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RESUMO 

Globalmente, 310 milhões de cirurgias são realizadas a cada ano e existe uma probabilidade de 

2% a 5% de infeções do local cirúrgico. Problemas relacionados com a esterilização de equipamentos são 

uma das razões. Estas infeções impactam negativamente a saúde física e mental do paciente 

comprometendo a sua qualidade de vida. As cirurgias assistidas por computador estão a ajudar os 

cirurgiões a realizar operações mais seguras e a permitir aos pacientes menos tempo de recuperação. 

No entanto, este meio de interação geralmente depende de dispositivos de contato físico, como rato e 

teclado, que expõem a sala de cirúrgica a condições assépticas. O Leap Motion ultrapassa o problema 

dos dispositivos físicos uma vez que não precisa de nenhum tipo de interação física. 

Esta dissertação tem como objetivo conceber, desenvolver e validar uma abordagem de interação 

homem-computador intuitiva e sem contacto, baseada no reconhecimento automático de gestos manuais 

através do Leap Motion, seguindo uma conceção centrado no utilizador. Para tal, foi primeiramente 

realizado um protocolo junto dos utilizadores finais para determinar que gestos eram mais intuitivos. 

Posteriormente, foram criados dois grandes datasets (um de imagens da mão e um com características 

da mão) para alimentar modelos de inteligência artificial que pudessem reconhecer os gestos manuais 

de qualquer pessoa. O melhor modelo desenvolvido, com 96.25% de precisão nos dados de teste, foi 

baseado no algoritmo Support Vector Machine e foi, de seguida, integrado na ferramenta de 

reconhecimento de gestos manuais que através das previsões do modelo, executa a respetiva ação no 

ecrã, removendo a necessidade de periféricos com contacto físico. 

A partir de uma validação preliminar realizada junto de voluntários da Universidade do Minho e 

uma validação clínica realizada junto de cirurgiões do hospital Trofa Saúde Braga Centro, verificou-se 

que os utilizadores demoram mais tempo a realizar o mesmo conjunto de tarefas com a ferramenta de 

deteção de gestos manuais do que com o uso tradicional do rato. Contudo, foi possível observar que há 

uma curva de aprendizagem da ferramenta e que estes tempos diminuem com a experiência. Por fim, o 

System Usability Scale, que é um teste padronizado de avaliação de usabilidade, revelou que a aplicação 

desenvolvida atinge um resultado de 76.67 ± 9.86, porém há uma perceção de usabilidade maior na 

validação preliminar do que na validação clínica (67.5 ± 6.37). Através de uma última questão aberta 

pôde-se ainda perceber que a sensibilidade do cursor é o que precisa de mais atenção e constitui o ponto 

principal do trabalho futuro, juntamente com melhorias na interface gráfica. 

PALAVRAS-CHAVE: Cirurgia assistida por computador, Inteligência Artificial, Interação Humano-

Computador, Leap Motion, Reconhecimento de gestos manuais
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ABSTRACT 

Globally, 310 million major surgeries are performed each year, and there is a 2% to 5% chance of 

surgical site infections. Problems related to equipment sterilization are one of the reasons. These 

infections negatively affect the patient’s physical and mental health, comprising their quality of life. 

Computer-assisted surgeries are helping surgeons perform safer surgical interventions and allowing 

patients to have shorter recovery times. However, this means of interaction usually relies on physical 

contact devices, such as a mouse and a keyboard, which exposes the operating room to aseptic 

conditions. The leap motion overcomes the problem of physical devices as it does not require any kind 

of physical interaction.  

This dissertation aims to design, develop, and validate an intuitive, touch-free human-computer 

interaction approach based on the automatic recognition of hand gestures through Leap Motion, following 

an end-user-centred design. To achieve this, a protocol was carried out with end-users to determine which 

gestures were most intuitive. Subsequently, two large datasets were created (one with hand images and 

one with hand features) to feed artificial intelligence models that could later recognise anyone's hand 

gestures. The best model developed, with 96.25% accuracy on the test data, was based on the Support 

Vector Machine algorithm and was then integrated into the hand gesture recognition tool, which using 

the model's predictions, performs the corresponding action on the screen, removing the need for 

peripherals with physical contact. 

Preliminary validation with volunteers from the University of Minho and clinical validation with 

surgeons from the Trofa Saúde Braga Centro hospital showed that users take longer to perform the same 

set of tasks with the hand gesture recognition tool than with the traditional mouse control. However, it 

was possible to observe that there is a learning curve for the tool and that these times decrease with 

experience. Finally, the System Usability Scale, which is a standardised usability evaluation test, revealed 

that the application developed achieves a score of 76.67 ± 9.86, but there is a greater perception of 

usability in the preliminary validation than in the clinical validation (67.5 ± 6.37). A final open question 

also revealed that the cursor sensitivity is what needs more attention and is the focus of future work, 

along with improvements to the graphic interface. 

KEYWORDS: Artificial Intelligence, Computer-assisted surgery, Hand Gestures Recognition, Human-

Computer Interaction, Leap Motion
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1. INTRODUCTION 

This manuscript presents the work developed in the scope of the fifth year of the Master’s in 

Informatics Engineering, at the University of Minho, during the academic year of 2022-2023. 

The academic year was passed working in the Biomedical Robotic Devices Laboratory (BiRDLab), 

included in the Centre of MicroElectroMechanical Systems (CMEMS), at the University of Minho, 

Guimarães, Portugal. During this period, an automatic hand gesture recognition solution for surgical 

navigation was developed and validated. This system aims to improve operating room procedures by 

giving surgeons a more sterile and intuitive way to control computer devices. All the methods, results, 

and conclusions are detailed in this document. 

1.1 Motivation and Problem Statement 

Globally, 310 million major surgeries are performed each year [1] and with an ever-increasing 

world population, the trend of this number is to increase. During a medical procedure, there is a 2% to 

5% chance of surgical site infections [2] due to various reasons being one of them problems related to 

equipment sterilization. Despite the low percentage, in a world where 310 million surgeries are performed 

annually, it means that between 6 200 000 and 15 500 000 people still suffer an unwanted infection. 

This complication can negatively affect the patient’s physical and mental health. The infection can 

cause pain, susceptibility to other complications, delayed healing, or even the need for a second surgery 

[3]. Prolonged hospitalization, as well as the consequent time away from work, comprises the patient’s 

quality of life, and professional and social inclusion, in addition to leading to a decrease in monetary 

income, which may also affect the lives of dependent family members [3]. Thus, it is important to reduce 

the number of avoidable infections.  

Technology has slowly integrated into almost every aspect of human life due to the immense 

potential it has to increase the overall quality of life. This presence is also felt in the medical field, where 

new developments try to improve patients’ safety and the doctor’s quality of work. Computer-assisted 

surgery (CAS) is one such example, an emerging technology where the surgeon takes advantage of 

technology for surgical planning and guidance, using digital images usually displayed through a computer 

screen [4]. Their demand and interest are also described by the global market, expected to grow from 

6.1 billion dollars in 2020 to 11.6 billion dollars in 2025 [5]. CAS is a technology increasingly 

implemented and used in numerous areas of medicine, as it brings immense advantages to surgery such 
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as improving the precision of certain surgical navigations leading to better patient outcomes. In the dental 

field [6], for example, the implant position in fully edentulous patients achieved greater accuracy when 

using CAS than when performed freehand, limiting the chance of human error. Also, for orthognathic 

surgery [7], there is evidence to support the use of CAS, based on less time used in the preparatory 

stages of surgery, more accurate surgical planning, and better surgical outcomes. The increasing number 

of peripheral devices and equipment in the operating room has contributed negatively to surgical site 

infections and it represents a real concern of surgical navigation solutions [8].  

The CAS systems comprise human-computer interaction (HCI) solutions that typically rely on the 

use of a mouse and keyboard [9]. In the context of an operating room, several devices have already been 

tested to give surgeons a more natural and usable means of interaction, such as gloves, trackballs, and 

joysticks [9]. Although these devices are practical and easy to manoeuvre, they require physical contact, 

risking exposure to aseptic conditions and loss of time [10]. Therefore, to solve this problem, some 

methods have been developed, such as hand gesture recognition [11] and speech recognition [12], which 

use deep learning (DL) models to learn patterns in a dataset and label data. The noise in the operating 

room can affect the proper functioning of a speech recognition solution, whereas hand gesture recognition 

by a camera is unaffected by environmental conditions. 

Leap Motion (LM), being an optic device, overcomes the problem of physical devices as it does not 

require any kind of physical interaction [13], avoiding the need to sterilize the equipment between each 

surgery and saving time that can be used for more surgeries, while it is more natural and practical for 

the surgeon performing the CAS [14]. Current scientific works already make use of this technology, as it 

can be used to recognise hand gestures to manipulate medical images through a touchless graphical 

user interface (GUI) [15], and can be used in operating rooms to reduce the risk of contamination during 

medical procedures [16]. However, there is a limited level of effort within the medical field to solve this 

problem. Further, most of the studies do not demonstrate to be end-user centred [16]–[18], which means 

that the selected gestures may not necessarily be the easiest and most intuitive for the final users to 

operate the solution developed. Thus, there is a need to fill these gaps in the literature by contributing 

with an automatic hand gesture recognition tool developed from an end-user-centred gesture dataset, as 

well as new models with better performances. This work will be integrated into the NavPI surgical 

navigation system, already developed in BiRDLab. 
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1.2 Goals and Research Questions 

The ultimate goal of this dissertation is to design, develop, and validate a LM-based application for 

hand gesture recognition, to be integrated with the NavPI surgical navigation setup. Artificial Intelligence 

(AI)-based algorithms for automatic hand gesture recognition will be developed using images and features 

of the hand, provided by LM. Validation experiments and data acquisition will be conducted in a laboratory 

setting, for preliminary validations, and at the Trofa Saúde Braga Centro Hospital, performed by the 

surgeons (end-users), for final validations. Expected results include an automatic and specialized hand 

gesture recognition to be used in surgical navigation, to improve the quality of the surgeon’s interaction 

with the computer, as well as the surrounding environment. Quantitative results from the experimental 

validation must prove the effectiveness of the developed tool by assessing the time and precision 

differences in comparison with the use of mouse, as the traditional gold standard method. Qualitative 

results must demonstrate an easier, more intuitive, and ergonomic solution to control the surgical 

navigation software. 

To reach this main goal, it is necessary to achieve the following step objectives, measurable and 

verifiable through associated Key Performance Indicators (KPI): 

• Objective 1: Literature review of the existing AI-based solutions for hand gesture recognition 

using LM, as well as their current limitations. This is addressed in Chapter 3. 

• Objective 2: Define the system’s specifications and requirements, following end-users-centred 

approaches focusing on usability. This is addressed in Chapter 3 and Chapter 5. KPI: at least 3 

surgeons (end-users). 

• Objective 3: Create two datasets: one with hand images, and another with hand features 

regarding its position and rotation, provided by the LM Application Programming Interface (API). 

This is addressed in Chapter 6. KPI: at least 15 subjects in the dataset and more than 200 000 

samples. 

• Objective 4: Design and develop AI-based algorithms for automatic hand gesture recognition. 

This is addressed in Chapter 6. KPI: accuracy above 90% on the test data and inference time 

below 0.1 seconds. 

• Objective 5: Development of an application that integrates the algorithms developed, to control 

the computer mouse. This is addressed in Chapter 6. 

• Objective 6: Validate the developed LM application with new subjects, including the end-users. 

The validation protocol should be designed and implemented to evaluate the tool’s operability 

and effectiveness. The tool’s acceptability, usability, and user experience should be accessed 
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through a usability questionnaire and user feedback. This is addressed in Chapter 7. KPI: 

software usability above average according to the System Usability Scale (SUS) [19], resorting 

to surgeons.  

 

The outlined objectives will allow answering the following Research Questions (RQs): 

• RQ1: What specifications should be considered for the development of a LM hand gesture 

recognition application fitted for surgical navigation? The answer is included in Chapter 2. 

• RQ2: What are the most appropriate gestures needed to control the LM application in a 

surgical environment? The answer is included in Chapter 5. 

• RQ3: Can hand gesture recognition achieve good performance using AI algorithms for 

real-time use? The answer is included in Chapter 6. 

• RQ4: Can a gesture recognition-based solution be intuitive for controlling a surgical 

navigation application? The answer is included in Chapter 7. 

1.3 Contribution to Knowledge 

The main contribution of this dissertation to knowledge are: 

• A review on DL based hand gesture recognition tools using LM; 

• Study with clinicians to define the most intuitive mouse control gestures based on end-

users; 

• A novel hand gesture recognition tool for mouse control in surgical navigation, following an 

end-user-centred design; 

• Validation of the developed tool with the final users to motivate further research in the 

topic. 

1.4 Manuscript Outline 

This manuscript is organized into 8 chapters, as follows.  

Chapter 2 gives a theoretical introduction to AI, Machine Learning (ML), and DL. It also gives a 

brief overview of the architectures available in each of these areas.  

Chapter 3 presents the state-of-the-art of current LM solutions for hand gesture recognition. The 

specifications of the studies are presented and discussed, regarding the study focus, dataset type and 

size, DL architectures, evaluation metrics, and solution validation.  
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Chapter 4 describes the proposed methodology to achieve the hand gesture recognition tool, the 

hardware and software required to develop the tools to accomplish all the objectives, as well as the 

definition of the actions required to replace the computer mouse.  

Chapter 5 describes the protocol used in the early stages of the work to understand, with the 

surgeons, the most intuitive hand gestures for replicating the actions offered by the computer mouse.  

Chapter 6 outlines the protocol used to create the dataset, the data analysis and processing of the 

dataset, the architectures explored for the two datasets, the results of the models developed, and the 

development of the hand gesture recognition tool for mouse control.  

Chapter 7 comprises the validation protocol used to assess the quality of the hand gesture 

recognition tool. 

Chapter 8 addresses the conclusions of this dissertation, answering the RQs and appointing future 

work. 
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2. THEORETICAL INTRODUCTION 

AI can be traced back to 1950, when Alan Turing, often referred to as the father of computer 

science, famously pondered if machines could think and introduced the Turing Test to determine if a 

computer could demonstrate the same intelligence as a human [20]. The definition of AI has changed 

over the years, but it generally consists of developing algorithms that allow computers to analyse data 

and learn over time. This field also encompasses the subfields of ML and DL, which are usually used 

interchangeably but mean different things. It is therefore important to show the difference between them. 

2.1 Machine Learning 

Arthur Samuel is credited with coining the term ML in his work on the game of checkers. This 

branch of AI focuses on using data and algorithms to mimic the way humans learn [21]. ML is a term for 

solving problems by helping machines discover their own algorithms, rather than humans developing 

prohibitive high-cost algorithms to tell the machine what to do [22]. This field includes four different 

learning approaches, each proposing a different way to solve a problem: supervised learning, 

unsupervised learning, semi-supervised learning, and reinforcement learning [21]. In Figure 2.1, it is 

possible to see an outline of the ML approaches. 

 

Figure 2.1 – Outline of the ML approaches [23]. 

In the supervised learning approach, labelled datasets are used to train algorithms to classify 

outcomes. The input data is fed into the model, and through the labelled classes, the model adjusts its 

weights until the data is properly fitted. Neural networks (NNs), linear and logistic regression, and random 

forest are some of the methods used in supervised learning. NNs are inspired by the workings of the 

human brain, copying the notion of a neuron and the communication between them. NNs consists of an 
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input layer, one or more hidden layers and an output layer for prediction. These layers are made up of 

several nodes, which are the analogue term for the neuron, and each carries a weight and a threshold 

that decides whether a given neuron is activated and propagates the information to another neuron. This 

architecture learns by looking at the same data several times and adjusting the weights each time to 

minimize a cost function to the point of convergence [24]. In Figure 2.2, it is possible to see an example 

of a NN architecture. 

 

Figure 2.2 – Example of a NN architecture [25]. 

Linear regression and logistic regression are both used to estimate the relationship between a 

dependent variable (label or target to be predicted) and one or more independent variables (features). 

The main difference is that linear regression is used to predict a continuous variable and logistic 

regression operates to predict categorical variables. Linear regression finds a line that best fits the data 

using a calculation method that minimizes the discrepancies between predicted and output values [26]. 

The logistic regression analyses the possible outcomes and calculates a distribution of probabilities 

between 0 and 1 to classify the chance of a given event occurring [27]. In Figure 2.3, it is possible to see 

an example of each approach and the difference between them. 

 

Figure 2.3 – Example of A) linear regression [28] and B) logistic regression [29]. 

A) B) 
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Random Forest is an algorithm that combines the output of several decision trees to produce a 

single result. The decision tree structure is comprised of a root node, decision nodes, and leaf nodes, 

forming a hierarchical, tree-like structure. The root node is at the beginning of a decision tree, where the 

dataset starts to be divided based on the various features. The decision nodes result from the splitting of 

root nodes, and they represent decisions within the tree. The leaf nodes are nodes where further splitting 

is not possible and indicate a final classification. The Figure 2.4 shows a brief overview of the Random 

Forest algorithm. 

 

Figure 2.4 – Overview of the Random Forest algorithm [30]. 

In the unsupervised approach, the algorithms analyse unlabelled datasets to discover hidden 

patterns and cluster the data into groups. This method of learning is ideal for data analysis, customer 

segmentation and to reduce the number of features in a model. Principal Component Analysis (PCA) and 

K-Means clustering are good examples of algorithms used in this approach. PCA is used to reduce the 

dimensionality of a dataset by finding new variables that are linear functions of the variables in the original 

dataset. These new variables maximise variance and are uncorrelated with each other [31]. The Figure 

2.5 shows an application of the PCA algorithm. 

 

Figure 2.5 – Application of the PCA algorithm [32]. 
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K-Means is an algorithm that assigns a set number of data points into a given number of clusters 

(K) to group similar data points together. It does this by assigning each data point to the cluster with the 

nearest centroid. It then recalculates the centre of the cluster by taking the average of its data points. 

This process is repeated iteratively until convergence is reached [33]. In Figure 2.6, it is possible to see 

an example with three clusters and their centroids represented by the red triangle. 

 

Figure 2.6 – Example of a K-Means application [34]. 

Semi-supervised learning approach is a balance between supervised and unsupervised learning. It 

trains a model using a small, labelled dataset, which is later used to classify and label the remaining 

dataset. This can be useful when labelling a very large dataset is too expensive. 

Reinforcement learning approach is similar to supervised learning in the sense that it receives 

feedback, but instead of the feedback coming from labelled data, it comes from states and actions. The 

algorithm has a given set of actions and an end goal, and it learns by being rewarded (reinforcement 

signal) when it reaches the end goal [35]. 

