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Abstract

The usage of Genome-scale Metabolic models (GEMs) spans various applications across diverse fields.

These models depict a metabolic network that represents the complete metabolism of a specific organism.

The automated reconstruction of these models can be facilitated using tools like merlin. However, the

draft models generated often contain gaps, primarily due to knowledge limitations in the databases that

enable the reconstruction of these models (e.g., KEGG, ModelSEED), and due to wrong and faulty genome

annotations. Certain tools, such as BioISO, aim at identifying metabolites that cannot be produced by a

metabolic network. Other tools like Meneco try to discern a set of reactions that can be integrated into

the model, aiming to rectify the existing gaps in the metabolic network. The execution time for these tools

increases proportionally with the complexity of the metabolic network under scrutiny, potentially leading to

prolonged execution times to address the possible gaps present in the model. Thus, there arises a need to

develop a workflow that is both efficient and offers reliable solutions. In this study, a workflow integrating

BioISO and Meneco (BioMeneco) was developed, coupled with the development of pertinent methods, with

the aim of automating the process as much as possible, reducing the search space, and optimising the

gap-filling process. The outcomes of the developed workflow were promising. It not only offered reduced

execution times but also provided the capability for better refinement for various models when compared

to a typical Meneco workflow. Regardless, while the developed workflow demonstrated efficiency, it also

highlighted the challenges of relying on a single database and the complexities of metabolic networks,

paving for further improvements and research in this domain.

Keywords Gap-filling, Genome-scale Metabolic Model, Metabolic Model Reconstruction, Optimisation,

Python Implementation, Systems Biology, Workflow Development
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Resumo

O uso de Genome-scale Metabolic models (GEMs) tem diferentes aplicações para diversas áreas. Estes

modelos representam uma rede metabólica que espelha o metabolismo integral de um dado organismo.

A reconstrução automática destes modelos pode ser efetuada com o auxílio de ferramentas como o Mer-

lin. Contudo, os draft models criados apresentam gaps devido à falta de conhecimento nas bases de

dados que possibilitam a reconstrução destes modelos (por exemplo, KEGG, ModelSEED). Existem al-

gumas ferramentas (BioISO) que visam identificar metabolitos que não são produzidos numa dada rede

metabólica. Após à identificação destes metabolitos, outras ferramentas, como o Meneco, utilizam esta

informação para descobrir um conjunto de reações que possam ser incorporadas no modelo, visando

corrigir os gaps existentes na rede metabólica. O tempo necessário para executar estas ferramentas au-

menta proporcionalmente com a complexidade da rede metabólica em análise, o que pode resultar em

tempos de execução muito altos para mitigar os possíveis erros presentes no modelo. Deste modo, flo-

resce a necessidade de desenvolver um workflow que seja eficiente e com soluções fiáveis. Neste estudo,

foi desenvolvido um workflow que integra o BioISO e o Meneco (BioMeneco), aliado ao desenvolvimento

de métodos relevantes, com o objetivo de ser um processo o mais automático possível, reduzir o espaço

de procura e otimizar o processo de gap-filling. Os resultados do workflow desenvolvido foram promis-

sores, oferecendo tempos de execução decentemente reduzidos, e maior capacidade de refinamento,

para diferentes modelos, quando comparados com um workflow típico de Meneco. No entanto, apesar

do workflow desenvolvido ter demonstrado eficiência, também evidenciou os desafios de depender de uma

única base de dados e as complexidades das redes metabólicas, abrindo caminho para futuras melhorias

e investigação nesta área.

Palavras-chave Biologia de Sistemas, Desenvolvimento deWorkflow, Gap-filling, Genome-scale Metabolic

Model, Implementação em Python, Otimização, Reconstrução de Modelos Metabólicos, Redes metabóli-

cas
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Chapter 1

Introduction

1.1 Context and motivation

Genome-scale Metabolic Models (GEMs) are tools currently used to understand and analyse the phys-

iological and metabolic characteristics of a given organism under different environmental and genetic

conditions. These models reveal great potential in predicting biological capabilities, metabolic engineer-

ing, and systems medicine (4; 5; 6; 7). The reconstruction of a GEM is typically generated using software

platforms, such as Metabolic Models Reconstruction using Genome-Scale Information (merlin) (2; 8). This

tool includes several key features, including functional genomic annotations, identification and annotation

of transport protein genes, generation of transport reactions, semi-automatic enzymatic re-annotation, and

determining GPR associations (2). One of the main reasons for the divergence in phenotype predictions

using GEMs and experimental data is the existence of gaps in metabolic networks (4). It is important that

these models are refined and evaluated through various stages to ensure their quality. This includes the

processes of gap-finding and gap-filling. Gap-finding helps identify potential deficiencies such as missing

reactions, unknown pathways, unannotated or misannotated genes, as well as promiscuous enzymes and

underground metabolic pathways. Gap-filling addresses these issues by incorporating the missing infor-

mation, thereby resolving these gaps (4). Recent gap-filling algorithms, adopt novel techniques based on

machine learning, network topology analysis and likelihood modelling. Some examples are Meneco (1)

and BoostGAPFILL (9). Although computational gap-fillers demonstrate being able to identify and add a

significant number of correct reactions, manual curation is still required to obtain high-accuracy models

(10). However, while tools like Meneco (1) have been instrumental in advancing the field of metabolic

network reconstruction, these still have their own limitations. One of the primary challenges with Meneco

(1) is its computational time, especially when dealing with large-scale metabolic networks. As the com-

plexity of the model increases, Meneco can become time-consuming, making it less feasible for real-time

or iterative model refinements. Furthermore, Meneco’s (1) topological approach, while robust, might
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not always capture the intricate dynamics of certain metabolic pathways, leading to potential oversights

in gap-filling. To address the aforementioned challenges, Biological networks constraint-based In Silico

Optimization (BioISO) (11) presents a promising approach. It efficiently identifies blocked reactions and

dead-end metabolites within metabolic networks (11). In this context, the combination of (11) and Meneco

(1) with other relevant methods can significantly enhance the gap-filling process, offering a comprehensive

solution to the challenges faced in metabolic model refinement, ensuring a more accurate representation

of biological systems. Thus, it is of great interest to develop and implement novel gap-filling methods, in

the reconstruction of GEMs, in order to ensure the existence of high-quality GEMs.

1.2 Goals

More general objectives related to scientific investigation would be the review of state-of-the-art subjects

related to metabolic models, the automatic generation of draft models and the technical and theoretical

intersection of these. As well as, analysing existing tools for topological gap-filling.

To obtain high-quality GEMs, the gap-filling process must be enhanced with novel methods. BioMeneco

emerges as a promising starting point for developing a comprehensive workflow. This dissertation concen-

trates on the creation of such a workflow, incorporating novel methods and approaches. Specifically, this

workflow is designed to encapsulate BioMeneco with the developed methods, aiming to produce a more

accurate and efficient process than the typical standalone workflows. Upon execution, a comprehensive

report detailing the results would be generated, providing insights into the efficacy and outcomes of the

integrated workflow.

The ultimate objective is to operationalise this developed workflow within merlin (2), either as a stan-

dalone operation or as a plug-in.

1.3 Documentation outline

The document is organised as follows:

1. Chapter 2: State-of-the-art

(a) a simple description of systems biology

(b) detailing the reconstruction steps of a GEM model and its automatic process

(c) exploration and description of the gap-filling concept

2



(d) overview of existing gap-filling tools, especially topology-based ones

(e) overview in more detail of Meneco and BioISO

2. Chapter 3: Materials and Methods

(a) explanation of the generation of a draft model with merlin

(b) description of how seeds and targets are identified within the developed workflow

(c) detailed method for the creation of a Costum Universal Model

(d) utilisation of Docker for software containerisation and its significance in the workflow

(e) overview of performance tests conducted for the developed workflow, specifically using BioMeneco

(f) brief description of the generated files and their significance in relation to the developed

workflow

3. Chapter 4: Results and Discussion

(a) overview and statistical summary of the utilised Streptococcus pneumoniae R6 gap-induced

model and the draft models generated with merlin

(b) in-depth analysis of the performance test results for different draft models and gap-induced

models using the developed workflow

4. Chapter 5: Conclusions and Future work

(a) insights into the potential impact and contribution of the developed workflow, along with future

research directions

3



Chapter 2

State-of-the-art

2.1 Systems Biology

In the last two decades, there has been a significant improvement in sequencing throughput and a decrease

in its costs (12). Next-generation sequencing (NGS) has only been commercially affordable for several

years, it has already contributed immensely to a great impact in different scientific and technological fields

(12), including systems biology.

Through the success of the bio-sciences studying individual components (molecules, enzymes, genes,

etc.), driven by bioinformatics, omics, and genome sequencing, there is a research focus that has moved

from individual components to networks (13). Even if it was possible to study each component individually,

it would still lack an understanding of how it functions in the context of a complex living organism. Such

studies would not allow elucidating about supramolecular functional properties such as the cell cycle,

metabolic steady states and cell (dys-)function, nor understanding multifactor diseases, white or green

biotechnology (14). Moreover, molecular bio-sciences offer a lot of data that require system approaches

to understand the functioning of the cell. To be able to understand these subjects a systems approach is

required (14). Thus, the field of systems biology has emerged, which may be viewed as a way of thinking

on how to look into a biological organism (15). There is a need to bring together several different areas of

knowledge to adopt system approaches in bio-sciences. This implies, for instance, that a molecular bio-

scientist is familiar with current mathematical and computational methods, and a mathematician is aware

of acceptable biological mechanisms. Some reviews have been made that address the challenges inherent

to the emergence of systems biology (14). According to Bruggeman and Westerhoff (2007) (14), there are

two procedures for working in this field, which can help to simplify the way a subject is approached and

make it more reliable: top-down and bottom-up systems biology.

The main purpose of top-down systems biology is to discover new biological knowledge using an it-

erative workflow. There is the attempt to observe the system under study from a whole, bird’s eye view

4



- by measuring genome-wide data - having the ambition to discover or describe biological mechanisms

close to the bottom - representing segments and interactions. It starts with experimental data, followed by

data analysis and data integration to determine correlations, ending with hypothesis formulation. These

hypotheses can predict new correlations, which can be tested by experiments or further analysis. Because

there is an omics approach, the main advantages here are that there is a complete, genome-wide approach

(14). It provides a more complete understanding of the interactions and connections within a biological sys-

tem. Thus, new discoveries and insights can be revealed since this approach offers a multiple-dimension

perspective.

On the other hand, bottom-up systems biology is a different approach to understanding, in terms of

molecular interactions, how biological organisms work (14). The main premise points to studying each

component of a whole system, and then integrating this knowledge to predict the behaviour of the target

system. Thus, the major goal would be to create a comprehensive model that is able to explain the

functioning of the entire organism. This approach relies on experimental studies related to kinetic and

physico-chemical conclusions of the components, data regarding cellular responses to perturbations, the

construction of models for target organisms and the development of tools to analyse and represent these

models (14).

2.2 Metabolic Modelling

The metabolic modelling field is a crucial component in the realm of systems biology. Metabolic modelling

is integral to the systematic analysis of biological systems, offering profound insights into the intricate net-

work of metabolic pathways. It facilitates the prediction of metabolic phenotypes under various genetic and

environmental conditions (16). This is achieved by using mathematical models that represent the genes,

proteins, reactions, and metabolites of an organism, as well as the interactions between them. However,

such models are developed based on available experimental data and biological databases which may not

always be complete. Thus, it is common to find missing reactions in these models. Gap-filling is a com-

putational procedure that proposes the addition of reactions to genome-scale metabolic models, ensuring

these models are complete and interconnected. Such completeness is essential as models derived from

annotated genomes often lack fully connected metabolic networks due to unidentified enzymes (10). Fur-

thermore, understanding interactions, such as those between ageing and genetic variations that result in

disease phenotype, is essential. The use of model systems, like the mouse, has proven invaluable in study-

ing the relationship between ageing and metabolism, as well as the need for modelling these processes
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(17). The gap-filling process, especially in the context of non-model organisms, has been instrumental in

elucidating host-microbiota cooperation and understanding the metabolism of organisms (18).

2.2.1 Reconstruction of GEMs

Context

Metabolic models are partial or full mathematical representations of the metabolism of an organism (5;

19; 20). Since computational methods are used to perform these representations, they are known as in

silico representations. These models can integrate different data, including genome sequences, omics

data, and biochemical information found in biological databases (21). Furthermore, these models can

also be used to simulate metabolic fluxes for various systems-level metabolic studies (21).

