
University of Minho
School of Engineering

Guilherme da Silva Amorim Martins

Development of a front-end
application for a Human-Robot
collaborative framework

october 2023

University of Minho
School of Engineering

Guilherme da Silva Amorim Martins

Development of a front-end
application for a Human-Robot
collaborative framework

Masters Dissertation
Master’s in Informatics Engineering

Dissertation supervised by
Cristina Manuela Peixoto dos Santos

october 2023

Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

License granted to users of this work:

[Caso o autor pretenda usar uma das licenças Creative Commons, deve escolher e deixar apenas um

dos seguintes ícones e respetivo lettering e URL, eliminando o texto em itálico que se lhe segue. Contudo,

é possível optar por outro tipo de licença, devendo, nesse caso, ser incluída a informação necessária

adaptando devidamente esta minuta]

CC BY

https://creativecommons.org/licenses/by/4.0/ [Esta licença permite que outros distribuam,

remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam

o devido crédito pela criação original. É a licença mais flexível de todas as licenças disponíveis. É re-

comendada para maximizar a disseminação e uso dos materiais licenciados.]

i

https://creativecommons.org/licenses/by/4.0/

Acknowledgements

Aos meus pais, quero expressar o meu mais profundo agradecimento por todo o apoio incansável

que me deram ao longo de todo o meu percurso académico. Compreendo que, por vezes, tenha sido

desafiador suportar as despesas financeiras associadas, mas a vossa inabalável dedicação nunca vacilou.

O vosso amor e encorajamento fizeram com que esta jornada fosse possível.

Um agradecimento muito especial ao meu único irmão, que sempre foi o meu exemplo e guia,

orientando-me no melhor caminho em todas as circunstâncias. Considero-te um dos meus três principais

pilares, e acredita que esta conquista também é tua.

Aos meus colegas de curso, quero expressar a minha gratidão pela vossa amizade e apoio ao longo

dos últimos cinco anos. Sem a vossa camaradagem, este percurso teria sido muito mais difícil. Juntos,

enfrentámos desafios e celebrámos sucessos.

Aos meus amigos de infância, que sempre estiveram presentes para me ajudar a relaxar e regressar

ao nosso mundo de criança, onde os problemas não existem e a inocência é gigante. O vosso apoio e

amizade são inestimáveis.

Quero dedicar um agradecimento muito especial à professora Cristina e à Sara, que me orientaram e

motivaram de forma excecional ao longo da realização desta dissertação. Nos momentos de desânimo,

a vossa orientação foi fundamental para a conclusão deste projeto.

Por último, quero dedicar todo o meu esforço e esta conquista a um ser que, apesar de não ter

compreendido o quão especial foi para mim, deixou-me uma marca muito profunda. Infelizmente, partiu

nesta jornada, mas as lições queme ensinou, mesmo sem proferir uma única palavra, serão inesquecíveis.

Obrigado, Cody.

ii

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, Braga, october 2023

Guilherme da Silva Amorim Martins

iii

Abstract

ErgoAware aims at developing technology that reduce the worker’s exposure to ergonomic risk (e.g.

poor postures) as there is a high incidence of Work-Related Musculoskeletal Disorders (WRMSDs), which

represents an economic burden of 240 billion euros and is driven by the Industry 4.0 paradigm. Another

goal of ErgoAware is also to optimize Human-robot Collaborative processes to shape the robot’s assistance

according to the individual physiological requirements of each user.

This dissertation main goal is the development of a desktop graphical interface application to allow

visualization of the workers kinematic model, allow real-time monitoring of postural and fatigue metrics,

and provide an abstraction layer for the ROS backend in order to allow the configuration of the integrated

sensing technologies and develop control strategies. The objective will be for users to be able to manipu-

late ErgoAware’s adjustable parameters in an intuitive manner, with a user-friendly interface for easy tool

usability.

Keywords Ergonomics, Human-Robot Collaboration, User Interface, Posture control

iv

Resumo

A ErgoAware visa desenvolver tecnologia que reduza a exposição do trabalhador ao risco ergonómico

(por exemplo, posturas deficientes) já que existe uma elevada incidência de distúrbiosmúsculo-esqueléticos

relacionados com o trabalho (WRMSD) que representa um encargo económico de 240 mil milhões de eu-

ros e é impulsionada pelo paradigma da indústria 4.0. Outro objetivo da ErgoAware passa também por

otimizar os processos de colaboração entre o robot humano e o robot para moldar a assistência do robot

de acordo com os requisitos fisiológicos individuais de cada utilizador.

O principal objetivo desta dissertação assenta no desenvolvimento de uma interface gráfica para uma

aplicação desktop para permitir a visualização do modelo cinemático dos trabalhadores, permitir um

acompanhamento em tempo real da métrica postural e de fadiga e fornecer uma camada de abstracção

para o backend ROS, a fim de permitir a configuração das tecnologias de deteção integradas e desenvolver

estratégias de controlo. Esta será desenvolvida para que os utilizadores consigammanipular os parâmetros

ajustáveis do ErgoAware de maneira intuitiva, com uma interface amigável para uma fácil usabilidade do

desfrutador da ferramenta.

Palavras-chave Ergonomia, Colaboração Homem-Robot, Interface do utilizador, Controlo de Postura

v

Contents

List of Abbreviations and Acronyms xi

1 Introduction 1

1.1 Motivation and Problem Statement . 1

1.2 Goals and Objectives . 2

1.3 Thesis Outline . 3

2 Literature Review 4

2.1 Design methodologies . 5

2.1.1 User-centered design . 5

2.1.2 User Experience (UX) . 8

2.1.3 Design of the user interface . 8

2.1.4 Frontend development frameworks . 9

2.1.5 System Usability Scale (SUS) . 10

2.2 Case studies . 10

2.2.1 Scalefit . 10

2.2.2 KUKA . 12

2.2.3 Vivelab Ergo . 13

2.2.4 RoboEarth . 14

2.2.5 ABB’s Collaborative Robots (cobots) . 15

2.2.6 Rethink Robotics’ Baxter and Sawyer . 17

2.2.7 FANUC . 18

2.2.8 Yaskawa Motoman . 19

2.2.9 Kawasaki Robotics . 20

2.3 Critical overview . 21

vi

3 Ergoaware Framework 23

3.1 ROS: The Backbone of Ergoaware . 24

3.2 Ergoaware architecture and backend . 25

3.2.1 Difficulties . 27

4 Developing the Ergoaware Frontend 30

4.1 Requirements for User-Friendly Interfaces . 30

4.2 UI Design for Human-Robot Collaboration . 33

4.2.1 Design iterations . 34

4.3 UI Implementation for the Ergoaware Framework . 38

4.3.1 Qt Designer . 38

4.3.2 Crafting the Command Line: Enabling Ergoaware Framework Access 41

4.3.3 Interaction with ROS . 42

4.3.4 Package installation . 44

4.3.5 Application’s primary workflow . 45

5 Results and discussion 47

6 Conclusion 58

vii

List of Figures

1 UCD [7] . 6

2 Scalefit evaluated head inclination . 11

3 Scalefit evaluated body parts . 11

4 Scalefit evaluated trunc inclination . 11

5 Scalefit Graphical Interface . 11

6 KUKA . 13

7 ViveLab Ergo . 14

8 Application . 16

9 Mounting . 16

10 Infeed . 16

11 Gripper . 16

12 Outfeed . 16

13 ABB’s Collaborative Robot application builder . 16

14 iOS App . 16

15 Robot’s simulation . 17

16 Task training . 18

17 Intera Studio . 18

18 Intera Insights . 18

19 FANUC interface . 19

20 Yaskawa interface . 20

21 Kawasaki interface . 21

22 Diagram of the current HRC framework . 26

23 Idealized GUI Mockup . 31

24 Attempt 1 . 34

viii

25 Attempt 2 . 35

26 Attempt 3 . 36

27 Graphical user interface final result . 37

28 QtDesigner Interface . 38

29 Object Inspector . 40

30 Application’s primary workflow . 45

31 Main Screen . 47

32 Workstation Calibration . 48

33 Robot launch menu . 49

34 Simulation Page . 50

35 Launch Parameters . 50

36 Possible launch parameters . 51

37 RViz . 52

38 User parameters . 53

39 Analyze menu . 54

40 Human Ergonomic Score . 54

41 Table A: Wrist Posture Score . 55

42 Table B: Trunk Posture Score . 56

43 Left analysis . 56

44 Package instalation . 57

ix

List of Tables

1 Systems Overview . 22

x

Acronyms

API Application Programming Interface. 1, 8, 9, 14

HRC Human-Robot Collaboration. 1, 2, 3, 4, 8, 9, 15, 19, 21, 22, 23, 24, 30, 33, 41, 43, 46, 48, 58

ROS Robotic Operating System. 1, iv, v, 1, 3, 23, 24, 26, 27, 28, 29, 38, 41, 42, 43, 44, 45, 46, 58

SUS System Usability Scale. 1, vi, 10

TRL Technology Readiness Level. 1, 2

UCD User-centered Design. 1, viii, 5, 6, 41

UI User Interface. 1, 9, 30, 33, 37, 38, 41, 42, 43

UX User Experience. 1, 8

xi

Chapter 1

Introduction

The advancement of robotics technology has led to an increased demand for Human-Robot Collabora-

tion (HRC) in various industrial settings. HRC allows for improved productivity, efficiency, and safety, but

the successful implementation of these systems requires the development of user-friendly interfaces that

can be easily understood and used by non-technical personnel. This manuscript presents the main consid-

erations and challenges of this research proposal. It intends to develop user-friendly front-end for a HRC

framework, with an intuitive and straightfoward usage, acessible for non-technical users. The proposed

application aims to take the team’s framework to a higher technology readiness level(TRL). The research

methodology includes the analysis of current state-of-the-art in HRC frameworks, the requirements gath-

ering and the user-centered design. The research findings will be used to inform the design of future HRC

systems.

1.1 Motivation and Problem Statement

Motivated by the high incidence of Work-Related Musculoskeletal Disorders (WRMSD), which repre-

sents an economic burden of 240 billion Euros [1], and driven by the Industry 4.0 paradigm [2], ErgoAware

aims to develop technology that reduces worker exposure to ergonomic risk (e.g. poor postures) and op-

timizes HRC processes to tailor robot assistance according to the individual physiological requirements

of each user. The team’s framework, developed using ROS, is composed of sensory systems (Ergowear

[3] (developed by the team), MVN Xsens commercial, and Trigno Avanti from Delsys) whose data are

processed to monitor the worker’s posture and fatigue state to enable real-time ergonomic assessment.

This information is of utmost importance for the production line manager, as well as for ergonomic teams

planning workspaces and task set-ups. In addition, sensory information acquired by the team’s hardware

is used to feed human-centered control strategies that customize the task to each worker, to increase the

efficiency and safety of manufacturing processes.

