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Abstract

Nowadays the success of a business is dependent on the ability to effectively integrate in an intricate

network of entities that are connected by material and information flows, inventory management being

one of the main concerns. These flows are characterized by decision-making processes that will vary

depending on the environment, entities and business models in the network. So, these networks need

a decision-making system capable of providing solutions that dictate the optimal way the network and its

entities provide and collect inventory in order to reduce costs and maximize profit. In the context of this

dissertation, the problem arises when there is a stock disruption in the network and outside entities can no

longer answer the stores’ supply requests and these stores become the entities responsible for request-

ing and delivering products to each other. This problem is modeled as an Inventory Routing problem,

since it encompasses inventory management and routing decisions. The main goal of the system can be

described as maximizing the collection of products per travel distance, without causing stock-outs at any

supplier, for the entire network. The problem at hand is an optimization problem.

In order to solve this optimization problem, first, the structural characteristics and key aspects were iden-

tified and studied, followed by the mathematical conceptualization, which involved the definition of the

objective function and the corresponding set of constraints. The mathematical formulation allows the

problem to be translated into a specific and precise mathematical language, making it possible to evaluate

solutions, by means of a fitness function, and apply optimization algorithms to solve the problem. These

optimization algorithms can be approximate or exact methods and their suitability to the problem depends

on many factors such as the size, structure and complexity of the problem. So, the choice of the optimiza-

tion algorithms must be preceded by a careful analysis of the problem at hand and its characteristics.

After this, in the implementation phase, two adaptations of the genetic algorithm, two adaptions of the

simulated annealing algorithm, two adaptations of the tabu search algorithm were developed. Additionaly,

another algorithm responsible for generating reference solutions was also developed (Dynamic2). In order
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to test and compare the developed optimization algorithms, three different sized scenarios were generated.

Each of these scenarios has a different amount of data associated with it, whether it be in the number of

stores, types of products or number of requests. As to compare the results of the different instances of

the algorithms fairly in each scenario, these were made to generate roughly the same number of solutions.

In scenarios 1 and 3, all the optimization algorithms developed were successful in finding solutions with

higher fitness values than the baseline Dynamic2 solution. In scenario 2, due to time constraints and

computational complexities, only the Genetic algorithm and the Genetic algorithm with Elitism using an

initial population consisting of solutions generated by the Dynamic2 algorithm, managed to find solutions

with higher fitness value than the baseline solution. In this scenario, the developed optimization algorithms

were also tested using feasible solutions generated through randommechanisms as initial solutions. These

instances also achieve solutions with improved fitness values when compared to their respective initial so-

lutions or populations.

Furthermore, in scenarios 1 and 3, the Genetic algorithm with an initial population consisting of feasible

solutions generated through random mechanisms was the optimization algorithm that found the best so-

lutions, with these solutions having fitness values 56.14% and 92.07% greater than the baseline Dynamic2

solution’s, respectively. In scenario 2, the Genetic algorithm with Elitism, utilizing an initial population con-

sisting of solutions generated by the mentioned Dynamic2 algorithm, found the solution with the highest

fitness value, being approximately 1.00% higher than the baseline solution.

Keywords Optimization, Inventory Routing Problem, Approximate Methods, Exacts Methods, Meta-

heuristics
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Resumo

Atualmente, o sucesso de um negócio depende da capacidade de se integrar de uma forma eficaz numa

rede de entidades conectadas por fluxos de materiais e informações, sendo a gestão de inventário uma

das principais preocupações. Esses fluxos são caracterizados por processos de tomada de decisão que

variam dependendo do ambiente, entidades e modelos de negócios na rede. Estas redes precisam de

um sistema de tomada de decisão capaz de fornecer soluções que otimizem a forma como a rede e as

suas entidades fornecem e recolhem inventário para reduzir custos e maximizar lucros. No contexto desta

dissertação, o problema surge quando há uma interrupção de stock na rede e as entidades externas já não

conseguem responder às solicitações de abastecimento das lojas e essas lojas tornam-se as entidades

responsáveis por solicitar e entregar produtos entre si. Este problema é modelado como um Inventory

Routing Problem, pois engloba decisões de gestão de inventário e routing. O objetivo principal do sistema

pode ser descrito como maximizar a recolha de produtos por distância percorrida, sem causar stock-outs

nos fornecedores, para toda a rede. O problema em questão é um problema de otimização.

Para resolver este problema de otimização, primeiro foram identificadas e estudadas as características es-

truturantes do problema, seguido de uma conceptualização matemática do mesmo, através da definição

da função objetivo e do conjunto de restrições associadas. A formulação matemática permite que o

problema seja traduzido para uma linguagem específica e precisa, tornando possível avaliar e comparar

soluções, através da função objetivo, e aplicar algoritmos de otimização para resolver o problema. Esses

algoritmos de otimização podem ser métodos aproximados ou exatos e sua adequação ao problema de-

pende de muitos fatores, como tamanho, estrutura e complexidade do problema. Então, a escolha dos

algoritmos de otimização deve ser precedida por uma análise cuidadosa do problema em questão e suas

características.

Posteriormente, na fase de implementação, foram desenvolvidas duas adaptações de algoritmos genéti-

cos, duas de simulated annealing e duas de tabu search, juntamente com outro algoritmo, responsável
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por gerar soluções de referência (Dynamic2). Com o intuito de testar e comparar os algoritmos de otimiza-

ção desenvolvidos, foram criados três cenários de tamanhos diferentes. Cada um destes cenários possui

diferentes quantidades de dados associados, seja em termos do número de lojas, tipos de produtos ou

quantidade de pedidos. Para garantir uma comparação justa entre as diferentes instâncias dos algoritmos

em cada cenário, estes foram configurados para gerar aproximadamente o mesmo número de soluções.

Nos cenários 1 e 3, todos os algoritmos de otimização desenvolvidos tiveram sucesso em encontrar

soluções com valores de fitness superiores à solução de referência do algoritmo Dynamic2. No cenário 2,

devido a limitações de tempo e complexidades computacionais, apenas o algoritmo Genético e o algoritmo

Genético com Elitismo, utilizando uma população inicial composta por soluções geradas pelo algoritmo

Dynamic2, conseguiram encontrar soluções com valores de fitness superiores à solução de referência.

Neste cenário, os algoritmos de otimização desenvolvidos foram também testados utilizando soluções

possíveis geradas aleatoriamente como soluções iniciais. Estes casos também alcançaram soluções com

valores de fitness maiores quando comparadas às soluções iniciais ou populações respetivas.

Adicionalmente, nos cenários 1 e 3, o algoritmo Genético com uma população inicial composta por

soluções possíveis geradas aleatoriamente foi o algoritmo de otimização que encontrou as melhores

soluções, sendo que estas soluções tinham valores de fitness superiores em 56.14% e 92.07%, respetiva-

mente, à solução de referência do algoritmo Dynamic2. No cenário 2, o algoritmo Genético com Elitismo,

utilizando uma população inicial composta por soluções geradas pelo algoritmo Dynamic2, encontrou a

solução com o valor de fitness mais elevado, sendo este aproximadamente 1.00% superior à solução de

referência.

Palavras-chave Otimização, Inventory Routing Problem, Métodos Aproximados, Métodos Exatos, Meta-

heurísticas
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Chapter 1

Introduction

1.1 Context

In this day and age, individual businesses no longer compete as solely autonomous entities, but rather in

complex supply chains Lambert and Cooper [2000]. The success of a business depends on its ability to

effectively integrate and communicate in an intricate network of organizations that are linked by material,

information and financial flows Lambert and Cooper [2000], Stadtler et al. [2015]. These flows involve

decision-making processes which may be different according to the business model and characteristics of

the problem being tackled.

Retail Consult, which is the company this project is being developed for, provides consultancy and tech-

nological solutions services to groups of retailers and needs a decision-making system that optimizes the

inventory management of a network of retailers within a supply chain. The retailers in question are all

stores of the same retailer group that are connected through a network and are monitored by the men-

tioned decision-making system. The problem that the project aims to address arises when there is a

disruption in the supply chain, where external entities are unable to fulfill the stores’ supply requests. This

leads to the stores within the network becoming solely responsible for requesting and delivering products

to one another. This system must be capable of calculating a solution that optimizes the inventory flow

between stores and consequently the whole network. The problem at hand is an optimization problem.

1.2 Motivation

After the covid-19 pandemic, supply chains are once again being put to the test by the conflict in Ukraine.

During the pandemic, logistics disruptions, shortages and soaring energy prices have all contributed to

supply shortages and spiraling transport costs. The conflict in Ukraine, has put additional pressure on
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the already tense global supply chain Ngoc et al. [2022]. This conflict will continue to have an impact on

the availability of raw materials, food and energy. Which in turn, will have an inflationary impact on the

aforementioned resources’ cost. These are some of the reasons why it is becoming increasingly important

to have an optimized supply chain with emphasis on Inventory Management, not only due to the business

competitiveness of today but also due to the world’s volatile social and economic situation.

In order to tackle these problems and improve the material, information, and financial flows of the supply

chain and its entities, it is necessary to find the optimal solutions for the supply chain, the best way to do

things, the most efficient manner, the most economical process Pedregal [2004]. This is called optimiza-

tion. Artificial Intelligence methods have been widely used to solve optimization problems. These methods,

such as optimization algorithms, have the advantage that they can deal with complex problems that can-

not be solved by conventional methods Ongsakul and Dieu [2013]. Traditional engineering techniques are

often visualized and reasoned about by humans in two or three dimensions. Modern optimization tech-

niques, however, can be applied to problems with millions of variables and constraints Kochenderfer and

Wheeler [2019].

Every problem is different from one another, and so are the techniques, constraints, parameters and

variables used in order to solve them. The objectives in each problem that needs to be optimized may also

differ. So, it is crucial to understand the context and state of the art of the problem in order to optimize it

successfully and effectively. The first step of optimization is going from plain words describing a problem

and its context to its formulation in precise, mathematical terms. This process is of such importance that

failure to carry it out accurately may result in unfeasible solutions to problems. So the success of an

optimization technique greatly depends on the accurate formulation of the problem through mathematical

terms Pedregal [2004]. After this process, an optimization algorithm that best fits the model must be

implemented in order to get a solution. Parameters must be tuned and the final results analysed and

evaluated. The optimization process is a complex one and must be carried out with attention to detail and

with the appropriate measures in order to get the sought optimal results.

When an optimization process is carried out successfully, it can lead to economic profit, such as mini-

mization of cost and maximization of profit, environmental profit, such as minimizing total emission and

product wastage, social profit such as minimizing customer dissatisfaction, depending on the sought after

objectives and the context of the problem.
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1.3 Objectives

The project consists in developing a decision making system capable of optimizing the inventory flow of a

network of stores within a supply chain. This system must be able to calculate a solution that provides,

for every store in need of goods that requests products to the system, the optimal way they can collect the

products they require by identifying the most suitable suppliers, determining the most efficient order of vis-

its, and selecting the most appropriate types and quantities of products to be collected from each supplier.

The main goal of this optimization is to maximize the stores’ on-shelf availability without creating stock-outs

for any of the network’s entities, all while factoring in collection costs. In order to achieve this goal, it can

be divided into smaller and more specific objectives:

1. Identification of critical aspects of the problem, modeling and definition of a framework for solving

the problem adapted to the context discussed in the previous sections;

2. Development of a mathematical formulation for the optimization problem at hand;

3. Development of appropriate optimization algorithms;

4. Testing, evaluation and comparison of the results in different scenarios with different sizes.

These objectives are presented in order of completion and are all of equal importance, the results from

each one will affect the next.

1.4 Thesis Contributions

This thesis contributed to the definition of the optimization problem for the inventory routing problem in

stock disruption scenarios.

• Requirement elicitation.

• Definition of the structure of a solution for the problem.

• Mathematical formulation of the problem.

• Generation of different sized scenarios and respective data.

• Development of a wide range of different optimization algorithms.
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• Development of a strategy for comparing the solutions and algorithms developed.

• Development of a tool for visualization of the characteristic of the problem, statistics of the solution,

representation of the solution.

1.5 Document Structure

In chapter 2, it is presented the background as well as the state of the art of the whole process of opti-

mization problems with emphasis on the inventory routing problem, which is the model of the problem at

hand. In the section 2.1, the fundamental concepts of optimization problems are presented and explained

as well as the importance of the optimization process. Furthermore, the process of going from plain words

to describing and representing an optimization problem and its context in precise mathematical terms

is explained in the subsection 2.1.1. In the subsection 2.1.2, combinatorial optimization problems are

explained with special emphasis on the inventory routing problem, which is the model of the problem

tackled in this project. The main concepts, variations and characteristics of the inventory routing problem

are described.

In section 2.2, exact methods for obtaining optimal solutions in optimization problems are discussed. The

main concepts, advantages, disadvantages are presented. The exact algorithms that fall under the cate-

gory of exacts methods are shown and some, such as the branch and bound and dynamic programming

are explained along with practical examples of the implementation of these exact algorithms.

In section 2.3, approximate methods for obtaining optimal or near optimal solutions for complex opti-

mization problems are discussed as well as the ramification of these methods, such as: approximation

algorithms in subsection 2.3.1 and heuristics and metaheuristics in subsection 2.3.2. The main concepts,

advantages, disadvantages, and appropriate use are all discussed in the mentioned section and subsec-

tions. In the subsection 2.3.2, single-solution-based and population-based metaheuristics are explained

and particular metaheuristics from both of these groups are presented with practical examples of their

implementation.

In chapter 3, the methodology of how the objectives of the problem at hand are going to be achieved is

presented in section 3.1, the context and characteristics of the optimization problem proposed to solve are

discussed in more detail in section 3.2, the mathematical formulation of the problem is shown in section
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3.3, and the optimization algorithms developed, in section 3.4, are presented and discussed.

In chapter 4, the results of the developed optimization algorithms for three different sized scenarios are

shown and discussed.

In chapter 5, the conclusions of this dissertation are presented.
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Chapter 2

Background and Literature Review

In this chapter, it will be described the background methods of this dissertation as well as the state of the

art of optimization problems surrounding the Inventory Routing Problem and the approach to solve them.

2.1 Optimization problems

An optimization problem consists in finding values for the variables that optimize an objective function

subject to constraints, with the goal of finding the best solution amongst a set of feasible solutions. The

solution that minimizes (or maximizes) this function is said to be an optimal solution and the value of the

objective function, regarding this solution, is the optimal value Klein and Young [2010]. The process of

optimization has various phases, from the mathematical formulation of the problem to the application of

the optimization algorithms, tuning and evaluation of the results. Each of these phases is dependent from

one another and therefore each one must be done thoroughly so the results are not compromised.

The importance of optimization lies not in trying to find out all about a system but in finding out, with the

least possible effort, the best way to adjust the system. If this is carried out well, systems can have a more

economic and improved design, they can operate more accurately or at less cost, and the system designer

will have a better understanding of the effects of parameter interaction and variation on his design Adby

[2013].

According to Talbi [2009], an optimization problem may be defined by the set of feasible solutions S and

the objective function f to optimize, f : S→ R. The objective function assigns to every solution s ϵ S of the

search space a real number R indicating its worth. The objective function f allows to define a total order

relation between any pair of solutions in the search space.
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The main goal of solving an optimization problem is to find a global optimum solution s*. There are some

optimizations problems where there exists more than one global solution. In these cases, the problem

may be defined as finding all global solutions.

An objective function can be a complex function that has several optima throughout the search space.

These optima can be local or global and during search phase the algorithm can get stuck on the local

optimum instead of reaching the global optimum or at least an approximation of it, which is the main goal.

Figure 1 represents the objective function in terms of the search space where are depicted two local and

one global optima, in the context of a minimization problem.

Figure 1: Local optimum and global optimum in a search space. Source: Talbi [2009].

Formally, global and local optimum can be defined as:

Global optimum: A solution s* ϵ S is a global optimum if it has a better objective function than all solu-

tions of the search space, that is, ∀s ϵ S, f(s*) ≤ f(s), in the case of a minimization problem.

Local optimum: Relatively to a given neighboring function N, a solution s* ϵ S is a local optimum if it

has a better quality than all its neighbors; that is, f(s) ≤ f(s’), ∀s′ϵN(s).

Regarding the application of the optimization algorithms, exact and approximation methods can be used.

Exact methods obtain optimal solutions and guarantee their optimality while approximate methods gen-

erate high quality solutions in a reasonable time for practical use, but there is no guarantee of finding
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a global optimal solution Talbi [2009]. These topics will be explained in more detail further down in the

document.

Problems can be classified into P or NP complexity classes, where a complexity class represents a set of

all problems that can be solved using a given amount of computational resources. The complexity class

P represents the set of all decision problems that can be solved by a deterministic machine in polynomial

time and the problems under this class are relatively easy to solve Talbi [2009]. The complexity class NP

represents the set of all decision problems that can be solved by a nondeterministic algorithm in polynomial

time. According to Talbi [2009], a decision problem A ∈ NP is NP-complete if all other problems of

class NP are reduced polynomially to the problem A. Furthermore, NP-hard problems are optimization

problems whose associated decision problems are NP-complete. Unless (P=NP), these problems require

exponential time to be solved optimally. Approximate methods can play an important role solving these

kind of problems, specially when the problems are larger of size and with a complicated structure. Even if

this kind of method does not guarantee optimality, it can provide high quality solutions within reasonable

time.

2.1.1 Mathematical Formulation of an Optimization Problem

As mentioned in the introduction, the first step of an optimization process is going from plain words describ-

ing a problem and its context to its formulation in precise, mathematical terms. This means identifying the

parameters, decision variables, constraints and formulating the objective function of a given optimization

problem. Since the following phases of the optimization process depend on the results of the mathematical

formulation, it is crucial that the constraints and objective function accurately represent the conditions and

objectives of the optimization respectively, and that there are no missing decision variables, constraints,

parameters so that the whole scope of the problem is reached, and consequently there are no unfeasible

solutions.

The formulation of an optimization problem requires the specification of the following components:

• Objective functions, which represent the value that is going to be optimized, whether maximized

or minimized. The objective function f formulates the goal to be achieved. It associates with each

solution of the the search space a real value that describes the fitness of the solution, f : S → R.

It represents an absolute value and allows a complete ordering of all solutions of the search space.

The objective function will guide the search toward ”good” solutions of the search space, and if it
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is improperly defined, it can lead to non acceptable solutions whatever metaheuristic is used Talbi

[2009].

• Decision variables, which represent the variables whose values can vary in order to increase or

decrease the value of the objective function. These variables reflect aspects of the problem that

the decision maker has control over and can take on discrete or continuous values depending on

the context of the problem.

• Constraints, which represent any kind of limitation on the values that the decision variables can

take. They are used to avoid unfeasible system responses Maier et al. [2019].

A solution is defined as a set of selected values of the decision variables, and a feasible solution is one

that satisfies all problem constraints Maier et al. [2019].

2.1.2 Combinatorial Optimization Problems

Optimization problems divide naturally in two categories: those with continuous variables and those with

discrete variables, which are called combinatorial. Continuous problems, consist of finding a set of real

numbers or even a function, whilst the combinatorial problems consist of finding an optimal object from

a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set

Papadimitriou and Steiglitz [1998]. Regarding the combinatorial optimization problems, the space of so-

lutions is typically too large to search exhaustively using brute force.

Some famous examples of combinatorial optimization problems are:

• Travelling Salesman Problem

• Vehicle Routing Problem

• Minimum Spanning Tree

• Inventory Routing Problem

• Knapsack Problem
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Inventory Routing Problem

The inventory routing problem can be described as a combination of vehicle routing and inventory man-

agement problems, in which a supplier has to deliver products to a number of geographically dispersed

costumers, subject to side constraints. A generic representation of the Inventory Routing Problem is pre-

sented in Figure 3. Inventory control and routing decisions have to be made simultaneously. This approach

provides integrated logistics solutions by simultaneously optimizing inventory management, vehicle routing

and delivery scheduling according to the distribution policies of a given organization Coelho et al. [2014].

The objective of this approach is to minimize the costs of transportation and inventory holding whilst guar-

anteeing the storage capacity limitations are respected and stock-outs are avoided Baldacci et al. [2008].

Figure 2: Generic representation of the Inventory Routing Problem

The Inventory Routing Problem arises from the context of the Vendor Managed Inventory, a business prac-

tice aimed at reducing logistics costs and adding business value. With this strategy, a supplier makes

the replenishment decisions for products delivered to costumers, based on specific inventory and supply

chain policies. This benefits the vendors, because they save on distribution costs since they are the ones

to coordinate the shipments made to the customers and also benefits the buyers since they do not have

to allocate resources and efforts in to inventory control Coelho et al. [2014].

Inventory routing problems share some basic characteristics with each other. They all consider environ-

ments in which products are shipped from a supplier to one or more costumers by means of, usually
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capacitated, vehicles Baldacci et al. [2008]. In all of these type of problems, the costs are incurred, in

part, from the distanced travelled by the vehicles, and these costs are included in the objective function.

This characteristic stems from the routing component of the problem. The inventory component of the

problem adds complexity to the routing component since product is consumed or moved to other entities

over time, there is limited storage capacity and the supplier, whilst managing the inventory, has to ensure

stock-outs and over stocking does not occur. The limited inventory holding capacity at the supplier or the

customers has to be taken into account when deciding on delivery quantities and inventory holding costs,

at the supplier or at the customers, may be incurred which as to be accounted for in the objective function

Baldacci et al. [2008]. All these factors, influence and add complexity to the routing decisions.

The Inventory Routing problems can be classified according to some criteria, such as: time horizon, struc-

ture, routing, inventory policy, inventory decisions, fleet composition and fleet size. The following table 1,

represents the possible options under the criteria of a given inventory routing problem:

Criteria Possible options

Time horizon Finite Infinite

Structure One-to-one One-to-many Many-to-many

Routing Direct Multiple Continuous

Inventory policy Maximum level (ML) Order-up-to level (OU)

Inventory decisions Lost sales Back-order Non-negative

Fleet composition Homogeneous Heterogeneous

Fleet size Single Multiple Unconstrained

Table 1: Structural Variants of the Inventory Routing Problem. Source: Adapted from Coelho et al. [2014].