The first GEM was reconstructed in 1999 for Haemophilus influenzae (22). Since then, with new meth-

ods, the rise of systems biology approaches and high-throughput technologies, many other reconstructions

have been made for different organisms (21).The cellular metabolism of an organism may be represented

by a set of metabolites, reactions and constraints in these GEM, which can be viewed as a fully functional

database (6; 23). These models describe a whole set of stoichiometry-based metabolic reactions of a

target organism based on information retrieved from the genome sequence and experimentally data (21).

Reconstructing a high-quality GEM is a complex and time-consuming process that can take months to

complete, depending on the complexity of the target organism, the level of model curation desired and

the tools used (24). The reconstruction process is well described in the literature (24; 25; 26). This

procedure has been simplified by many authors, and is typically divided into four main phases: genome

annotation, assembly of a metabolic network, conversion of the network into a stoichiometric model, and

model validation (8; 26; 24).

There is an alternative top-down approach to reconstructing Genome-Scale GEMs. This method fo-

cuses on understanding overall cellular behaviour before delving into specific components, utilising ad-

vanced omics technologies. By analysing these data, researchers reverse-engineer the metabolic network

based on observed cellular phenotypes (27). The top-down approach offers an alternative for GEM recon-

struction, allowing models to be built based on the observed behaviour of the system rather than relying

solely on genomic information. The choice between bottom-up and top-down approaches depends on the

available data, the characteristics of the target organism, and the research goals.
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Metabolic models as a computational representation

Metabolic models serve as computational representations that encapsulate the biochemical transforma-

tions occurring in a biological system. These representations are fundamentally grounded in the principles

of stoichiometry and are structured as directed bipartite graphs, facilitating the systematic analysis of bio-

logical systems by offering insights into the complex network of metabolic pathways (28). A prominent tool

in this field is COBRApy (29), a Python library that facilitates the analysis of metabolic networks through

structured representations of metabolic models, aiding in the prediction of metabolic phenotypes under

various genetic and environmental conditions (30; 31). This tool is highly utilised among different users,

and its integration with many other tools is vastly compatible.

Below, the essential aspects of how COBRApy (29) structures these representations:

Definitions:

G : Graph representing the metabolic model, G(V,E).

V : Set of vertices representing metabolites in the graph.

E : Set of edges representing reactions in the graph.

G′ : Set of genes, metadata linked with reactions.

C : Set of compartments, representing distinct subgraphs within G.

Attributes:

For each r ∈ E, there may be additional attributes, such as kcat (catalytic rate constant).

For each m ∈ V, there may be attributes, e.g., charge, formula, or compartment assignment.

For each g ∈ G′, there may be attributes related to gene expression or regulatory information.

Data Structures:

• Reactions: Defined as r = (sub, prod, lb, ub, genes), where:

sub : Set of substrate metabolites

prod : Set of product metabolites

lb, ub : Flux bounds as real numbers

genes : Associated genes

• Metabolites: Defined as m = (ID, formula, compartment).

7



• Genes: Linked with reactions, defined as g = (ID, reactions).

• Objective Function: Mathematically represented as:

obj =
∑
r∈R

cr × flux(r)

where cr is the coefficient of reaction r and flux(r) is the flux value.

Additionally, COBRApy (29) leverages Flux Balance Analysis (FBA) (32) to predict metabolic phenotypes

by computing genome-scale flux distributions that optimize a cellular fitness objective, typically the cellular

growth rate. This objective is modelled as a linear combination of synthesis rates of various biomass

components, such as amino acids and lipids, based on the constraints imposed on each metabolic flux,

allowing for efficient problem-solving through linear programming algorithms (33; 34).

Genome Annotation

To establish a foundational understanding of computational representations, the subsequent sections will

delve into the intricacies of reconstructing a GEM. Genome annotation involves two key steps: functional

annotation and structural annotation. Structural annotation identifies regions of Deoxyribonucleic Acid

(DNA) that encode protein products, various types of Ribonucleic Acids (RNAs), and other relevant fea-

tures (35). On the other hand, functional annotation provides insights into biological functions intrinsic

to the genome (35). Enzyme Comission (EC) (36) and Transporter Classification (TC) (37) numbers are

commonly employed to assign functions to enzymes and transport proteins in a standardized and objective

manner.

Obtaining genome annotations represents the initial step in the reconstruction of GEMs. Databases

such as Kyoto Encyclopedia of Genes and Genomes (KEGG) (38) and National Center for Biotechnology

Information (NCBI) (39) store this type of information. While quality annotations are crucial for an accurate

metabolic network representation (24), the high cost and time consumption associated with experimental

verification make bioinformatics methods the preferred approach. Various bioinformatics tools, including

gene-finding algorithms like GLIMMER (40) and AUGUSTUS (41), facilitate genome structural annotation.

In the absence of reliable functional annotation, sequence similarity alignment techniques such as

Basic Local Alignment Search Tool (BLAST) (42), HMMER (43), or DIAMOND (44) can be employed.

It’s important to note that the assignment of EC and TC numbers occurs throughout the annotation

process. While tools like merlin (2) enable semi-automatic or fully-automatic annotation, manual verifica-

tion becomes necessary during the reconstruction of a high-quality GEM. The accuracy of the model may
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be significantly impacted by incorrect annotations, potentially leading to the exclusion of certain reactions

and the emergence of gaps in the model (45; 46; 24).

Network assembly

The second step concerns the assembly of the metabolic network, which involves several minor steps. The

EC and TC numbers identified in the genome annotation may be used to access enzymatic and transport

reaction data from databases, such as KEGG (47) and BRENDA (48). Regarding the TC number, it can

also be used to retrieve transport reaction data from the The Transporter Classification Database (TCDB)

(49). The assemble of transport reactions directly from this database is not straightforward. Hence, it

is recommended to use a tool design for this purpose, like TranSyT (50) Information such as protein

names, EC and TC numbers, reaction identifiers, stoichiometric equations, reactants, and products, is

retrieved from a database and assembled together to generate a draft network. Spontaneous and non-

enzymatic reactions are added to complete the draft metabolic network using literature or databases. The

next task is to assign the reactions to the corresponding sub-cellular organelle. In case there are similar

reactions occurring in different compartments, it is needed to specify a fixed identifier corresponding to the

reaction and metabolite, for the respective compartment (24). This is particularly pertinent for complex

organisms, where higher complexity often entails an increased number of compartments. Knowledge of

protein location can be found in literature and databases, namely, UniProt (51) and BRENDA (48). Some

tools, including TargetP, (52), LocTree3 (53) and WoLF PSORT (54), use the sequence to predict the

sub-cellular compartment for enzymes.

Then, metabolic genes must be associated with proteins and reactions through Gene-Protein-Reaction

(GPR) associations, which are represented using boolean rules (AND/OR). Here the involvement of each

gene and its associated product is linked to biochemical reactions (55). The simplest case is when a

gene encodes a protein that catalyses a reaction. However, more complex GPRs can be found due to the

existence of isoenzymes, promiscuous enzymes, and protein complexes (24). The existence of these is

taken into account in the metabolic network, to assure the maximum depiction of reality (24; 55).

A number of procedures must be followed as a manual refinement process and curation, including the

specificity of the substrate and cofactors, mass balance, the reversibility of the reactions, stoichiometry and

gap-filling (24). Missing reactions, unidentified pathways, incorrectly and incompletely annotated genes,

promiscuous enzymes and underground metabolic pathways can all be found by gap-filling investigations

(4; 45).
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Conversion into a stoichiometric model

A reaction that represents the biomass formation must be created at this stage - equation 1 - this,

will characterise all biomass components that are known to be present in the organism. This reaction

characterises the contribution of the components to the cellular biomass. As a consequence, and because

macromolecules are associated with biomass components, the biosynthesis processes of these molecules

have to be included in the network (24).

equation 1 :

p∑
k=1

ckXk → Biomass,

where ck are the coefficients of the metabolites and Xk are the metabolites.

These components typically encompass DNA, RNA, lipids, proteins, carbohydrates, cell wall compo-

nents (if applicable) and cofactors. Other components can be added depending on the target organism.

The flux of this reaction indicates the organism’s growth rate (45). There is the necessity to experi-

mentally calculate the biomass of the organism under study, which is calculated for cells in the logarithmic

phase (24; 56). In cases the experimental data is not available, bioinformatics tools and literature can be

used to estimate the biomass instead. When this is not available, biomass composition from experiments

on closely related organisms may be used instead (57).

Since an organism usually has a high number of biomass components, the biomass reaction is often

split into several reactions representing the production and assembly of eachmacromolecule. For instance,

a reaction representing RNA formation is formulated as follows:

equation 2 :

aATP + bUTP + cGTP + dCTP → RNA+ sDiphosphate

where a, b, c, and d are the molar composition of each RNA component in mmol/gRNA, s is the sum

of a, b, c and d. The RNA metabolite is then included in the biomass main reaction.

A similar procedure is followed for the remaining macromolecules. The protein biosynthesis is repre-

sented using Transfer RNAs (tRNAs) charged with amino acids:

equation 3 :

20∑
k=1

ckXk → Protein+
20∑
k=1

ckYk + sH2O,
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where ck are the coefficients of the metabolites, s is the sum of the molar composition of all amino acids,

Xk are the aminoacyl-tRNA (tRNA charged with each amino acid), and Yk are the tRNAs not charged with

each amino acid.

The aminoacyl-tRNA biosynthesis occurs using Adenosine Triphosphate (ATP), a free tRNA, and the

specific amino acid:

equation 4 :

ATP + AA+ trna(AA) → AA− tRNA+ AMP +Diphosphate

where AA is an amino acid, trna(AA) is a free tRNA, and AA− tRNA is an aminoacyl-tRNA.

Growth-associated energy is often included in the biomass formulation to account for the energy that

the organism uses to produce biomass macromolecules. The growth-associated energy characterizes the

amount of ATP needed per gram of biomass produced (45). On the other hand, non-growth-associated

maintenance energy (e.g., pHmaintenance) has to be included in an ATP hydrolysis reaction. These energy

requirements can be found in literature or retrieved from experimental data. In the case of experiments,

attempts to plot ATP production against biomass growth rate, where y-intercept refers to non-growth associ-

ated maintenance and slope to growth associated maintenance (58). If this is not possible, this parameter

can be estimated by calculating the energy required for macromolecular synthesis or obtaining this data

from studies of related organisms (59; 24).

After formulating the biomass equation, the network can be converted into a stoichiometric model.

This process is accomplished through mathematical representations. Here, a steady state is assumed -

equation 5 - meaning the metabolite concentrations are constant and the consumption rates are equal

to the production rates of each metabolite.

equation 5 :

S · v = 0,

where S represents the stoichiometric matrix (rows for metabolites and columns for reactions) and v is

the flux vector.

In this context, the number of reactions is typically greater than the number of metabolites, meaning

that the system is indeterminate. To overcome this problem, it is necessary to reduce the set of possible

solutions, adding new constraints to the system (45). Constraints can be categorised as physico-chemical,

regulatory, topological and environmental conditions (60). Physiochemical and environmental constraints
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are the most used for GEMs (61; 62). The constraints, established within the network, define the minimum

andmaximum allowable flux for each reaction. This process sets bounds and contributes to a more defined

and realistic model.

Model validation

At this final phase, the model must be validated through comparison of in silico simulations with experi-

mental data. In cases where there is no agreement with experimental data, the steps mentioned above

should be revised, especially those with manual curations.

While the ultimate goal is to represent the totality of the metabolic reality for a given organism in

GEMs, it’s crucial to recognise the inherent challenges, especially for more complex organisms. Achieving

an exact representation of the entire metabolism may be challenging due to its complexity. Nevertheless,

the aspiration for very complex organisms remains to provide a comprehensive and accurate portrayal of

the organism’s metabolic behaviour under specific environmental conditions (63).

In order to ensure a robust and reliable model, biomass precursor production should be the main

target when simulating, and, at the same time, it is necessary to identify the missing metabolic functions.

The models developed until the moment, have had few rounds of refinement, so a well-employed validation

will probably identify inaccurate behaviours of our model that need to be rectified (64). As this process

is still a trial-and-error, in which the improvement of the developing model relies heavily on the knowledge

of its modeller (64), evaluations supported by simulations are very relevant, as it allows the model to be

improved by measuring its accuracy (25).

One way to validate a GEM is through the use of constraint-based methods, such as FBA (65). FBA is

a popular method that uses linear programming to identify the flux distributions that maintain the network

in a steady state (32). The FBA objective function is usually set to maximise the biomass reaction flux, as

this is often considered to be the biological objective of the cell (57). However, this objective function may

not be appropriate for all organisms, particularly for multicellular organisms that have different cell types

with specific objectives and functions.