2.2 Deep Learning 

DL is a subfield of ML that, as the name suggests, essentially enables deeper learning by stacking 

more layers in a NN. Similar to ML, it uses data and algorithms to mimic the way humans learn, but 

thanks to the recent developments in Graphics Processing Unit (GPU) acceleration, the capabilities of 

deeper architectures are more accessible. As DL is a subfield of ML, they are not very different, but they 

do differ on one key aspect. While ML relies on hand-crafted features, DL automates most of the feature 

extraction process, allowing humans to simply feed the algorithms with a large amount of data and let 

them figure out which pieces of information are more important [36]. In DL, the supervised and 
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unsupervised learning approaches also exist with the same concepts, but with different and deeper 

methods of learning.  

In the supervised learning, which uses labelled datasets, some examples of architectures are the 

Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit [37]. 

The structure of the CNN was inspired by neurons in human brain. Unlike conventional fully connected 

networks, CNN’s shared weights and local connections make full use of two-dimensional input data 

structures, making it ideal for image signals. These characteristics make CNN a great architecture for 

computer vision, such as image classification, speech processing, and face recognition [38]. In Figure 

2.7, it is possible to see an example of a CNN used for image classification. 

 

Figure 2.7 – Example of a CNN used for image classification [39]. 

LSTM is a Recurrent NN architecture that introduces the concept of a memory cell that can hold 

its value for a variable amount of time as a function of its inputs, allowing the cell to remember. It achieves 

this by having three gates that control the flow of information. The input gate that controls when new 

information can enter the memory, the forget gate that controls when existing information is forgotten, 

and the output gate that controls when the information in the cell is used in the output. These 

characteristics help to achieve a higher precision in the modelling of time-variant behaviour [40] and 

make this architecture ideal for time-series problems. Gated Recurrent Unit is a simplified version of the 

LSTM architecture that replaces the concept of the memory cell with a hidden state using only a reset 

gate and an update gate. The reset gate controls whether to ignore the previous hidden state and reset it 

with the current input it is receiving, allowing the cell to drop information that is found irrelevant in a later 

state. The update gate controls how much information is passed from the previous state to the current 

state. This change makes the architecture easier to compute and implement, resulting in more efficient 

train times [41]. However, the more complex structure of the LSTM can lead to better results with more 

data. The nature of this architecture also makes it a suitable candidate for solving time-series problems. 

In Figure 2.8, it is possible to see the architectures from the LSTM and Gated Recurrent Unit and analyse 

their differences. 
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Figure 2.8 – Overview of the LSTM and Gated Recurrent Unit architectures [42]. 

In the unsupervised learning approach, there is no labelled data and no target label to predict. The 

goal is to learn representations of the data without supervision to capture underlying semantic information 

that can be transferable to tasks such as visual recognition and segmentation [43]. The architectures 

available in this spectrum are Self-Organizing Maps and AutoEncoders. Self-Organizing Maps is an 

artificial NN algorithm that starts with a fixed number of nodes. Random data inputs are presented to 

each node individually and each node calculates the distance to the input, winning the node that is closest. 

Over iterations, these distances begin to stabilise, and it is possible to see centroids throughout the data, 

clustering the data into classes [44]. The Figure 2.9 shows an example result of a Self-Organizing Map. 

 

Figure 2.9 – Visual representation of an example Self-Organizing Map result [45]. 

Autoencoders consist of three layers and two components. The encoder compresses the input into 

a meaningful representation of the data in the second layer, and the decoder reconstructs the data in a 

way that is as similar as possible to the original input. In Figure 2.10, it is possible to see an overview of 

the architecture of an Autoencoder. The main purpose of this architecture is to learn an informative and 

generalized representation of the data in an unsupervised manner [46]. 

 

Figure 2.10 – Overview of the architecture of an Autoencoder [47].  



 

12 

3. REVIEW ON DEEP LEARNING-BASED HAND GESTURE RECOGNITION USING LEAP MOTION 

A review of DL-based hand gesture recognition tools is essential to accelerate future research, 

considering the benefits that these technologies can bring to the operating room and surgical navigation 

procedures. Current reviews on this topic, like the ones from SHI et al. [48] and Hirafuji Neiva et al. [49], 

focus on the techniques used for classification and the accuracies obtained. However, they lack the use of 

a user-centred approach and do not consider the real-world scenarios that may change the specifications 

considered. Thus, this chapter reviews the approaches taken on hand gesture recognition with LM device, 

advancing current literature reviews and aiming to answer the following RQ: What specifications should be 

considered for the development of a LM hand gesture recognition application fitted for surgical navigation? 

3.1 Methodology 

The studies included in this review were searched for in October 2022 on Scopus (search field: 

“Article title, Abstract, Keywords”), IEEE (search field: “All Fields”), Web of Science (search field: “All 

Fields”), and PubMed (search field: “All Metadata”) databases using the keywords “leap motion”, “deep 

learning” and “artificial intelligence”. The following combination of such terms was used: “leap motion” 

AND (“deep learning” OR “artificial intelligence”). All published studies were considered.  

The reference list of all the relevant studies was checked. Among the resulting studies, only those 

comprising all the eligibility criteria were included in this review. The inclusion criteria were: (1) use LM; 

(2) use DL techniques; (3) work on hand gesture recognition. The exclusion criteria were: (1) do not use 

LM; (2) only uses ML techniques; (3) does not use or describe models; (4) does not have open access; (5) 

uses extra resources for data fusion; (6) is written in a non-international language; (7) it does not operate 

on learning hand gestures; (8) does not consist of original research. The following specifications were 

extracted: study focus, dataset type and size, DL architecture, the evaluation metrics of the corresponding 

models, and the solution validation. 

3.2 Results 

This review followed the search strategy based on Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) (Figure 3.1). From the four databases used, 358 records were identified, 

resulting in 326 studies after the duplicates’ removal. Then, 86 studies were removed after the title and 

abstract reading, and 211 studies were excluded during the full-text reading for containing one or more 

exclusion criteria. A total of 29 studies were included in this review.  
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Figure 3.1 – Flow diagram of search strategy based on PRISMA. 

 

 

The extracted characteristics of the included studies are shown in Table 3.1. 
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Table 3.1 – Characteristics of the included studies 

Study Study Focus Dataset Type Dataset Size DL Architectures Metrics of Evaluation  Solution Validation 

Abdullahi et al. 
(2022) [50] 

Sign Language 
Recognition 
(SLR) 

Feature-based 4000 samples Multi-stack deep Bidirectional 
Long Short-Term Memory 
(LSTM) 

Accuracy, FowIkes-Mallows 
Index, Matthew Correlation 
Coefficient, Sensitivity, 
Specificity, Bookmaker 
Informedness, Jaccard Similarity 
Index 

Not mentioned 

Abdullahi et al. 
(2022) [51] 

SLR Feature-based 5700 samples Fast Fisher Vector 
Bidirectional LSTM 

Accuracy, Precision, Recall, F1-
Score 

Not mentioned 

Ameur et al. 
(2020) [52] 

Entertainment Feature-based for 
the two datasets 

6600 samples | 
9600 samples 

Basic Unidirectional LSTM, 
Deep LSTM, Bidirectional 
LSTM, Hybrid Bidirectional 
Unidirectional LSTM 

Accuracy, Execution time Not mentioned 

Ameur et al. 
(2020) [15] 

Medical Feature-based for 
the two datasets 

6600 samples | 
9600 samples 

Multi-Layer Perceptron (MLP) Accuracy A simple graphical user 
interface (GUI) to 
manipulate DICOM images 
using the Leap Motion (LM) 
Camera and the model 
developed 

Brock et al. 
(2020) [53] 

Entertainment Feature-based 1472 samples Convolutional Neural Network 
(CNN) 

Accuracy, Precision, Recall, F1-
Score, Run time 

Ten volunteers are asked 
to try the developed 
solutions and answer a 
survey to evaluate user 
impression  

Caputo et al. 
(2020) [54] 

Scientific Feature-based 468 samples CNN (Residual Network 50) Accuracy, F1-Score, False 
Positive 

Not mentioned 

Enikeev et al. 
(2021) [55] 

SLR Image-based 800 samples CNN Accuracy Not mentioned 

Hu et al. (2018) 
[56] 

Robotics Feature-based 11062 samples Deep Neural Network (NN) Accuracy Real-time drone control 
with the developed hand 
gesture recognition 
solution in two places on 
the University Campus  

Hu et al. (2020) 
[57] 

Robotics Feature-based 11061 samples Deep NN Accuracy Real-time drone control 
with the developed hand 
gesture recognition 
solution in two places on 
the University Campus 

Ikram et al. 
(2021) [58] 

Scientific Feature-based 800 samples CNN, CNN-Support Vector 
Machine (SVM) 

Accuracy Not mentioned 

Katılmış et al. 
(2021) [59] 

SLR Feature-based 8000 samples Extreme Learning Machine 
(ELM), Kernel-based ELM, 
MLP-ELM, Multi-Layer ELM, 
Multi-Layer Kernel-Based ELM 

Accuracy, Run time Not mentioned 

Kritsis et al. 
(2019) [60] 

Scientific Feature-based 1019 samples CNN-LSTM, Deep CNN Accuracy, Run time Not mentioned 

Lee et al. 
(2021) [61] 

SLR Feature-based 2600 samples LSTM-Recurrent NN with k-
Nearest Neighbours 

Accuracy, Sensitivity, Specificity Not mentioned 

Lee et al. 
(2020) [16] 

Medical Image-based 1000 samples Capsule NN, CNN, Visual 
Geometry Group 16 

Accuracy Not mentioned 

Li et al. (2022) 
[17] 

Entertainment Feature-based + than 200000 
samples 

Deep NN Accuracy Not mentioned 

Li et al. (2019) 
[62] 

Scientific Feature-based 400 samples LSTM-Recurrent NN, 
Incremental Learning 

Accuracy, Loss Value, Training 
time 

Not mentioned 

Lin et al. (2020) 
[63] 

Security Feature-based 100 samples NN Accuracy Invited 10 volunteers to 
leave a 2D signature on a 
paper and 10 3D 
signatures through the 
proposed solution 

Liu et al. (2018) 
[64] 

Robotics Feature-based 8520 samples MLP Accuracy, Loss value Not mentioned 
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3.2.1 Study focus 

The focus of the reviewed studies is very broad, however, Sign Language Recognition (SLR) is a 

topic that stands out from the rest. There are eight studies whose main objective is to make improvements 

in the recognition of several sign languages to give hearing-impaired people the ability to better 

communicate with non-impaired persons. Out of these eight, three focused on American SLR [50], [51], 

[61], one on Russian finger spelling [55] which is a subset of SLR, one on Turkish SLR [59], and one 

looked to improve on Bangla Sign Recognition [73]. Two studies [65], [68] did not specify the sign 

language they sought to improve. 

Entertainment is the focus of five of the reviewed studies. Ameur et al. [52], believing that digital 

entertainment is a promising field, developed an approach for dynamic hand gesture recognition. Brock 

et al. [53] explored a game interaction with a social robot capable of playing Rock-Paper-Scissors in real-

time against a human person with hand gesture inputs. Li et al. [17], in the field of experimental teaching, 

developed a virtual reality experience, simulating an electrician laboratory and a set of experiments, 

controlled through hand gestures with a LM device. Tripathy et al. [18] presented a system capable of 

controlling 3D objects in a 3D environment created by the Visualization Toolkit. Yang et al. [72] developed 

an interface system through which a user can operate a computer with hand and finger movements. 

Study Study Focus Dataset Type Dataset Size DL Architectures Metrics Of Evaluation Solution Validation 

Mittal et al. 
(2019) [65] 

SLR Feature-based 942 samples CNN followed by LSTM Accuracy, Error Rate Not mentioned 

Oktay et al. 
(2020) [66] 

Medical Feature-based 16000 samples CNN followed by LSTM Accuracy, Recall, Precision, F1-
Score, Area Under Curve, 
Receiver Operating 
Characteristics 

Not mentioned 

Tripathy et al. 
(2019) [18] 

Entertainment Image-based 12000 samples CNN Accuracy Application has been tried 
and assessed by ten 
subjects that had no prior 
experience on how to use 
the application 

Tyutyunnik et 
al. (2021) [67] 

Security Feature-based Not mentioned CNN Accuracy Not mentioned 

Wang et al. 
(2021) [68] 

SLR Feature-based 10000 samples Spatial-Temporal Graph 
Convolutional Network 

Word Error Rate Not mentioned 

Wu et al. 
(2021) [69] 

Robotics Feature-based 800 samples Back Propagation NN Accuracy Not mentioned 

Yamamoto et 
al. (2018) [70] 

Security Feature-based 450 samples CNN Accuracy, False Rejection Rate, 
False Acceptance Rate 

Not mentioned 

Yamamoto et 
al. (2018) [71] 

Security Feature-based 450 samples CNN Accuracy Not mentioned 

Yang et al. 
(2015) [72] 

Entertainment Feature-based Not mentioned RNN Recognition Rate Not mentioned 

Yasir et al. 
(2017) [73] 

SLR Feature-based Not mentioned CNN Error rate Not mentioned 

Zhang et al. 
(2017) [74] 

Medical Feature-based 6826 samples Back Propagation NN Accuracy, Loss Value Not mentioned 
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The medical field is the focus of four of the reviewed studies. Ameur et al. [15] seek to control 

medical images during surgical procedures via hand gestures, without contact with peripherals, to reduce 

surgical time and contamination risk. Lee et al. [16], with the same objective, developed a contactless 

gesture system to manipulate several types of computer-aided devices. Zhang et al. [74], aiming to 

improve Traditional Chinese Medicine, more specifically Acupuncture, combined LM with Oculus virtual 

headset to create a virtual training system that provides students with an easier way to learn the craft. 

Oktay et al. [66] proposed a new method to help differentiate between Parkinsonian Tremor and Essential 

Tremor, using both the postural and resting positions of the patients’ hands. 

Robotics is the focus of four studies. Hu et al. [56], [57] presented a hand gesture recognition 

system designed to control unmanned aerial vehicle flights. Liu et al. [64] took a more industrial-focused 

approach and combined a multi-modal interface, including voice recognition, hand motion recognition, 

and body posture recognition to support the emerging needs of human-robot collaboration. Wu et al. [69] 

used transfer learning techniques to create a solution in the gesture recognition field in which the 

previously learned knowledge from one robot could be transferred to another robot in a different domain 

facilitating the process of learning on the new robot. 

The security field is also a current area of focus in the reviewed studies, with four studies. Lin et 

al. [63] developed a system that recognizes signatures in a 3D environment to authenticate the identity 

of the real signer. The work done in [67], [70] and [71] has the same goal, presenting an access control 

and management system that identifies the user through a numerical sequence written in the air. 

The remaining five studies present a more scientific approach. The work done by Ikram et al. [58] 

sought to improve dynamic hand gesture recognition by using CNN with Error Break Propagation 

Algorithm to reduce error. Kritsis et al. [60] and Li et al. [62] look to improve the field by experimenting 

with different models to see which gets the most performance. Caputo et al. [54] presented a novel 

benchmark aimed at evaluating online gesture detection and recognition. 

3.2.2 Dataset type and size 

The datasets used in the reviewed studies provide information in the form of data points to the 

models to help them solve a wide variety of AI challenges. These datasets have a varying range of sizes. 

By analysing Table 3.1, it is possible to visualize two types of datasets (i.e., feature-based, and 

image-based) that were used to feed the model. Twenty-six studies used hand feature-based datasets [15], 

[17], [50]–[54], [56]–[74] and three studies used hand image-based datasets [16], [18], [55]. 
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The size of the datasets ranges from 100 samples to 200000 samples. In the ranges from 100 to 

1000, 1001 to 10000, and 10001 upwards there are, respectively, ten studies [16], [54], [55], [58], [62], 

[63], [65], [69]–[71], eleven studies [15], [50]–[53], [59]–[61], [64], [68], [74], and five studies [17], 

[18], [56], [57], [66]. Three studies [67], [72], [73] did not mention the size of the dataset used. 

3.2.3 DL Architectures 

All studies proposed at least the implementation of one type of DL architecture. Eleven studies 

used some form of CNN architecture, such as a typical CNN implementation [16], [18], [53], [55], [58], 

[67], [70], [71], [73], a Residual Network 50 (a pre-trained CNN architecture) [54], a Capsule NN and a 

Visual Geometry Group 16 (a pre-trained CNN architecture) [16], and a Deep CNN [60]. 

Seven studies used variations of NNs, namely a Deep NN [17], [56], [57], a simple NN [63], a 

Back Propagation NN [69], [74] and a Recurrent NN [72].  

Three of the studies used some variation of the LSTM architecture implementation such as a multi-

stack deep Bi-directional-LSTM [50], a Bi-directional LSTM [52], a Fast Fisher Vector Bidirectional LSTM 

[51], a Uni-directional LSTM [52], a Deep LSTM [52], and a Hybrid Bidirectional Unidirectional [52]. 

One study [59] used 5 variations of the Extreme Learning Machine (ELM) architecture: one simple 

ELM structure, one Kernel-based ELM, one Multi-Layer ELM, one Multi-Layer Kernel-based ELM, and one 

Multi-Layer-Perceptron based ELM. 

Four studies used another DL architectures, namely a Multi-Layer Perceptron (MLP) architecture 

[15], [64], an Incremental Learning [62], and a Spatial-Temporal Graph Convolutional Network [68]. 

Six studies combined more than one architecture into a single pipeline, forming the CNN-LSTM 

[60], [65], [66], CNN-Support Vector Machine (SVM) [58], LSTM-Recurrent NN [62], and LSTM-Recurrent 

NN with k-Nearest Neighbours [61] approaches. 

3.2.4 Evaluation metrics 

The evaluation metrics are an important part of every model pipeline. As the model is developed 

and trained, several types of metrics are used to measure the quality of the model to understand the 

performance obtained.  

Looking at Table 3.1, it is possible to verify that there are multiple ways to evaluate the performance 

of the model developed, namely: accuracy (26 studies [15]–[18], [50]–[67], [69]–[71], [74]), f1-score (4 

studies [51], [53], [54], [66]), precision (3 studies [51], [53], [66]), recall (3 studies [51], [53], [66]), 

loss value (3 studies [62], [64], [74]), run time (the training time plus the testing time) (3 studies [53], 
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[59], [60]), testing time (2 studies [52], [60]), sensitivity (2 studies [50], [61]), specificity (2 studies [50], 

[61]) and error rate (2 studies [65], [73]). 

Single studies also referred to FowIkes-Mallows Index [50], Mathew Correlation Coefficient [50], 

Bookmaker Informedness [50], Jaccard Similarity Index [50], False Positives [54], Area Under the Curve 

[66], Receiver Operating Characteristic [66], training time [62], False acceptance rate [70], False 

rejection rate [70], word error rate [68], and recognition rate [72]. 

3.2.5 Solution Validation 

The solution validation is the stage where the overall performance of a solution is evaluated, 

through its results with new data, with equal or identical conditions to those where it will be used. At this 

point, it is intended not only to assess whether the solution meets the needs for which it was created 

(e.g., operability, effectiveness), but also whether it satisfies the end-users (e.g., acceptability, usability). 

Of all the twenty-nine studies, only six performed some kind of solution validation [15], [18], [53], [56], 

[57], [63]. 

