaths. Retrieved from: GLOBOCAN 2020.
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distribution of the main risk factors for cancer, several being associated with socioeconomic development

[Omran, 1998]; [Gersten and Wilmoth, 2002]. The influence of these facts can be seen by comparing the

maps in Figures 3 and 4 to see the extent to which cancer’s position as a cause of premature death reflects

national social and economic development levels. As we can see the more developed countries (Figure 3

- shades of blue) have higher cancer related mortality rates (Figure 4 - darker red) than the developing

countries, despite the disparity in disease and death official records.

Figure 3: 4-Tier Human Development Index (HDI). Each country has been classified into 1 of 4 human

development indices: Very high (dark blue), High (light blue), Medium (orange), and Low (red). Retrieved

from: United Nations Procurement Division/United Nations Development Program.
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Figure 4: Estimated number of deaths in 2020 per country. Representation of the National Ranking of

Cancer as a cause of death for all cancers, in both sexes, in ages below 70 years in 2020. The colors

represent the incidence of the disease in different countries. Retrieved from: World Health Organization.

2.2 Understanding cancer development

To better understand cancer we must learn about its molecular and cellular characteristics. These are

called hallmarks and they can be defined as distinctive and complementary capabilities that allow the

tumor to grow and enable its metastatic dissemination. There are six hallmarks of cancer that help us

understand the biology of cancer: sustaining proliferative signaling, evading growth suppressors, resisting

cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis

(Figure 5 - light blue text boxes) [Hanahan and Weinberg, 2000].

These hallmarks can be acquired in different tumor types via distinct mechanisms and at different

times during the course of tumorigenesis. Their acquisition is possible via two enabling characteristics,

being the most prominent the development of genomic instability in cancer cells. This generates random

mutations including chromosomal rearrangements, and among these are the rare genetic changes that can

lead to the initiation of the hallmark capabilities. A second enabling characteristic involves the inflammatory

state of premalignant and malignant lesions driven by immune system cells, some of which serve to

promote tumor progression (Figure 5 - light green text boxes) [Hanahan and Weinberg, 2011].
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Figure 5: Current hallmarks of cancer. These hallmarks have emerged progressively as more research

accumulated about cancer cells. The hallmarks with light blue text box represent the first hallmarks to be

described. Those in light green represent the next group of hallmarks described. Finally, the ones with a

light purple color show the hallmarks that represent the most recent discoveries about cancer cell biology.

Adapted from: [Hanahan, 2022]

Hallmark 1: Sustaining proliferative signaling

This hallmark is one of the most important traits of cancer cells being related to the ability to sustain

chronic proliferation.

Usually, normal tissues control with extreme caution the production and release of growth-promoting

signals that instruct the cell to start its growth-and-division cycle, ensuring not only the homeostasis of

cell number, but also the maintenance of normal tissue architecture and function. However, cancer cells,

by disrupting these signals, become capable of deciding their own fate. These signals are effected by

growth factors that bind to cell-surface receptors that typically contain intracellular tyrosine kinase domains.

With this connection, the cell starts to send signals using signaling pathways that are responsible for the

regulation of the cell cycle and its growth (increasing the cell size). This growth-promoting signals can

also influence other biological properties of the cell, such as its energy metabolism and ability to survive

[Hanahan and Weinberg, 2000]; [Lemmon and Schlessinger, 2010]; [Witsch et al., 2010]. As such,

proliferative signaling is considered an important hallmark due to its contribution for increasing the cell’s

energy leading to the acquisition of more capabilities.
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Hallmark 2: Evading growth suppressors

Cancer cells must circumvent the mechanisms that healthy cells have to negatively regulate their prolif-

eration. These programs are dependent on the actions of dozens of tumor suppressor genes. The two

prototypical tumor suppressors encode the retinoblastoma protein (RB), which decides if the cell should or

not proceed with its growth-and-division cycle [Burkhart and Sage, 2008], and tumor protein 53 (TP53),

which regulates cell division by keeping cells from proliferating too fast or in an uncontrolled way. Both of

them operate as central control nodes within two key complementary cellular regulatory circuits where the

decisions are made about the proliferation of a cell, or if something goes wrong and normal proliferation

is not possible, they proceed with the activation of senescence and apoptotic programs [Ghebranious and

Donehower, 1998]. With this, cancer cells are able to continue their growth without being stopped by

normal mechanisms that would lead to their death.

Hallmark 3: Resisting cell death

The concept that cells are programmed to die by apoptosis serves as a natural barrier to cancer develop-

ment [Adams and Cory, 2007].

The apoptotic machinery is composed of both upstream regulators and downstream effector com-

ponents [Adams and Cory, 2007]. The regulators are divided into two major circuits: one receives and

processes extracellular death-inducing signals, and the other senses and integrates a variety of signals

of intracellular origin. Each of these circuits culminates in the activation of a protease that is normally

inactivated (caspases 8 and 9), initiating a cascade of proteolysis involving effector caspases responsible

for the apoptosis, when the cell is progressively disassembled and then consumed, either by its neighbors,

by phagocytic cells or both.

Despite all of these mechanisms, there are several abnormality sensors that were identified and play

key roles in tumor development [Adams and Cory, 2007]. The most common is the loss of TP53 tumor

suppressor function, which eliminates this critical damage sensor from the apoptosis-inducing course.

Alternatively, a similar result can be achieved by increasing the expression of antiapoptotic regulators (Bcl-

2, Bcl-xL) or of survival signals (Igf1/2), by downregulating proapoptotic factors (Bax, Bim, Puma)

[Bose et al., 2015]. The multiple ways of apoptosis-avoiding mechanisms presumably reflect the diversity

of apoptosis-inducing signals that cancer cell populations encounter during their evolution to the malignant

state. Therefore, this characteristic is crucial for the cancer cells to circumvent pathways that would lead

to its destruction.

9



Hallmark 4: Enabling replicative immortality

The telomeres, which are composed of multiple tandem hexanucleotide repeats, shorten progressively

in non-immortalized cells and eventually lose their ability to protect the ends of chromosomal DNA from

end-to-end fusions. Such fusions generate unstable dicentric chromosomes that threaten cell viability.

Accordingly, the length of telomeric DNA in a cell indicates how many generations a cell has until its

telomeres are largely eroded and lose their protective functions, triggering entrance into crisis [Blasco,

2005].

Telomerase is the specialized DNA polymerase that adds telomere repeat segments to the ends of

telomeric DNA. The presence of this polymerase is very rare in normal cells, but can be found expressed

at significant levels in the vast majority (practically 90%) of spontaneously immortalized cells, including

human cancer cells [Hanahan and Weinberg, 2011]. With the extension of the telomeric DNA, telomerase

is able to counter the progressive telomere erosion that would otherwise occur in its absence. This phe-

nomenon gives these cells some resistance to the induction of both senescence and apoptosis, effectively

immortalizing them. As such, this ability allows the cell to always replicate since the size of the telomeres

will never decrease and so it will never reach the critical point that would activate apoptosis.

Hallmark 5: Inducing angiogenesis

Just like normal tissues, tumors require sustenance such as nutrients and oxygen to survive, as well as

the ability to remove metabolic waste and carbon dioxide. The tumor-associated neovasculature, created

by the process of angiogenesis, addresses these needs.

Angiogenesis is the development of vasculature and involves the generation of new endothelial cells

as well as their assembly into tubes (vasculogenesis) in addition to their sprouting (angiogenesis) from

already existing blood vessels. This phenomenon is induced very early during the development of invasive

cancers in humans [Raica et al., 2009]. Historically, angiogenesis was seen as an important step only

when rapidly growing macroscopic tumors had formed. However, more recent data is starting to suggest

that angiogenesis also contributes to the microscopic premalignant phase of cancer progression, further

impling its status as an integral hallmark of cancer. This allow cancer cells to obtain enough nutrients to

sustain themselves, making this ability crucial for their survival [Hanahan and Weinberg, 2011].

Hallmark 6: Activating invasion and metastasis

The invasion and metastasis is a multistep process that has been schematized as a sequence of discrete

steps, often called the invasion-metastasis cascade [Talmadge and Fidler, 2010]. This depicts a succession
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of cell-biologic changes that start with a local invasion. After that, cancer cells enter nearby blood and

lymph vessels which transport them through the lymphatic system, which results in the escape of cancer

cells from the lumina into the parenchyma of distant tissues (extravasation). Finally, when they escape the

vessels they create small clusters of cancer cells (micrometastases), and start to develop micrometastatic

lesions into macroscopic tumors (colonization). This characteristic is important for cancer cells because

it allows them to spread to other areas to harness new nutrients continuing their growth, and hindering

their treatment. Therefore this ability represents the last great frontier for exploratory cancer research,

and imposes a greater challenge, that if overcame, will give new insights about tissue invasiveness and

metastasis for the development of effective therapeutic strategies [Hanahan and Weinberg, 2000].

With growing knowledge about cancer cells, four new hallmarks have emerged: genome instability

and mutation, tumor-promoting inflammation, reprogramming energy metabolism, and evading immune

destruction (Figure 5 - light green text boxes) [Hanahan and Weinberg, 2011].

Hallmark 7: Genome Instability and Mutation

The acquisition of the previous six hallmarks is dependent on a sucession of alterations in the genomes

of neoplastic cells. In other words, specific mutant genotypes confer a selective advantage on subclones

of cells, allowing them to outgrow and eventually dominate the local tissue environment. Knowing this,

multistep tumor progression can be seen as a succession of clonal expansions, where each of them is

triggered by the possibility of enabling a mutant genotype [Berdasco and Esteller, 2010]; [Esteller, 2007];

[Jones and Baylin, 2007].

The ability to detect and resolve alterations that can occur in DNA made by genome maintenance

systems ensures that the possibility of having a spontaneous mutation is usually very low during each

cell generation. To orchestrate tumorigenesis, cancer cells need to acquire a roster of mutant genes and

they often achieve this by increasing the rates of mutations [Negrini et al., 2010]; [Salk et al., 2010]. This

mutability is either obtained by increasing the sensitivity to specific genes or through a breakdown in one

or several components of the genomic maintenance machinery, or in some cases both. In addition, this

mechanism can be accelerated by compromising the surveillance systems that usually are responsible

for the monitoring of the genomic integrity and as a consequence, force the genetically damaged cells

into either senescence or apoptosis [Jackson and Bartek, 2009]; [Sigal and Rotter, 2000]. TP53 has a

very important role in these steps, leading to its being called the ‘‘guardian of the genome’’ [Lane, 1992].

Therefore, by having the ability to affect such genes, cancer cells are able to acquire capabilities that will
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be fundamental for other hallmarks.

Hallmark 8: Tumor-Promoting Inflammation

In the year 2000 there were already some clues about the tumor-associated inflammatory response having

the paradoxical effect of enhancing tumorigenesis and progression, helping to acquire hallmark capabil-

ities. Since then, research about the intersections between inflammation and cancer pathogenesis has

evolved, providing abundant and compelling demonstrations of the functionality of tumor-promoting effects

that immune cells have on neoplastic progression [DeNardo et al., 2010]; [Grivennikov et al., 2010]; [Qian

and Pollard, 2010]; [Colotta et al., 2009].

Inflammation can contribute to the appearance of multiple hallmark capabilities due to its ability to

supply the tumor microenvironment with bioactive molecules. These include growth factors that help sus-

taining the proliferative signaling, survival factors that help limit cell death, proangiogenic factors which

are extracellular matrix-modifying enzymes that facilitate angiogenesis, invasion, and metastasis, and

also inductive signals that initiate the activation of epithelial-to-mesenchymal transition (EMT) and other

hallmark-facilitating programs [DeNardo et al., 2010]; [Grivennikov et al., 2010]; [Qian and Pollard, 2010];

[Karnoub and Weinberg, 2007].

Another important fact is that inflammation is, in some cases, evident in very early stages of neoplastic

progression and is capable of fostering the development of incipient neoplasias into full-blown cancers

[Qian and Pollard, 2010]; [De Visser et al., 2006]. Additionally, inflammatory cells are able to release

chemicals, such as reactive oxygen species, that are actively mutagenic for nearby cancer cells, speeding

their genetic evolution toward states of malignancy [Grivennikov et al., 2010]. As such, inflammation can be

considered an important hallmark due to its contributions to the acquisition of core hallmark capabilities.

Hallmark 9: Reprogramming Energy Metabolism

Uncontrolled cell proliferation involves both deregulation of cell proliferation and energy adjustments related

to the metabolism in order to fuel the cell’s growth and division. In aerobic conditions, normal cells process

glucose by first creating pyruvate via glycolysis in the cytosol which is then imported to the mitochondria to

produce energy (ATP) via the oxidative phosphorylation pathway leaving carbon dioxide. Under anaerobic

conditions, glycolysis is favored and only very low quantities of pyruvate and water are dispatched to the

oxygen-consuming mitochondria cycle.

Otto Warburg was the first to observe anomalous characteristics of cancer cell energy metabolism

[Warburg, 1930]; [Warburg, 1956a]; [Warburg, 1956b]. He noticed that even when in an environment with
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oxygen, cancer cells are able to reprogram their glucose metabolism, and as a consequence their energy

production. With this ability they are capable of limiting their energy metabolism to glycolysis, leading to a

state that has been termed ‘‘aerobic glycolysis’’. At first glance, this reprogramming of energy metabolism

seems to be a little counterintuitive, since with this, cancer cells must compensate for the lower ATP

production from glycolysis, when compared to the mitochondrial oxidative phosphorylation. However, to

compensate for this, cells upregulate glucose transporters, notably GLUT1, which considerably increases

glucose import into the cytoplasm of the cell [Jones and Thompson, 2009]; [DeBerardinis et al., 2008];

[Hsu and Sabatini, 2008].

In an attempt to explain this phenomenon, an hypothesis made by Potter VR [1958], and refined

by Vander Heiden et al. [2009], indicates that the increased glycolysis allows the spread of glycolytic

intermediates into different biosynthetic pathways, including those responsible for generating nucleosides

and amino acids. This will facilitate the biosynthesis of the macromolecules and organelles, components

needed to assemble new cells. Additionally, the Warburg-like metabolism seems to be present in various

rapidly dividing embryonic tissues, suggesting once again that this alteration supports the large-scale

biosynthetic programs needed for active cell proliferation.

Interestingly, it was found that some tumors have two subpopulations of cancer cells that differ in

their energy-generating pathways. One of the subpopulations consists of glucose-dependent cells that

produce lactate (‘‘Warburg-effect’’) , and the second subpopulation preferentially import and utilize the

lactate produced by neighbor cells as their main energy source, utilizing a portion of the citric acid cycle

to achieve that purpose [Kennedy and Dewhirst, 2010]; [Feron, 2009]; [Semenza et al., 2008]. These

subpopulations function symbiotically: the cancer cells who were deprived of oxygen depend exclusively

on glucose for fuel and secrete lactate as waste. This molecule is then imported and preferentially used

as fuel by better-oxygenated cells [Kennedy and Dewhirst, 2010]; [Feron, 2009]; [Semenza et al., 2008].

As such, energy metabolism reprogramming can be considered an important hallmark due to the ability

to make cancer cells adapt their energy production to their local environment.

Hallmark 10: Evading Immune Destruction

Another unresolved issue that surrounds tumor formation has to do with the role that the immune system

has in the eradication or resistance to the progression of late-stage tumors and micrometastases. The

immune surveillance theory proposes that both cells and tissues are being continuously monitored by an

ever-alert immune system that is responsible for recognizing and eliminating a huge majority of incipient

cancer cells and thus tumors. According to this line of thought, when a solid tumor appears they either

13



had to avoid being detected by the numerous strategies of the immune system or have been able to limit

the extent of immunological killing.