According to Coelho et al. [2014], the time refers to the horizon taken into account by the model, it can

either be finite or infinite. The number of suppliers and customers may vary depending on the context,

and therefore the structure can be one-to-one when there is only one supplier serving one customer,

one-to-many, being the most common case, when there is one supplier serving multiple customers, and

many-to-many, being the less frequent case, when there are multiple suppliers and multiple customers.

Routing can be direct, when there is only one customer per route, multiple, when there are multiple cus-

tomers per route, and continuous when there is no central depot. Inventory policies define pre-established
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rules for replenishing customers. The two most common are the maximum level policy and the order-up-to

level policy. Under a maximum level policy, the replenishment level is flexible but bounded by the capacity

available at each customer. Under an order-up-to level policy, whenever a customer is visited, the quantity

delivered is that to fill its inventory capacity. Inventory decisions determine how inventory management is

modeled. If the inventory is allowed to become negative, then back-ordering occurs and the corresponding

demand will be served at a later stage; if there are no back-orders, then the extra demand is considered

as lost sales. In both cases there may exist a penalty for the stock-out. Finally, the last two criteria refer

to fleet composition and size. The fleet can either be homogeneous or heterogeneous, and the number of

vehicles available may be fixed at one, fixed at many, or be unconstrained.

According to Baldacci et al. [2008], there are a variety of characteristics and assumptions that may also

change how the Inventory Routing Problem is approached, such as:

• Inventory holding costs may or may not be considered.

• Inventory holding costs may be charged at the supplier only, at the supplier and the customers, or

at the customers only.

• the production and consumption rates can be deterministic or stochastic.

• production and consumption take place at discrete time instants or take place continuously.

• production and consumption rates are constant over time or vary over time.

In this system, the decisions to be made are:

• When to deliver to each costumer.

• How much to deliver to a costumer each time it is served.

• How to route the vehicles so as to minimize the total cost.

The objective of the problem is to minimize the total inventory-distribution cost while meeting the demand

of each customer Coelho et al. [2014]. The replenishment plan is subject to the following constraints:

• The inventory level at each customer can never exceed its maximum capacity.
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• Inventory levels are not allowed to be negative.

• The supplier’s vehicles can perform at most one route per time period, each starting and ending

at the supplier.

• Vehicle capacities cannot be exceeded.

The Inventory Routing Problem is NP-hard and most papers propose heuristics for its solution since these

methods are able to obtain high quality solutions to large scale and complex optimization problems. There

are also some papers that propose exact algorithms for its solution.

2.2 Exact methods

As mentioned before, exact methods exact methods obtain optimal solutions and guarantee their opti-

mality. Before applying an exact or approximation method one must look at the optimization’s problem

characteristics, instance size, structure and complexity. Exact algorithms are generally more time expen-

sive than approximation methods which in turn makes the latter more appropriate for NP-hard problems

in most cases Jourdan et al. [2009]. However, exact methods can still be used in NP-hard problems when

dealing with small sized instances depending on the structure of the problem Talbi [2009]. Exact methods

are used more for smaller sized problems, where these type of algorithms can reach an optimal solution

in reasonable time and when instances become too large for these methods, approximation methods such

as heuristics and in particular metaheuristics are often used Jourdan et al. [2009]. From figure 4, it can

be seen the exact algorithms that fall under the category of exact methods.
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Figure 3: Diagram representation of the exact methods.

According to Talbi [2009], tree search algorithms such as Brand and X family and A* algorithms, Con-

straint Programming and Dynamic programming, search for a solution within the entire interesting search

space. This is usually achieved by subdividing the initial problem into smaller and simpler ones.

Branch and Bound

The brand and bound algorithm is based on an implicit enumeration of all solutions of the considered

optimization problem where the search space is explored by dynamically building a tree whose root node

represents the problem being solved and its whole associated search space Talbi [2009]. The leaf nodes

represent potential solutions and the internal nodes are subproblems of the total solution space. The sub-

trees that do not contain any optimal solution are pruned. In Theurich et al. [2021], two branch and bound

algorithms were developed for the vehicle routing problem with customer costs where the first appends

one job at the end of a route in each branching step and the second includes one job inside a route in each

branching step. Both branch and bound algorithms were tested on 100 benchmarks instances and com-

pared to the performance of the CPLEX solver. It was concluded that the branch-and-bound approaches

could better handle time-dependent customer costs and both branch-and-bound algorithms solved these

instances with significantly less computation time than the CPLEX.

Dynamic Programming:
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Dynamic programming is based on the recursive division of a problem into simpler subproblems. It stores

the solutions to these subproblems in memory as to avoid redundant work such as recalculating the same

subproblems Talbi [2009]. The solutions to the subproblems are then reused and combined in order to

find the solution to the original problem. In Xiao and Konak [2017], a genetic algorithm with exact dynamic

programming was developed for the green vehicle routing and scheduling problem with heterogenous fleet

and tardiness objective, named as the time-dependent vehicle outing and scheduling problem with CO2

emissions optimization in a time-varying traffic environment. The dynamic programming method was

applied for the scheduling part, and found optimal schedules for all traveled arcs with discrete depar-

ture/arriving times and continuous to-be-traveled distance in different periods. The genetic algorithm with

exact dynamic programming outperformed the restricted-CPLEX method in the three mentioned instances

by 26.1%, 38.8% and 51.4%.

2.3 Approximate methods

A large number of real life optimization problems in a variety of areas such as science, engineering, eco-

nomics are complex, large in scale and difficult to solve. These problems can not be solved in an exact

manner within a reasonable time. To deal with this kind of problems, approximate methods are used. Ap-

proximate methods were developed in order to generate near-optimal solutions to optimization problems

that could not be solved efficiently, namely NP-hard problems Gonzalez [2007]. If an optimal solution is

not attainable, it is reasonable to settle for a good feasible solution that can be computed efficiently, in rea-

sonable time. Ideally, one must sacrifice as little optimality as possible, while gaining as much as possible

in efficiency. Trading-off optimality in favor of tractability is the paradigm of approximate methods Hochba

[1997]. Approximate methods can be divided in to heuristic algorithms and approximation algorithms.

Figure 4 shows all the components and sub-components of the approximate methods.
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Figure 4: Diagram representation of the approximate methods.

2.3.1 Approximation Algorithms

Approximation algorithms provide provable solution quality and provable run-time bounds Talbi [2009].

Provable solution quality means that the algorithm in question can guarantee, with a certain probability or

confidence level, that the approximate solution is withing a certain range or error of the optimal solution.

This can be expressed as an approximation factor ϵ, which is a measure of the maximum relative error

of the approximate solution generated by the algorithm. Provable run-time bounds refer to the maximum

time that the algorithm will take to find the approximate solution, given a certain input size.

In approximation algorithms, there is a guarantee on the bound of the obtained solution from the global

optimum Hochba [1997]. An ϵ-approximation algorithm generates an approximate solution a not less than

a factor ϵ times the optimum solution s Vazirani [2001].

ϵ-Approximation Algorithms

According to Talbi [2009], an algorithm has an approximation factor ϵ if its time complexity is polynomial

and for any input instance it produces a solution a such that 1

1 In a minimization context
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a ≤ ϵ · s if ϵ > 1 (2.1)

ϵ · s ≤ a if ϵ < 1 (2.2)

where s is the global optimal solution, and the factor ϵ defines the relative performance guarantee. The ϵ

factor can be a constant or a function of the size of the input instance.

An ϵ-approximation algorithm generates an absolute performance guarantee ϵ, if the following property is

proven:

(s− ϵ) ≤ a ≤ (s+ ϵ) (2.3)

NP-hard problems differ in their approximability. The PTA (Polynomial-time Approximation) class is a well

known set of approximation problems that can be approximated within any factor greater than 1.

PTAS (polynomial-time approximation scheme). A problem is in the PTAS class if it has polynomial-

time (1 + ϵ)-approximation algorithm for any fixed ϵ > 0.

FPTAS (fully polynomial-time approximation scheme). A problem is in the FPTAS class if it has

polynomial-time (1 + ϵ)-approximation algorithm in terms of both the input size and 1/ϵ for any fixed ϵ >

0.

Some NP-hard problems are impossible to approximate within any constant factor (or even polynomial,

unless P = NP) Talbi [2009].

The study of approximation algorithms can provide an insight to the inherent difficulty of a particular

problem and the best ways to approach it. This type of study provides a mathematically rigorous basis

on which to study heuristics. Typically, heuristics and metaheuristics alike are studied empirically, they

might work well but sometimes hard to understand why. The field of approximation algorithms brings

mathematical rigor to the study of heuristics, allowing to prove how well the heuristic performs on all

instances, or giving some idea of the types of instances on which the heuristic will not perform well

Williamson and Shmoys [2011]. However, approximation algorithms are specific to the target optimization
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problem, they are problem dependent. Furthermore, in practice, attainable approximations can be too

far from the global optimal solution, making them not useful for many real-life applications Talbi [2009].

Because of these reasons, this dissertation will focus more on heuristics, specifically metaheuristics since

they are able to solve instances of complex problems by exploring a large solution search space and are

applicable to a large variety of optimization problems.

2.3.2 Heuristics and Metaheuristics

The word heuristic has its origin in the old Greek word heuriskein, which means the art of discovering new

strategies to solve problems. A heuristic represents trial and error, rule of thumb and educated guess

approaches that allow making decisions or solve problems quickly and efficiently based on limited infor-

mation and past experience. Unlike approximation algorithms, which provide provable solution quality and

provable run-time bounds, heuristics find ”good” solutions on large-size problems instances. They allow to

obtain acceptable performance at acceptable costs in a wide range of problems Talbi [2009]. Heuristics

can be further decomposed into specific heuristics and metaheuristics. Specific heuristics are designed

to solve specific problems and instances, whilst metaheuristics are applicable to a large variety of opti-

mization problems. The term metaheuristic was first introduced by Glover [1986] and combines the prefix

meta, which means ”upper level methodology” that refers to the higher level nature of these approaches

that are used as guiding strategies in designing underlying heuristics to solve specific optimization prob-

lems, with the word heuristic. A formal definition of metaheuristic is proposed by Sörensen and Glover

[2013]: “A metaheuristic is a high-level problem-independent algorithmic framework that provides a set of

guidelines or strategies to develop heuristic optimization algorithms.”. In short, metaheuristics are high

level strategies for exploring search spaces by using different methods.

According to Blum and Roli [2003] there are some fundamental properties that characterize metaheuris-

tics:

• Metaheuristics are strategies that “guide” the search process.

• The goal is to efficiently explore thesearch space in order to find (near-) optimal solutions.

• Techniques which constitute metaheuristic algorithms range from simple local search procedures

to complex learning processes.

• Metaheuristic algorithms are approximate and usually non-deterministic.
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• They may incorporate mechanisms to avoid getting trapped in confined areas of the search space.

• The basic concepts of metaheuristics permit an abstract level description.

• Metaheuristics are not problem-specific.

• Metaheuristics may make use of domain-specific knowledge in the form of heuristics that are con-

trolled by the upper level strategy.

Intensification and diversification are the two general strategies and criteria that are used in metaheuristics

to guide the search for solutions. These two strategies are both contrary and complementary of each other

and largely determine the behaviour of a metaheuristic. Promising regions are determined by the obtained

”good” solutions Talbi [2009]. Intensification refers to the process of focusing the search on a promising

region of the solution space in order to find solutions with better quality. Diversification means expanding

the search to cover a larger region of the solution in order to find new and potentially better solutions and

ensuring that the search is not confined to a reduced number of regions. Intensification is the use of

local knowledge of the search and solutions found so far so that new search moves can concentrate on

the local neighborhood where the optimality may be close, however, this local optimum may not be the

global optimality. Intensification tends to increase the speed of convergence, while diversification tends to

decrease the convergence rate of the algorithm Yang et al. [2014]. Too much diversification increases the

probability of finding the global optimality but with reduced efficiency, strong intensification can make the

algorithm trapped in a local optimum. Diversification can be achieved by use of randomization Blum and

Roli [2003], Yang [2010b], which enables an algorithm to have the ability to jump out of any local optimum

so as to explore the search globally and can also be used for local search around the current best if steps

are limited to a local region Yang et al. [2014]. It is crucial for the metaheuristics for diversification and

intensification to be somewhat balanced as to avoid the algorithm being trapped in a local optimum and

reduction of efficiency. Some algorithms may have intrinsically better balance among these two important

components than other algorithms, that is one of the reasons why they may perform better Yang [2010b,a].

Figure 5: Two conflicting criteria in designing a metaheuristic: diversification versus intensification. Source:

Talbi [2009].
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When approaching an optimization problem, it is important to analyze the complexity of a problem, which

gives an indication of its hardness, and know the size of input instances the algorithm in question is

supposed to solve. These factors can give insight to knowing if a metaheuristic is the appropriate option

to solve a given optimization problem. Even if a problem is NP-hard, small instances may be solved by

an exact method. The structure of the instances plays an important role since some medium or even

large-size instances with a specific structure may be solved in optimality by exact algorithms Talbi [2009].

The required search time also plays an important role in selecting an optimization algorithm for solving a

problem. It is not optimal to use metaheuristics to solve problems where exact algorithms that can solve

the problem efficiently are available. So for easier optimization problems, such as the polynomial class

problems that can be solved with exact methods in reasonable time, one should avoid using metaheuris-

tics. For these reasons, deciding which optimization algorithm to use to solve a problem should involve

analyzing its complexity, the size of structure of the instances and the search time to solve it. If a problem

can be reduced to a classical or an already solved problem in the literature, it is important to look at the

state-of-the-art best known optimization algorithms solving the problem Talbi [2009].

Many of the combinatorial optimization problems belong to the NP-hard class of optimization problems.

For this class of problems, in the worst case, exact algorithms require exponential time. The use of meta-

heuristics is justified for problems where exact algorithms cannot solve the handled instances’ size and/or

structure within the required search time. The notion of required time is dependent on the target opti-

mization problem, for some problems an acceptable time may be equivalent to some seconds whereas

for some other problems it may be a much larger time than that Talbi [2009].

According to Talbi [2009], the main characteristics of optimization problems justifying the use of meta-

heuristics are:

• An easy problem (Polynomial class) with very large instances. In this case, exact polynomial-time

algorithms are known but are too expensive due to the size of instances.

• An easy problem (Polynomial class) with hard real-time constraints. In real-time optimization prob-

lems, metaheuristics are widely used. Even if efficient exact algorithms are available to solve the

problem, metaheuristics are used to reduce the search time.

• A difficult problem (NP-hard class) with moderate size and/or difficult structures of the input in-

stances.
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• Optimization problems with time-consuming objective function(s) and/or constraints. Some real-life

optimization problems are characterized by a huge computational cost of the objective function(s).

• Nonanalytic models of optimization problems that cannot be solved in an exhaustive manner.

• Moreover, those conditions may be amplified by nondeterministic models of optimization: problems

with uncertainty and robust optimization. For some noisy problems, uncertainty and robustness

cannot be modeled analytically.

Metaheuristics can be classified according to some criteria Talbi [2009]:

• Population-based search versus single-solution based search: Single-solution based al-

gorithms manipulate and transform a single solution during the search while in population-based

algorithms a whole population of solutions is evolved. These two families have complementary

characteristics: single-solution based metaheuristics are exploitation oriented, they have the power

to intensify the search in local regions. Population-based metaheuristics are exploration oriented,

they allow a better diversification in the whole search space.

• Nature inspired versus non-nature inspired: Many metaheuristics are inspired by inspired

or based on natural processes: Evolutionary algorithms that refer to the mechanisms of biological

evolution such as reproduction, mutation, recombination, selection. Particle Swarm Optimization

simulates the behaviour of a group of birds (swarm) looking for food. Industrial processes like sim-

ulated annealing come from annealing in metallurgy, a technique involving heating and controlled

cooling of a material to alter its physical properties.

• Deterministic versus stochastic: Deterministic metaheuristics follow a predetermined set of

rules or behaviours, their output can be accurately predicted based on their input. Stochastic

metaheuristics involve elements of randomness or probability in their search process. Their output

can not be accurately predicted based on their input, the same input can produce different results

over time.

• Memory usage versus memoryless methods: Memory usage metaheuristics use some forms

of memory to store information about past search states and solutions. Memoryless metaheuristics

do not rely on and do not store information about past search states and rely solely on the current

state of the search process to guide the search.
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• Iterative versus Greedy: Iterative metaheuristics start with an initial solution and repeatedly

make incremental changes to the solution in order to improve it through a series of iterations.

Greedy metaheuristics start with empty solutions and make decisions based on the most immedi-

atly benificial option at each step without considering the long-term consequences of those choices.

Single-solution based Metaheuristics

Single solution based metaheuristics focus on the improvement of a single solution at a time by perform-

ing iterative procedures that move from the current solution to another one in the search space. These

metaheuristics iteratively improve a solution by applying generation and replacement procedures from the

current single solution. In the generation phase, there is a neighborhood or set of candidate solutions C(s)

generated from the current solution s which is generally obtained by applying local transformations to the

current solution. In the replacement phase, a candidate solution is selected to be the new solution, that

is, s’ ϵ C(s) Talbi [2009]. This whole process is iterated until a stopping criteria is satisfied. This process

is illustrated by Figure 6.

Figure 6: Concept of the Single-solution based Metaheuristics. Source: Talbi [2009].

Single solution based metaheuristics, generally follow a structure that consists of the following phases:

initialization, generation, evaluation, selection, termination. The performance of the single solution based

metaheuristics is highly dependent on the way these phases are approached and the type of problem at

hand. The specific details of how these phases are approached depend on the problem being solved and

the chosen metaheuristic. The common search concepts for single solution based metaheuristics are the

23



definition of the neighborhood structure and the determination of the initial solution Talbi [2009].

In the initialization phase an initial solution is generated. The initial solution can have a significant impact

on the performance of single solution based metaheuristics since they rely on a single current solution to

generate the neighborhood and choose the next current solution and so on. If the initial solution is of high

quality, the algorithm is more likely to find a good solution efficiently, however if the initial solution is not of

good quality the algorithm may get stuck in a local minimum and not able to find a good solution. There

are two main strategies that are used to generate an initial solution for these type of metaheuristics: a

random and a greedy approach. Ultimately, the choice between a greedy and a random initial solution will

depend on the specific problem that is being tackled, the characteristics of the metaheuristic being used

and the trade off in terms of the quality of solutions and computational time of both of these approaches.

The larger the neighborhood, the less is the sensitivity of the initial solution to the performance of single

solution based metaheuristics Talbi [2009]. Generating a random initial solution is a fast operation, how-

ever the metaheuristic may take a much larger number of iterations to converge, and in that case, a greedy

heuristic may be used in order to speed up the search. Greedy heuristics often lead to a better quality local

optima and have a reduced polynomial-time complexity in most cases. However, it does not mean that

using better initial solutions will always lead to better local optima and that using greedy initial solutions is

always better. In the case of a long term performance of a metaheuristic, a greedy initial solution may lead

an algorithm to a local minimum, making it perform poorly in the long run. Whereas the random initial

solution has a better chance of avoiding local minimums and might even surpass the greedy approach in

the long run in terms of solution quality and search time. Despite that, the random strategy may generate

high deviation in terms of obtained solutions. In order to bridge that gap and improve the robustness, a

hybrid approach that combines both random and greedy strategies can sometimes be used.

In the generation phase, a neighborhood of new solutions is generated from the current solution. A neigh-

bor is generated by the application of a move operatorm that performs a small perturbation to the solution

s. The definition of the neighborhood is a required common step for the design of any single solution based

metaheuristic. According to Talbi [2009], the definition of a structure of a neighborhood is crucial in the

performance of a single solution based metaheuristic and if not defined adequately to the problem at

hand no single solution based metaheuristic will be able to solve it. The main property that characterizes

the neighborhood is locality which is the effect on the solution after performing the move operator in the

representation. Strong locality is when small changes made in the representation reveal small changes
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to the solution and weak locality is when small changes made in the representation reveal big changes

to the solution. Locality can be used as metric to guide the search towards promising areas of a search

space, to ensure that the solution being evaluated is not too divergent from the current solution. The way

the structure of a neighborhood is defined, the move operators used, and its size have a big impact on

the performance of the metaheuristic. A larger neighbourhood allows to explore a wider range of solutions

and may improve the quality of the obtained solutions but at the cost of increasing computational costs.

So, in designing a single solution metaheuristics there is a trade off between the size and quality of a

neighborhood and the computational complexity to search it.

In the evaluation phase, the candidate solutions are evaluated. This may involve calculating a fitness or

objective function for each of these solutions in order to measure which one is the most appropriate to

select. In the selection phase, the best candidate solution is selected as the next current solution. This

process may also involve applying a local search phase where the neighborhood can be expanded in an

effort to escape a local optimum.

In the termination phase, the metaheuristic terminates its search and stops iterating the previous phases

when it reaches a stopping criterion, that may be one such as finding a satisfactory solution or reaching

the maximum number of iterations established or some other criteria.

Local Search:

Local Search consists in finding the maximum or minimum value of a function within a specific region,

rather than the global minimum or maximum over the entire domain. It starts with an independently ob-

tained initial solution constructed by some heuristic algorithm. At each iteration, the heuristic will replace

the current solution by a neighbor that improves the value of the defined objective function searching

through the solution space that way Michiels et al. [2007]. Typically, the search stops when all the candi-

date solutions in the neighborhood are worse than the current solution and thus reaching a local optimum.

Variants of the local search method are distinguished in the way the neighboring solutions are generated

(deterministic or stochastic) and the selection strategy of the new current solution Talbi [2009].

According to Talbi [2009], in addition to the definition of the initial solution and the neighborhood, designing

a local search algorithm has to address the selection strategy of the neighbor that will determine the next
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current solution. Regarding the selection of the neighbor, there are some strategies:

• Best Improvement: The best neighbor, the neighbor which has the best value for the specific

objective function, is selected. This makes the exploration of the neighborhood exhaustive since

all possible moves are tried for a solution to select the best neighboring solution. This kind of

exploration might be too time-consuming for large neighborhoods.

• First improvement: This strategy consists in choosing the first better neighbor and then selecting

it to replace the current solution. This strategy aims for a partial evaluation of the neighborhood.

In the worst case, there is a total evaluation of the neighborhood.

• Random selection: A random selection is applied to the neighbors that improve the solution.