Additionally, Parsimonious enzyme usage FBA (pFBA) (66) is an improved approach that considers

the selection of strains that minimise the production of enzymes and as a result, require the lowest overall

flux in the metabolic network. The Flux Variability Analysis (FVA) (67) further supports the suppression of

non-functional metabolic reactions, it usually is used to find the minimum and maximum flux for reactions

in the network (68). There are other algorithms that can be used to predict phenotypes with different

approaches, but FBA is the most widely used (32).
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Some of these methods can be employed to assist in the processes of gap-finding, leading to the

identification of new metabolic reactions and functions. However, the simultaneous identification of ”dead-

end” metabolites may require additional methods or a combination of approaches (7).

These simulations can be performed using tools like COBRApy (29) or OptFlux (69). If there is no

agreement with experimental data, the steps mentioned above should be revised. The model can be

saved in several different formats (e.g., .mat, .xlsx) but the Systems Biology Markup Language (SBML)

format is the standard file format for metabolic models (70). The SBML format ensures compatibility and

interoperability across different software platforms and tools, making it a preferred choice for researchers

in the field of systems biology (70).

2.2.2 Automatic Reconstruction of GEMs

The automatic reconstruction of GEMs is a powerful approach to the development of these. The main

reason for making these procedures automatic is to make the reconstruction much quicker, as opposed

to the manual one which consumes considerable time (21; 24). Another reason for the development of

automated GEM reconstruction methods is the availability of biological Big Data (71).

Furthermore, automatic GEM reconstruction can also be used to generate models for a large number of

organisms simultaneously, enabling large-scale analyses such as the reconstruction of models for the entire

human gut microbiome (72). This can provide valuable insights into the metabolic interactions between

different organisms within a community and can be used to identify potential targets for biotechnology

applications (73).

As mentioned, the traditional manual reconstruction of GEMs is a time-consuming procedure that

requires a large amount of data to be examined. To overcome this challenge, several software programs

have been developed for automatic GEM reconstruction - these tools automate various aspects of GEM

reconstruction - including the annotation of the genome sequence, the generation of GPR associations,

the prediction of reaction reversibility, and enzyme localization (74).

One of the early methods for automated GEM reconstruction was GEM System (75), which assigns

functions to genes in a target genome through homology and orthology searches against protein databases

and maps appropriate reactions to metabolic genes based on EC number matches to the KEGG (47)

pathway databases (76). AUTOGRAPH (77), another early method, uses published models as a template

and performs an ortholog search from a target genome to reference genomes to map genes and their GPR

associations (76). However, these early methods had limitations, such as producing nonfunctional models

that were incapable of simulating biomass production, and required significant additional manual curation
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to enable biomass production (76).

More recent and updated methods, such as merlin (78; 2), Pathway tools (79), CarveMe (80), Mod-

elSEED (81), and the RAVEN Toolbox (82), have improved upon the capabilities and outputs of early meth-

ods. These offer additional features, such as tools for the curation of annotations, sub-cellular localization

prediction, GPR generation, graphical interfaces and network refinement and evaluation (76; 83; 84). In

Table 1, it is possible to compare the availability of some features for these mentioned recent tools. Al-

though merlin (2) has different features, proving to be a robust tool and being widely used, it still does not

incorporate gap-filling solutions (2). Regarding the other mentioned tools, ModelSEED (81), integrates the

capability to generate draft models, perform automated gap-filling and evaluate the network reconstruc-

tion through flux balance analysis and phenotype datasets (84; 76). The KBaseversion of ModelSEED (81)

also has the capability for automated reconstruction of multiple models at once, allowing for extensive

analyses, such as the building of 8,000 central metabolism models for various microbial genomes. With

respect to RAVEN Toolbox (85), it provides methods for network visualisation and analysis in addition to

the network reconstruction tools and implements techniques for the prediction of sub-cellular localisation

of proteins; it also provides a MATLAB (86) package for easy use. Concerning CarveMe (80), it uses a

top-down approach to build single-species and community models in a fast and scalable manner, being

able to provide a complete automatic reconstruction of these models (80). The key features of Pathway

tools (79; 87) point to its flexibility for data integration, visualisation and analysis of biological systems

(87); however, it does not use compartmentalisation information, which could be important for simulating

the behaviour of metabolic pathways (88).
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Table 1: Availability of important features for automatic reconstruction tools; partially adapted from Capela

et al., 2022 (2)

Availability of features for automatic reconstruction tools

merlin (2) Pathway

tools (87)

CarveMe

(80)

ModelSEED

(81)

RAVEN Tool-

box (82)

Genome annotation yes yes yes yes yes

Compartmentalisation yes no yes yes yes

GPR generation yes yes yes yes yes

Transporters annotation yes yes yes yes no

Gap-filling no yes yes yes yes

Pathway visualisation yes yes no yes yes

Graphical interface yes yes no yes no

Despite the significant advancements in automated GEM reconstruction, there still remains a challenge

in evaluating the quality of automatically generated draft GEMs and automating the refinement procedure

(89). Draft models made with these tools need to be manually curated and refined (80; 90). This process

involves verifying the accuracy of parameters of biomass composition, reaction ratios, metabolite uptake,

and gap-filling of metabolic reactions based on experimental data (91; 90). Solutions such as memote

(92), a software program that assesses the quality of draft GEMs (21). It allows users to validate and

improve their metabolic models by running a series of tests and evaluating the model based on various

metrics such as the level of annotation of reactions, metabolites, and the consistency of stoichiometry

(92).

Merlin

merlin (2) is a user-friendly JavaTM application that automates the reconstruction of genome-scale metabolic

models for a wide range of organisms. It is designed to facilitate the transition from genome-scale data

to SBML (70) metabolic models, allowing the user to have a preliminary view of the biochemical network

(78). The reconstruction process performed by merlin (2) includes several steps, such as the functional

genomic annotations of the whole genome, the identification and annotation of genes encoding transport

proteins, the generation of transport reactions and the compartmentalisation of the model.

One of the key features of this tool is its ability to perform semi-automatic enzymatic (re-)annotation
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of an organism’s genome (78). merlin (2) also includes tools for the identification and annotation of

genes encoding transport proteins, as well as the generation of transport reactions for such carriers (93).

Additionally, it allows loading compartmentalisation information provided by tools, like PSORTb 3.0 (94),

LocTree3 (53) and WolfPSORT (54) (78).

All of these operations, together with a unique tool for determining GPR associations, allow performing

the main tasks required to obtain reliable models (2). The output of these tools is a set of reactions with

GPR rules, which can be edited and viewed by the user. Finally, merlin (2) allows exporting the model

in SBML (70) format, with MIRIAM (95) annotations, to make it easier for other applications to compare,

combine, and reuse the metabolic models (78). However, merlin (2) does not have a built-in gap-filling

feature. Nevertheless, it is possible to use other software tools in conjunction with it to perform gap-filling

on the models it generates. In the sense of using exclusively this tool, it would be necessary to manually

curate the metabolic network to fill the gaps in the network.

2.2.3 Gap-filling of metabolic models

A draft model, generated through automatic reconstructions, contains knowledge gaps (24; 96). Usually,

it is required the usage of algorithms to fill these gaps (1). This process converts the draft model into an

actual functional one. Orth and Palsson (2010) (97) already reviewed the classical algorithms for this, but

a few descriptions of these will be given further. The concept of gap-filling appeared with the first GEM

reconstructions (98). It involves adding missing metabolic reactions to an incomplete network, improving

its connectivity and allowing for more accurate refinement and evaluation (4). Furthermore, it becomes

possible, after a transformation of a draft model, to simulate biomass production for a specific growth

medium (99; 1). Using reference databases with information regarding metabolic reactions, it is possible

to deliberate additions of reactions to the network (1).

A gap-filling analysis leads to the inclusion of new reactions, unknown pathways, unannotated and

misannotated genes, as well as promiscuous enzymes and underground metabolic pathways (4). With the

increasing availability of high-throughput data for many organisms, gap-filling methods are likely to lead to

many discoveries in the future.

When adding missing metabolic functions to an incomplete GEM, it may create new gaps or allow

the model to perform functions that the target organism is unable to. For this reason, being prudent is

necessary at this stage. However, in some cases, gap-filling is necessary to guarantee the functionality

of the model, such as the synthesis of biomass precursors. It is generally recommended that a gap

reaction should not be added to the model if there is no information supporting its existence unless it is
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necessary for the model’s functionality. Manual curation of the results of gap-filling is usually needed to

obtain high-quality models (10).

There are many premises to address the gap-filling problem. Usually, it can be faced through the

network topology and genomic data, occupied by finding genes related to the missing reactions (9). Fur-

thermore, there is the requirement to minimise the difference between the model and experimental data

(9). Several methods were designed to tease out missing reactions within the draft models. Some of the

most popular algorithms are described further, however, these can be, generally, described in three main

steps (4; 9):

• Detecting gaps by identifying dead-end metabolites that cannot be produced or consumed, as well

as any discrepancies in the predictions of the draft model and experimental data;

• Suggesting changes to the model content by adding a set of reactions to fix the problems from the

previous step;

• Identifying the genes responsible for the gap-filled reactions.

Problem of gap-filling in automatic reconstructions

One of the main problems with automated gap-filling in metabolic network reconstruction tools is the

potential for adding false positive reactions (4). This can occur when the gap-filling algorithm adds a

reaction to the model that is not available in the actual metabolic network of the organism, which may lead

to incorrect predictions and can impair the overall accuracy and utility of the metabolic model (4). Another

problem relies on gap-filling algorithms adding reactions without robust genomics evidence to the models.

This can allow the model to perform a biological function that the organism is not able to do (4). To assess

the accuracy of gap-filling algorithms, benchmark tests are often conducted. These tests provide a way

to assess the accuracy and effectiveness of these algorithms by comparing the results of the gap-filled

metabolic network against experimental data (9).

Additionally, gap-filling methods are often computationally intensive, which can limit their applicability

and make them less practical to use on a large scale (32).

Gap-filling algorithms

Many tools have been developed to proceed with gap-filling on the metabolic networks (1), some of them

and their characterisation were summarised in Table 2. A few of these will be described in this section,

starting with the classical methods, and then the more recent and novel ones will also be slightly described.
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The classic algorithms for this purpose and orphan-filling include SMILEY (100), SEED (101; 102) and

ADOMETA (103; 104; 105). Regarding SMILEY (100), the first algorithm made for this intent, it uses linear

programming, identifying the minimum number of reactions needed to be added to a metabolic model

from a database of reactions, enabling a minimum defined growth rate to be achieved (106). Concerning

SEED (101; 102), it uses a subsystems approach and comparative genomics to find candidate genes for

orphan reactions. The last one to be mentioned is ADOMETA (103; 104; 105), which combines different

types of functional association evidence, such as gene co-expression and phylogenetic profiles, to identify

potential enzymes for orphan reactions (103; 104; 105).

Typically, algorithms for gap-filling or for filling dead-end reactions may utilise approaches based on

network topology (84) but also tackle the problem with other sources of information, using pre-defined

pathways (79) or phenotype data (107; 108; 109; 110). Over time, new algorithms were developed aiming

to increase the efficiency of detecting and filling the gaps; some of these are now being briefly described.

As such, FastGapFill (111) is a scalable algorithm that computes a near-minimal set of added reactions

for a model. For this algorithm, gap-filling is performed by optimising an objective function that minimises

the number of added reactions while ensuring that the model remains consistent with the constraints

(4). Another method, GLOBALFIT (112), identifies the minimal set of changes needed to correctly predict

experimental growth and non-growth, finds a globally optimal network, and considers all experiments and

all possible changes simultaneously. A novel tool, Meneco (1), solves this problem using Answer Set Pro-

gramming (ASP) (113) and considers reactions as achievable only if their reactants are available. As this

tool is considered very relevant and uses topological analysis, other aspects regarding its functioning are

described in the next section. As an example of new algorithms that utilise alternative mechanisms to find

missing reactions emerges GAUGE (3). It uses Flux Coupling Analysis (FCA) (114) to determine the rela-

tionships between metabolic genes and mixes it with a step, where the metabolic network is reconstructed

by adding a minimum number of reactions that minimise the discrepancy between the experimental data

and the predicted flux coupling relations (3; 4). Important to mention, BoostGAPFILL (9), combines topol-

ogy and constraint-based approaches to make predictions about missing reactions in a metabolic network.