This flawed immunological monitoring of tumors appeared to be validated since there was a no-

ticeable increase of certain types of cancers appearing in immunocompromised individuals [Vajdic and

Van Leeuwen, 2009]. However, most of these cancers are virus-induced, suggesting that the control for

this type of cancers is usually dependent on the reduction of the viral burden in infected individuals, by

eliminating virus-infected cells. These observations, and the support of evidence from clinical epidemi-

ology and genetically engineered mice, suggest that the immune system operates as a barrier to tumor

formation and progression, at least in some forms of non-virus induced cancer. This fact makes this spe-

cific hallmark important due to its ability to shutdown one of our most important lines of defense [Teng

et al., 2008].

Recently in 2022, four new hallmarks were proposed: unlocking phenotypic plasticity, nonmutational

epigenetic reprogramming, senescent cells and polymorphic microbiomes (Figure 5 - light purple), that

are still not commonly referred but that are based on strong scientific findings [Hanahan, 2022].

2.3 Resting metabolic-rates of major organs

The resting energy expenditure (REE) reflects the baseline energy needs of the body to maintain its

essential functions while at rest. Different organs and tissues in the body have varying energy requirements

and metabolic functions, leading to differences in their baseline metabolic rates. These differences are

usually represented by individual organ-specific values, known as ”ki values”.

The measurement of ki values in each individual organ is challenging, with the most widely accepted

values being determined in 1992 by Marinos Elia [Elia, 1992]. This method involved the catheterization

of arterial and venous ends of a circulatory region in vivo, making it a highly invasive and error-prone

approach.

In contrast, REE can be estimated through a simpler, non-invasive gasometry approach, which mea-

sures the amount of oxygen consumed and carbon dioxide released. This method provides a measure of

REE in kilocalories per kilogram per day, and it forms the foundation for understanding an individual’s

total daily energy expenditure.

It is important to note that the summation of all ki values in the body must equal the resting energy

expenditure, which is the total amount of energy spent by the body at rest. In the anatomogram (Figure 6)
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are represented the ki values for specific organs measured by Marinos Elia [Elia, 1992]. Due to their

different values they can be classified in high and low metabolic-rate organs.

Brain| 240 kcal/kg/day

Liver| 200 kcal/kg/day

Heart| 440 kcal/kg/day

Kidneys| 440 kcal/kg/day

Residual mass| 12 kcal/kg/day

Skeletal tissue| 13 kcal/kg/day

Adipose tissue| 4.5 kcal/kg/day

High metabolic-rate

Low metabolic-rate

Figure 6: Metabolic rates per organ, as determined by Marinos Elia [Elia, 1992]. High metabolic-rate

organs coloured in pink, and the low metabolic-rate organs are coloured in green.

2.4 The mitochondrion

2.4.1 Historical perspective

The discovery of mitochondria dates back to the 1890s, were it was described cytologically by Richard Alt-

mann [Altmann, 1890]. The name mitochondrion was introduced in 1898 by Carl Benda [Benda, 1898],

and originates from the Greek ”mitos” (thread) and ”chondros” (granule), referring to the appearance

of these structures during spermatogenesis [Ernster and Schatz, 1981]. In 1913, the biochemist Otto

Warburg linked cellular respiration to grana derived from guinea pig liver extracts, which functioned to en-

hance the activity of iron-containing enzymes [Ernster and Schatz, 1981]. In the following decades, many

scientists started to study and discover the machinery that drives mitochondrial respiration, including tri-

carboxylic acid (TCA) cycle and fatty acid b-oxidation enzymes in the mitochondrial matrix that generate

electron donors in order to fuel respiration and electron transport chain (ETC) complexes, and ATP syn-
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thase in the inner mitochondrial membrane (IMM) that carry out oxidative phosphorylation [Ernster and

Schatz, 1981].

2.4.2 Functions

Mitochondria are small, membrane-bound organelles found in eukaryotic cells with a complex internal

structure. They have a smooth outer membrane that encloses the entire organelle, while the inner mem-

brane is folded into projections called cristae, which increases the surface area for cellular respiration

[Giacomello et al., 2020].

They are often referred to as the ”powerhouses of the cell” because they generate the majority of a

cell’s energy supply through a process called cellular respiration, which takes place through a series of

chemical reactions that transfer electrons from the fuel molecules, usually glucose, to oxygen, generating a

proton gradient that drives the production of ATP, which is used as a source of chemical energy [Sweeney

and Williamson, 2006].

Therefore, the oxidative phosphorylation uses oxygen as the terminal electron acceptor: the electrons

fromNADH are transported to oxygen by the proton-pumping electron transport chain, and the backflow of

the pumped protons results in ATP formation by the mitochondrial ATP synthase. Such typical mitochon-

dria occur in mammals, plants and various groups of unicellular eukaryotes, all of which are dependent on

oxygen and thrive exclusively in oxic environments [Voet et al., 2016]. In humans, these organelles harbor

a circular genome encoding their own RNAs and 13 proteins, including many of the essential subunits

present in the protein complexes of the proton-pumping electron transport chain.

The ‘‘Warburg effect’’, refers to the fermentation of glucose to lactate in the presence of oxygen as op-

posed to the complete oxidation of glucose to fuel mitochondrial respiration, and this observation brought

attention to the role of mitochondria in tumorigenesis [Warburg, 1956b]. Nowadays, we understand that

although damaged mitochondria drive the Warburg effect in some cases, many cancer cells that display

Warburg metabolism possess intact mitochondrial respiration, and some cancer subtypes are even depen-

dent on mitochondrial respiration. Decades of studies on mitochondrial respiration in cancer have set the

framework for a new frontier focused on additional functions of mitochondria in cancer, making possible

the identification of pleiotropic roles in tumorigenesis.

Mitochondria are involved in a variety of other cellular processes such as (Figure 7): regulation of

cellular metabolism by controlling the balance between glucose oxidation and lipid synthesis; calcium

storage, which is important for several cellular processes such as muscle contraction and neurotrans-

mitter release. Mitochondria also play a key role in apoptosis in response to cellular damage or stress; in
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maintenance of cellular redox state, which is important for proper cellular function and survival; in

signalling, therefore influencing cellular processes such as gene expression, differentiation, and growth

[Voet et al., 2016]; and the biogenesis of iron sulfur-clusters which play important roles in pathways

ranging from metabolism to DNA repair [Rouault, 2012].

Regulation of cellular 
metabolism

Signaling

Maintenance of cellular 
redox state

Calcium storage

Apoptosis

Iron-sulfur clusters 
biogenesis

Figure 7: Mitochondrial central functions.

These functions make them important cellular stress sensors and allow for cellular adaptation to the

environment. Mitochondria also have considerable flexibility for tumor cell growth and survival in harsh

environments, such as during nutrient depletion, hypoxia, and cancer treatments, making them key players

in tumorigenesis. There is no specific role for mitochondria in cancer development. Instead, mitochondrial

functions in cancer cells vary depending on genetic, environmental, and tissue differences between tumors.

This highlights the fact that the biology of mitochondria in cancer is fundamental to our understanding of

cancer biology since many classical cancer hallmarks result in altered mitochondrial function [Vyas et al.,

2016].

2.4.3 Mitochondrial biogenesis and Turnover

Mitochondrial mass is influenced by two opposing pathways, biogenesis and turnover, and these have

been shown to be both positive and negative regulators of tumorigenesis. The role of mitochondrial bio-

genesis in cancer is regulated by many factors, including metabolic state, tumor heterogeneity, tissue type,

microenvironment, and tumor stage (vide infra). Additionally, mitophagy, which is the selective autophagic

pathway for mitochondrial turnover, is able to maintain a healthy mitochondrial population. The regulation

of these mitochondrial pathways is central to key oncogenic signaling pathways [Vyas et al., 2016].
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2.4.4 Transcriptional and Signaling networks regulating biogenesis

The coordination of mitochondrial and nuclear-localized genes that are responsible for encoding mitochon-

drial proteins regulates mitochondrial biogenesis. The transcriptional coactivator peroxisome proliferator-

activated receptor gamma coactivator-1 alpha (PGC-1a) is able to interact with multiple transcription

factors making it a central regulator of mitochondrial biogenesis [Tan et al., 2016]. Different levels of

this coactivator often reveal how much is the tumor reliant on mitochondrial mass, the bigger the expres-

sion of PGC-1a the more dependent the tumor is on mitochondrial respiration [Tan et al., 2016]. This

phenomenon however is only valid for some cancer types, because the overexpression of PGC-1a on

those cases can induce apoptosis [Tan et al., 2016]. Therefore, it is important to identify factors that con-

tribute to the dichotomous effect of PGC-1a on tumor viability, as this has the potential to identify specific

susceptibilities for cancer subtypes.

The transcription factor of the Myelocytomatosis family c-Myc is a key activator of mitochondrial bio-

genesis in cancer and it regulates cell cycle, growth, metabolism, and apoptosis. Over 400 mitochondrial

genes have been identified as c-Myc targets, and initial studies demonstrated that the gain or loss of

Myc resulted in the increase or reduction of mitochondrial mass [Li et al., 2005]. In normal physiology,

c-Myc is able to couple mitochondrial biogenesis with cell-cycle progression. However, due to oncogenic

c-Myc, the mitochondrial biogenesis increases as well as the biosynthetic and respiratory capacity of

the cell by upregulating mitochondrial metabolism to support rapid proliferation which, complementing

c-Myc’s effects, stimulate cell-cycle progression and glycolytic metabolism to coordinate rapid cell growth

(Figure 8).

Another molecule responsible for mitochondrial biogenesis is the mammalian target of rapamycin

(mTOR) signaling pathway. This target is critical for cellular growth and energy homeostasis and is mis-

regulated in many diseases including cancer. mTOR regulates mitochondrial biogenesis both transcrip-

tionally via PGC-1a/Yin Yang 1 (YY1) activation, which results in mitochondrial gene expression, and

translationally via repression of inhibitory 4E-binding proteins (4E-BPs) that downregulate the translation

of nuclear-encoded mitochondrial proteins [Morita et al., 2015] (Figure 8).

The transcriptional networks responsible for the regulation of mitochondrial biogenesis impact thera-

peutic outcomes by providing cancer cells with metabolic flexibility making them able to adapt to targeted

treatment and tumor microenvironment. Cancer cells are capable of adapting their mitochondrial function

according to a specific stress situation. An example is the upregulation of c-Myc and glycolytic gene ex-

pression that confer resistance to metformin, which is a complex I inhibitor in pancreatic cancer cells that

actively utilize mitochondrial respiration due to PGC-1a expression [Sancho et al., 2015].
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Figure 8: The role of the mitochondrion in the metabolism and bioenergetics, oxidative stress regulation,

fission and fusion dynamics, cell death, biogenesis and turnover, and signaling in tumorigenesis. Retrieved

from: [Vyas et al., 2016]
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On a similar note, c-Myc dependent mitochondrial biogenesis is normally counteracted by the HIF-

1a signaling pathway, yet this balance is altered during the oncogenic c-Myc-driven transformation [Dang

et al., 2008]. With this information, an important consideration to have in cancer therapeutics will be

addressing different routes of bioenergetic plasticity provided by the mitochondrion.

2.4.5 Mitophagy

The elimination of damaged mitochondria via mitophagy is critical for cellular fitness since dysfunctional

mitochondria can impair ETC function and increase oxidative stress. An important trigger to initialize

mitophagy is via the PTEN-induced putative kinase 1 (PINK1/ Parkin pathway. This pathway is activated

upon mitochondrial membrane depolarization, which is a signal of mitochondrial dysfunction that can

result from multiple causes such as lack of reducing equivalents, hypoxia, and impaired electron transport.

Another pathway for mitophagy induction is through the HIF-1a target genes Bcl-2 and adenovirus E1B

19 kDa-interacting protein 3 (BNIP3) and BNIP3-like (BNIP3L/NIX), responsible for the inhibition of

mitochondrial respiration during hypoxic conditions that could result in excessive ROS.

Similar to autophagy, which is shown to be both pro- and anti-tumorigenic based on context, the

function of mitophagy depends on tumor stage [Mancias and Kimmelman, 2016]. Mitophagy-deficient

Parkin null mice develop spontaneous hepatic tumors, and this loss increases tumorigenesis in multiple

cancer models [Matsuda et al., 2015]. In addition, BNIP3L/NIX are identified as tumor suppressors

in multiple cancer models [Chourasia et al., 2015]. With this in mind, in certain stages of tumorigen-

esis, decreased mitophagy may allow some dysfunctional mitochondria to persist, generating increased

tumor-promoting ROS or other tumorigenic mitochondrial signals. In contrast, established tumors may

also require mitophagy for stress adaptation and survival. Supporting this concept, BNIP3 is normally

induced in patient glioblastoma samples as a response to hypoxia caused by anti-angiogenic therapy and

combinatorial angiogenesis. Additionally, oncogenic K-Ras-driven transformation upregulates mitophagy,

making the accumulation of dysfunctional mitochondria switch the adenomas’ tumor state from carcinoma

to benign oncocytoma [Guo et al., 2013].

2.4.6 Fission and Fusion dynamics

The balance between fission and fusion is what dictates the morphology of mitochondria which are very

dynamic organelles. With morphologies ranging from nearly transparent spherical organelles with hardly

any cristae, to highly dense networks of cristae inside a big interconnected structure, bounded inside

the same double membrane [Mishra and Chan, 2016]; [Kasahara and Scorrano, 2014]. To perform the
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critical step in mitochondrial membrane fission is used the dynamin-related protein-1 (Drp1) recruitment

to mitochondria and the interaction with its outer mitochondria membrane (OMM) receptors, allowing

the membrane constriction fueled by GTPase activity. The regulation of the mitochondrial translocation

activity made byDrp1 initializes with phosphorylation mediated by multiple kinases that respond to distinct

cell-cycle and stress conditions [Mishra and Chan, 2016].

Mitochondrial fusion is mediated by mitofusins, Mfn1 and Mfn2, along side the optic atrophy-1

(Opa1) protein.

Various studies have shown that an imbalance of fission and fusion activities plays a role in cancer,

where increased fission activities play a role and/or decreased fusion, resulting in a fragmented mitochon-

drial network [Senft and Ze’ev, 2016]. It is important to note that during these studies the ability to restore

fused mitochondrial networks through either Drp1 knockdown/ inhibition or Mfn2 overexpression, was

able to damage cancer cell growth, suggesting that the remodeling of the mitochondrial network is im-

portant for tumorigenesis. In contrast, the increase of Drp1 expression is associated with a migratory

phenotype in multiple cancer types, further highlighting the role of mitochondrial dynamics in metastasis

[Senft and Ze’ev, 2016].

2.4.7 Cell death

One important characteristic of cancer cells is their ability to evade cell death, a phenomenon tightly linked

to mitochondria. The pro-apoptotic Bcl-2 family members Bax and Bak are taken to the outer mitochon-

drial membrane (OMM) and oligomerize in order to mediate mitochondrial outer membrane permeabi-

lization (MOMP), which results in pore formation and cytochrome c release from mitochondria into the

cytosol to allow the activation of caspases, enzymes needed by the apoptotic program. In healthy cells,

anti-apoptotic family members like Bcl-2 and Bcl-xL bind and inhibit the pro-apoptotic family members

Bax/Bak. Tumors found a way to avoid apoptosis by downregulating pro-apoptotic Bcl-2 and/or upreg-

ulating anti-apoptotic Bcl-2 genes [Lopez and Tait, 2015]. The balance between pro- and anti-apoptotic

proteins affects the susceptibility of a cancer cell to apoptotic stimuli and this behavior may help predict

how a tumor will respond to chemotherapy [Sarosiek et al., 2013].

The shape of a mitochondrion can also dictate apoptotic susceptibility, as Drp1 loss delays cy-

tochrome c release and apoptotic induction [Martinou and Youle, 2011]. To avoid this problem, a GTPase-

independent function of Drp1 in membrane remodeling and hemifusion results in Bax oligomerization

mediation of mitochondrial outer membrane permeabilization, which indicates that Drp1 can promote

apoptosis independent of fission [Martinou and Youle, 2011]. This can be further proved since the inhibi-
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tion of Drp1 was able to recover the sensitivity to apoptotic stimuli by restoring a balanced mitochondrial

network [Renault et al., 2015]. Additionally, Mfn1 is a target of the MEK/ERK signaling pathway and

phosphorylated Mfn1 inhibits mitochondria fusion and interacts with Bak to stimulate its oligomeriza-

tion and subsequent mediation of mitochondrial outer membrane permeabilization [Pyakurel et al., 2015].