1

The development of intuitive and user-friendly graphical interfaces for HRC systems is of paramount

importance. These interfaces serve as the primary means of communication between the human operator

and the robot, and their effectiveness plays a crucial role in determining the overall performance of the

system. A well-designed interface allows for easy and efficient interaction, reducing cognitive load on

the operator and minimizing the potencial for errors [4]. Furthermore, a user-friendly interface can also

increase the overall acceptance of the technology and facilitate its integration into various industries. As

such, the design and evaluation of these interfaces should be given due consideration throughout the

development process of HRC products.

The primary motivation for this research is to address this problem by developing a user-friendly front-

end application for aHRC framework. Is required to create a user-centered design approach that addresses

the needs of non-technical personnel, and to demonstrate the potential of HRC to improve productivity,

efficiency, and safety in the manufacturing industry.

1.2 Goals and Objectives

The main goal of this research is to develop a front-end application for aHRC framework that prioritizes

a user-centered design approach, making it easy to understand and use by non-technical personnel. The

objectives of this research are:

1. To conduct a comprehensive analysis of the current state-of-the-art in grahical interfaces for HRC

frameworks and understand user-centered design methodology.

2. To gather requirements for the application from non-technical personnel, taking into consideration

their needs and goals for HRC.

3. To design and implement a user-friendly front-end application to be integrated with a HRC frame-

work.

By achieving these objectives, it is expected that this research will contribute to the advancement of

the HRC framework’s TRL and to the graphical user interfaces knowledge, making them more accessible

and user-friendly for non-technical personnel and by providing evidence of the potential of this technology

to improve industrial processes.

2

1.3 Thesis Outline

The dissertation report is divided into three chapters. The first chapter, Introduction, provides back-

ground information on HRC, presents the problem statement, the research goals and objectives, and an

overview of the organization of the thesis. The second chapter, Literature Review, reviews the previous

work in HRC frameworks and provides a critical overview of the current state-of-the-art. The third chap-

ter, Ergoaware Framework introduces the Ergoaware Framework, emphasizing its integration with ROS,

analyzing its architecture and revealing the biggest difficulties dealing with the framework and ROS. The

development of the user-friendly frontend interface is the main topic of chapter 4, Developing the Ergoaware

Frontend, which also highlights how its design has evolved and how it integrates with ROS to enable pro-

ductive human-robot collaboration. The fifth chapter, Results and Discussion, was used to check that the

final result of the application worked. The final chapter, Conclusion, gives a thorough summary, high-

lighting the value of user-centered design and the ways in which technology can improve ergonomics and

industrial productivity.

3

Chapter 2

Literature Review

Designing interfaces and controls that facilitate effective communication and cooperation between

humans and robots is a key challenge in the field of HRC. Researchers have developed a variety of ap-

proaches to this problem, and there is no one ”best” solution that fits all scenarios. Instead, the design

of interfaces and controls for HRC depends on the specific context in which the system will be used, as

well as the abilities and limitations of both the human and robot collaborators.

European Union has a strong commitment to the development of HRC systems, and recognizes the

importance of user-friendly interfaces in making these systems scalable and marketable, so that they

can be adopted in a wide range of industries. The EU has several ongoing initiatives to support the

development and integration of HRC systems, including the Horizon 2020 program [5], which provides

funding for research and innovation in this area.

The EU is aware of the importance of user-centered design and user-friendly interfaces in making

these systems more accessible and appealing to non-technical users [6]. The EU is actively promoting the

development of user-friendly interfaces for HRC systems, and is supporting research and innovation that

aims to make these systems more user-friendly and easy to use. The EU also encourages the develop-

ment of training and education programs to help non-technical users understand and use these systems

effectively.

The design of interfaces and controls for HRC should be focused on creating a system that is easy

to use, flexible, and safe for the human collaborator, while also allowing for effective communication and

cooperation with the robot.

4

2.1 Design methodologies

2.1.1 User-centered design

User-centered design (UCD) is a design methodology that emphasizes the centrality of the end user

in the design process. The methodology is grounded in the understanding that the design of a product or

system should be informed by a thorough understanding of the user’s needs, goals, and workflows. The

philosophy of UCD is to design systems that are usable, efficient and effective for the intended users.

It was originated in the field of human-computer interaction (HCI) in the early 1980s, with pioneers

such as Donald Norman and Jakob Nielsen, who proposed the user-centered design approach as an

alternative to the traditional technology-centered design. It is an iterative process that typically includes

several phases, such as user research, requirements gathering, prototyping, and evaluation. In his book

[8], Donald Norman proposed the key principles of this type of design, which are:

1. Visibility: the design should make it clear what actions are possible and what the current state of

the system is. This can be achieved through clear labeling, highlighting important information, and

providing visual cues that guide the user.

2. Feedback: the system should provide immediate and informative feedback to the user to indicate

the results of an action. This can include visual, auditory, or haptic feedback, depending on the

context.

3. Constraints: the design should limit the user’s options in a way that guides them towards the

correct action. This can be achieved through physical constraints, such as a button that can only

be pressed in one direction, or logical constraints, such as a menu that only displays relevant

options.

4. Mapping: the relationship between controls and their effects should be clear and consistent. This

can be achieved through clear labeling, using conventions that are familiar to the user, and providing

a visual representation of the relationship between controls and effects.

5. Affordances: the design should make it clear what actions are possible by providing physical

cues, such as a handle that can be pulled or a button that can be pressed.

6. Signifiers: the design should make it clear what actions are possible by providing visual cues,

such as an icon that indicates what a button does.

5

7. Conceptual model: the design should provide a clear and consistent mental model of the system

to the user, which includes the system’s goals, functions, and constraints. This can be achieved by

providing clear and consistent language, labeling, and visual cues.

UCD is an empirically-grounded methodology that aims to create systems that are tailored to the needs

of the users, by involving them in the design process and testing the system with them. This approach is

based on the understanding that the usability, user experience and overall satisfaction of the end users

are key factors for the success of a product or system.

Figure 1 shows the key steps to make a process that supports user-centred design and then each step

of that process is explained.

Figure 1: UCD [7]

Research

This step focus on developing a deep understanding of user’s needs and requirements. If done cor-

rectly, the insights derived from this research will play a big role in developing a compelling user-centric

product.

Clear identification and definition of user personas can be a huge help at the beginning of the design

process. It gives an example of the archetypal user and allows to effectively group users with similar

patterns – their behavior, backgrounds, needs, and goals. A product can target multiple personas, but it is

crucial to identify the intended user demographic and determine which personas’ needs and preferences

should be prioritized in the design of specific flows and features within the product.

The design process must be started with the user, not the product. By focusing on the user, it is

possible to understand which features to prioritize, how to market to them, and even what visual design

elements to incorporate.

Research is not only a crucial stage in the UCD process, but it also is one of the most challenging.

6

Collecting the right data, keeping it organized, mapping it onto user journeys and deriving concrete actions

from it isn’t easy. It is important to turn user research data into meaningful action.

Define and align requirements

It is important to design a technically feasible and financially viable product. That’s where setting the

right goals and requirements comes in. It is necessary to define a clear scope for the designs and then

ensure they align well with the user needs.

Design solutions

In this phase, it is important to be ready to start prototyping the designs, after collecting all the

information that is needed.

One can start with a good wireframe and work from there. Even though it is not at the official testing

stage yet, is required to validate the decisions at each step. A lot of useful data has already been collected

to inform this process at this time, and regular feedback will help ensure alignment with the desired

trajectory and prevent deviation from the established course..

At the end of the design, one can analyze it by asking questions like ”is it accessible?” or ”is it easy

to understand?” to ensure that users can quickly locate the information they need and language is short

and immediate comprehension.

Evaluate with feedback

This phase consists of approaching the end-user, asking him to test the prototype and getting his

feedback. this can be done by asking question such as ”Does this design solve the users’ primary issues?”

or ”What can be done to improve this design?”.

Design methods from the user research phase can be repeated – focus groups, usability testing, etc.

– to gather further understanding on the degree of alignment with the intended outcome.

Iterate

Iteration is crucial as it allows for the refinement of the product, ultimately leading to a design that

effectively addresses the needs and preferences of its intended users. The design process should begin

with gathering feedback, followed by the creation of an improved solution, and continued iteration to further

enhance the design.

7

2.1.2 User Experience (UX)

User experience (UX) is a multidimensional construct that encompasses the cognitive, affective, and

physiological responses of an individual to the use of a product, system, or service [9]. The cognitive

dimension of UX pertains to the ease of use, learnability, and efficiency of the product, system or ser-

vice, which is commonly referred to as usability. The affective dimension of UX pertains to the emotional

response of the individual to the product, system, or service, often referred to as desirability. The physio-

logical dimension of UX pertains to the accessibility of the product, system, or service to individuals with

diverse abilities, commonly referred to as accessibility.

UX design is an iterative process of understanding user’s needs and goals, researching, testing, and

iterating on design solutions to create products, systems or services that are easy to use, accessible

and desirable. It encompasses a wide range of research methods and design techniques, such as user

research, usability testing, information architecture, and interaction design. The ultimate aim of UX design

is to enhance the overall quality of the user experience by creating products, systems or services that are

intuitive, efficient, and satisfying to use [10].

2.1.3 Design of the user interface

The HRC frameworks are designed to allow humans and robots to work together effectively, and the

user interface is an important aspect of facilitating communication and cooperation between the two.

There are several key considerations for ergonomics in the design of user interfaces for HRC frame-

works. First of all, Usability, the user interface should be easy for humans to use and understand, with

clear and intuitive controls and visualizations. Customizability,the user interface should be customizable

to fit the needs and preferences of individual users, with adjustable settings and features to suit different

users and tasks. And finally, Compatibility, the user interface should be compatible with the hardware

and software components of the HRC system, including any relevant APIs(Application Programming In-

terface) or data formats [11].

In short, the design of the user interface for a HRC framework is critical to the success of the system,

and ergonomics plays a key role in ensuring that the interface is easy to use, comfortable and compatible

with the needs of the users.

8

2.1.4 Frontend development frameworks

Front-end development frameworks are software libraries or platforms that provide pre-written code

and tools for building the user interface (UI) of a web or mobile application. These frameworks are designed

to make it easier and faster for developers to create interactive and visually appealing UIs, and they are

often used in conjunction with back-end development frameworks or platforms to create full-stack web or

mobile applications.

There are many different front-end development frameworks available, each with its own unique fea-

tures and capabilities. Some of the most popular front-end development frameworks include React, Angu-

lar, Vue.js, Bootstrap, Foundation, among others.

When evaluating the suitability of different front-end development frameworks for building a front-end

application for a HRC framework [12], there are several factors that one should consider:

• Ease of use: The front-end development framework should be easy for developers to learn and use,

with clear and concise documentation and a intuitive and user-friendly API.

• Performance: The front-end development framework should be able to handle the performance

requirements of the application, including fast rendering times and efficient data handling.

• Customizability: The front-end development framework should allow developers to customize the

UI and features of the application to meet the specific needs of the HRC system.

• Compatibility with back-end frameworks: The front-end development framework should be compat-

ible with the back-end frameworks or platforms that will be used to build the HRC system, including

any relevant APIs or data formats.