Ameur et al. [15] developed a simple GUI to manipulate Digital Imaging and Communications in 

Medicine (DICOM) images through the LM camera and the model they developed. The interface 

comprises four display zones to visualize: the hand skeleton tracked by the LM camera sensor, the original 

DICOM image, a text displaying the recognized gesture, and the DICOM image after the execution of the 

command indicated by the gesture. An average of 2 out of 10 repetitions failed. 

Brock et al. [53] conducted a preliminary study to assess the user’s impression of the proposed 

framework. The authors asked ten volunteers to freely play Rock-Paper-Scissors (the developed solution) 

for five minutes each under the two created models (CNN and Random Forest). The order in which they 

played each of the models was randomized so that there would be no order-based bias. After completing 

the games for both models, the volunteers answered three different questionnaires. The first form 

consisted of one to three simple and short assessments (Question 1: Did you feel a difference between 

the two games?; Question 2: If yes, which of the games did you prefer?; Question 3: If yes, what kind of 

difference did you experience?), with a corresponding set of possible answer selections (Answer 1: Yes or 

No; Answer 2: Game 1 or Game 2; Answer 3: Robot response time, Robot response accuracy, Fun of 

interaction, Other (please specify)), to determine whether users show a preference towards any of the 

system implementations. The second poll consisted of four quantitative statements, rated on a scale of 

1 to 5 (Likert scale), to better understand the user’s attitude and feelings toward the proposed game 

pipeline. The proposed statements were: “I think the overall game is fun”, “I think the flow of the 
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interaction is smooth”, “I like the design of the robot reactions”, and “If I had a robot, I could imagine 

playing rock-paper-scissors with it in my free time”. The last evaluation queried the participants about 

their opinion on potential points of improvement, with a short multi-selection field including the following 

options: robot response time, robot response accuracy, the length of animation (choice 1: make it shorter, 

choice 2: make it longer), and other issues specified by the participant in written form.  

In [57] and [56], the method of evaluation was the same, since they refer to the same study, 

conducted by the same authors. To evaluate the solution, Hu et al. [56], [57] performed real-time drone 

control several times, with the developed hand gesture recognition solution, at two locations on the 

University Campus. All the designed gestures were tested and despite environmental changes such as 

wind speed, GPS signal, and brightness where the LM device is placed, the authors considered that the 

system can be used to control real engineering targets. 

Lin et al. [63] invited ten volunteers to leave a 2D signature on a piece of paper and ten 3D 

signatures using the proposed solution. In addition, they were also asked to forge the signatures of other 

participants so that they could test whether the model could successfully reject intruders by correctly 

identifying the legitimate user. 

Tripathy et al. [18] do not specify the validation protocol used, stating only that the application was 

tried and evaluated by ten subjects, with no prior experience on how to interact with the LM sensor, and 

that the system worked. 

3.3 Discussion 

Of the studies analysed, sign language stands out as the most researched. This may be due to a 

communication barrier that falls when a good solution is achieved in this field. Given the number of 

languages (signs or not), and the variation of signs within a sign language, this solution allows deaf people 

to easily communicate with other people (non-deaf or deaf with different languages), without the need for 

the latter to learn sign language or to use a translator. The versatility and precision of the LM device can 

bring more quality to operating room procedures by reducing the risk of contamination during surgical 

procedures [16] and by reducing the time losses during a medical procedure [15]. Despite these 

advantages in the medical area, only 4 studies make use of it [15], [16], [66], [74]. This might be because 

implementing something new in the medical field is hard due to the delicate nature of the area. Innovation 

is subject to a lot of tests and bureaucracy that can take years. Despite the complications, there is still 

room for improvement in processes not directly related to the surgery, such as peripheral substitution for 

application control, and there is a lack of work on this front. 
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Most of the reviewed studies use a feature-based dataset. This preference can be explained by the 

use of LM as a criterion for all studies. The amount of information that the device generates is very useful 

and can probably help achieve more performance than an image [62]. All of these different data points 

provide researchers with many options to explore, as they need to evaluate and understand which joints 

give the most value to the problem and which ones create noise, to create an efficient and accurate 

model. The three image-based approaches explored by [16], [18], [55], despite not making use of the 

extracted features, still take advantage of LM, since the device uses the infrared range to eliminate lighting 

and background differences in the final results [55]. In terms of size, the most common is to have less 

than 10 thousand samples. This is probably due to the difficulty of creating a large and diverse amount 

of samples in an environment close to the expected conditions of the solution to be deployed. 

Of the models used in the studies reviewed, there seems to be a preference for NN architectures, 

with CNN being the most used type of NN architecture. This may be due to the fact that CNN is suitable 

for forecasting time-series, as it offers dilated convolutions, which are important for better understanding 

the relationships between different observations in the time-series [75], and due to the fact that NN with 

RNNs, in particular, make efficient use of temporal information for both classification and prediction [76], 

which is good for recognizing dynamic gestures. LSTM architectures are also used for time-series 

problems but when used in a simple network it has a weak learning ability and fall easily into over-fitting, 

and when used in a deeper network the recognition rate does not improve significantly with a high sample 

feature [50], which is probably the reason why many studies do not use this architecture. The remaining 

studies present a great diversity in the architectures they use, due to the various fields in which hand 

gesture recognition is being applied, requiring different approaches, but also because researchers try 

many different things to find the one that can improve performance the most. 

Accuracy is the most used metric. Every study intends to develop a model that can recognize hand 

gestures and the simplest and most intuitive evaluation measure for classifiers is to count the number of 

mistakes it made out of the total samples to predict. For this metric not to be misleading, it is important 

to ensure that the dataset used is balanced [77]. The remaining metrics are used to obtain more detailed 

information about the target and may be required depending on the problem being addressed. 

Classification times, for example, are necessary if the solution is to be applied in a real-time scenario [78] 

where fast gesture recognition is required, such as in the field of sign language and the control of non-

tactile interfaces. 

Most of the studies do not perform any validation of the developed solution. There is no consensus 

in the literature on what is the best approach to evaluate the system created, which may be a reason for 
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many studies not using one, and a reason for the diversity of validation solutions found in studies trying 

an approach. The lack of systems validation may also be due to the extra work required to gather 

volunteers, develop validation protocols, and select usability questionnaires. One study [53] uses 

questionnaires but as they were created by the authors it is impossible to compare them with other 

studies. This gap in the literature presents major limitations, since although the models show good results 

when tested under conditions outside of laboratory control, they may perform quite differently from where 

they were trained. In situations where multiple models developed achieved similar accuracies, it is 

possible to create a real-life test. This test involves using both models to gather feedback from users 

about how they feel and how responsive their experiences are. Similar to the approach taken by Brock et 

al. [53], this can help determine which model performs better in practical, real-world situations. 

3.4 Conclusions 

This review focused on DL-based hand gesture recognition with the LM device and aimed to analyse 

the current literature by extracting the relevant specifications for algorithm development (such as the 

study focus, dataset type and size, DL architectures, evaluation metrics, and solution validation) to answer 

the following RQ: What specifications should be considered for the development of a LM hand gesture 

recognition application fitted for surgical navigation? The optimal solution should consider technological 

and clinical requirements. Thus, for the final solution to be suitable for a real-world application, it should 

consider the following technological requirements: 1) ensure a balanced dataset; 2) the model 

architecture should be defined based on the required gestures (static or dynamic); 3) define the number 

and which gestures are required; and 4) define a validation protocol that includes real-life situations with 

the end-users. This set of requirements should help guarantee that the overall solution created can 

support the needs of an operating room, with little room for error. Considering the clinical requirements, 

the final solution should: 1) include end-user-centred gestures, so that the end-user can manipulate digital 

medical images and 3D anatomical models as easily and intuitively as possible; 2) define a validation 

protocol to study the usability of the application. These specifications should make it easier for surgeons 

to adopt these tools, as they feel they can do everything they were doing before, successfully. 
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4. SOLUTION DESCRIPTION 

The main outcome of this dissertation was a hand gesture recognition tool designed to control a 

GUI without the need for physical contact via a keyboard and/or mouse, which would reduce the risk of 

contamination during surgery and the time needed to sterilize peripherals. The development of this work 

comprised the construction of a large dataset that was later fed into AI models for training purposes. It 

also involved the creation of an application that used the trained model to infer a hand gesture in real 

time and perform the corresponding mouse action accordingly. This chapter describes the proposed 

methodology, the hardware and the software required throughout the development of the tools needed 

to achieve all the goals, and defines the actions required to replace the computer mouse. 

4.1 Methodology 

The work carried out was divided into a series of smaller steps, ensuring that the technical and 

clinical requirements defined at the end of the previous chapter were met. The first step was to understand 

which actions are normally performed by a conventional mouse to control a surgical navigation software 

(e.g., click, scroll). Since each action is associated with a different hand gesture to avoid conflicts, the 

number of actions/gestures required was quickly defined, fulfilling the third technological requirement. 

To design an end-user-centred tool, the hand gestures themselves were defined by the end-users 

achieving the first clinical requirement, through an experimental protocol carried out at the Trofa Saúde 

Braga Centro Hospital, to determine which hand gestures were the most intuitive, the easiest and the 

most suitable in an operating room environment for controlling a surgical navigation software. An 

application was created to help with the protocol intervention process. 

The following step was to create a dataset with the defined set of hand gestures in order to have a 

large collection of information to feed the AI models. This step involved the creation of another 

experimental protocol. Once the dataset had been created and analysed to ensure that it was balanced, 

fulfilling the first technological requirement, several AI models were trained to find the best and most 

appropriate architecture for the defined gestures, meeting the second technological requirement. Then, 

using the best model selected for real-time inference, an application was developed to control the surgical 

navigation software using only hand gestures. As this is a time-sensitive task, performance is an important 

factor to ensure.  

Finally, the last step consisted of a laboratory validation and a final validation with end users of the 

final solution, to understand the overall quality of the programme, its usability and efficiency, and how it 
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compares to a conventional mouse interaction with the surgical navigation software. To do this, an 

experimental protocol was created with a set of actions to be performed. Users were then asked to 

respond to a usability test so that the difference between a typical interaction and the one could be 

measured by a standardized test and used as a reference point for future work. This fulfils the fourth 

technological requirement, the definition of a validation protocol including real-life situations with the end-

users, and the second clinical requirement, the definition of a validation protocol to study the usability of 

the application. 

4.2 Hardware 

This subsection presents the hardware used during the development of this work. It provides a 

detailed description of the LM device used to collect the hand gesture information and its capabilities, as 

well as the specifications of the computer used to collect the information, develop the programs and train 

the AI models. 

4.2.1 Leap Motion 

The LM controller is an optical hand-tracking module that tracks hand movements. It is composed 

of two 640x240-pixel near-infrared cameras spaced 40 millimetres apart and three LEDs (one between 

the two cameras and the other two at the tips of the device) that track the infrared light at a wavelength 

of 850 nanometres. The device has a 140x120º field of view and the interaction zone has a depth of up 

to 80cm, although 60cm is preferred [79]. A physical and schematic view of the device is illustrated in 

Figure 4.1. 

 

Figure 4.1 – LM Controller: A) Physical view, B) Schematic view. [80]. 

To get the most performance out of this hardware, the device comes with the LM API and the LM 

service. The first provides the developer with the resources to access the device, change settings and 

retrieve the information. The latter sits between the hardware and any application developed and is 

responsible for processing the information generated before sending it [81]. 

A) B) 
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The LM employs a cartesian coordinate system with the origin centred at the top of the device. As 

shown in Figure 4.2, the x-axis is parallel to the device and the z-axis is perpendicular to the x-axis, pointing 

to the right of the user and towards the user, respectively. In the vertical plane, the device has the y-axis 

pointing upwards [82]. 

 

Figure 4.2 – LM cartesian coordinate system [82]. 

The information collected by LM arrives at the application in the form of a Frame object, which 

contains either one or two instances of a Hand object. For each hand, it is possible to extract information 

about position, direction, velocity, and rotation. It is also possible to know whether each finger is extended 

and the position, direction, and width of each one of the four bones in the finger. As depicted in Figure 

4.3, all fingers except the thumb contain four bones, but for simplicity the API maintains the four bones 

for the thumb but gives the metacarpal a default value of 0 [82]. 

 

Figure 4.3 – Bones available in the finger object [82]. 

Table 4.1 shows the features provided by LM in more detail and the corresponding values. The 

device can also take grayscale pictures at a variable speed, and the LM service also removes some of the 

noise from the picture by removing background images and ambient lighting, so that the visible hands 

are in focus. Despite all the qualities of the LM device, there is one limitation that should be kept in mind. 

As with some vision-based tracking systems, the tracking system can fail if part of the hand is occluded. 
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Its service has an algorithm that tries to infer the occluded positions, but there is no guarantee that it will 

do this correctly. The same issue occurs when one hand is on top of the other [83]. 

Table 4.1 – Features provided by the LM service 

Body part Feature Values 

Hand 

Type Left/Right 

Pinch strength [0,1] 

Pinch distance value ≥ 0 

Grab strength [0,1] 

Grab angle Rad 

Visible time Microseconds 

Palm 

Direction Vector(x,y,z) 

Normal Vector(x,y,z) 

Orientation Quaternion(x,y,z,w) 

Position Vector(x,y,z) 

Velocity Vector(x,y,z) 

Width Millimetres 

Finger Is extended 1 or 0 

Bone 

Rotation Quaternion(x,y,z,w) 

Base Vector(x,y,z) 

Tip Vector(x,y,z) 

Width Millimetres 

Arm 

Rotation Quaternion(x,y,z,w) 

Prev_joint Vector(x,y,z) 

Next_joint Vector(x,y,z) 

Width Millimetres 

4.2.2 Computer Specifications 

The LM has some recommended system requirements (Table 4.2) that the host computer must 

meet to take full advantage of the specifications. An ASUS computer with an Intel Core i7-8750H and an 

NVIDIA GeForce GTX 1050 Ti GPU was used to run and connect the software required to build the tool. 

According to Table 4.2, the computer comprises all the recommended requirements for using the LM 

device. 
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Table 4.2 – Recommended system requirements for using LM and specifications of the computer used 

 

Although there are no minimum specifications for using TensorFlow, or for training AI models in 

general, the more powerful the computer, the less time is needed for the training process. The 

specifications of the computer used can handle the amount of work involved in this project, but it does 

take some time and does not allow for a very complex architecture. 

4.3 Software 

Throughout this dissertation, several pieces of software were developed with different objectives to 

carry out the steps required to complete the agreed-upon work. The following subsection gives a brief 

description of each of the main software programs used, including packages from programming 

languages, their purpose in this project, and the motive behind their choice. 

4.3.1 Visual Studio Community 2022 

Visual Studio Community is an Integrated Development Environment that allows the user to edit, 

debug, build and publish code. It gives the developer a plethora of functionalities, namely, graphical 

designers, support for C++, C#, .NET and several other programming languages, git source control and 

a built-in packet manager to facilitate the import of external libraries. This tool was used to develop an 

application that could connect to the LM Service and retrieve the feature and image data necessary to 

build the dataset. This Integrated Development Environment was chosen due to a combination of factors: 

the need to develop a GUI, the fact that the LM Service only supports C++, and the ease of implementation 

of C++ GUI applications. 

 

 

Component Recommended system requirements Computer used 

Processor AMD Phenom II/Intel Core i3/i5/i7 

equivalent or better 

Intel Core i7-8750H 

GPU Not applicable NVIDIA GeForce GTX 1050 Ti 

Memory 2 GB RAM or more 16 GB 

USB port 1x USB 2.0 or newer 3x USB 3.0 

Operating system Windows 7+ / Mac OS X 10.7 Windows 11 



 

27 

 

4.3.2 Visual Studio Code 

Visual Studio Code is a lightweight but powerful source code editor that allows users to edit, debug, 

build, and publish code. It has native support for some programming languages, namely, JavaScript, 

TypeScript and Node.js, and thanks to a rich ecosystem of extensions, it supports other languages and 

runtimes, such as C++, C#, Java, Python, PHP, Go and .NET. This editor was used with two different 

applications in mind: the development of a Python script that can be used in conjunction with the 

TensorFlow library to train AI models, and the development of a Python application that uses the Open 

NN Exchange runtime to perform real-time inference and uses PyAutoGUI to control the computer. This 

editor was used because it is lightweight and has an easy integration with the Python language. 

4.3.3 TensorFlow, CUDA/cuDNN 

TensorFlow is an end-to-end open-source platform developed by Google for ML, that makes it easy 

for beginners to venture into the world of AI and for experts to create complex models to solve hard 

challenges. TensorFlow’s capabilities can be enhanced with CUDA, an API developed by NVIDIA that 

provides a Toolkit for creating high-performance GPU-accelerated applications, and the cuDNN library, 

which complements the CUDA API with highly tuned implementations commonly used in deep NNs, such 

as convolution, pooling, normalization, and activation layers. These are used together to significantly 

reduce the training times of the models and increase the developer’s ability to test different and more 

complex architectures. This combination of software was chosen due to the availability of an NVIDIA 

graphics card and the author’s familiarity with TensorFlow. 

4.3.4 PyAutoGUI 

PyAutoGUI is a package present in the Python Package Index that gives the user the ability to 

control the mouse and keyboard from a script and automate interactions with other applications. It has 

support for Windows, MacOS and Linux, making it possible to move the script between different platforms 

without any changes in the code. This package is used in the final application developed to match the 

predicted gesture with an action on the screen. This tool was chosen for its portability, which makes the 

program easier to maintain, its ease of use and its performance. 
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4.3.5 Open Neural Network Exchange 

ONNX is an open standard for ML interoperability. It allows the developers to use models developed 

and trained in other ML tools such as TensorFlow and PyTorch. The ONNX runtime simplifies hardware 

access and optimizes models for inference time. As the final application is based on real-time gesture 

recognition, inference time is critical, and the use of this tool is vital to the performance of the solution. 

4.3.6 Pandas 

Pandas is a fast, powerful, and easy-to-use open-source data analysis and manipulation tool built 

for Python. This package allows the user to read data structures stored in file format and convert them 

into an Excel-like table called a DataFrame. This DataFrame object has a set of tools that allow easy 

manipulation of the data, either to change rows, columns, and the shape of the data, or simply to get 

some statistics from the data, such as the normal distribution, averages, and others. This tool was mainly 

used to clean and prepare the collected data to be used in the training process of the developed AI 

models. It was chosen because of its ease of implementation, performance, and integration with Python. 

4.3.7 Scikit-learn 

Scikit-learn is an open-source ML library that provides several model fitting algorithms like SVM, 

Binary Tree, and Random Forest. It also provides a wide set of tools for data processing, model selection, 

and model evaluation, such as confusion matrix, f1-score, and accuracy score. This tool was used to 

develop ML models with the generated dataset created because of its integration with the Python 

environment, its ease of implementation and experience with the tool. 