There is a compromise in terms of quality of solutions and search time when using the first improvement

strategy when the initial solution is randomly generated and the best improvement when the initial solution

is generated using a greedy process. According to Talbi [2009], it has been observed that the first improv-

ing strategy leads to the same quality of solutions as the best improving strategy while using a smaller

computational time and the probability of premature convergence to a local optima is less important in

the first improvement strategy.

Even though local search is an easy method to understand and implement, it has a few disadvantages.

The main one being the convergence towards the local optima. It also is highly dependent on the quality

of the initial solution, there is no means to estimate the relative error from the global optimum and the

number of iterations performed might not be known in advance. Local search is best used for instances

where there are not too many local optima in the search space and the quality of the different local optima

is similar. In order to tackle its main disadvantage, many alternative algorithms and variations of local

search have been proposed, such as iterative local search, tabu seach and GRASP. In Singh et al. [2015],

local search is used to solve an inventory routing problem occurring in bulk industrial gas distribution.

An incremental approach is applied where an inventory routing problem instance is divided into many

sub-problems to improve the solution quality where each sub-problem uses an initial solution obtained

from solving the previous sub-problem using local-search heuristic using incremental approach. The re-

sults show a significant improvement in cost to deliver unit product called logistics ratio for the test data set.

Tabu Search:
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Tabu Search was designed to manage an embedded best improvement local search algorithm and escape

the local minima by explicitly using the history of the search, by means of short term memory and allowing

non-improving moves and returning to previously visited solutions Blum and Roli [2003], Boussaïd et al.

[2013], Burke et al. [2014]. The main characteristic of Tabu Search is that unlike Simulated Annealing it

uses memory and is able to learn from the past.

This method uses a tabu list that records the last encountered solutions or important attributes of those

and forbids these solutions from being visited again, as long as they remain on this same list, this being the

short memory component of the algorithm. The tabu list prevents endless cycling and forces the search to

accept non-improving solutions in order to escape local minima. The length of the tabu list or tabu tenure

constrols the memory of the search process. If the tabu tenure is small the search concentrates on small

areas of the search space and if large it will concentrate on larger areas of the search space because it

forbids visiting a higher number of solutions Blum and Roli [2003]. The tabu tenure can be varied during

the search which leads to a more robust algorithm.

There are some additional medium-term memory structures that can be introduced to bias moves towards

promising areas of the search space (intensification), as well as long-term memory structures to encourage

a broader exploration of the search space (diversification) Boussaïd et al. [2013]. Medium-term memory

structures such as aspiration criteria, greatly improve the search process. The use of tabu lists can prevent

attractive moves, even if there is no risk of cycling, and may lead to overall stagnation of the process. The

aspiration criteria are a set of rules that are used to override tabu restrictions. If a move is forbidden by

the tabu list it can still be allowed if the aspiration criteria are satisfied.

A long-term memory or frequency memory can be used in order to record how often certain attributed

have been encountered in solutions on the search trajectory Boussaïd et al. [2013]. It allows the search

to avoid visiting solutions that present the most encountered attributes or to visit solutions with attributes

rarely encountered and thus benefiting diversification.
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Figure 7: The different search Memories of the Tabu Search. Source: Talbi [2009].

In Cortés et al. [2017], a tabu search metaheuristic was developed to solve the picking routing problem

for large and medium size distribution centres considering the availability of inventory and heterogeneous

material handling equipment. The problem is solved with three metaheuristics based on tabu search. The

first metaheuristic is a generic tabu search, whereas the second and third are a hybrid tabu search that

integrates two diversification strategies called 2-Opt Exchange and 2-Opt Insertion. The results produced

by the tabu search approaches are compared with two benchmark approaches: Genetic Algorithm, Sim-

ulated Annealing. TS 2-Opt Insertion generates the best solution and appears to be a very appropriate

approach to the picking routing problem considering K heterogeneous material handling equipment be-

cause it outperforms not only a wide variety of soft computing approaches such as the generic tabu search

implementations but also other refined implementations such as TS 2-Opt Exchange or even others based

on soft computing algorithms such as genetic algorithm and simulated annealing.

Iterated Local Search:

The quality of the local optima obtained by a local search method depends on the initial solution and as

local optima with high variability is generated, iterated local search can be used to improve the quality of

successive local optima Talbi [2009]. Iterated local search is based on the idea of instead of repeatedly

applying a local search procedure to randomly generated starting solution, generating the starting solution

for the next iteration by perturbing the local optimum found at the current iteration and this is done in the

hope that this perturbation mechanism provides a solution located in the basin of attraction of a better

local optimum Boussaïd et al. [2013]. If the perturbation is too weak, it may not be sufficient to escape

the basin of attraction of the current local optimum and generate cycles in the search causing no gain, too

strong of a perturbation would result in erasing the information about the search memory and the good

properties of the local optimum are skipped.

Another key aspect of the Iterated Local Search is the acceptance criteria. The role of the acceptance
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criterion combined with the perturbation mechanism is to enable the control of the trade off between

intensification and diversification. It defines the conditions that the new local optimum has to satisfy in

order to replace the current local optimum. An extreme solution in terms of intensification is to accept only

improving solutions and the extreme solution in terms of diversification would be to accept any solution

without any regards to its quality. The optimal acceptance criteria would be one that balances intensifica-

tion and diversification.

In Vansteenwegen and Mateo [2014], an iterated local search metaheuristic is developed for the Single-

Vehicle Cyclic Inventory Routing Problem. In this article, the iterated local search metaheuristic exploits

typical characteristics of the problem to reduce the computation time. Experimental results on 50 bench-

mark instances show that the algorithm improves the results of the best available algorithm on average by

16.02% and 32 new best known solutions are obtained.

Simulated Annealing:

The simulated annealing algorithm is inspired by the annealing process in metallurgy, where a substance

undergoes heating and then slowly cooling in order to obtain a stronger structure. It simulates energy

changes to a substance subjected by way of slow cooling until it reaches an equilibrium state and con-

verges. It is a stochastic algorithm that at its core is subject to an acceptance criterion, which determines

if a new solution is accepted or not, which in turn enables, under some conditions, the degradation of

a solution. This is done in order to escape local optima and delay convergence. Unlike the tabu search

algorithm, for example, simulated annealing is a memoryless algorithm since it does not use previously

gathered information during the search.

During each iteration of the algorithm, a random neighbor from the current solution is generated. The

moves that improve the current solution’s fitness value will always be accepted and thus a new current

solution is chosen. If a neighbor with a worse fitness value is generated, it will be selected with a given

probability that depends on the current temperature and the difference in the fitness value of the current

and generated neighboring solution. The algorithm initially has a higher probability of accepting worse

solutions, but as the temperature decreases, the algorithm becomes more selective and favors solutions

with better fitness value as the probability of accepting worse solutions also decreases, striking a balance

between diversification and intensification when exploring the search space. This probability or acceptance
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criterion follows the Boltzmann distribution:

P (∆E, T ) = e−
f(s′)−f(s)

T (2.4)

Along with the acceptance criteria, the cooling schedule is the other aspect of simulated annealing that has

the most impact on its success. There are a few parameters to consider: the initial temperature, cooling

rate and stopping temperature. If the starting temperature is too high, the search can become more or

less a random local search, and if too low it will be more or less a first improving local search algorithm, so

it is of important that the initial temperature is not too high but high enough to be able to allow moves to

almost neighborhood state Talbi [2009]. The cooling rate value encompasses a trade off between quality

of the obtained solutions and the convergence rate or computational cost. The slower the temperature is

decreased the better solutions will be found but at the cost of a higher computational time. The stopping

temperature must go low enough so that when the the search is stopped the probability of accepting a

move is negligible so that during the search we explore both diversification and intensification properly.

In Bent and Van Hentenryck [2004], a two-stage hybrid algorithm for the vehicle routing problem with time

windows is developed where a simulated annealing algorithm is used in order to minimize the number

of routes and vehicles used and then the travel cost by using a large neighborhood search, where the

algorithm’s effectiveness was demonstrated through the results, showcasing the ability to improve 13 out

of the 58 best published solutions to the Solomon benchmarks and also matching or improving the best

solutions in 47 problems.

Population-based Metaheuristics

Unlike single-solution based metaheuristics, population based metaheuristics deal with a set or population

of solutions rather than a single solution. These type of metaheuristics start from an initial population

of solutions, then iteratively apply the generation of a new population and the replacement of the current

population. In the generation phase a new population of solutions is created and in the replacement

phase a selection is carried out from the current and new populations Talbi [2009], which means that,

taking into account the chosen selection methods and the desired attributes of the solutions, the result
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of the current iteration will be a set of the best solutions from both populations. This process will iterate

until a stopping criteria is satisfied. The generation and replacement phases in some population-based

metaheuristics may be memoryless, which means these two procedures are only based on the current

population. If not memoryless, some history of the search stored in memory can be used in the generation

of new population and in the replacement of the old. Population-based metaheuristics differ from each

other in the way they perform the generation and selection procedures and the search memory they are

using during the search. These type of metaheuristics focus more on diversification of the search space,

due to the large diversity of initial populations, where as single-solution based metaheuristics are more

focused on intensification Talbi [2009].

Figure 8: Main principles of population-based metaheuristics. Source: Talbi [2009].

The common search concepts for population-based metaheuristics are the determination of the initial

population and the definition of the stopping criteria Talbi [2009]. The initial population and stopping

criteria are the key components of this search concept since they determine the starting and ending point

of the exploration of the search space regarding, used to establish the limit and scope of the search and

influence the effectiveness and performance of the algorithm. These two components are chosen based on

the characteristics of the optimization problem at hand. Regarding the generation of the initial population,

the main criterion to deal with is diversification because if the initial population is not well diversified it may

lead to a premature convergence for any population-based metaheuristic, this might happen when, for

example, the initial population is generated by a single-solution based metaheuristic or a greedy heuristic

for each solution of the population Talbi [2009]. Strategies dealing with the initialization of the population

can be classified into four categories:

• Random Generation: This means that the initial population can be generated randomly. The

random generation can be performed according to pseudo-random numbers or a quasi-random
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sequence of numbers. Since it is impossible to generate algorithmically truly independent random

numbers Talbi [2009], pseudo-random number generators algorithms are used to generate a se-

quence of number that approximate the properties of true random numbers. However, care should

be taken so that pseudo-random generators provide good properties, so that the results are not

highly correlated which leads to a poor exploration of the search space. Quasi-random number

generators are methods with goals related not only to the independence between the successive

numbers but also their dispersion. In quasi-random sequence, the diversity of the population is

generally better than in pseudo-random generation, since they provide more coverage of the search

space.

• Heuristic Initialization: Any heuristic can be used in order to initialize the population. In the

case of population-based metaheuristics, it is important to use a metaheuristic that does not limit

too much the diversification of the population. A greedy algorithm, for example, may or not be a

better option than a random one for generating an initial population in the case of a single solution

based metaheuristic but if it was used in the context of a population-based metaheuristic, it might

not be a good approach since it could lead to a loss of diversity, which is crucial for the performance

of population-based metaheuristics.

• Sequential Diversification: The initial population can be uniformly sampled in the decision

space. In sequential diversification, the solutions are generated in sequence in such a way that the

diversity is optimized.

• Parallel Diversification: Parallel diversification is a method where multiple solutions are inde-

pendently and simultaneously modified to generate a diverse set of solutions.

From the results displayed in Figure 9, it is observable that sequential and parallel diversification strategies

provide in general the best diversity, followed closely by the quasi-random approach. The heuristic initial-

ization provides the best solutions but with a high computational cost and low diversity. However, this will

be highly dependent on the characteristics of the optimization problem, heuristic and fitness landscape of

the tackled optimization problem.
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Figure 9: Analysis of the different Initialization Strategies. Source: Talbi [2009].

Regarding the stopping criteria, there are many that can be used, some of them very similar to the single-

solution based ones. According to Talbi [2009], population-based metaheuristics have two types of proce-

dures:

• Static Procedure: The end of the search is known a priori. Examples of this are using a fixed

number of generations, placing a limit on CPU resources or even defining a maximum number of

objective function evaluations.

• Adaptive Procedure: The end of the search is not known a priori. One can use a fixed number

of generations without improvement, when an optimum or satisfactory solution is reached.

There are some stopping criteria specific to population-based metaheuristics and they are mostly related

to the diversity of the population. It consists in stopping the criteria when the diversity measure falls bellow

a designated threshold.

Evolutionary Algorithms

Evolutionary Algorithm is the general term for several optimization algorithms that are inspired by the Dar-

winian principles of nature’s capability to evolve living beings well adapted to their environment, natural

selection and genetics Boussaïd et al. [2013]. Genetic algorithms, evolution strategies, evolutionary pro-

gramming and genetic programming are all domains grouped under the term of Evolutionary Algorithms.

Evolutionary algorithms are based on the notion of competition and survival of the fittest and represent

a class of iterative optimization algorithms that simulate the evolution of a population of individuals Talbi

[2009]. Every iteration of these type of algorithms corresponds to a generation, where a population of

candidate solutions to a given optimization problem, called individuals, is capable of reproducing and

is subject to genetic variations followed by the environmental pressure that causes natural selection or

survival of the fittest Boussaïd et al. [2013]. Initially, the population of individuals is usually generated

randomly. An objective function associated a fitness value with every individual of the population which
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indicates the individual’s suitability to the problem at hand. At each iteration, the individuals with better

fitness have a higher probability to be selected as parents that will generate new offspring through some

variation operators such as crossover and mutation. Then, a replacement scheme is applied in order to

determine which individuals of the population will survive from the parents and their offspring, a generation

of a new population. This process will iterate until a stopping criteria is satisfied. Figure 10 illustrates the

procedures during a generation in evolutionary algorithms.

Figure 10: A generation in evolutionary algorithms. Source: Talbi [2009].

Genetic Algorithms:

In genetic algorithms, the basic implementation can be very generic and there are many aspects that can be

implemented differently according to the problem at hand: representation of the solution (chromosomes),

selection strategy, the type of crossover and mutation operators Boussaïd et al. [2013]. Traditionally,

genetic algorithms use a binary or discrete representation of solutions and the initial population is generated

randomly, in an attempt to cover the entire range of possible solutions or search space and promoting

diversity. During each successive generation, a portion of the existing population is selected through a

fitness function to breed a new generation. The fitter solutions are the ones who are more likely to be

selected, it works as a probabilistic selection. The next step is to generate a second generation population

of solutions from those selected through genetic operators: crossover, and/or mutation. Emphasis is

mainly concentrated on crossover as the main variation operator, that combines multiple (usually two)

individuals that have been selected together by exchanging some of their parts, where an exogenous

parameter called crossover rate indicates the probability per individual to undergo crossover Boussaïd

et al. [2013]. After crossover, individuals can be subjected to mutation. Mutation introduces a degree of

randomness into the search in order to prevent the optimization process getting stuck in local optima and

promoting diversity. It consists in performing a slight perturbation to the resulting solution, usually with a

low probability Boussaïd et al. [2013]. Then, starts the replacement procedure acting as the survival of

the fittest in order to identify the parents and children to maintain for successive generations and assure
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the survival of the fittest individuals. This is accomplished by evaluating each of these individuals with

a defined fitness function. This generational process is repeated until a termination condition has been

reached. The most common stopping criteria being when a good quality solution is reached or the number

of maximum generations is met. According to Kumar et al. [2010], these are some of the possible stopping

criteria for genetic algorithms:

• A solution is found that satisfies minimum criteria;

• Fixed number of generations reached;

• Allocated budget (computation time/money) reached;

• The highest ranking solution’s fitness is reaching or has reached a plateau such that successive

iterations no longer produce better results;

• Manual inspection;

• Combinations of the above.

Genetic algorithms are characterized as being a stochastic algorithm, since randomness plays an essential

role in this type of algorithms as a way of promoting diversity on the search space. Both the selection,

crossover and mutation utilize random procedures. According to Sivanandam and Deepa [2008], genetic

algorithms are robust algorithms that can be used in a wide variety of problems and can provide good

results to complex and large instance problems. However, since they are extremely general, in some situ-

ations, specific techniques for solving particular problems can out perform genetic algorithms.

In Park et al. [2016], a genetic algorithm for the inventory routing problem with lost sales under a vendor-

managed inventory strategy in a two-echelon supply chain comprised of a single manufacturer and multiple

retailers is developed. The proposed genetic algorithm is compared with the CPLEX optimization model,

and demonstrated solutions that in the case of small sized problems the results are very similar to those of

the CPLEX and also showed solutions that remained within 3.2% of those obtained using the optimization

model for large problems, requiring a much shorter computation time of 7 to 47 seconds.

Scatter Search:

Scatter Search is an evolutionary and population-based metaheuristic that recombines solutions selected

from a reference set to build others Laguna et al. [2003]. This method starts by generating an initial
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population satisfying the criteria of diversity. Then, the reference set is constructed by selecting good rep-

resentative solutions from the population. The notion of best is not limited to a measure given exclusively

by the evaluation of the objective function but covers the diversity of solutions, for example, a solution

may be added to the reference set if the diversity of the set improves even when the value of the solution

is inferior to that of other competing solutions Boussaïd et al. [2013]. These selected solutions are then

combined to provide starting solutions to an improvement procedure based on a single-solution based

metaheuristic or other search intensification procedure Talbi [2009]. According to the results from the

mentioned procedure, the reference set and the population of solutions are updated to incorporate both

diverse and high quality solutions. This whole process is iterated until a stopping criteria is satisfied, for

example, until the reference set does not change anymore Boussaïd et al. [2013].

In Soman and Patil [2020], a scatter searchmetaheuristic for a heterogeneous fleet vehicle routing problem

with release and due dates in the presence of consolidation of customer orders and limited warehousing

capacity is developed. In this article, it is concluded that the use of adaptive memory, problem specific

improvement and strategic oscillation in the scatter search frame work improves the quality of the solutions

considerably, such that it outperforms the iterated local searchmethod that does not consider those factors.

The scatter search developed also finds solutions in shorter time when compared to the CPLEX otimization.

Blackboard-based:

In blackboard-based algorithms, the solutions of the population have a part in the construction of a shared

memory, and this shared memory will be the main input in the process of generating new populations of

solutions Talbi [2009]. Unlike evolutionary based algorithms, blackboard-based algorithms generate new

populations based on the shared memory of the previous generations and not from the attributes of the

solutions’ parents. Some blackboard-based algorithms are:

Ant Colony Optimization:

Ant Colony Optimization is based on the cooperative and foraging behaviours of ant colonies. When

searching for food, the ants initially explore the area surrounding their nest by performing a randomized

walk and along their path the ants deposit a pheromone trail on the ground in order to mark some favorable

path that can guide other ants to the food sources Dorigo and Blum [2005]. After some time, the shortest

path between the nest and the food source presents a higher concentration of pheromones, which in turn,
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attracts more ants. This chemical substance has a decreasing action over time and the quantity left by one

ant depends on the amount of food Talbi [2009]. This type of metaheuristic takes advantage and exploits

the characteristics of the behaviour of ant colonies in to optimization problems and exchange information

on their quality through a communication scheme similar to the one of adopted by real ants Dorigo et al.

[2006]. The algorithm is composed by two main steps after initializing the pheromone trails:

• Solution Construction using the pheromone trail: The construction of solutions is done ac-

cording to a probabilistic state transition rule. Artificial ants can be considered as stochastic greedy

procedures that construct a solution in a probabilistic manner by adding solution components to

partial ones until a complete solution is derived and the target optimization problem can be seen

as decision graph where an ant will construct a path Talbi [2009]. This process will iterate and will

take into account the following:

– Pheromone trails: The pheromone trails will memorize the characteristics of the best

generated solutions, that in turn, will guide the construction of new solutions. The pheromone

trails will change during the search as more knowledge is acquired and this change represents

the shared memory of this whole ant search process.

– Problem-dependent heuristic information: Problem dependent information can give

the ants more clues for their decision process and construction of solutions.

• Update the pheromone trails: Updating the pheromone trails is done in two phases:

– Evaporation phase: In an evaporation phase, the pheromone trails decreases automati-

cally. The goal of this phase is to avoid for all ants a premature convergence towards good

solutions and to encourage diversification in the search Talbi [2009].

– Reinforcement phase: In this phase, the pheromone deposit is usually applied after all

ants have finished constructing a solution. The pheromone values are increased on solution

components that are associated with a chosen set of high quality solutions and the goal is to

make these solution components more attractive for ants in the following iterations Boussaïd

et al. [2013].

This whole process will iterate until a stopping criteria is satisfied. In Li et al. [2019], an improved ant

colony optimization algorithm is developed for the green vehicle routing problem with multi depot and mul-

tiple objectives. The improved ant colony optimization model developed in this research use an innovative

approach regarding the update of the pheromones that results in higher quality solutions when compared
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to the conventional ant colony optimization model.

Particle Swarm Optimization:

Particle Swarm Optimization is a stochastic metaheuristic that mimics the social behaviour of natural or-

ganisms such as bird flocking and fish schooling. In this metaheuristic, a population of potential solutions,

called particles, are stochastically initialized and then moved through the search space, adjusting their

position towards the global optimum guided by the current best position found by the entire population

as well the best position found by each individual particle. Each particle is a candidate solution to the

problem, and is represented by a velocity, a location in the search space and has a memory which helps

it remembering its previous best position Boussaïd et al. [2013]. Optimization takes advantage of the co-

operation between the particles, the success of some particles will influence the behaviour of their peers.

In Belmecheri et al. [2013], a particle swarm optimization algorithm with local search is developed for the

vehicle routing problem with heterogenous fleet, mixed backhauls and time windows. In this article, it was

shown that the developed particle swarm optimization algorithm had high quality solutions for small and

large problems and it was able to, in some instances, improve the distance to the optimal solution by over

5.6% when comparing its results with an exact method and best known solutions of the literature regarding

the vehicle routing problem with time windows.

2.3.3 Hybrid Metaheuristics

As mentioned before, some metaheuristics focus on intensification while others focus on diversification

strategies in order to guide the search for solutions. Both these strategies are contrary and complementary

of each other. Hybrid metaheuristics allow to combine or use metaheuristics with different optimization

methods in order to balance and deal with the trade-of between intensification and diversification strategies.