• Community support: The front-end development framework should have a strong and active com-

munity of developers and users, with a wealth of resources and support available for troubleshooting

and problem-solving.

The best front-end development framework for building a front-end application for a HRC framework

will depend on the specific requirements and goals of the project, as well as the skills and preferences of

the development team.

The popular integrated development environment (IDE) Visual Studio Code (VS Code) was used to

develop the front-end application for the Ergoaware framework. A stable and adaptable platform for writing,

debugging, and managing the application’s codebase was offered by VS Code.

9

2.1.5 System Usability Scale (SUS)

The System Usability Scale (SUS) is a widely used, validated and reliable measure of usability, which

was developed by John Brooke in 1986 as part of his PhD thesis at City University London [13]. The SUS

is a self-report questionnaire that consists of 10 items that assess the perceived usability of a product or

system. Each item is rated on a 5-point Likert scale, where 1 is ”strongly disagree” and 5 is ”strongly

agree”.

It is designed to provide an overall score of usability that can be used to compare different designs,

track changes in usability over time, or benchmark against other systems. The SUS has been widely used

in many different domains, such as software, mobile apps, websites, and medical devices and it is been

found to have good test-retest reliability and construct validity [14].

Moreover, the SUS psychometric properties have been investigated, showing good reliability and va-

lidity. It has been found to be a robust and reliable measure of usability. Its score is easy to interpret and

it is widely used in academic and industry research due to its simplicity and easiness of use for measuring

usability.

2.2 Case studies

2.2.1 Scalefit

Scalefit [15] is a company that provides a software based on Xsens MVN Awinda sensors for ergonomic

risk analysis. The software has 21 load parameters and an avatar display. The company’s products are

designed to evaluate ergonomics with the aim to improve comfort, reduce fatigue, and promote good

posture while working, with a focus on ergonomic design and adjustability, by identifying hidden health

risks.

They work with several companies that want to reduce musculoskeletal disorders and physical stress

(with real-time stress analysis) by using their framework to assess the ergonomic risk associated with each

occupation. Several factors are evaluated, as shown in Figure 2 and 4, such as head tilt, trunk tilt, knee

flexion, among others. Figure 3 illustrates the ergonomic risk associated with various tasks, such as weight

training or lifting weights from the floor, to each vulnerable body part like neck, shoulders, lower back, and

hands. It presents the ergonomic risk level per segment in an intuitive and user-friendly way, using colors

to express itself, such as green for good posture and red for bad posture.

10

Figure 2: Scalefit evaluated head

inclination
Figure 3: Scalefit evaluated body

parts

Figure 4: Scalefit evaluated trunc

inclination

Figure 5 shows a new feature from Scalefit, ”Industrial Athlete Grasp Space Visualization”, that vi-

sualizes the grasp space separately for each hand and is therefore an important concept for ergonomic

workplacedesign - either in the planning phase or in real time analysis at existing workplaces and it is

demonstrated in the figure how the framework operates. The inclination of the body in degrees is dis-

played in real-time, indicating the areas that may pose a risk and the areas where excessive pressure on

the lumbar disk may be exerted. This can all be analyzed later so that posture changes can be adopted

and back strain greatly reduced.

Figure 5: Scalefit Graphical Interface

11

2.2.2 KUKA

KUKA [16] is a German manufacturer of industrial robots and solutions for factory automation. One

of their products is a line of small, lightweight robots called ”universal robots”, which are designed to work

in collaboration with humans.

The KUKA universal robots are known for their ease of use and flexibility, they have a modular design

that allows them to be easily integrated into various systems and applications. These robots are also

designed to be safe to work with, with built-in safety features such as force-sensing and safety-rated motion

control. They can be controlled using a wide range of programming languages and interfaces, and they

come with a variety of tools and accessories that can be used for different applications.

The robots have a user-friendly interface, which allows easy programming, and it can be used in

a variety of industrial environments. They are often used in manufacturing, assembly, packaging, and

material handling tasks, however due to their flexibility, the robots can be used for different application

fields.

The KUKA application interface for the robots is typically a touch-screen based interface which allows

for easy programming and control of the robot. The interface usually allows the user to program the robot

using a graphical programming language, such as a flowchart, a drag-and-drop interface, or a block-based

programming language. It also allows the user to control the robot’s movement, adjust its speed and

acceleration, and monitor its status. Additionally, it allows the user to perform tasks such as creating

and editing programs, monitoring the robot’s status and performance, and troubleshooting issues. In

Figure 6, an illustration of KUKA’s interface is presented. However, some users have reported that the

interface can be somewhat difficult to navigate, particularly for those who are not familiar with industrial

robots. Moreover, the interface may not be as customizable as some users would prefer, which could limit

its usefulness in certain applications. Some users have also reported that the interface may not be as

responsive as they would like, which could lead to delays in the execution of certain tasks. Overall, the

interface of KUKA universal robots is generally considered to be effective and user-friendly, but there may

be room for improvement in terms of customizability and responsiveness.

12

Figure 6: KUKA

2.2.3 Vivelab Ergo

Vivelab Ergo [17] is a company that designs and manufactures ergonomic products and solutions for

the office and other work environments.

ViveLab Ergo software helps to create the right working conditions and processes for the people who

work in occupational safety and engineering fields. It replaces paperbased methods performing ergonomic

analyzes, creating an accurate measurement option that assigns a risk value to the tests.

Figure 7 shows the interface of this framework. It provides the ergonomic risk level of each segment.

However, contrary to the Scalefit interface, which associates the risk level with a color code, i.e., green for

low risk and red for high risk, the ViveLab Ergo provides a quantitative risk score. This score is given both

per segment and as a global score.

13

Figure 7: ViveLab Ergo

2.2.4 RoboEarth

RoboEarth is a cloud-based platform for robots, developed by the Robotics and Perception Group at

the University of Zurich. It aims to provide robots with the ability to share and reuse knowledge, in order

to improve their autonomy and functionality. The platform is designed to serve as a common repository

for robot-related information, such as sensor data, maps, and task plans.

RoboEarth’s architecture consists of a number of interconnected components, including a database,

a web-based interface, and a set of APIs. The database stores information about the robots and their

environment, such as sensor data, maps, and task plans. The web-based interface provides a user-

friendly way to access and manage the data stored in the database, while the APIs allow other systems

and applications to interact with the platform.

The interface provided by RoboEarth is a web-based one, it allows users to upload, download and share

information, such as maps, plans and sensor data, and it also allows users to access and execute remote

procedures. However, it has been criticized for not providing a simple and intuitive way to interact with the

platform, and for requiring a certain level of technical expertise in order to use the platform effectively.

The RoboEarth platform offers three different types of interfaces [19] for interacting with its database.

The first is a web interface that allows humans to interact with the database using HTML forms. This

interface can be used to access the RoboEarth database and provide labels for the perceptions of a robot.

14

The second interface is based on the Representational State Transfer (REST) architecture [20]. It is a

stateless system that transfers all necessary information as part of the request, without the need to store

any information on the server. This allows for high scalability and fast response times due to server-side

optimizations such as load balancing and failover capabilities. The REST-style interface encodes data in

JavaScript Object Notation (JSON) making it suitable for interaction between robots and the database [21].

The third interface is based on the publish/subscribe message exchange pattern, which acts on

changes in the database. This type of interface would allow a robot to subscribe to a notification for a

specific event, avoiding unnecessary traffic caused by periodic requests for updates. This is particularly

useful for a robot to be notified when a patient leaves a hospital room, for example, to carry out cleaning

operations without constantly querying the database for the patient’s location.

2.2.5 ABB’s Collaborative Robots (cobots)

ABB’s Collaborative Robots (cobots) are a class of robots designed for safe HRC in various industries

such as assembly, picking and packaging, and laboratory work. The cobots are equipped with advanced

safety features such as force sensing and speed and separation monitoring, allowing them to operate in

close proximity to humans without the need for physical barriers or safety cages.

On their webpage [22] it is possible to build an application using the given parameters and simulate

it. As observed in Figures 8-12, the type of selection can be made by:

• Application: Machine Tending, Screw Driving, Part Handling and Assembly

• Mounting: on the ceiling, wall or table

• Gripper: Vaccum or Servo, or for Screw Driving, Screw Driver

• Infeed: fixed position, free position with vision and tray pattern, or for Screw Driving, Screw Feeder

• Outfeed: fixed position and tray pattern

15

Figure 8: Application Figure 9: Mounting Figure 10: Infeed

Figure 11: Gripper Figure 12: Outfeed

Figure 13 shows exactly how the interface works with all the features mentioned and they also have it

available for iOS, as depicted in Figure 14. Figure 14 also show their bot feature, available to answer the

user’s questions, useful to clarify doubts about the interface in a fast and effective way. After selecting the

intended options for the application, one can simulate it, as can be observed in Figure 15.

Figure 13: ABB’s Collaborative Robot application builder Figure 14: iOS App

16

Figure 15: Robot’s simulation

In terms of the user interface, ABB’s cobots are designed to be intuitive and user-friendly. The robots

are programmed through a web-based interface that allows for easy drag-and-drop programming and

control of the robot. The interface also features a built-in simulation environment, allowing users to test

and fine-tune the robot’s movements before executing them in the real world.

One of the main advantages of ABB’s cobot is its ability to integrate with a variety of sensors and other

devices, making it highly versatile and adaptable to different types of work environments.

However, it is important to note that despite their user-friendly interface, the implementation of cobots

in a production line or facility can still be a complex task, involving multiple stakeholders and processes. It

is necessary a good understanding of the task or process to be automated, the specific requirements, and

the available resources. In addition, the implementation of cobots also requires a high level of technical

expertise and specialized skills to program, install, and maintain the robots.

2.2.6 Rethink Robotics’ Baxter and Sawyer

Rethink Robotics’ Baxter and Sawyer [23] are examples of collaborative robots, or cobots, that have

been developed with the goal of working alongside human operators in a variety of industrial and com-

mercial settings. They are designed to be easy to program and use, with intuitive interfaces that allow for

quick deployment and minimal training requirements.

17

Baxter and Sawyer are both equipped with a wide range of sensors and actuators that allow them to

perceive and interact with their environment in a safe and effective manner. They also feature advanced

control systems that enable them to adapt to changing conditions, adjust their behavior in response to

operator inputs, and respond to unexpected events.

In terms of their interfaces, both cobots feature a touch screen interface which allows operators to

control the robot’s movement and behavior, as well as program and customize tasks. The interface is

intuitive and simple, and it is designed to be easy to learn and use. The platform allows users to teach

the robot new tasks, even without prior coding or programming experience. The train-by-demonstration

feature is provided by the software, allowing for ease of interaction with the robot’s arm and training of new

tasks as demonstrated in Figure 16. Figure 17 illustrates the Intera Studio, a powerful interface, which can

be accessed through a laptop. This interface enables users to access and adjust tasks for the robot with

ease. Intera Studio allows for efficient creation, modification, and monitoring of tasks, as well as advanced

controls for the robot. Figure 18 illustrates real-time data analysis of production metrics, such as cycle

times and part counts, through the robot interface, this allows for early identification of production issues.