4.4 Definition of the actions required to replace the computer mouse 

The main purpose of this dissertation is to replace the use of the mouse to control the computer 

with a hand gesture-based approach using LM. To achieve this, it is important to first consider what 

actions are currently performed with the mouse, to then translate them into the gestures necessary to 

keep the functionality of the applications.  

As this dissertation focuses on the control of surgical navigation software to reduce the need for 

sterilization of equipment between surgeries, the NavPi surgical navigation application, developed by 

BiRDLab team, will be the subject of evaluation for the necessary actions on the program. NavPi is 

intended to be used during surgical procedures, allowing visualization of 2D images and 3D models, and 
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analysis of medical information as patient’s clinical data. After a thorough analysis of the software, the 

actions needed to explore the full functionality of the application were clear. These are: 

• Click action 

• Zoom in action 

• Zoom out action 

• Move action 

• Rotate action 

• Cursor action 

With the number of actions established, it is possible to determine the number of gestures required 

to control the LM application in a surgical environment, which is 6. It is then important to define which 

gestures should be used. The RQ 1, answered in Chapter 3, stated that the defined hand gestures should 

be user-centred, so that the end-users can control surgical navigation software, enabling them to 

manipulate digital medical images and 3D anatomical models as easily and intuitively as possible. To 

achieve this, a protocol was created to define what these gestures would look like. A crucial step was 

completed by identifying the number of necessary gestures to serve the identified actions. 
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5. SELECTION OF THE MOST APPROPRIATE HAND GESTURES FOR AN END-USER-CENTRED 

APPROACH 

This chapter describes the experimental protocol used in an initial stage of the work to define the 

hand gesture to be used. This protocol followed an experimental study design aiming to understand, with 

several surgeons, the most intuitive and suitable hand gestures, for a given set of actions, to manipulate 

a surgical navigation software application during a surgical procedure using LM. First, the participants 

and their characteristics are specified. Then, the intervention is explained, followed by the data collection, 

carried out to achieve the specified purpose. Finally, the results are presented and discussed, and some 

conclusions are made.  

5.1 Participants 

The study was approved by the institutional review board of the Trofa Saúde. All participants filled 

out an informed consent, based on the Helsinki declaration and the Oviedo convention, to participate in 

this study. Four participants, all surgeons, fulfilling the KPI of a minimum of 3 surgeons defined on 

objective 2 of this dissertation (gender: 4 males and 0 females, age: 40.25 +- 6.38 years, dominant hand: 

0 left and 4 right, previous experience with touchless controls: 4 with no experience) (Table 5.1), recruited 

and admitted in the Trofa Saúde Braga Centro hospital, were enrolled in the study according to the 

inclusion criteria of being an orthopaedic surgeon. There were no exclusion criteria. The previous 

experience with touchless controls was asked to see if there was any correlation between the gestures 

proposed by the participants and the gestures used to control the touchless tool. As no one had previous 

experience, no conclusions could be drawn. 

Table 5.1 – Age (years), gender (male/female), dominant hand (left/right) and previous experience with touchless controls of each 
participant for the selection of the most appropriate hand gestures 

Participant 
Age 

(years) 
Gender Dominant Hand 

Previous experience  

with touchless controls 

Yes/No Touchless Tools 

Participant 1 39 Male Right No - 

Participant 2 36 Male Right No - 

Participant 3 35 Male Right No - 

Participant 4 51 Male Right No - 
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5.2 Intervention protocol 

The experimental study consisted in the following two phases: familiarization phase and data 

acquisition phase. The familiarization phase consisted of showing the participants the interface and letting 

them play with the tool, so that they become familiar with the process. Data acquisition phase included 

two parts: first, with hand gestures proposed by the end-user and second, suggested by the author of this 

dissertation. In each part of the data acquisition phase, a set of 5 questions were presented to the 

participants, each corresponding to one of the identified required actions: 1) What hand gesture would 

you make to click on a button on the screen?; 2) What hand gesture would you make to move a 3D model 

of a bone from the left side of the screen to the right side of the screen?; 3) What hand gesture would 

you make to rotate a 3D model of a bone to the left?; 4) What hand gesture would you make to increase 

the zoom in a 3D model?; and 5) What hand gesture would you make to decrease the zoom in a 3D 

model? In the first part, in which the end-users were asked to propose the hand gesture that they felt 

more intuitive for each question, the order of the questions was randomized to avoid carry-out time effect. 

In the second part, participants were asked to perform a pre-defined suggested gesture for each question. 

These pre-defined suggestions have been created to provide end users with a different alternative that 

may be less technically complex than the one they proposed. For each part, one trial is performed per 

question. The pre-defined gestures are shown in Figure 5.1. At the end of each suggested gesture, the 

participants were asked if they preferred their own proposed hand gesture or the one suggested by the 

author of this dissertation. This intervention takes 12 minutes to complete. 

 

 

Figure 5.1 – Hand gesture suggested by the author for: (A) click, (B) rotate, (C) move, (D) zoom in, (E) zoom out, (F) cursor. 

 

There were several reasons behind the decision of these hand gestures. The first one was based 

on the use case of the final application. If the goal is for the surgeon to use this tool during a surgical 

procedure, it is important that the functionality of the program is not reduced when the surgeon is holding 

a tool. For this reason, all hand gestures are one-handed. With this in mind, the gestures were then based 

on literature, software implementations, and intuitiveness between the gesture and the desired action. 

A) B) C) D) E) F) 
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Finally, all gestures should be distinctive enough to be better recognized by the AI models. At last, the 

gesture to control the cursor was chosen so that it wouldn’t be the same as any of the other five gestures. 

Furthermore, because it should be the most used gesture, it was important that it was not only simple 

and intuitive, but also basic and comfortable. 

An application was developed to support the intervention process and to guide the participants 

through the protocol. The application has four basic functionalities, as shown in Figure 5.2. The first one 

starts the collection of the information (features and images) in a fixed window of 3 seconds in which the 

participant is supposed to perform the gesture (A). The second button proceeds to the next question (B). 

The third gives a visual demonstration of the action being performed on the surgical navigation software 

with the mouse (C). The fourth is simply a button to reset the whole process to be ready for a new 

participant (D). 

 

Figure 5.2 - GUI used in the collection of the most intuitive hand gestures using LM. 

All four participants completed the entire protocol. During the intervention, the main outcome and 

information collected is the participant’s gesture preference. The LM camera also captured images to 

document the participant’s thought gestures. To protect the privacy of the participants, the anonymity of 

their opinions and answers was guaranteed. 

5.3 Results and discussion 

Table 5.2 presents the participants’ gesture preference for each question: original, if the participant 

prefers the gesture proposed by himself; suggested, if the participant prefers the gesture proposed by the 

author of this dissertation. For cases where the volunteer performed the same or very similar hand gesture 

to the one suggested by the author, the table refers to it as similar. Since the gesture was the same, it 

will be counted as the suggested gesture for counting purposes.  

(A) (B) (C) 

(D) 
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Table 5.2 – Participant’s hand gesture preference 

Participant Click Move Rotate Zoom in Zoom out 

Participant 1 Original Suggested Suggested Similar Similar 

Participant 2 Suggested Original Original Similar Similar 

Participant 3 Suggested Original Suggested Similar Similar 

Participant 4 Similar Suggested Original Similar Similar 

 

For the click action, two participants preferred the suggested gesture to their own, one performed 

a similar gesture to the one suggested by the author, and one participant felt his proposed hand gesture 

was more intuitive. As it can be observed on Figure 5.3, this participant proposed pointing with the index 

and middle fingers, whereas the suggested gesture by the author was only to point with the index finger. 

This is quite similar and as the majority preferred the one suggested by the author, the latter will be the 

one used to train the models. 

 

Figure 5.3 – Gesture proposed by participant 1 for the click action. 

For the move action, two participants preferred their proposed hand gesture and the other two 

preferred the suggested gesture by the author. The proposed hand gestures can be seen on Figure 5.4. 

Since the two subjects who preferred their own gesture performed different gestures (one had the hand 

fully open while moving left/right and the other pinched the thumb and index finger while moving 

left/right), the majority will prevail, meaning that the gesture suggested by the author will be the one used 

to train the models. 

 

Figure 5.4 – Gesture proposed for the move action (A) by participant 2. (B) by participant 3. 

A) B) 
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For the rotate action, two participants preferred the gesture suggested by the author and the other 

two preferred their own (one had the hand completely closed while rotating the wrist and the other had 

the hand open as if holding a can while rotating the wrist) The gestures proposed by the participants can 

be seen on Figure 5.5. This action exhibited the same behaviour as the move action and for the same 

reason, the suggested gesture will be the one used to train the models. 

 

Figure 5.5 – Gestures proposed for the rotate action (A) by participant 2. (B) by participant 4. 

For the zoom in and zoom out actions, all the participants performed an equal or very similar 

gesture to the one suggested by the author. This gives confidence that the gestures decided to perform 

the zoom in and zoom out actions are the most intuitive. 

5.4 Conclusions 

This section aimed to understand, together with the surgeons (end-users), which gestures would 

be the most intuitive to perform the set of actions defined in the previous chapter to control the surgical 

navigation software. At the end of the intervention, some variability in gesture preference was observed. 

For the click gesture, two participants preferred the gesture suggested by the author, one performed the 

same gesture, and one preferred the gesture idealized by him. For the move gesture and rotate gesture, 

two participants preferred the gestures suggested by the author, and two participants preferred the 

gesture idealized by them. For the zoom in and zoom out gestures, all participants performed the same 

gestures as the ones suggested by the author. It was also noticeable that without any instruction to do 

so, all participants only used one hand to suggest their own gestures, indicating that one hand gestures 

are likely the correct direction. Ultimately, the gestures suggested by the author were the ones decided 

to be used to control the surgical navigation software. Nevertheless, the gestures were tested and are in 

line with the end user, which increases the viability of the tool and achieves a design centred on the end 

user. These gestures will be used in a later stage of this dissertation to develop a large dataset to feed AI 

models for automatic hand gesture recognition. 

  

A) B) 
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6. SYSTEM DESCRIPTION: AUTOMATIC HAND GESTURE RECOGNITION 

This chapter describes the development of the final hand gesture recognition tool using LM. It 

begins by explaining the protocol used to create two datasets of the defined hand gestures, one with the 

features of the hands (feature-based) and one with the images from the hands (image-based). The data 

analysis and processing followed to clean the data for using in the model training process. The 

architectures explored on the two types of data are then described and explained in detail. Next, the 

results of the models are presented, analysed, and discussed, benchmarking them against some of the 

studies analysed in the review in Chapter 3. After selecting the best model, the creation process of the 

hand gesture recognition tool is explained. At last, some conclusions are made about each section 

explored in this chapter. 

6.1 Dataset creation: feature-based and image-based hand gestures 

This section describes the protocol used to create a dataset of hand gestures. This dataset will 

comprise the gestures defined in Chapter 5. The protocol followed an experimental study design with the 

aim of creating a large dataset of feature and image-based data using LM. This subsection starts by 

specifying the participants and their characteristics. Then, the intervention is explained, followed by the 

data collection that was carried out to achieve the desired result. At last, the data processing and analysis 

is explored. 

6.1.1 Participants 

All participants filled out an informed consent, based on the Helsinki declaration and the Oviedo 

convention, to participate in this data collection. Twenty-one participants (gender: 14 males and 7 

females, age: 26.24 ± 3.39 years, dominant hand: 1 left and 20 right) (Table 6.1), recruited and admitted 

at the University of Minho, were enrolled in the study by voluntary participation, fulfilling the KPI of a 

minimum of 15 participants defined in the objective 3 for this dissertation. There were no exclusion 

criteria. 
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Table 6.1 – Age (years), gender (male/female), dominant hand (left/right) of each participant for the creation of the hand gesture dataset 

Participant Age Gender Dominant Hand 

Participant 1 25 Female Right 

Participant 2 22 Male Right 

Participant 3 23 Female Right 

Participant 4 22 Male Right 

Participant 5 24 Male Right 

Participant 6 29 Male Right 

Participant 7 22 Male Right 

Participant 8 26 Male Right 

Participant 9 27 Female Right 

Participant 10 30 Female Right 

Participant 11 27 Male Right 

Participant 12 29 Male Right 

Participant 13 30 Female Right 

Participant 14 27 Female Right 

Participant 15 23 Female Right 

Participant 16 23 Male Left 

Participant 17 22 Male Right 

Participant 18 32 Male Right 

Participant 19 26 Male Right 

Participant 20 29 Male Right 

Participant 21 33 Male Right 

6.1.2 Intervention protocol 

The intervention begins by explaining to the participants the GUI for the data collection. For 

example, when a hand gesture is considered valid and the time window (3 seconds) in which the hand 

gesture is collected. The experimental study consisted of 3 familiarization trials with the LM device, 

followed by two phases of data collection: first, the participant performs the gestures without surgical 

gloves, and second, the participant performs the gestures with surgical gloves. The use of surgical gloves 

is important to ensure that the final application can be used in the context of an operating room but is 

also ready for use in other situations where gloves are not required. For each phase, 6 valid trials (3 for 
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each hand) are performed in a row per manipulation action, for the following six actions: a) Zoom in, b) 

Zoom out, c) Move, d) Rotate, e) Click, and f) Cursor action. Each action was performed within 1 minute 

and 30 seconds (6 trials) and there was a 1-minute rest period between the two phases. 

6.1.3 Data collection 

All 21 participants completed the entire protocol. Two sources of information were collected during 

the intervention: hand gesture features, provided by the calculations of the LM device, and the hand 

gesture images, captured by the LM camera. 

For the hand gesture features, there was a fixed window of 200 frames to collect. In these frames, 

all features made available by the LM service were collected. For the hand gesture images, since the 

frame rate of collection cannot be fixed, the number of images collected is the number of images the 

service is capable of recording within the collection of the 200 feature frames. 

6.1.4 Data processing and analysis 

The data processing and analysis were carried out using the Python programming language in the 

Visual Studio Code editor. This step is essential before training the models, as the models are highly 

dependent on clean data.  

The first step was to remove invalid trials of some participants from the dataset. These were caused 

by several reasons: 1) the LM service did not recognize a hand; 2) the subject switch hands in the middle 

of a trial; 3) the number of hands being captured by the LM changes in the middle of a trial; 4) the 

volunteer did not perform the gesture correctly. This step was important to avoid unbalancing the dataset 

and feeding the models with incorrect or incomplete data. 

The second step consisted of checking the data for missing or unexpected values. The data is sent 

by the LM service, so such occurrences are unlikely, however it was important to guarantee that no error 

had occurred. 

Figure 6.1 presented a diagram of the division of the feature-based dataset for better readability, 

showing the number of frames per volunteer and how it translates into the total 21 volunteers. Since the 

number of feature frames collected per trial is fixed by the data collection tool developed (approximately 

67 frames per second), each trial collected 200 frames. Thus, 600 frames are collected for each hand 

in each gesture (3 trials), totalling 1200 frames per gesture. The six defined hand gestures were 

performed twice (one phase without surgical gloves and another phase with surgical gloves), so that 7200 

frames were collected for each phase. The two phases together resulted in 14 400 frames of information 

per volunteer. Considering all the 21 volunteers, there were 151 200 frames collected for each hand. For 
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each gesture in each phase, 25 200 frames were collected. In each phase 151 200 frames were 

collected, totalling 302 400 frames collected. 

 

 

Figure 6.1 – Feature-based hand gesture dataset. Number of frames per participant (left side) and total number of frames among all the 
participants (right side). 

Figure 6.2 shows a diagram of the division of the image-based dataset, showing the number of 

frames per volunteer and the number of frames across all the volunteers. The frame rate of the images 

collected by the LM camera cannot be fixed and as such there is some variability from trial to trial. Each 

trial has an average of 225 ± 7 frames. For each phase (with and without surgical gloves), and in each 

gesture (3 trials) there is an average of 675 ± 16 frames for the left hand, and an average of 673 ± 18 

frames for the right hand. The sum of the two hands results in an average of 1348 ± 31 frames for each 

gesture performed in each phase. For each phase (with and without surgical gloves), each gesture was 

performed 6 times (3 times with left hand and 3 times with right hand) resulting in an average of 8078 

± 154 frames collected in the phase without surgical gloves, and an average of 8099 ± 179 frames 

collected in the phase with surgical gloves. The two phases together gave a total of 16177 ± 330 frames 

per volunteer. Taking all 21 volunteers into account, there was 170 070 frames with the left hand and 

169 644 frames with the right hand. Across both phases, the click gesture had 56 482 frames, the move 

gesture had 56 736 frames, the rotate gesture had 56447 frames, the zoom in gesture had 56782 

frames, the zoom out gesture had 56817 frames and the cursor gesture had 56450 frames. From the 

phase without surgical gloves, 169 663 frames were collected and, from the phase with surgical gloves, 

170 081 frames were collected, totalling 339 714 frames. In any of the two datasets created, the KPI of 

having more than 200 000 samples established in the objective 3 of this dissertation is fulfilled. This 

number was based on the biggest dataset found on the literature review. 
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Figure 6.2 – Image-based hand gesture dataset. Number of frames per participant (left side) and total number of frames among all the 
participants (right side). 

After the processing of the dataset, the balance of the dataset was examined to ensure that all 

classes in the problem were equally represented, so that the model would not have a bias towards one 

or a set of classes and having a better chance for generalizing the data. Figure 6.3 shows that the 

developed dataset is balanced in all classes, for both the feature-based hand gesture dataset and the 

image-based hand gesture dataset. 

 

Figure 6.3 – Class distribution of (A) feature-based and (B) image-based hand gesture datasets. 

Finally, the class label of the dataset distinguishing gestures with and without surgical gloves was 

reduced to only represent the six actions to be classified. For the feature-based dataset, the final step 

was to normalize each feature to give the AI models a better chance of generalizing the information and 

to minimize the chance of exploding/vanishing gradient problems. This step was also performed on the 

images but integrated into the architectures. 

 

A) B) 
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6.2 AI models architecture 

This subsection describes the different AI architectures that were explored throughout the process 

and the reasoning behind them. Despite the initial focus of this dissertation on the development of DL 

models, as evidenced by the review done in Chapter 3, to have a more broad and complete approach 

some ML algorithms were explored to understand if DL models bring advantages and if they are necessary 

to develop a good hand gesture recognition tool. 

Since two datasets were created (feature-based and image-based), different types of architectures 

were explored for each. The architectures explored for the feature-based hand gesture dataset are 

presented first, followed by the architectures explored for the image-based hand gesture dataset. Some 

architectures were chosen based on the literature, the most used for the feature-based datasets were the 

NNs and the most used for the image-based datasets were the CNNs. Figure 6.4 gives an overview of the 

pipeline involved in the development of the models. 

 

Figure 6.4 – AI model development pipeline. 

6.2.1 Feature-based dataset 

NN with linear activation 

The first model developed for the hand features follows a simple NN architecture and it was based 

on the article written by Hu Bin [57]. This architecture consists of four dense layers with linear activation 

function and 200, 100, 60 and 30 nodes, respectively, followed by a final dense layer with 6 nodes (one 

for each class) and a softmax activation function to attribute a probability to each of the classes available. 

