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ABSTRACT Cultural heritage (CH) constructions involve the use of diverse masonry

materials. Under natural and human influences, masonry materials can undergo various

types of damages, with crack damages being most prevalent. Developing a robust model

capable of detecting cracks in various CH materials is crucial for applying deep learning (DL)

methods. In this study, we compared the performance of the DL method You Only Look Once

(YOLO) object detection network based on images in different masonry materials (stone,

brick, cob, and tile) with that in a modern material (concrete). The dataset used in the

study comprised 1213 brick, 1116 concrete, 955 cob, 882 stone, and 208 tile images. YOLOv5

architecture, transfer learning, and object detection models were utilized for detecting cracks

to observe and compare their performance in different materials. This study represents the

first comparison of this kind using an original dataset. The model achieved mean average

precision values of 94.4%, 93.9%, 92.7%, 87.2%, 83.4%, 81.6%, and 70.3% for concrete;

concrete and cob, cob; stone; stone and brick; brick; and tile, respectively. The findings

of this study indicate considerable potential for the widespread use of DL techniques in
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identifying cracks from images and detecting more damages across various materials.

Keywords Historic buildings, Automatic crack detection, YOLO, Deep learning, Con-

volutional neural networks

1 Introduction

A crack is a defect resulting from linear failure in brittle materials, such as those used for

masonry, for example, concrete, stone, brick, and tiles. Cracks are formed under the effect

of various factors, including stresses induced by shrinkage, loading, chemical reactions, poor

adhesion, and aging (Davies and Jokiniemi, 2008). They are one of the many concerns for

ensuring the safety, durability, stability, operability, and serviceability of building structures.

When cracks develop, they tend to reduce the effective loading area, leading to an increase

in stress, eventually resulting in structure failure (Talab et al., 2016). In historical buildings,

which often present highly complicated scenarios, neglecting damages such as cracks can

worsen the condition. This situation is aggravated when the cracks are deepened under the

action of harmful chemicals, impacting the integrity, beauty, originality, and value of the

CH (Adhikari et al., 2014). A recent evacuation of "Joshimath town" in India in 2022-2023,

owing to crack propagation over years is an example of cracks worsening the situation.

In historical buildings in many countries, cracks are mostly detected manually during

inspections. However, this method is time consuming and strenuous as it necessitates mea-

surement, collection, and processing of data. The assessment of deterioration in CH depends

on the expertise, knowledge, and skills of inspectors. Relying on this method may result in

potentially inaccurate outcomes for pinpointing crack severity (Wang et al., 2019b).

Several methods have been presented for monitoring and detecting cracks in historic

buildings. Traditional approaches include using plaster bridges for crack monitoring (Yan

et al., 2016), which are relatively simple but often yield unreliable results. The so called
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"plaster bridges" only give an indication of crack propagation via means of plaster bridge

fractures and do not quantify width of the cracks. In addition, various digital, electrical,

graphic, and optical sensors, such as fissurometers, Crack gauges based on moiré effect

(Ratnam et al., 2019), are available that can be connected to data recording devices and

measure the extent of the crack. De Sanjosé Blasco et al. (2020) on carried out crack

analysis using fissurometer and laser scanning on a case study Church of San Ildefonso

in Salorino and concluded that both crack-measuring geomatic techniques can compliment

each other. However, data collection process using the laser scanning is expensive at site

and requires high computational cost and might not be feasible for many buildings owing

to its costs. This setup allows for automatic data extraction and subsequent analysis by an

expert, providing more reliable results. Glisic et al. (2007) in their study installed long-gage

fiber optic interferometric sensors in several case study churches to monitor crack openings.

Visualisation of cracks by transmitting images via low cost endoscope is also popular in CH

structures (Gil et al., 2021). The aforementioned methods work if the cracks are present on

the surface of the structure. Some case study applications do exist to determine cracks using

millimeter wave-based non-invasive crack detection for ceramic tiles (Agarwal and Singh,

2015).