The same customizable data is also available in Intera Studio, giving visibility to other team members. This

feature allows for a more efficient production process by providing critical performance indicators directly

on the factory floor.

Figure 16: Task training Figure 17: Intera Studio Figure 18: Intera Insights

However, it could be argued that the interface could be improved in some ways, such as the use of more

advanced visualization tools to help operators better understand the robot’s behavior, or the incorporation

of more advanced user-centered design principles to make the interface more ergonomic and user-friendly.

2.2.7 FANUC

FANUC [24] is a company that designs and manufactures industrial robots and cobots (Collaborative

Robots) for a wide range of industrial applications. Their cobots are designed to work safely and col-

laboratively alongside human workers, in order to increase efficiency and productivity in a wide range of

18

tasks.

FANUC cobots feature a range of advanced technologies that support HRC, such as force sensing,

vision systems, and intuitive user interfaces. The interface is designed to be easy to use, like Figure 19

shows, with a simple programming interface that allows for quick and efficient setup and operation of the

cobot.

Figure 19: FANUC interface

However, one of the critical aspect that can be reconsidered is that their interface and software are

not as flexible and customizable as some of the other cobot manufacturers and is too outdated, adopting

an old system that may confuse younger generations. This can limit the ability of users to adapt the robot

to specific tasks or workflows.

2.2.8 Yaskawa Motoman

Yaskawa Motoman [25] is a leading manufacturer of industrial robots, including collaborative robots

(cobots). Their cobots are designed to work alongside human workers in a variety of industries, including

manufacturing, packaging, and assembly. Their cobots feature advanced safety features, such as force-

sensing and speed and separation monitoring, which allow them to operate safely in close proximity to

humans. They also have user-friendly interfaces that make it easy for operators to program and operate

the robots. The interface is usually a teach pendant, a handheld device that allows the operator to control

the robot and program its movements. Figure 20 shows how Yaskawa’s interface works, and it can be

19

observed that a significant number of features have been incorporated in a simple and intituive way, making

it easy for operators to train the robot and perform new tasks.

Figure 20: Yaskawa interface

However, some users may find the interface to be less flexible than other cobot options, as it may

require more expertise to program and customize the robot’s movements. Additionally, Yaskawa Motoman

cobots are generally more expensive than other cobot options, making them less accessible to small and

medium-sized businesses.

2.2.9 Kawasaki Robotics

Kawasaki Robotics [26] is a subsidiary of Kawasaki Heavy Industries, which is a leading manufacturer

of industrial robots. They offer a wide range of robots for various applications such as welding, assembly,

material handling, and palletizing. They have a number of collaborative robots in their portfolio that are

designed to work alongside humans in a safe and efficient manner. These cobots are known for their high

precision and speed, as well as their ability to be integrated into existing manufacturing systems.

In terms of their interface, Kawasaki Robotics utilizes a user-friendly, intuitive interface that allows

for easy programming and operation of their robots. The interface is designed to be simple and easy

to understand for users with little to no programming experience. The company also offers support and

training to assist with the integration and operation of their robots. As shown in Figure 21, they have an

interface with a nice design, organized and simple.

20

Figure 21: Kawasaki interface

Overall, Kawasaki Robotics is known for their high-quality, reliable industrial robots and their user-

friendly interfaces. Their cobots are designed to increase productivity and efficiency in various industrial

applications, while ensuring safety and ease of use.

2.3 Critical overview

In this literature review, several HRC frameworks were examined and the majority of the reviewed

frameworks are designed to improve the overall performance and safety of HRC by allowing robots to

adapt their behavior based on the actions and intentions of the human partner. Most of the reviewed

frameworks aim to allow easy programming of the collaborative robots.

A common theme among these frameworks is the emphasis on adaptability and flexibility. Many of

the frameworks are designed to be easily integrated into various systems and applications, and they often

use graphical programming languages that make them easy to use and understand.

However, one limitation of these frameworks is that they are mostly developed and tested in laboratory

settings, and there is a need for more research on the practical implementation and scalability of these

frameworks.

Table 1 compares the features of the previously discussed solutions, which are important when eval-

uating HRC products. The main goal of this comparison is to identify key takeaways for developing a

similar solution and to identify areas for improvement that may have been overlooked by these solutions.

The table is intended to help distinguish the main differences and similarities between the solutions and

21

to identify possible areas for further development.

Solution \ Features Platform(s) Web Plataform/Remote Data Logging Focus Purpose Sensors/Actuators

Scalefit [15] Website ✓ Ergonomics Monitoring (Human posture) Accessories (chairs, monitor arms...)

KUKA [16] Windows / Mobile devices (iOS and Android) [18] ✓ Industrial Automation Monitoring (Industrial robots) Cameras / Force-torque sensors / Grippers

Vivelab Ergo [17] Windows ✓ Ergonomics Monitoring (Human posture) Accessories (chairs, monitor arms...)

RoboEarth [19] Web browser ✓ Knowledge sharing Monitoring (Robot autonomy) Robot’s sensors (cameras, laser rangefinders...) and robotic arms

ABB [22] Website and Mobile devices ✓ Collaboration Monitoring (Robot autonomy) Cameras and force-torque sensors

Rethink Robotics [23] Windows and Linux ✓ Collaboration Monitoring (Industrisl robots) Cameras / Force-torque sensors / Grippers

FANUC [24] Tablet ✓ Automation Monitoring (Industrial robots) Cameras / Force-torque sensors / Grippers

Yaskawa Motoman [25] Website ✓ Automation Monitoring (Industrial robots) Sensors for position, force, and tactile sensing

Kawasaki Robotics [26] Website ✓ Industrial automation Monitoring (Industrial robots) Accessories (chairs, monitor arms...)

Table 1: Systems Overview

It is possible to verify that each framework has its own strengths and weaknesses some are more flexible

and easy to use, others are more precise and reliable and not all frameworks have applications. However,

those that do have applications do not always have a user-friendly interface. Further, intuitiviness can be

improved with features such as color feedback and visual feedback of the task being performed by the user,

as demonstrated by Scalefit and ViveLab Ergo. Also, it is important to minimize the learning curve of the

application usage. Clean interfaces, that required minimal cognitive effort can help to accomplish this. For

example, Scalefit has only the essential information being displayed. ABB’s, in turn, offers a configuration

interface that groups the main features in categories, allowing a easy and sequential configuration. As for

interesting features to be presented to the user during the task performance, Rethink robotics presents,

in real time, the task’s cycle time metrics (average, maximum, and minimim time) and parts produced.

Scale fit and VivoLab present the ergonomic risk of the posture being sustained by the user, at the current

time. All applications allow data storage. This is also a interesting feature as this data can be processed

and generate a automatic report with the task statistics. On the other hand, FANUC application presented

a non-applealing graphical interface that impairs its usability and market interest.

In conclusion, the literature review has revealed that HRC frameworks are an active research area,

but there are still gaps and limitations in the existing literature. The proposed research aims to address

these gaps by developing a front-end application for a HRC framework that is tailored to the needs of a

particular application domain, easy to use, and has been tested in a real-world environment.

22

Chapter 3

Ergoaware Framework

A noteworthy development in the area of Human-Robot Collaboration (HRC) is the Ergoaware Frame-

work. As robotics technology becomes more and more integrated into industrial settings, solutions that

prioritize worker well-being in addition to productivity and efficiency become increasingly important. The

Ergoaware Framework is a system created to improve ergonomics, safety, and task efficiency inside col-

laborative contexts. It sits at the intersection of these goals.

The design of Ergoaware makes use of ROS(Robot Operating System), a well-known and reliable

middleware for creating robotic systems due to its versatility. It is not limtied to a single programming

language. Futhermore, by facilitating the smooth integration of different parts and modules, ROSmakes it

possible for Ergoaware to effectively receive information from a variety of sensory systems and implement

advanced control strategies to allow intelligent and sensible interaction between Humans and cobots.

Ergoaware is committed to a modular and extensible approach in the field of HRC, as evidenced by its

reliance on ROS.

Ergoaware is primarily dependent on a group of sensory systems, which include the team’s self-

developed Ergowear, a upperbody smart garment for posture monitorization, and the the commercial

sensory systems owned by BiRDLAB: MVN Xsens and Trigno Avanti from Delsys. Together, these devices

collect information and enable ergonomic assessments in real time by monitoring posture, fatigue level,

and productivity of the workers. This information can assist production line managers and ergonomic

teams in making decisions regarding workstation planning and job sets.

The power of Ergoaware resides in its capacity to create human-centered control techniques by utilizing

sensory data. These strategies customize work tasks for each employer, increasing production processes’

efficiency and safety. By adjusting in real-time to each user’s physiological requirements, the framework

minimizes ergonomic risks and optimizes productivity.

23

3.1 ROS: The Backbone of Ergoaware

The Robot Operating System (ROS) provides a solid foundation upon which the Ergoaware Framework

is constructed. The robotics community has come to recognize the open-source middleware framework

ROS for its scalability, flexibility, and broad support for robotic applications. The core of Ergoaware’s

architecture and the basis for its effective human-robot collaboration is its integration with ROS.

Since Willow Garage’s original development of ROS in 2007, the software has grown to become a

vital resource for roboticists and researchers everywhere. It offers an extensive collection of conventions,

tools, and libraries that make developing sophisticated robot systems easier. By facilitating the modularity

of robotic components, ROS makes it possible for sensors, actuators, and high-level control systems to

communicate with each other seamlessly. [27]

Furthermore, ROS offers the framework required to manage human-robot interactions in Ergoaware. It

makes it possible to implement control strategies that smoothly adjust robot behavior to each user’s unique

physiological needs. Real-time data exchange is made possible by ROS’s messaging system and middle-

ware functionalities, which help Ergoaware respond to changing conditions within optimal manufacturing

processes and well-informed decisions.

ROS’s dedication to extensibility and community-driven development is one of its main advantages.

This provides Ergoaware with access to a multitude of ROS packages and libraries developed by re-

searchers and developers across the globe.

This givesHRC a reliable and adaptable infrastructure. It is a very good option for coordinating human-

robot interactions, optimizing ergonomic assessments, and seamlessly integrating sensory data because

of its modular design, communication capabilities, and extensibility. Ergoaware’s deep integration with

ROS positions it as a creative and flexible response to the demands of contemporary manufacturing.[28]

It’s crucial to remember that ROS2, ROS’s replacement, has also become a viable option. Although

the two versions have similar basic goals—for example, offering a robust and adaptable robotics platform—

they diverge in important ways. With its enhanced security features, better support for non-Linux operating

systems, and improved real-time capabilities, ROS2 is an excellent option for a wider variety of applications.

The decision between ROS and ROS2, which is still in its early stages of development, is contingent upon

particular project requirements and compatibility considerations. In this instance, ROS was chosen.