Figure 6.5 presents a diagram of the architecture. 
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Figure 6.5 – NN architecture with linear activation. 

 

NN with Rectified Linear Unit activation 

The second model developed for the hand features follows a similar NN architecture to the first 

model and it was based on the article written by Li Xichao et al. [17]. The difference is the change from 

linear activation on the four dense layers to a Rectified Linear Unit (ReLU) activation. Otherwise, it also 

has four dense layers with 200, 100, 60 and 30 nodes, respectively, and a final dense layer with 6 nodes 

(one for each class) and a softmax activation function. Figure 6.6 shows a diagram of the architecture. 

 

 

Figure 6.6 – NN architecture with ReLU activation. 

 

SVM 

The third model developed follows a SVM algorithm. SVM is an interesting approach to accurately 

separate the data points from the 6 gesture classes using a hyperplane. As discussed in Chapter 2, one 

of the disadvantages of ML over DL is the inability to extract the relevant features from the dataset. As 

this is a ML model, it is important to reduce the features of the dataset. The main differences between 

the click, rotate, zoom in and zoom out gestures can be described by the palm, thumb, index, and middle 

fingers positions and by the distance between the tip of the thumb and the tip of the index fingers, so the 

spatial coordinates (x,y,z) of the palm, thumb, index and middle fingers and the pinch distance were 
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extracted. To distinguish between the move and mouse control gestures, the grab strength was extracted. 

This combination of features was based on the features decided in some studies reviewed in Chapter 3 

[56], [61], with some adjustments due to the difference in gestures.  

 

Decision Tree 

The fourth model developed also comes from a ML algorithm. The Decision Tree was also 

considered, as it was deemed interesting that the model could successfully classify the 6 gestures by 

following a simple set of decisions. The same reasoning of feature selection was followed for this 

algorithm. 

6.2.2 Image-based dataset 

CNN with average pooling 

The first model developed had a simple CNN architecture and it was based on Enikeev et al. [55]. 

This choice was made due to the proven capabilities of CNN in predicting images, and the good results 

achieved with this architecture. 

This architecture starts with a Rescaling layer that normalizes every pixel in the image, converting 

the [0,255] range into a [0,1] range. This is then passed to a convolutional layer with 14 filters and a 5x5 

kernel that slides through the image in a 1x1 stride. The output of this layer is then passed to the ReLU 

activation function, which passes the values to the pooling layer with a size of 2x2 and a stride of 2. This 

down-samples the input by taking the average of each input window. A dropout layer with a 0.25 rate is 

then added, dropping 25% of the connections. This convolution-pooling-dropout combination is repeated 

four times. The data then passes through a layer that flattens the multi-dimensional array into a single-

dimensional array to then feed to the final classification layer with 6 nodes (one for each class). The 

diagram of the architecture is shown in Figure 6.7. 

 

Figure 6.7 – CNN with average pooling architecture. 
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CNN with max pooling without dropout layers 

The second image-based model developed also had a simple CNN architecture and was based on 

Tripathy et al. [18]. In his study, the model achieved good results using max pooling layer, so it should 

be interesting to see what effect this might have on the performance of the dataset created in this 

dissertation. 

This architecture starts with a rescaling layer that normalizes every pixel in the image, converting 

the [0,255] range to a [0,1] range. This is then passed to a convolutional layer with 32 filters and a 5x5 

kernel that slides through the image in a 1x1 stride. The output of this layer is then passed to the ReLU 

activation function, which passes the values to the pooling layer with a size of 2x2 and a stride of 2. This 

down-samples the input by taking the maximum value of each input window. This convolution-pooling 

combination is repeated three times and the number of filters in each convolution layer is 32, 64 and 64, 

respectively. After this, the data passes through a layer that flattens the multi-dimensional array into a 

single-dimensional array, which is then fed into the final classification layer with 6 nodes (one for each 

class). The diagram of this architecture is presented in Figure 6.8. 

 

Figure 6.8 – CNN with max pooling without dropout layers architecture. 

CNN with max pooling and dropout layers 

The difference between this model and the previous one is the addition of dropout layers, which 

makes it follow the same convolution-pooling-dropout combination as the first CNN developed. 

With this modification, this architecture starts with a Rescaling layer that normalizes every pixel in 

the image, converting the [0,255] range to a [0,1] range. This is then passed to a convolutional layer with 

32 filters and a 5x5 kernel that slides through the image in a 1x1 stride. The output of this layer is then 

passed to the ReLU activation function, which passes the values to the pooling layer with a size of 2x2 

and a stride of 2. This down-samples the input by taking the maximum value of each input window. A 

dropout layer with a 0.25 rate is then added, dropping 25% of the connections. This convolution-pooling-
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dropout combination is repeated three times and the number of filters in each convolution layer is 32, 64 

and 64, respectively. The data then passes through a layer that flattens the multi-dimensional array into 

a single-dimensional array, which is then fed into the final classification layer with 6 nodes (one for each 

class). The diagram of this architecture is shown in Figure 6.9. 

 

Figure 6.9 – CNN with max pooling and dropout layers architecture. 

VGG-16 

The fourth model developed was a VGG-16 network developed by Simonyan et al. [84]. It is publicly 

available and has been used as a reference architecture in many studies, such as that of Lee et al. [16], 

and it will also be used as a reference in this dissertation. It was pre-trained on the ImageNet dataset, 

which contains more than 15 million images belonging to about 22 thousand categories, but it can be 

adapted to different problems by maintaining the convolutional layers and their weights and removing the 

final dense layers used for classification. The size of the images taken by LM are 640x240, however due 

to the model being pre-trained on 224x224 images, the LM images were resized to match the same size. 

Figure 6.10 shows the architecture used, starting with two convolutional layers, each with 64 filters, 

a 3x3 kernel, a stride of 1, and a ReLU activation function. The output of this layer is then passed to a 

pooling layer with a size of 3x3 and a stride of 2, which down-samples the input by taking the maximum 

value of each input window. This combination of layers is repeated one more time, changing only the 

number of filters in the convolution layers from 64 to 128. Then, three convolutional layers are added 

with the same specification except that the number of filters is the increased to 256. This output is passed 

to a max pooling layer with the same specifications and purpose as the previous ones. Then, three 

convolutional layers are added with the same specifications except that the number of filters is increased 

to 512. This output is passed to a max pooling layers with the same specifications as previous ones. The 

combination of these 3 previous convolutional and pooling layers is repeated one more time to complete 

this complex architecture. After the feature extraction is performed by the pre-trained VGG-16 model, it is 
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possible to add four dense layers of 250, 200, 100 and 50 nodes respectively. The data then passes 

through a layer that flattens the multi-dimensional array into a single-dimensional array. At last, a final 

dense output layer is added which, through the softmax activation function, gives a probability to each of 

the 6 classes. 

 

Figure 6.10 – VGG-16 architecture. 

 

ResNet-50 

The fifth model developed was a ResNet-50 network developed by He et al. [85] in “Deep Residual 

Learning for Image Recognition”. It is also publicly available and used as a reference architecture and 

has the same adaptation techniques as the VGG-16 architecture. The model used was also pre-trained 

on the ImageNet dataset and as such, the images were also resized to 224x224 pixels. 

This architecture starts with a convolution layer with 64 filters, a 7x7 kernel and a stride of 2. This 

is then passed to a pooling layer with a size of 3x3 and a stride of 2, which down-samples the input by 

taking the maximum value of each input window. Four convolution blocks are then added to the 

architecture. The first block has 3 sets of the following 3 convolutional layers: one with 64 filters and a 

1x1 kernel, one with 64 filters and a 3x3 kernel, and one with 256 filters and a 1x1 kernel. The second 

block has 4 sets of the following 3 convolutional layers: one with 128 filters and a 1x1 kernel, one with 

128 filters and a 3x3 kernel and, and one with 512 filters and a 1x1 kernel. The third block has 6 sets of 

the following 3 convolutional layers: one with 256 filters and a 1x1 kernel, one with 256 filters and a 3x3 

kernel, and one with 1024 filters and a 1x1 kernel. The last block has 3 sets of the following 3 convolution 

layers: one with 512 filters and a 1x1 kernel, one with 512 filters and a 3x3 kernel, and one with 2048 

filters and a 1x1 kernel. After the feature extraction is done by these layers in the pre-trained ResNet50 

model, the output is passed to four dense layers of 250, 200, 100 and 50 nodes respectively. The data 

then passes through a layer that flattens the multi-dimensional array into a single-dimensional array. At 
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last, a final dense output layer is added which, through the softmax activation function, gives a probability 

to each of the 6 classes. This architecture can be seen on Figure 6.11. 

 

Figure 6.11 – ResNet-50 architecture. 

 

This architecture is much more complex than the VGG-16 and proposes an innovative solution to 

the vanishing gradient problem that occurs when architectures become very deep. The skip connection 

explored in Kaiming’s paper [85] is an approach that allows the model to have nested blocks without the 

model suffering from the vanishing gradient problem by adding a shortcut path that allows the model to 

bypass each set of convolutional layers. The decision to skip is evaluated by calculating the difference 

between the desired output and the input, called the residual. If the residual is pushed to 0, the input 

data passes through the set of convolutions unchanged.  

6.3 Results and Discussion 

This subsection presents the results obtained from the training process for each of the 

architectures explored in the previous subsection. First, the approach taken in the training phase is 

explained in detail, such as the split used on the dataset, the number of epochs, and other training 

parameters, followed by the evaluation metrics used to assess the performance of the models and the 

reasoning behind them. The results of the models using the feature dataset are presented and discussed, 

followed by the results of the models using the image dataset. After eliminating the worst-performing 

models, some data augmentation techniques were used, and the architecture of the remaining models 

was tweaked to improve the performance of the models. Finally, some conclusions are made. 

6.3.1 Training approach 

Before feeding the model, the dataset was split into three separate sets (training, validation, and 

test) to ensure that the results obtained were reliable. The training set contains the data used to train the 



 

47 

model. The validation set is used to provide an unbiased assessment of the model while it tunes the 

hyperparameters. The test set contains data that will not be used to train the model, so it will help 

understand if the model was able to generalize the information from the training set so it can accurately 

predict data that it has never seen before.  

Since the objective of this model is to recognize gestures from any person, it is important to isolate 

each person into a single set of data. For the model to be able to generalize correctly, the dataset will be 

split based in subjects, such that the model is able to be verified in subjects that were not used for training 

and thus avoiding bias. Following these considerations, the test set consisted of 20% of the 21 volunteers, 

which resulted in 4.2 persons, rounded up to 4 to preserve volunteer isolation. The remaining 80% of the 

volunteers will be further split into 15% for the validation set, resulting in 2.55, so 3 volunteers will be 

used. The remaining 85% translates into 14 volunteers to be used in the training set. 

As the description of the dataset shows, there are twice as many male subjects as female subjects. 

This can lead to misleading results if the test set does not contain any female volunteers because it is not 

possible to correctly assess if the model is also capable of generalizing for female users. To have a 

representative sample, from the four volunteers used in the test set, two are female and two are male. 

Cross-validation was used to prevent the model from overfitting on a specific dataset. This 

technique also enabled to train various models on the entire dataset. 

To have more confidence in the performance of the models, 9 folds were used, respecting all the 

points already explained. 

6.3.2 Evaluation metrics 

After the training process, it is important to evaluate the performance of a model. Several metrics 

are available to developers for this purpose. As evidenced by the review made on Chapter 3, the most 

used metric for automatic gesture recognition tools is accuracy, and it is generally a good metric for 

assessing the general ability of the model to correctly predict data if the dataset is balanced, which is the 

case of this dissertation. However, some other metrics and tools provide a deeper understanding of the 

model’s behaviour. The loss function is very important because it helps to understand how well the model 

is behaving. In a 6-class classification problem like this one, high accuracy but high loss can mean that 

the model is predicting correctly but with low confidence, and it is important to have this knowledge. 

Across every model studied, categorical cross entropy will be the loss function used. The confusion matrix 

is a NxN matrix, where N is the number of classes, which compares the actual target values with those 

predicted by the model. This gives a wider view of the capability of the model to predict each class, 
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allowing the developer to understand which classes the model is misclassifying. Since the ultimate goal 

is to use one of these models in a real-time application, the model’s time inference is also very important, 

so it was also monitored as an evaluation metric. 

6.3.3 Feature-based data 

This subsection explores the results obtained by each of the architectures defined in subsection 

6.3.1 and, for each model, provides a comparison with the results of the same architectures from the 

reviewed studies mentioned above. All these models were fitted to a maximum of 50 epochs, with a batch 

size of 25, and had 3 callbacks that ran at the end of each epoch. One evaluates whether the validation 

accuracy has increased compared to the previous epoch and, if so, saves the state weights of the model 

to a file as a checkpoint. The second callback reduces the learning rate of the model by a factor of 0.5 if 

the validation loss does not improve over 5 epochs. The final callback stops the fitting of the model early 

if the validation loss has not improved over the last 15 epochs. 

NN with linear activation 

The NN with linear activation achieved 99.39% of accuracy on the training data, 97.76% of accuracy 

on the validation data, and 92.72% of accuracy on the test data. These results show that the model can 

successfully generalize the training information to accurately predict unseen data. With this performance, 

this model becomes a possible candidate to be used in the final solution. Figure 6.12 presents the 

validation accuracy and loss progress over the epochs for each of the 9 defined folds.  

 

 

Figure 6.12 – NN with linear activation model behaviour on the validation data over the epochs: (A) on the accuracy, and (B) on the loss. 

 

Looking at Figure 6.12, on the validation accuracy, the difference between folds is very slim, which 

also supports the success of the model. As for the validation loss, it increases along the epochs in some 

folds, which indicates that the model is deteriorating. However, this growth is contained by the 

implemented early stop callbacks. 

A B 
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The confusion matrix for this model is illustrated in Figure 6.13 and shows that the model was able 

to predict most of the classes without any problems. However, there was a noticeable confusion in the 

model between the zoom out gesture and the move gesture. This may be due to the fact that the zoom 

out gesture, when made at certain angles, can be too similar to the move gesture. There was also some 

confusion between the move gesture and the click gesture, and between the mouse control gesture and 

rotate gesture but, overall, the model shows good ability to make correct predictions. 

 

Figure 6.13 – Confusion matrix for the linear activation NN. 

After converting the TensorFlow model into an optimized version using ONNX runtime, the model’s 

inference time becomes negligible, taking an average of 0.000263 seconds. This allows the model to be 

used for a real-time forecasting application. These results show that this architecture in this dataset can 

achieve good performance. 

This architecture, based on Hu et al. [57], uses a simple NN architecture. In Hu et al. [57], the 

dataset consists of 9124 samples for training and 1938 samples for testing collected from 7 participants, 

and only uses 15 features out of the many more provided by the LM camera. The model was trained with 

four different batch sizes: 25, 50, 75 and 100, and their respective testing accuracies were 98.55%, 

97.32%, 98.19% and 98.09%. Despite the high accuracies, Hu et al. [57] do not mention if they isolated 

the participants from the training data to the test data, so the high performance of the model may be due 

to the fact that it is testing with characteristics of people it already knows. Consequently, it is not possible 

to assess whether the model presented will behave in the same way in a real situation when trying to 

predict new people. Thus, it is difficult to make a direct comparison between the models, as they are 

presumably not under the same conditions.  
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NN with ReLU activation 

This NN was trained with ReLU activation in the four dense layers, instead of the previous NN 

explored that used linear activation, to explore what effect this change in the architecture would have on 

the results. With this change, the model achieved, across the 9 folds, an average accuracy of 99.99% on 

the training data, 97.52% on the validation data, and 93.82% on the test data. The change is quite small, 

but the overall accuracy of the test increases. Figure 6.14 shows the progression of validation accuracy 

and loss over the epochs. 

 

Figure 6.14 – NN with ReLU activation model behaviour on the validation data over the epochs: (A) on the accuracy, and (B) on the loss. 

The validation accuracy and loss behaviour over the epochs is identical to that of the previous 

model with a linear activation function. The validation loss continues to increase slightly in some folds, 

but at a slower rate and stabilizes at a lower value. Despite the small changes, the slight increase in test 

accuracy and the slight decrease in the overall loss indicate that this model performs better than the 

previous one. 

Figure 6.15 shows the confusion matrix of the previous model. The misclassification between zoom 

out and move gestures, between click and zoom in gestures, and between click and zoom in gestures, 

have decreased slightly, but this model has more difficulty distinguishing between the zoom out and the 

zoom in gestures (1.9e+02), than the previous model (38). As a result, there is no clear and 

straightforward choice between this model and the previous one as to which is the best.  

A) B) 
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Figure 6.15 – Confusion matrix for the ReLU activation NN. 

After converting the TensorFlow model to an ONNX model, the average inference time is about 

0.000495 seconds, which also makes this model very viable in the context of the intended application. 

 

SVM 

Given that SVM (ML algorithm) is simpler than the previous DL models, and that the feature-based 

dataset was reduced from the original 262 featured to just 16, there was an opportunity to use the 

GridSearchCV tool from the scikit-learn module to perform a broader search for hyperparameters and 

thus tune the model to obtain the best possible performance. The following were tested: C parameter 

values of 0.5, 1 and 10; gamma parameters values of 1, 5 and 10; and linear and radial basis function 

kernels. After fitting, the best parameters were 0.5 for C and 1 for gamma in a linear kernel, with an 

accuracy of 89.18% on the train data and 96.25% accuracy on the unseen test data. Due to the nature 

of the implementation of this algorithm, the training and validation sets defined previously were joined 

together, forming the train set used on this model. The test set remained the same and achieves a better 

accuracy than the training data because the model can learn and generalize the training information, and 

correctly predict on unseen data. Figure 6.16 shows the confusion matrix for the test data. 

 

Figure 6.16 – Confusion matrix for SVM. 
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Looking at Figure 6.16, the model showed a good ability to recognize between most of the gestures, 

with only a slight confusion between the move and the zoom out gestures. This may be understandable, 

as the move gesture may look too similar to the zoom out gesture at some angles. The average inference 

time for this model is 0.007192 seconds, making it a possible candidate for use in the final solution. 

 

Decision Tree 

The second ML model was developed using a Decision Tree algorithm. For the same reasons as 

for the SVM model, the GridSearchCV tool was also used in the development of this model, to obtain the 

best hyperparameters from a predefined set. The values tested for the function measuring the quality of 

a split (criteria) were gini and entropy; the values for the maximum depth of the tree were 10, 15 and 20; 

the values for the minimum number of samples required to split an internal node (min_samples_split) 

were 2, 5 and 10; and the values for the minimum number of samples required to be at a leaf node 

(min_samples_leaf) were 1, 5 and 8. After the fitting process, the best parameters were entropy for the 

criteria, 20 for the maximum depth, 2 for min_samples_split, and 8 for min_samples_leaf, with 73.51% 

accuracy on the training data and 77.84% accuracy on the unseen test data. Compared to the previous 

ML algorithm, the SVM achieved much more impressive results. The confusion matrix in Figure 6.17 

shows that the model can recognize several gestures but has great difficulty distinguishing the zoom in 

from other gestures, making it not very reliable overall. 