The method uses matrix factorization models to complete a partial adjacency matrix derived from the in-

complete stoichiometric matrix, then formulates the selection of reactions from a universal database as

an integer least squares problem (9).
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Table 2: Tools for gap analysis and their different approaches; partially adapted fromHosseini andMarashi,

2017 (3)

Tools for gap-filling and their characterisation

Tool Approach for model Optimisation Strategy

inconsistency algorithm

GapFill (84) Topological MILPa Minimising added reactions

FastGapFill (111) Topological LPb, MILP Minimising added reactions

SIMLEY (100) Growth phenotype data MILP Minimising added reactions

FastGapFilling (115) Growth capability Heuristic, Maximising biomass flux,

using LP Minimising added reactions

Meneco (1) Topological ASPc Minimising added reactions

GAUGE (3) Flux coupling analysis MILP Minimising added reactions

minimalExtension (116) Converting nutrients Greedy Minimising added reactions

to target metabolites

BoostGAPFILL (9) Topological, ILSd Minimising added reactions

constraint-based

aMixed integer linear programming; bLinear programming; cAnswer set programming; dInteger least squares

2.2.4 Tools for Topological Gap-filling

Using constraint-based methods for gap-filling procedures may fall short in capturing the topological in-

formation of a given metabolic network (9). Topological characterisation of a metabolic network employs

edges to represent reactions and nodes to represent metabolites (117). This representation allows for the

analysis of metabolite producibility, dependent on the existence of a path in the network from precursor

metabolites to the target metabolite.

The producibility of a givenmetabolite refers to its capacity for synthesis from a set of precursor metabo-

lites through a series of metabolic reactions in the network. This concept is based on the presence of a

path in the network connecting precursor metabolites to a target metabolite, relying on enzymes catalysing

reactions along the path and the availability of precursor metabolites. Another method to determine pro-

ducibility involves stoichiometry, where linear constraints on fluxes through network reactions theoretically

enable metabolite production, concluded through linear programming and optimisation techniques (84).

When applied to gap-filling, the topological approachmay bemore robust and reliable than stoichiometric-
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based gap-filling (1). This is because it does not rely on specific concentrations of metabolites but rather

on the presence or absence of reactions and their connections in the network, offering greater resistance

to errors.

There are methods for gap-filling that purely rely on the topological aspect of metabolic networks and do

not require additional information. Classical methods reconstruct the network based on flux consistency,

namely GapFill (84) and FastGapFill (111). However, relying solely on topology may not guarantee the

resolution of dead-end metabolites.

Besides, other methods, such as BoostGAPFILL and Meneco (9; 1), consider the topological char-

acterisation of the metabolic network. Notably, Meneco will be emphasised due to its consideration of

topological features and, with its synergy with BioISO, the capacity to handle dead-end metabolites.

2.2.5 Meneco

Meneco is a computational tool designed to address the complex challenge of gap-filling in metabolic

networks, particularly those derived from recent investigations of complex organisms (1). Its distinctive-

ness relies on its ability to identify essential reactions in metabolic networks, especially when traditional

stoichiometric-based methods might falter.

Objective and Optimisation

In metabolic network reconstruction, the goal is to ensure that a set of target metabolites, denoted as M ,

can be synthesized from a set of available reactions, R. The producibility of a metabolite m from M

within the network can be represented as a binary function:

P (m) =

1 if m is producible from R

0 otherwise

The objective of gap-filling is often to identify a minimal set of reactions, ∆R, from a reference

database, such as MetaCyc (118) or KEGG (47), to ensure all metabolites in M become producible.

This optimisation problem can be formulated as:

Minimise |∆R|

Subject to P (M ∪∆M) = 1

Here, ∆M represents the set of previously non-producible metabolites, and the goal is to minimize

the number of reactions added from the reference database.
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Answer Set Programming

ASP stands as a robust declarative and non-monotonic logic programming paradigm, wielding significant

prowess in addressing intricate combinatorial challenges. ASP introduces a systematic and automated

framework for deriving solutions, herein termed ”answer sets,” that conform to meticulously defined logical

rules and constraints. Its application spans diverse domains, including artificial intelligence, knowledge

representation, and the burgeoning field of computational biology.

ASP embarks on the delineation of a given problem by articulating a set of logical axioms and con-

straints using a formally prescribed language. These axioms encapsulate the underlying logic, constraints,

and overarching objectives intrinsic to the problem at hand. The overarching aim is to ascertain one or

more answer sets, guided by the optimization of specific criteria.

Central tenets characterising ASP encompass:

• Declarative Nature: ASP affords problem solvers a lucid and concise avenue to articulate the

requisites and constraints intrinsic to the problem statement. This declarative prowess positions it

as an apt choice for tackling intricate problems characterized by intricate logical interplay.

• Non-Monotonic Reasoning: ASP excels in the realm of non-monotonic reasoning, rendering

it capable of accommodating scenarios where fresh information may necessitate revisions or aug-

mentations within the purview of answer sets. This adaptive trait becomes paramount when dealing

with dynamic and evolving problem landscapes.

• Automated Solvers: An array of efficient ASP solvers has arisen, dedicated to the automated

derivation of answer sets for a given problem instance. These solvers deploy sophisticated algo-

rithms to expedite the quest for solutions in an efficient manner.

Within the context of the Meneco (1) algorithm, ASP assumes a vital role, predominantly in the usage

of the get_minimal_completion_size method. This method harnesses the capabilities of ASP to

delineate a subset R′ ⊆ R that aligns with stringent criteria for the producibility of target metabolites.

ASP’s intrinsic capacity to handle intricate logical reasoning and optimisation renders it an apt choice for

this endeavour.

The get_minimal_completion_size method, ensconced within Meneco, orchestrates its mis-

sion with dual foci:

1. Producibility Mandate: For each target metabolite t extant within T , the method endeavors to

ensure the producibility of t via the amalgamation of reactions fromD andR′, accompanied by the
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seed metabolites S. This undertaking necessitates intricate logical scrutiny, unravelling the enigma

of optimal reaction combinations conducive to the producibility of all target metabolites.

2. Minimisation Directive: Concurrently, the method undertakes the task of minimising the car-

dinality of R′ (|R′|), driven by the aspiration to discern the most parsimonious set of reactions

requisite for the fulfilment of producibility prerequisites. This optimisation endeavour mandates the

curtailment of reaction count while steadfastly preserving the desired producibility outcomes.

However, this method only provides one of several possible solutions with the same size. This package

also includes methods to get all possible solutions for a given number of reactions.

Topological Approach

Meneco’s approach diverges from traditional methods by focusing on the network’s topology. For a given

metabolite m, its topological producibility is determined by the paths in the network leading to m. If no

such path exists, m is deemed non-producible. This topological producibility can be represented as a

matrix T where each entry Tij indicates the producibility of metabolite i using reaction j.

Draft Network and Gap-Filling

One of the primary challenges in metabolic network reconstruction is the presence of gaps, which are

reactions missing from the network that prevent the production of certain metabolites. Meneco addresses

this challenge by leveraging a draft network and a database of biochemical reactions to identify and fill

these gaps (1). Importantly, the tool ensures that the added reactions are biologically relevant and do not

introduce inconsistencies into the network.

Versatility and Systems Ecology

Meneco’s topological approach allows it to operate without the need for a biomass function or growth

simulations, making it suitable for networks of non-model organisms or those derived from metagenomics

data where such information might be lacking (1). Additionally, it has broader implications in systems

ecology. For instance, in a symbiotic relationship between two organisms with metabolic networksR1 and

R2, the combined producibility can be represented as:

Pcombined(M) = PR1(M) ∪ PR2(M)
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This represents the union of producible metabolites from both organisms, highlighting potential metabolic

complementarities in symbiotic relationships.

Known limitations of Meneco

While this is considered a powerful tool for metabolic network completion, it does present certain challenges

and limitations, especially when applied to organisms distantly related to common model organisms.

One of the primary challenges is the determination of the biomass reaction. Often borrowed from well-

established model organisms, this reaction might not encapsulate the unique characteristics of the studied

organism, particularly when dealing with extremophiles, where metabolic pathways may significantly differ

(119).

Furthermore, the identification of boundary compounds, dead-end metabolites (targets), and cofac-

tors becomes intricate. These elements might be challenging to characterise solely from experiments

or existing literature. This poses challenges, especially when considering the stoichiometric balance of

metabolic reactions. While score-based methods are commonly employed, they may be susceptible to

errors, particularly in cases where the stoichiometry is complex or not well-defined (120).

Meneco’s researchers acknowledge the potential for false positives in examples that generated hy-

potheses for algal-bacterial interactions. Ongoing experiments aim to validate these findings; however, 58

targets (70%) resulted in false positive outcomes. This underscores challenges such as missing gene an-

notations or erroneous assignments. Importantly, these difficulties underscore the necessity for cautious

interpretation and ongoing experimental validation to enhance the accuracy of predicted algal-bacterial

interactions.

The need for gap-filling techniques tailored for newly developed model organisms is evident, especially

for those with intricate evolutionary histories or those existing in extreme environments where phenotypic

data might be sparse (121).

Meneco’s approach to gap-filling, as described by Prigent et al. (1), is qualitative and combinatorial.

While it efficiently determines the bio-synthetic capacities of metabolic networks based on their topology, it

might not always capture the intricate complexities of metabolic interactions. This becomes evident when

compared with methods that offer a more integrative or quantitative perspective. This tool uses qualitative

constraints to express the producibility of metabolites based solely on the topology of themetabolic network.

However, this topological approach can sometimes overlook certain nuances. For example, databases

often do not precisely describe the species-specificity of cofactors in reactions or the stoichiometry of

reactions. Such omissions can lead to prediction errors for degraded metabolic networks when producing
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biomass (1). Furthermore, Meneco (1) defines the synthetic capability of a system concerning a set of

input compounds but excludes the self-production of a compound via cycles. This exclusion contrasts with

mass-balanced stoichiometric frameworks that allow such cycles. This difference can lead to discrepancies

in predictions when juxtaposed with methods that consider these cycles. Figure 1 illustrates the differences

between topology and stoichiometry-based producibility of compounds in a metabolic network. The Figure

is divided into three parts, each highlighting a specific aspect:

Figure 1: Comparison of topology and stoichiometry-based producibility of compounds in a metabolic net-

work. The figure highlights the differences in producibility criteria between Meneco’s topological approach

and a stoichiometric framework. Adapted from Prigent et al. (1).

• Part 1: This section illustrates the impact of stoichiometric coefficients on different definitions

of producibility. While all metabolites would be producible from the seed S using a topological

approach, the stoichiometric coefficient n plays a significant role in producibility when using a

(FBA)-based approach. For instance, to produce T1, an equal quantity of d and c is required. The

stoichiometric approach necessitates that n be twice the value of the stoichiometric coefficient of

b. Interestingly, if the objective function was solely formed by the reaction producing metabolite d,

n would need to be 1 for a stoichiometric perspective, whereas d would always be producible from

S in a topological approach.

• Part 2: This section demonstrates that while T2 can be produced according to graph-based

criteria, the accumulation constraint on f blocks its production in a balanced-mass stoichiometric
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framework. Conversely, k remains FBA-producible through a cycle involving j, k, and l, but it is

not producible according to graph-based criteria.

• Part 3: Here, the self-production of a compound via cycles is discussed. In metabolic networks,

cycles represent a series of reactions where an initial metabolite is regenerated, allowing for its

continuous production. For instance, in the context of Figure 1, the cycle involving j, k, and l

exemplifies this concept. Once initiated, such cycles can continuously produce compounds like T3

and T4. However, Meneco’s topological approach does not inherently recognise this self-sustaining

nature of cycles. Instead, it requires all inputs of a cycle, such as j, k, and l, to be independently

produced to initiate the cycle’s reactions. This perspective might overlook the potential of a network

to continuously produce compounds like T3 and T4 if they are part of a self-sustaining cycle. In

contrast, mass-balanced stoichiometric frameworks acknowledge the continuous operation of these

cycles. As long as the necessary stoichiometric conditions are met, compounds within a cycle, such

as T3 and T4, can be produced indefinitely. This difference in recognising the role of cycles leads

to the observed distinction in the producibility of T3 and T4 between Meneco’s approach and

stoichiometric frameworks, as depicted in the mentioned Figure.

Moreover, Meneco (1) employs the ASP paradigm to efficiently model the logic of bio-synthetic pro-

ducibility and solve the gap-filling problem as a combinatorial optimisation problem. However, due to the

parsimonious criteria used, Meneco (1) might miss certain reactions, especially those involved in cycles,

unless a metabolite from the cycle is added to the seeds. As a graph-based approach, Meneco (1) may

not always capture the intrinsic non-linearity of metabolic behaviours and flux imbalances, which are better

addressed by tools that consider the stoichiometry of metabolic reactions (1).

2.2.6 BioISO

BioISO is a computational tool designed to facilitate the objective-oriented curation of metabolic networks.