Hybridization allows enhancing the strengths and compensating the weaknesses of two or more methods

with the aim of generating better solutions by combining the key elements of competing methodologies

Baños et al. [2013]. According to Talbi [2009], hybrid metaheuristics, at a first level, can be distinguished

as low-level and high-level hybridizations:

• Low-level: Low-level hybridizations address the functional composition of a single-optimization

method where a given function of a metaheuristic is replaced by another metaheuristic.

• High-level: In High-level hybridizations the different metaheuristics are self-contained, whichmeans

there is no direct relationship to the internal workings of a metaheuristic.
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On a second level:

• Relay hybridization: In relay hybridization, a set of metaheuristics is applied sequentially, each

using the output of the previous one as input, reminiscent of a pipeline.

• Teamwork hybridization: Teamwork hybridization represents cooperative optimization models

in which cooperating agents evolve in parallel, where each one carries out a search in the solution

space.

Which results in the following hierarchical classification:

• Low-level relay hybrid: This class of hybrids represents algorithms in which a givenmetaheuristic

is embedded into a single solution-based metaheuristic.

• Low-level teamwork hybrid: This class represents algorithms in which metaheuristics are em-

bedded into population-based metaheuristics. Such as embedding single solution-based meta-

heuristics, which are good at intensification, into population-based metaheuristics, which in turn

are good in diversification.

• High-level relay hybrid: - In which the self-contained metaheuristics work in sequence where the

first ones’ output represents the seconds’ input.

• High-level teamwork hybrid: This scheme involves several self-contained algorithms performing

a search in parallel, cooperating to find an optimum.
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Chapter 3

Implementation

In this chapter, the methodology, which involves the whole implementation process of this dissertation,

from the requirement elicitation to the testing of the optimization algorithms. A more in depth description

of the problem’s context, characteristics and its challenges, mathematical formulation and the optimization

algorithms made are presented. Important and necessary steps to implement in order to find solutions

for the described problem at hand.

3.1 Methodology

In order to achieve the objectives of this dissertation and taking into account the characteristics and

description of the modeled problem, a methodology is proposed:

• Requirement elicitation with domain experts.

• Describe the main concepts of the optimization problem, such as: representation of the variables,

objective function, constraint handling according to the state of the art and the domain’s expert

information and the characteristics of the problem at hand.

• Implementation and development of appropriate optimization algorithms and evaluation and com-

parison of their performance with attention to the problem’s characteristics and the machine used

to run these algorithms.

After a study of the background and state of the art of the whole process of optimizing problems, with

emphasis on the inventory routing problem, a requirement elicitation with the domain experts was real-

ized in order to identify the key aspects of the problem, the characteristics and specific objectives of the

problem in the detail. This problem was then modeled and a mathematical formulation of the problem

was performed. This formulation is a crucial step in the context of an optimization problem that, once

completed, will allow for the implementation of the appropriate optimization algorithms.

40



3.2 The problem and its challenges

As mentioned before, in this project it is considered that the stores of the same retailer group are connected

in a network and are monitored by a central system. The problem arises in the context of the network’s

stock disruption when other outside entities are not able to respond to the stores’ supply requests and

thus the stores become the entities responsible for requesting and delivering products to each other. This

system identifies the network’s stores that are in need of stock of a given product to satisfy their demand

and the ones that can supply the goods that are in need. This system must decide the optimal way the

stores in need can get the items they request in the network. The stores that are in need of goods send

requests to the system, which in turn, taking into account the necessities and guaranteeing that there are

no stock-outs for every store in the network, provides a solution. This solution provides for every store

that requested the system, which other stores must be visited and in what order, as well as which type

of products and in what quantity to collect from each. With this solution, the stores that requested goods

will employ a vehicle to pick up the products in the designated places following the provided route and

respecting the system’s decisions.

The optimization problem at hand can be described as a combination of routing and inventory manage-

ment decisions, problem which in the literature is presented as the inventory routing problem. The main

goal of this optimization is to maximize the stores’ on-shelf availability during the planning horizon, without

causing stock-outs and taking into consideration the collection costs.

This variation of the inventory routing problem is dynamic, with routes planned daily based on end-of-

day stock levels. The problem size varies with daily demand, as it affects end-of-day stock levels at each

store. As mentioned before, stores, when in need of goods, send requests to the system, which in turn

will calculate the best solution to answer these requests. Each day, multiple requests can be issued by

the stores and multiple stores can answer to a store’s request. This problem deals with multiple types of

products and the maximum capacity of the vehicle employed by each store is not considered. Whenever

a request can not be completely fulfilled, it will be partially fulfilled.
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3.3 Formulation of the Problem

In this section, the mathematical formulation of the problem is presented, aiming to establish a represen-

tation of the underlying optimization framework. This formalization encompasses the essential notations,

decision variables, parameters, objective function and constraints that define the problem.

3.3.1 Notation

R - the set of retailers R =
{
S1, . . . , S|R|

}
.

K - the set of retailers with the lack of stock of at least one product, K ⊆ R, also known as the set of

customers, K =
{
S1, . . . , S|K|

}
.

J - the set of suppliers with at least one available product to supply to the customers, J ⊆ R, J ={
S1, . . . , S|J |

}
.

|J |k - the number of suppliers or visited stores for the requesting store k.

I - set that indicates the type of products in need to be collected, i ∈
{
I1, . . . , I|I|

}
.

|I|k - the number of different products needed by requesting store k.

3.3.2 Decision Variables

qkij - order quantity of products i from requesting store k to supplier j, k ̸= j.

ykjl - binary variable which takes 1 if supplier l is visited immediately after supplier j and 0 otherwise

where j ∈ R and l ∈ R and j ̸= l, j ̸= k, l ̸= k .

gki - required quantity of product i from requesting store k.

3.3.3 Parameters

P k
ij - available quantity of product i in supplier j in moment of retailer’s k request.

dkj - distance from the supplier k to the supplier j, k ̸= j.

3.3.4 Assumptions

For the model development, the basic assumptions or requirements are made as follows:
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1. A request is represented by the quantity needed by a retailer k of each product i.

2. The decisions are made by a regulatory centralized system.

3. The store type is homogeneous, being the available stock of each product the only discerning

characteristic of the stores.

4. The value of collecting products from a store is estimated as the number of products available in

the supplier per unit of the distance traveled to collect them.

5. The transportation is provided by the retailer k that requests the items.

6. Every visited store should be entered and left only once and by the same vehicle in a trip.

7. The collection of the available items is done in one trial.

8. Each requesting store will only have one request in a solution.

3.3.5 The Objective Function

Fk =

|J |k∑
j=0

|J |k∑
l=1

|I|k∑
i=1

ykjl
qkil
djl

, (3.1)

where j = 0 represents the requesting store k.

F = max

|K|∑
k=1

Fk (3.2)

The objective function represents the maximization of the collection of products per travel distance, without

causing stock-outs at any supplier, for the entire network.

Constraints

1. A vehicle leaves a store that it enters.

Ensure that the number of times a vehicle enters a visited store is equal to the number of times it

leaves that store:∑|J |k
j=1 y

k
jl =

∑|J |k
j=1 y

k
lj
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2. Ensure that every visited store is entered once for each request.∑|J |k
j=1 y

k
jl = 1, ∀l ∈ {2, ..., |J |k}, ∀k ∈ {1, .., |K|}

Together with the first constraint, it ensures that every visited store is entered only once.

3. A product request can be satisfied by multiple stores and can also be only partially satisfied.

gki ≥
∑|J |k

j=1 q
k
ij, j ̸= k

4. It is not possible to collect from a store more than it has in stock.

qkij ≤ P k
ij

5. A supplier’s stock must be updated whenever products are picked up from that same store.

P k
ij = P k−1

ij − qk−1
ij , k ∈ {2, ..., |K|}, ∀i ∈ {1, ..., |I|k}, ∀j ∈ {1, ..., |J |k},

6. A requesting store can not collect products it has not requested.

qkij ≤ gki

7. It is not possible for a requesting store to collect products that the visited store has also requested.

For a given product i let

Ki = {Si
1, . . . , S

i
|K|}

be the set of requering stores of product i and

Ji = {Si
1, . . . , S

i
|J |}

be the set of suppliers or visited stores, then

Ki ∩ Ji = ∅.

8. The vehicle issued by the requesting store will visit the requesting store last and will not take products

from it.

ykjk = 1, qkik = 0 when j = |Jk|, ∀i.
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3.4 Algorithms

In this section, the different optimization algorithms made to solve the problem are presented as well as

the characteristics and thought process behind each one.

3.4.1 Baseline Algorithm (Dynamic2)

The baseline algorithm or Dynamic2, described in Algorithm 1, is a greedy algorithm made to generate

feasible and promising initial solutions that can be used by the optimization algorithms as a good start-

ing point. It receives as input the stores in the network, the requests, the distance between stores and

a rank. This rank can go from one to the number of stores in the network. For every requesting store,

the stores with products that the corresponding requesting store is in need of are selected as potential

visited stores. Starting in the requesting store, the algorithm selects the next visited store based on its

fitness value among the potential visited stores, considering the rank parameter. The rank determines the

position of the store in the sorted list of potential visited stores, with higher fitness values corresponding

to lower ranks. For instance, if the rank is set to 3, the algorithm chooses the next visited store with the

third highest fitness from the potential visited stores. This fitness is evaluated according to the quantity

of products needed by the requesting store present in a store and the distance from the current store to

it. From this next visited store, the maximum amount of quantity is taken of the needed products with-

out breaking constraints in order to avoid getting an unfeasible solution. It is important to mention that

a product that a visited store is requesting is not taken from that store. The stocks, current and last vis-

ited store are updated. After this process is concluded for all the requesting stores, the solution is returned.

Since the number of Dynamic2 solutions for a given request list is limited, changing the order of the

requesting stores in requests and rank will allow to get more Dynamic2 solutions. This proves useful and

will be explored more in the next sections, since it can be used in conjunction with other algorithms in

order to be able to explore the solution space more efficiently with Dynamic2 solutions. The Dynamic2

algorithm provides good initial solutions, even though greedy, since it takes from each visited store the

maximum amount of product possible and the selection of the visited store process takes into account

both the quantity available to collect and distance which are the most influential direct factors to the fitness

function’s values. Because of this it can provide solution with high quantities of product collected and

routes with relatively low distances travelled, which is a good starting point for the optimization algorithms

to improve on.
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Algorithm 1 Dynamic2 Algorithm for the IRP
1: Input: total_stores, requests, distance_matrix, rank

2: // stores_with_prods tracks the stores with products that the requesting stores need, vs_stock keeps track of

the stock of visited stores, total_qnt the quantity taken of each product by requesting stores

3: Initialize data structures: stores_with_prods, solution, vs_stock, total_qnt

4: for request in requests do

5: Assign to stores_with_prods the stores that have the products it is requesting and the respective products

6: last_store = requesting_store

7: while stores_with_prods do

8: // Fitness evaluated based on requested product quantities and distance from last_store

9: Assign to chosen_store the store among stores_with_prods with the best fitness value

10: for each product of the chosen_store do

11: Assign to req_qnt the quantity requested of product by the chosen_store

12: if total_qnt of requesting_store’s product == req_qnt then

13: continue

14: end if

15: if vs_stock of chosen_store’s product > 0 then

16: if chosen_store in requests’ requesting stores then

17: if chosen_store is not requesting product then

18: Assign to qnt max amount possible of product without breaking constraints

19: Update total_qnt, vs_stock and update solution.

20: end if

21: else

22: Assign to qnt max amount possible of product without breaking constraints

23: Update total_qnt, vs_stock and update solution.

24: end if

25: end if

26: end for

27: delete chosen_store entry from stores_with_prods

28: last_store = chosen_store

29: end while

30: end for

31: Output: solution
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3.4.2 Simulated Annealing

Two renditions of the simulated annealing algorithm were implemented. In both implementations, like the

classic algorithm, they receive as input an initial solution, an initial temperature, a cooling rate, tempera-

ture iterations and stopping temperature and return the best found solution.

In the first implementation 2, during each iteration of the algorithm, the temperature will be decreased by

the cooling rate until it reaches a value equal or lower than the stopping temperature and consequently

the algorithm satisfies its stopping condition. For each temperature reached during the course of the

simulated annealing algorithm, and for the number of temperature iterations, a new solution, more specif-

ically in this case, a neighbor solution, is generated by applying a perturbation or move operator to the

current solution. The move operator in this case is shuffling the order of the visited stores for some of

the requesting stores in the current solution, in hopes of finding better routes and consequently achieve

less distance travelled for the requesting stores’ employed vehicles. This move operator only generates

feasible neighbors, solutions which do not break any of aforementioned constraints. After the neighbor

solution is generated, the acceptance criterion, which is one of the core design issues of the simulated

annealing algorithm, comes into play. If the newly generated solution has a higher objective function value

than the current solution, the new solution will be accepted as the current solution. If not, it will be se-

lected under a probability 2.4 that depends on the current temperature and the difference in the fitness

value of the current and generated neighboring solution. As mentioned before, the algorithm initially has

a higher probability of accepting worse solutions in order to escape local optima and as the temperature

decreases it becomes more selective and favors solutions with a higher fitness value, ultimately striking a

balance between intensification and diversification during the course of the simulated annealing algorithm.

Upon reaching the conclusion of the temperature iterations cycle, a jump in the solution search is per-

formed in order to more effectively search the solution search space. This diversification move is done so

that instead of just starting with an initial solution and applying small perturbations generating neighboring

solutions in an area of the search space, even though there is the possibility of degradation of a solution

and explore more than if there was not, we can do this to more areas of the solution search space that

given the complexity of the problem at hand can be quite extensive. This jump in the solution search

space is done by changing, through random mechanisms, the values of some of the requesting stores of

the solution, which encompasses changing visited stores, products and quantities, without breaking the

constraints and thus maintaining a feasible solution.
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Algorithm 2 Simulated Annealing Algorithm for the IRP
1: Input: initial_solution, initial_temp, stopping_temp, cooling_rate, temp_iterations, total_stores, re-

quests, distance_matrix

2: current_solution = initial_solution

3: best_solution = current_solution

4: temperature = initial_temp

5: while temperature > stopping_temp do

6: for each iteration in temp_iterations do

7: Generate neighbor solution as new_solution

8: Calculate fitness of new_solution as new_solution_fit

9: Calculate fitness of current_solution as current_solution_fit

10: if new_solution_fit > current_solution_fit then

11: current_solution = new_solution

12: if new_solution_fit > fitness of the best_solution then

13: best_solution = new_solution

14: end if

15: else

16: Calculate P (∆E, T ) //probability of accepting a worse move

17: if random(0, 1) < P (∆E, T ) then

18: current_solution = new_solution

19: end if

20: end if

21: end for

22: Jump in the solution search space and assign solution to current_solution

23: if fitness of current_solution > best_solution then

24: best_genome = current_solution

25: end if

26: temperature *= cooling_rate

27: end while

28:

29: Output: best_solution
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The second implementation 3 is identical to the first one 2, however the key difference between the two

is in the approach to jump in the solution search space. In this implementation, the jump in the solution

search space is accomplished by generating a non-duplicate Dynamic2 1 solution with a random but el-

igible rank. As mentioned before in subsection 3.4.1, the number of Dynamic2 solutions is limited and

in order to generate more Dynamic2 solutions and explore different paths of the solution search space

the rank mechanism was developed. With this approach, instead of doing a random jump in the search

space, the jumps are more guided since it is jumping to generally more logical and better starting points

in Dynamic2 solutions. From there, it improves these solutions by finding better routes and consequently

lowering the distance travelled, where the distance travelled has a substantial impact in the fitness value

of the solutions, which is evident by analyzing the objective function 3.2.

However, compared to the first implementation, the search space is not nearly as explored since the num-

ber of Dynamic2 solutions are limited, and that number depends on the number of stores and requests.

So, this algorithm might be capable of converging at a faster rate and finding better solutions earlier be-

cause Dynamic2 solutions are, as explained before, a good starting point to improve on, but much more

limited when searching the solution search space and consequently miss promising areas and solutions.

This implementation also introduces two additional stopping criteria, it stops when it has already jumped

to every possible Dynamic2 solution possible for the specific instance and when it reaches a maximum

number of iterations without finding a new Dynamic2 solution, since the jump is to non-duplicate Dynamic2

solutions.
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Algorithm 3 Simulated Annealing Algorithm with jumps to Dynamic2 Solutions for the IRP
1: Input: initial_solution, initial_temp, stopping_temp, cooling_rate, temp_iterations, total_stores, requests, dis-

tance_matrix, max_iters_without_new_solution

2: iters_without_new_solution = 0

3: current_solution = initial_solution

4: best_solution = current_solution

5: temperature = initial_temp

6: // Maximum number of solutions generated by the dynamic2 algorithm for every rank

7: max_d_solutions = ( number of requesting stores )! * number of stores

8:

9: while temperature > stopping_temp and max_d_solutions not reached and iters_without_new_solution <

max_iters_without_new_solution do

10: for each iteration in temp_iterations do

11: Generate neighbor solution as new_solution

12: Calculate fitness of new_solution as new_solution_fit

13: Calculate fitness of current_solution as current_solution_fit

14: if new_solution_fit > current_solution_fit then

15: current_solution = new_solution

16: if new_solution_fit > fitness of the best_solution then

17: best_solution = new_solution

18: end if

19: else

20: Calculate P (∆E, T ) //probability of accepting a worse move

21: if random(0, 1) < P (∆E, T ) then

22: current_solution = new_solution

23: end if

24: end if

25: end for

26: Jump to a new non-duplicate Dynamic2 solution and assign it to current_solution

27: Update iters_without_new_solution

28: if fitness of current_solution > best_solution then

29: best_genome = current_solution

30: end if

31: temperature *= cooling_rate

32: end while

33:

34: Output: best_solution
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3.4.3 Tabu Search

Two distinct renditions of the Tabu Search algorithm were developed to tackle the Inventory Routing Prob-

lem. The first variation, Tabu Search with Diversification 4, makes use of short-term memory via tabu_list,

which records recently explored solutions, preventing revisiting these solutions. Moreover, a diversification

mechanism is also incorporated, allowing the exploration of diverse areas of the search space and aiding

in the avoidance of local optima. In contrast, the second rendition of the tabu search algorithm, Tabu

Search with Intensification and Diversification 5, not only includes short-term memory and diversification

but also introduces medium-term memory through the elite_list. This elite_list acts as a mechanism for

intensification by preserving promising solutions across generations, focusing the search on promising

areas of the search space.

The first implementation 4, receives as input the initial solution, the tabu list size, the number of gen-

erations, the number of candidate solutions generated in each generation and the maximum number of

generations without improvement in the same area of the solution search space. Firstly, the tabu_list,

current_solution, best_solution and the number of iterations_without_improvement are initialized. At the

beginning of each iteration of the algorithm, the diversification mechanism criteria is checked. If the

algorithm has not found a solution that improves the best found solution for the previously mentioned

maximum number of iterations, iterations_without_improvement is set to 0 and the diversification mech-

anism is applied. This diversification move, like in the Simulated Annealing algorithm 2, is a jump in the

solution search space by means of changing, through random mechanism, the values of some of the

requesting stores of the current solution. This move encompasses changing visited stores, products and

quantities without breaking the constraints, like previously mentioned. It is done to explore more areas of

the solution search space and escape local optima.

After the diversification criteria is checked, from the current solution the candidate or neighbor solutions

are generated. The size of the neighborhood is defined by the subset_size variable. The move operator

applied in order to generate the neighbor solutions is shuffling the order of the visited stores for some of

the requesting stores and consequently changing the route for the vehicles employed by these requesting

stores, in hopes of achieving less distance travelled. After generating the neighborhood, a local search

is performed in order to find the best candidate solution to become the next current solution. In order

for a solution in the neighborhood to be selected it must not be in tabu_list, which contains the recently

selected solutions, or be in it but have a higher fitness value than the best found solution. When the
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best candidate solution is found it becomes the current solution and the old current solution is appended

to the tabu_list. If the tabu_list is full the oldest solution is removed. Lastly, the best_solution and

iterations_without_improvement are updated. The algorithm will iterate until the number of generations

is reached, which is the stopping criteria.

Algorithm 4 Tabu Search Algorithm with Diversification for the IRP
1: Input: initial_solution, tabu_size, generations, subset_size, max_iter_without_imp, total_stores, requests,

distance_matrix

2: tabu_list = []

3: current_solution = initial_solution

4: best_solution = current_solution

5: iterations_without_improvement = 0

6: for i in range(generations) do

7: if iterations_without_improvement == max_iter_without_imp then

8: iterations_without_improvement = 0

9: Jump in the solution search space and assign solution to current_solution

10: end if

11: Generate neighbor_solutions of current_solution and assign result to neighborhood

12: Reset best_neighbor and best_neighbor_fit

13: for neighbor in neighborhood do

14: if neighbor_fit > best_neighbor_fit then

15: if neighbor not in tabu_list or (neighbor in tabu_list and neighbor_fit > best_solution_fit) then

16: best_neighbor = neighbor

17: best_neighbor_fit = neighbor_fit

18: end if

19: end if

20: end for

21: if best_neighbor then

22: current_solution = best_neighbor

23: Remove oldest solution from tabu_list if full

24: Append old current_solution to tabu_list

25: end if

26: Update best_solution and best_solution_fit if found

27: Update iterations_without_improvement

28: end for

29:

30: Output: best_solution
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In the second implementation 5, medium-term memory and consequently an intensification mechanism

is implemented, which is what differentiates this implementation from the first 4. In this variation of the

algorithm, there is a balance between diversification and intensification when exploring the solution search

space.

The intensification mechanism is done through an elite_list, where the size of this list is dictated by the

variable elite_size, received as input. The elite_list stores the latest elite_size best solutions found. When

a maximum number of iterations without improvement of the best found solution at a certain point is

reached, under a probability, either the diversification or intensification mechanism is applied. The in-

tensification mechanism involves assigning one of the best previously found solution in the medium-term

memory as the next current solution. This is done in order to intensify the search in promising areas

of the solution search space. The probability of applying the diversification or intensification mechanism

impacts the balance between these factors, it is important that the solution space is explored extensively

specially because of its dimension, but it is also important to have the opportunity to guide the search in

more promising regions.