 

Figure 6.17 – Confusion matrix for Decision Tree. 

The average inference time of this model is around 0.002485 seconds, which shows that it can 

deal with the time sensitive problem in question. However, as seen, its performance is not very good. 
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6.3.4 Image-based data 

This subsection examines the results obtained by each of the architectures defined in Section 6.3.2 

and presents some comparisons with the results obtained in the original studies. All these models were 

fitted for a maximum of 20 epochs, with a batch size of 32, and 3 callbacks that ran at the end of each 

epoch. One of these evaluates if the validation accuracy has increased since the last epoch and, if so, 

saves the weights of the model state to a file as a checkpoint. The second callback reduces the model 

learning rate by a factor of 0.5 if the validation loss does not improve over 5 epochs. The final callback 

stops the model fitting early if the validation loss has not improved over the last 15 epochs. 

 

CNN with average pooling 

CNN with average pooling obtained 99.89% accuracy on the training data, but only reached 54.66% 

accuracy on the validation data, and on the test data the model did not exceed 53.88% accuracy. The 

evolution of the validation accuracy and loss across the 9 folds can be seen in Figure 6.18. 

 

Figure 6.18 – CNN with average pooling model behaviour on the validation data over the epochs: (A) on accuracy, and (B) on loss. 

 

The validation accuracy between folds is very variable and barely increases over the epochs, while 

the loss generally increases over the epochs. These results show a clear overfitting of the training data, 

because it achieved very good results on training, but was unable to generalize the learned features to 

the rest of the data. The model has not learned the differences between the images, and as such it is 

unable to correctly predict on new data. As described before, this architecture has a dropout layer at the 

end of each convolution-pooling combination of layers, which drops 25% of the connections. This was 

done to avoid overfitting, but it clearly was not enough to solve the problem. 

The confusion matrix presented in Figure 6.19 also shows the lack of performance of this model, 

as it was unable to correctly distinguish any gesture, having particularly difficulty in distinguishing between 

the click and any other gesture. 

A) B) 
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Figure 6.19 – Confusion matrix for CNN with average pooling. 

Despite the lack of performance, this model was still converted to the ONNX model to check for 

the inference time. The average inference time is about 0.022611 seconds, making this model suitable 

for the application in terms of responsiveness. 

This CNN architecture was based on Enikeev et al. [55], who presented a dataset of 800 samples 

(4 people performing 10 gestures 20 times). In this study, the model was trained for 5 epochs on 560 

samples and evaluated on the remaining 240 samples of the dataset. Enikeev et al. [55] presented results 

with an accuracy of 97% for the training data and 97.5% for the test data. However, this performance is 

not reflected in the model developed in this dissertation. This difference in results is probably due to the 

way the dataset was prepared. Enikeev et al. [55] do not mention the splitting technique used to separate 

the data into training and test sets, which is very important. The authors probably randomly split the data, 

without bothering to isolate each individual on only one side of the split, as was done in this dissertation. 

This is a problem because if this is not done, the model is evaluating data that it has already seen in the 

training data, so it is more likely to classify it better. In this dissertation, by separating four people for the 

test split, there are always four people worth of samples that the model has never seen before, so the 

model’s ability to generalize the features for other people is better. 

 

CNN with max pooling without dropout layers 

The second model developed also has a CNN architecture. The main differences between this 

architecture and the previous one is the replacement of the average pooling layer by a max pooling layer, 

the increase in the number of filters on the convolution layers, and the absence of dropout layers. After 

training, the accuracy was very high at 99.68%, but once again the model failed to generalize, and the 

accuracy of the validation data is only 40.22%. The test data follows the same trend as expected, only 
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achieving an accuracy of 35.08% on unseen images. The validation accuracy and loss progression for the 

9 folds can be seen in Figure 6.20. 

 

 

Figure 6.20 – CNN with max pooling without dropout layers model behaviour on the validation data over the epochs: (A) on accuracy, and 
(B) on loss. 

 

The behaviour of these metrics was the same for all folds. The validation accuracy started low and 

did not improve over the epochs. On the other hand, the validation loss increased over the epochs, which 

means that the model is getting worse over time because there is an increasing discrepancy between the 

model predictions and the actual ground truth labels. This suggests that the model is becoming 

increasingly uncertain in its predictions. 

The confusion matrix illustrated in Figure 6.21 corroborates the lack of performance. The model 

was unable to recognize between any gestures, showing even worse performance than the first CNN 

architecture explored. 

 

Figure 6.21 – Confusion matrix for CNN with max pooling without dropout layers. 

A) B) 
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After converting the TensorFlow model to the more efficient ONNX runtime, the average inference 

time is about 0.06884 seconds, making the model capable of handling the time-sensitive task despite its 

very poor performance. 

This architecture was based on the work of Tripathy et al. [18]. Their dataset is described by 6 

gestures (3 with the left hand and 3 with the right hand), each with 2000 samples, for a total of 12000 

samples. In this study, the model was trained for 20 epochs with a batch size of 64 and achieved an 

accuracy of 98% on the training data and 99% on the validation data. As with the first CNN explored, the 

results of the article do not agree with the results of this dissertation. The difference between these results 

may be due to the same reason given for the first architecture. The authors do not specify the splitting 

technique or even the splitting percentage used, but they most likely did not isolate some subjects to the 

validation set only, so these results suffer from the same problem as the previous article. 

 

CNN with max pooling and dropout layers 

The third architecture developed also follows a CNN architecture. The main difference between 

this architecture and the previous one is the addition of a dropout layer that drops 25% of the connections 

at the end of each convolution-pooling combination, to understand if this addition in the architecture has 

a positive impact on the results, and the model can generalize better. With an overall training accuracy 

of 99.92% and a validation accuracy of 39.75%, it is safe to say that the problem cannot be solved by 

simply adding dropout layers but lies in the overall architecture or in the dataset. The test data was also 

similar to the model without the dropout layers with an accuracy of 34.64%. The progression of validation 

accuracy and loss can be analysed in Figure 6.22. 

 

 

Figure 6.22 – CNN with max pooling and dropout layers model behaviour on the validation data over the epochs: (A) on accuracy, and (B) 
on loss. 

 

A) B) 
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The validation accuracy fluctuates more than in the previous architecture, but it still does not learn 

over the training process. The validation loss explodes, making the model worse at each epoch, and 

indicating that the addition of the dropout layers only makes the model worse because it has less 

information to make a confident prediction. 

Figure 6.23 presents the confusion matrix for CNN with max pooling and dropout layer model. The 

low accuracies resulted in a very poor matrix, showing a clear inability of the model to distinguish between 

any gestures. 

 

Figure 6.23 – Confusion matrix for CNN with max pooling and dropout layers. 

Despite the low performance of this model, since it has approximately the same complexity as the 

previous two architectures, the inference time remains low after converting the model to the ONNX 

runtime, with an average of 0.06451 seconds. 

 

VGG-16 

The fourth architecture tested was an adapted VGG-16, which has a good reputation for extracting 

the features from images and achieving good classification results. The training accuracy was 99.88% 

and the validation accuracy was 73.58%. This model achieved a much better performance compared to 

the previous three CNNs, but it is still not good as the test data only achieved an accuracy of 65.29%. In 

Figure 6.24, it is possible to analyse the progress of the validation accuracy and the loss on the 9 folds. 
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Figure 6.24 – VGG-16 model behaviour on the validation data over the epochs: (A) on accuracy, and (B) on loss. 

 

The validation accuracy started high but remained at the same value over time. Looking at Figure 

6.24B, the model gets worse over the epochs, as the loss explodes to very high numbers, indicating a 

poor performance of the model.  

The confusion matrix in Figure 6.25 shows that, despite the relatively high accuracies, the model 

had great difficulty in distinguishing most of the gestures. This shows that the model needed some work 

to be viable. 

 

Figure 6.25 – Confusion matrix for VGG-16. 

After making the model more efficient using the ONNX runtime, the average inference time is 

0.24264 seconds. Considering the much greater complexity of this architecture, this higher time is 

understandable, but makes this model unusable in the context of the required time-sensitive application. 

This architecture was based on the work of Lee et al. [16], and for the first time there is some 

correlation between the results. Their raw dataset consists of 1003 samples obtained from 10 subjects 

performing 5 different gestures, but they used geometric techniques (rotation, resizing, and scaling) and 

photographic techniques (translation and illumination) to augment the original dataset by a factor of 5. 

A) B) 
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The model “was trained on 200 epochs and 20 batch sizes” and achieved a classification accuracy of 

76.4%. This correlation is probably due to a similar approach in how the dataset is prepared for the 

training step. The authors used 80% of the dataset for training and the remaining 20% for validation, but 

most importantly they use a leave-one-out cross-validation per person approach. In this manner, the 

model does not learn on the people that will later be used to evaluate the model, giving a better 

understanding of whether the model is correctly generalizing the information. 

In addition to this correlation, it is also possible to see that this architecture performed better than 

the previous 3 CNNs tested, and since VGG-16 is known to have a very good image recognition capability, 

this result was expected. This higher performance is due to two reasons: firstly, it has more combinations 

of convolution-pooling layers, and secondly, each convolutional layer has more filters, so it is expected to 

extract more features from the images and consequently, achieve higher performance than previous 

models. This increase in performance is good, but still not enough to be used reliably. 

 

ResNet-50 

The final architecture being tested was a ResNet-50, which is another well-established CNN in the 

DL field. The implementation of this architecture was not based on any literature study, so its results will 

not be directly compared to another study. However, this architecture was also considered as a first 

approach to understand its results.  The training accuracy obtained was 99.91% with a validation accuracy 

of 69.99%. The model performed worse on the unseen test data, with an accuracy of only 60.44%, making 

this model slightly worse than VGG-16. A more detailed view of the progression of the validation accuracy 

and loss can be seen in Figure 6.26. 

 

 

Figure 6.26 – ResNet-50 model behaviour on the validation data over the epochs: (A) on accuracy, and (B) on loss. 

 

A) B) 
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These graphics show a similar behaviour to the VGG-16 model. The validation accuracy starts 

relatively high but does not improve over the epochs. Meanwhile, the validation loss starts low and 

explodes through the epochs on each fold, making the model worse at each epoch. 

The confusion matrix presented in Figure 6.27 corroborates the lack of performance of the model. 

It is difficult to distinguish between all the gestures, making it unusable. 

 

Figure 6.27 – Confusion matrix for ResNet-50. 

Considering that the ResNet-50 architecture is also very complex, the inference time was expected 

to be similar to that of the VGG-16. However, after testing, it averaged only about 0.08516 seconds, 

making the model usable in terms of prediction time. 

This result shows that this architecture also had a better capability to extract features from the 

images than the first 3 CNNs explored. This was expected because, like the VGG-16 architecture, ResNet-

50 also has more convolution-pooling layers, but this is still not high enough to be applied in the real 

world. This difference in performance may be due to the over-complexity of the ResNet-50 architecture 

compared to the VGG-16, which makes it unable to generalize the information. 

6.3.5 Improvement of the models 

Since there is no single architecture among the image-based data models that has achieved good 

enough results to be applied in a real-world application, the five architectures discussed in the previous 

section will serve as basis for improving the performance of the models. Rather than wasting time on 

architectures that gave very poor results from the start, it is better to focus on improving those that gave 

some better results and have the potential to improve even more. Therefore, the second and third 

architectures developed (CNN with max pooling without dropout layers and CNN with max pooling and 

dropout layers) were dropped. Both were based on the CNN from the same literature study [18] , and 
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they did not manage to exceed 41% accuracy on either validation data or test data, so the expectations 

of this architecture thriving are low. All the remaining architectures were considered for improvements. 

There are various strategies to enhance the performance of the developed models. One such 

technique is data augmentation, which increases the diversity of the training data by applying a series of 

random transformations. This technique can have a very strong impact on the accuracy of a given model 

by giving the model a broader set of scenarios to predict, making the model more robust when faced with 

new information. TensorFlow offers a broad set of transformations, including resizing, rescaling, flipping, 

and rotating the images. Another strategy to enhance the performance of the developed models is by 

analysing the results of the model and adapting the architecture and/or the hyperparameters accordingly. 

Both these strategies were used to enhance the model’s effectiveness. 

At first, the first strategy (image augmentation) was employed to all models explored below. The 

rotation transformation rotated the image randomly from the range [-20%, 20%], and the translation 

transformation shifted the image vertically randomly on the range from [-20%, 20%], and horizontally 

randomly on the range from [-40%, 40%]. The second strategy (adapting the architecture) was employed 

in conjunction with the first strategy for some of the models. 

 

CNN with average pooling 

The image augmentation technique reduced the overall validation and testing accuracies of the 

CNN architecture, which already had a very low performance. The validation accuracy and loss of the 

model over the epochs for each fold can be seen in Figure 6.28. 

 

 

Figure 6.28 –CNN with average pooling model behaviour, trained on the augmented dataset, on the validation data over the epochs: (A) on 
accuracy, and (B) on loss. 

 

This model was not able to learn over the epochs and, not considering the 90% accuracy achieved 

in the first fold, the model is between 30% and 50% accuracy depending on the fold. The loss started 

A) B) 
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relatively low but increased over the 16 epochs, showing the opposite of the desired behaviour. The lack 

of learning ability of the models may be due to the architecture not being able to deal with the increased 

complexity of adding image augmentation. 

The confusion matrix in Figure 6.29 shows that the model was unable to recognize between any 

of the gesture, corroborating the very poor performance exhibited by the validation accuracy. 

 

Figure 6.29 – Confusion matrix for augmented CNN with average pooling, trained on the augmented dataset. 

As this is still a simple CNN architecture, after converting the model to the ONNX runtime, the 

inference time averages 0.043996 seconds, making the model viable in terms of prediction time. 

 

VGG-16 

On the VGG-16 architecture, the validation and test accuracy barely changed with 73.4% and 

65.74%, respectively. Figure 6.30 show the validation accuracy and loss of the model at each epoch. 

 

 

Figure 6.30 – VGG-16 model behaviour, trained on the augmented dataset, on the validation data over the epochs: (A) on accuracy, and (B) 
on loss. 

 

A) B) 
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The validation accuracy was relatively high, but it did not change over the epochs, showing that 

the model was not able to learn with each new epoch. Despite this relatively high accuracy, the validation 

loss started very low and then exploded, indicating that the model was getting worse over the epochs, 

meaning that although the model accuracy remained relatively the same, it was making these predictions 

with much less confidence. There was also a high variability of the loss behaviour between the folds that 

made the model unreliable and did not allow to understand whether the image augmentation technique 

had the potential to help the model’s performance. There are several reasons for the exploding validation 

loss, but it is likely to be due to a low number of nodes on the dense layers used for classification. 

Figure 6.31 illustrates the confusion matrix of this model on the unseen test data. 

 

Figure 6.31 – Confusion matrix for VGG-16, trained on the augmented dataset. 

The analysis of Figure 6.31 corroborates the lack of performance of this model, which has a very 

clear difficulty in distinguishing between each class, but especially between the click gesture and any 

other gesture. 

The VGG-16 architecture is much more complex and, as it was shown in the previous section, the 

inference time of this model after ONNX conversion averages at 0.20689 seconds, rendering the model 

unusable in the final application. 

 

Given the complexity of the VGG-16 architecture and the large number of features it extracts, the 

250 nodes are likely to be insufficient for the model to capture all the diverse and intricate patterns in the 

data. The last four dense layers of the architecture were then replaced by two layers of 2048 nodes each. 

This change had a major impact on performance, both in terms of accuracy and, perhaps more 

importantly, in terms of model losses. With this change, the validation accuracy increased to 84.85% and 

the test accuracy increased to 78.16%. The evolution of validation accuracy is shown in Figure 6.32. 
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Figure 6.32 – 2-layers VGG-16 model behaviour, trained on the augmented dataset, on the validation data over the epochs: (A) on accuracy, 
and (B) on loss. 

 

The validation accuracy now fluctuates more but overall, it increases over the epochs and the loss 

now still increases in the early epochs to a peak of 44 in the Fold 5, but then slowly decreases to much 

lower values than with the previous architecture. 

This change is also quite noticeable in the confusion matrix shown in Figure 6.33. In the confusion 

matrix of the VGG-16 with four layers of classification, it is possible to see an overall mix of 

misclassifications between all classes, but with the change to two layers with more nodes, it is possible 

to see that the model is now able to correctly identify between more gestures. However, there is a clear 

problem in identifying the click and move gestures. 

 

Figure 6.33 – Confusion matrix for 2-layer VGG-16, trained on the augmented dataset. 

Unfortunately, after converting the TensorFlow model to the more optimized ONNX runtime, the 

model’s inference time has an average of 0.24544 seconds, making this model unusable in the context 

of the system under development, where an immediate prediction time is required. 

 

A) B) 
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ResNet-50 

The last architecture being tested was the ResNet-50. The image augmentation technique 

described above was applied to this architecture, as well as the replacement of the four dense layers 

used for classification with two dense layers with more nodes, such as the VGG-16. This change reduces 

the overall performance of the model, resulting in a training accuracy of 74.04%, a validation accuracy of 

64.81%, and a testing accuracy of 48.68%. The evolution of the validation accuracy and loss over the 

epochs can be seen in Figure 6.34. 

 

Figure 6.34 – 2-layers ResNet-50 model behaviour (trained on augmented dataset) on the validation data over the epochs. (A) on the 
accuracy. (B) on the loss. 

The validation accuracy is quite volatile, going up and down over the epochs but overall, the model 

is learning over time. The validation loss is also volatile, but it maintains the same low values over the 

epochs and shows a significant improvement over the previous ResNet50 architecture tested, which 

showed a growing loss trend to very large values. 

Despite this model exhibiting a better behaviour than the first ResNet50 architecture tested, it still 

does not have a good enough performance to be used, as shown by the low accuracy on the test data 

and corroborated by the confusion matrix in Figure 6.35. 

 

Figure 6.35 – Confusion matrix for 2-layers ResNet-50, trained on augmented dataset. 

A) B) 
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The model has a very hard time distinguishing between most of the classes, and because of the 

increase in the total number of nodes, the model’s inference time also increases to an average of 0.12214 

seconds, making it unfeasible to use in the final application, even if it did get better accuracy. 

 

Considering all the models developed for both the feature-based and the image-based datasets, 

the models developed with the hand features have the edge over the image counterpart. They achieved 

better accuracies (feature-based: 96.25% on SVM, 93.82% on NN with ReLU activation; image-based: 

78.16% on VGG-16 with data augmentation, 65.29% on VGG-16 without data augmentation) and, due to 

their simpler architectures, they also had very low inference times (feature-based: 0.000263 seconds on 

CNN with linear activation, 0.000495 seconds on CNN with ReLU activation; image-based: 0.022611 

seconds on CNN with average pooling, 0.24264 seconds on VGG-16). Of the feature-based models, the 

best two were the SVM and the NN with ReLU activation. They only have a 2.43% difference in accuracy 

on the test data (SVM: 96.25%, NN: 93.82%), but on the confusion matrices this difference is noticeable, 

giving the SVM model the edge. The SVM had a higher inference time compared to the NN model (SVM: 

0.007192 seconds, NN: 0.000495 seconds), but it is already so low that this difference is negligible. 