Therefore, while fission and fusion do not necessarily regulate apoptosis, a balance between these phe-

nomena can generate different mitochondrial shapes that support the interactions with pro-apoptotic Bcl-2

proteins.

2.4.8 Oxidative stress

Reactive oxygen species (ROS) can appear in the form of hydrogen peroxide, superoxide, and hydroxyl free

radicals that are produced during physiological metabolic reactions. Mitochondria are one of the biggest

contributors to cellular ROS and to compensate for it they have multiple antioxidant pathways to neutralize

these molecules, including superoxide dismutase (SOD2), glutathione, thioredoxin, and peroxiredoxins.

The observation that the ROS levels are high in cancer cells allowed the formulation of a very simple

hypothesis where ROS inhibition could be a successful therapeutic strategy. However, with advances in

the study of cancer cells, a more complex scenario is being pictured where ROS stimulates signaling and

proliferation, and the concomitant upregulation of antioxidant pathways prevent ROS-mediated cytotoxicity

and may even enhance tumor survival [Shadel and Horvath, 2015]; [Sullivan and Chandel, 2014].

Multiple physiological reactions, such as electron transport by the ETC and NAD(P)H oxidases result in

ROS production, and these are often aggravated during tumorigenesis by oncogenic signaling, ETCmuta-

tions, and hypoxic microenvironments. High levels of ROS contribute to the oxidation of macromolecules,

such as lipids, proteins, and DNA, which can lead to genomic instability promoting mutations. However,

many tumors show slightly higher levels of ROS that can help to regulate cell signaling via cysteine ox-

idation [Sullivan and Chandel, 2014]. Additionally, ROS-mediated regulation of oncogenic signaling also

affects oxidation of cysteines in metastasis in Src which are able to then increase their oncogenic ability,

promoting their migration and metastasis in multiple tumor types. These phenotypes were successfully

blocked by ROS scavengers such as hydrogen peroxide and nitric oxide [Porporato et al., 2014].

In order to respond to a higher ROS level, many tumor cells try to upregulate protective antioxidant

pathways. Examples such as the oncogenic K-Ras, B-raf, and c-Myc actively inhibit ROS through the

regulation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2). This is a transcriptional regulator of

the antioxidant response, which helps to promote tumorigenesis [DeNicola et al., 2011]. Similarly, a study

made in melanoma found that migrating tumor cells had higher levels of NADPH than primary tumor
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sites. This might be associated with combating the increased ROS caused by the stress associated with

the metastatic process [Piskounova et al., 2015]. Thus, successful tumors maintain ROS levels within a

specific window that helps them stimulate proliferation without causing cytotoxicity. The balance of ROS

production and antioxidant expression is critical for the maintenance of the tumor-promoting ROS levels.

2.5 Analysis methods

2.5.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a mathematical technique used to transform a set of potentially cor-

related variables into a smaller set of independent variables, referred to as principal components [Richard-

son, 2009]. PCA reduces the dimensionality of large datasets through vector space transformations and

mathematical projections, making it easier to interpret the data by identifying trends, patterns, and outliers

[Holmes and Huber, 2018].

ThePCA algorithm is as follows: first it is essential to standardize numeric values, ensuring meaningful

comparisons. This typically involves centering the data (subtracting the mean) and scaling it (dividing by

the standard deviation). However, in some cases, maintaining different scales might be necessary if

variable importance varies. The aim of these transformations is usually variance stabilization to replicate

measurements’ variances consistent across a variable’s dynamic range. In contrast, standardization aims

to make different variables’ scales comparable [Holmes and Huber, 2018].

Then a covariance matrix is created which is a squared matrix, with dimensions equal to the number

of features in the dataset. Each entry in the matrix captures the covariance between two separate dimen-

sions, revealing how they vary together. The main diagonal contains variances, representing how each

dimension varies with itself, while off-diagonal entries show the covariances between pairs of dimensions.

The covariance matrix is symmetrical about the main diagonal, and its values help identify the relation-

ships and variability between different dimensions in the data, a crucial step in PCA for dimensionality

reduction and feature analysis [Smith, 2002].

With the matrix created we then can find the eigenvectors and eigenvalues. Eigenvectors are special

vectors that play a crucial role in transforming and understanding data. They arise from the interaction

between a transformation matrix and vectors. Eigenvectors represent directions in the original feature

space that remain unchanged when transformed by the matrix. When multiplied by the matrix, they are

only scaled, but their direction remains the same. Eigenvectors are significant in PCA as they form a new

coordinate system for the data, allowing for dimensionality reduction. They are typically normalized to have
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a length of one and are orthogonal, meaning they are at right angles to each other, making them a useful

basis for expressing data in terms of these directions rather than the original axes. Finding eigenvectors

can be challenging for larger matrices, but specialized math libraries are available for this purpose [Smith,

2002].

As for the eigenvalues these are closely linked to eigenvectors and always appear as pairs. An eigen-

value represents the scaling factor by which an eigenvector is stretched or compressed when multiplied

by a square matrix. For example, if the scaling factor is 4, then 4 is the associated eigenvalue for that

specific eigenvector. Regardless of how the eigenvector is scaled before matrix multiplication, the result

will be a multiple of the original eigenvector, with the eigenvalue determining the factor. These pairs of

eigenvalues and eigenvectors provide essential information about how data is transformed and oriented

in the new coordinate system [Smith, 2002].

Finally, in a PCA analysis, there is a selection of components using eigenvectors and eigenvalues from

the covariance matrix which allows dimensionality reduction. The eigenvalues associated with the eigen-

vectors provide a measure of their significance. The eigenvector with the highest eigenvalue is considered

the principal component, representing the most prominent relationship among data dimensions. Typi-

cally, after finding the eigenvectors, they are ordered by eigenvalue in descending order, indicating their

importance. You can choose to ignore components with lower eigenvalues, sacrificing some information

but reducing dimensionality [Smith, 2002].

For our work, in order to combine gene expression values from two distinct datasets, namely, TCGA

and GTEx, it is crucial to ensure comparability between the data. Inconsistencies could impact the con-

clusions about gene interactions. Therefore, by applying PCA to our data and visualizing the first two

components (that together explain over 85% of the variance), we can verify if the gene expression values

derived from two alternative databases are comparable.

PCA in R

There are several methods in R for conducting this analysis, such as the PCAtools package available in

BioConductor [Gentleman et al., 2004], the FactoMineR [Lê et al., 2008] package, or using the base R

functions prcomp() and princomp(). The main difference between these functions is their underlying ap-

proach: princomp() uses spectral decomposition, while prcomp() and PCA() from FactoMineR use singular

value decomposition (SVD). (Further details regarding these two alternative PCA approaches are beyond

the scope of this work, but a good overview is presented here: [Jolliffe and Cadima, 2016]). In this work,

we used the prcomp() function from base R.
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2.5.2 Differential Gene Expression

Gene expression technologies play a pivotal role in molecular biology research, enabling the assessment of

transcriptional activity in various tissues or cell populations. These assessments help to identify alterations

in gene expression linked to specific treatment conditions or phenotypes of interest. Gene expression stud-

ies can take the form of randomized experiments, involving perturbations like gene knock-outs or induced

stressors, providing valuable insights into both normal cellular processes and disease mechanisms. Al-

ternatively, they can be observational studies, comparing different phenotypes, such as diseased versus

healthy tissues or cells from distinct populations. This approach is frequently employed in cancer research

and the study of cell development [Hurd and Nelson, 2009]. There are several methods for measuring

gene expression, with microarrays and RNA-sequencing being two of the most commonly used.

Microarray technology gained prominence after genome sequencing projects because it relies on prior

knowledge of the query genome. Although valuable for gene expression analysis, it has certain limitations.

One significant constraint is its reliance on prior knowledge of the genome or genomic features, which

poses challenges when dealing with incomplete, incorrect, or outdated genome annotations [Hurd and

Nelson, 2009].

In contrast, RNA sequencing (RNA-Seq) leverages high-throughput sequencing techniques to offer a

comprehensive view of a cell’s transcriptome. RNA-Seq surpasses previous microarray-based methods by

providing deeper coverage and higher resolution for understanding the dynamic nature of gene expression.

Recent advances in RNA-Seq workflows, encompassing sample preparation, sequencing platforms, and

bioinformatics data analysis, have enabled thorough profiling of the transcriptome, offering insights into

various physiological and pathological conditions [Kukurba and Montgomery, 2015].

However, the reliability of RNA-Seq data hinges on the accurate mapping of sequencing reads to ref-

erence genomes or efficient de novo assembly. This process can be computationally intensive, requiring

substantial computing resources to handle the vast volume of small reads within a reasonable timeframe.

Moreover, the relatively higher error rate associated with next-generation sequencing (NGS) data neces-

sitates consideration of non-perfect matches during read mapping. This becomes particularly relevant

when identifying allele-specific expressions in RNA-Seq data, especially in the context of detecting single

nucleotide polymorphisms (SNPs) [Marguerat and Bähler, 2010].

Differential expression analysis of RNA sequencing experiments, relies on linear models to quantify

the magnitude and direction of changes in gene expression. However, this process can be challenging due

to two critical steps: setting up an appropriate model using design matrices and defining the desired com-

parisons through contrast matrices. The complexity arises because there is currently no comprehensive
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catalog available for design and contrast matrices.

The design matrix serves a dual purpose: it shapes the model by defining the relationship between

genes and explanatory variables, and it stores the values of these variables for each sample; on the other

hand, the contrast matrix complements the design matrix by enabling the calculation of specific values

of interest based on estimated parameters. The design matrix typically features columns associated with

parameters and rows associated with individual samples. If the estimated parameters themselves are not

the focus of interest, a contrast matrix can be employed to compute meaningful contrasts between these

parameters. Multiple contrasts can be combined, with each column in the contrast matrix representing a

distinct contrast and corresponding rows associated with columns in the related design matrix [Law et al.,

2020].

In differential expression analysis, it is crucial to consider two types of explanatory variables: covariates

and study variables. These variables can be numerical values representing quantitative measurements

associated with the experiment. Examples include an individual’s age, weight, or other molecular/cellular

phenotypes. Categorical variables, on the other hand, are classifiers linked to the experiment’s samples.

These factors can be biological (e.g., disease status, genotype, metabolic rate, cell type) or technical (e.g.,

experiment time, sample batch, sequencing lane). Levels within a category represent unique values; for

instance, the genotype factor might have two levels: ”wildtype” and ”mutant” [Law et al., 2020]. In the

case of this work, our variables consist of factors with different levels. We have the ’cancer status’ factor

with two levels, ’cancer’ and ’non cancer’, and the ’metabolic rate’ factor with two levels, ’high metabolic

rate’ and ’low metabolic rate’.

Another consideration relevant to the linear models used for differential gene expression, is whether to

include or not an intercept term in themodels. For example, with themodel.matrix(∼ cancer status) model,

where the formula contains only the ’cancer status’ variable, the intercept term in the first column of the

design matrix represents the y-intercept, while the second column represents the slope of the regression

line. If the model forces the intercept to be zero, for example, model.matrix(∼ 0 + cancer status), the

intercept term is removed from the design matrix, meaning that the regression line must intercept the

y-axis at 0.

When comparing models with and without an intercept term for numeric variables, it is unsurprising

that the model with an intercept term generally provides a better fit to the data. This is because it is less

restrictive, allowing the y-intercept to be at any point, making it more flexible due to the extra parameter.

However, for factor variables (i.e. categorical variables), models with and without an intercept term are

equivalent, differing only in parameterization. In an intercept term model, it is determined by summing
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both parameter estimates, while in a non-intercept term model, it is estimated directly as the second

parameter. Consequently, the choice of design matrix is equivalent for categorical variables [Law et al.,

2020].

In addition to considering intercept terms, it is essential to account for interactions between factors.

An additive effect exists when the combined treatment effect equals the sum of the two individual effects

(C - A - B = 0 or δ = 0). In contrast, an interaction effect occurs when the combined treatment effect differs

from the sum of the individual effects (δ ≠ 0). An interaction is considered synergistic if the combined

effect is greater than the sum of the individual effects (δ > 0) and repressive if it is smaller (δ < 0) [Law

et al., 2020].

In order to interpret the output from a differential expression analysis, it is crucial to grasp key concepts

like p-values, fold change, and false discovery rate (FDR). The p-value quantifies the probability of observing

the test statistic’s given value or a more extreme one under the null hypothesis. Traditionally, a p-value

cutoff of 0.05 is used to reject the null hypothesis [Ferreira and Patino, 2015]. Fold change detection

(FCD) is a concept where the output depends on relative changes in input. Identical relative changes in

the input result in identical output dynamics [Adler et al., 2014]. False discovery rate (FDR) procedures

provide a more sensitive analysis compared to conventional family-wise error control, such as p-values.

They also help control the rate of false positives [Genovese et al., 2002]. These concepts also help us

prioritize genes for our study since they can help us find those with values more likely to be biologically

meaningful.

For this study, there are two relevant alternative models that should be tested, namely the additive

effect between metabolic rate and cancer status, with and without assuming an interaction between them:

1. Without assuming interactions between variables:

model.matrix(~ 0 + metabolic rate + cancer status)

2. Assuming a non-additive interaction between variables:

model.matrix(~ 0 + metabolic rate + cancer status +

+ cancer status:metabolic rate)

Considering that it is unlikely that there is no biological interaction between the cancer status of a cell

and its metabolic rate, the second model (with an interaction term, and therefore more complete) was the

one chosen for analysis and discussion.
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Differential expression in R

For differential expression analysis of RNA-Seq data, several statistical methods and packages are available,

such as DESeq [Anders and Huber, 2010] and edgeR [Robinson et al., 2010] (Table 1). However, it is crucial

to interpret the results carefully as each method makes specific assumptions that might not always hold

in the context of the data. Understanding the model parameters and their constraints is vital for drawing

meaningful biological conclusions [Bullard et al., 2010].

Table 1: Information about the methods of normalization used for each package that can perform differ-

ential expression analysis.

Normalization

method
Description

Accounted

factors

Recommendations

for use

DESeq2’s median

of ratios

Counts divided by

sample-specific size

factors determined

by median ratio of

gene counts relative

to geometric mean

per gene.

Sequencing depth

and RNA composition.

Gene count comparisons

between samples and for

DE analysis; NOT for

within sample comparisons.

EdgeR’s trimmed

mean of M values

(TMM)

Uses a weighted

trimmed mean of

the log expression

ratios between samples.

Sequencing depth,

RNA composition,

and gene length.

Gene count comparisons

between and within samples,

and for DE analysis.

2.5.3 Clustering

Clustering is an unsupervised modeling technique that helps to analyze complex multivariate data by

grouping similar data points into categories, often simplifying decision-making. Therefore, cluster validation

is crucial, especially when no prior domain knowledge supports the existence of clusters [Holmes and

Huber, 2018].

For instance, in cancer biology, clustering has provided valuable insights. Tumors previously consid-

ered identical based on location and histopathology have been categorized into distinct clusters based

on molecular signatures, such as gene expression data [Marguerat and Bähler, 2010]. These clusterings
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could lead to the identification of new, more relevant disease types, often associated with different patient

outcomes.

To perform clustering, we first need to define what we mean by ’similarity.’ Once relevant features are

selected, we must decide how to combine the differences between these features into a single numerical

value. One widely-used method for clustering is the PAM (Partitioning Around Medoids) or k-medoids

method, outlined as follows [Kaufman and Rousseeuw, 2009]:

Begin with a matrix of ’p’ features measured on ’n’ observations. Randomly select ’k’ distinct cluster

centers from the ’n’ observations as ’seeds.’ Assign each remaining observation to the nearest cluster cen-

ter. For each cluster, choose a new center (medoid) from the observations within that cluster, minimizing

the sum of distances to cluster members. Repeat steps 3 and 4 until the clusters stabilize.