24

3.2 Ergoaware architecture and backend

One important aspect of Ergoaware is its sophisticated sensory systems. The research team’s pro-

prietary Ergowear technology and commercial products like MVN Xsens are examples of these sensory

systems. These sensors, positioned on the worker’s body, are used to monitor and record information

about the posture, motions, and physiological condition of an employee. The data streamed in real-time

by these sensors is processed to ergonomic evaluations that provide information about possible dangers

associated with weariness and bad posture.

Human-centered control strategies are implemented through the backend of Ergoaware. It makes use

of the sense data gathered to tailor and optimize robot work according to the needs of each individual

worker. These control strategies adjust robot assistance to each user’s unique physiological requirements

in an effort to improve manufacturing processes’ efficiency and safety. This customized strategy improves

user experience and productivity overall while reducing ergonomic hazards.

The architectural base of Ergoaware is scalable and modular. Fundamentally, it makes use of the

capabilities of the Robot Operating System (Fig.22), which acts as the principal system for coordination

and communication between the different parts of the framework. There are intentions to switch to ROS2

in the future. The team’s Ergowear, Trigno Avanti, and other commercial sensory systems, as well as a

variety of other sensory systems, were all integrated into the framework. Except for the EMG software

interface, which is awaiting validation, all of the software interfaces in charge of online data streaming

between these systems and the processing station have been developed. At the moment, the framework

supports raw data from the team’s Ergowear, EMG raw data from Trigno Avanti, and online processed data

from MTw Awinda. Specifically, the Ergowear Angle estimation block uses algorithms to transform the data

that Ergowear collects into segment orientations that are comparable to the output of MTw Awinda. These

segment orientations are converted into joint angles by means of a human subject URDF model, which

is produced from a .mvn file obtained from the Xsens motion capture system. The ergonomic evaluation,

which happens within the Ergonomic Assessment block, depends on the joint angles.

The data obtained from Ergowear, which operates at a 100Hz sampling frequency, is downsampled

to 60Hz in order to guarantee compatibility with the 60Hz Xsens Awinda Analyze. Components for risk

management and estimation work at the user’s pace because they initiate fresh ergonomic assessments

with every delivery to the subject. Beyond cobot control and actuation, the system can also be used to

control vibrotactile motors incorporated into Ergowear textile for biofeedback and to control a simulation

environment via virtual reality (VR) glasses that are interfaced with the Gazebo robotics simulator.

25

Figure 22: Diagram of the current HRC framework

The project uses Python programming for efficient integration and control, and it includes a wide

variety of ROS packages that enable smooth communication across ROS topics, like ros-joint, ros-moveit,

ros-controller, catkin, rviz, ros-desktop-full, rospy, simulators.

The Robot Operating System (ROS) uses publish-subscribe communication patterns to enable commu-

nication between various ”nodes” or components, within a robotic system. The Publisher and Subscriber

objects are used by the ROS nodes to facilitate this communication. Within the robotic system, a ”node”

in ROS refers to an autonomous program that carries out a particular function. Every node is in charge of

carrying out different tasks, such as directing an actuator, processing data, or managing a sensor. A ”Pub-

lisher” is a ROS object connected to a particular topic that permits data transmission from a node to that

topic. A node creates a Publisher object and specifies the topic name and message type to be published

when it wants to share data. After serializing the data into the message format, the Publisher adds it to a

message queue reserved for that subject. The Publisher then forwards the message to the ROS Master,

publishing it. A ROS object linked to a particular topic that permits a node to receive data from that topic

is called a ”Subscriber”. A node creates a Subscriber object with the topic name and expected message

type specified in order to access data on a topic. A callback function that the subscriber registers is called

whenever fresh information on the subject is obtained. All registered Subscribers receive the message

when it is identified by the ROS Master as a new message on the subject. The Subscriber calls its callback

function to handle the incoming data when it receives a message.

26

Here’s how the process works step by step:

1. Node creation: Numerous ROS nodes, each with a distinct function and purpose, are operating

independently. These nodes could be dispersed throughout a network or operating on a single

robot.

2. Publisher setup: A Publisher object is created by a node that has data to share. It gives the

name of the topic and the kind of message it plans to publish. Data is serialized by the Publisher

and added to the topic’s message queue. This data is channeled through the topic name.

3. Publication: The Publisher sends the serialized message to the ROS Master. The ROS Master

keeps a list of all topics and which nodes are publishing and subscribing to them. The ROS Master,

acting as a centralized message broker, delivers the published message to all Subscribers registered

to that topic.

4. Subscriber setup: When nodes wish to receive data from a specific topic, they create Subscriber

objects with the topic name and the desired message type specified. A callback function that

specifies what should happen when a new message on the subject arrives is also registered by

each subscriber.

5. Subscription: All Subscribers who have registered for a topic receive new messages when they

are identified by the ROS Master. As each Subscriber executes its callback function, the incoming

message is processed as required.

ROS enables nodes to communicate in a modular and flexible way by using the publish-subscribe

communication pattern with Publisher and Subscriber objects. Distributed control, scalability, and effective

information sharing are made possible in robotic systems by this architecture.

3.2.1 Difficulties

The architecture and backend of the Ergoaware framework are fundamental components that underpin

its capabilities and functionalities. However, its complexity and the use of ROS, a previously unfamiliar

domain, presented several difficulties in understanding the architecture, such as:

• Complexity of Middleware: The middleware’s inherent complexity posed a significant challenge

during the learning process of the ROS architecture. As a middleware framework, ROS adds a

level of abstraction that can be confusing at first. It took a thorough understanding of middleware

27

concepts to comprehend how nodes, topics, and messages communicate with one another within

ROS.

• Node Interactions: ROS is largely dependent on the idea of nodes, which are autonomous

computational entities that carry out particular functions. One of the biggest challenges was coor-

dinating these nodes and understanding how they interacted with the rest of the system. Further

layers of complexity were introduced by the complexities involved in launching nodes, setting up

communication channels, and handling dependencies.

• Message Exchanging: In ROS, efficient message exchanging is essential for inter-node commu-

nication. Understanding message types, crafting unique messages when needed, and guaranteeing

data synchronization and consistency among nodes were part of the difficulties faced.

• Package Management: Code and resources are organized using a package-based system by

ROS. There was a steep learning curve involved in managing packages, dependencies, and version

compatibility. It was not an easy task to make sure the right packages were installed, configured,

and integrated into the framework.

• Documentation and Resources: Even though ROS has a ton of community-contributed re-

sources and documentation, it was difficult to navigate such a large repository that ROS has. Find-

ing pertinent guides, tutorials, and best practices for particular use cases frequently required careful

consideration and investigation.

• Debugging and Troubleshooting: Because the framework is distributed, debugging ROS-based

applications presented particular difficulties. Determining and fixing problems with node crashes,

communication breakdowns, or message mismatches required extensive knowledge of diagnostic

tools and ROS tools.

• Learning Curve: The vast ecosystem of ROS consists of a multitude of libraries, tools, and

frameworks. The significant learning curve to become proficient with these elements presented a

formidable obstacle. It was essential to be familiar with debugging tools like rqt_console, as well

as visualization tools like RViz and command-line tools.

• Version Compatibility: One recurring issue was making sure that packages and ROS versions

were compatible. Ergoaware framework modifications or updates may be required in response to

incompatibility issues caused by modifications or updates in ROS distributions.

28

It took a committed and methodical approach to overcome these obstacles, combining in-depth re-

search, practical experience, cooperation with the ROS community, and continual learning and adaptation.

The development and comprehension of the Ergoaware framework were greatly enhanced by these expe-

riences in navigating the intricacies of the ROS architecture, which also enhanced the research process

and knowledge acquired.

29

Chapter 4

Developing the Ergoaware Frontend

In this chapter, the critical stage of developing the Ergoaware frontend—a crucial part of the Human-

Robot Collaboration (HRC) framework—is explored. This section walks readers through the entire process

of turning ideas into a concrete, intuitive user interface, covering important topics such as requirements,

user interface (UI) design, and implementation. The ultimate goal is to clarify the steps and design con-

siderations that result in a frontend application customized to non-technical users’ unique requirements,

allowing them to easily engage with the Ergoaware HRC framework.

4.1 Requirements for User-Friendly Interfaces

The Ergoaware frontend’s design is centered on user-friendliness. Creating an interface that appeals

to non-technical users requires a careful examination of their requirements and expectations. To create

an Ergoaware frontend that is easy to use, a thorough process of defining, prioritizing, and identifying the

necessary requirements must be undertaken.

The new user interface (UI) is designed to conform with the specified design requirements and is

intended to be viewed on desktop screen sizes. In turn, these prerequisites will function as sub-objectives

for the purposes of this thesis:

• Parameter Configuration Page It is necessary to create a specific page where users can input

the necessary parameters to start the Ergoaware framework. The parameters are user selection,

simulation setting (virtual, that is a UR simulator or physical robot), optimization mode, sensing

technology, and control strategy. Gives users a logical and well-organized interface for defining

important experiment parameters. makes sure the framework can be adjusted to different user

needs and experimental setups.

30

Figure 23: Idealized GUI Mockup

This part has initally idealized in two separate screens as we can see in Figure 23. The first screen

gives the user the option of selecting a physical robot or a virtual simulation (UR simulator). This

decision is important because it establishes whether the robot will work in a simulated environment

or in the real world. Since they don’t require actual hardware, simulations are frequently used for

training and testing, enabling users to verify the behavior of the robot. To start the UR simulator

after choosing the simulation, a dedicated button is provided. Whichever option they initially select,

users can move on to the next screen, which displays an extensive list of programmable parameters

for the robot’s functionality.

The ”User Selection” parameter is crucial as it enables users to designate the individuals who will

engage with the robot. This parameter makes sure that the behavior and ergonomics of the robot

are customized to the particular user using it. Different users may have different ergonomic needs

or preferences.

The robot’s behavior is affected by the ”Optimization Mode” parameter. Users are able to choose

between various modes, including passive optimization, classic, CRula or GdRula. The robot’s

actions and movements can change depending on the mode selected, maximizing for various goals

such as productivity, safety, or ergonomics.

The robot needs ”Sensing Technology” in order to sense its surroundings. The kind of sensing

technology—Xsens, Ergowear, Simulation or Offline test—that is employed can be specified by the

user. This parameter controls the robot’s data collection and environmental awareness, which is

31

essential for both safe and efficient operation.

The ”Control Strategy” parameter is in charge of specifying the control scheme for the robot’s

movements and actions. Users can choose from a variety of control strategies according to their

needs. This parameter could have choices for velocity control, or impedance that influence the way

the robot moves through its surroundings and completes tasks.

• Launch and Command Execution Options Two separate options should be available in the

application interface: one for starting the framework and another for executing commands with

their corresponding parameters directly. While the ’launch’ option initializes the ROS server and

sets up the Ergoaware framework, the ’run’ option executes the framework’s main executable, which

is normally in charge of directing the control of the robot.