In addition to the traditional methods, non-destructive wave-based techniques have also

been employed for crack detection in historic buildings and historic artefacts. These tests

include sonic and ultrasonic testing using sound waves. Pascale and Lolli (2015) based on

ultrasonic tests assessed crack patterns and crack depth by extensive statistical analysis on

Michelangelo’s David in Florence Italy. Tavukçuoğlu et al. (2010) deployed infrared ther-

mography (IRT) and ultrasonic pulse velocity tests to capture radiation and represent it

as an image for qualtifying both superficial and deep cracks. Orlando (2007) showed that

multicomponent ground-penetrating radar (GPR) data for direct crack detection and moni-

toring their time-lapse in historic building. A comparitive study was performed on columns
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to determine the effectiveness of GPR radiography testing and other NDT techniques (such

as seismic tomography, endoscopy and compression tests) by Santos-Assunçao et al. (2014).

Thus the review summrises some NDT techniques deployed for both external and internal

crack measurements and a need for using multidisciplinary approach for crack quantification.

Several applications of machine learning do exist where DL-based techniques are deployed

as an non-destructive techniques to identify defects such as cracks in cultural heritage struc-

ture. Pratibha et al. (2023) used DL-technique YOLO to determine cracks on masonry struc-

tures in case study database of various structures in Bhubaneswar India. Apart from cracks,

several studies do deal with identification of defects in addition to cracks in CH structures

such as spalling, discoloration, exposed bricks and other surface damages in bricks, detach-

ment, sabotage issues, tile-defects in façades etc (Wang et al., 2019a; Kwon and Yu, 2019;

Samhouri et al., 2022; Mishra et al., 2022; Mansuri and Patel, 2022; Li et al., 2023; Wei et al.,

2023) in various materials of CH properties. Thus based on review in this paragraph, current

approach can help engineers to detect cracks and thus carry out monitoring services such as

installation of crack-meters at detected places that are critical and future-crack prone areas.

Researchers have utilized ML in conjunction with DIP (Mishra and Lourenço, 2024),

exploring the use of various ML techniques to identify cracks. In ML methods, features in

cracks such as edges are extracted by experts, and the entire process is not fully automated.

Therefore, DL methods have been widely employed for crack detection. Crack detection

using DL methods can be categorized into three groups (Fig. 1). The first category is

classification, where the objective is to identify whether an image contains a crack or not.

In this approach, images are classified into binary categories: "crack" or "intact" (Xu et al.,

2019). In another approach, researchers classify multi-class damages, among which cracks

are included as one class (Karimi et al., 2023).

In the second category, object detection, the task is to identify and localize cracks within

an image. Crack detection through object detection can be performed using two approaches,
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which differ in how they represent and detect cracks within an image. In the first approach,

an image is divided into a grid of cells, with each cell connected to a group of anchor boxes,

which are utilized for detecting cracks. Then, the model predicts whether a crack is present

in each anchor box and adjusts coordinates of the box. Examples of anchor-based methods

include R-CNN (Zhao et al., 2022), mask-RCNN (Kim et al., 2022), faster R-CNN (Xu et al.,

2022), Single Shot Detector (SSD) (Yan and Zhang, 2021), and YOLOv1-v8 (Jia et al., 2023;

Qiu and Lau, 2023; Su et al., 2024). The second approach enables direct prediction of crack

locations and sizes using a deep neural network (DNN) and involves anchor-free methods.

Examples of these methods include CenterNet (Jia et al., 2020) and CornerNet.

The third category is semantic segmentation, which determines whether each pixel be-

longs to a part of a crack. In this method, researchers have utilized several models to detect

cracks. The first approach involved the use of encoder–decoder models such as full convo-

lution network (FCN) and SegNet (Dung et al., 2019; Tabernik et al., 2020). The second

approach involved using models without pooling layers to maintain the quality of resolution

(Fei et al., 2019; Islam and Kim, 2019). In the third approach, fully connected (FC) layers

were combined with techniques such as adaptive thresholding (Ai et al., 2020). The fourth

approach employed recurrent neural networks (Zhang et al., 2018a), and the fifth approach

utilized generative adversarial networks that employed self-supervised learning for achieving

crack semantic segmentation (Zhang et al., 2020).

Based on the preceding literature review, further investigation is crucial to address gaps

in crack detection in different masonry materials in CH using DL. Most studies have focused

on crack detection in modern materials such as asphalt, concrete, and metal. However, an

increasing number of studies are focusing on masonry materials mostly using different deep

learning (DL) methods to detect cracks in a specific material within customized datasets.