Leveraging a recursive relation-like algorithm grounded in FBA, it offers a targeted analysis of metabolic

networks, thereby enhancing the efficiency and effectiveness of the curation process. This tool stands

as a beacon in the evolving field of systems biology, bringing automation and efficiency to the process of

Genome-Scale Metabolic Models reconstruction (11).
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User Interface and Accessibility

BioISO offers a user-friendly interface accessible both as a python package, a web service, and a merlin

plugin, democratising metabolic network analysis for individuals without extensive computational back-

grounds. This feature facilitates a deeper understanding of metabolic network structures and functions

(11).

Objective-Oriented Approach in Metabolic Network Curation

Central to BioISO’s functionalities is the objective-oriented approach, which facilitates targeted and efficient

analysis of metabolic networks. This approach, grounded in the meticulous identification and analysis of

specific objectives within a metabolic network, aids in understanding the overarching functionality and

identifying potential gaps within a metabolic network (11).

BioISO (11) employs a recursive relation-like algorithm deeply anchored in the principles of FBA. This

algorithm constructs a hierarchical structure based on the metabolites and reactions associated with a

specific objective, offering insights into the metabolic network. The depth of BioISO (11), indicative of the

number of recursive calls executed, can be modulated to facilitate shallow, guided, or nearly exhaustive

searches, contingent on the metabolic network’s size and complexity (11).

Algorithmic Depth and Hierarchical Analysis

BioISO’s (11) recursive relation-like algorithm delineates the relationships between different metabolites

and reactions associated with a specified objective, constructing a hierarchical structure that visually rep-

resents the metabolic network. This detailed visualization aids in identifying potential areas of discontinuity

and gaps, pinpointing the precise areas requiring attention during the gap-filling process, thereby advanc-

ing the field of systems biology (11).

Identifying Targets and BioMeneco Integration

BioISO (11) excels in identifying targets within metabolic networks, a crucial step in understanding the

functionality and potential shortcomings of a metabolic network. This process is central to pinpointing

blocked reactions and dead-end metabolites, which are relevant for the development of high-quality GEMs

(11).

BioMeneco (11), a development that integrates BioISO (11) with Meneco (1), was conceived to explore

whether BioISO could enhance Meneco’s results by narrowing down the search space during the gap-

filling task. This integration leverages the power of answer set programming to find the most efficient
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completions of draft genome-scale metabolic networks, thus facilitating a more streamlined and efficient

gap-filling process. It aids researchers in constructing more accurate and complete metabolic networks,

enhancing the efficiency and effectiveness of the metabolic network reconstruction process (11).

During the validation process, specific reactions were removed from two different models to test the

system’s efficacy in suggesting potential solutions for restoring the models’ prediction of a growth pheno-

type based on BioISO’s suggestions for the set of targets, which served as the primary input for Meneco.

The results showcased that BioISO could facilitate high-quality bottom-up reconstructions by adjusting the

guided-search gap-filling tool Meneco, proposing BioMeneco as an iterative process comprising two sepa-

rate tasks: identifying the set of target metabolites not being produced or consumed (dead-endmetabolites)

using BioISO, and then running Meneco with the previously identified set of metabolites to obtain efficient

solutions for completing draft metabolic networks (11).
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Chapter 3

Materials and Methods

As previously emphasised in the State-of-the-art chapter, understanding the representation of a given net-

work is of great importance. The metabolic model, hypothetically denoted as M , is typically represented

as a graph. In this representation, nodes symbolise metabolites while directed edges depict reactions.

This structure allows for the application of graph-based analyses such as shortest path or connectivity

assessments, thereby aiding in the exploration and analysis of metabolic pathways.

Grasping the computational representation of metabolic models is central to this study. It not only fos-

ters a detailed analysis of metabolic pathways but also lays the groundwork for easily developing consistent

and efficient analyses of the metabolic networks. To facilitate this representation and further manipula-

tions, several modules were developed. Among them, the COBRApy module (29) was extensively utilised

for its robust capabilities in handling and analysing metabolic models.

This chapter delineates the materials and methods utilised in this study, highlighting the tools, meth-

ods, and modules that were indispensable in developing techniques aligned with the objectives of this

thesis.

Further sections in this chapter will delve into the specifics of the methodologies employed, the com-

putational tools utilised, and the analyses performed to achieve the objectives of this thesis.

3.1 Development of a Universal Model

The gap-filling with Meneco requires a database with reactions and metabolites in SBML format. This

often includes data from one or more biological databases, like MetaCyc or KEGG. For this work, the

KEGG database was used. This database was retrieved and filtered to remove undesired reactions and

compounds, like DNA biosynthesis reactions and glycans. Additionally, incomplete reactions were also

removed as they would introduce errors in the gap-filling. For instance, the reaction R08585 converts

chlorophyll a directly into chlorophyll b, ignoring the requirements for NADPH, oxygen, and phytyl diphos-
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phate. In total, 12 reactions were removed from the universal model. As KEGG reactions are all reversible

by default, the ”Correct reversibility” tool, available in merlin was used selecting ModelSEED as an infor-

mation source.

3.2 Developed Workflow

This section elucidates the workflow engineered for the integration of methods used in the gap-filling

process of genome-scale metabolic models. A significant feature of this workflow is the conjugation of

Meneco and BioISO methods, requiring an initial bridging of these frameworks followed by the formulation

of a novel set of methods to optimise the process. The primary aim of this workflow is to streamline the

gap-filling process, with a focus on enhancing computational efficiency and generating viable solutions

that identify a set of reactions capable of tackling the existing gaps.

The workflow requires the submission of a draft model by the user, as well as a configuration file. The

generation of a draft model for a specific organism can be accomplished with GEM reconstruction tools,

like merlin.

The workflow is structured to include various methods ensuring the derivation of optimal solutions. It

is organised into the following main phases 2

• Identification of seeds and targets: This phase involves identifying the seeds and target metabolites

which are crucial for the subsequent gap-filling process. The BioISO module is here utilised to

detect the targets.

• Replicating all reactions and metabolites in the universal model for each compartment of the draft

model

• Building a custom universal model: A custom universal model is created to encompass a specific

range of metabolic reactions and pathways related to the draft model.

• Evaluate reconstructable and unreconstructable Targets, and identify requirements for additional

seeds

• Running Meneco’s algorithm: Meneco’s algorithm is employed to suggest a set of reactions to fill

these gaps, thereby enhancing the completeness and accuracy of the model.

• Evaluating Meneco’s results with FBA and generate report
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Figure 2: Diagram illustrating an overview of the main phases of the Developed Workflow

3.2.1 User inputs

The workflow developed in this work requires two inputs from the user: a draft metabolic model in SBML

format, and a configuration file in JavaScript Object Notation (JSON) format (122). Figure 3 presents a

diagram with all major steps of the workflow. The subsequent sections detail the specificities of each step.

The draft model submitted by the user must be in SBML format. The model is read by COBRApy

(29) to allow easy reading, writing, and manipulation of the model. This approach not only enables users

to tailor the model’s parameters to their specific research needs without altering the core codebase but

also ensures that analyses can be easily shared, replicated, or modified under different conditions. The

simplicity of parameter specification is further enhanced by the configuration file.

For instance, consider the structure of the user-defined JSON file. An example of this file can be

accessed at the following link: ExampleSubmissionParameters.JSON. This file contains key parameters

that dictate how the metabolic model will be processed and analysed. The objective_function_id

(mandatory parameter) specifies the objective function of the metabolic model that the user intends to

refine through gap-filling (e.g., e_Biomass__cytop). This is crucial as it defines the primary metabolic
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activity or goal that the model aims to achieve, in this case, biomass production.

The sinks (optional parameter) section lists metabolites, which will be used as seeds. For each

metabolite listed here, a sink reaction will be generated. In this example, it includes C00002, which

represents ATP, for three different compartments, as well as glucose (C00031) in the cytoplasm. This

allows the user to easily add seeds to the model.

The compartments (optional) parameter enumerates the different cellular compartments present

in the model. It defines which compartments will be replicated in the universal model. This can be useful

if the user wants to do gap-filling in one particular compartment, or if it wants to ignore some of them

(e.g., extracellular environment). Thus, This is essential for compartmentalised models where reactions

and metabolites are segregated into distinct cellular locations. In the provided JSON example file, these

compartments include the cytoplasm (cytop), peroxisome (pero), chloroplast (chlo), mitochondria

(mito), endoplasmic reticulum (er), and Golgi apparatus (golg). By introducing this mechanism for

user-defined parameters, the methodology is transformed into a versatile instrument.

Another relevant input parameter is max_solutions (optional). This parameter delineates the max-

imum number of solution sets the algorithm should consider when identifying potential reactions to tackle

the gaps in the metabolic network. The rationale behind exploring multiple solutions is to mitigate the

inherent risk of relying solely on the minimal solution. While the minimal solution provides an efficient set

of reactions to produce the targets, it doesn’t guarantee success in every scenario. By examining multiple

solutions, the methodology increases the likelihood of identifying a set of reactions that successfully enable

biomass production.

3.2.2 Seeds and Targets identification

The identification of targets and seeds is crucial both to the results of the workflow and the required running

time. To perform such identification, the class Model was created. The source code of this implementation

can be found here.

Creating the Model instance

Although COBRApy provides several methods useful for manipulating metabolic models, the workflow de-

mands creating additional methods specific to the workflow. Thus, the Model class was created, inheriting

the cobra.Model class. The instances of this class act as the central entities for subsequent manipu-

lations and in-depth analyses of metabolic models. It not only encapsulates the entire metabolic network

but also offers a suite of methods that facilitate querying, modifications, and the identification of relevant
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Figure 3: Diagram illustrating the Model instance creation process

components for further gap-filling analysis and procedures. For a deeper dive into the source code, one

can refer to the model.py file available on the GitHub repository: link.

The instantiation process primarily requires two parameters: a ”cobra” model and the previously

discussed objective_function_id. During the initialisation phase, the object constructs both a reaction

pathway map and a metabolite pathway map. These maps are then integrated as attributes of the ob-

ject, providing a structured representation of the metabolic pathways and their interrelationships. This

structured representation is invaluable for subsequent analyses, ensuring that the relationships between

reactions, metabolites, and their associated pathways are easily accessible and well-defined.

Creation of sinks

Sinks are abstract reactions added to the model that allow for the removal or addition of specific metabo-

lites. They are essential for simulating open systems where certain compounds can freely enter or leave.

In the realm of metabolic modelling, the concept of an open system is crucial. In real-world biological

scenarios, organisms do not function in isolation. Certain metabolites can traverse cellular boundaries,

freely entering or exiting the system. To computationally capture this dynamic, emerges the concept of

sink reactions. These reactions, while not representing actual biological processes, serve as computational
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constructs that allow specific metabolites to be added or removed from the system without any constraints.

At the Model class, a method create_sink, is used to generate such sink reactions. It accepts

a metabolite’s identifier and, optionally, the rate limits for the sink reaction. By default, these bounds

are expansive, set to (-10000, 10000), ensuring a substantial potential for both influx and efflux of the

metabolite. The function constructs a reaction name by prefixing the metabolite ID with ”Sk_”. This

nomenclature ensures easy identification of sink reactions within the model. Subsequently, a new reaction

is instantiated involving the specified metabolite with a stoichiometry of -1, indicating the potential removal

of the metabolite. However, given the bi-directional nature of the bounds, the reaction also permits the

addition of the metabolite. Once established, the function assigns the specified bounds to the sink reaction

and returns it.

Creation of tRNA reactions

tRNAs are central to the process of protein synthesis, serving as the link between the mRNA sequence and

the corresponding amino acid sequence during translation (123). However, due to the approach used to

include protein biosynthesis in metabolic models, it is necessary to include sink reactions for tRNAs. The

method create_trnas_reactions at this file is designed to solve this problem, by checking if the

precursors for protein synthesis have been identified. If not, it calls the get_pre_precursors method

to retrieve them. Following this, it obtains the products associated with the precursor reactions for protein

synthesis using the get_products method.

This way it iterates through these products, identifying those that represent tRNAs - filtering out unre-

lated entities like water and the generic protein placeholder (”e-Protein”). For each tRNA identified, a sink

reaction is created within the model using the create_sink method. This step ensures that each tRNA

molecule is accounted for in the model.

Identification of Seeds

In metabolic networks, seeds, are foundational compounds that an organism can assimilate from its

environment. These compounds initiate various metabolic pathways, enabling the organism to synthesise

a diverse range of metabolites vital for its growth and sustenance. Recognising these seeds is pivotal as

they are fed into the gap-filling algorithm, Meneco (1), ensuring the algorithm is equipped with the requisite

information for precise prediction and gap-filling in the metabolic network.

The identify_seeds method, illustrated below, is crafted to pinpoint these seeds within the model.