These results led to the decision to use the SVM model in the final application. The result of the decided 

model also fulfils the KPI defined in the objective 4 of this dissertation that stipulates the accuracy on the 

test data should be above 90% and inference time below 0.1 seconds. The accuracy was based on the 

results seen on the literature review and the inference time was based on the real time nature of the 

work. In Table 6.2, it is possible to observe the training, validation, and testing accuracy, and inference 

time (in seconds) for every model studied on this dissertation. 
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Table 6.2 – Training, validation, and testing accuracy, and inference time (in seconds) for every model studied on this dissertation 

Models developed 
Training 
accuracy 

Validation 
accuracy 

Testing 
accuracy 

Inference time 
(seconds) 

NN with Linear activation 0.994 0.9775 0.9272 0.000263 

NN with ReLU activation 0.999 0.9751 0.9382 0.000495 

SVM 0.8918 - 0.9625 0.007192 

Decision Tree 0.7351 - 0.7784 0.002485 

CNN with average 
pooling 

0.8309 0.3766 0.3542 0.022611 

CNN with max pooling 
without dropout layers 

0.8540 0.7507 0.6976 0.06884 

CNN with max pooling 
with dropout layers 

0.8668 0.6960 0.6222 0.06451 

VGG-16 0.8851 0.8728 0.8239 0.24264 

ResNet-50 0.8887 0.8683 0.8324 0.08516 

CNN with average 
pooling on augmented 
dataset 

0.9414 0.4802 0.3998 0.043996 

4-layers VGG-16 on 
augmented dataset 

0.9623 0.8485 0.7816 0.20689 

2-layers VGG-16 on 
augmented dataset 

0.9779 0.7843 0.6902 0.24544 

2-layers ResNet-50 on 
augmented dataset 

0.7403 0.6480 0.4868 0.12214 

 

There is still some future work that can be done to enhance the image-based models, such as 

experimenting a hybrid CNN-SVM architecture that extracts the image features on the CNN model and 

then passes them to the SVM for classification, which showed good results in Ikram et al. [58], or using 

the reference and publicly available EfficientNet architecture, which showed very good accuracies on the 

same ImageNet dataset on which the VGG-16 and Resnet-50 architectures were trained, while having a 

simpler architecture. 

6.4 Creation of the automatic hand gesture recognition tool 

After selecting the best model (SVM model – feature-based), the final tool for automatically 

recognizing hand gestures was developed. At the time of the development of this tool, the latest version 

of LM services (v5.7.2) was used, which only supported C++ development, but the AI models were 

developed using TensorFlow and Scikit-learn in a Python environment. Therefore, the approach was to 

split the tool into two different components with different purposes and to establish communication 

between them via sockets. 
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The first component of this tool was developed in C++, and it is responsible for establishing the 

communication with the LM services to obtain the feature information. This program starts by opening 

the connection to the LM device with the required properties for feature feedback. It then opens a TCP 

server connection to allow connectivity with the second component of this tool. The program now enters 

in a loop where it sends the latest available frame to the second component when it has completed its 

prediction. 

The second component of this tool was developed in Python, and it is responsible for predicting 

the gesture and performing the corresponding action on the screen. To achieve this, the developed Python 

component imports the necessary libraries and prepares the environment for execution. In this 

preparation phase, the program loads up the SVM model that was previously developed and trained, 

loads the file that contains the scaling parameters of the features so that it can scale the real-time 

information before it is inferred by the model, and establishes initial variables such as the list of classes 

available to predict. After this first phase, the program tries to establish a TCP connection as a client to 

the TCP server on the first component. Once connected, the program enters a loop in which it constantly 

asks the server if it has a new frame to predict. If this is the case, the program reads the new frame, 

extracts the palm position of the hand to know where to move the cursor, scales the new information 

using the scaling parameters obtained before, gives the scaled information to the model to obtain a 

predicted class, and performs the corresponding action on the screen using the PyAutoGUI API. 

Mouse control is achieved by linear interpolation between the available space above the LM camera 

and the available screen space. This means that if the detected hand is directly above and in the centre 

of the LM camera, the cursor will be in the centre of the screen. The cursor will move up and down on 

the screen if the hand moves in the z-axis of the camera and left and right if the hand moves in the x-axis 

of the camera. A mouse control that calculated the difference between the current position of the hand 

and the last position of the hand and changed the position of the cursor accordingly was also developed. 

However, since it was very difficult to balance the natural tremor of the hands with the sensitivity of the 

cursor, this solution was considered too imprecise and hard to control. 

6.5 Conclusions 

The AI models need a very large amount of information to learn patterns and understand what 

distinguishes one class from another. To achieve this, a protocol was built to collect 6 different hand 

gestures from 21 volunteers, with and without surgical gloves. At the end of this protocol, the creation of 

a feature-based dataset and an image-based dataset was achieved. 
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A good quality of the two datasets was ensured by removing invalid trials that happened during the 

creation process of the datasets. The visualisation on the number of frames in each class, on each of the 

datasets allowed to ensure that the two datasets are balanced. 

Due to the wide variety of AI architectures and the need to test two different types of datasets, 

many models were developed to find the one that could give the best performance. The models trained 

on the feature-based dataset not only achieve significantly higher accuracies but also have faster inference 

times when compared to the models trained on the image-based dataset. These results are in line with 

the literature presented in Chapter 3, where most articles use models trained with a feature-based 

dataset, probably because they are generally better than the models trained with an image-based dataset. 

There were several candidates, but the one that stood out the most was the model trained with the feature 

dataset on the SVM, which achieved a very good accuracy on the test data (96.25%) while having a very 

low inference time (0.007192 seconds). This made it a clear choice to implement this model in the final 

hand gesture recognition tool clear. 

At last, the automatic hand gesture recognition tool was created. It consists of a two-component 

program designed to replace the computer’s peripheral mouse control by a hand gesture control using 

the LM camera and the best model developed (SVM with 96.25% accuracy) to predict the hand gesture 

being performed.  
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7. SYSTEM’S VALIDATION PROTOCOL 

This chapter describes the validation protocol of the automatic hand gesture recognition tool, 

aiming to assess the usability of the developed tool. This validation protocol followed an experimental 

study design and was carried out in two stages: first, a preliminary validation conducted in a laboratory 

environment with volunteers from the BiRDLab and secondly, a final validation conducted with surgeons 

(end-users) from the Trofa Saúde Braga Centro hospital. The participants and their characteristics are 

first specified. Then, the intervention is explained, followed by the data collection. Finally, the results are 

presented and discussed, and some conclusions on the usability of the application are made. 

7.1 Participants 

The study was approved by the institutional review board of the Trofa Saúde. All participants filled 

out an informed consent, based on the Helsinki declaration and the Oviedo convention, to participate in 

this study. 

7.1.1 Preliminary validation 

Eleven participants (gender: 7 males and 4 females, age: 25.73 ± 2.22, dominant hand: 0 left and 

11 right, previous experience with touchless controls: 7 with no experience, 4 with experience in HTC 

Vive, 3 with experience in HoloLens, and 1 with experience in LM), recruited and admitted in the University 

of Minho, were enrolled in the study. There were no exclusion criteria. The Table 7.1 refers to the 

participants from BiRDLab that volunteered to perform this preliminary validation. The previous 

experience with touchless controls was asked to understand if it could be a factor on the results. As only 

one had experience with the LM, the sample size was too small to make any viable conclusions. 
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Table 7.1 - Age (years), gender (male/female), dominant hand (left/right) and previous experience with touchless controls of each participant 
on the preliminary validation 

Participant Age Gender 
Dominant 

Hand 

Previous experience with touchless controls 

Yes/No Touchless Tools 

Participant 1 24 Male Right No - 

Participant 2 26 Male Right No - 

Participant 3 23 Female Right No - 

Participant 4 22 Male Right No - 

Participant 5 27 Female Right No - 

Participant 6 27 Male Right No - 

Participant 7 24 Male Right No - 

Participant 8 27 Female Right Yes HTC Vive, HoloLens 

Participant 9 25 Female Right Yes HTC Vice, HoloLens 

Participant 10 29 Male Right Yes HTC Vive 

Participant 11 29 Male Right Yes HTC Vive, HoloLens, LM 

7.1.2 Final validation 

Four participants, all surgeons (gender: 4 males and 0 females, age: 40.25 ± 6.37, dominant 

hand: 0 left and 4 right, previous experience with touchless controls: 4 with no experience), were enrolled 

in the study. There were no exclusion criteria. The Table 7.2 refers to the participants from the Trofa 

Saúde Braga Centro hospital that volunteered to perform the final validation. 

Table 7.2 - Age (years), gender (male/female), dominant hand (left/right) and previous experience with touchless controls of each participant 
on the final validation 

Participant Age Gender 
Dominant 

Hand 

Previous experience with touchless controls 

Yes/No Touchless Tools 

Participant 1 39 Male Right No - 

Participant 2 36 Male Right No - 

Participant 3 35 Male Right No - 

Participant 4 51 Male Right No - 
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7.2 Intervention protocol 

This intervention was designed to assess the usability of the automatic hand gesture recognition 

tool. The intervention begins by explaining to the participants the six hand gestures available to control 

the computer and the corresponding action on the screen. The experimental study consisted of the 

following two phases: familiarization phase and data acquisition phase. In the familiarization phase, 

participants performed the validation protocol, first with the conventional mouse (1 trial) and then with 

the hand gesture recognition tool using the LM (1 trial). In the data acquisition phase, participants 

performed the same validation protocol, first with the conventional mouse (3 trials in a row), and then 

with the hand gesture recognition tool using the LM (3 trials in a row). Between each trial of the second 

phase, the preliminary validation participants had 1 minute to rest. The study was approved by the 

institutional review board of the Trofa Saúde, but due to the restrictions on the availability of the medical 

team, the time window allocated for the collection with each doctor led to a change in the protocol, namely 

a reduction from 3 trials to 1 trial in the data acquisition phase. 

Figure 7.1 shows the validation protocol in detail, which consists of the following 8 actions: A) Click 

on the “Tools” button in the top left menu (cursor and click gestures); B) Click on the “Preoperative 

fiducial 3” button in the left menu (cursor and click gestures); C) Scroll through the slices in the top right 

corner of the screen until reaching the green dot referring to the preoperative fiducial 3 (zoom in and 

zoom out gestures); D) Rotate the bone in the middle of the screen until the green dot related to the 

preoperative fiducial 3 is seen (cursor and rotate gestures); E) Select the “Ruler” button in the bottom 

left menu (cursor and click gestures); F) Select the green point on the bone in the centre of the screen 

as accurately as possible (cursor and click gestures); G) Select the red point on the bone in the centre of 

the screen as accurately as possible (cursor and click gestures); H) Click the “Save file” button (cursor 

and click gestures).  
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Figure 7.1 - The 8 defined actions for the intervention: (A) click tools button; (B) click preoperative fiducial 3 button; (C) scroll until find green 
dot; (D) rotate bone; (E) click ruler button; (F) select green dot; (G) select red dot; (H) click save file button. 

7.3 Data collection 

All participants completed the entire protocol. During the intervention, there were two quantitative 

evaluation metrics being collected: the time taken to complete the 8 defined actions, and the absolute 

error between the 3D position of the dots positioned by the user on the screen and the dots already in 

the bone. The aim of these results was to assess if the hand gesture recognition tool was able to achieve 

similar accuracy and time as a conventional mouse when performing the same tasks, given that the aim 

of this tool was to replace the mouse.  

After the intervention, two evaluation metrics were used: one quantitative (SUS questionnaire) and 

one qualitative (user feedback). The SUS is a standardized test used to evaluate a wide variety of products 

and services, including software and applications, in terms of usability of the solution created [86]. It is 

A) B) 

C) D) 

E) F) 

G) H) 
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composed of 10 sentences that the participant must answer with one of the five available options ranging 

from 1 (Strongly Disagree) to 5 (Strongly Agree). This test produces a single score, which is the sum of 

the scores of the 10 sentences. The score contribution of each item will range from 0 to 4. For items 

1,3,5,7 and 9, the score contribution is the scale position (1 to 5) minus 1. For items 2,4,6,8 and 10, 

the contribution is 5 minus the scale position (1 to 5). Finally, the sum of the scores is multiplied by 2.5 

to obtain the overall system usability score [87]. A score above 68 is considered above average. 

At last, the user’s feedback is obtained. The participants were asked what needed the most 

improvement in the gesture recognition tool. This will allow to understand what should be tackled next 

and prepare the future work. In order to protect the privacy of the participants, the anonymity of their 

opinions and answers was guaranteed. 

7.4 Results and discussion 

This subsection presents the results of the validation protocol for the preliminary and final groups. 

For each validation group, quantitative evaluation metrics, such as the time needed to complete the set 

of defined actions by both the mouse control and the hand gesture recognition tool, and the precision 

achieved by each form of control, and the results of the SUS test; and qualitative evaluation metrics, such 

as the users’ feedback are presented.  

7.4.1 Preliminary validation 

Time taken 

In an operating room environment, both the surgeon and the patient have an interest in minimizing 

the time taken to complete a surgical procedure. Therefore, the time required to perform a set of tasks 

in the software is very important. Thus, a good way to assess the operability and effectiveness of the 

developed hand gesture recognition tool is to benchmark it with the conventional control method, the 

mouse control. This allows a direct comparison between the two forms of control. 

The average time taken to perform the planned set of actions using the traditional mouse control 

was 28.53 ± 9.76 seconds, and the average time taken for the same set of actions using the developed 

gesture recognition tool was 78.11 ± 28.02 seconds. This means that it takes 2.74 longer to complete 

the same task. Figure 7.2 presents the time taken by each volunteer for the three trials performed with 

the mouse and the hand gesture recognition tool, and some additional analysis can be made. 
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Figure 7.2 - Time taken to complete the set of actions for the three trials: (A) with the mouse control; and (B) with the hand gesture recognition 
tool. 

 

Analysing Figure 7.2, there is a lot of information to take in. Noticing that the scales of the two 

graphs are different, it can be seen that the participants took less time to complete the actions in the 

mouse control than in the control with the developed application. When looking more closely, the highest 

times in the mouse control are in the same range as the lowest times in the developed application control. 

These results were to be expected as people are very used to controlling the mouse and do so quite 

easily. However, although the participants took longer with the hand gesture recognition tool, they showed 

the same behaviour over time as with the mouse control, taking less time with each trial. This shows that 

as the participants worked with the tool, they became more comfortable with it and their results improved. 

This is consistent with the learning curve of any product/service, and it can be inferred that with more 

trials the time may continue to decrease until it converges to a time close to that of mouse control.  

In addition to the learning curve, there is additional and future work that can be done to reduce 

the time even further, such as increasing the size of the interface buttons, adjusting the sensitivity of the 

mouse, and adjusting the sensitivity of the zoom in/out gestures. 

 

Precision 

While controlling surgical software, the handling precision can be very important. The desired task 

may be to place a screw in a specific location on a bone, rotate a bone to a specific view, or move a bone 

to a specific location on the screen, so it is important to evaluate whether the gesture recognition tool 

achieves the same precision as the mouse control. In a first approach, the precision of the click was 

chosen as an example to evaluate the precision of the tool. To achieve this, two tasks of the protocol were 

created with the sole interest of calculating the difference between the placed point and the existing point 

in the program, and then compare the results between the precision of the mouse and the gesture 

recognition tool. So, the smaller the difference, the greater the precision. 

A) B) 
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Table 7.3 presents the average distance (in millimetres) for the two points, for each participant on 

each form of control (mouse and gestures), in each trial. This was done to make the comparison easier 

and clearer to analyse. 

Table 7.3 - Average distance (mm) for the two points, for each participant with the mouse control and with the hand gesture control, in each 
trial 

Participants Form of control 
Average distance (mm) 

Trial 1 Trial 2 Trial 3 

Participant 1 
Mouse 0.185 ± 0.077 0.089 ± 0.018 0.170 ± 0.131 

Hand gestures 0.963 ± 0.297 1.210 ± 0.418 0.611 ± 0.290 

Participant 2 
Mouse 0.223 ± 0.065 0.107 ± 0.041 0.159 ± 0.007 

Hand gestures 0.649 ± 0.160 1.27 ± 0.716 0.620 ± 0.260 

Participant 3 
Mouse 0.027 ± 0.020 0.126 ± 0.018 0.043 ± 0.030 

Hand gestures 0.400 ± 0.156 0.277 ± 0.142 0.399 ± 0.105 

Participant 4 
Mouse 0.069 ± 0.015 0.176 ± 0.032 0.126 ± 0.032 

Hand gestures 1.392 ± 0.499 2.396 ± 0.055 0.785 ± 0.388 

Participant 5 
Mouse 0.062 ± 0.033 0.242 ± 0.043 0.228 ± 0.104 

Hand gestures 0.993 ± 0.096 1.315 ± 0.525 0.280 ± 0.114 

Participant 6 
Mouse 0.055 ± 0.013 0.267 ± 0.090 0.181 ± 0.054 

Hand gestures 1.452 ± 0.490 2.038 ± 1.048 1.207 ± 0.200 

Participant 7 
Mouse 0.253 ± 0.157 0.353 ± 0.195 0.114 ± 0.004 

Hand gestures 1.366 ±0.048 1.664 ± 0.763 1.147 ± 0.138 

Participant 8 
Mouse 0.089 ± 0.028 0.071 ± 0.006 0.037 ± 0.011 

Hand gestures 1.136 ± 0.413 0.247 ± 0.005 0.985 ± 0.429 

Participant 9 
Mouse 0.145 ± 0.005 0.067 ± 0.006 0.074 ± 0.036 

Hand gestures 0.693 ± 0.110 0.589 ± 0.233 0.668 ± 0.020 

Participant 10 
Mouse 0.039 ± 0.013 0.116 ± 0.020 0.030 ± 0.011 

Hand gestures 0.974 ± 0.213 2.353 ± 0.854 0.384 ± 0.238 

Participant 11 
Mouse 0.157 ± 0.070 0.043 ± 0.010 0.101 ± 0.028 

Hand gestures 1.451 ± 0.126 1.325 ± 0.484 0.550 ± 0.241 

Average 
Mouse 0.119 ± 0.074 0.151 ± 0.093 0.115 ± 0.062 

Hand gestures 1.043 ± 0.340 1.335 ± 0.716 0.694 ± 0.294 

 

As it can be seen on the averages shown in Table 7.3, the mouse control shows a better precision 

than the hand gesture recognition tool in all trials. Furthermore, the precision of the mouse control does 

not vary much from trial to trial, as it is already quite precise. These results were to be expected as people 

are very used to controlling the mouse and do so quite easily. However, with the hand gesture recognition 

tool, the participants showed more precision in the third trial than in the second and first trials, with some 

being much more precise. This shows that as the participants worked with the tool, they became more 

comfortable with it and their results improved. This is consistent with the learning curve of any 

product/service, and it can be inferred that with more trials the precision may continue to increase. In 
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addition to the learning curve, there is some work that can be done to help improve the precision, such 

as changing the sensitivity of the cursor when more precision is necessary. 