Crack detection in historical buildings made of masonry materials is more challenging than

in those made of modern materials. Moreover, there is a lack of datasets related to crack
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detection in various masonry materials.

In this study, cracks in four different masonry materials (cob, brick, stone, and tiles)

were collected, and their results were compared with a concrete dataset similar to modern

materials. The images of concrete and cob were combined into one dataset, while stone and

brick were grouped into separate datasets. Six distinct datasets were utilized and trained

using this model. These data were used in DL models and assist experts in prompt detection

of cracks, enabling more efficient and timely repairs of CH.

2 Materials and methodology

2.1 Data collection and preprocessing

Due to the diverse nature of the materials considered herein, datasets were gathered sepa-

rately from different locations. The images of stones and bricks were captured at the historic

bridges in Isfahan (Karimi et al., 2023). Stone photos depict the foundations of bridges, while

brick photos show the main structures. The cob dataset was collected from historical build-

ings in villages located in the desert area around Isfahan, Iran. Tile images were collected

from structural ornaments in northern Portuguese cities including Porto, Barcelos, Braga,

and Guimarães. Photos of concrete bridges in Isfahan city were included in the concrete

dataset (Fig. 2).

All images were captured using a 64-megapixel Samsung Galaxy A32 camera, ensuring

the right angle and distance from the cracks. To prevent model overfitting, photos were taken

under varying weather conditions, including cloudy, sunny, and shadowy. A total of 4,912

photos were collected first. After removing low-quality or irrelevant images, the dataset was

meticulously cleaned, resulting in 1397, 1344, 998, 992, 241, 2389, and 2342 photos for the

concrete; brick; stone; cob; tile; concrete and cob; and stone and brick datasets, respectively.

All pictures had a resolution of 3456 × 3456 pixels, and to ensure model fitting, the resolution
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was scaled down to 416 × 416.

The images were taken such that we captured not only crack damage but also other

issues such as higher plants, vegetation, efflorescence, spalling, and glaze detachment. These

additional elements complicated the object detection process for the model. The presence

of mortar boundaries can often be a challenge for the model, especially in distinguishing

between cracks and joints. To address these challenges, 45° image rotation was applied as a

data augmentation technique, ensuring robustness of the model. Image processing techniques

were applied to modify the brightness and contrast of the images, distinguishing cracks from

the background and improving damage visibility. This adjustment ensured that cracks were

more noticeable and easily detectable by the model. The bounding boxes used to annotate

the data were rectangular and covered the cracks in the images. Each rectangular box was

manually drawn around individual cracks, tightly enclosing the damages within these boxes

using Roboflow (Fig. 3).

2.2 Model implementation

ML and DL networks are complex neural networks that learn input data characteristics and

produce desired outputs (LeCun et al., 2015; Mohammadi et al., 2023). The main tasks

in DL are classification, object detection, and semantic segmentation (Liu et al., 2020). In

this study, we focused on object detection for identifying and detecting damage. R-CNN,

Fast R-CNN, and Faster R-CNN are DL-based object detection algorithms (Girshick, 2015).

RetinaNet, SSD, and Feature-fusion SSD (FSSD) are other faster object detection algorithms

(Bai et al., 2022). YOLO is a one- stage algorithm known for its real-time capabilities, which

has contributed to its popularity. Several versions of YOLO have been developed, ranging

from YOLOv1 to YOLOv8. In this study, YOLOv5 was selected because it yielded superior

results compared with its higher versions.

Fig. 4 shows the general structure of the applied YOLOv5 algorithm for crack detection.
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It comprised three components: the backbone, neck, and head layers. The crack image was

fed into the model through the input layer. A pre-trained network serving as the backbone

extracted intricate feature representations of cracks. This process diminished the spatial

resolution of the image while enhancing its feature resolution, which was particularly benefi-

cial for refining edge details within cracks. Subsequently, the model’s neck was employed to

generate feature pyramids, enhancing its ability to generalize across various sizes and scales

of cracks and their features. Lastly, the model’s head was used by applying anchor boxes to

feature maps, culminating in the final output: classes (indicating the presence or absence of

a crack class in the image), objectness scores, and bounding boxes (indicating the percentage

of predicted bounding boxes for cracks that align with the annotations).