The first implementation 4, shows a higher level of exploration by jumping more frequently in the solution

search space. This level of exploration makes it cover a greater range of potential solutions. On the other

hand, the second implementation 5, strikes a compromise between intensification and diversification. Even

though it does not jump in the search space as extensively, it uses its medium-term memory, allowing it

to focus more on promising regions of the search space, and potentially find better solutions.
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Algorithm 5 Tabu Search Algorithm with Intensification and Diversification for the IRP
1: Input: initial_solution, tabu_size, generations, subset_size, elite_size, max_iter_without_imp, total_stores,

requests, distance_matrix

2: Initialize tabu_list and elite_list

3: current_solution = initial_solution

4: best_solution = current_solution

5: iterations_without_improvement = 0

6: for i in range(generations) do

7: if iterations_without_improvement == max_iter_without_imp then

8: if random(0,1) < 0.7 or not elite_list then

9: Jump in the solution search space and assign solution to current_solution

10: else

11: Assign to current_solution random element from elite_list

12: end if

13: iterations_without_improvement = 0

14: end if

15: Generate neighbor_solutions of current_solution and assign result to neighborhood

16: Reset best_neighbor and best_neighbor_fit

17: for neighbor in neighborhood do

18: if neighbor_fit > best_neighbor_fit then

19: if neighbor not in tabu_list or (neighbor in tabu_list and neighbor_fit > best_solution_fit) then

20: best_neighbor = neighbor

21: best_neighbor_fit = neighbor_fit

22: end if

23: end if

24: end for

25: if best_neighbor then

26: current_solution = best_neighbor

27: Remove oldest solution from tabu_list if full

28: Append old current_solution to tabu_list

29: end if

30: Update best_solution and best_solution_fit if found

31: Update iterations_without_improvement

32: end for

33:

34: Output: best_solution
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3.4.4 Genetic Algorithm

Two distinct renditions were also developed for the Genetic Algorithm. The key difference between these

two variations of the genetic algorithm is that the second implementation, Genetic Algorithm with Elitism

7, uses a list of elite solutions to preserve the best-found solutions through generations as an intensifi-

cation mechanism in the solution search space. Both implementations receive as input the number of

generations of the algorithm, the initial population, the population size, which is the number of solutions

to be selected in each generation of the algorithm, the crossover rate, which represents the probability of

a crossover between two solutions happening, and the mutation rate, which represents the probability of

mutating a solution and generating a new one.

The first implementation, Genetic algorithm 6, starts by initializing the hall_of_fame, which will contain

the best solutions found in each generation. At the start of each generation of the algorithm, a selection

process is performed. The selection process will pick the solutions to remain from the current population

and generate a new population, named s_population. In this particular case, the selection method used is

the tournament selection. This method consists in randomly selecting x solutions, where α represents the

size of the tournament group. A tournament is then applied to the α members of the tournament group

in order to select the one with the higher fitness value. This process is then repeated until the desired

population size is obtained.

After the selection process is concluded, for half of the population size iterations, under a certain prob-

ability, the crossover rate, two random elements from the selected population are chosen as parents to

perform a crossover operation. This crossover operation will result in the generation of two offspring that

will be added to the selected population. The crossover operation in question can be described as ran-

domly selecting requesting stores and switching the values of these requesting stores between the two

mentioned parents. These values encompass the route of visited stores, as well as the products and

quantity taken when visiting each of these stores. It is important to mention that the switching of request-

ing stores’ values is between the same requesting stores of the two parents. This makes the probability of

generating unfeasible solutions lower than switching between different requesting stores.

After the crossover process is completed, for population_size iterations, under the mutation rate, the

mutation process starts. In this process, a random solution from the selected population is chosen for

mutation. This solution is then mutated and a new solution is generated, which is also appended to the se-
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lected population. The mutation operator consists in switching the order of the visited stores for a random

number of requesting stores of a solution, in hopes of finding a better route and achieving less travelled

distance. At the end of a generation, the best solution found in that iteration is added to hall_of_fame.

The algorithm will iterate until the gen_limit is reached.

The second implementation, Genetic Algorithm with Elitism 7, differs from the first one in the sense that it

implements an intensification mechanism by the way of an elite solution list. In each generation, the best

solutions from the previous generation’s selected population, which are stored in the list of elite solutions

elites, are directly passed on to the next generation. Preserving the elite solutions makes the algorithm

intensify the search over promising regions of the solution search space and encouraging the exploitation

of the best solutions found.
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Algorithm 6 Genetic algorithm for the IRP
1: Input: population, population_size, total_stores, requests, gen_limit, distance_matrix,

crossover_rate, mutation_rate

2: Initialize hall_of_fame

3:

4: for i in range(gen_limit) do

5: Perform selection of population and assign result to s_population

6: Evaluate fitness of the s_population

7: Append the solution with best fitness to the hall_of_fame

8: for i in range(population_size//2) do

9: if random(0,1) < crossover_rate then

10: Assign two random elements from s_population as parents

11: Perform crossover with the two parents resulting in the generation of two offspring

12: Append the offspring to the s_population

13: end if

14: end for

15: for i in range(population_size) do

16: if random(0,1) < mutation_rate then

17: Assign a random element from s_population for mutation

18: Perform mutation resulting in the generation of an offspring

19: Append the offspring to the s_population

20: end if

21: end for

22: population = s_population

23: end for

24: Assign to best_solution the solution with best fitness in the hall_of_fame

25:

26: Output: best_solution
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Algorithm 7 Genetic algorithm with Elitism for the IRP
1: Input: population, population_size, total_stores, requests, gen_limit, distance_matrix,

crossover_rate, mutation_rate, elitism_size

2: Initialize hall_of_fame and elites

3:

4: for i in range(gen_limit) do

5: Perform selection of population and assign result to s_population

6: Evaluate fitness of the s_population

7: Append the elitism_size solutions with the best fitness to elites

8: Append the solution with best fitness to the hall_of_fame

9: for i in range(population_size//2) do

10: if random(0,1) < crossover_rate then

11: Assign two random elements from s_population as parents

12: Perform crossover with the two parents resulting in the generation of two offspring

13: Append the offspring to elites

14: end if

15: end for

16: for i in range(population_size) do

17: if random(0,1) < mutation_rate then

18: Assign a random element from s_population for mutation

19: Perform mutation with the two parents resulting in the generation of an offspring

20: Append the offspring to elites

21: end if

22: end for

23: population = elites

24: end for

25: Assign to best_solution the solution with best fitness in the hall_of_fame

26:

27: Output: best_solution
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Chapter 4

Results

In this chapter, the results of the developed algorithms are presented in three different scenarios, as

shown in the table 2. Using the values of the columns in the mentioned table as a basis, the stores in

the network, requests and distances between the stores are randomly generated. The Number of Stores

represents the number of stores in the whole network, Max Number of Products represents the maximum

number of different types of products a store can have, Max Quantity of Product represents the maximum

quantity of a product a store can have in stock, Store Distance Range (km) represents the values that the

distance between two stores in the network can have and the Number Of Requests represents the number

of requesting stores in the network. Each of these scenarios has a different amount of data associated

with it, whether it be in the number of stores, types of products or number of requests.

In each of these scenarios, the characteristics of the scenario, solutions, and results obtained from the

developed algorithms are discussed, along with a comparison between them. The characteristics of the

problem contain a description of the requests, the stock in the stores of the network, and the distance

between them. The solutions and results contain, for each algorithm, a graphic representing the fitness

of the solutions found throughout the iterations, statistics for the best solution found and for each of the

store requests and a representation of this solution. The representation of the solution contains, for each

requesting store, two figures that represent the route and the products and quantity taken at each visited

store in order to answer the corresponding request. Lastly, in the subsection Comparison of Solutions, a

table with the instances of the algorithms previously presented, as well as their fitness, number of solutions

generated, parameters, iterations, and initial solution or population, is shown. From this table, a compari-

son of solutions is made. In order to compare the results of the different instances of the algorithms fairly,

these were made to generate roughly the same number of solutions.

The tests were performed in a Lenovo L480 with an Intel(R) Core(TM) i5-8250U processor, featuring a
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base clock speed of 1.60GHz and maximum frequency of 1.80 GHz. The machine is equipped with 16GB

of RAM and a solid-state drive (SSD).

Table 2: Scenario Table

Scenario Number Of

Stores

Max Number

Of Products

Max Quantity

Of Product

Store Distance

Range (km)

Number Of

Requests

1 10 50 1-1000 10-100 7

2 250 50 1-500 250-500 113

3 10 300 500-1500 10-100 4

4.1 Scenario 1

4.1.1 Characteristics of the Problem

Products and Quantity Needed for each Requesting Store

In the network of stores, seven stores are in need of at least one product. There is a necessity for 47 types

of products, most of them requested by more than one of the seven requesting stores. Only products

5, 14, 24, and 37 are requested by just one store. The accumulated requested quantities range from

approximately 200 to more than 2500 units of a product (figure 11).

Figure 11: Bar chart representing the needs of the requesting stores.
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Stock of the Requested Products

In the network of stores, there are 47 types of products in stock, and the accumulated quantities of a

product in at least one store vary approximately from 300 to 4000 units. It is important to mention that

the distribution of products and their quantities is not uniform across all stores in the network (figure 12).

Figure 12: Bar chart representing the stock of the requested products.

Distances between the Stores

The distance between two stores is distributed randomly from a minimum of 10 kilometers to a maximum

of 100 kilometers (figure 13).

Figure 13: Heatmap representing the distances between the stores in the network.
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4.1.2 Solutions and Results:

Dynamic2

Statistics of the Solution

The Dynamic2 algorithm’s solution has a fitness of 121.77. It was requested for 133 products across all

requesting stores, of which 60 were completely fulfilled. In total, 38339 units were collected, accounting

to an average fulfillment of 56%. There were 40 store visits, accumulating a travel distance of 2106.37

kilometers (table 3).

Table 3: Statistics for each request with the Dynamic2 solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

133 60 40 2106.37 38339 0.56 121.77 70739

The requesting store that accounted for the highest value of the fitness function was the store loja2, which

requested 27 products, amounting to 14742 units. The vehicle employed by loja2, visited 6 distinct stores

and collected 12309 units, traveling 382.21 kilometers. The second store with the highest fitness value

is loja4, which requested 14 types of products, amounting to 7119 units. The vehicle employed by this

store, visited 4 distinct stores and collected 4554 units, traveling 205.44 kilometers. The store with the

lowest fitness value is the store loja6, which requested 10 types of products, amounting to 4854 units.

The vehicle employed by this store, visited 4 distinct stores and collected 2320 units, traveling 300.58

kilometers (table 4).
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Table 4: Statistics for each request with the Dynamic2 solution.

Requesting Store Number of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Requested Quantity Taken Fitness

loja2 27
loja10, loja9, loja3, loja6,

loja7, loja1
6 382.21 14742 12309 32.20

loja4 14
loja1, loja10, loja3, loja9

4 206.44 7119 4554 22.06

loja6 10
loja10, loja1, loja4, loja9

4 300.58 4854 2320 7.72

loja7 2
loja9, loja3

2 69.90 836 836 11.96

loja8 22
loja10, loja9, loja3, loja2,

loja1, loja4, loja7, loja5,

loja6

9 399.99 11125 6038 15.10

loja9 26
loja3, loja6, loja8, loja7,

loja10, loja4, loja5
7 352.53 14952 5323 15.10

loja10 32
loja6, loja8, loja7, loja9,

loja3, loja1, loja4, loja5
8 394.72 17111 6959 17.63

Representation of the Solution

(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 14: Requesting store’s loja2 part of the solution.
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(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 15: Requesting store’s loja4 part of the solution.

(a) Route for the store loja6’s request. (b) Products and respective quantities taken at each visited store for

store loja6’s request.

Figure 16: Requesting store’s loja6 part of the solution.

(a) Route for the store loja7’s request. (b) Products and respective quantities taken at each visited store for

store loja7’s request.

Figure 17: Requesting store’s loja7 part of the solution.
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(a) Route for the store loja8’s request. (b) Products and respective quantities taken at each visited store for

store loja8’s request.

Figure 18: Requesting store’s loja8 part of the solution.

(a) Route for the store loja9’s request. (b) Products and respective quantities taken at each visited store for

store loja9’s request.

Figure 19: Requesting store’s loja9 part of the solution.

(a) Route for the store loja10’s request. (b) Products and respective quantities taken at each visited store for

store loja10’s request.

Figure 20: Requesting store’s loja10 part of the solution.
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Simulated Annealing:

In this instance, the Simulated Annealing algorithm used the Dynamic2 solution mentioned in subsection

4.1.2 as initial solution, with a fitness of 121.77.

Statistics of the solution

In this fitness graph 21, it is represented the fitness through the iterations of the Simulated Annealing

algorithm. The fitness fluctuates approximately between 20 to 142, having values with an improved fitness

over the initial solution generated by the Dynamic2 algorithm. The majority of iterations have fitness values

varying approximately between 40 and 60.

Figure 21: Fitness of the solutions found by the Simulated Annealing algorithm during its iterations.

The Simulated Annealing algorithm’s solution has a fitness of 142.61. It was requested for 133 products

across all requesting stores, of which 14 were completely fulfilled. In total, 12696 units were collected,

accounting to an average fulfillment of 21%. There were 17 stores visited, accumulating a travel distance

of 902.99 kilometers (table 5).

Table 5: Statistics of the Simulated Annealing solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

133 14 17 902.99 12696 0.21 142.61 70739

The requesting store that accounted for the highest value of the fitness function was the store loja4, which

requested 14 products, amounting to 7119 units. The vehicle employed by loja4, visited 1 store and

collected 1623 units, traveling 32.28 kilometers. The second store with the highest fitness value is the

store loja9, which requested 26 types of products, amounting to 14952 units. The vehicle employed by

this store, visited 1 store and collected 669 units, traveling 22.24 kilometers. The store with the lowest
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fitness value is loja7, which requested 2 types of products, amounting to 836 units. The vehicle employed

by this store, visited 1 store and collected 651 units, traveling 109.50 kilometers (table 6).

Table 6: Statistics for each request with the Simulated Annealing solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (km) Quantity Requested Quantity Taken Fitness

loja2 27
loja8, loja6, loja3, loja5,

loja7, loja4, loja1, loja9
8 341.50 14742 5052 14.79

loja4 14 loja1 1 32.28 7119 1623 50.28

loja6 10 loja1, loja4, loja3 3 128.09 4854 1190 9.29

loja7 2 loja10 1 109.50 836 651 5.95

loja8 22 loja3 1 79.84 11125 1889 23.66

loja9 26 loja3 1 22.24 14952 669 30.08

loja10 32 loja6, loja4 2 189.54 17111 1622 8.56

Representation of the solution

(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 22: Requesting store’s loja2 part of the solution.
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(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 23: Requesting store’s loja4 part of the solution.

(a) Route for the store loja6’s request. (b) Products and respective quantities taken at each visited store for

store loja6’s request.

Figure 24: Requesting store’s loja6 part of the solution.

(a) Route for the store loja7’s request. (b) Products and respective quantities taken at each visited store for

store loja7’s request.

Figure 25: Requesting store’s loja7 part of the solution.
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(a) Route for the store loja8’s request. (b) Products and respective quantities taken at each visited store for

store loja8’s request.

Figure 26: Requesting store’s loja8 part of the solution.

(a) Route for the store loja9’s request. (b) Products and respective quantities taken at each visited store for

store loja9’s request.

Figure 27: Requesting store’s loja9 part of the solution.

(a) Route for the store loja10’s request. (b) Products and respective quantities taken at each visited store for

store loja10’s request.

Figure 28: Requesting store’s loja10 part of the solution.
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Simulated Annealing using Dynamic2 solutions

In this instance, the Simulated Annealing using Dynamic2 solutions algorithm used the Dynamic2 solution

mentioned in subsection 3.4.1 as initial solution.

Statistics of the Solution

In this fitness graph 29, it is evident that the number of peaks is higher compared to the Simulated Anneal-

ing instance in subsection 4.1.2. This can be explained by the fact that the algorithm in question jumps in

the solution search space to solutions generated by the Dynamic2 algorithm instead of jumping to random

points in the search space. As mentioned before, these solutions generated by the Dynamic2 algorithms

are generally better than solutions generated through random mechanisms. When these jumps happen,

they can be further improved.

The fitness fluctuates approximately between 60 to 160, having values with an improved fitness over the

initial solution generated by the Dynamic2 algorithm. The majority of iterations have fitness values varying

approximately between 60 and 100.

Figure 29: Fitness of the solutions found by the Simulated Annealing algorithm using Dynamic2 solutions

during its iterations.

The Simulated Annealing using Dynamic2 solutions algorithm’s solution has a fitness of 160.30. It was

requested for 133 products across all requesting stores, of which 58 were completely fulfilled. In total,

38339 units were collected, accounting to an average fulfillment of 53%. There were 37 store visits,

accumulating a travel distance of 1605.10 kilometers (table 7).
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Table 7: Statistics of the Simulated Annealing Dynamic2 algorithm’s solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

133 58 37 1605.10 38339 0.53 160.30 70739

The requesting store that accounted for the highest value of the fitness function was the store loja2, which

requested 27 products, amounting to 14742 units. The vehicle employed by loja2, visited 6 distinct stores

and collected 12309 units, traveling 259.29 kilometers. The second store with the highest fitness value

is the store loja4, which requested 14 types of products, amounting to 7119 units. The vehicle employed

by this store, visited 3 distinct stores and collected 4225 units, traveling 69.90 kilometers. The store with

the lowest fitness value is the store loja6, which requested 10 types of products, amounting to 4854 units.

The vehicle employed by this store, visited 4 distinct stores and collected 1832 units, traveling 281.34

kilometers (table 10).

Table 8: Statistics for each request with the Simulated Annealing Dynamic2 algorithm’s solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Requested Quantity Taken Fitness

loja2 27
loja7, loja9, loja3, loja6,

loja10, loja1
6 259.29 14742 12309 47.47

loja10 32
loja2, loja3, loja9, loja7,

loja8, loja5, loja6, loja1,

loja4

9 363.19 17111 10409 28.66

loja4 14
loja1, loja3, loja10

3 132.98 7119 4225 31.77

loja7 2
loja9, loja3

2 69.90 836 836 11.96

loja6 10
loja1, loja4, loja9, loja10

4 281.34 4854 1832 6.51

loja9 26
loja3, loja6, loja8, loja5,

loja7, loja10, loja4, loja1
7 274.20 14952 6159 22.46

loja8 22
loja4, loja10, loja3, loja9,

loja5
5 224.20 11125 2569 11.46

Representation of the solution

71



(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 30: Requesting store’s loja2 part of the solution.

(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 31: Requesting store’s loja4 part of the solution.

(a) Route for the store loja7’s request. (b) Products and respective quantities taken at each visited store for

store loja7’s request.

Figure 32: Requesting store’s loja7 part of the solution.
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(a) Route for the store loja6’s request. (b) Products and respective quantities taken at each visited store for

store loja6’s request.

Figure 33: Requesting store’s loja6 part of the solution.

(a) Route for the store loja9’s request. (b) Products and respective quantities taken at each visited store for

store loja9’s request.

Figure 34: Requesting store’s loja9 part of the solution.

(a) Route for the store loja8’s request. (b) Products and respective quantities taken at each visited store for

store loja8’s request.

Figure 35: Requesting store’s loja8 part of the solution.
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Tabu Search

In this instance, the Tabu Search algorithm used the Dynamic2 solution mentioned in subsection 3.4.1 as

initial solution.

Statistics of the solution

In this fitness graph 36, it is represented the fitness through the iterations of the Tabu Search algorithm.

The fitness fluctuates approximately between 30 to 138, having values with an improved fitness over the

initial solution generated by the Dynamic2 algorithm. The majority of iterations have fitness values varying

approximately between 50 and 70.

Figure 36: Fitness of the solutions found by the Tabu Search algorithm during its iterations.

The Tabu Search algorithm’s solution has a fitness of 138.62. It was requested for 133 products across all

requesting stores, of which 60 were completely fulfilled. In total, 38339 units were collected, accounting

to an average fulfillment of 53%. There were 40 store visits, accumulating a travel distance of 2084.15

kilometers (table 9).

Table 9: Statistics of the Tabu Search algorithm’s solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

133 60 40 2084.15 38339 0.56 138.62 70739

The requesting store that accounted for the highest value of the fitness function was the store loja2, which

requested 27 products, amounting to 14742 units. The vehicle employed by loja2, visited 6 distinct stores

and collected 12309 units, traveling 274.17 kilometers. The second store with the highest fitness value is

the store loja4, which requested 14 types of products, amounting to 7119 units. The vehicle employed by

this store, visited 4 distinct stores and collected 4554 units, traveling 146.56 kilometers. The store with
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the lowest fitness value is the store loja6, which requested 10 types of products, amounting to 4854 units.

The vehicle employed by this store, visited 4 distinct stores and collected 2320 units, traveling 280.85

kilometers (table 10).

Table 10: Statistics for each request for the Tabu Search’s best found solution.

Requesting Store Number of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Requested Quantity Taken Fitness

loja2 27
loja7, loja9, loja3, loja6,

loja1, loja10
6 274.17 14742 12309 44.90

loja4 14
loja10, loja3, loja9, loja1

4 146.56 7119 4554 31.07

loja6 10
loja10, loja9, loja1, loja4

4 280.85 4854 2320 8.26

loja7 2
loja9, loja3

2 69.9 836 836 11.96

loja8 22
loja6, loja3, loja1, loja10,

loja7, loja4, loja5, loja9,

loja2

9 513.76 11125 6038 11.75

loja9 26
loja3, loja8, loja5, loja4,

loja10, loja6, loja7
7 353.42 14952 5323 15.06

loja10 32
loja1, loja4, loja5, loja9,

loja6, loja3, loja7, loja8
8 445.49 17111 6959 15.62

Representation of the solution

(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 37: Requesting store’s loja2 part of the solution.
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(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 38: Requesting store’s loja4 part of the solution.

(a) Route for the store loja6’s request. (b) Products and respective quantities taken at each visited store for

store loja6’s request.

Figure 39: Requesting store’s loja6 part of the solution.

(a) Route for the store loja7’s request. (b) Products and respective quantities taken at each visited store for

store loja7’s request.

Figure 40: Requesting store’s loja7 part of the solution.
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(a) Route for the store loja8’s request. (b) Products and respective quantities taken at each visited store for

store loja8’s request.