• User Management Through File Upload It must be possible for users to upload files with user-

specific data to add or edit user profiles. Makes it easier to add and manage user profiles in the

Ergoaware framework. Ease of use and scalability depend on this feature. In order to effectively

customize the Ergoaware framework for each worker, user management within the application is

essential. The user files that have been uploaded include each worker’s unique anthropometric

measurements. For the purpose of calibrating and fitting the kinematic model for inertial data,

whether it comes from Xsens or Ergowear systems, these anthropometric measurements are cru-

cial. Each person has distinct anthropometric dimensions, which are essential for precisely estimat-

ing joint angles and segment orientations. This calibration procedure guarantees that the output

of the framework closely matches the worker’s actual movements and improves the accuracy of

ergonomic assessments.

• Simulator Launch Button For users who plan to use a simulated robot for their experiments,

an integrated button within the interface should make it easier to start a simulator. Provides an

easy-to-use method for starting and setting up the simulator, an essential and frequent part of robot

experiments. Simplifies user interactions and is consistent with the user-friendliness goal of the

framework.

• Task Productivity and Ergonomic Analysis Page It is necessary to create an analysis page for

real-time monitorization of parameters like ”task productivity” and ”human ergonomic score.” The

”ros topic echo” command is used to carry out this assessment. Gives users a thorough analytical

tool to track the success of their experiments. The objectives of the framework, which include

32

increasing productivity and ergonomic safety, depend on the ability to evaluate task productivity

and ergonomic scores.

• Calibration Settings Page A calibration page where the robot’s preprogrammed positions can

be set and modified should be part of the interface. To guarantee the robot’s accuracy and preci-

sion, calibration is essential. Achieving the framework’s goals of increasing manufacturing process

efficiency and safety depends on this feature.

• Framework Package Management Page This functionality entails the creation of a specific

page in the Ergoaware interface for installing and configuring necessary framework packages. Op-

tions to enable or disable each package must be provided in case these packages are already

installed.

Makes sure the necessary framework packages are easily accessible, installable, and configurable

for users, making the Ergoaware framework setup process easier. This makes package manage-

ment more user-friendly while lowering its technical complexity.

4.2 UI Design for Human-Robot Collaboration

The fundamental design tenets of simplicity, intuitiveness, consistency, and user-centered design form

the basis of the UI design process. These guidelines are essential for guaranteeing that the user interface

is highly functional, aesthetically pleasing, and compatible with the needs and preferences of the target

non-technical user base.

The thorough examination of workflow patterns in the context of HRC was an important first step. The

purpose of this analysis was to learn more about how end users—especially non-technical staff members—

interact with the Ergoaware system. It was crucial to identify bottlenecks, user needs, and crucial touch-

points in order to determine the specific areas where UI design could have a significant impact on safety,

efficiency, and productivity.

The information architecture of the user interface was carefully designed to guarantee an intuitive

user experience. To improve overall usability and expedite user interactions, this required meticulous

arrangement of data, menus, and navigation elements. To create an interface that is both aesthetically

pleasing and easy to use, visual design elements such as color schemes, typography, and visual cues have

all been carefully chosen.

In addition, the design considers the framework’s future scalability potential, guaranteeing that the

33

interface can adjust to the changing demands of the manufacturing sector.

4.2.1 Design iterations

Figure 24: Attempt 1

The interface was minimalistic in its first iteration of design, as we can see in Figure 24. Three

categories make up the taskbar’s arrangement: Settings, Login, and Control Panel. More options appear

when moving the cursor over these categories. Options for Workstation Calibration, Input Parameters, and

Analysis are easily accessible through the Control Panel.

34

Figure 25: Attempt 2

As shown in figure 25, an interface that is more structured and colorful is introduced in the second

design iteration. Navigation is made simpler with the replacement of the taskbar with a more user-friendly

tab system. The tabs are now divided into five categories: Analysis, Parameters Configuration, Workstation

Calibration, Packages and Settings. Tabs are easy for users to navigate between, and each one links to a

different page or feature.

35

Figure 26: Attempt 3

Figure 26, the third design, adopts a dynamic sidebar menu, which is a major improvement. The

background of the interface is changed to a simpler, darker design. To improve user experience, the

sidebar menu is added as a primary navigation element. The use of red in the color scheme and the use

of different icons creates a more appealing and contemporary visual identity.

36

Figure 27: Graphical user interface final result

The streamlined, black backdrop of the interface is carried over from the fourth and final design revision

(Fig.27). But there’s a noticeable change in the color scheme, with elements taking on a calming shade

of light blue. This modification improves the user experience by giving the UI a feeling of balance and

refinement. The light blue hue harmonizes with the entire style, resulting in a unified and aesthetically

pleasing interface.

The journey to develop an intuitive and visually appealing front-end for the Ergoaware framework is

reflected in these design evolutions. The finished layout offers users a polished and welcoming interface by

combining a calm light blue color scheme with a tidy dark background. The sidebar menu’s dynamic nature

guarantees effective navigation, simplifying the process of accessing essential features and functionalities,

and ultimately improving the user experience in general.

37

4.3 UI Implementation for the Ergoaware Framework

This section will examine the real-world application of the Ergoaware framework’s user interface (UI),

delving deeper into the practical side of the project. With the help of flowcharts, and insights into the inner

workings of the framework, this section attempts to give a thorough explanation of the UI design and how

it interacts with the Robotic Operating System (ROS).

The graphical user interface of the Ergoaware front-end was created using Python, utilizing the robust

and adaptable PyQT5 library. A powerful Python library called PyQT5 makes it easier to create UIs that

are both aesthetically pleasing and functional. The team used in-depth tutorials to fully understand this

library functionalities.

Qt Designer, a design tool, was used to further streamline the development process. A visual design

tool called Qt Designer provides a simple and effective method for creating graphical user interfaces for

Python applications. Its workspace includes necessary elements that quicken the design process.

4.3.1 Qt Designer

Figure 28, shows an all-inclusive platform for designing and modifying the Ergoaware front-end’s user

interface, the Qt Designer workspace.

Figure 28: QtDesigner Interface

38

Widget Box

The Widget Box, which is situated on the workspace’s left side, contains a variety of components that

can be easily incorporated into the program. This comprises layouts, input widgets, buttons, containers,

and more. Addition of these elements to the application’s interface is as easy as drag-and-drop.

Property Editor

The Property Editor, which is located on the workspace’s right side, provides extensive customization

choices for every element. It gives developers the ability to adjust text font, color, size, and other attributes

to perfection. Additionally, it permits the use of stylesheets with CSS, which offers a high level of visual

customization.

39

Figure 29: Object Inspector

Object Inspector

The Object Inspector, a valuable tool for developers, permits easy navigation through the hierarchy of

widgets in the application, as we can see in Figure 29. This is particularly beneficial when dealing with

complex user interfaces with multiple elements and containers.

Qt Designer generates a.ui file automatically, making the process of creating graphical interfaces

easier. The ”pyuic5 interface.ui -o interface.py” command is then used to start the conversion process,

converting the .ui file into a Python script (interface.py). The graphical elements created in Qt Designer

and the logic of the application are connected by this Python script.

40

The application’s central component is the main.py file. The generated interface.py file is imported,

and the complete user experience is coordinated. The main.py file defines the flow of the application,

button actions, window size adjustments, and other essential functions. Additionally, it manages the appli-

cation’s graceful shutdown, making sure that all related processes—like the simulator and the Ergoaware

framework—are closed properly upon the program’s exit. Apart from the primary interface, the application

integrates additional screens intended to provide guidance to users. These screens are helpful tools that

give users detailed instructions and improve their application experience.

The careful integration of PyQT5, Qt Designer, and a strong Python codebase guarantees that the

Ergoaware front-end is a highly functional platform that enables ergonomic and productive human-robot

collaboration, in addition to being an aesthetically pleasing interface.

It is a remarkable example of the combination of strong development tools, HRC, and UCD principles,

as demonstrated by its extensive UI.

The culmination of these components creates an interface that is both sophisticated and user-friendly,

enabling users of all skill levels to make effective and efficient use of the application.

4.3.2 Crafting the Command Line: Enabling Ergoaware Framework Access

One essential component of the application is the ability to launch the Ergoaware framework via a

command line interface. With the help of this feature, users can precisely configure and launch the

framework, which simplifies their interactions with the robotic system. In order to achieve user-friendly

and effective human-robot collaboration, this technical component of the application is essential.

Based on user selections from the UI, the createCommandLine function is in charge of creating and

executing the ROS launch command. The process starts by extracting the chosen options from the UI

elements, including the user, optimization mode, sensing source, and control strategy. It uses ”velocity” as

the default value for control_type, which is then used in the command. Because position-based control and

velocity-based control are the two main control techniques in this system and they are mutually exclusive,

the ”velocity” control type is set as the default option. The default setting of ”velocity” was made because

it works effectively for activities requiring flexibility and instantaneous response. Users can adjust this

parameter to ”position” for jobs like ergonomic posture optimization that need for exact and accurate

placement. This default offers flexibility, but it also highlights how crucial it is to choose the right control

method depending on the demands of the task.

The default values for the configured parameters are predefined in accordance with the launch files

utilized in the command line initiation of the robot. These launch files serve as templates for setting

41

initial configurations and options. The parameters are automatically initialized with these default values,

providing a foundation for users to customize their selections while ensuring a seamless and consistent

startup experience. The code determines whether ”Choose an option” is selected as the user option. If

this is the case, it prevents the command from being launched with insufficient parameters by displaying

an error window and exiting the function. It also verifies the sensing, control, and optimization settings.

When these options are selected as ”Choose an option” or ”Default,” the code sets these parameters to

their default values.

The chosen options are then combined to create the ROS launch command in the format needed to

start the Ergoaware framework. Lastly, the code launches the created command in a new terminal window

by using ”subprocess.Popen”. For tracking and management, the process is added to the subprocess_list,

so then it is possible to close this window by closing the main application.

4.3.3 Interaction with ROS

Throughout this research, there were a number of difficulties encountered when creating the bar graphs

for ergonomic scores. Establishing smooth communication between the UI and the ROS (Robot Operating

System) framework, which provided real-time ergonomic score data, was one of the main challenges. It

took a thorough understanding of Qt-based user interface development and ROS messaging systems to

integrate the incoming data and make sure it was properly visualized in the form of dynamic bar graphs.

Moreover, one major challenge was the intricacy of organizing and parsing the incoming data. The

structured data that made up the ergonomic scores had to be properly transformed into a format that

could be shown on the bar graph. This involved handling data types and structures carefully, handling

errors related to possible data problems, and having a thorough understanding of ROS message types.

Furthermore, a thorough understanding of the QtCharts library and how to dynamically update the

charts when new data arrived were required due to the graphical representation of the bar graphs. It was

a non-trivial task to manage the chart’s appearance, labels, and axis scales to accurately depict ergonomic

scores.

The requirement to maintain the UI’s responsiveness and aesthetic appeal in the face of continuous

data updates further complicated the development process. Careful optimization and performance tuning

were needed to strike a balance between real-time data processing and user-friendly interactions.