The dataset (Section 2.1) was partitioned into three subsets: training, testing, and vali-

dation sets, maintaining a ratio of 70:20:10. The total data counts for brick; cob; concrete;

stone; tile; concrete and cob; and stone and brick were 1213, 955, 1,116, 882, 208, 2,071,

and 2,905, respectively (Table 1). The data augmentation technique was also applied to the

training data, involving 45° image rotation, effectively doubling the amount of training data

(Fig. 5).

The model was trained using the COCO dataset, with 100 epochs, a batch size of 16,

using pre-trained yolov5S weights. The dataset was trained using the custom YOLOv5

algorithm. It contains a total of 214 layers, 7022326 parameters, and gradients. All experi-

ments were performed using the Pytorch library in Google Colaboratory (COLAB) with the

available GPU memory (NVIDIA Tesla T4, 16GB). Table 2 displays the model information

and hyperparameters used for training.

2.3 Optimizer

The model utilizes a stochastic gradient descent (SGD) optimizer. Typically, parameters

such as biases and normalization layers (e.g., batch normalization layers) should not undergo
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weight decay. to eliminate weight decay for biases and normalization layers, these specific

parameters were optimized using SGD. SGD was utilized to minimize the loss function of

the model by updating the model parameters along the direction of the negative gradient

(Zhang et al., 2018b), as represented using Equation 1:

θt+1 = θt − lr∇θLf(θt;xt, yt) (1)

where θ represents the model’s parameters that should be updated during training to min-

imize the loss and improve the model’s performance on crack detection. lr is the learning

rate that determines the size of steps used when training the crack detection model. Lf

is the loss function that measures the model’s confidence by comparing the prediction of a

crack within a bounding box with the actual label. xt and yt denote the input and output

of the mini-batch at iteration t, respectively, and ∇θ represents the gradient operator with

respect to θ.

2.4 Performance metrics

The custom YOLOv5 model’s performance was evaluated in terms of precision (or positive

predictive value) and recall (or sensitivity) by using equations 3 and 4, respectively.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

where True Positive (TP) indicates the number of cases where the model correctly iden-

tifies crack, False Positive (FP) represents the number of background images that are incor-

rectly identified as crack, and False Negative (FN) refers to the number of images incorrectly

identified as the background instead of a crack.
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The robustness of the proposed YOLOv5 algorithm was measured using the average

precision (AP) and mean average precision (mAP) values. For a single class (corresponding

to the number of classes being 1), the metrics of precision (P), AP, and mAP were equal.

Therefore, we considered mAP50 (IoU = 0.5) and mAP50:95 (IoU threshold ranging from

0.5 to 0.95).

The bounding boxes predicted for identified cracks were evaluated against the ground-

truth bounding boxes (annotations) by using a metric known as intersection over union

(IoU). The threshold value of IoU was set to 0.5; accordingly, only the predicted bounding

boxes with IoU ≥ 0.5 were considered as correct crack detection. This metric measured the

extent of overlap between the two boxes (Equation 7).

IoU =
Area of Overlap
Area of Union

(7)

The loss functions of YOLOv5 were as follows: first, bounding box regression loss (Lbbox)

measured how well the predicted bounding boxes matched the ground-truth boxes drawn

around the cracks. Objectness loss (Lobj) is the second loss function, which measures the

model’s confidence level in predicting the existence of a crack in each bounding box. The

classification loss (Lcls) was calculated similarly, but it focused on the predicted class prob-

abilities. Because the number of classes is one, this loss function is always 0.

3 Results and discussion

3.1 Crack detection results and performance metrics for the differ-

ent material datasets

From the results obtained, some general outcome can be derived. These outcomes are pre-

sented in Table 3 and Fig. 6 along with the associated visual attention (Fig. 6a). The
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proposed model obtained a mAP50 of 94.4%, 93.9%, 92.7%, 87.2%, 83.4%, 81.6%, and 70.3%

for concrete, concrete and cob, cob, stone, stone and brick, brick, and tile, respectively.