It’s important to note that different initial seeds in Step 2 can yield varying results. A variant of this

method, called k-means, replaces medoids with the arithmetic means (centers of gravity) of clusters. In

PAM, cluster centers are observations, but this is not always the case with k-means.

These ’k-methods’ are commonly used for clustering, especially when dealing with clusters of similar

size and convex (blob-shaped) structures. However, they may fail when clusters differ significantly in size

or exhibit non-spherical or non-elliptical shapes. To determine the number of clusters, one can perform

sub-sampling and clustering repeatedly, identifying tight clusters that frequently group together [Holmes

and Huber, 2018].

Variousmethods can calculate similarity, including the Euclidean distance, whichmeasures the straight-

line distance between two points in multidimensional space [Holmes and Huber, 2018].

d(A,B)=
√
(a1 − b1)2 + (a2 − b2)2 + ...+ (an − bn)2

The Manhattan distance sums the absolute differences in all coordinates.

d(A,B)=|a1 − b1|+ |a2 − b2|+ ...+ |an − bn|

When performing clustering, two key considerations are the choice of distance measure and the de-

termination of the number of clusters, denoted as ’k.’

Clustering can be approached in different ways; for instance, density-based clustering is suitable

when data consists of a few markers and numerous cells. This method identifies regions of high density

separated by sparser regions, making it adaptable to non-convex clusters.
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Hierarchical clustering

Hierarchical clustering is another commonly used variant. It follows a bottom-up approach, assembling

similar observations and subclasses iteratively. This hierarchical structure, with its roots traced back to

Aristotle’s ’ladder of nature,’ has practical applications across various fields. To implement hierarchical

clustering, we need more than just the distances between individual objects. We must also decide how to

compute the distance between a newly formed cluster and all other points or existing clusters. This choice

influences the type of hierarchical clustering produced [Holmes and Huber, 2018].

Minimal Jump (Single Linkage): This method calculates the distance between clusters as the smallest

distance between any two points in the two clusters. It tends to create clusters that resemble strings of

contiguous points.

dSL(C1, C2) = min
x∈C1,y∈C2

dist(x, y)

Maximum Jump (Complete Linkage): Here, the distance between clusters is defined as the largest

distance between any two objects in the two clusters.

dCL(C1, C1) = max
x∈C1,y∈C1

dist(x, y)

Group Average: This method computes the distance between clusters as an average of distances

between all pairs of objects in the two clusters.

dGA(C1, C1) =
1

|C1| · |C2|
∑

x∈C1,y∈C2

dist(x, y)

These choices shape the hierarchical clustering trees. One notable advantage of hierarchical clustering

is that it provides a graphical representation of grouping strength, reflected in the length of inner edges in

the tree.

When clusters are expected to be of similar size, using group average, which minimizes within-class

variance, is typically the preferred strategy [Holmes and Huber, 2018].
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Fuzzy clustering

Fuzzy clustering is a soft clustering technique and represents a more nuanced approach compared to

traditional hard clustering methods. In traditional clustering, each data point is unequivocally assigned

to a single cluster, resulting in ’hard’ boundaries between clusters. However, fuzzy clustering introduces

a level of ambiguity by allowing data points to partially belong to multiple clusters. This ambiguity is

quantified using membership coefficients, which range from 0 to 1 [Kaufman and Rousseeuw, 2009].

The key advantage of fuzzy clustering is its ability to provide detailed insights into the data’s underlying

structure. It can express that one data point predominantly belongs to a particular cluster while another

data point may have a nearly equal association with multiple clusters.

However, this richness of information can also be overwhelming, especially as the number of data

points and clusters increases. Still, the concept of fuzziness is appealing because it reflects the uncertain-

ties often inherent in real-world data [Kaufman and Rousseeuw, 2009].

In this project, focusing on gene expression, clustering serves the purpose of grouping genes with

similar expression patterns. This approach provides valuable insights into the genes’ biological functions

and the potential mechanistic relationships between them.

Clustering in R

Several packages and tools are available for performing clustering in this context. Notable options include

’fastcluster’ [Müllner, 2013] which provides an efficient implementation of hierarchical clustering algo-

rithms, ’cluster’ [Maechler, 2018] which offers various partitioning methods like PAM, ’mclust’ [Scrucca

et al., 2016] a tool for model-based clustering using Gaussian Mixture Models (GMM) with the Expectation-

Maximization (EM) algorithm, which iteratively refines GMMs providing a probabilistic framework for

clustering and density estimation, and ’dbscan’ [Hahsler et al., 2019] which efficiently implements the

DBSCAN clustering algorithm.
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Chapter 3

Methodology

Aiming to search for unique gene expression patterns characteristic of high metabolic-rate organs in can-

cer, an automated analysis pipeline was developed to ensure efficient, and reproducible data analysis.

Therefore, for this study, we used the R programming language (version 4.2.2), which is freely available

and particularly suited for statistical analysis and graphical data visualization. Additionally, this language

is supported by an active development community, which greatly extends its functionality (Figure 9).

Figure 9: Project analysis workflow.

To analyze, explore, and understand the data, the free open-source integrated development environ-

ment (IDE) RStudio® (version 2023.03.0) was used. All data analyses were undertaken using custom R

scripts, implementing additional functions to develop a pipeline suited to answer the research questions.

As such, the R analysis pipeline presented in Figure 10 showcases the programming work developed

throughout the thesis. All analyses were conducted in a Linux environment (Ubuntu distribution version

22.04.2), running on a virtual machine capable of storing big data and facilitating faster analyses.
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1.download_data.Rmd

2.1.compare_tcga_gtex_
gencode_v26_v36.Rmd

2.format_data.Rmd

3.diff_expression.Rmd

Used packages:
- here
- TCGAbiolinks
- SummarizedExperiment 
- tidyverse
- readxl

Input:
- URL’s from the public sources of data

Output:
- RDS files with data from the 6 organs selected

What does it do?
- Downloads transcriptomic RNA data from six different 
organs (brian, liver, kidney, bladder, colon, skin) from 
TCGA and GTEx.
- Downloads the MitoCarta data. 

Used packages:
- here
- SummarizedExperiment 
- tidyverse

Input:
- RDS files created in the previous script

Output:
- RDS files with clean and formated data and 
PCA results

What does it do?
- Creates a metadata table with sample ids, cancer 
status, organ, and metabolic rate.
- Create a list with read counts per organ from TCGA, 
GTEx, and both (combined dataset).
- Performing PCA analysis with count data from TCGA 
and GTEx to confirm that the data from 2 different 
dources is comparable.

Used packages:
- here
- tidyverse

Input:
- GTF files with the versions 26 and 36 of the 
human genome and RDS file of the PCA result 
obtained in the previous script

Output:
- PCA plot of the combined TCGA and GTEx 
data

What does it do?
- Compare the genes ids present in Gencode v26 and 
Gencode v36 annotation files, since these were used 
for the annotation of the TCGA and GTEx read counts.
- Plot and visualize the PCA results.

Used packages:
- here
- tidyverse
- edgeR

Input:
- RDS files created by script 
“2.format_data.Rmd” except the PCA results

Output:
- RDS files containing the differential 
expression analysis results for each dataset 
(TCGA and GTEx)
- RDS files for the three linear models tested: 
with interation, only interation and no 
interation

What does it do?
- Performs differential expression analysis using a 
design matrix, and contrast matrix, both used by the 
linear model defined.
- Several alternative linear models, and alternative 
contrasts were tested, fror each individual dataset 
(TCGA and GTEx) and the combined one.

3.1.diff_expression_
visualization_v2.Rmd

3.2.diff_expression_
visualization.Rmd

4.functional_enrichment
.Rmd

5.clustering.Rmd

Used packages:
- here
- tidyverse
- mitocarta

Input:
- RDS files created on the previous script

Output:
- Boxplots of the most extremely expressed 
genes for the different conditions
- PNGs files with the Boxplots of the most 
extremely expressed genes for the different 
conditions
-  RDS files with the coefficient tables and the 
top genes tables

What does it do?
- Creates function that allows to plot the counts for 
extreme LFC differentially expressed genes. The plot 
shows multiple boxplots for each gene ID 
corresponding to the different organs being evaluated 
as well as their disease state (non_cancer or cancer)

Used packages:
- here
- tidyverse
- patchwork

Input:
- RDS files created on the previous script

Output:
- Boxplots of the most extremely expressed 
genes for the different conditions 
-  Plots of the likelihood test coefficient as well 
as the log fold change, and log counts per 
million

What does it do?
- Allows us to visualize the coefficients obtained from 
the likelihood test made in the previous script in order 
to see their distribution in the different conditions

Used packages:
- here
- tidyverse
- mitocarta
- edgeR
- AnnotationDbi
- org.Hs.eg.db
- gprofiler2

Input:
- RDS files created on script 
“3.diff_expression.Rmd” 

Output:
-

What does it do?
- Performs functional enrichment analysis (GO 
categories and KEGG pathways) of the genes presente 
in the dataset.

Used packages:
- here
- tidyverse
- mitocarta
- edgeR
- RColorBrewer
- biclust

Input:
- RDS file created on script 
“3.diff_expression.Rmd” 

Output:
- Dendrograms of each different hierarchical 
clustering
-  Heatmap of the hierarchical clustering
- Plots of clusters formed using a soft fuzzy 
clustering

What does it do?
- Performs hierarchical and soft fuzzy c-means 
clustering of the normalized read counts (CPMs)

Figure 10: Structure of the data analysis workflow.

The data analysis scripts were version-controlled using Git and deposited in the GitHub repository

(https://github.com/MitoProfiles/mitoprofiles) to comply with reproducible and open research best prac-

tices.
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3.1 Data collection

Data collection is a crucial step for successful analysis. To test our hypothesis, we gathered data from three

distinct databases: cancer patient data from The Cancer Genome Atlas (TCGA) [tcg], data from healthy

patients in the Genotype-Tissue Expression (GTEx) [gte] database, and data related to human mitochon-

drial genes using MitoCarta [Mit]. For the first two databases, transcriptomics RNA-seq data were obtained

for six organs, categorized into two groups: high-metabolism organs: brain, liver, and kidneys; and low-

metabolism organs: bladder, colon, and skin. The annotated R markdown script ”1.download_data.Rmd”

provides the R code used for this step.

All data used in this project are open and publicly accessible, eliminating the need for additional access

permissions and enabling their immediate usage.

To enhance data usability while maintaining a clear working environment, we established directories

to systematically organize data in a meaningful file structure as shown in Annex A.1. The data collection

phase focused on querying and downloading relevant datasets for this study.

3.1.1 TCGA data

To query and download data from the TCGA database, we used the TCGAbiolinks package [Colaprico

et al., 2016] to retrieve sample population data from each organ into our local system. The database was

accessed on 15 May 2023.

Three distinct functions were used, namely: (i) the GDCquery function, responsible for querying the

database to retrieve public data; (ii) GDCdownload, enabling the bulk transfer of data from multiple or-

gans simultaneously; and (iii) the GDCprepare function was employed to read the data and construct a

SummarizedExperiment object. This object comprises one or more assays, with each assay represented

by a matrix-like numeric object. Rows often represent genomic ranges of interest, while columns signify

individual samples. The acquired data were subsequently saved in the form of an RDS file.

3.1.2 GTEx data

Regarding the GTEx database, data acquisition took place via programmatic download of the RNA-seq

data from GTEx Analysis version 8 on the database’s dedicated website [gte], accessed on 15 May 2023.

Gene read counts from the tissues of interest were downloaded from the following URLs (Table 2).
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Table 2: Files downloaded from the GTEx portal.

Metabolic Type Organ URL

High

Brain gene_reads_2017-06-05_v8_brain_cortex.gct.gz

Liver gene_reads_2017-06-05_v8_liver.gct.gz

Kidney gene_reads_2017-06-05_v8_kidney_medulla.gct.gz

Kidney gene_reads_2017-06-05_v8_kidney_cortex.gct.gz

Low

Bladder gene_reads_2017-06-05_v8_bladder.gct.gz

Colon gene_reads_2017-06-05_v8_colon_sigmoid.gct.gz

Colon gene_reads_2017-06-05_v8_colon_transverse.gct.gz

Skin gene_reads_2017-06-05_v8_skin_sun_exposed_lower_leg.gct.gz

Skin gene_reads_2017-06-05_v8_skin_not_sun_exposed_suprapubic.gct.gz

The data was stored as a list object for clarity and organization. The file names were programmatically

shortened and modified to incorporate user-friendly labels, including the organ’s name. The final object

was saved in RDS format.

3.1.3 MitoCarta data

Finally, for MitoCarta, the procedure closely resembled that of GTEx, where genomic data of the human

genome were obtained from the database’s public website [Mit]. Data download was performed on May

15 2023. Subsequently, the three data sheets in the Excel file were individually saved in RDS format.

3.2 Mitocarta R package

In order to enhance interaction with the data derived from MitoCarta, an RDatapackage was developed

(Figure 11). The MitoCarta R package is publicly available at the following GitHub address:

https://github.com/MitoProfiles/MitoCarta.

The three MitoCarta data tables were cleaned and wrangled. The first dataframe, labeled ”A_Human

_MitoCarta3” contains information pertaining to genes that code for proteins predicted to be targeted to

the human mitochondrion. The second dataframe contains information concerning all genes present in

the human genome”B_Human_All_Genes”. Lastly, the third dataframe, denoted as ”C_MitoPathways”

lists all the currently known metabolic pathways active in the mitochondrion.

The data was validated and wrangled into an R-friendly format using the R script ”mitocarta.R” con-

35

https://github.com/MitoProfiles/MitoCarta


tained in the package. Special care was taken to eliminate leading and trailing empty columns present in

the Excel tables, which were causing serious errors when loading the data into memory. Additional errors

were found in the MitoPathways table, specifically in the ”Genes” and the ”MitoPathway” columns: in the

”Genes” column there was no fixed field separator between the individual gene names (spaces between

commas had to be removed); and in the ”MitoPathway” column, trailing underscores and commas had

to be removed between pathway names to allow the identification of similar pathway names.

After resolving data structure issues, we generated documentation for the package using Roxygen.

This documentation explains the data’s source, details the information in each dataframe, and specifies

the content in each column (Figure 11).

The MitoCarta R package can be installed using the following R code:

install.packages("remotes")

remotes::install\_github("MitoProfiles/MitoCarta")

The help page of the package can be accessed by running: ?mitocarta::mitocarta\_data after

installing it.

Figure 11: Description of the mitocarta package creation.

3.3 Data formatting and Compatibility between databases

After data download, the R scripts ”2.format_data.Rmd” and ”2.1.compare_tcga_gtex_gencode_v26_v36

.Rmd” were developed for data preprocessing, cleaning, and assessment of the compatibility of gene

expression data from TCGA and GTEx datasets. This first script defines a function (create_metadata) to
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generate ametadata table containing sample IDs, cancer status, organ, andmetabolic rate for each dataset

downloaded. Next, the script processes TCGA and GTEx gene expression data separately, organizing it

by organ and generating uniform datasets merged with the corresponding metadata. Finally, a Principal

Component Analysis (PCA) is performed on the combined TCGA and GTEx data.

The PCA step is pivotal to verify if the data from different studies, and from the two different databases

is comparable, and therefore suitable for drawing meaningful conclusions about differential expression.

This involves determining if the RNA-seq protocols (both from the lab and the bioinformatics processing)

are similar, particularly related to: (i) the strandedness of the sequencing library; (ii) the reference genome

used; and (iii) the genome annotation version. If all three are similar, then, we can test if the overall gene

counts do not show marked study biases.