 

SUS questionnaire 

The SUS is a standardized test that will serve as an indicator of the user’s perception of the quality 

and usability of the hand gesture recognition tool created. It will also serve as a baseline for future 

improvements of the tool and as a comparison point for similar tools developed by other studies. User 

feedback was also provided in response to the question “What needs the most improvement?”. This 

question was created to find out if there is something that needs to be fixed urgently and to understand 

what the weaknesses of the developed solution were, from the point of view of the users, including the 

end-users. Table 7.4 shows the SUS questionnaire result for each participant in the preliminary validation 

group. 

Table 7.4 - SUS questionnaire result for each participant in the preliminary validation group 

Participants (P) P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10 P 11 

Score 70 80 85 75 52.5 77.5 82.5 87.5 80 70 77.5 

Average score 76.67 ± 9.86 

 

The average of the results from the SUS questionnaire for the 11 participants in the preliminary 

validation group was 76.67 ± 9.86. Except for participant 5, the participants in this preliminary validation 

group have largely the same opinion about the usability of the hand gesture recognition tool. Tullis et al. 

[88] stated that the SUS test is the most reliable even with small sample sizes, which gives confidence 

in the obtained results. Furthermore, as this test exists for more than 25 years, there are more than 

5 000 SUS observations, which allowed Sauro et al. [19] to create an approximate distribution of SUS 

scores in terms of percentile ranking. The paper established that the average score is 68 and that anything 

above this is considered above average and vice versa. Taking this into account, and considering the 

average score obtained by the participants, the usability of the developed tool can be considered above 

average. These results are positive and can be even better with further improvements. The response of 

each volunteer from the preliminary validation group to each of the 10 questions of the SUS questionnaire 

can be seen in Table 0.1 in Appendix I. 

The SUS test provides an insight into the perceived usability of the tool but does not give the user 

the opportunity to express themselves freely about the tool, as the questions and answers in the 

questionnaire are fixed. Therefore, it seemed important to get a free and anonymous opinion from each 
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participant so that they did not feel pressured. To this end, participants were asked what they thought 

needed the most improvement. Most of the participants (9 out of 11) felt that the sensitivity of the cursor 

what needed the most work. This is understandable given that, when carrying out the protocol, it was 

possible to observe that most of the participants struggled and spent time placing the cursor in the desired 

location. 

7.4.2 Final validation 

Time taken 

Table 7.5 presents the time taken by each surgeon with the mouse and with the hand gesture 

recognition tool. There is only one trial because, as mentioned above, time was a constraint, and the 

protocol was minimized as such.  

Table 7.5 – Time taken by the final validation group to perform the tasks with the mouse control and with the hand gesture control 

Participants 
Time on mouse 

control (seconds) 

Time on gesture 

control (seconds) 

Participant 1 27.57 111.01 

Participant 2 36.15 165.40 

Participant 3 23.28 125.72 

Participant 4 42.29 116.75 

Average 32.32 ± 7.39 129.72 ± 21.26 

 

The average time taken to perform the planned set of actions using the traditional mouse control 

was 32.32 seconds, and the average time taken for the same set of actions using the developed gesture 

recognition tool was 129.72 seconds. This means that it takes 4.01 times longer to complete the same 

task. As there is only one trial, there is no way to confirm that the times can decrease over time, but 

based on the data from the preliminary group, it is safe to assume that the same trend would be seen 

here, as the same learning curve would be expected. Despite the learning curve, the list of possible 

improvements given in the preliminary validation group still apply and could help reduce the times. 

 

Precision 

Table 7.6 presents the distance (in millimetres) between the two points placed by the user and the 

points on the screen, for each surgeon on each form of control (mouse and gestures). 
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Table 7.6 - Distance (mm) between the two points placed by the user and the points on the screen, for each surgeon with the mouse control 
and with the hand gesture control 

Participants Form of control 
Distance to point 

1 (mm) 
Distance to point 

2 (mm) 
Average distance 

(mm) 

Participant 1 
Mouse 0.303 0.076 0.190 ± 0.114 

Hand gestures 0.934 0.905 0.920 ± 0.015 

Participant 2 
Mouse 0.081 0.195 0.138 ± 0.057 

Hand gestures 1.680 1.928 1.805 ± 0.124 

Participant 3 
Mouse 0.086 0.201 0.144 ± 0.058 

Hand gestures 1.599 0.597 1.099 ± 0.501 

Participant 4 
Mouse 0.096 0.053 0.075 ± 0.021 

Hand gestures 0.805 1.349 1.077 ± 0.272 

Average 
Mouse 0.142 ± 0.094 0.132 ± 0.067  

Hand gestures 1.255 ± 0.389 1.195 ± 0.501  

 

Mouse control showed a better precision than the hand gesture control, just as in the preliminary 

group. Since there is only one trial, the surgeons did not have the same opportunity to get more 

accustomed to the hand gesture recognition tool like the preliminary group did. However, the learning 

curve observed in the preliminary group is expected to also apply in the final group, as the surgeons get 

more experience. Although the precision of the hand gesture recognition tool is likely to improve with 

experience, these results can be improved by adjusting the sensitivity of the cursor when necessary. 

 

SUS questionnaire 

Table 7.7 presents the SUS questionnaire result for each participant in the final validation group. 

Table 7.7 - SUS questionnaire result for each participant in the final validation group 

Participants Participant 1 Participant 2 Participant 3 Participant 4 

Score 75 60 62.5 72.5 

Average score 67.5 ± 6.37 

 

The average of the results from the SUS questionnaire for the 4 surgeons in the final validation 

group was 67.5 ± 6.37. Rounding the mean value, it is at the limit of the average value determined by 

Sauro et al. [19], fulfilling the KPI defined in the objective 6 of this dissertation that stipulates that the 

results of this test should be above average. This value means that the surgeons found the developed 

hand gesture recognition tool less easy to use than the volunteers in the preliminary group. The sample 

size is small, which may not be a significant sample for drawing conclusions. However, as these are the 

end users of the tool, it gives a better impression of the quality of the work. Furthermore, these results 
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remain encouraging as it is already possible to identify some future work that could improve the overall 

experience of the gesture recognition tool. The response of each volunteer from the final validation group 

to each of the 10 questions of the SUS questionnaire can be seen in Table 0.2 in Appendix I. 

To better understand the way forward, the surgeons were also asked about what needed the most 

improvement in the tool. One surgeon said “cursor speed”, one said “cursor precision” and 

misclassification between gestures, one said “cursor sensitivity”, and one said there was “nothing to 

improve”. The first three answers are due to cursor sensitivity, meaning that most surgeons felt that the 

current cursor sensitivity was not right. As surgeons tend to have more precise hands due to the nature 

of their work, it was expected that the cursor control could be a problem, because they are used to 

achieving a high precision on a small working space. This follows the same feedback from the preliminary 

validation group and clearly shows that the cursor sensitivity is the issue that needs more attention. It is 

worth noting that all surgeons showed great acceptability and interest in the tool implemented and 

emphasised its potential interest in clinical practice. 

7.5 Conclusions 

The hand gesture recognition tool takes more time to complete the same set of defined tasks than 

the mouse control. However, there is a decreasing trend, which indicates that this time can be further 

reduced with more experience with the tool. The precision of the mouse control surpasses that of the 

hand gesture recognition tool. However, after only 3 trials (for participants in the preliminary validation 

group), the volunteers were more precise than in the first trial, indicating this precision tends to increase 

with greater familiarity with the developed tool. 

In the preliminary validation, the results from the SUS questionnaire average at 76.67 ± 9.86. 

Except for one participant, the participants in the preliminary group have the same opinion about the 

usability of the developed tool. Since the average result for the SUS test is 68, the results obtained are 

above average and can be further improved. In the final validation, the results from the SUS questionnaire 

average at 67.5 ± 6.37. Rounding the mean value, this result is at the limit of the average results for the 

SUS test. The surgeons found the tool less easy to use than the preliminary group, but as these are the 

end users of the tool, they give a better impression of the quality of the work. These results are 

encouraging because it is possible to identify possible improvements thanks to the feedback from the 

users. 
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The feedback from the users on the preliminary validation and the final validation, defined the 

sensitivity of the cursor as the most needed improvement. This improvement combined with the learning 

curves mentioned earlier might improve the usability of the hand gesture recognition tool.  
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8. CONCLUSIONS 

Globally, 310 million major surgeries are performed each year and during a medical procedure, 

there is a 2% to 5% chance of surgical site infections due to various reasons being one of them problems 

related to equipment sterilization. This means that between 6 200 000 and 15 500 000 people still suffer 

an unwanted infection that can negatively affect their physical and mental health. CAS is an emerging 

technology that typically relies on the control of a computer using a keyboard and mouse, where the 

surgeon takes advantage of technology for surgical planning and guidance that leads to better patient 

outcomes. Despite these advantages, the peripheral devices used to control the CAS systems (i.e., mouse 

and keyboard) contribute negatively to surgical site infections. The development of gesture recognition 

tools using AI models can help reduce the number of infections, reduce the time needed to sterilize the 

room for the next surgery and consequently increase the number of surgeries. Consequently, this 

dissertation designed, developed, and validated an automatic hand gesture recognition tool, based on a 

user-centred design, to help clinicians reduce the risk of contamination and in this way improve the quality 

of medical procedures. 

The review on DL-based hand gesture recognition shows that there is some work currently being 

done but there is a lack of this application in the medical area. From the 29 studies included in this review 

the medical area is the third most studied with only 4 studies. The feature-based dataset was the most 

used with 26 studies, leaving only 3 articles that used the images given by the LM camera. There were a 

lot of architectures tested in these articles due to the high variability of the problems to solve and the 

several capabilities of each architecture. However, the most used architectures to train the models were 

the CNN with 11 studies and the NN with 7 studies. The most used metric to evaluate the performance 

of the model was accuracy, which was present in 26 studies. The studies reviewed showed a big lack of 

system validation. Only 6 studies presented some form of validation, but none offered a standardized test 

that could be further compared with other studies. Considering this, there is space to create a gesture 

recognition tool with a user-centred design that serves the end-user needs and has a standardized 

validation of the final system so that it can serve as a reference for future studies. 

A protocol was performed with the end-users from the Trofa Saúde Braga Centro hospital that 

sought to understand what gestures were the most intuitive to perform a given set of actions. In this way, 

the developed tool has a design centred on the end user, as the hand gestures are decided by the end 

users. This fulfils the first clinical requirement and the third technological requirement defined in Chapter 

3, advancing the literature review. 
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To have the necessary data to train AI models, a protocol was performed with 21 participants from 

the University of Minho, to create two balanced datasets (one with hand images and one with hand 

features) with the hand gestures defined in the previous protocol. This fulfils the first technological 

requirement defined in the literature review. It also creates a big and diverse dataset that enables the 

development of more robust and powerful models.  

Then, these datasets were fed to several AI models in search of the one that could achieve the 

most performance. The best model developed using the SVM algorithm, with 96.25% accuracy on the 

test data and an inference time of 0.007192 seconds, was later implemented in the hand gesture 

recognition tool. This result gives the gesture recognition tool a good ability to do what it was designed 

for. This search for the best and most appropriate architecture for the defined gestures meets the second 

technological requirement. 

The developed tool uses the LM camera to extract information from the hands, feeds it into the 

best model developed (SVM with 96.25% accuracy) and executes an action on the screen for the 

corresponding gesture predicted. 

The validation protocol was carried out with two groups of validation: the preliminary validation 

performed on volunteers from the BiRDLab (11 participants), and the final validation performed on 

surgeons from the Trofa Saúde Braga Centro hospital (4 participants). The intervention consisted of 

completing a set of 8 actions on the mouse and the developed hand gesture recognition tool, aiming to 

assess the usability of the application developed as well as understand the differences between the mouse 

and the hand gesture control of the NavPI program. The results from the validation protocol showed that 

the hand gesture recognition tool took more time to complete a set of defined tasks than the mouse 

control, but showed a decreasing trend which indicates that this time can be further reduced with more 

experience with the tool. The precision of the mouse control surpasses the precision of the hand gesture 

recognition tool. However, with more experience, the volunteers were more precise than in the first trial, 

suggesting that they can become more precise as they become more familiar with the developed tool. 

The results of the SUS questionnaire carried out on the preliminary group showed that the tool was well 

accepted by the participants and that the perceived usability of the developed system is high. The average 

result of the final group is at the limit of the average for the SUS test, meaning that the surgeons found 

the developed less easy to use than the preliminary group. However, the insight from the surgeons is a 

valuable resource because they are the end users. This further shows the work done to build the hand 

gesture recognition tool around the end user and fulfils the fourth technological requirement, as well as 

the second clinical requirement. 
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The feedback from the two validation groups shows that the sensitivity of the cursor is the main 

complaint, and it should be improved in future works. 

This dissertation allows to answer the RQs appointed in Chapter 1: 

• RQ1: What specifications should be considered for the development of a LM hand gesture 

recognition application fitted for surgical navigation? 

Chapter 3 answered this RQ. The optimal LM hand gesture recognition application fitted for 

surgical navigation should consider technological and clinical requirements. The technological 

requirements are the following: 1) ensure a balanced dataset; 2) the model architecture should 

be defined based on the required gestures (static or dynamic); 3) define the number and which 

gestures are required; 4) define a validation protocol that includes real-life situations with the 

end-users. The clinical requirements are: 1) include end-user-centred gestures so that the end-

user can manipulate digital medical images and 3D anatomical models as easily and intuitively 

as possible; 2) define a validation protocol to study the usability of the application. 

• RQ2: What are the most appropriate gestures needed to control the LM application in a 

surgical environment? 

Chapter 5 answered this RQ. According to the results from the protocol performed with 

surgeons from the Trofa Saúde Braga Centro hospital, the most appropriate gestures to control 

the LM application in a surgical environment are gestures made with one hand, so as not to 

interfere with the potential use of a surgical tool with the other hand, and to allow manipulation 

of the surgical navigation software during surgery. Furthermore, the gestures are intuitive and 

some of them are based on actions performed daily on a personal phone (i.e., click, zoom in 

and zoom out). Ultimately, the set of selected gestures can be seen in Figure 5.1. 

• RQ3: Can hand gesture recognition achieve good performance using AI algorithms for 

real-time use? 

Chapter 6 answered this RQ. During this thesis, several ML and DL models were developed, 

and their accuracy and inference time were evaluated. The 96.25% accuracy obtained from 

the SVM model on the test data, and the 0.007192 seconds of inference time showed that it 

is possible to achieve good performance on hand gesture recognition using AI algorithms for 

real time use. This model was trained on the feature-based dataset. In general, when trained 

with features, the models achieve better accuracies and lower inference times comparing to 

the models trained with the image dataset due to the differences in the architecture complexity. 
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The highest accuracy obtained from the models trained on the image-based dataset was 

78.16% on the test data with an inference time of 0.24544 seconds. 

• RQ4: Can a gesture recognition-based solution be suitable for controlling a surgical 

navigation application? 

Chapter 7 answered this RQ. According to the time and precision metrics, the solution based 

on hand gesture recognition is worse compared to the traditional mouse control. However, 

these metrics improve over time and can be expected to continue to improve with more 

experience from the volunteers, following the learning curve of any product/service. According 

to the results of the SUS questionnaire, the usability of the solution is above average in the 

preliminary validation group and borderline in the final group. Both groups indicated that cursor 

sensitivity needed further optimization, so there is potential to improve the developed 

application. These results show that a gesture recognition-based solution can be suitable for 

controlling a surgical navigation application. 

8.1 Future work 

The future work comprises the following directions: (i) to change the two-dimensional approach of 

cursor control to a three-dimensional approach; (ii) to rethink the user interface of the surgical navigation 

application to be more prepared for the hand gesture control; (iii) to customize the cursor sensitivity 

according to the desired action on the screen; (iv) further develop AI models or improve the ones already 

studied in this dissertation; (v) use the confidence of a given prediction from a DL model as a threshold 

for the detection of a given hand gesture; (vi) to migrate the Python component to the C++ component, 

creating a more robust standalone solution for the problem; (vii) to study the effect on the quality of the 

developed tool on the newer version of the LM camera released in 2023; (viii) further validate the solution 

with surgeons to have very solid feedback with the end-users of the tool in order to make improvements 

to new versions of the tool as they emerge. Further work involves scientific dissemination of the achieved 

results in peer-review ISI/Scopus journals. 
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APPENDIX I 

Table 0.1 and Table 0.2 show the answer of each participant in the preliminary group and final group, 

respectively, to each of the 10 questions from the SUS questionnaire. The possible answers were: TD - 

totally disagree, D - disagree, N - neutral, A – agree, and TA - totally agree. 

Table 0.1 – Response of each volunteer in the preliminary group to each of the 10 questions from the SUS questionnaire 

 Participants 

Questions 1 2 3 4 5 6 7 8 9 10 11 

1. I think that I would like to use this 

system frequently. 

A A A N A N TA A A A TA 

2. I found the system unnecessarily 

complex. 

N D TD TD N D TD D TD D D 

3. I thought the system was easy to use. N A A A D D A A A A A 

4. I think that I would need the support 

of a technical person to be able to use 

this system. 

D A D D A D N TD TD A D 

5. I found the various functions in this 

system were well integrated. 

A TA TA TA A TA TA TA A A A 

6. I thought there was too much 

inconsistency in this system. 

D TD TD TD D TD TD TD D D D 

7. I would imagine that most people 

would learn to use this system very 

quickly. 

N TA TA N N A TA TA A A TA 

8. I found the system very cumbersome 

to use. 

D TD D TD D TD D D D D D 

9. I felt very confident using the system. A A A N N A N TA A A A 

10. I needed to learn a lot of things 

before I could get going with this system. 

TD D D N A TD D D D D TD 

 

 

 

 

 

 



 

96 

Table 0.2 - Response of each volunteer in the final group to each of the 10 questions from the SUS questionnaire 

 Participants 

Questions 1 2 3 4 

1. I think that I would like to use this system frequently. A A A A 

2. I found the system unnecessarily complex. D N D D 

3. I thought the system was easy to use. A A A N 

4. I think that I would need the support of a technical person to be able to use 

this system. 

D A A D 

5. I found the various functions in this system were well integrated. A A A A 

6. I thought there was too much inconsistency in this system. D D D D 

7. I would imagine that most people would learn to use this system very quickly. A N D A 

8. I found the system very cumbersome to use. D N D D 

9. I felt very confident using the system. A N N N 

10. I needed to learn a lot of things before I could get going with this system. D D D TD 

 