Overcoming these obstacles was amajor accomplishment in the application development process, and

it emphasizes how crucial it is for the UI and the underlying ROS architecture to communicate effectively.

The accomplishment of dynamic bar graphs for ergonomic scores is a prime example of the dedication to

42

offering a clear and easy-to-use interface within the framework of human-robot cooperation.

ROSHandler is a custom class that extends QObject. It’s used to handle ROS (Robot Operating Sys-

tem) callbacks for receiving data from ROS topics. ”signal_update_values”, a custom signal defined in

the class, was used to emit a signal whenever new data is received from the ROS topic of type RULAS-

coresStamped. The signal is emitted to notify other parts of the application that new data is available.

”handle_ros_callback” is the slot method that processes the data received from the ROS topic. When

data is received, this method is called automatically. Inside the ”handle_ros_callback” method, the emit

statement triggers the ”signal_update_values” signal and sends the received data as its argument. This

signal is then used to update the UI with the new data. The ”handle_ros_callback” method is responsible

for receiving and processing data from ROS topics and updating the UI based on the received data.

This code facilitates the real-time update of the bar graph in response to data from ROS, allowing

users to visualize and monitor ergonomic scores from the ROS topic within the user-friendly interface.

The ”subscribe_ros_topic” guarantees that bar graphs such as the Human Ergonomic Score (HES)

are updated in real time. To understand its function, let’s break it down step by step.

A ROS node with the name ”barras_node” is started by the first line. Nodes in the ROS are indepen-

dent software components that interact with one another. As it prepares the application to interact with

the ROS network, this initialization is essential.

Magic happens in the next line, ’rospy.Subscriber’. The program is subscribed to a particular ROS

topic—in this example, ’/human/ergonomic_score.’ This topic is where other ROS nodes publish data

pertaining to the Human Ergonomic Score, usually from the Ergoaware framework. Updates on data in

real time can be received by the application by subscribing to this topic.

The callback function ’self.ros_handler.handle_ros_callback’ is triggered whenever a new set of data

is published to the ’/human/ergonomic_score’ topic. This callback function, as previously mentioned,

analyzes the incoming data and updates the bar graphs appropriately. It is essential to making sure the

application stays up to date with the evolving ergonomic data.

This code essentially creates a communication channel with theROS ecosystem so that the application

can receive updates on the most recent ergonomic information. This feature is vital for monitoring and

improving HRC by giving users dynamic and real-time insights into the ergonomic score. The program

stays data-driven and responsive thanks to the smooth integration with ROS, which increases its usefulness

in actual manufacturing situations.

43

4.3.4 Package installation

The selected python packages are installed using the pip package manager. When a user chooses

and authorizes the installation of a particular Python package from the application’s frontend, the in-

stall_package function is called. It obtains the package name from the front-end input to be installed and

it uses the subprocess.run function to run the pip install command inside the try block. With the help of

the pip package manager, this command installs the given package.

The command’s output is recorded, along with any success or error messages. The stdout=subprocess.PIPE

and stderr=subprocess.PIPE parameters ensure that both standard output and standard error are cap-

tured. It examines the pip install command’s return code. A successful installation is indicated by a return

code of 0, which also includes the package name in the success message. It returns any error messages

from the stderr along with an error message indicating that the package could not be installed if the return

code is not 0. It captures exceptions and returns error messages in the event that something goes wrong

during the installation process.

The package installation code checks for installation errors or makes sure the user-selected Python

packages are installed so that the user can freely use the framework without having problems with ROS.

The ability to control the installation of required packages is an essential component of the application’s

functionality.

44

4.3.5 Application’s primary workflow

Figure 30: Application’s primary workflow

The primary workflow of the application is depicted in this flowchart in Figure 30, with an emphasis on

how it interfaces with the ROS. The primary goal of the application is to give users an easy-to-use interface

for setting parameters and seeing real-time ergonomic score visualizations.

User interactions with the Ergoaware Frontend, such as setting parameters and starting the Ergoaware

framework, are reflected in ”User Input”. The crucial decision of ”Optimization Mode” is made when

deciding which optimization mode to use. ”Sensing Technology” refers to the choice made between

45

alternative sensing technologies and offline testing. ”Control Strategy” refers to choices made for the

Ergoaware framework’s control strategies. After all the choices made in each of the parameters, these

options are reflected in the framework launch.

”ROS Data” refers to the information obtained from ROS, including ergonomic score data. Input from

the user is processed and actions are performed through ”User Interface Interaction”. The mechanism in

charge of connecting to ROS, creating communication channels, and sending and receiving data is shown

in ”Communication with ROS”. ”Bar Graph Updates” describes in detail how the ergonomic score bar

graphs are updated using ROS data processing.

This flowchart provides a thorough overview of the interactions between the Ergoaware Frontend and

ROS, allowing users to set up parameters and view ergonomic scores in real time. It describes the decision-

making points at which the program adjusts to user selections and interacts with ROS in a smooth and

educational manner.

The flowchart shows how the Ergoaware Frontend improves ergonomics assessment for HRC by

streamlining communication with ROS and simplifying a complex process and data flow.

46

Chapter 5

Results and discussion

This section discusses the application’s results and discussion, which is critical in ensuring the us-

ability, functionality, and effectiveness of the application. The validation process aims to confirm that

the application meets the requirements, is user-friendly, and contributes to the overall goals of enhancing

human-robot collaboration in ergonomic and productivity aspects.

Figure 31: Main Screen

Figure 31 shows the main screen that serves as the application’s central hub, providing access to

all key functionalities. The application includes a menu with options for navigating to the Control Panel

(Workstation Calibration, Robot Launch, Analysis) and Settings (Package Installation, Help). This screen

is the user’s entry point into the application.

47

Figure 32: Workstation Calibration

An essential part of the application is the ”Workstation Calibration” page, as shown in the Fiure 32,

which is used to configure and adjust the robot’s workspace and movements. Users can quickly prepare

the robot for particular tasks or movements by selecting from a selection of pre-defined robot poses.

Determining the grasp and approach positions on this page also ensures that the robot interacts with its

surroundings in an efficient manner. After configuring every parameter, users can start the specified task

to begin the robot’s actions. ”Workstation Calibration” optimizes the robot’s performance and adaptability

for a variety of tasks in HRC by streamlining the process of setting up the workspace and poses. With

the help of this functionality, users can customize the workspace and behavior of the robot, increasing

efficiency and productivity without compromising safety.

Although the robot is a key component of the team, it is not equipped with cameras or visual sensors

to identify the exact location of the rails or storage spaces where the parts that need to be delivered to

the worker are kept. Because of this limitation, a methodical calibration procedure is required to match

the actual positions and orientations of these important components with the robot’s understanding of

the workstation. Features on the page enable accurate calibration in terms of orientation, position, and

quaternions. It guarantees that the robot can navigate and interact with the workstation as precisely as

possible by matching the robot’s understanding of these parameters with the actual physical arrangement

of the rails. The robot can now operate with a high level of accuracy after it has been calibrated. The

calibrated robot can pick, place, or manipulate objects from the workstation. It can also adapt to the

48

changing needs of human-robot collaboration with ease. Accurate calibration enhances safety by lowering

the possibility of mistakes and collisions. The robot’s accuracy in identifying and interacting with the

storage areas and rails improves workplace safety overall and reduces operational disruptions.

Figure 33: Robot launch menu

In the Figure 33 we can see a page where it is possible to choose which framework the user wants to

launch. It has the possibility of selecting different frameworks, however only the Ergoaware HRC Framework

option has been developed.

49

Figure 34: Simulation Page

Users can choose between launching the robot locally or remotely, as we can see in Figure 34. Addi-

tionally, it provides a way to launch the simulator app. Before launching the robot, users can select their

preferred mode.

Figure 35: Launch Parameters

Users can set up the necessary parameters in this section in order to launch the robot as we can see

in Figure 35. The user selection process, optimization mode selection, sensing technology definition, and

50

control strategy selection are examples of parameters. The Ergoaware framework is ready for use with

these configurations. Figure 36 shows all of the options available for choosing each parameter.

Figure 36: Possible launch parameters

By clicking the button to add a new user, is possible to access the file selection dialog box of the

operating system. The process of adding users is made easier by this integration, which results in a clear

and simple interface. With this functionality, users can conveniently select and upload a file that contains

the anthropometric dimensions and relevant information of the new user.

51

Figure 37: RViz

In Figure 37 we can see the RViz framework that demonstrates the advanced visualization feature that

the Ergoaware framework uses to model and track robot behavior when performing tasks involving human-

robot cooperation. With the help of RViz, users can view a comprehensive 3D visualization environment

and get real-time insights into how robots move and interact with their surroundings. By controlling the

robot’s simulation in RViz, users can examine the behavior and interactions of the robot in a virtual setting.

Before implementing robot operations in the physical workspace, this tool is invaluable for testing and

fine-tuning them in a safe and controlled environment.

52

Figure 38: User parameters

Ergoaware’s user interface allows users to interact with the system through an easy-to-use side menu

(Fig.38). The ability to change and adapt the kinematic model according to the user’s unique anthropo-

metric measurements by choosing an user on the parameters selected before the framework launch, is

one of the interface’s primary features. Users can load their kinematic model into the user interface to

make sure the robot behaves in a way that suits their particular physical characteristics and workspace

needs.

53

Figure 39: Analyze menu

The main location for key metric analysis is possible to see on the screen in the Figure 39. The

”Human Ergonomic Score” and ”Task Productivity” statistics are available for users to view, giving them

the ability to track and evaluate these important variables. It provides a thorough understanding of the

outcomes and functionality of human-robot cooperation.

Figure 40: Human Ergonomic Score

Figure 40 shows that users can choose to view the ergonomic score statistics for the left or right

54

side of the human body on this page. The Rapid Upper Limb Assessment (RULA) method, a well-known

framework for evaluating the ergonomics of repetitive tasks, is the source of this score.

The Ergonomic Score is an all-encompassing indicator that considers the ergonomics of particular

joints and body segments involved in human-robot interaction. This score is broken down into separate

parts, each of which stands for a unique score connected to a specific joint or body part. The individ-

ual scores, denoted as A1, A2, B1, B2 and so on, correlate to particular anatomical regions and offer

information about the ergonomic stress that those body parts undergo while performing a particular task.

Low scores indicate better ergonomics. These scores show that there are fewer risk factors and that the

postures are within reasonable ergonomic bounds.

Figure 41: Table A: Wrist Posture Score

The ergonomics of the wrist are examined in Table A, Figure 41 of the RULA evaluation. It takes into

account the wrist movements’ posture, force, and repetition when performing a specific task. Different

wrist postures and forces are given scores in the table, which has a direct impact on ergonomic risk.

Elevated scores in Table A suggest a higher risk of ergonomic errors related to wrist movements.

55

Higher scores may be attributed to elements like excessive force, repetitive wrist motions, and extreme

flexion or extension.