The following information was retrieved for TCGA and for GTEx (Table 3):

Table 3: Comparison between data in TCGA and GTEx.

TCGA GTEx V8

RNA-seq library protocol Illumina, non-stranded, Illumina, non-stranded

Reference genome GRCh38 reference genome GRCh38 reference genome

Gene annotation version GENCODE v36 GENCODE v26

Given the difference in genome annotation (in bold), we proceeded with comparing the two anno-

tation files to decide if there were substantial differences between the genes present in both versions.

We found that only 52 new gene identifiers were present in GENCODE v36 (not present in v26), and

all common ones (5779 unique stable Ensembl identifiers) shared the exact same reference genome

coordinates, rendering them fully comparable. These results can be inspected in the script file ”2.1.com-

pare_tcga_gtex_gencode_v26_v36.Rmd”.

3.3.1 PCA

To visualize the variability in gene expression between both datasets, to discard possible study biases, a

PCA was performed, using the built in R function prcomp(), centered and not scaled. It showed a good

level of overlap between the two datasets, providing confidence to proceed with the planned differential

expression analyses.
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3.4 Differential Gene Expression

To conduct a differential gene expression analysis, three R packages were considered: limma [Ritchie

et al., 2015], DESeq2 [Anders and Huber, 2010], and edgeR [Robinson et al., 2010]. EdgeR was the cho-

sen package primarily because of its comprehensive normalization method - Trimmed Mean of M values

(TMM), which uses a weighted trimmed mean of the log expression ratios between samples. This nor-

malization accounts for differences in sequencing depth, RNA composition, and gene length, allowing for

gene count comparisons between and within samples, as well as differential expression analysis [Robinson

and Oshlack, 2010] (Table 1).

This step was performed using the script ”3.diff_expression.Rmd”, and the results were visualized

with ”3.1.diff_expression_visualization_v2.Rmd”. Briefly, edgeR uses a negative binomial model to detect

differentially expressed genes, while also modeling the biological and technical variability, and accounting

for library size differences. Its approach involves estimating the dispersion parameters (which quantify

the degree of variation), and applying a statistical test, such as the likelihood ratio test, to identify genes

whose expression significantly differs between conditions [Love et al., 2014].

Three alternative linear models were considered, namely:

(i) The additive model:

~ 0 + metabolic rate + cancer status;

(ii) The interaction model:

~ 0 + metabolic rate:cancer status;

(iii) The additive with interaction model:

~ 0 + metabolic rate + cancer status + metabolic rate:cancer status.

After a brief comparison between models, the third (and most complete) model was chosen for analy-

sis. The rationale behind this choice is the fact that this model is the one that best describes the prevailing

understanding of cancer biology, specifically the alteration in cellular metabolism within cancer cells.

Since the initial question for this study is related to the profiles of gene expression in cancers from high

metabolic rate organs, the analyzed contrast tested if the linear model coefficient ”High metabolic rate

in Cancer” is equal to zero. In other words, the null hypothesis for the hypothesis tests is that there are

no expression changes in high metabolic-rate organs in cancer when compared to the low metabolic-rate

organs in cancer, using as a reference the healthy (non-cancer) status. For further details, please see

[Law et al., 2020]. Therefore, the significant differential expression (significant p-values) is related to the
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metabolic type of the organs in cancer.

Data visualization was achieved via volcano plots (for all genes, and filtered only for mitochondrial

ones); and boxplots for the top differentially expressed genes (also from the full set of genes, and only

for the set of mitochondrial genes). All these visualizations are reproducible and openly available for de-

tailed inspection at ”3.1.diff_expression_visualization_v2.Rmd”. An overview of the differential expression

analysis workflow is presented in Figure 12.

Find Mitoprofiles in cancer vs 
non-cancer in high vs low 

metabolic rate organs

Gtex data + TCGA data 

Download transcriptomics 
RNA-seq data

Format data

Merge data

High metabolic rate organs: 
brain, liver, kidney
Low metabolic rate organs: 
bladder, colon, skin

Differential 
Expression Analysis

Visualize the genes expression 
distribution in the samples for 
the top differentially expressed 

genes

Boxplots

Histograms

Focus on the 
Mitochondrial Genes

All Genes

Filter the top genes 
using Mitocarta 

gene IDs

Mitocarta package 
developed within 
this thesis project 
(@mitoprofiles)

Evaluate to find 
relevant patterns of 

expression 

General linear model
~0 + met.rate + cancer.status 
+ met.rate:cancer.status 

Contrast
met.ratehigh -  met.ratelow

Manually curated 
functional analysis

+

+

Figure 12: Detailed workflow for this project - Differential Expression.

3.5 Functional enrichment and Functional interactions

The top 500 differentially expressed genes were subject to a functional enrichment analysis using the gpro-

filer2 package [Reimand et al., 2007]. Only terms from the CORUM database (comprehensive resource

of mammalian protein complexes) [Tsitsiridis et al., 2023] showed significant enrichment (figure shown

in Annex B.2). This analysis was terminated since there was no significant functional enrichment for any

of the other ontologies tested (GO Molecular Function, GO Cellular Component, GO Biological Process,

KEGG, Reactome, TRANSFAC, miRTarBase, Human Protein Atlas, Human Phenotype, and WikiPathways).

The R code used for this analysis can be inspected at ”4.functional_enrichment.Rmd”.
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3.5.1 STRING Functional interaction networks

Despite the absence of statistically significant functional enrichment, we aimed to visualize potential func-

tional relationships among the top differentially expressed genes. To achieve this, we used the STRING

online platform [str] with default settings. The process involved inputting the gene IDs for each DEGs set

into STRING’s multiple protein search function. The gene IDs are converted to protein IDs, and the re-

sulting network shows the known and predicted functional interactions between the proteins. The images

were manually downloaded in PNG format.

3.6 Clustering

To find groups of genes with similar expression behavior across the different organs in cancer and non-

cancer, we selected the 91 differentially expressed genes encoding mitochondrial proteins and applied

two alternative clustering methodologies: hierarchical clustering, and fuzzy (soft) clustering. For both

techniques, normalized data (CPM counts per million) was used (instead of the raw counts matrix), and the

Manhattan distance method was used to calculate the distance matrix. The R code used for the clustering

analysis can be fully inspected in ”5.clustering.Rmd”. The clustering analysis workflow is presented in

Figure 13.

Find Mitoprofiles in cancer vs 
non-cancer in high vs low 

metabolic rate organs

Gtex data + TCGA data 

Download transcriptomics 
RNA-seq data

Format data

Merge data

High metabolic rate organs: 
brain, liver, kidney
Low metabolic rate organs: 
bladder, colon, skin

+

+

Clustering

Normalization of 
rawcounts (CPMs)

Hierarchical

Soft fuzzy 
Clustering

Relevant 
profiles of 
expression

Manually 
curated 

functional 
analysis

C-means

Figure 13: Detailed workflow for this project - Clustering.
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Hierarchical clustering organizes data points into a dendrogram (a tree-like structure), based on their

similarities, allowing the easy visualization of clusters. The choice of linkage method (e.g., complete,

single, average) can greatly influence the clustering outcome, leading us to apply all three methods to

our data, using the hclust() function from base R. The results from the group average linkage method

were chosen for discussion given the overlap with the results from the gene expression data shown in the

heatmap drawn. The alternative dendrograms are presented in Annex B.3.

Fuzzy clustering is a soft clustering technique that extends hard clustering methods allowing the same

data point to belong to more than one cluster. Therefore, fuzzy clustering assigns degrees of membership,

expressed as probabilities, to each data point across multiple clusters, allowing the same gene to belong to

more than one cluster of gene expression. This approach is implemented in the function cmeans() from

the R package e1071 that we used for this study. We requested 20 clusters, with a fuzzification parameter

m = 1.25 (m determines the degree of fuzziness in the membership assignments of data points to clusters

- smaller m values make the memberships more distinct and data points are more sharply assigned to a

single cluster). The different clusters represent the alternative mitochondrial gene expression profiles in

cancer from high and low metabolic rate organs.

3.7 English language editing

In compliance with international standards for transparency regarding the usage of AI technology in scien-

tific studies, this thesis made use of the Large Language Model (LLM) ChatGPT 3.5, developed by OpenAI,

exclusively for grammar and spelling correction, ensuring that the text maintained high standards of clarity.

While ChatGPT 3.5 was used for linguistic enhancements, it did not influence or modify in any way the

scientific content of the research data and findings reported. It was not used in any other part of the work

developed.
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Chapter 4

Results and Discussion

4.1 PCA analysis to compare GTEx and TCGA data

To compare the different datasets used from TCGA and GTEx, a Principal Component Analysis (PCA)

was performed (Figure 14). PCA reduces the dimensions of a multivariate data table into a condensed set

of variables known as summary indices, facilitating the observation of trends, shifts, clusters, and outliers.

This analysis provides an overview of the relationships amongst observations and variables, as well as

inter-variable relationships.

The overallPCA analysis shows a significant overlap between the samples from both databases (TCGA

and GTEx), revealing a small variance between the datasets, making them broadly comparable (Fig-

ure 14 A). The few visible outliers (less than 25 samples) are all provenient from healthy samples (GTEx)

but from different organs, namely from the colon, kidney, liver, and brain. To expand on this observation,

and ensure that there are no significant asymmetries regarding the variability of the expression values from

samples from the same organ coming from the two databases, the data were colored according to the

organ (Figure 14 B).

Here, it is shown that regardless of the dataset (GTEx or TCGA), samples from the same organ

exhibit suitably similar behavior, as indicated by the prominent clusters of each color, with few samples

presenting outlier behavior. These outliers, however, were not removed given their limited number and

their association with the GTEx dataset, which has fewer samples for analysis.

These results provide confidence that the data is indeed comparable, and therefore amenable for the

next analysis steps required for this study.
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Figure 14: PCA analysis. A) This visualization shows the variability between the GTEx dataset (red) and

the TCGA dataset (green). B) This visualization shows the variability between organs. Samples with PC1

> 1e+07 are identified with an organ label.
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4.2 Differential Expression Analysis

To discover the genes that might be associated with cancer in organs with alternative metabolic types (high

or low metabolic rate), a differential gene expression analysis was performed. Genes exhibiting differential

expression between conditions can provide valuable insights into the biological processes active in the two

conditions under study (high versus low metabolic rate in cancer).

In total, 79806 unique transcripts (from now on referred to as genes) were fitted using the additive

with interaction model:

~ 0 + metabolic rate + cancer status + metabolic rate:cancer status

The evaluated contrast was ”High metabolic rate in Cancer”, meaning that the significant differential

expression (significant p-values) pertains to changes observed in cancer from high versus low metabolic

rate organs when compared to the reference status (i.e. healthy non-cancer samples).

This analysis outputs five calculated metrics: Log2 Fold Change (logFC), Log Counts per Million

(logCPM), Likelihood Ratio (LR), p-value, and False Discovery Rate (FDR). A total of 4142 genes displayed

significant fold change (p-value < 0.01, and FDR < 0.01).
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4.2.1 Differential Expression visualization: Volcano plots

To visualize the global patterns of differential expression, two volcano plots were generated. These are

scatterplots that display statistical significance (-log10 p-value) versus the magnitude of change (log2 Fold

Change). They allow for quick visual identification of genes with both significant statistical changes and

substantial fold changes.

Figure 15 A includes all genes, and Figure 15 B displays only the genes encoding mitochondrial proteins

(i.e. proteins that are predicted to be targeted to the mitochondrion according to MitoCarta3.0 [Rath et al.,

2021]). Upregulated genes (FC > 1) are identified by the purple color, downregulated genes (FC < -1) are

depicted in green, and genes that do not exhibit significant Fold Change (p-value < 0.01) are represented

in gray.

Figure 15 A, shows numerous genes with a very low p-value, indicating highly significant differential

expression, some even present on the boundary of the x-axis corresponding to p-values of zero (i.e. -

log10(0) = Infinite).

Given the substantial number of statistically significant genes, we include the gene symbol on genes

with a log2 fold change that markedly deviated from the majority, i.e. log2 FC > 7 and log2 FC < -7. Only 13

genes pass this filtering criteria: four downregulated (MT-TM, LINC01833, CHN2-AS1, and LHFPL3-

AS1) and nine upregulated (ENSG00000236740, ADGRF2, LINC00462, ENSG00000267774,WFDC5,

LINC02247, ENSG00000273664, KRT85, and TTC21B-AS1).

Regarding the mitochondrial plot (Figure 15 B), we observe that the majority of genes also exhibit

highly significant differential expression, however with more variable fold changes, leading to the choice

of 15 genes with log2 fold change higher than 1, and lower than -1: 11 downregulated (FDX2, RPUSD3,

AIFM3,MT-CO2, CMPK2,MT-ATP6,MT-ND4L,MT-ND4,MT-ATP8, HDHD3, and GPAT2), and

four upregulated (ACSM1, PRODH, BCL2L10, and ACSM5).
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Figure 15: Differential expression visualization using volcano plots. A) Results for the global gene set

analysis. Genes with a log fold change < -7 and > 7 are individually labeled. B) Results for the mitochondrial

gene set analysis. Genes with a log fold change < -1 and > 1 are individually labeled. Downregulated

genes are highlighted in green, upregulated genes in purple, and in gray are the genes with smaller log

Fold Change.
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4.2.2 Top Differentially Expressed genes

A selection of the top 24 differentially expressed genes (12 up and 12 downregulated genes) was filtered

and further analyzed. These results are displayed in two tables: Table 4 containing the top 24 genes from

the full set of DEGs, and Table 5 showing the top 24 differentially expressed mitochondrial genes.

Table 4: Top 24 differentially expressed genes. The first 12 genes are downregulated (sorted from lowest

to highest log fold change). The next 12 genes are upregulated (sorted from highest to lowest log fold

change).

gene_id gene_symbol logFC logCPM PValue FDR Functional description Molecular activity

ENSG00000210112 MT-TM -8.05 0.904 0 0 Mt tRNA mitochondrially encoded tRNA-Met

ENSG00000259439 LINC01833 -7.68 2.025 0 0 long intergenic non-protein coding RNA 1833 LncRNA

ENSG00000235669 CHN2-AS1 -7.61 0.298 0 0 CHN2 antisense RNA 1 LncRNA

ENSG00000226869 LHFPL3-AS1 -7.04 5.504 0 0 LHFPL3 antisense RNA 1 LncRNA

ENSG00000256817 TPT1P12 -6.96 -0.454 0 0 TPT1 pseudogene 12 Processed pseudogene

ENSG00000254547 ANKRD33BP6 -6.75 0.613 2.19E-191 6.07E-190 ANKRD33B pseudogene 6 Unprocessed pseudogene

ENSG00000204544 MUC21 -6.73 2.966 2.20E-294 2.05E-292 Mucin-21 negative regulation of cell adhesion

ENSG00000210077 MT-TV -6.64 0.085 0 0 Mt tRNA mitochondrially encoded tRNA-Val

ENSG00000283178 ENSG00000283178 -6.61 -0.210 1.45E-267 1.07E-265 chromosome X open reading frame 49 Unprocessed pseudogene

ENSG00000124092 CTCFL -6.59 1.827 0 0 Transcriptional repressor CTCFL C2H2 zinc finger transcription factor

ENSG00000139800 ZIC5 -6.56 2.903 0 0 Zinc finger protein ZIC 5 C2H2 zinc finger transcription factor

ENSG00000227300 KRT16P2 -6.20 2.415 3.47E-205 1.14E-203 keratin 16 pseudogene 2 Transcribed unprocessed pseudogene

ENSG00000175121 WFDC5 9.47 7.499 1.73E-171 3.91E-170 WAP four-disulfide core domain protein 5 protease inhibitor

ENSG00000223729 LINC02247 8.80 1.096 2.88E-156 5.20E-155 long intergenic non-protein coding RNA 2247 LncRNA

ENSG00000273664 ENSG00000273664 8.54 0.529 4.78E-154 8.30E-153 novel transcript LncRNA