The procedure entails iterating over the model’s boundary reactions, which typically signify exchanges

33

https://github.com/jcapels/gap_filling_dl/blob/gap_filler_model/src/gap_filling_dl/biomeneco/gapfiller.py


between the organism and its surroundings. For each boundary reaction, the method scrutinises its reac-

tants. If a reactant hasn’t been previously identified as a seed and the reaction’s lower bound is negative

(indicating potential uptake of the reactant), it is appended to the seeds list. The method culminates by

returning a list of tuples, each containing the ID and compartment of a seed metabolite.

# method to identify the seeds of a model

def identify_seeds(self) -> List[Tuple[str, str]]:

total_seeds = []

total_seeds_ids = []

for reaction in self.boundary:

for reactant in reaction.reactants:

if reactant.id not in total_seeds_ids and reaction.lower_bound < 0:

total_seeds.append((reactant.id, reactant.compartment))

total_seeds_ids.append(reactant.id)

return total_seeds

As highlighted in the Meneco (1) paper, there’s a recognised advantage in curating a seeds file that’s

augmented with additional seeds. In response to this, a new method concerning the identification of more

specific seeds for each identified target will be presented later in this document.

Targets Identification

In the workflow context, targets are compounds that are supposed to be produced by the organism (e.g.,

biomass components), but the metabolic network is not able to synthesise them. Identifying these targets

is essential as they can indicate incomplete or improperly annotated pathways and their presence can

affect the predictive accuracy of the metabolic model.

To discern these targets within themodel, the BioISO algorithmwas employed. Amethod, identify_targets,

was developed to automate this process and integrate it into the workflow. While there are some relevant

code snippets presented below, for a comprehensive understanding, it is recommended referring to the

full model.py file in our GitHub repository: link. Additionally, the BioISO repository can be accessed at:

link.

The method starts by setting the objective direction and the solver for the model. The objective can

be to either ’maximize’ or ’minimize’ the flux of a given reaction (in this case, the biomass reaction).

The solver can be GNU Linear Programming Kit (GLPK) (124), but it is recommended to use IBM ILOG

CPLEX Optimization Studio (CPLEX) (125) as it is more efficient (126). Upon setting these parameters, the

method invokes the BioISO algorithm on the model. The algorithm returns a tree structure that represents

34

https://github.com/jcapels/gap_filling_dl/blob/gap_filler_model/src/gap_filling_dl/biomeneco/model.py
https://github.com/BioSystemsUM/BioISO/tree/master


the metabolic network, providing a graphical representation of the metabolic pathways and their inter-

connections. This representation is crucial for understanding the structure of the network and identifying

potential dead-ends.

The BioISO instance is created with the objective function ID, the model itself, and the objective (either

’maximize’ or ’minimize’).

bio = BioISO(self.objective_function_id, self, objective)

bio.run(2, False)

The run method of the BioISO instance is then called to analyse the metabolic network up to two

levels deep. The algorithm returns a tree structure that represents the metabolic network. From this tree,

the developed method extracts potential target metabolites by accessing the next biomass components

from the root of the tree.

results = bio.get_tree()

biomass_components = results["M_root_M_root_M_root_product"]["next"]

Then, the method iterates over the biomass components, searching for metabolites with the role

”reactant”. This role is significant as it indicates that the metabolite is not consumed in any subsequent

reactions, making it a dead-end or target metabolite.

for biomass_component in biomass_components:

biomass_component_role = biomass_components[biomass_component].get("role")

...

This loop checks each biomass component to determine if it is a reactant and if it has not been

analysed already. If these conditions are met, the component is considered a target.

Once the potential targets are identified, they are saved in a list of tuples. Each tuple consists of the

identifier and the compartment of the target metabolite.

targets.append((biomass_components[biomass_component].get("identifier"),

biomass_components[biomass_component].get("compartment")))

This structured format ensures that the information about each target is preserved in a concise manner,

facilitating subsequent analyses and operations. The identify_targetsmethod ultimately returns this

list of targets, providing a clear overview of the dead-end metabolites in the metabolic network.

This comprehensive approach ensures a thorough identification of target metabolites, contributing to

the next steps of this workflow, in which a targets file will be utilised as input for Meneco’s algorithm.
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3.2.3 Developing a Custom Universal Model

Creation of the GapFiller instance

In this phase, subsequent to the construction of the seeds and targets models, an instance of GapFiller

is generated. The complete class can be explored in the gapfiller.py file, accessible through the

following link.

The from_folder method facilitates the automatic construction of this object, necessitating only

the folder path where the SBML (127) models are housed and a designated results path. This method

conducts a thorough search within the specified folder to locate the essential files (draft model, seeds and

targets files) ensuring their presence for the ensuing steps. Following this validation, the method proceeds

to read the draft model and commences the cloning of the universal model. During this reading phase,

it is crucial to refer to the accompanying diagram (Figure 4), which provides a visual representation of

the GapFiller instance creation process, offering clarity and aiding in understanding the intricate steps

involved.

Figure 4: Diagram illustrating the GapFiller instance creation process, including relevant steps such as

cloning the model with specified compartments, adding transport reactions, building the Custom Universal

Model, utilising Meneco for gap-filling, obtaining solutions, and generating reports.

This structured and systematic approach ensures the seamless creation of the GapFiller instance,
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laying a solid foundation for the subsequent stages of the metabolic network reconstruction, thereby con-

tributing to the efficiency and reliability of the overall process.

Cloning and Compartmentalisation of the Universal Model

The process of cloning and compartmentalising the model serves as a pivotal foundation, facilitating

extensive manipulation and analysis tailored to a hypothetical model under scrutiny. This ensures that the

universal model is meticulously adapted to the nuances and prerequisites of the hypothetical metabolic

model, paving the way for a more concentrated and pertinent analysis.

The clone_model method is invoked to engender a compartmentalised replica of the universal

model. This is realised by systematically iterating over each metabolite in the model and instantiating a new

entity for every compartment wherein the metabolite is found, as elucidated in the clone_metabolite

function code snippet below. Each cloned metabolite is bequeathed a distinct ID and compartment,

guaranteeing its unique identification within each compartment of the model.

def clone_metabolite(compartments, metabolites):

cloned_metabolites = []

for metabolite in metabolites:

for compartment in compartments:

cloned_metabolite = metabolite.copy()

cloned_metabolite.id = '__'.join(metabolite.id.split("__")[:-1]) +

'__' + compartment

cloned_metabolite.compartment = compartment

cloned_metabolites.append(cloned_metabolite)

return cloned_metabolites

Developing the Custom Universal Model per se

For the next phase, the build_custom_universal_model method is central. The reader may refer

to Figure 5 for a visual representation of this process. The method constructs the Custom Universal Model

per se, it commences by identifying certain pathways to ignore while initialising an empty list for pathways

to retain and creating a map of metabolite pathways.

The specifically chosen pathways to ignore include: ’Biosynthesis of secondary metabolites’, ’Microbial

metabolism in diverse environments’, ’Biosynthesis of cofactors’, ’Carbon metabolism’, and ’Fatty acid

metabolism’. These pathways are generally excluded due to their broad or non-specific nature. The

exclusion of these pathways is a strategic decision to enhance the focus and specificity of the custom
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Figure 5: Diagram illustrating the steps for developing the Custom Universal Model.

universal model. For instance, the ’Biosynthesis of secondary metabolites’ pathway encompasses a wide

range of diverse metabolic pathways, many of which may not be relevant to the specific metabolic network

under study. Ignoring such broad pathways allows the algorithm to concentrate on more specific and

relevant pathways. This refined focus not only improves efficiency but also effectively reduces the search

space, ensuring amore targeted and efficient approach. Similarly, pathways like ’Biosynthesis of cofactors’,

’Carbonmetabolism’, and ’Fatty acid metabolism’ are also excluded for their extensive and varied reactions,

which may not be applicable to the specific metabolic network being reconstructed. This selective exclusion

of pathways ensures that the custom universal model is constructed with reactions and metabolites that

are most relevant to the specific metabolic network, contributing to a more efficient and focused gap-

filling process. By excluding these generalised pathways, the algorithm is better positioned to hone in

on the more specific and relevant pathways, ensuring a more efficient and targeted search for reactions

that can effectively bridge the gaps in the metabolic network. The method then iterates over the targets’

metabolites. For each metabolite, it checks its presence in the universal model’s metabolite pathway

map. If present, the pathways related to the metabolite are added to the pathways to keep, enhancing

the specificity and relevance of the custom universal model to the metabolic network under study. After

determining the pathways to keep, the method updates them by removing the ignored pathways and

adding related pathways if they exist. It then updates the metabolite pathways map with related pathways,
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ensuring that the map only contains pathways that are relevant and specific to the metabolic network under

study. The method proceeds to identify the reactions to keep by iterating over the universal model’s groups

and reactions. It adds only those reactions that are part of the pathways to keep to the custom universal

model. This step ensures that the custom universal model only contains reactions that are relevant to the

specific metabolic network, contributing to a more efficient search space for the next step of this workflow.

Finally, the method writes the custom universal model as an SBML model in the specified folder path.

This step finalises the construction of the custom universal model, ensuring that it is ready for use in the

subsequent steps of the gap-filling process.

This procedure guarantees the creation of a universal model tailored to the specific metabolic network.

By ensuring only relevant reactions and metabolites are included, it streamlines the gap-filling process.

This refined model, referred to as the custom universal model, serves as the definitive file for the Meneco

(1) algorithm. It acts as the pool containing all potential reactions for solving our gap-filling problem for a

specific draft model.

3.2.4 Utilising the Meneco algorithm

Within the methodology of this research, the Meneco (1) algorithm is crucial for identifying potential

reactions to address the gap-filling problem in metabolic networks. The GapFiller object, equipped

with draft, seeds, and targets, facilitates the integration of Meneco. The developed methods within the

GapFiller class ensure the seamless operation of the entire process using Meneco’s algorithm as de-

picted in Figure 6. These processes are elaborated upon below. Important to mention again that the

GapFiller class implementation can be accessed at this link.

The run method is responsible for discerning unproducible targets within the draft network using the

get_unproducible method. The outcomes of this operation are both displayed and stored in the

unproducible variable for future reference.

To enhance the comprehensiveness of the analysis, the universal model (note that here the Cus-

tom Universal Model is being used), termed as repairnet at the code, is read from its SBML file.

This repairnet is then combined with the draft network, resulting in a combined network, named

at Meneco (1) as combinet. This combined network is then subjected to the get_unproducible

method to identify unreconstructable targets. The findings from this step are displayed and archived in the

never_producible variable. In scenarios where certain targets are deemed ’unreconstructable’, the

identify_additional_seeds method is invoked. This method is competent at expanding the seeds

list by identifying potential cofactors from pathways associated with unproducible metabolites. Following
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the identification and addition of these seeds, the seeds are re-read from the SBML file, and the combined

network is re-evaluated to discern any remaining unreconstructable targets.

The next phase involves distinguishing between reconstructable targets. This is achieved by sub-

tracting the set of unreconstructable targets from the unproducible targets. The outcomes of this oper-

ation are displayed and stored in the reconstructable_targets variable. With the targets clearly

determined, the get_minimal_completion_size method is invoked. This method’s objective is

to identify the smallest set of reactions that, when integrated into the draft model, would facilitate the

production of the reconstructable targets. The results of this operation are displayed and stored in the

minimal_completion variable.

To ensure a holistic solution, the get_optimal_completions method is used. This method ex-

plores multiple sets of reactions that can achieve the target, with the number of sets it should consider

being determined by the max_solutions input value.

Upon the completion of the gap-filling algorithm, the total time taken for its execution is displayed. The

identified reactions are then integrated into the model using the add_reactions_to_model method.

If a particular solution doesn’t lead to biomass production, the algorithm introduces demand reactions for

all the identified dead-ends in the metabolic network. These demand reactions simulate the consumption

or production of specific metabolites, potentially rectifying the inability to produce biomass. By dynamically

adding and pruning these demand reactions, the model can more effectively identify gaps in the metabolic

network and suggest appropriate reactions to fill these gaps, ensuring that the model remains biologically

relevant and avoiding unnecessary complexity.

The final phase involves the calculation of the growth rate of the model using the slim_optimize

method. If the optimisation yields a positive result, any redundant seeds and demands are pruned from

the model. A report of the whole process is then generated as a JSON file.
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Figure 6: Diagram illustrating the integration of Meneco’s algorithm with the developed methods to ensure

feasible final solutions.
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Report Structure

The structure of the reports generated after using the whole workflow (1) is presented below. These

reports are formatted in JSON, facilitating easy parsing and subsequent analysis. Each report offers a

comprehensive snapshot of the gap-filling process, detailing the files utilised, execution time, and the

reactions and metabolites involved.