Based on Table 3 and Fig. 8, the precision values for concrete and cob, concrete, cob,

stone, brick, stone and brick, and tile were 93.2%, 92.6%, 92%, 86.3%, 82.6%, 80.6% and

71.2%, and 90%, respectively. The recall values for concrete and cob, concrete, cob, stone,

stone and brick, brick, and tile were 90%, 89.2%, 87.9%, 80.3%, 77.5%, 77%, and 67.4%,

respectively (Fig. 8b).

The precision, recall, and mAP_0.5 values for concrete surpassed those of other materials,

indicating that the model successfully detected cracks in concrete. This may be attributed

to two factors: first, the number dataset of concrete images, and second, the background of

concrete was more uniform compared to that of other materials. The model was thus more

capable of recognizing cracks against a plain background compared to a patterned one. The

concrete and cob datasets ranked second in terms of precision, recall, and mAP_0.5. Cob

ranked third with a difference of 1%. Despite the lower quantity of concrete and cob images in

the dataset compared to brick, the model exhibited better performance in detecting cracks on

concrete and cob. This observation suggests that in the context of object detection using the

YOLOv5 model, the nature of the background plays a crucial role, potentially outweighing

the influence of the quantity of images in the dataset.

Stone, brick, and tiles exhibited more intricate backgrounds than concrete and cob. The

recall rate for stone and brick materials was 80% and 77%, respectively, whereas that for

concrete and cob was close to 90%. The presence of joints in stone and brick materials might

contribute to the model’s inability to correctly identify some joint parts as cracks. This issue

became more challenging for tiles because in addition to joints, tiles also include feature

patterns. Incorrectly identifying parts of the pattern and the overall tile design as cracks can

lead to inaccuracies, resulting in a lower recall rate for tiles (67%). This observation under-

scores the complexity of accurately detecting cracks in materials with intricate backgrounds
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or patterns.

When a new dataset was created by combining concrete and cob images, the model’s

mAP_0.5 was lower than that of concrete but higher than that of cob. The difference in

mAP_0.5 was close to 1%. This pattern was also observed in the brick and stone dataset,

where the mAP_0.5 was intermediate to those of the brick and stone datasets. Therefore, we

anticipated that by blending data with homogeneity in terms of background and structure,

higher mAP_0.5 can be attained.

Fig. 7b presents the values of mAP_50:95, representing the average mAP across various

IoU thresholds ranging from 0.5 to 0.95. This indicated that the YOLOv5 model achieved

a better overlap between the predicted and ground-truth bounding boxes around cracks

for concrete, concrete and cob, cob, stone, stone and brick, brick, and tile, respectively. For

instance, the model attained an mAP_50:95 of 77% for concrete, showcasing a commendable

level of precision across a range of IoU thresholds when detecting cracks. This suggests the

model’s effectiveness in precisely locating and categorizing cracks in this particular material.

The loss function, depicted in Figs. 9, 10a ,and 10b and table 4, consistently decreased

as the model’s crack detection accuracy improved. The reduction in both objectness and

bounding box losses indicated that the YOLOv5 model could identify cracks and establish

bounding boxes around them. Moreover, with model training, the loss associated with crack

detection and bounding boxes decreased. The loss was maximum for crack detection in tiles

and minimum for that in concrete. This observation aligned logically with the obtained

precision metrics.

As depicted in Fig. 11a-c, the model successfully detected cracks in previously unseen

concrete images. The confidence levels for these images were 93%–81% and 76%, respectively.

The 93% confidence level (Fig. 11c) corresponds to an image where the crack was clearly

visible, indicating that the model identified the crack with higher certainty. The confidence

level of 76% (Fig. 11b) was attributed to an image where cracks were less visible or showed
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very close resemblance to the background. In an image containing two cracks, the model

failed to detect one of them, indicating one of its limitations.

For cob materials, the model effectively detected cracks in previously unseen images with

confidence levels in the range 52%–82% (Fig. 11d-f). However, identifying thin cracks and

cracks that have branched into thinner ones remained challenging for the model.