ENSG00000267774 ENSG00000267774 8.01 1.656 1.16E-170 2.58E-169 novel transcript, antisense to CCBE1 LncRNA

ENSG00000164393 ADGRF2 7.55 3.904 1.92E-245 1.03E-243 adhesion G protein-coupled receptor F2 Transcribed unitary pseudogene

ENSG00000135443 KRT85 7.54 7.623 6.33E-97 5.09E-96 Keratin, type II cuticular Hb5 structural constituent of skin epidermis

ENSG00000233610 LINC00462 7.49 3.275 5.44E-218 2.07E-216 long intergenic non-protein coding RNA 462 LncRNA

ENSG00000236740 ENSG00000236740 7.10 4.022 0 0 muscular LMNA interacting protein transcriptional regulator of the myogenic program

ENSG00000224490 TTC21B-AS1 7.08 3.543 4.50E-195 1.30E-193 TTC21B antisense RNA 1 LncRNA

ENSG00000186393 KRT26 6.86 2.362 2.36E-77 1.41E-76 Keratin, type I cytoskeletal 26 intermediate filament

ENSG00000246740 PLA2G4E-AS1 6.72 3.608 6.72E-298 6.64E-296 PLA2G4E antisense RNA 1 LncRNA

ENSG00000251491 OR7E28P 6.57 0.975 1.69E-183 4.27E-182 olfactory receptor family 7 subfamily E member 28 pseudogene Transcribed unprocessed pseudogene
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Table 5: Top 24 mitochondrial differentially expressed genes. The first 12 genes are downregulated (sorted

from lowest to highest log fold change). The next 12 genes are upregulated (sorted from highest to lowest

log fold change)

gene_id gene_symbol logFC logCPM PValue FDR Functional description Molecular activity

ENSG00000183773 AIFM3 -3.39 6.103 1.63E-177 3.86E-176 Apoptosis-inducing factor 3 oxidoreductase

ENSG00000267673 FDX2 -1.75 4.481 1.54E-260 9.95E-259 Ferredoxin-2, mitochondrial oxidoreductase

ENSG00000134326 CMPK2 -1.66 5.485 5.47E-127 6.70E-126 UMP-CMP kinase 2, mitochondrial nucleotide kinase

ENSG00000198712 MT-CO2 -1.35 15.816 8.61E-138 1.21E-136 Cytochrome c oxidase subunit 2 oxidoreductase

ENSG00000212907 MT-ND4L -1.22 13.082 7.55E-96 5.96E-95 NADH-ubiquinone oxidoreductase chain 4L oxidoreductase

ENSG00000186281 GPAT2 -1.19 3.790 3.23E-45 1.12E-44 Glycerol-3-phosphate acyltransferase 2, mitochondrial acyltransferase

ENSG00000198899 MT-ATP6 -1.12 15.326 3.96E-102 3.46E-101 ATP synthase subunit a ATP synthase

ENSG00000156990 RPUSD3 -1.12 7.289 2.05E-208 7.00E-207 Mitochondrial mRNA pseudouridine synthase RPUSD3 RNA processing factor

ENSG00000198886 MT-ND4 -1.10 16.707 3.84E-89 2.72E-88 NADH-ubiquinone oxidoreductase chain 4 oxidoreductase

ENSG00000119431 HDHD3 -1.08 7.874 7.05E-49 2.61E-48 Haloacid dehalogenase-like hydrolase domain-containing protein 3 - - -

ENSG00000228253 MT-ATP8 -1.01 12.275 9.05E-64 4.32E-63 ATP synthase protein 8 ATP synthase

ENSG00000198727 MT-CYB -0.97 15.746 1.51E-65 7.39E-65 Cytochrome b - - -

ENSG00000166743 ACSM1 4.05 5.119 1.69E-155 3.02E-154 Acyl-coenzyme A synthetase ACSM1, mitochondrial ligase

ENSG00000100033 PRODH 1.87 6.602 2.19E-62 1.02E-61 Proline dehydrogenase 1, mitochondrial oxidase

ENSG00000137875 BCL2L10 1.68 3.972 3.00E-35 8.46E-35 Bcl-2-like protein 10;BCL2L10;PTN002477644;orthologs - - -

ENSG00000183549 ACSM5 1.30 7.199 2.00E-33 5.48E-33 Acyl-coenzyme A synthetase ACSM5, mitochondrial ligase

ENSG00000076555 ACACB 0.99 8.720 1.48E-36 4.30E-36 Acetyl-CoA carboxylase 2 - - -

ENSG00000198754 OXCT2 0.83 1.672 1.21E-17 2.34E-17 Succinyl-CoA:3-ketoacid coenzyme A transferase 2, mitochondrial transferase

ENSG00000176171 BNIP3 0.83 8.911 1.84E-41 5.97E-41 BCL2_adenovirus E1B 19 kDa protein-interacting protein 3 - - -

ENSG00000164983 TMEM65 0.78 7.358 8.03E-77 4.74E-76 Transmembrane protein 65 - - -

ENSG00000066813 ACSM2B 0.57 8.859 7.65E-04 9.67E-04 Acyl-coenzyme A synthetase ACSM2B, mitochondrial ligase

ENSG00000089163 SIRT4 0.57 3.279 1.32E-29 3.33E-29 NAD-dependent protein lipoamidase sirtuin-4, mitochondrial - - -

ENSG00000134278 SPIRE1 0.49 7.357 5.83E-11 9.47E-11 Protein spire homolog 1 actin or actin-binding cytoskeletal protein

ENSG00000156026 MCU 0.44 7.360 2.63E-16 4.93E-16 Calcium uniporter protein, mitochondrial - - -

4.2.3 Differential Expression visualization: Boxplots

Boxplots were also generated for each of these 48 top genes: 24 from the full gene set (Figure 16), and 24

from the mitochondrial subset (Figure 17). These plots allow the visualization of the patterns of expression

of each of these top genes in the different conditions under study.

The distribution of the gene counts is grouped per metabolic type and cancer status. Thus, samples

from GTEx (healthy tissue) are shown with striped boxes, and samples from TCGA (cancer tissue) are

shown with dotted boxes. For each of these groups, low metabolic rate organs (bladder, colon, and skin)

are represented in red, and high metabolic rate organs (brain, kidney, and liver) are represented in green.
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Figure 16: Boxplots of the 24 top differentially expressed genes from the global gene set. (A) Upregulated

genes. (B) Downregulated genes. Each plot represents the expression of one gene, where the color

distinguishes low metabolism (in red) from high metabolism (in green), and the pattern distinguishes

between healthy (stripes) and cancer (dots).
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Figure 17: Boxplots of the 24 top differentially expressed genes from the mitochondrial gene set. (A)

Upregulated genes. (B) Downregulated genes. Each plot represents the expression of one gene, where the

color distinguishes low metabolism (in red) from high metabolism (in green), and the pattern distinguishes

between healthy (stripes) and cancer (dots).
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4.2.4 Differential Expression Discussion

The distributions observed for the differentially expressed genes reveal that the expression differences are

more pronounced when comparing values between healthy and cancer samples than when comparing

alternative metabolic rates. This suggests that the cancer status of a cell predominantly accounts for

the majority of the signal present in gene expression changes. In other words, gene expression changes

are primarily attributed to whether a cell is healthy or cancerous, regardless of its organ metabolic rates

(Figures 16 and 17).

This behavior is most notorious in the mitochondrial differentially expressed genes (DEGs), where the

asymmetry between striped and dotted boxes is particularly pronounced. The gene FDX2 [ens, g] exhibits

the most extreme pattern, making it a prime candidate for future experimental validation in the laboratory.
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Global Differential Expression

The list of top differentially expressed genes includes many genes for which there is no functional annota-

tion, specifically nine long non-coding RNAs and six pseudogenes without recognized regulatory elements.

Since pseudogenes are traditionally considered non-functional DNA segments, their functionality remains

uncharacterized. However, the development of high-throughput sequencing technology has facilitated the

discovery that these gene remnants can regulate gene expression at different levels and play important

roles in tumorigenesis [Hu et al., 2018]. For example, the pseudogene LHFPL3-AS1 [ens, j] has recently

been associated with the upregulation of BCL2, a protein that suppresses apoptosis [Zhang et al., 2020],

a characteristic hallmark of cancer. Therefore, instead of removing these genes from subsequent analysis,

we decided to report these findings, since these novel genomic features could be valuable candidates for

future collaborations for experimental validation in vitro.

The remaining genes are involved in a diverse range of functions, including skin development (kera-

tinization involving KRT26 [ens, h], and KRT85 [ens, i]), negative regulation of cell adhesion (MUC21

[ens, m]), transcription factors (CTCFL [ens, f], and ZIC5 [ens, p]), protease inhibition (WFDC5 [ens,

o]), and also mitochondrial Aminoacyl-tRNA biosynthesis (MT-TM [ens, k], and MT-TV [ens, l]). This

diversity is most likely due to the fact that the samples used are from a diverse set of organs which will

have some functions performed by organ-specific proteins.

From the top downregulated gene set, two genes, Mucin 21 (MUC21) [ens, m] and the long non-coding

RNA LHFPL3-AS1 [ens, j], are particularly interesting. Mucin 21 is a molecule previously demonstrated to

inhibit cell-cell and cell-matrix adhesion, particularly relevant in lung carcinomas [Yoshimoto et al., 2019].

Mucins are heavily glycosylated proteins secreted by various cell types and play diverse roles in cancer

progression, including cell adhesion, epithelial-mesenchymal transition, cell signaling, and influencing the

tumor microenvironment [Liu et al., 2022]. While cancer cells with reduced cell adhesion are associated

with cancer spreading through vessels or alveolar spaces in lung [Yoshimoto et al., 2019], the protective

role of this gene in the intestinal tract suggests that its decreased expression might be a general feature

of cancer, irrespective of its primary tissue location.

Although LHFPL3-AS1 is annotated as a long-non-coding RNA (as mentioned before), it has been

linked to the regulation of the BCL2 a well known mediator of the suppression of cell apoptosis [Zhang

et al., 2020]. Interestingly, BCL2L10 (ENSG00000137875) [ens, e] which is a member of the BCL2

protein located in the mitochondrion [Zhang et al., 2001] is upregulated in our analysis, therefore validating

our results, since we observe a downregulation of the mediator of the apoptosis suppressor LHFPL3-AS1

and an upregulation of the apoptosis suppressor BCL2L10.
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Overall, this finding show that cell apoptosis is a recurring theme in our dataset, in line with the well

recognized fact that cancer cells tend to silence genes that promote cell death, and overexpress genes

that confer growth advantage [Hanahan and Weinberg, 2011].

Mitochondrial Differential Expression

In the analysis of differential expression among mitochondrial genes, the first notable observation is that six

genes are encoded within mitochondrial DNA (MT-CO2, MT-ND4L, MT-ATP6, MT-ND4, MT-ATP8,

and MT-CYB). Five of these genes are clustered closely together in the volcano plot (Figure 15 B), and

a detailed examination of the mitochondrial boxplots (Figure 17) reveals that they all belong to the down-

regulated set (which searched for metabolic rate differences), and all exhibit a similar pattern of higher

expression in healthy tissue compared to cancer (i.e. they are also downregulated in cancer). This find-

ing aligns with the mitochondrial dysfunction often associated with cancer development and progression.

This dysfunction arises, not only due to the accumulation of mtDNA mutations caused mostly by the

accumulation of ROS as a stress response in cancer [can], but can also be due to the dysregulation of

the mitochondrial retrograde signaling pathways, mediated by ROS, and calcium, that can lead to the

downregulation of mtDNA gene expression [Wallace, 2012].

Another notable observation concerning the genes encoded by mtDNA is that their distribution is

narrower than that observed for nuclear-encoded mitochondrial proteins. This phenomenon is likely at-

tributable to two factors: (i)mtDNA is circular and thus similar to a bacterial operon, leading to an almost

stoichiometric expression of its genes [Pearce et al., 2017]; and (ii) the number of mtDNA molecules in

each cell is very large, leading to a narrow gene expression distribution due to the central limit theorem

(CLT). The CLT states that the sum of many independent and identically distributed random variables

approaches a normal distribution. In the context of mtDNA, this means that the expression fluctuations

from individual mitochondria are averaged out, and the resulting value approaches the mean expression

of the entire population [Wolff et al., 2017].

Since mitochondria are known as the powerhouses of the cell, it might seem surprising that genes

contributing to energy production are underexpressed in cancer cells. However, cancer cells can suppress

programmed cell death [Hanahan and Weinberg, 2011], and reach a state in their proliferation cycle where

they grow in microenvironments with increased ROS species levels, potentially compromising cell function

[Hanahan and Weinberg, 2011]. As a result, the downregulation of mitochondrial genes related to energy

production might represent an adaptation to an environment less conducive to aerobic respiration. In this

context, it becomes less beneficial to have numerous active mitochondrial complexes if they are not being
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efficiently used, especially when substrates are needed for other essential functions. This hypothesis gains

support from the observed increase in the expression of genes, such as ACSM1, ACSM5, and PRODH

that help maintain mitochondrial stability, and ensure ATP production even under extreme conditions

[Bender et al., 2005].

ACSM1 [ens, a] and ACSM5 [ens, c] encode acyl-CoA synthetases which are catalyzers of the

activation of fatty acids by CoA to produce acyl-CoA, the first step in fatty acid metabolism [Vessey et al.,

1999], in order to meet rapidly the demand for high quantities of energy. The increase seen in the

expression of these genes can boost intracellular acetyl-CoA levels, which are subsequently used in the

TCA cycle to produce ATP for processes that help the survival of cancer cells under metabolic stress

conditions [Tang et al., 2018].

PRODH [ens, n] codes for a proline dehydrogenase which appears essential for maintaining normal

mitochondrial function, ATP levels, and redox balance, especially in hypoxic conditions [Bender et al.,

2005] that arise when fast growing solid tumors become large and poorly vascularized.

Conversely, AIFM3, the Apoptosis Inducing Factor Mitochondria Associated 3 gene [ens, d] is encoded

in the nucleus and acts as an inducer of cellular apoptosis in the mitochondrion, which is in line with its

downregulation in cancer.

Close examination of the expression profiles in Figure 17, shows one particular gene that stands out:

FDX2 which presents a clear downregulation in cancer samples compared to the control samples.

The functional annotation for FDX2, as deposited in five widely-used genomics databases, shows that

this protein is associated with mitochondrial myopathy, but does not present a strong link with cancer:

Ensembl [ens, g]; UniProt [uni]; NCBI [nih]; GeneCards [gen]; and ProteinAtlas [pro].

Nonetheless, given the known functions of FDX2, it is tempting to speculate about its potential role in

cancer. FDX2 is a mitochondrial protein responsible for electron transfer from NADPH via FDXR, playing

a crucial role in iron-sulfur protein biogenesis (also termed Fe/S cluster biogenesis) (Figure 18) [Shi et al.,

2012].

Iron-sulfur clusters, which are essential inorganic protein cofactors, have a wide-ranging impact on

cellular processes, including DNA repair, cell cycle regulation, metabolism, and oxidative respiration

[Petronek et al., 2021]; [Shi et al., 2012]; [Shi et al., 2021]; [Braymer and Lill, 2017]. The biogenesis

of these clusters is a complex, multistep process, involving catalyzed protein-protein interactions and con-

formational changes [Maio and Rouault, 2015]; [Rouault, 2012]; [Maio and Rouault, 2015]. These steps

include: (i) Cluster synthesis: Fe/S clusters are synthesized on a scaffold protein, which is typically an

IscU-like protein in bacteria or an ISCU protein in eukaryotes; (ii) Cluster transfer to target proteins: Fe/S
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clusters are transferred from the scaffold protein to target proteins by a set of specialized chaperones and

transfer proteins; and (iii) Cluster insertion into target proteins: Fe/S clusters are inserted into target pro-

teins by a set of specialized Fe/S cluster insertion proteins (Figure 18) [Maio and Rouault, 2015]; [Rouault,

2012].