Figure 41: Requesting store’s loja8 part of the solution.

(a) Route for the store loja9’s request. (b) Products and respective quantities taken at each visited store for

store loja9’s request.

Figure 42: Requesting store’s loja9 part of the solution.

(a) Route for the store loja10’s request. (b) Products and respective quantities taken at each visited store for

store loja10’s request.

Figure 43: Requesting store’s loja10 part of the solution.
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Tabu Search with Intensification and Diversification

In this instance, the Tabu Search with Intensification and Diversification algorithm used the Dynamic2

solution mentioned in subsection 3.4.1 as initial solution.

Statistics of the solution

In this fitness graph 44, it is evident that the number of peaks is higher compared to the Tabu Search

instance in subsection 4.1.2. This might be due to the intensification mechanism by the way of elitism

mentioned before. This consists in selecting one of the best found solutions in the medium-term memory

as the current solution in order to intensify the search in promising areas of the solution search space.

The fitness fluctuates approximately between 30 to 153, having values with an improved fitness over the

initial solution generated by the Dynamic2 algorithm. The majority of iterations have fitness values varying

approximately between 60 and 140.

Figure 44: Fitness of the solutions found by the Tabu Search with Intensification and Diversification algo-

rithm during its iterations.

The Tabu Search with Intensification and Diversification algorithm’s solution has a fitness of 153.87. It

was requested for 133 products across all requesting stores, of which 60 were completely fulfilled. In

total, 38339 units were collected, accounting to an average fulfillment of 56%. There were 40 store visits,

accumulating a travel distance of 1879.55 kilometers (table 11).

Table 11: Statistics of the Tabu Search with Intensification and Diversification algorithm’s solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

133 60 40 1879.55 38339 0.56 153.87 70739

The requesting store that accounted for the highest value of the fitness function was the store loja2, which
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requested 27 products, amounting to 14742 units. The vehicle employed by loja2, visited 6 distinct stores

and collected 12309 units, traveling 252.17 kilometers. The second store with the highest fitness value is

the store loja4, which requested 14 types of products, amounting to 7119 units. The vehicle employed by

this store, visited 4 distinct stores and collected 4554 units, traveling 146.56 kilometers. The store with

the lowest fitness value is the store loja6, which requested 10 types of products, amounting to 4854 units.

The vehicle employed by this store, visited 4 distinct stores and collected 2320 units, traveling 240.70

kilometers (table 12).

Table 12: Statistics for each request of the Tabu Search with Intensification and Diversification algorithm’s

solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Requested Quantity Taken Fitness of the Requesting Store

loja2 27
loja1, loja6, loja10, loja7,

loja9, loja3
6 252.17 14742 12309 48.81

loja4 14
loja1, loja9, loja3, loja10

4 146.56 7119 4554 31.07

loja6 10
loja10, loja4, loja1, loja9

4 240.70 4854 2320 9.64

loja7 2
loja3, loja9

2 69.90 836 836 11.96

loja8 22
loja5, loja10, loja6, loja2,

loja7, loja3, loja4, loja9,

loja1

9 587.84 11125 6038 10.27

loja9 26
loja3, loja6, loja8, loja5,

loja7, loja4, loja10
7 256.25 14952 5323 20.77

loja10 32
loja5, loja7, loja9, loja3,

loja6, loja8, loja1, loja4
8 326.13 17111 6959 21.34

Representation of the solution

(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 45: Requesting store’s loja2 part of the solution.
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(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 46: Requesting store’s loja4 part of the solution.

(a) Route for the store loja6’s request. (b) Products and respective quantities taken at each visited store for

store loja6’s request.

Figure 47: Requesting store’s loja6 part of the solution.

(a) Route for the store loja7’s request. (b) Products and respective quantities taken at each visited store for

store loja7’s request.

Figure 48: Requesting store’s loja7 part of the solution.
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(a) Route for the store loja8’s request. (b) Products and respective quantities taken at each visited store for

store loja8’s request.

Figure 49: Requesting store’s loja8 part of the solution.

(a) Route for the store loja9’s request. (b) Products and respective quantities taken at each visited store for

store loja9’s request.

Figure 50: Requesting store’s loja9 part of the solution.

(a) Route for the store loja10’s request. (b) Products and respective quantities taken at each visited store for

store loja10’s request.

Figure 51: Requesting store’s loja10 part of the solution.
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Genetic Algorithm

In this instance, an initial population of 1000 solutions obtained through random procedures is used. Ev-

ery solution in this initial population is feasible. The average fitness of the mentioned population is 51.98.

Statistics of the solution

In this fitness graph 52, it is represented the average fitness of the population through the generations

of the Genetic algorithm. The fitness fluctuates approximately between 52 to 190, having values with an

improved fitness over the initial population. In the first 30 generations, the average of the fitness values

of the population increased consistently from around 52 to 188, slightly fluctuating around the latter until

the end, reaching a maximum value of 190.15.

Figure 52: Fitness of the solutions found by the Genetic algorithm during its iterations.

The Genetic algorithm’s solution has a fitness of 190.15. It was requested for 133 products across all

requesting stores, of which 15 were completely fulfilled. In total, 11804 units were collected, accounting

to an average fulfillment of 19%. There were 11 store visits, accumulating a travel distance of 604.60

kilometers (table 13).

Table 13: Statistics of the Solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

133 15 11 604.60 11804 0.19 190.15 70739

The requesting store that accounted for the highest value of the fitness function was the store loja4, which

requested 14 products, amounting to 7119 units. The vehicle employed by loja4, visited 1 store and

collected 1984 units, traveling 32.28 kilometers. The second store with the highest fitness value is the

store loja9, which requested 26 types of products, amounting to 14952 units. The vehicle employed by

this store, visited 1 store and collected 898 units, traveling 22.24 kilometers. The store with the lowest
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fitness value is the store loja7, which requested 2 types of products, amounting to 836 units. The vehicle

employed by this store, visited 1 store and collected 836 units, traveling 109.50 kilometers (table 14).

Table 14: Statistics for each request with the Genetic algorithm’s solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Requested Quantity Taken Fitness

loja7 2 loja10 1 109.50 836 836 7.63

loja10 32 loja8, loja1 2 154.21 17111 2622 17.00

loja4 14 loja1 1 32.28 7119 1984 61.46

loja9 26 loja3 1 22.24 14952 898 40.38

loja8 22 loja7, loja9, loja3, loja6 4 129.81 11125 2891 22.27

loja6 10 loja10 1 108.28 4854 1036 9.57

loja2 27 loja3 1 48.28 14742 1537 31.84

Representation of the solution

(a) Route for the store loja7’s request. (b) Products and respective quantities taken at each visited store for

store loja7’s request.

Figure 53: Requesting store’s loja7 part of the solution.

(a) Route for the store loja10’s request. (b) Products and respective quantities taken at each visited store for

store loja10’s request.

Figure 54: Requesting store’s loja10 part of the solution.
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(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 55: Requesting store’s loja4 part of the solution.

(a) Route for the store loja9’s request. (b) Products and respective quantities taken at each visited store for

store loja9’s request.

Figure 56: Requesting store’s loja9 part of the solution.

(a) Route for the store loja8’s request. (b) Products and respective quantities taken at each visited store for

store loja8’s request.

Figure 57: Requesting store’s loja8 part of the solution.
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(a) Route for the store loja6’s request. (b) Products and respective quantities taken at each visited store for

store loja6’s request.

Figure 58: Requesting store’s loja6 part of the solution.

(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 59: Requesting store’s loja2 part of the solution.

Genetic Algorithm with Elitism

The initial population used in this instance of the algorithm is the same as the one used in the genetic

algorithm instance 4.1.2.

Statistics of the solution

In this fitness graph 52, it is represented the average fitness of the population through the generations of

the Genetic algorithm. The fitness fluctuates approximately between 52 to 183.56, having values with an

improved fitness over the initial population. In the first 20 generations, the average of the fitness values

of the population increased consistently from around 52 to 188, slightly fluctuating around the latter until

the end, reaching a maximum value of 183.56.
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Figure 60: Fitness of the solutions found by the Genetic algorithm with Elitism during its iterations.

The Genetic algorithm with Elitism’s solution has a fitness of 183.56. It was requested for 133 products

across all requesting stores, of which 18 of these product requests were completely fulfilled. In total, 13362

units were collected, accounting to an average fulfillment of 23%. There were 15 store visits, accumulating

a travel distance of 753.56 kilometers (table 15).

Table 15: Statistics of the Solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

133 18 15 753.56 13362 0.23 183.56 70739

The requesting store that accounted for the highest value of the fitness function was the store loja4, which

requested 14 products, amounting to 7119 units. The vehicle employed by loja4, visited 1 store and

collected 1984 units, traveling 32.28 kilometers. The second store with the highest fitness value is the

store loja9, which requested 26 types of products, amounting to 14952 units. The vehicle employed by

this store, visited 1 store and collected 1159 units, traveling 22.24 kilometers. The store with the lowest

fitness value is the store loja7, which requested 2 types of products, amounting to 836 units. The vehicle

employed by this store, visited 1 store and collected 771 units, traveling 109.50 kilometers (table 42).
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Table 16: Statistics for each request for the Genetic algorithm with Elitism’s solution.

Requesting Store Number of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Requested Quantity Taken Fitness

loja6 10
loja3, loja9, loja1, loja4,

loja10
5 190.66 4854 2332 12.23

loja2 27
loja6, loja10, loja4, loja1

4 238.24 14742 4767 20.01

loja8 22
loja4, loja7

2 89.12 11125 775 8.70

loja7 2
loja10

1 109.50 836 771 7.04

loja10 32
loja3

1 71.52 17111 1574 22.01

loja9 26
loja3

1 22.24 14952 1159 52.11

loja4 14
loja1

1 32.28 7119 1984 61.46

Representation of the solution

(a) Route for the store loja6’s request. (b) Products and respective quantities taken at each visited store for

store loja6’s request.

Figure 61: Requesting store’s loja6 part of the solution.

(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 62: Requesting store’s loja2 part of the solution.
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(a) Route for the store loja8’s request. (b) Products and respective quantities taken at each visited store for

store loja8’s request.

Figure 63: Requesting store’s loja8 part of the solution.

(a) Route for the store loja7’s request. (b) Products and respective quantities taken at each visited store for

store loja7’s request.

Figure 64: Requesting store’s loja7 part of the solution.

(a) Route for the store loja10’s request. (b) Products and respective quantities taken at each visited store for

store loja10’s request.

Figure 65: Requesting store’s loja10 part of the solution.
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(a) Route for the store loja9’s request. (b) Products and respective quantities taken at each visited store for

store loja9’s request.

Figure 66: Requesting store’s loja9 part of the solution.

(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 67: Requesting store’s loja4 part of the solution.

4.1.3 Comparison of Solutions

As is observable from the comparison table 17, the algorithm that generated the solution with the best

fitness was the genetic algorithm with random initial population. Additionally, both the Genetic Algorithm

and the Genetic Algorithm with Elitism were tested with another initial population. This initial population

is composed by 1000 solutions generated by the Dynamic2 algorithm with an average fitness of 125.05.

Still, the instances of the genetic algorithms with the random initial population, found solutions with higher

fitness values than the ones with a initial population of solutions generated by the Dynamic2 algorithm.

This might be because having an initial population compromised of just random solutions can allow the ge-

netic algorithm to explore the solution search space more effectively. Even though the Dynamic2 solutions

are usually significantly better solutions than the solutions generated randomly, it makes the exploration

of the solution search space much more limited since the logic for building the different Dynamic2 solu-
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tions is similar. Despite this, the genetic algorithms with or without elitism manages to improve the initial

population consisting of solutions generated by the Dynamic2 algorithm. Comparing the genetic algorithm

to the genetic algorithm with elitism, the latter has a faster convergence speed. It is also observable by

the table that the genetic algorithm with elitism found slightly better solutions than the genetic algorithm,

excluding the instances where the genetic algorithm had a random initial population. In those instances,

for this scenario, the genetic algorithm’s best solution found was better than the one found by the genetic

algorithm with elitism. The best solution found by the genetic algorithm with random initial population has

a fitness value 56.14% greater than the baseline Dynamic2 solution.

Regarding the single solution algorithms, the Simulated Annealing algorithm with jumps in the solution

search space to Dynamic2 solutions, or simulated_annealing_d_2 in the comparison table 17, found

the solution with the highest fitness value out of all the other single solution algorithms, with a value

31.61% greater than the baseline solution. This solution proved having a greater fitness value than the

best one found by the Simulated Annealing algorithm, or simulated_annealing in the comparison table,

which, in turn, had a fitness value 17.10% greater than the baseline solution. The Tabu Search algorithm

with Intensification and Diversification, or tabu_search2 in the table 17, was the single solution algorithm

that found the second best solution with a fitness 26.32% greater than the baseline solution, with the

intensification mechanism proving useful when comparing to the tabu_search algorithm’s instance in the

comparison table, that found its best solution with a fitness value of 138.62, which translates to being

13.83% greater than the baseline solution.
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Table 17: Table with the instances of the algorithms previously presented for Scenario 1

Algorithm Instance Fitness Nº of Solutions Generated Parameters Iterations Initial Solu-

tion/Population

dynamic2 1 121.77 1 Rank: 1 1 None

simulated_annealing 1 142.61 8071611 Initial Temp: 1000, Cooling Rate:

0.999, Stop Temp: 0.0001,

Temp Iterations: 500

16111 dynamic2

simulated_annealing_d_2 1 160.30 5434347 Initial Temp: 1000, Cooling

Rate: 0.999, Stop Temp:

0.0001, Temp Iterations: 500,

max_iter_without_new_sol:

1000

10847 dynamic2

tabu_search 1 138.62 8071661 Tabu List: 50, Max Iterations

without Improvement: 10, sub-

set_size: 500

17623 dynamic2

tabu_search2 1 153.87 8071684 Tabu List: 50, Elite List: 20, Max

Iterations without Improvement:

10, subset_size: 500

17063 dynamic2

genetic_algorithm 1 169.41 8072210 Pop. Size: 1000, Crossover

Rate: 0.6, Mutation Rate:

0.4, Selection: tour-

ney_selection(size=5)

8074 d2: 1000 ; ran-

dom: 0

genetic_algorithm_elitism 1 170.13 8072106 Pop. Size: 1000, Crossover

Rate: 0.6, Mutation Rate:

0.4, Selection: tour-

ney_selection(size=5),

Elitism Size: 100

6409 d2: 1000 ; ran-

dom: 0

genetic_algorithm 2 190.15 8071638 Pop. Size: 1000, Crossover

Rate: 0.6, Mutation Rate:

0.4, Selection: tour-

ney_selection(size=5)

8074 random: 1000

genetic_algorithm_elitism 2 183.56 8072250 Pop. Size: 1000, Crossover

Rate: 0.6, Mutation Rate:

0.4, Selection: tour-

ney_selection(size=5),

Elitism Size: 100

6400 random: 1000

4.2 Scenario 2

4.2.1 Characteristics of the Problem

Products and Quantity Needed for each Requesting Store

In the network of stores, 113 stores are in need of at least one product. There is a necessity for 50

types of products, all of them requested by more than one of the 113 requesting stores. The accumulated

requested quantities range from approximately 7000 to more than 13000 units of a product (figure 68).
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Figure 68: Bar chart representing the needs of the requesting stores.

Stock of the Requested Products

In the network of stores, there are 50 types of products in stock, and the accumulated quantities of a

product in at least one store vary approximately from 18000 to 30000 units. It is important to mention

that the distribution of products and their quantities is not uniform across all stores in the network (figure

69).

Figure 69: Bar chart representing the stock of the requested products.

Distances between the Stores

The distance between two stores is distributed randomly from a minimum of 250 kilometers to a maximum

of 500 kilometers (figure 70).

92



Figure 70: Heatmap representing the distances between the stores in the network.

4.2.2 Solutions and Results:

Due to the scenario’s size, which has 250 stores in the network and 113 requests, for the best solutions

found by the developed algorithms, only the fitness graph, table with statistics of the solution, and statis-

tics table of the request with the highest fitness and its representation will be presented. It is relevant to

mention that for a given instance of an algorithm, if no improvement over the initial solution is found, only

the fitness graph is shown. This is because the initial solution would be the best solution found, which at

that point had already been presented along with its statistics.

Furthermore, since the number of stores and requests is significantly higher than in the other scenarios,

so is the solution search space. Consequently, the search becomes more computationally expensive than

other smaller scenarios. Due to time restrictions, the instance of the algorithms tested for this scenario

had fewer iterations to search for solutions. Given all these factors, finding promising solutions in this case

becomes more challenging for the developed algorithms than in smaller scenarios.

In this scenario, the single solution-based algorithms were tested using a Dynamic2 rank 1 solution as

the initial solution. These algorithms did not manage to find any solution with a higher fitness value than

the one the initial solution had. So, in addition to testing these algorithms using a Dynamic2 solution as

an initial solution, the algorithms were also tested using a feasible solution generated through random
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mechanisms.

Dynamic2

Statistics of the Solution

The Dynamic2 algorithm’s solution has a fitness of 151.75. It was requested for 2118 products across

all requesting stores, of which 2118 were completely fulfilled. In total, 535393 units were collected,

accounting to an average fulfillment of 100%. There were 1278 store visits, accumulating a travel distance

of 443883.89 kilometers (table 18).

Table 18: Statistics for the solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

2118 2118 1278 443883.89 535393 1 151.75 535393

The requesting store that accounted for the highest value of the fitness function was the store loja33,

which requested 18 products, amounting to 4161 units. The vehicle employed by loja33, visited 3 distinct

stores and collected 4161 units, traveling 1211.02 kilometers.

Table 19: Statistics for the request with the highest fitness value in the solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja33 18 loja231, loja49, loja163 3 1211.02 4161 3.44 4161

Representation of the request with the highest fitness value of the solution

(a) Route for the store loja33’s request. (b) Products and respective quantities taken at each visited store for

store loja33’s request.

Figure 71: Requesting store’s loja33 part of the solution.

94



Random solution

This feasible solution generated through random mechanisms is used as an initial solution for some of the

developed algorithms.

Statistics of the Solution

The random solution has a fitness of 48.53. It was requested for 2118 products across all requesting

stores, of which 1898 were completely fulfilled. In total, 492781 units were collected, accounting to an

average fulfillment of 93%. There were 2960 store visits, accumulating a travel distance of 1152867.58

kilometers (table 20).

Table 20: Statistics for the solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

2118 1898 2960 1152867.58 492781 0.93 48.53 535393

The requesting store that accounted for the highest value of the fitness function was the store loja13, which

requested 32 products, amounting to 7005 units. The vehicle employed by loja13, visited 7 distinct stores

and collected 3100 units, traveling 3089.30 kilometers.

Table 21: Statistics for the request with the highest fitness value in the solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja13 32
loja92, loja229, loja175,

loja124, loja41, loja215, loja222
7 3089.30 3100 1.00 7005

Representation of the request with the highest fitness value of the solution

(a) Route for the store loja13’s request. (b) Products and respective quantities taken at each visited store for

store loja13’s request.

Figure 72: Requesting store’s loja13 part of the solution.

95



Simulated Annealing

Statistics of the Solution using the Dynamic2 algorithm’s solution as initial solution

In this fitness graph 73, in approximately the first 1000 iterations the fitness decreases from 151.75, which

is the value of the initial Dynamic2 solution, to approximately 46. From then, the fitness values fluctuates

approximately from 46 to 55. No solution with a fitness value greater than the initial solution was found.

Figure 73: Fitness of the solutions found by the Simulated Annealing algorithm with Dynamic2 initial

solution during its iterations.

Statistics of the Solution using the random solution as initial solution

In this fitness graph 21, it is represented the fitness through the iterations of the Simulated Annealing

algorithm. The fitness values range from 43.15 to 53.51, having values with an improved fitness over

the initial random solution throughout the iterations. The majority of iterations have fitness values varying

approximately between 47 and 50.

Figure 74: Fitness of the solutions found by the Simulated Annealing algorithm with random initial solution

during its iterations.

The Simulated Annealing algorithm’s solution has a fitness of 53.51. It was requested for 2118 products

across all requesting stores, of which 1884 were completely fulfilled. In total, 490625 units were collected,
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accounting to an average fulfillment of 93%. There were 2840 store visits, accumulating a travel distance

of 1085240.10 kilometers (table 3).

Table 22: Statistics for the solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

2118 1884 2840 1085240.1 490625 0.93 53.51 535393

The requesting store that accounted for the highest value of the fitness function was the store loja210,

which requested 22 products, amounting to 6482 units. The vehicle employed by loja210, visited 7 distinct

stores and collected 3353 units, traveling 2571.87 kilometers.

Table 23: Statistics for the request with the highest fitness value in the solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja210 22
loja22, loja83, loja233, loja16,

loja202, loja9, loja74
7 2571.87 3353 1.30 6482

Representation of the request with the highest fitness value of the solution

(a) Route for the store loja210’s request. (b) Products and respective quantities taken at each visited store for

store loja210’s request.

Figure 75: Requesting store’s loja210 part of the solution.

Simulated Annealing using Dynamic2 solutions for jumps in the solution search space

In this fitness graph 73, it is evident that the number of peaks is higher compared to the Simulated Anneal-

ing instance in subsection 4.2.2. This can be explained by the fact that the algorithm in question jumps in

the solution search space to solutions generated by the Dynamic2 algorithm instead of jumping to random

points in the search space. As mentioned before, these solutions generated by the Dynamic2 algorithms

are generally better than solutions generated through random mechanisms. When these jumps happen,
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they can be further improved. However, no solution with an improved fitness over the initial Dynamic2

rank 1 solution is found.

Figure 76: Fitness of the solutions found by the Simulated Annealing algorithm using Dynamic2 solutions

during its iterations.

Tabu Search

Statistics of the Solution using the Dynamic2 algorithm’s solution as initial solution

In this fitness graph 77, in the first 11 iterations the fitness decreases from 151.75, which is the value of

the initial Dynamic2 solution, to approximately 50. From then, the fitness values fluctuates approximately

from 46 to 52. No solution with a fitness value greater than the initial solution was found.

Figure 77: Fitness of the solutions found by the Tabu Search algorithm with Dynamic2 initial solution during

its iterations.