The model achieved confidence levels ranging from 61% to 78% (Fig. 11j-l) for unseen

images of brick material, signifying its capability to identify cracks. However, in a specific

instance, the model inaccurately identified a crack in the joint between the bricks and failed

to detect a small crack branching from the joint.

For stone, the model demonstrated noteworthy success in its outcomes for unseen photos.

However, an exception was noted in one instance, where the model incorrectly identified a

joint between stones instead of a crack. The confidence levels ranged from the maximum of

91% (Fig. 11g) to the minimum of 65% (Fig. 11h).

The model did not achieve a high level of confidence for unseen images of the tile crack,

and it failed to detect cracks in two instances (Fig. 11m and Fig. 11n). However, in a

case where the tile design was simple, it successfully identified the cracks, despite confidence

levels of 48% and 51% (Fig. 11o) and 78% (Fig. 11j). Despite the relatively low confidence,

the model accurately detected the presence of crack damage.

3.2 Comparative analysis of YOLOv5 model with other researches

This study aimed to detect cracks in various materials of historical buildings through the

application of the Yolov5 model. Historical buildings are often made of diverse materials

with different backgrounds, which pose a challenge in developing and training a Yolov5 model

for crack identification. Previous research has mostly concentrated on identifying cracks in

a single material type, such as concrete or asphalt, but not in different materials.

Different versions of the YOLO method have been extensively employed for detecting
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cracks in concrete materials. Utilizing the YOLOv5 model, Mishra et al. (2023), and Zhu

et al. (2023) achieved mAP50 scores of 95.02%, and 91.2%, respectively. This model has

also been applied in crack detection for asphalt and pavement. Employing YOLOv3, Nie

and Wang (2019) attained the detection accuracy of 88%. YOLOv4 and YOLOv2 exhibited

the mAP50 values of 94.54% and 91.74%, respectively, in identifying cracks in pavement

tiles, utilizing a dataset collected through drones. This method has been seldom applied to

building materials, particularly historical structures. Similarly, utilizing the YOLO method,

Pratibha et al. (2023) identified cracks in brick materials in historical monuments in India,

achieving the mAP value of 92%.

Unlike previous studies that have predominantly focused on concrete and asphalt mate-

rials, the present study focused on building materials, particularly those used in historical

structures. Cracks in historical buildings exhibit more intricate shapes than those in concrete

structures, posing a greater challenge for the detection model. Moreover, building materials

like brick, stone, and tile feature seams, doubling the complexity of crack detection. Unlike

prior studies that lacked a focus on diverse materials, in this study, we trained the YOLOv5

model on seven datasets with five different materials, achieving satisfactory results. Based on

the results of this study, we infer that the YOLOv5 model can be reliably used for detecting

cracks in various materials in historical buildings.

4 Conclusions, limitations, and future scope

CH structures often use different materials, such as stone, brick, tile, and plaster. Structural

damages, particularly cracks, are detrimental to the integrity of buildings. Thus, it is es-

sential to develop a DL model capable of detecting crack damage in diverse materials using

image data. Previous research has left a substantial gap in this domain.

In this study, we present a crack detection model using DL methods specifically tailored

for CHs built using diverse materials such as brick, stone, tile, cob, and even a modern
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material like concrete. In addition to identifying the optimal model for crack detection

in these materials, we used a mixed dataset of homogeneous materials (concrete-cob and

stone-brick) and compared the outcomes with the previous unmixed datasets.

The YOLOv5 model was employed , which could successfully detect cracks across seven

datasets encompassing different materials, achieving high accuracy (mAP) values of 94.4%,

93.9%, 92.7%, 87.2%, 83.4%, 81.6%, and 70.3% for concrete, concrete-cob, cob, stone, stone-

brick, brick, and tile, respectively. Furthermore, the model could accurately detect individual

cracks in images containing multiple instances.

To enhance the model’s accuracy, we recommend increasing the dataset size and including

more images. Using the YOLOv5 model was proven to be a time-saving approach, aiding

restoration professionals in reducing maintenance costs for CH within their preservation

plans. Furthermore, this model’s applicability extends beyond diverse materials and different

types of deteriorations in CH.