Mitoferrin-1,2

Frataxin

NFS1:ISD11:
ISCU complex

FDXR

IS
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NADPH

NADP+

Fe2+

Fe2+

Fe2+
Fe2+
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2Fe-2S
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GLRX5

FDX1,2 
(reduced)

FDX1,2 
(oxidated)

Figure 18: Iron-sulfur cluster biogenesis. Ferrous iron is transported across the inner mitochondrial mem-

brane into the mitochondrial matrix by Mitoferrin-1 and Mitoferrin-2. Then frataxin binds ferrous iron in

the mitochondrial matrix. The cysteine desulfurase NFS1, in a subcomplex with ISD11, provides the sulfur

by converting cysteine into alanine and forming a persulfide which is used for cluster formation on ISCU.

Interaction between NFS1 and ISD11 is necessary for desulfurase activity. Frataxin binds to the complex

NFS1:ISD11:ISCU and is proposed to function as an iron donor to ISCU or as an allosteric switch that

activates sulfur transfer and Fe-S cluster assembly. Cluster formation also involves the electron transfer

chain ferredoxin reductase and ferredoxins 1 and 2. ISCU initially forms clusters containing 2 iron atoms

and 2 sulfur atoms ([2Fe-2S] clusters). They are released by the monothiol glutaredoxin GLRX5 and used

for assembly of [2Fe-2S] proteins.

In eukaryotes, iron-sulfur cluster biogenesis takes place in both the cytosol/nucleus and mitochondria.

The cytosolic pathway involves the cytosolic iron-sulfur assembly (CIA) machinery, while the mitochondrial

pathway involves the iron-sulfur cluster (ISC) machinery. The CIAmachinery is responsible for the biogen-

esis of [2Fe-2S] and [4Fe-4S] clusters in the cytosol and nucleus, while the ISC machinery is responsible
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for the biogenesis of [2Fe-2S], [4Fe-4S], and [2Fe-3S] clusters in mitochondria [Shi et al., 2021]; [Rouault,

2012]; [Braymer and Lill, 2017].

Disruption of iron-sulfur cluster biogenesis due to FDX2 silencing can lead to oxidative stress and DNA

damage, both recognized hallmarks of cancer [Hanahan, 2022]. Furthermore, impaired Fe/S cluster

biogenesis may result in mitochondrial dysfunction which is common in cancer cells and is associated

with altered metabolism, increased reactive oxygen species (ROS) production, and resistance to apoptosis

[Petronek et al., 2021].

On the other hand, FDX2 silencing may sensitize cancer cells to chemotherapy. For example, silencing

of GLRX5, which is involved in iron-sulfur cluster biogenesis, can reverse cisplatin resistance and enhance

the induction of ferroptosis in head and neck cancer cells [Petronek et al., 2021]. Similarly, FDX2 silencing

inhibited colony formation and reduced the activity of ACO1 in colorectal cancer cells [Lin et al., 2022].

Therefore, it is tempting to speculate that FDX2 silencing may enhance the efficacy of chemotherapy and

improve cancer treatment outcomes. However, further research is needed to determine the specific role

of FDX2 in cancer and the potential therapeutic implications of the observed FDX2 downregulation in

cancer cells.

4.2.5 Functional relationships between DEGs

As previously mentioned in the Methods section, the functional enrichment analysis (conducted in R using

ggprofiler2) did not yield statistically significant results. The fact that many of the top DEGs do not code for

proteins (long non-coding RNAs and pseudogenes) explains the lack of functional results for the global gene

set. This is also visible in the STRING network visualization of the top DEGs in Figure 19: no functional

relationships between the global set of genes (no edges connecting the protein nodes).

The mitochondrial DEGs set is enriched in the cellular compartment mitochondrion (in GO CC on-

tology) as expected since this set was selected to be mitochondrial. The STRING functional network (Fig-

ure 20) shows strong links between the mitochondrially encoded proteins, and a few predicted (weaker

evidence) links to nuclear-encoded proteins: BCL2L10 and BNIP3 (two Bcl-2 family proteins involved

in the balance between cell survival and apoptosis), CMPK2 and the electron transport chain (homol-

ogous genes from other organisms are neighbors and coexpressed), and AIFM3, FDX2, and PRODH

(discussed above).
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Figure 19: STRING functional interaction network for differentially expressed genes from the global gene

set.

Figure 20: STRING functional interaction network for differentially expressed genes from the mitochon-

drial gene set.

4.3 Clustering

4.3.1 Hierarchical clustering

The primary objective of this study is to identify the gene expression profiles of mitochondrial genes in

cancers originating from organs with alternative metabolic rates. To achieve this, two clustering analyses

were conducted using the differentially expressed genes that encode mitochondrial proteins (102 genes out

of 1136 that are present in MitoCarta3.0). The R code for this analysis is in the script ”5.clustering.Rmd”,

and can be inspected at the GitHub repository.

Hierarchical clustering was performed first to visualize clusters of genes with similar expressions (Fig-
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ure 21), followed by soft clustering using the c-means algorithm (Figure 22) with a fuzzification parameter,

allowing genes to belong to more than one cluster [Ferraro and Giordani, 2020].

For hierarchical clustering, three alternative ways of computing the distance between a newly formed

cluster and all other points or existing clusters were tested, namely, single linkage, complete linkage,

and average linkage. Briefly, the single linkage calculates the distance between clusters as the smallest

distance between any two points in the two clusters; in complete linkage the distance between clusters

is defined as the largest distance between any two objects in the two clusters; and the average linkage

computes the distance between clusters as an average of distances between all pairs of objects in the two

clusters [Holmes and Huber, 2018]. This last one was chosen for analysis and discussion, because its

results generated nearly the same clusters, but with longer inner branches (representing the strength of

the clustering) (Annex B.3).

To accompany the hierarchical clustering results, a heatmap was generated, showing gene expression

levels through a color gradient - intense colors representing higher expression and lighter shades indicating

lower expression (Figure 21). The rows have been ordered according to the lateral dendrogram obtained

from the hierarchical clustering. The columns (representing the individual samples) have been ordered by

organ and cancer status prior to the clustering, as shown by the top color bar legend (NC = non-cancer, C

= Cancer).
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Figure 21: Heatmap expression of mitochondrial proteins grouped by hierarchical clustering. The intensity

of the blue color indicates the level of gene expression (darker blue indicates higher expression). The

dendrogram on the left shows the hierarchical clustering of the genes. The color code at the top indicates

the organs (bladder in coral; colon in green; skin in orange; brain in pink; kidney in yellow; liver in purple)

labeled as non cancer (NC lighter shade) or cancer (C darker shade).

Hierarchical clustering discussion

The hierarchical clustering analysis reveals a visible group of 13 genes that are more expressed (darker

color) than the remaining clusters. This cluster groups the 13 mitochondrially encoded genes, namely,

MT-ND4L, MT-ND6, MT-ND3, and MT-ATP8 in one cluster, which then groups with the rest of the

mitogenes (MT-CYB, MT-CO2, MT-CO3, MT-ATP6, MT-ND2, MT-ND1, MT-ND5, MT-ND4, and

MT-CO1). The fact that they are encoded in mitochondrial DNA offers an immediate explanation for this

clustering, owing to their shared biological function and coordinated regulation inside mitochondria, as

discussed above. Interestingly, the exact same clusters are shown in the other two hierarchical clustering

methods tested (Annex B.3).
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As expected, FDX2 clusters poorly with other genes and shows a very distinctive pattern of expression

highly expressed in healthy patients across various organs, but lowly expressed in cancer samples, in line

with the observed results shown in the boxplots discussed above (Figure 17).

The hierarchical clustering results also show clusters of genes, such as ACSM2B (the last gene on the

heatmap) [ens, b], that are highly expressed in some organs regardless of the samples’ health status. This

gene encodes an acyl-CoA synthetase that catalyzes the activation of free fatty acids (FFAs) to CoA esters

through a two-step thioesterification reaction [Vessey et al., 1999]. The absence of differences between

healthy and cancer samples prompts us to look at the type of organ where the gene is most expressed.

We can observe that it is primarily expressed in the kidneys and liver, both of which are high-metabolism

organs that play an important role in lipid metabolism. The liver regulates the synthesis, degradation, and

storage of lipids. Acyl-CoA synthetases in the liver are essential for activating fatty acids, which can then

be utilized for energy production (via beta-oxidation) or incorporated into lipids for storage or export as

lipoproteins [Vessey et al., 1999].

While the kidneys are primarily known for their role in filtration and excretion, they also participate in

lipid metabolism. Proximal tubules utilize a variety of substrates for energy metabolism, but fatty acids are

preferred, especially during conditions of fasting or increased energy demand [Bobulescu, 2010]. Acyl-CoA

synthetases in the kidneys facilitate the activation of fatty acids for this purpose.

4.3.2 Fuzzy clustering: Mitochondrial expression profiles

The distinct clusters of mitochondrial proteins found by the fuzzy clustering algorithm are shown in Fig-

ure 22 and the genes listed in Table 6. These clusters can be interpreted as the individual mitochondrial

expression profiles sought by this study.

Most profiles cluster several genes, however, a few clusters comprise only a single gene, showing their

unique pattern of expression across the different sample groups (Table 6). These clusters (1, 3, 4, 5, 11,

and 16) highlight many of the genes previously discussed, such as PRODH, FDX2, and ACSM2B.
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Figure 22: Fuzzy clustering results for the differentially expressedmitochondrial genes. Clusters that exhibit

a single grey color overlaid with red indicate the presence of only one gene in that cluster, while clusters

with multiple colors show more than one gene present. The algorithm was parameterized requesting for

20 clusters.
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Table 6: Mitochondrial genes present in each of the 20 clusters presented in Figure 22.

Cluster Genes

1 ACSM2B

2 SIRT4, SDR39U1, CMPK2, ETFBKMT, C5orf63, ACSM5, AIFM3, GPAT2, PRELID2

3 PRODH

4 MPST

5 FDX2

6 CLYBL, CHCHD5, TAMM41, MIX23, SLC25A45, MAIP1, MTHFD2L, MTX1

7 EXD2, MRPS14, MTIF3, SPIRE1, CCDC90B, DBT, TMEM65

8 ABHD11, DHRS7B, COQ10B, NSUN4, MCU, NUDT19

9 SFXN3, ATPAF1, ATAD1, OXR1, CLPX, GLOD4, BNIP3, GTPBP6, NAXD

10 MTG2, HDHD3, TIMM17B, RPUSD3, MRPL52, MRPL11, FAHD1, UQCR10, MRPL40

11 BLOC1S1

12 MCUR1, AKR7A2, MRPL43, HDHD5, MRPL24, SLC25A44, IFI27

13 LAP3, C1QBP, COX7A2, FAM162A, MRPL37, ALDH9A1, ATP5PF, VDAC2, AURKAIP1

14 OGG1, QRSL1, SMIM20

15 BCL2L10, ACSM1, OXCT2, ACSM4

16 ACOT2

17 ACACB, SLC8B1, NME3, TRMT1, DNAJC4, SLC25A25, MIGA2, PISD, MYO19

18 MT-ND6, MT-ND3, MT-ND4L, MT-ATP8

19 STARD7, MTCH1, DBI

20 MT-CO2, MT-CYB, MT-ND2, MT-ND5, MT-CO1, MT-ND4, MT-ND1, MT-ATP6, MT-CO3

Others, such as MPST (Mercaptopyruvate sulfurtransferase), BLOC1S1 (Biogenesis Of Lysosomal

Organelles Complex 1 Subunit 1), and ACOT2 (Acyl-CoA thioesterase 2) appear here as potential markers

for alternative regulation modes and/or unique expression programs, and therefore interesting candidates

to shed light on potential new active mechanisms in cancer.

As expected, the 13 mitochondrially encoded genes form two individual clusters (cluster 18 and clus-

ter 20), corresponding to the main darker cluster shown in the heatmap (Figure 21). These clusters

support the hierarchical clustering results (Figure 21), as genes encoded by the mitochondria displayed a

consistently high level of expression across all samples, distinguishing them from the remaining genes.

Finally, cluster 12 shows a particularly distinctive pattern of expression higher in cancer tissues than in
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healthy controls (seen by the alternating up and down pattern). This cluster groups seven genes (MCUR1,

AKR7A2, MRPL43, HDHD5, MRPL24, SLC25A44, and IFI27), all are enzymes functionally unre-

lated (confirmed in STRING), except forMRPL43 andMRPL24 which are both subunits of the mitochon-

drial ribosome. Since these proteins are encoded in the nucleus, this co-expression pattern might suggest

a coordinated regulation in the nucleus to ensure proper mitochondrial function in response to cellular and

environmental changes occurring in cancer. However, further research is required to clarify the potential

mechanisms underlying the different reported expression profiles.
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Chapter 5

Conclusions and Future work

This thesis presents research aimed at identifying differentially expressed genes in cancer, specifically

focused on the genes that encode mitochondrial proteins, between high metabolic rate organs and low

metabolic rate organs (Figure 23). The research involved the collection and analysis of two independent

transcriptomics datasets comprising samples of normal tissue (GTEx) and cancer tissue (TCGA). Principal

Component Analysis (PCA) was employed, revealing a significant overlap between samples from both

TCGA and GTEx datasets, indicating the suitability of these datasets for further investigation.

Subsequently, a differential expression analysis was conducted using general linear models, identifying

8651 differentially expressed genes. These genes were inspected using volcano plots and the distribution

of the top genes was visualized with boxplots. Among these genes, notable differences in expression were

observed for mitochondrial protein-encoding genes like ACSM1, ACSM5, and PRODH.

Furthermore, the boxplots provided insights into the expression patterns of each gene across different

organs and health status (non cancer and cancer). Interestingly, the main differences were observed

between normal and cancer tissues rather than between high and low metabolic rate organs.

The final step of this study applied hierarchical and fuzzy clustering methods to the gene expression

matrix to find expression profiles. These analyses highlighted distinct clusters of genes encoded in mi-

tochondrial DNA, emphasizing their role in energy production. Additionally, unique expression patterns

were identified for relevant genes, namely FDX2 and ACSM2B, making them good candidates for future

experimental validation (see Figure 23).

This study offers an overview of candidate genes exhibiting differential expression between normal and

cancer tissues across six distinct organs. Specifically, the bladder, colon and skin represent low metabolic

rate organs, while the brain, liver and kidney belong to the high metabolic rate category. The selection of

these organs was based on the availability of comprehensive data within the TCGA dataset, offering the

potential to identify common expression profiles.
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Figure 23: Overview of the thesis outline. This study aimed to identify differentially expressed genes

associated with cancer, specifically focusing on the comparison between high metabolic rate and low

metabolic rate organs, particularly those encoding mitochondrial proteins. To accomplish this, we used

two RNA-seq datasets derived from both normal (GTEx) and cancer tissues (TCGA). A total of 8651 genes

were analysed to find differential expression. Subsequently, hierarchical and fuzzy clustering algorithms

were applied to a subset of 91 genes that encode mitochondrial proteins. These analyses showed 20

distinct clusters, ultimately presenting a valuable list of candidate genes for future validation studies.

Transcriptomics data analysis was a pivotal component of this study. RNA-seq data was used due to its

numerous advantages when compared to other alternative methods like microarrays. These advantages

encompass comprehensive transcript coverage, heightened sensitivity, the capacity to detect allele-specific

differential expression, and the identification of novel transcripts [Bradford et al., 2010].

To conduct the differential expression analysis, the edgeR package was selected. This analytical ap-

proach enabled the identification of differentially expressed genes across distinct cancer tissues, subse-

quently allowing for their grouping into clusters if their expression profiles resembled those of other genes.

Following this analysis, we pinpointed 8651 genes with significant changes in expression that were later

visualized through volcano plots. Among these genes, thirteen emerged as particularly noteworthy, encom-
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passing both upregulated and downregulated ones, thereby offering valuable insights into the biological

processes associated with cancer status.