Statistics of the Solution using the random solution as initial solution

In this fitness graph 78, it is represented the fitness through the iterations of the Tabu Search algorithm.

The fitness fluctuates approximately between 45.31 to 53.59, having values with an improved fitness over

the initial random solution. The majority of iterations have fitness values varying approximately between

46 and 50.
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Figure 78: Fitness of the solutions found by the Tabu Search algorithm with random solution as initial

solution during its iterations.

The Tabu Search algorithm’s solution has a fitness of 53.59. It was requested for 2118 products across

all requesting stores, of which 1788 were completely fulfilled. In total, 473205 units were collected,

accounting to an average fulfillment of 90%. There were 2696 store visits, accumulating a travel distance

of 1041973.18 kilometers (table 24).

Table 24: Statistics for the solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

2118 1788 2696 1041973.18 473205 0.90 53.59 535393

The requesting store that accounted for the highest value of the fitness function was the store loja180,

which requested 34 products, amounting to 9131 units. The vehicle employed by loja180, visited 21

distinct stores and collected 5510 units, traveling 4167.77 kilometers.

Table 25: Statistics for the request with the highest fitness value in the solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja180 34

loja222, loja87, loja118, loja57, loja205,

loja175, loja25, loja148, loja77, loja236,

loja150

11 4167.77 5510 1.32 9131

Representation of the request with the highest fitness value of the solution
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(a) Route for the store loja180’s request. (b) Products and respective quantities taken at each visited store for

store loja180’s request.

Figure 79: Requesting store’s loja180 part of the solution.

Tabu Search with Intensification and Diversification

Statistics of the Solution using the Dynamic2 algorithm’s solution as initial solution

In this fitness graph 80, it is evident that the number of peaks is higher compared to the Tabu Search

instance in subsection 4.2.2. This might be due to the intensification mechanism by the way of elitism

mentioned before. This consists in selecting one of the best found solutions in the medium-term memory

as the current solution in order to intensify the search in promising areas of the solution search space.

However, no solution was found with a greater fitness value than the initial Dynamic2 rank 1 solution.

Figure 80: Fitness of the solutions found by the Tabu Search with Intensification and Diversification algo-

rithm with Dynamic2 initial solution during its iterations.

Statistics of the Solution using the random solution as initial solution

Like in the fitness graph 77, in this graph 81 it is observable that the number of peaks is higher compared

to the Tabu Search instance in subsection 4.2.2, which might be due to the mentioned intensification

mechanism.
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The fitness fluctuates approximately between 45 to 51.72, having values with an improved fitness over the

initial solution generated by the Dynamic2 algorithm. The majority of iterations have fitness values varying

approximately between 48 and 51.

Figure 81: Fitness of the solutions found by the Tabu Search with Intensification and Diversification algo-

rithm with random solution as initial solution during its iterations.

The Tabu Search with Intensification and Diversification algorithm’s solution has a fitness of 51.72. It was

requested for 2118 products across all requesting stores, of which 1788 were completely fulfilled. In total,

470154 units were collected, accounting to an average fulfillment of 89%. There were 2695 store visits,

accumulating a travel distance of 1035812.54 kilometers (table 26).

Table 26: Statistics for the solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

2118 1788 2695 1035812.54 470154 0.89 51.72 535393

The requesting store that accounted for the highest value of the fitness function was the store loja180,

which requested 34 products, amounting to 9131 units. The vehicle employed by loja180, visited 4 distinct

stores and collected 3223 units, traveling 1979.07 kilometers.

Table 27: Statistics for the request with the highest fitness value in the solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja180 34
loja188, loja150,

loja107, loja227
4 1979.07 3223 1.63 9131

Representation of the request with the highest fitness value of the solution
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(a) Route for the store loja180’s request. (b) Products and respective quantities taken at each visited store for

store loja180’s request.

Figure 82: Requesting store’s loja180 part of the solution.

Genetic Algorithm

Statistics of the Solution using a random population as initial population

In this instance, an initial population of 1000 solutions obtained through random procedures is used. Ev-

ery solution in this initial population is feasible. The average fitness of the mentioned population is 48.16.

In this fitness graph 83, it is represented the average fitness of the population through the generations of

the Genetic algorithm. In the second generation, the average of the fitness of the population decreases to

negative values. From then it increases to an average of 54 in the ninth generation. From this generation,

the fitness fluctuates approximately between 54 to 59.33, having values with an improved fitness over the

initial population.

Figure 83: Fitness of the solutions found by the Genetic Algorithm during its iterations.

The Genetic algorithm’s solution has a fitness of 59.33. It was requested for 2118 products across all

requesting stores, of which 1780 were completely fulfilled. In total, 464164 units were collected, accounting

to an average fulfillment of 89%. There were 2629 store visits, accumulating a travel distance of 938043.93
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kilometers (table 28).

Table 28: Statistics for the solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

2118 1780 2629 938043.93 464164 0.89 59.33 535393

The requesting store that accounted for the highest value of the fitness function was the store loja17, which

requested 31 products, amounting to 6375 units. The vehicle employed by loja17, visited 3 distinct stores

and collected 2432 units, traveling 1495.29 kilometers.

Table 29: Statistics for the request with the highest fitness value in the solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja17 31
loja224, loja109, loja110

3 1495.29 2432 1.63 6375

Representation of the request with the highest fitness value of the solution

(a) Route for the store loja17’s request. (b) Products and respective quantities taken at each visited store for

store loja17’s request.

Figure 84: Requesting store’s loja17 part of the solution.

Statistics of the Solution using a Dynamic2 population as the initial population

In this instance, an initial population of 1000 Dynamic2 solutions is used. Every solution in this initial

population is feasible. The average fitness of the mentioned population is 151.66.

In this fitness graph 85, it is represented the average fitness of the population through the generations

of the Genetic algorithm. The average of the fitness of the population increases consistently throughout

the generations, reaching a maximum of 152.93, having values with an improved fitness of the initial

population.
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Figure 85: Fitness of the solutions found by the Genetic Algorithm during its generations.

The Genetic algorithm’s solution has a fitness of 152.93. It was requested for 2118 products across

all requesting stores, of which 2118 were completely fulfilled. In total, 535393 units were collected,

accounting to an average fulfillment of 100%. There were 1275 store visits, accumulating a travel distance

of 438128.78 kilometers (table 34).

Table 30: Statistics of the Solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

2118 2118 1275 438128.78 535393 1 152.93 535393

The requesting store that accounted for the highest value of the fitness function was the store loja33,

which requested 18 products, amounting to 4161 units. The vehicle employed by loja33, visited 3 distinct

stores and collected 4161 units, traveling 1211.02 kilometers.

Table 31: Statistics for the Requesting Store with the highest fitness value of the solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja33 18 loja231, loja49, loja163 3 1211.02 4161 3.44 4161

Representation of the request with the highest fitness value of the solution
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(a) Route for the store loja33’s request. (b) Products and respective quantities taken at each visited store for

store loja33’s request.

Figure 86: Requesting store’s loja33 part of the solution.

Genetic Algorith with Elitism

Statistics of the Solution using a random population as initial population

The initial population used in this instance of the algorithm is the same as the one used in the genetic

algorithm instance 4.2.2.

In this fitness graph 87, it is represented the average fitness of the population through the generations of

the Genetic algorithm. In the second generation, the average of the fitness of the population decreases

to negative values. From then it increases to an average of 54 in the seventh generation. From this

generation, the fitness fluctuates approximately between 54 to 59.61, having values with an improved

fitness over the initial population.

Figure 87: Fitness of the solutions found by the Genetic Algorithm with Elitism during its iterations.

The Genetic algorithm with Elitism’s solution has a fitness of 59.61. It was requested for 2118 products

across all requesting stores, of which 1780 were completely fulfilled. In total, 535393 units were collected,

accounting to an average fulfillment of 89%. There were 2629 store visits, accumulating a travel distance
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of 937193.30 kilometers (table 32).

Table 32: Statistics for the solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

2118 1780 2629 937193.30 464164 0.89 59.61 535393

The requesting store that accounted for the highest value of the fitness function was the store loja145 which

requested 28 products, amounting to 7392 units. The vehicle employed by loja145 visited 5 distinct stores

and collected 3958 units, traveling 2224.48 kilometers.

Table 33: Statistics for the request with the highest fitness value in the solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja145 28
loja40, loja136, loja213,

loja174, loja78
5 2224.48 3958 1.78 7392

Representation of the request with the highest fitness value of the solution

(a) Route for the store loja145’s request. (b) Products and respective quantities taken at each visited store for

store loja145’s request.

Figure 88: Requesting store’s loja145 part of the solution.

Statistics of the Solution using a Dynamic2 population as the initial population

In this fitness graph 89, it is represented the average fitness of the population through the generations

of the Genetic algorithm with Elitism. The average of the fitness of the population increases consistently

throughout the generations, reaching a maximum of 153.27, having values with an improved fitness of the

initial population.
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Figure 89: Fitness of the solutions found by the Genetic Algorithm with Elitism during its iterations.

The Genetic algorithm with Elitism’s solution has a fitness of 153.27. It was requested for 2118 products

across all requesting stores, of which 2118 were completely fulfilled. In total, 535393 units were collected,

accounting to an average fulfillment of 100%. There were 1275 store visits, accumulating a travel distance

of 437013.62 kilometers (table 34).

Table 34: Statistics for the Solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

2118 2118 1275 437013.62 535393 1 153.27 535393

The requesting store that accounted for the highest value of the fitness function was the store loja33 which

requested 18 products, amounting to 4161 units. The vehicle employed by loja33 visited 53distinct stores

and collected 4161 units, traveling 1211.02 kilometers.

Table 35: Statistics for the request with the highest fitness value in the solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja33 18 loja231, loja49, loja163 3 1211.02 4161 3.44 4161

4.2.3 Comparison of Solutions

As is observable from the comparison table 36, the algorithm that generated the solution with the best

fitness was the genetic algorithm with elitism starting with a population consisting of solutions generated

by the Dynamic2 algorithm. Both the genetic algorithm and genetic algorithm with elitism were the only

algorithms in 36 that managed to improve the baseline solution dynamic2, which has a fitness of 151.75.

The instances that found a better solution than the baseline one, used a Dynamic2 solution population as
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initial population. The genetic algorithm found a solution with fitness greater than the baseline solution by

0.78%, and the genetic algorithm with elitism’s best solution is approximately 1.00% even higher. As men-

tioned before, considering the significantly higher number of stores and requests compared to the other

scenarios, which consequently results in a larger solution space, the complexity of the search increases.

Due to time constraints and the computational cost of this scenario, the tested algorithm instances have

fewer iterations to search for solutions than the other scenarios. These factors make finding promising

solutions in the algorithms’ run time more challenging. So, the reason the genetic algorithms’ instances

with initial population consisting of dynamic2 solutions are the only instances finding better solutions than

the baseline dynamic2 solution, might be because starting with a population of solutions that have fitness

values close to the baseline solution and recombining and mutating these solutions can lead to finding a

better solution than the baseline in fewer generations than starting, for example, with a random population.

In addition to testing these algorithms using a Dynamic2 solutions as initial solutions, the algorithms

were also tested using a feasible solution generated through random mechanisms. All of these instances

found solutions with fitness values greater than their initial solution or population. The genetic algorithm

with elitism found a better solution than the genetic algorithm, with its solution having a fitness 23.77%

greater than the average of its initial random population, 48.16. The genetic algorithm’s best solution has

a fitness 23.28% greater than the random initial population. Regarding the single solution algorithms, the

Tabu Search algorithm found the best of all the single solution algorithms developed in this scenario, with

its fitness value being 10.43% greater than the initial random solution, which has a fitness value of 48.53.

Its then followed by the simulated annealing algorithm, which found a solution with a fitness value 10.29%

greater than the random initial solution. Finally, the Tabu Search with Intensification and Diversification,

tabu_search2 in the comparison table 36, found a solution with a fitness value 6.58% greater than the

random initial solution.
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Table 36: Table with the instances of the algorithms for Scenario 2

Algorithm Instance Fitness Solutions Generated Parameters Iterations Initial Solu-

tion/Population

dynamic2 1 151.75 1 Rank: 1 1 None

random 1 48.53 1 None 1 None

simulated_annealing 1 151.75 654306 Initial Temp: 500, Cooling

Rate: 0.99, Stop Temp:

0.001, Temp Iter: 500

1306 dynamic2

simulated_annealing 2 53.51 654306 Initial Temp: 500, Cooling

Rate: 0.99, Stop Temp:

0.001, Temp Iter: 500

1306 random

simulated_annealing_d_2 1 151.75 654306 Initial Temp: 500, Cooling

Rate: 0.99, Stop Temp:

0.001, Temp Iter: 500,

max_iter_without_new_sol:

1000

1306 dynamic2

tabu_search 1 151.75 654630 Tabu List: 50, Max Iter:

10, subset_size: 500

1309 dynamic2

tabu_search 2 53.59 654628 Tabu List: 50, Max Iter:

10, subset_size: 500

1309 random

tabu_search2 1 151.75 654589 Tabu List: 50, Elite: 20,

Max Iter: 10, subset_size:

500

1309 dynamic2

tabu_search2 2 51.72 654587 Tabu List: 50, Elite: 20,

Max Iter: 10, subset_size:

500

1309 random

genetic_algorithm 1 59.33 654333 Pop Size: 1000,

Crossover_p: 0.6,

Mutation_p: 0.4, Selec-

tion: tourney_sel(size=5)

654 random: 1000

genetic_algorithm_elitism 1 59.61 655300 Pop Size: 1000,

Crossover_p: 0.6,

Mutation_p: 0.4, Selec-

tion: tourney_sel(size=5),

Elitism: 100

520 random: 1000

genetic_algorithm 2 152.93 654319 Pop Size: 1000,

Crossover_p: 0.6,

Mutation_p: 0.4, Selec-

tion: tourney_sel(size=5)

654 d2: 1000

genetic_algorithm_elitism 2 153.27 655614 Pop Size: 1000,

Crossover_p: 0.6,

Mutation_p: 0.4, Selec-

tion: tourney_sel(size=5),

Elitism: 100

519 d2: 1000
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4.3 Scenario 3

4.3.1 Characteristics of the Problem

Products and Quantity Needed for each Requesting Store

In the network of stores, 4 stores are in need of at least one product. There is a necessity for 245 types of

products, all of them requested by more than one of the 4 requesting stores. The accumulated requested

quantities range from 32 to 4276 units of a product (figure 90).

Figure 90: Bar chart representing the needs of the requesting stores.

Stock of the Requested Products

In the network of stores, there are 250 types of products in stock, and the accumulated quantities of a

product in at least one store vary from 506 to 8192 units. It is important to mention that the distribution

of products and their quantities is not uniform across all stores in the network (figure 91).

Figure 91: Bar chart representing the stock of the requested products.
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Distances between the Stores

The distance between two stores is distributed randomly from a minimum of 10 kilometers to a maximum

of 100 kilometers (figure 92).

Figure 92: Heatmap representing the distances between the stores in the network.

4.3.2 Solutions and Results:

Dynamic2

Statistics of the Solution

The Dynamic2 algorithm’s solution has a fitness of 804.03. It was requested for 385 products across all

requesting stores, of which 337 were completely fulfilled. In total, 2641121 units were collected, account-

ing to an average fulfillment of 92%. There were 30 store visits, accumulating a travel distance of 1242.42

kilometers (table 37).

Table 37: Statistics of the Solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

385 337 30 1242.42 264121 0.92 804.03 288690

The requesting store that accounted to the highest value of the fitness function was the store loja4, which

requested 186 products, amounting to 142006 units. The vehicle employed by loja4, visited 8 distinct
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stores and collected 128384 units, traveling 355.64 kilometers. The second store with the highest fitness

value is the store loja3, which requested 96 types of products, amounting to 71977 unities. The vehicle

employed by this stores, visited 7 distinct stores and collected 64190 units, traveling 313.13 kilometers.

The store with the lowest fitness value is the store loja5, which requested 12 types of products, amounting

to 12347 units. The vehicle employed by this store, visited 12 distinct stores and collected 10102 units,

traveling 266.67 kilometers (table 38).

Table 38: Statistics for each request for the Dynamic2 algorithm’s solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja2 91
loja10, loja4, loja9, loja3,

loja5, loja7, loja6, loja1
8 306.98 61445 200.16 62360

loja3 96
loja5, loja2, loja10,

loja4, loja9, loja6, loja7
7 313.13 64190 204.99 71977

loja4 186
loja9, loja3, loja5, loja2,

loja10, loja7, loja6, loja1
8 355.64 128384 360.99 142006

loja5 12
loja3, loja9, loja4,

loja10, loja2, loja7, loja6
7 266.67 10102 37.88 12347

Representation of the Solution

(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 93: Requesting store’s loja2 part of the solution.
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(a) Route for the store loja3’s request. (b) Products and respective quantities taken at each visited store for

store loja3’s request.

Figure 94: Requesting store’s loja3 part of the solution.

(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 95: Requesting store’s loja4 part of the solution.

(a) Route for the store loja5’s request. (b) Products and respective quantities taken at each visited store for

store loja5’s request.

Figure 96: Requesting store’s loja5 part of the solution.
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Simulated Annealing

Statistics of the Solution

In this fitness graph 97, it is represented the fitness through the iterations of the Simulated Annealing

algorithm. The fitness fluctuates approximately between 52 to 1088.50, having values with an improved

fitness over the initial solution generated by the Dynamic2 algorithm. The majority of iterations have fitness

values varying approximately between 200 and 40.

Figure 97: Fitness of the solutions found by the Simulated Annealing algorithm during its iterations.

The Simulated Annealing algorithm’s solution has a fitness of 1088.50. It was requested for 385 products

across all requesting stores, of which 111 were completely fulfilled. In total, 102865 units were collected,

accounting to an average fulfillment of 41%. There were 12 store visits, accumulating a travel distance of

550.32 kilometers (table 39).

Table 39: Statistics of the Solution.

Nº of Requested Items Nº of Fulfilled Items Number of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

385 111 12 550.32 102865 0.41 1088.50 288690

The requesting store that accounted for the highest value of the fitness function was the store loja2 which

requested 91 products, amounting to 62360 units. The vehicle employed by loja2 visited 1 store and

collected 14238 units, traveling 21.78 kilometers. The second store with the highest fitness value is the

store loja4, which requested 186 types of products, amounting to 142006 units. The vehicle employed

by this store visited 6 distinct stores and collected 83044 units, traveling 208.10 kilometers. The store

with the lowest fitness value is loja5, which requested 12 types of products, amounting to 12347 units.

The vehicle employed by this store visited 3 distinct stores and collected 2603 units, traveling 180.54

kilometers (table 40).
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Table 40: Statistics for each request of the Simulated Annealing algorithm’s solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja2 91 loja10 1 21.78 14238 653.72 62360

loja3 96 loja4, loja5 2 139.90 2980 21.30 71977

loja4 186
loja9, loja3, loja5, loja2,

loja7, loja6
6 208.10 83044 399.06 142006

loja5 12 loja1, loja9, loja4 3 180.54 2603 14.42 12347

Representation of the Solution

(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 98: Requesting store’s loja2 part of the solution.

(a) Route for the store loja3’s request. (b) Products and respective quantities taken at each visited store for

store loja3’s request.

Figure 99: Requesting store’s loja3 part of the solution.
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(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 100: Requesting store’s loja4 part of the solution.

(a) Route for the store loja5’s request. (b) Products and respective quantities taken at each visited store for

store loja5’s request.

Figure 101: Requesting store’s loja5 part of the solution.

Simulated Annealing using Dynamic2 solutions

Statistics of the Solution

In this fitness graph 102, it is evident that the number of peaks is higher compared to the Simulated

Annealing instance in subsection 4.3.2. This can be explained by the fact that the algorithm in question

jumps in the solution search space to solutions generated by the Dynamic2 algorithm instead of jumping

to random points in the search space. As mentioned before, these solutions generated by the Dynamic2

algorithms are generally better than solutions generated through random mechanisms. When these jumps

happen, they can be further improved.

The fitness fluctuates approximately between 342 to 832.41, having values with an improved fitness over
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the initial solution generated by the Dynamic2 algorithm. The majority of iterations have fitness values

varying approximately between 450 and 620.

Figure 102: Fitness of the solutions found by the Simulated Annealing algorithm using Dynamic2 solutions

during its iterations.

The Simulated Annealing algorithm using jumps to Dynamic2 solutions, best found solution has a fitness

of 832.41. It was requested for 385 products across all requesting stores, of which 337 were completely

fulfilled. In total, 264121 units were collected, accounting to an average fulfillment of 92%. There were 30

store visits, accumulating a travel distance of 1518.17 kilometers (table 41).

Table 41: Statistics of the Solution.

Number of Requested Items Number of Fulfilled Items Number of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

385 337 30 1518.17 264121 0.918 832.41 288690

The requesting store that accounted for the highest value of the fitness function was the store Loja4 which

requested 186 products, amounting to 142006 units. The vehicle employed by Loja4 visited 8 distinct

stores and collected 128384 units, traveling 260.05 kilometers. The second store with the highest fitness

value is the store Loja2, which requested 91 types of products, amounting to 62360 units. The vehicle

employed by this store visited 8 distinct stores and collected 61445 units, traveling 310.74 kilometers. The

store with the lowest fitness value is loja5, which requested 12 types of products, amounting to 12347

units. The vehicle employed by this store visited 5 distinct stores and collected 10102 units, traveling

389.41 kilometers (table 39).
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Table 42: Statistics for each request for the Simulated Annealing algorithm using jumps to Dynamic2

solutions’ best found solution.

Requesting Store Number of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Requested Quantity Taken Fitness

loja2 91
loja4, loja10, loja9, loja3,

loja5, loja1, loja6, loja7
8 310.74 62360 61445 197.74

loja3 96
loja7, loja4, loja5, loja9,

loja1, loja8, loja6, loja2,

loja10

9 557.97 71977 64190 115.04

loja4 186
loja6, loja1, loja7, loja2,

loja10, loja9, loja3, loja5
8 260.05 142006 128384 493.69

loja5 12
loja2, loja7, loja10, loja6,

loja9
5 389.41 12347 10102 25.94

Representation of the Solution

(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 103: Requesting store’s loja2 part of the solution.