The primary challenge and limitation faced in this study were the processes of collecting

data and taking images of cracks in diverse materials, as they are highly time-consuming

tasks. Labeling this dataset was another time-intensive challenge. The presence of joints

between bricks, stones, and tiles as masonry materials further complicated the model’s ability

to distinguish between cracks and joints. Moreover, the intricate designs on tiles posed

additional difficulties for the model in detecting cracks.

Future research can use drones to gather images of cracks from different materials in CHs,

thereby allowing the acquisition of a larger number of crack images and the use of the model

for real-time crack detection. The use of various data can improve the accuracy of the DL

models, enhancing their reliability and aiding CH experts in identifying issues in inaccessible

locations using drones. This method can be highly valuable during critical situations and

natural calamities such as floods or earthquakes.

Since bounding boxes cannot precisely measure the size and dimensions of cracks, future
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studies could shift focus toward semantic segmentation models. These models can determine

geometric dimensions of cracks, enabling experts to prioritize the risk of cracking, eventually

assisting them in restoring and protecting CH structures. The current inspection technique

via YOLO model helps in identification/pinpointing of cracks from digital images and can

be a starting point to determine the areas needing more extensive monitoring via other

techniques such as laser scanning and installation of fissurometers at critical locations.
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Table 1: Number of model training/validation/test images
Concrete Concrete

and cob
Cob Stone Stone and

brick
Brick Tile

Train 1005 1865 860 788 2693 1095 167
Test 111 206 95 94 212 118 41
Total 1116 2071 955 882 2905 1213 208

Table 2: Used hyperparameters for training the YOLOv5 model
Parameter Amount

Input shape 416 × 416
Batch size 16
Learning rate 0.01
Optimizer SGD
Epochs 100
Data augmentation Image rotation 45°
Pre-trained weight COCO
Loss function Box loss function, Obj loss function
Performance metrics Precision, recall, mAP
Environment Google Colab

Table 3: Performance metrics corresponding to crack detection for each material
Materials Precision (%) Recall (%) mAP50 (%) mAP50:95 (%)

Concrete 92.6 89.2 94.4 76.5
Concrete and cob 93.2 90 93.9 69.2
Cob 92.0 87.9 92.7 65.8
Stone 86.3 80.3 87.2 63.5
Stone and brick 80.6 77.5 83.4 59.4
Brick 82.6 77.0 81.6 55.2
Tile 71.2 67.4 70.3 47.1

Table 4: Loss function of YOLOv5 corresponding to crack detection for each material
Materials box loss obj loss Time (minutes)

Concrete 0.02462 0.01415 21
Concrete and cob 0.02809 0.01704 39
Cob 0.03064 0.01968 18
Stone 0.02891 0.02146 17.5
Stone and brick 0.03119 0.0209 40
Brick 0.03307 0.02008 21.5
Tile 0.05102 0.04512 10
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Figure 1: Three categories of crack detection by DL (1. classification, 2. object detection,
and 3. semantic segmentation)
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Figure 4: Applied YOLOv5 structure for crack detection
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Figure 5: Flowchart of the YOLOv5 method applied for crack detection in different materials
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Figure 6: Comparison of performance metrics for YOLOv5 across different materials
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Figure 8: Comparison of (a) recall (b) precision metrics for YOLOv5 across different mate-
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0

0.01

0.02

0.03

0.04

0.05

0.06

Concrete cob Stone Brick Tile Concrete and
cob

stone and brick

box_loss obj_loss

Figure 9: Comparison of loss metrics for YOLOv5 across different materials

31



2.30E-02

3.30E-02

4.30E-02

5.30E-02

6.30E-02

7.30E-02

8.30E-02

9.30E-02

1.03E-01

1 11 21 31 41 51 61 71 81 91

V
a
l_

b
o
x

lo
ss

Epochs

concrete concrete and cob cob stone stone and brick brick tile

100

1.40E-02

1.90E-02

2.40E-02

2.90E-02

3.40E-02

1 11 21 31 41 51 61 71 81 91

V
a
l_

o
b

j
lo

ss

Epochs

concrete concrete and cob cob stone stone and brick brick tile

100

(a)

(b)
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Figure 11: Crack detection results obtained using YOLOv5 for unseen images across different
materials (concrete, brick, cob, stone, and tile)
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