Within the downregulated genes featuredMUC21 and LHFPL3-AS1, both recognized for their roles

in inhibiting cell adhesion and apoptosis, aligning with well established cancer hallmarks.

Regarding the upregulated genes encoding mitochondrial proteins, ACSM1, ACSM5, and PRODH

suggested a potential adaptation of cancer cells to metabolic stress, ensuring energy production under

adverse conditions. Conversely, downregulated mitochondrial genes like MT-ATP6 indicate a potential

reduction in aerobic respiration in cancer cells, possibly associated with their adaptation to harsher con-

ditions.

In order to visualize the expression profiles of genes encoding mitochondrial proteins, an hierarchical

and fuzzy clustering analysis was performed. These analyses unveiled clusters of genes with coordinated

expression patterns. Particularly noteworthy were the genes encoded in mitochondrial DNA, namelyMT-

ND6,MT-ND3,MT-ND4L,MT-ATP8,MT-CO2,MT-CYB,MT-ND2,MT-ND5,MT-CO1,MT-ND4,

MT-ND1,MT-ATP6, andMT-CO3, which formed distinct clusters exhibiting high expression levels. This

finding strongly validates this analysis, since the fact that they are encoded in mitochondrial DNA leads to

a shared regulation inside the organelle, leading to their co-regulation appearing in a different cluster from

all other nuclear encoded genes. Additionally, individual gene expression profiles, exemplified by FDX2

and ACSM2B, displayed unique patterns that warrant further in-depth investigation.

Overall, this study has illuminated the intricate interplay among gene expression, cancer status, and

metabolic rates across diverse organs. The identification of specific genes and clusters exhibiting sig-

nificant expression changes lays the groundwork for further research and experimental validation. Com-

prehending these molecular expression profiles holds the potential to yield valuable insights into cancer

biology, metabolic regulation, and prospective therapeutic targets. This, in turn, can advance our under-

standing and pave the way for personalized medicine approaches.

However, it is important to notice that our initial hypothesis was not conclusively shown since when

visualizing the gene expression through boxplots for each dataset and organ, we observed that the primary

differences in gene expression stemmed from the comparison between normal and cancer samples, irre-

spective of the metabolic rates of the organs under analysis. This suggests that the signal associated with

metabolic rate was relatively weak (if it is there at all) when compared to the dominant influence of the

cancer status. Additional limitations, including unequal sample sizes for each organ, and the usage of two

different data sources, must be considered when interpreting these results. However, despite these lim-

itations, our findings provide valuable insights into the complex interplay between metabolism and gene
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expression in cancer, providing some additional clues to the molecular mechanisms underlying cancer

onset and development.

In the future it would be interesting to reformat this analysis including only cancer samples, enabling

a more concentrated examination of the metabolic rate signal. Alternatively, we could explore a strategy

focused on filtering the expression for the genes involved in cellular metabolism, irrespective of their

association with mitochondria. Additionally, expanding our analysis to encompass a broader range of

organs and subsequently categorizing them into high or low metabolic rate groups could be explored as

another avenue to achieve our research objectives.
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Appendix A
Support work

A.1 Data analysis directory structure

mitoprofiles

analysis_output

mitoprofiles.Rproj

all_genes_boxplots (5 files)

comb_NO_interac_extreme_degs_boxplot.pdf
comb_ONLY_interac_extreme_degs_boxplot.pdf
comb_WITH_interac_extreme_degs_boxplot.pdf
gtex_extreme_degs_boxplot.pdf
tcga_extreme_degs_boxplot.pdf

mito_genes_boxplots (5 files)

comb_NO_interac_mito_degs_boxplot.pdf
comb_ONLY_interac_mito_degs_boxplot.pdf
comb_WITH_interac_mito_degs_boxplot.pdf
gtex_mito_degs_boxplot.pdf
tcga_mito_degs_boxplot.pdf

dataframes (5 files)

downregulated_df.csv
gene_v26_dataframe.csv
gene_v36_dataframe.csv
mito_df.csv
upregulated_df.csv

heatmaps (1 file)

heatmap_with_interaction.pdf

fuzzy_clustering (5 files)

fuzzy_clustering_page1.pdf
fuzzy_clustering_page2.pdf
fuzzy_clustering_page3.pdf
fuzzy_clustering_page4.pdf
fuzzy_clustering_page5.pdf

pca_plots (2 files)

pca_plot_organ.pdf
pca_plot_study.pdf

volcano_plots (5 files)

volcano_plot_comb_no_interation.pdf
volcano_plot_comb_only_interation.pdf
volcano_plot_comb_with_interation.pdf
volcano_plot_ gtex_de.pdf
volcano_plot_mitochondrial.pdf
volcano_plot_ tcga_de.pdf
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data

processed (9 files)

annotation_files (4 files)

analysis (9 files)

gencode.v26.annotation.gff3
gencode.v26.annotation.gtf
gencode.v36.annotation.gff3
gencode.v36.annotation.gtf

combined_counts_tcga_gtex.RDS
combined_metadata_tcga_gtex.RDS
combined_pca_result.RDS
combined_pca_scores_df.RDS
gtex_data_clean.RDS
gtex.RDS
mitocarta.RDS
tcga_data_clean.RDS
tcga_data_se.RDS

clustering_mito_distance_matrix.RDS
cmeans_result.RDS
combined_de_no_interaction.RDS
combined_de_only_interaction.RDS
combined_de_with_interaction.RDS
gtex_de.RDS
lrt_coef_df_merged.RDS
tcga_de.RDS
top_genes_df_merged.RDS

R

R

code (9 files)

1.download_data.Rmd
2.format_data.Rmd
2.1.compare_tcga_gtex_gencode_v26_v36.Rmd
3.diff_expression.Rmd
3.1.diff_expression_visualization.Rmd
3.1.diff_expression_visualization_v2.Rmd
3.2.diff_expression_visualization.Rmd
4.functional_enrichment.Rmd
5.clustering.Rmd

Rmd

TCGA
processed_data (10 files)

TCGA-BLCA.RData
TCGA-CHOL.RData
TCGA-COAD.RData
TCGA-GBM.RData
TCGA-KICH.RData
TCGA-KIRC.RData
TCGA-KIRP.RData
TCGA-LGG.RData
TCGA-LIHC.RData
TCGA-SKCM.RData

R
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TCGA/raw_data

tcga_data_query.RDS

TCGA-BLCA/harmonized/Transcriptome_Profiling/Gene_Expression_Quantification (863 files)
 0aacd6c6-c2cb-4304-8d2d-ff63e15629c2
 …

TCGA-CHOL/harmonized/Transcriptome_Profiling/Gene_Expression_Quantification (176 files)
 0c9aba87-406f-4789-9275-e1d25bb3aea7
 …

TCGA-COAD/harmonized/Transcriptome_Profiling/Gene_Expression_Quantification (2096 files)
 0a41ee42-3997-4fde-8928-c005b34bc0d9
 …

TCGA-GBM/harmonized/Transcriptome_Profiling/Gene_Expression_Quantification (700 files)
 00cce172-4b2b-4cb5-b6dd-47c9627972af
 …

TCGA-KICH/harmonized/Transcriptome_Profiling/Gene_Expression_Quantification (364 files)
 0ba21ef5-0829-422e-a674-d3817498c333
 …

TCGA-KIRC/harmonized/Transcriptome_Profiling/Gene_Expression_Quantification (2456 files)
 0a98d561-9c8c-40d2-aaaf-cad735533329
 …

TCGA-KIRP/harmonized/Transcriptome_Profiling/Gene_Expression_Quantification (1292 files)
 0a4e4402-13a5-4eea-b70c-b121bcf81156
 …

TCGA-LGG/harmonized/Transcriptome_Profiling/Gene_Expression_Quantification (2136 files)
 0a2a899a-5dcb-44dd-aab7-5b13001c3e02
 …

TCGA-LIHC/harmonized/Transcriptome_Profiling/Gene_Expression_Quantification (1696 files)
0bee0323-d4e5-4f61-97a3-d12e0d21c18d
…

TCGA-SKCM/harmonized/Transcriptome_Profiling/Gene_Expression_Quantification (1892 files)
0aaec814-e30d-489b-928d-62776b8028cd
…

R

raw

GTEx/rawdata (9 files)

MitoCarta (1 file)

gene_reads_2017-06-05_v8_bladder.gct.gz
gene_reads_2017-06-05_v8_brain_cortex.gct.gz
gene_reads_2017-06-05_v8_colon_sigmoid.gct.gz
gene_reads_2017-06-05_v8_colon_transverse.gct.gz
gene_reads_2017-06-05_v8_kidney_cortex.gct.gz
gene_reads_2017-06-05_v8_kidney_medulla.gct.gz
gene_reads_2017-06-05_v8_liver.gct.gz
gene_reads_2017-06-05_v8_skin_not_sun_exposed_suprapubic.gct.gz
gene_reads_2017-06-05_v8_skin_sun_exposed_lower_leg.gct.gz

Human.MitoCarta3.0.xls
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Appendix B
Details of results

B.1 Differential Expression Analysis

B.1.1 Upregulated genes (all genes set)

Figure 24: Boxplots of the most upregulated genes. Each plot represents the expression of a gene for
the six organs studied (bladder, colon, skin, brain, kidney, and liver) in the two datasets used (GTEx and
TCGA). The first six box plots correspond to GTEx data, with low metabolic rate organs marked in red
and high metabolic rate organs in green. The following six plots are for TCGA data, and the arrangement
of organs is the same.
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B.1.2 Downregulated genes (all genes set)

Figure 25: Boxplots of the most downregulated genes. Each plot represents the expression of a gene for
the six organs studied (bladder, colon, skin, brain, kidney, and liver) in the two datasets used (GTEx and
TCGA). The first six box plots correspond to GTEx data, with low metabolic rate organs marked in red
and high metabolic rate organs in green. The following six plots are for TCGA data, and the arrangement
of organs is the same.
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B.1.3 Mitochondrial genes upregulated

Figure 26: Boxplots of the most upregulated genes encoding mitochondrial proteins. Each plot represents
the expression of a gene for the six organs studied (bladder, colon, skin, brain, kidney, and liver) in the
two datasets used (GTEx and TCGA). The first six box plots correspond to GTEx data, with low metabolic
rate organs marked in red and high metabolic rate organs in green. The following six plots are for TCGA
data, and the arrangement of organs is the same.
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B.1.4 Mitochondrial genes downregulated

Figure 27: Boxplots of the most downregulated genes encoding mitochondrial proteins. Each plot repre-
sents the expression of a gene for the six organs studied (bladder, colon, skin, brain, kidney, and liver)
in the two datasets used (GTEx and TCGA). The first six box plots correspond to GTEx data, with low
metabolic rate organs marked in red and high metabolic rate organs in green. The following six plots are
for TCGA data, and the arrangement of organs is the same.
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B.2 Functional Enrichment
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Figure 28: Functional enrichment analysis performed in this thesis.
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B.3 Clustering

M
T

−
AT

P
8

M
T

−
N

D
6

M
T

−
N

D
3

M
T

−
N

D
4L

M
T

−
N

D
5

M
T

−
N

D
1

M
T

−
N

D
2

M
T

−
AT

P
6

M
T

−
C

O
3

M
T

−
C

O
2

M
T

−
C

Y
B

M
T

−
C

O
1

M
T

−
N

D
4

A
C

S
M

2B
O

X
C

T
2

A
C

S
M

4
F

D
X

2
B

C
L2

L1
0

A
C

S
M

1
M

T
C

H
1

S
TA

R
D

7
D

B
I

A
C

A
C

B
M

P
S

T
LA

P
3

A
LD

H
9A

1
M

R
P

L3
7

C
1Q

B
P

G
LO

D
4

FA
M

16
2A

C
O

X
7A

2
A

U
R

K
A

IP
1

V
D

A
C

2
G

T
P

B
P

6
N

A
X

D
B

N
IP

3
S

F
X

N
3

O
X

R
1

IF
I2

7
H

D
H

D
3

FA
H

D
1

A
B

H
D

11
M

C
U

T
M

E
M

65
D

H
R

S
7B

N
S

U
N

4
R

P
U

S
D

3
M

R
P

L4
0

M
R

P
L1

1
T

IM
M

17
B

M
R

P
L5

2
E

X
D

2
M

R
P

S
14

C
C

D
C

90
B

D
B

T
C

O
Q

10
B

M
T

IF
3

S
LC

8B
1

M
Y

O
19

M
IG

A
2

T
R

M
T

1
P

IS
D

U
Q

C
R

10
N

M
E

3
D

N
A

JC
4

S
LC

25
A

25
AT

PA
F

1
AT

P
5P

F
A

K
R

7A
2

M
R

P
L2

4
M

T
G

2
M

R
P

L4
3

H
D

H
D

5
S

LC
25

A
44

M
C

U
R

1
AT

A
D

1
C

LP
X

S
IR

T
4

G
PA

T
2

A
IF

M
3

C
M

P
K

2
C

5o
rf

63
P

R
E

LI
D

2
A

C
S

M
5

S
P

IR
E

1
A

C
O

T
2

S
M

IM
20

O
G

G
1

Q
R

S
L1

N
U

D
T

19
C

H
C

H
D

5
M

T
X

1
M

IX
23

M
A

IP
1

P
R

O
D

H
B

LO
C

1S
1

S
D

R
39

U
1

TA
M

M
41

M
T

H
F

D
2L

C
LY

B
L

E
T

F
B

K
M

T
S

LC
25

A
45

0
20

00
0

40
00

0
60

00
0

80
00

0

Hierarchical Clustering − Complete linkage

hclust (*, "complete")
Gene Symbol (mitochondrial proteins)

D
is

ta
nc

e

Figure 29: Dendrogram for the complete link.
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Figure 30: Dendrogram for the single link.
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Figure 31: Dendrogram for the group average.
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Appendix C
Software tools

C.1 R Packages

C.1.1 CRAN repository

here - enable easy file referencing in project-oriented workflows. The here package creates paths relative

to the top-level directory.

tidyverse - helps to transform and better present data. It assists with data import, tidying, manipulation,

and data visualization.

readxl – allows Reading data from Excel files and into R.

patchwork - combine separate ggplots into the same graphic in a simple and straightforward manner.

gprofiler2 - functional enrichment analysis and visualization, gene/protein/SNP identifier conversion

and mapping orthologous genes across species.

RColorBrewer - provides color schemes for R graphics.

C.1.2 Bioconductor repository

TCGAbiolinks - the aim of TCGAbiolinks is : i) facilitate the GDC open-access data retrieval, ii) prepare the

data using the appropriate pre-processing strategies, iii) provide the means to carry out different standard

analyses.

SummarizedExperiment – provides the SummarizedExperiment class and associated methods allow-

ing the setting and retrieval of data from SummarizedExperiment objects. These contain one or more

assays, each represented by a matrix-like object of numeric or other mode, where the rows typically rep-

resent genomic ranges of interest and the columns represent samples.

edgeR - performs differential expression analysis of RNA-seq expression profiles with biological replica-

tion. Implements a range of statistical methodology based on the negative binomial distributions, including

empirical Bayes estimation, exact tests, generalized linear models and quasi-likelihood tests.

AnnotationDbi - Implements a user-friendly interface for querying SQLite-based annotation data pack-
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https://cran.r-project.org/web/packages/here/vignettes/here.html
https://www.tidyverse.org/
https://cran.r-project.org/web/packages/readxl/index.html
https://cran.r-project.org/web/packages/patchwork/index.html
https://cran.r-project.org/web/packages/gprofiler2/index.html
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html
https://bioconductor.org/packages/release/bioc/html/SummarizedExperiment.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html


ages.

org.Hs.eg.db - Genome wide annotation for Human genomic features.

C.1.3 GitHub R packages

mitocarta - R data packege created within this project to provide access in R to the MitoCarta data, formated

and clean.
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https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
https://github.com/MitoProfiles/MitoCarta
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