(a) Route for the store loja3’s request. (b) Products and respective quantities taken at each visited store for

store loja3’s request.

Figure 104: Requesting store’s loja3 part of the solution.

118



(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 105: Requesting store’s loja4 part of the solution.

(a) Route for the store loja5’s request. (b) Products and respective quantities taken at each visited store for

store loja5’s request.

Figure 106: Requesting store’s loja5 part of the solution.

Tabu Search

Statistics of the Solution

In this fitness graph 107, it is represented the fitness through the iterations of the Simulated Annealing

algorithm. The fitness fluctuates approximately between 54 to 1067.93, having values with an improved

fitness over the initial solution generated by the Dynamic2 algorithm. The majority of iterations have fitness

values varying approximately between 250 and 500.
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Figure 107: Fitness of the solutions found by the Tabu Search algorithm during its iterations.

The Tabu Search algorithm’s solution has a fitness of 1067.93. It was requested for 385 products across all

requesting stores, of which 110 were completely fulfilled. In total, 113123 units were collected, accounting

to an average fulfillment of 46%. There were 16 store visits, accumulating a travel distance of 678.43

kilometers (table 43).

Table 43: Statistics of the Solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

385 110 16 678.43 113123 0.46 1067.93 288690

The requesting store that accounted for the highest value of the fitness function was the store loja2 which

requested 91 products, amounting to 62360 units. The vehicle employed by loja2 visited 1 store and

collected 14598 units, traveling 21.78 kilometers. The second store with the highest fitness value is the

store loja4, which requested 186 types of products, amounting to 142006 units. The vehicle employed

by this store visited 7 distinct stores and collected 65472 units, traveling 246.87 kilometers. The store

with the lowest fitness value is loja5, which requested 12 types of products, amounting to 12347 units.

The vehicle employed by this store visited 2 distinct stores and collected 2905 units, traveling 139.90

kilometers (table 44).

Table 44: Statistics for each request of the Tabu Search algorithm’s solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja2 91 loja10 1 21.78 14598 670.25 62360

loja3 96 loja9, loja4, loja6, loja8, loja2, loja5 6 269.88 30148 111.71 71977

loja4 186 loja6, loja1, loja7, loja2, loja9, loja3, loja5 7 246.87 65472 265.21 142006

loja5 12 loja3, loja4 2 139.90 2905 20.76 12347

Representation of the Solution
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(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 108: Requesting store’s loja2 part of the solution.

(a) Route for the store loja3’s request. (b) Products and respective quantities taken at each visited store for

store loja3’s request.

Figure 109: Requesting store’s loja3 part of the solution.

(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 110: Requesting store’s loja4 part of the solution.
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(a) Route for the store loja5’s request. (b) Products and respective quantities taken at each visited store for

store loja5’s request.

Figure 111: Requesting store’s loja5 part of the solution.

(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 112: Requesting store’s loja2 part of the solution.

Tabu Search with Intensification and Diversification

Statistics of the Solution

In this fitness graph 113, it is evident that the number of peaks is higher compared to the Tabu Search

instance in subsection 4.3.2. This might be due to the intensification mechanism by the way of elitism

mentioned before. This consists in selecting one of the best found solutions in the medium-term memory

as the current solution in order to intensify the search in promising areas of the solution search space.

The fitness fluctuates approximately between 95 to 1158.87, having values with an improved fitness over

the initial solution generated by the Dynamic2 algorithm. The majority of iterations have fitness values

varying approximately between 300 and 800.
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Figure 113: Fitness of the solutions found by the Tabu Search with Intensification and Diversification

algorithm during its iterations.

The Tabu Search with Intensification and Diversification algorithm’s solution has a fitness of 1158.87. It

was requested for 385 products across all requesting stores, of which 127 were completely fulfilled. In

total, 111497 units were collected, accounting to an average fulfillment of 43%. There were 16 store visits,

accumulating a travel distance of 664.43 kilometers (table 45).

Table 45: Statistics of the Solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

385 127 16 664.43 111497 0.43 1158.87 288690

The requesting store that accounted for the highest value of the fitness function was the store loja2 which

requested 91 products, amounting to 62360 units. The vehicle employed by loja2 visited 1 store and

collected 11980 units, traveling 21.78 kilometers. The second store with the highest fitness value is the

store loja4, which requested 186 types of products, amounting to 142006 units. The vehicle employed

by this store visited 1 store and collected 28370 units, traveling 88.84 kilometers. The store with the

lowest fitness value is loja5, which requested 12 types of products, amounting to 12347 units. The vehicle

employed by this store visited 7 distinct stores and collected 7047 units, traveling 317.30 kilometers (table

46).
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Table 46: Statistics for each request of the Tabu Search with Intensification and Diversification algorithm’s

solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled Quantity Taken Fitness Quantity Requested

loja2 91 loja10 1 21.78 11890 545.91 62360

loja3 96 loja5, loja4, loja6, loja7, loja2, loja10, loja9 7 236.51 64190 271.41 71977

loja4 186 loja6 1 88.84 28370 319.34 142006

loja5 12 loja10, loja9, loja3, loja8, loja1, loja6, loja7 7 317.30 7047 22.21 12347

Representation of the Solution

(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 114: Requesting store’s loja2 part of the solution.

(a) Route for the store loja3’s request. (b) Products and respective quantities taken at each visited store for

store loja3’s request.

Figure 115: Requesting store’s loja3 part of the solution.
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(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 116: Requesting store’s loja4 part of the solution.

(a) Route for the store loja5’s request. (b) Products and respective quantities taken at each visited store for

store loja5’s request.

Figure 117: Requesting store’s loja5 part of the solution.

Genetic Algorithm

In this instance, an initial population of 1000 solutions obtained through random procedures is used. Ev-

ery solution in this initial population is feasible. The average fitness of the mentioned population is 307.91.

Statistics of the Solution

In this fitness graph 118, it is represented the average fitness of the population through the generations of

the Genetic algorithm. The fitness fluctuates approximately between 307.91 to 1550.13, having values with

an improved fitness over the initial population. In the first, approximately, 20 generations, the average of

the fitness values of the population increased consistently from around 307.91 to 1536, slightly fluctuating

around the latter until the end, reaching a maximum value of 1550.13.
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Figure 118: Fitness of the solutions found by the Genetic algorithm during its iterations.

The Genetic algorithm’s solution has a fitness of 1550.13. It was requested for 385 products across all

requesting stores, of which 50 were completely fulfilled. In total, 50824 units were collected, accounting

to an average fulfillment of 22%. There were 4 store visits, accumulating a travel distance of 158.58

kilometers (table 47).

Table 47: Statistics of the Solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

385 50 4 158.58 50824 0.22 1550.13 288690

The requesting store that accounted for the highest value of the fitness function was the store loja4 which

requested 186 products, amounting to 142006 units. The vehicle employed by loja4 visited 1 store and

collected 21712 units, traveling 34.60 kilometers. The second store with the highest fitness value is the

store loja2, which requested 91 types of products, amounting to 62360 units. The vehicle employed by this

store visited 1 store and collected 13396 units, traveling 21.78 kilometers. The store with the lowest fitness

value is loja5, which requested 12 types of products, amounting to 12347 units. The vehicle employed by

this store visited 1 store and collected 2151 units, traveling 51.10 kilometers (table 48).

Table 48: Statistics for each requesting store of the Genetic algorithm’s best found solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness of the Requesting Store Quantity Requested

loja2 91 loja10 1 21.78 13396 615.06 62360

loja5 12 loja3 1 51.10 2151 42.09 12347

loja4 186 loja9 1 34.60 21712 627.51 142006

loja3 96 loja5 1 51.10 13565 265.46 71977

Representation of the Solution
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(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 119: Requesting store’s loja2 part of the solution.

(a) Route for the store loja5’s request. (b) Products and respective quantities taken at each visited store for

store loja5’s request.

Figure 120: Requesting store’s loja5 part of the solution.

(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 121: Requesting store’s loja4 part of the solution.
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(a) Route for the store loja3’s request. (b) Products and respective quantities taken at each visited store for

store loja3’s request.

Figure 122: Requesting store’s loja3 part of the solution.

Genetic Algorithm with Elitism

The initial population used in this instance of the algorithm is the same as the one used in the genetic

algorithm instance 4.3.2.

Statistics of the Solution

In this fitness graph 123, it is represented the average fitness of the population through the iterations of the

Genetic algorithm with Elitism. The fitness fluctuates approximately between 307.91 to 1542.51, having

values with an improved fitness over the initial population. In the first, approximately, 20 generations, the

average of the fitness values of the population increased consistently from around 307.91 to 1539, slightly

fluctuating around the latter until the end, reaching a maximum value of 1542.51.

Figure 123: Fitness of the solutions found by the Genetic algorithm with Elitism during its iterations.

The Genetic algorithm with Elitism’s solution has a fitness of 1542.51. It was requested for 385 products

across all requesting stores, of which 54 were completely fulfilled. In total, 58073 units were collected,
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accounting to an average fulfillment of 24%. There were 10 store visits, accumulating a travel distance of

380.14 kilometers (table 49).

Table 49: Statistics of the solution.

Nº of Requested Items Nº of Fulfilled Items Nº of Visits to Stores Distance Travelled (Km) Total Quantity Taken Average Fulfillment Fitness Quantity Requested

385 54 10 380.14 58073 0.24 1542.51 288690

The requesting store that accounted for the highest value of the fitness function was the store loja4 which

requested 186 products, amounting to 21712 units. The vehicle employed by loja4 visited 1 store and

collected 21712 units, traveling 34.60 kilometers. The second store with the highest fitness value is the

store loja2, which requested 91 types of products, amounting to 62360 units. The vehicle employed by this

store visited 1 store and collected 13396 units, traveling 21.78 kilometers. The store with the lowest fitness

value is loja5, which requested 12 types of products, amounting to 12347 units. The vehicle employed by

this store visited 7 distinct stores and collected 9400 units, traveling 34.48 kilometers (table 50).

Table 50: Statistics for each requesting store of the Genetic algorithm with Elitism’s best found solution.

Requesting Store Nº of Products Requested Visited Stores Nº of Visited Stores Distance Travelled (Km) Quantity Taken Fitness Quantity Requested

loja2 91 loja10 1 21.78 13396 615.06 62360

loja4 186 loja9 1 34.60 21712 627.51 142006

loja3 96 loja5 1 51.10 13565 265.46 71977

loja5 12
loja9, loja10, loja4,

loja6, loja7, loja1, loja8
7 272.66 9400 34.48 12347

Representation of the Solution

(a) Route for the store loja2’s request. (b) Products and respective quantities taken at each visited store for

store loja2’s request.

Figure 124: Requesting store’s loja2 part of the solution.
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(a) Route for the store loja4’s request. (b) Products and respective quantities taken at each visited store for

store loja4’s request.

Figure 125: Requesting store’s loja4 part of the solution.

(a) Route for the store loja3’s request. (b) Products and respective quantities taken at each visited store for

store loja3’s request.

Figure 126: Requesting store’s loja3 part of the solution.

(a) Route for the store loja5’s request. (b) Products and respective quantities taken at each visited store for

store loja5’s request.

Figure 127: Requesting store’s loja5 part of the solution.
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4.3.3 Comparison of Solutions

As is observable from the comparison table 51, the algorithm that generated the solution with the best

fitness was the genetic algorithm, followed by the genetic algorithm with elitism. Both of these algorithms

started with an initial population consisting of feasible solutions generated by random mechanisms. The

average fitness of the mentioned population is 307.91. In this scenario, since there are only 4 requests,

the number of possible Dynamic2 solutions is more limited and as such, the genetic algorithms were not

tested with an initial population consisting of Dynamic2 solutions. The genetic algorithm’s best found

solution has a fitness value 402.39% than its initial population average fitness and 92.07% greater than

the baseline solution, dynamic2. The genetic algorithm with Elitism’s best found solution has a fitness

value 400.56% than its initial population average fitness and 91.61% greater than the baseline solution,

dynamic2.

Regarding the single solution based algorithms, the baseline dynamic2 solution was used as the initial

solution. Every instance of these algorithms found solutions with better fitness values than their initial so-

lution. Out of all the single solution instances tested, the one performed by the Tabu Search algorithm with

Intensification and Diversification, or tabu_search2 in the comparison table 51, found the best solution.

This solution’s fitness value is 44.55% greater than the baseline solution, with the intensification mecha-

nism proving useful when comparing to the tabu_search algorithm’s instance in the comparison table, with

its best solution having a fitness value 32.79% greater than the baseline solution. The Simulated Anneal-

ing algorithm found the second best solution out of all the single solution based algorithms, with a fitness

value 35.51% greater than the baseline solution. The Simulated Annealing algorithm proved to find a better

solution than the Simulated Annealing with jumps to Dynamic2 solutions, or simulated_annealing_d_2 in

the comparison table 51, that found its best solution with a fitness 3.54% greater than the baseline solu-

tion. As mentioned before, the number of possible Dynamic2 solutions is more limited, which affects the

performance of the simulated_annealing_d_2 algorithm that uses these solutions to jump in the solution

search space. Due to this, the instance of simulated_annealing_d_2 found in the comparison table 51 had

its stopping criteria fulfilled relatively early, resulting in fewer iterations and number of solutions generated

than the other algorithm’s instances. Still, it managed to find improvements over the initial solution in its

run time.
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Table 51: Table with the instances of the algorithms for Scenario 3

Algorithm Instance Fitness Solutions Generated Parameters Iterations Initial Solu-

tion/Population

dynamic2 1 804.03 1 Rank: 1 1 None

simulated_annealing 1 1088.50 8071611 Initial Temperature:

1000, Cooling Rate:

0.999, Stopping Tem-

perature: 0.0001,

Temperature Iterations:

500

16111 dynamic2

simulated_annealing_d_2 1 832.41 69639 Initial Temperature:

1000, Cooling Rate:

0.999, Stopping Tem-

perature: 0.0001, Tem-

perature Iterations: 500,

max_iter_without_new_sol:

1000

139 dynamic2

tabu_search 1 1067.93 8072021 Tabu List size: 50, Max-

imum Number of Iter-

ations without Improve-

ment: 10, subset_size:

500

29657 dynamic2

tabu_search2 1 1158.87 8071611 Tabu List size: 50, Elite

List size: 20, Maximum

Number of Iterations with-

out Improvement: 10,

subset_size: 500

24700 dynamic2

genetic_algorithm 1 1550.13 8072260 Population Size: 1000,

Generation Limit: 8073,

Crossover Rate: 0.6,

Mutation Rate: 0.4,

Selection: tourna-

ment_selection(size=5)

8073 random: 1000

genetic_algorithm_elitism 1 1542.51 8072810 Population Size: 1000,

Generation Limit: 6407,

Crossover Rate: 0.6,

Mutation Rate: 0.4,

Selection: tourna-

ment_selection(size=5),

Elitism Size: 100

6407 random: 1000
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Chapter 5

Conclusions and Future Work

In this day and age, the success of a business relies on its capacity to successfully integrate into a complex

network of entities that are linked by material and information flows, where inventory management and

routing are some of the main concerns. These flows are characterized by decision-making processes that

adapt to the network’s environment and its entities. As a result, a decision making system is required

to provide solutions that represent the optimal way the network and its entities can collect and provide

inventory in order to reduce costs and maximize profit.

In the context of this dissertation, the stores of the same retailer group are connected in a network and

are monitored by a central system. The problem occurs when there are stock disruptions in the network

and outside entities are unable to answer the stores’ supply requests, forcing these stores to become the

sole entities responsible of requesting and collecting products from each other. The mentioned decision

making system identifies the stores in the network that are in need of specific products, along with the

quantities required, as well as the stores capable of supplying required goods. The requesting stores send

requests, that contain the specific products and respective quantities these stores need, to the system,

which in turn taking into account the necessities and ensuring that there are no stock-outs for every store

in the network, provides a solution. This solution specifies, for each requesting store, which stores must

be visited and in what sequence, as well as which type of products and in what quantity to take from each

visited store, in an attempt to maximize the collection of production per travel distance for the network.

Once the solution is given, the requesting stores employ a vehicle to pick up the products in the speci-

fied places following the provided route and respecting the system’s decisions. The problem at hand is

modeled as an Inventory Routing Problem, given that it involves both inventory management and routing

decisions. The problem in discussion is an optimization problem.

In order to tackle this optimization problem, the main goal of this optimization, which is maximizing the
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stores’ on-shelf availability without creating stock-outs for any of the networks’ entities, was divided into

four specific objectives. Objective 1, was achieved by performing a study of the inventory routing problem

and optimization algorithms, conducting a requirement elicitation with domain experts, resulting in the

identification of the key aspects and characteristics of the problem, and in the definition of a framework

for representing the solution and entities of the problem. From there, for the objective 2, a mathematical

formulation of the optimization problem, was developed, where the objective function and constraints of

the problem were mathematically defined. The objective or fitness function represents the maximization

of the collection of products per travel distance, without causing stock-outs at any supplier, for the entire

network. After this, the optimization algorithms and another algorithm, by the name of Dynamic2, that

generates baseline solutions, were developed.

Regarding the 3 and 4 objectives, in order to test and compare the developed optimization algorithms,

three different sized scenarios were generated. Each of these scenarios has a different amount of data as-

sociated with them, whether it be in the number of stores, types of products or number of requests, as can

be seen in the scenario table 2. Generally speaking, the genetic algorithms both with and without elitism

found the solutions with the highest fitness values out of all the optimization algorithms developed. In-

stances of the genetic algorithms with initial populations consisting of feasible solutions generated through

random mechanisms and solutions generated by the Dynamic2 algorithm were tested. Excluding Scenario

2, the genetic algorithms with random initial population found their best solutions with higher fitness val-

ues than the ones with Dynamic2 initial populations. This might be because having an initial population

compromised of just random solutions can allow the algorithm to search more of the solution search

space, due to the solution diversity this type of population can present. In spite of the Dynamic2 solutions

being typically superior in terms of fitness value than the ones generated through random mechanisms,

it makes the exploration of the solution search space more confined since the logic for generating these

Dynamic2 solutions can be similar. In Scenario 2, as mentioned before, compared to smaller scenar-

ios, the number of stores in the network and requests, enlarges the solution search space, consequently

making the search for solutions computationally more demanding. Due to time limitations, the algorithm

instances tested in this scenario had fewer iterations to search for solutions. As a result of all these factors,

the task of finding promising solutions in this scenario becomes more challenging. In this scenario, the

genetic algorithm and the genetic algorithm with elitism using an initial population consisting of Dynamic2

solutions were the only instances capable of improving the baseline Dynamic2 algorithm. This suggests

that starting with a population of solutions that has fitness values close to the baseline solution and re-
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combining and mutating these solutions can find a better solution than the baseline in fewer generations

than starting, for example, with a random population. In scenario 2, the genetic algorithm with elitism’s

instances’ best found solutions had higher fitness values than the ones found by the Genetic algorithm.

This might be because passing the best found solutions of the previous generation on to the next one

and recombining these solutions can yield better results in situation when there are not many generations

for the algorithm to go through, when compared to the other two scenarios. Furthermore, in scenarios 1

and 3, the Genetic algorithm proved to find better solutions than the Genetic algorithm with Elitism when

starting with an initial population consisting of solutions generated through random mechanisms, while

the Genetic algorithm with Elitism’s best found solutions had higher fitness values than the Genetic algo-

rithm when starting with an initial population consisting of solutions generated by the Dynamic2 algorithm.

Regarding the single solution based algorithms, the Tabu Search algorithm with Intensification and Di-

versification mechanisms had, all around, the best results. The balance between the intensification and

diversification mechanisms proved efficient when compared to the Tabu Search algorithm, that does not

feature the medium-term memory that its counterpart does. The Simulated Annealing algorithm using

jumps to Dynamic2 solutions found the best solution out of all the single solution based algorithms in sce-

nario 1, which is the smaller sized scenario of the three, by jumping to Dynamic2 solutions, that have an

underlying logic for the collection of products and for the routes, and improving these solutions. However,

for example, in scenario 3, this algorithm proved to have the worst of the best found solutions in terms of

fitness value, because as explained in the subsection 4.3.3, the number of possible Dynamic2 solutions

is more limited. The Simulated Annealing algorithm proved to have good, all around results, having the

second best found solution in scenario 2, of all the single solution based algorithms starting with an initial

solution generated through random mechanisms, also having the second best found solution in terms of

fitness values, of all the single solution based algorithms, in scenario 3.

In conclusion, in scenario 1 and 3, all the developed optimization algorithms managed to find solutions

that improved on the baseline Dynamic2’s solution fitness value. In scenario 2, due to the computational

complexity and time restrictions, only the the Genetic algorithm and the Genetic algorithm with Elitism

using an initial population consisting of solutions generated by the Dynamic2 algorithm managed to find

solutions with improved fitness value over the baseline Dynamic2 solution. In this scenario, the developed

optimization algorithms were also tested with a solution generated through random mechanisms as initial

solution, in the case of the single solution based algorithms, and a population of these solution as initial
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population for the Genetic algorithm and Genetic algorithm with Elitism. These instances also found so-

lutions with improved fitness values over the fitness of their initial solutions or populations. For scenarios

1 and 3, the optimization algorithm with the best found solution in terms of fitness value was the Genetic

algorithm with random initial population, finding solutions with fitness values 56.14% and 92.07% greater

than the baseline Dynamic2 solution’s fitness value, respectively. In scenario 2, it was the Genetic algo-

rithm with Elitism with an initial population consisting of solutions generated by the Dynamic2 algorithm

that found the best result, finding its best solution with a fitness value approximately 1.00% greater than

the baseline Dynamic2 solution’s fitness value.

As future work, it is recommended that the developed optimization algorithms are once again tested with

higher computational power, so that more conclusions can be drawn from larger sized scenarios, such

as scenario 2, and more parameter values for the optimization algorithms can also be tested. A detailed

analysis regarding the execution time of the optimization algorithms developed should also be explored

since these algorithms have time restrictions when applied to the retail environment. It would also be

of interest to develop and experiment hybrid metaheuristics, in order to further enhance the balance

between intensification and diversification, by joining elements of both single solution and population based

algorithms. The research can also evolve in terms of the inclusion sustainability factors, for example, the

life cycle of a product.
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