• Title: A simple heading, ”Gap-filling report”, denotes the content of the report.

• Files Used: Specifies the files employed during the process, which include the model, seeds,

targets, and a custom universal model, each identified by their respective filenames.

• Execution Time: Captures the total duration, in seconds, taken for the algorithm’s execution.

• Artificial Removed Reactions: Enumerates any reactions that were artificially removed, provid-

ing their specific identifiers.

• Unproducible Targets: Lists the targets that remained unproducible, accompanied by their iden-

tifiers.

• Unreconstructable Targets: Details the targets that could not be reconstructed.

• Reconstructable Targets: Enumerates the targets that were successfully reconstructed, along

with their identifiers.

• Minimal Completion: Provides a list of reactions that were considered for the minimal completion

of the network.

• Additional Seeds: Enumerates any supplementary seeds identified during the process, subse-

quent to their initial recognition using the Model class.

• Essential Additional Seeds: These are the seeds that were deemed crucial for the metabolic

network’s functionality. They are identified after the initial seeds have been added and are essential

for ensuring that the model can produce its objective.

• Additional Demands: This section lists the demand reactions that were added to the model to

address dead ends. Demand reactions are pseudo-reactions that allow a specific metabolite to be

produced without being consumed elsewhere in the model. They are typically added to ensure that

all metabolites in the model have a clear path and can be produced or consumed as required.
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• Summary: Provides a succinct overview of the filled model. This section details the reactions and

their associated metabolites, the factors, and the flux values.

• Positive Solutions: Enumerates the solutions that successfully produce biomass when evaluated

using FBA. These solutions represent viable modifications to the metabolic model, ensuring that

the primary objective of biomass production is achieved. Each solution in this category has been

verified to enhance the model’s capability to simulate the desired metabolic activity.

This structured report provides a solid record, facilitating the examination and assessment of the gap-

filling procedure throughout the complete workflow, especially post-execution of the Meneco (1) algorithm.

3.2.5 Required and Generated Files and Their Significance

During the testing process, a series of files were generated, each holding significant value in understanding

and analysing the performance of the developed methods. Below, we delineate the role and importance

of each file:

• Metabolic Model File: This XML (128) file contains the structure of the metabolic model post the

introduction of artificial gaps. It serves as the primary file where the modified metabolic pathways

are stored, ready for analysis and testing.

• Seeds File: This XML file (128) houses the information pertaining to the seeds present in the

modified metabolic model. Seeds are essentially the starting points in the metabolic pathways, and

this file helps in understanding how the artificial gaps have influenced the initial points of these

pathways.

• Targets File: Similar to the seeds file, this XML (128) file contains data on the targets in the

metabolic model, which are the endpoints of the metabolic pathways. Analysing this file offers

insights into how the artificial gaps have affected the final products in the metabolic pathways. This

file is constructed after the gaps are introduced, gathering the targets related to the artificial gaps,

and providing a perspective on the potential impacts and the areas requiring attention.

• UniversalModel File: This file, formatted in XML (128), encapsulates the universal model derived

from KEGG. It plays a key role by providing a blueprint of universal metabolic pathways. Serving as

a foundational reference during both the testing and analysis phases, this file offers an exhaustive

overview of potential metabolic pathways. Furthermore, it encompasses all reactions catalogued in

the database, ensuring that users have access to the most up-to-date information.

43



• Universal Model Compartmentalised File: This XML (128) file houses a compartmentalised

version of the universal model, dividing it into distinct compartments representing different cellular

locations. This organisation aids in a more precise analysis during the gap-filling process. The file

lays the groundwork for constructing the next described file.

• Custom Universal Model File: This file holds the custom universal model created during the

workflow process. It originates from the universal model but contains only the reactions pertinent to

the pathways of the organism under study and the identified targets, serving as a tailored reference

point during the analysis for the gap-filling algorithm of Meneco (1) to have those reactions as

reference. This is the file used as input for Meneco’s algorithm, serving as a ”repair net”.

• Report File: This JSON file encapsulates a report generated after the gap-filling process. It con-

tains vital data. This structured report stands as a testament to the method’s efficacy, offering a

detailed insight into the outcomes of the gap-filling process and aiding researchers in analysing the

method’s performance.

Each of these files plays a crucial role in the testing framework, offering a deep insight into differ-

ent facets of the metabolic model and the performance of methods attached to the developed workflow.

They serve as rich resources for researchers aiming to delve deep into the intricacies of the method’s

performance.

3.3 Utilisation of Docker for Software Containerisation

In the present research, Docker (129), a widely used open-source platform, was employed to facilitate

the development and deployment of computational tools and services. Docker (129) utilises Operating

System (OS)-level virtualisation to deliver software in packages termed as containers. These containers

encapsulate the software within a comprehensive filesystem that encompasses everything requisite for its

operation, including the code, runtime, system tools, and system libraries. This approach ensures that

the software operates reliably and consistently across different computing environments by encapsulating

not only the application but also its dependencies and configurations within a container (130).

The Dockerfile script, crafted for this project and accessible via the following link: Dockerfile, delin-

eates the systematic procedure for configuring the Docker (129) container. The process initiates with the

designation of the Ubuntu 22.04 image as the foundational layer. Subsequently, essential project files

and software dependencies, inclusive of Python 3.10 and a variety of Python packages, are installed within
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the container. A significant step in the setup is the installation of the BioISO tool through a Git clone fol-

lowed by its setup using Python. Moreover, the CPLEX optimiser, a sophisticated solver for mathematical

programming, is integrated to facilitate optimisation routines pivotal in metabolic network analysis (131).

Within the utilities folder, several essential files are maintained to support the functioning of the system:

○ cofactors.json: A JSON file containing data on various cofactors involved in the metabolic path-

ways.

○ cplex_response.txt: A text file storing responses for the CPLEX optimiser during the installation

process.

○ cplex_studio2210.linux_x86_64.bin: The binary file is necessary for the installation and func-

tioning of the CPLEX optimiser in a Linux environment.

○ related_pathways_map.json: A JSON file holding the mapping information of related pathways,

facilitating the understanding and analysis of metabolic networks.

○ universal_model.xml: An Extensible Markup Language (XML) file representing the universal

model derived from KEGG (47), serving as a reference in metabolic network analyses.

The adoption of Docker (129) bestows several scientific advantages, enumerated as follows:

• Reproducibility: Docker (129) enhances the reproducibility of computational experiments by en-

capsulating the entire runtime environment, thereby ensuring uniform software behaviour across

diverse computing environments (132).

• Isolation: The platform offers an isolated environment for the software, safeguarding it from po-

tential conflicts with the system libraries of the host system and guaranteeing a pristine, controlled

environment for software operation.

• Portability: Docker (129) containers, renowned for their ease of sharing and deployment across

varied systems, foster collaboration and streamline the deployment process in disparate environ-

ments.

• Version Control: Docker (129) facilitates efficient tracking and management of updates and

alterations through its version control feature, enhancing the manageability of the environment.

Within the Dockerfile, the Python path is augmented to incorporate the source directory, and the

working directory in the container is designated as /workdir, thereby establishing a structured and
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organised workspace. Moreover, the container is configured to expose port 80, enabling communication

with the services operational within the container.

The utilisation of Docker (129) in this research not only streamlined the setup and deployment process

but also fostered a reproducible and controlled computational environment, which is pivotal in scientific

research to ensure the validity and reliability of the results.

3.4 Performance tests

To evaluate the performance of the workflow, which incorporated both Meneco’s (1) fastest method

(get_minimal_completion_size, code available here), BioISO and the developed methods, the

create_random_knockout_models function from the Model class available at this link was respon-

sible to produce artificial gaps. Leading to the creation of eight distinct test models, each characterised

by its unique set of artificial gaps. The random knockout models ranged between three to six induced

gaps, assuring no biomass production for each case. The diversity of these test models ensured a thor-

ough evaluation, encompassing a wide range of potential scenarios. The curated model of Streptococcus

pneumoniae R6, used for this study, was obtained from Dias et al., 2019. It can be accessed using the

following DOI: 10.3389/fmicb.2019.01283. The growth medium and additional pertinent details for this

model are available in the supplementary materials of the mentioned article.

In addition to the curated model, three draft models generated using merlin (2) were incorporated

into the testing framework. These draft models, inherently characterised by their gaps, served as ideal

candidates to challenge and validate the developed methods. Their inclusion ensured that the workflow

was tested not only against a refined model but also against models that are more representative of initial

draft reconstructions, which are often riddled with gaps and inconsistencies. Below is a brief description

of the organisms used.

• Lactococcus lactis: This Gram-positive bacterium is of great value to the dairy industry. Recog-

nised as a facultative anaerobic lactic acid bacterium, it thrives in environments devoid of oxygen,

playing an integral role in the fermentation processes of dairy products. Beyond its industrial appli-

cations, L. lactis has garnered attention in biotechnological research, especially for its capability to

produce bioactive peptides with health-enhancing attributes (133). Serving as a model organism,

it offers insights into the metabolic processes of lactic acid bacteria. The accession number is:

GCA_023343905.1

• Synechocystis sp.: This cyanobacterium is known for its photosynthetic capabilities. It is renowned
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for its ability to fix atmospheric nitrogen and has been studied for its potential in biofuel production

and carbon dioxide sequestration (134; 135). The metabolic pathways of Synechosystis are of

interest due to their unique photosynthetic capabilities and their potential role in sustainable energy

solutions (136). The accession number is: GCA_000009425.1

• Chlorella vulgaris: A freshwater greenmicroalgae known for its high protein content. It has also been

studied for its potential in biofuel production, wastewater treatment, and as a source of nutritional

supplements (137; 138). The metabolic pathways of C. vulgaris are of interest due to their ability

to produce lipids, which can be converted into biodiesel (134). The accession number for this

organism is: GCF_000009725.1

The aforementioned models were utilised to execute the developed workflow, as detailed in the preced-

ing sections of this chapter. All of these models were subsequently contrasted with the typical procedures

that rely solely on Meneco (1). In this context, the targets used were those associated with the biomass

reaction. Meanwhile, the input of seeds was those identified within the developed workflow. This approach

was taken because, without these seeds, the targets would not be reconstructable by the algorithm.

The hardware specifications used to run both of the workflows (the developed one under this study

and Meneco’s workflow) are as follows:

• Model: SUPERMICRO SYS-6049GP-TRT

• Processor: CPU INTEL XEON SILVER 4216 16C/32T 2.1GHZ 22MB LGA3647 (x2)

• Operating System: CentOS 8 Stable

• RAM: 251 GB

3.4.1 Case studies

As previously mentioned, the Streptococcus pneumoniae R6 model underwent artificial gap inductions,

resulting in the creation of eight distinct models. These models form a part of the case studies. In

addition to these, three other draft models were developed and are also included in the case studies. As

highlighted in the State-of-the-art chapter, several tools exist for the automatic reconstruction of a GEM.

However, these draft models often require further refinement and curation. In this work, merlin was the

primary tool employed for generating the models (2). merlin offers a suite of features, primarily as plugins,

to efficiently and swiftly produce these models. Detailed descriptions of these features have been provided
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earlier in this document. For a comprehensive understanding of each step, it is recommended to refer to

the GEM reconstruction-related sections in the State-of-the-art chapter. Below, the procedures undertaken

to generate the draft models for this study are succinctly outlined.

Genome annotation

The reconstruction process starts with the functional annotation of the genome, wherein the functions of

genes are predicted based on their sequences. For this research, DIAMOND, integrated within merlin (2),

was employed to identify homologous sequences. The homology search was performed against Swiss-Prot

using an e-value threshold of 1e−30.

Draft assembly

Following genome annotation, a draft metabolic network is constructed, serving as an initial version of

the GEM. During this phase, merlin assembles the metabolic network by associating the EC numbers

assigned before with their corresponding reactions. Reaction details, such as stoichiometry, and cofactors

are retrieved from KEGG (47). The reversibility was corrected using the merlin’s ”Correct reversibility” tool

with MODELSEED (139) as a template, and the transport reactions were predicted using TranSyT (50).

Additional simple diffusion transport reactions for water, oxygen, carbon dioxide, ammonia (and photons in

the case of Synechocystis sp. and C. vulgaris) were added to the models, as TranSyT does not automatically

include them. The subcellular location for L. lactis and Synechocystis sp., was predicted with PSORTb 3.0

(140), while for C. vulgaris LocTree 3 (53) was used. A biomass equation was retrieved from available GEMs

for each organism, as well as the respective growth media. This assembly process ensures that the draft

model is a comprehensive representation of the organism’s metabolic capabilities, albeit with potential

gaps or missing reactions. The biomass composition was retrieved from the publications (141; 142; 143).