Figure 42: Table B: Trunk Posture Score

Table B, in Figure 42, is devoted to evaluating upper body or trunk ergonomics. It takes into account a

number of variables, such as repetition, force application, and trunk posture. The scores in Table B offer

important details regarding the ergonomic risk related to posture and trunk movements.

Elevated scores in Table B indicate an increased risk of ergonomic strain on the trunk. Elevated scores

can be attributed to various factors, including significant trunk bending, awkward postures, and repetitive

movements.

Figure 43: Left analysis

Figure 43 shows the ergonomic scores that are displayed as a dynamic bar graph that updates in real

56

time in response to information gathered from ROS. In this case it is possible to see the ergonomic score

for the left side. Users are able to evaluate and examine ergonomic scores for different body sides.

Figure 44: Package instalation

This section, as seen in Figure 44, facilitates the installation of necessary packages for the Ergoaware

application. Users can manage the installation of framework-related packages, ensuring that the software

is properly configured. It streamlines the installation process for a hassle-free user experience.

57

Chapter 6

Conclusion

The new era ofHRC brought about by robotics technology advancements has profound effects across a

range of industrial domains. Creating user-friendly interfaces that enable smooth communication between

humans and robots is crucial to maximizing the potential ofHRC systems, especially for non-technical staff.

The main focus of this dissertation has been on human ergonomics, productivity, and safety through the

development and validation of an intuitive front-end application within the Ergoaware framework.

The main goal of this study was to tackle the difficulties involved in creating an intuitive user interface

that can act as a starting point for productive human-robot cooperation. The project took place against

the backdrop of the HRC framework Ergoaware. The use of Robot Operating System (ROS), is essential

to the Ergoaware framework. ROS has grown to become a vital resource for roboticists and researchers

everywhere. It is the perfect fit for the Ergoaware architecture because of its flexibility and modularity,

which allow high-level control systems, actuators, and sensors to be seamlessly integrated.

The Ergoaware architecture’s modularity and flexibility offer significant potential for enhancing HRC in

manufacturing industries. Navigating the architecture and backend of the Ergoaware framework, especially

when grasping the intricacies of ROS, presented challenges. This involved understanding data processing,

communication between nodes, and integration with external sensors and actuators.

This dissertation, which emphasizes the role of technology in raising task productivity and ergonomic

scores, has offered insightful information about the creation and validation of user-friendly front-ends for

HRC frameworks. There is still a great deal of room for innovation in human-robot cooperation as tech-

nology develops. This potential is exemplified by the Ergoaware framework and its user-friendly interface,

which open up new possibilities for the manufacturing sector and beyond.

To sum up, this research has opened the door for more user-centered HRC interfaces that have the

potential to further transform industrial processes by increasing their productivity, safety, and accessibility

for a larger variety of users. Though there is still a long way to go, this application is a major step in the

right direction toward seamless HRC. The accomplishment of creating and verifying an intuitive front-end

58

shows that technology can be used to increase task productivity and ergonomic scores while maintaining

accessibility for a larger user base.

59

Bibliography

[1] S. Bevan, “Economic impact of musculoskeletal disorders (MSDs) on work in Europe,” Best Pract.

Res. Clin. Rheumatol., vol. 29, no. 3, pp. 356–373, Jun. 2015.

[2] X. T. R. Kong, X. Yang, G. Q. Huang, and H. Luo, “The impact of industrial wearable system on industry

4.0,” ICNSC 2018 -15th IEEE Int. Conf. Networking, Sens. Control, pp. 1–6, 2018.

[3] A. Resende et al., “Ergowear: an ambulatory, non-intrusive, and interoperable system towards a

Human-aware Human-robot Collaborative framework,” in 2021 IEEE International Conference on Au-

tonomous Robot Systems and Competitions (ICARSC), 2021, pp. 56–61.

[4] Ecological interface design effectively reduces cognitive workload – The example of HMIs

for speed control. URL https://www.sciencedirect.com/science/article/abs/pii/

S136984782030423X

[5] European Commission, ”Horizon 2020, Work Programme 2018 - 2020”

[6] Robotics 2020 Multi-Annual Roadmap For Robotics in Europe Horizon 2020 Call ICT-2016 (ICT-25

ICT-26)

[7] User-centred design scheme. URL https://www.reveall.co/guides/

user-centered-design

[8] D. Norman, ”The Design of Everyday Things”, pp. 187-218, 1988

[9] International Organization for Standardization (ISO) Technical Committee TC 159 ”Ergonomics” and

Sub-Committee SC 3 ”Human-system interaction”, ”ISO 9241-210:2010, Ergonomics of human-system

interaction - Human-centered design for interactive systems”, pp. 3-14, 2010

[10] What Is UX Design? URL https://purplegriffon.com/blog/what-is-ux-design

[11] Principles of User Interface Design. URL https://www.embedded.com/

principles-of-user-interface-design/

60

https://www.sciencedirect.com/science/article/abs/pii/S136984782030423X
https://www.sciencedirect.com/science/article/abs/pii/S136984782030423X
https://www.reveall.co/guides/user-centered-design
https://www.reveall.co/guides/user-centered-design
https://purplegriffon.com/blog/what-is-ux-design
https://www.embedded.com/principles-of-user-interface-design/
https://www.embedded.com/principles-of-user-interface-design/

[12] António Manuel Pereira do Anjo, ”Modern Front-End Web Development”, pp. 21-37, 2018

[13] Brooke, J., SUS: A ”quick and dirty” usability scale. In P. W. Jordan, B. Thomas, B. A. Weerdmeester,

& A. L. McClelland (Eds.), Usability evaluation in industry, pp. 189-194, 1996

[14] System Usability Scale Benchmarking for Digital Health Apps: Meta-analysis. URL https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC9437782/

[15] Scalefit homepage. URL https://www.scalefit.de/home.html

[16] KUKA homepage. URL https://www.kuka.com/en-de

[17] Vivelab Ergo homepage. URL https://www.vivelab.cloud/

[18] KUKA Android and iOS app download. URL https://www.kuka.com/en-de/products/

robot-systems/software/application-software/kuka-hrc-guide-app

[19] Roos, T., Riedmiller, M., Pollefeys, RoboEarth: A world wide web for robots. In 2011 IEEE International

Conference on Robotics and Automation (ICRA), pp. 75, 2011

[20] R. T. Fielding, “Architectural styles and the design of network-basedsoftware architectures,” Ph.D.

dissertation, Univ. California, Irvine, 2000.

[21] D. Crockford. (2006, July). RFC4627—The application/json MediaType for JavaScript Object Notation

(JSON) [Online]. http://www.ietf.org/rfc/rfc4627.txt?number=4627

[22] ABB’s Collaborative Robots homepage. URL https://new.abb.com/products/robotics/

robots/collaborative-robots

[23] Rethink Robotics’ Baxter and Sawyer homepage. URL https://www.rethinkrobotics.com/

sawyer/applications

https://www.fanuc.eu/ch/en/robots/robot-filter-page/collaborative-robots

[24] FANUC homepage. URL https://www.fanuc.eu/ch/en/robots/robot-filter-page/

collaborative-robots

[25] FANUC homepage. URL https://www.yaskawa.eu.com/header-meta/news-events/

article/yaskawa-s-new-cobot-motoman-hc20dt_n10277

61

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437782/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437782/
https://www.scalefit.de/home.html
https://www.kuka.com/en-de
https://www.vivelab.cloud/
https://www.kuka.com/en-de/products/robot-systems/software/application-software/kuka-hrc-guide-app
https://www.kuka.com/en-de/products/robot-systems/software/application-software/kuka-hrc-guide-app
http://www.ietf.org/rfc/rfc4627.txt?number=4627
https://new.abb.com/products/robotics/robots/collaborative-robots
https://new.abb.com/products/robotics/robots/collaborative-robots
https://www.rethinkrobotics.com/sawyer/applications
https://www.rethinkrobotics.com/sawyer/applications
https://www.fanuc.eu/ch/en/robots/robot-filter-page/collaborative-robots
https://www.fanuc.eu/ch/en/robots/robot-filter-page/collaborative-robots
https://www.yaskawa.eu.com/header-meta/news-events/article/yaskawa-s-new-cobot-motoman-hc20dt_n10277
https://www.yaskawa.eu.com/header-meta/news-events/article/yaskawa-s-new-cobot-motoman-hc20dt_n10277

[26] Kawasaki homepage. URL https://kawasakirobotics.com/?gclid=

Cj0KCQiAlKmeBhCkARIsAHy7WVuQg2sOlXVQwGS9hHvdZN-IYUZR1gm5oHZUC4XILgPQJbxwNVvDRM0aAtJbEALw_

wcB

[27] Ricardo Tellez, ”A History of ROS (Robot Operating System)”. URL https://www.

theconstructsim.com/history-ros/

[28] Robot Operating System Wikipedia. URL https://en.wikipedia.org/wiki/Robot_

Operating_System

62

https://kawasakirobotics.com/?gclid=Cj0KCQiAlKmeBhCkARIsAHy7WVuQg2sOlXVQwGS9hHvdZN-IYUZR1gm5oHZUC4XILgPQJbxwNVvDRM0aAtJbEALw_wcB
https://kawasakirobotics.com/?gclid=Cj0KCQiAlKmeBhCkARIsAHy7WVuQg2sOlXVQwGS9hHvdZN-IYUZR1gm5oHZUC4XILgPQJbxwNVvDRM0aAtJbEALw_wcB
https://kawasakirobotics.com/?gclid=Cj0KCQiAlKmeBhCkARIsAHy7WVuQg2sOlXVQwGS9hHvdZN-IYUZR1gm5oHZUC4XILgPQJbxwNVvDRM0aAtJbEALw_wcB
https://www.theconstructsim.com/history-ros/
https://www.theconstructsim.com/history-ros/
https://en.wikipedia.org/wiki/Robot_Operating_System
https://en.wikipedia.org/wiki/Robot_Operating_System

	List of Abbreviations and Acronyms
	Introduction
	Motivation and Problem Statement
	Goals and Objectives
	Thesis Outline

	Literature Review
	Design methodologies
	User-centered design
	User Experience (UX)
	Design of the user interface
	Frontend development frameworks
	System Usability Scale (sus)

	Case studies
	Scalefit
	KUKA
	Vivelab Ergo
	RoboEarth
	ABB's Collaborative Robots (cobots)
	Rethink Robotics' Baxter and Sawyer
	FANUC
	Yaskawa Motoman
	Kawasaki Robotics

	Critical overview

	Ergoaware Framework
	ROS: The Backbone of Ergoaware
	Ergoaware architecture and backend
	Difficulties

	Developing the Ergoaware Frontend
	Requirements for User-Friendly Interfaces
	UI Design for Human-Robot Collaboration
	Design iterations

	UI Implementation for the Ergoaware Framework
	Qt Designer
	Crafting the Command Line: Enabling Ergoaware Framework Access
	Interaction with ROS
	Package installation
	Application's primary workflow

	Results and discussion
	Conclusion