A table representing the biomass composition for each organism is provided in Table S1. The parameter

”max_solutions” was fixed at 50 to limit the maximum number of completions provided by Meneco.

Gap-filling with Draft Models

Whilst the subsequent step in many workflows would be network curation, at this juncture, the model is

replete with gaps. These gaps highlight areas of the metabolic network that are not yet fully understood or

represented. The draft models are now primed for the gap-filling procedure, representing the importance

of generating these preliminary models under this study; these will be utilised in the subsequent stages of

the workflow, where the gap-filling designed and implemented methods will be applied. For all the models,
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the objective_function_id set in the JSON parameters file was e_Biomass__cytop.

The growth media for each organism, as detailed in Table S2, represents the specific metabolites

essential for their growth and metabolic activities. The value of 1000 in the table indicates the maximum

uptake rate of these compounds. This high value ensures that the uptake of a compound isn’t artificially

limited in preliminary models, especially when exact rates aren’t known.

• Lactococcus lactis: The draft model’s growth medium for this bacterium is notably enriched, fea-

turing a variety of amino acids such as L-Glutamate, Methionine, L-Arginine, and L-Valine. Addition-

ally, it incorporates vital metabolites like Adenine, Uracil, Cytosine, Guanine, Glucose, Water, and

Diphosphate, as detailed in Table S2. The deliberate exclusion of oxygen from its growth medium

aligns with its facultative anaerobic nature. The biomass equation, specifics of the growth medium,

and model parameters were derived from a well-established metabolic model (141). The model

predominantly focuses on a singular compartment, the cytop (cytoplasm), as reflected in the

parameters.

• Synechosystis sp.: The growth medium for this cyanobacterium’s draft model is primarily com-

posed of inorganic compounds, including Water, Proton, Sulfuric acid, Phosphate, Nitrate, Ferrous

ion, Carbon dioxide, Oxygen, and Ammonia, among others. This minimalist inorganic medium un-

derscores its capability to harness essential nutrients from rudimentary sources, complemented

by its photosynthetic prowess. The biomass equation, growth media, and model parameters

were informed by a pre-existing metabolic model (142). The biomass composition, which is de-

tailed in Table S1, reflects its unique metabolic capabilities. The model exclusively replicates

the cytop compartment and incorporates sinks for ACP (C00173__cytop) and tetrahydrofolate

(C00101__cytop).

• Chlorella vulgaris: The growth medium for this green microalga’s draft model encompasses Water,

Proton, Sulfuric acid, Phosphate, Ferrous ion, Carbon dioxide, Photon, Chloride, and other metabo-

lites, as elucidated in Table S2. This assortment of inorganic compounds mirrors its photosynthetic

attributes and its aquatic habitat. The biomass equation, growthmedia, andmodel parameters were

inspired by a previously published metabolic model (143). The workflow’s design involved cloning

multiple compartments: cytop (cytoplasm), pero (peroxisome), chlo (chloroplast), mito (mi-

tochondria), er (endoplasmic reticulum), and golg (Golgi apparatus). To account for certain

long- and very-long-chain fatty acids in the biomass whose synthesis pathways are not fully rep-

resented in KEGG, sinks were added. Specifically, the sinks added were: C06427__cytop,
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C06425__cytop, C01595__cytop, C08281__cytop, C16525__cytop, C16535__cytop,

C16537__cytop, C21944__cytop, and C00219__cytop.
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Chapter 4

Results and Discussion

4.1 Generated draft models overview

The models selected for this study represent a diverse set of organisms, each with its unique metabolic

distinctive characteristics, allowing to evaluate the workflow’s performance in different contexts. Table 3

shows a summary of the main statistics of the models used here.

To evaluate if the workflow is able to provide accurate solutions, the Streptococcus pneumoniae R6

model is a curated model retrieved from literature to which artificial gaps were introduced to simulate the

challenges typically associated with draft models. Then, the workflow was applied to real-case scenarios to

evaluate the efficiency of the developed workflow in comparison to a well-established approach that relies

solely on Meneco’s (1) workflow. Thus, three draft models were generated using merlin (2), namely for

Lactococcus lactis, Synechocystis sp., and Chlorella vulgaris. The forthcoming sections will delve deeper

into the specifics of our gap-filling process, highlighting the effectiveness of this workflow.

Table 3: Number of reactions, metabolites, genes, compartments and pathways of the models used as

subjects for the developed workflow. The S. pneumoniae R6 model is related to a high-quality published

GEM for this species, while the remaining ones refer to draft models developed in this work.

Organism model Reactions Metabolites Genes Compartments Pathways

Streptococcus pneumoniae R6 596 489 372 1 40

Lactococcus lactis 1285 1158 514 1 120

Synechocystis sp. 1455 1456 621 4 134

Chlorella vulgaris 6482 5984 1674 9 144

51



4.2 Performance test results: Developed Workflow

This section evaluates the performance of the workflow devised for predicting the minimal set required

for gap-filling across a range of models, as detailed in the preceding sections of this document. BioISO

was employed to identify the targets. Furthermore, Meneco (1) was harnessed to streamline the gap-

filling process, providing the algorithm to ascertain the minimal set. Particularly, the union of BioISO

(11) and Meneco leads to the term BioMeneco, as delineated by Cruz et al. (2021) (11), manifesting the

collaborative potency of these tools within our workflow.

Firstly, the seeds and targets identified by the workflow were evaluated. Subsequently, the custom

universal model is assessed, followed by an examination of the final solution derived fromMeneco’s results,

and the respective execution time. The subsequent subsections provide detailed results for each model

used to test the workflow, starting with a more independent analysis for the models with induced gaps for

the Streptococcus pneumoniae R6 model, followed by an evaluation of each draft model generated when

submitted to the whole workflow.

4.2.1 Induced Artificial Gaps

To allow evaluating the workflow’s performance and accuracy, random artificial gaps were introduced into

the Streptococcus pneumoniae R6model, resulting in eight distinct models: model_1 through model_8.

Table S3 offers an in-depth overview of these models, detailing the specific reactions removed to induce

the gaps.

This section provides an analysis of the identified seed and target metabolites, alongside other perti-

nent results from the workflow developed for the eight artificially-gapped models of Streptococcus pneu-

moniae R6. The identification of seeds and targets was successful in all models. A natural pattern is

the localisation of the majority of seed metabolites externally to the cell, while target metabolites were all

found within the cytoplasm for the Streptococcus pneumoniae R6. This distribution is coherent with the

explanation of the seeds and targets term meaning as previously discussed in this document.

In model_1, six target metabolites were identified within the cytoplasmic compartment, namely

monoglucosyldiglyceride (C04046), fatty acid (C00162), glycerol (C00116), phosphatidylglycerol (C00344),

cardiolipin (C05980) and diglucosyldiacylglycerol (C06040). After introducing artificial gaps thesemetabo-

lites cannot be produced. A detailed list of these metabolites is provided in Table S4. Similarly, for

model_2, seven target metabolites were identified (Table S5). The models model_3 to model_8 dis-

play a variety of target metabolites within the cytoplasmic compartment. The subtle modifications in each
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model lead to diverse metabolic outcomes, as seen in Tables S6 to S11. Glycerol (C00116) was identi-

fied as a target in all models. The reaction producing this compound in the original model (reaction ID

R07390_C3_cytop) is responsible for the production of cardiolipin from phosphatidylglycerol, releasing

glycerol. Since cardiolipin is a biomass component, and there are no reactions consuming this compound

other than the biomass reaction, the reaction R07390_C3_cytop can only have flux when all biomass

components are produced.

Table 4 shows a comprehensive summary of the results related to the final generated report for the

eight gapped models, offering an in-depth overview of the gap-filling properties and computational char-

acteristics of each model applied to the developed workflow. The table delineates the missing reactions

in the metabolic networks, those that were artificially removed, as well as the number of target metabo-

lites identified for each model. Reconstructable targets provide insights into potential refinements of the

model, indicating target metabolites that become producible upon the introduction of certain reactions

into the model. The term ”Minimal Completion Size” denotes the minimum number of reactions that

the algorithm identified as essential to ensure the producibility of the reconstructable target metabolites,

essentially representing the minimal solution found by the algorithm for the model to achieve a fully func-

tional metabolic network. The execution times for all these models were reasonably low. The growth rates

across most models were consistent and aligned with the original model’s growth rate of 1.21h−1, except

for model_4, which exhibited a reduced growth rate of 0.39h−1. Regarding the additional seeds, as men-

tioned in the Methods chapter, when a target is identified by the algorithm as unreconstructable, a method

developed will attempt to find new seeds in order to render this target as ”reconstructable”. All models

were gap-filled without needing for additional seeds or demands, as the number of reactions removed is

relatively low. Model_5 is the only exception, requiring NADP+ as a seed. This can be explained by the

absence of one artificially removed reaction (R01706) in the custom universal model, making the targets

unreconstructable. As explained previously, the workflow tries to add new seeds associated with cofactors

to allow the reconstructibility of the identified targets. This result indicates that filtering the universal model

with the pathways associated to the targets may lead to less accurate solutions in some extreme cases,

despite the reduction in the running time (results in further section).
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Table 4: Summary of results from the developed workflow when applied to artificially induced gap models

of eight Streptococcus pneumoniae R6 reaction knockouts.

Model Execution Growth rate Reca : Unrecb Minimal Essential Seeds

time (s) (h−1) Targets Completion Size and Demands

model_1 9.25 1.21 6:0 2 0

model_2 10.02 1.21 7:0 5 0

model_3 9.27 1.21 7:0 3 0

model_4 8.64 0.39 5:0 2 0

model_5 8.57 1.21 2:0 1 1

model_6 8.87 1.21 2:0 2 0

model_7 9.48 1.21 2:0 2 0

model_8 9.20 1.21 8:0 3 0

aReconstructable bUnreconstructable

Analysis of Minimal Set vs Removed Reactions

An important aspect of the workflow’s accuracy is the comparison between the reactions that were artifi-

cially removed and the reactions that the workflow suggests adding back to restore the model’s function-

ality. This comparison provides insights into the accuracy and precision of the workflow in identifying and

rectifying the artificially induced gaps.

As mentioned, for each model, a set of reactions was removed to introduce gaps, and the workflow

subsequently identified a set of reactions to be added (the minimal set) to restore the model’s functionality.

The reactions that match between the removed set and the minimal set indicate the workflow’s ability to

correctly identify and suggest the reintroduction of reactions that were artificially removed. Table 5 presents

the results of this comparison. For instance, in model_1, the workflow correctly identified R04428 for

addition, matching it with the reactions that were initially removed. Similarly, for model_2, the workflow

accurately identified R02029, R04968, and R01123. Particularly, in the case of model_2, within the ”all

completions” calculated, the reaction R04724 was also identified as a match. Regarding the remaining

models, model_3, model_4, model_5,model_6, model_7, and model_8, the workflow managed

to reproduce the same patterns in successfully identifying part of the removed reactions. Specifically,

for model_3, the workflow’s suggestions of R06447 and R04960 aligned with the reactions that were

removed. For model_4, the reaction R09381 was both removed and subsequently identified by the
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workflow to be added back. Model_6 had the accurate identification of R04377. In model_7, R01658

was correctly identified by the workflow. For model_8, both R09380 and R00416 were correctly identified

by the workflow.

However, it’s noteworthy that the number of reactions in the minimal set is often fewer than the number

of removed reactions. This discrepancy is expected, as not every removed reaction necessarily leads to

dead-ends in the metabolic network.

Additionally, the KEGG’s database characteristics lead to potential mismatches between the reactions

removed and the meneco result. For example, the reaction R04724 was artificially removed, and the

reaction R04725 was suggested to be added. These reactions belong to the ”Fatty acid biosynthesis”

pathway, and both convert trans-Dodec-2-enoyl-[acp] to Dodecanoyl-[acyl-carrier protein]. The difference

between the reactions relies on the cofactor utilisation: while R04724 uses NADH/NAD+, R04725 uses

NADPH/NADP+. Moreover, KEGG’s database occasionally combines multi-step reactions into a single

reaction or represents them as a set of individual reactions, each delineating a distinct step in the overall

process. Although this phenomenon was not observed in this specific case study, it is important to be

aware of this possibility. In these cases, the optimization algorithm will always choose the single reaction,

as it minimizes the number of added reactions.

Table 5: Comparison between artificially removed reactions and Workflow-Recommended additions for the

knockout models of Streptococcus pneumoniae R6.

Model Removed Reactions Minimal set

model_1 R00239, R04559, R02294, R03509, R04428* R04428*, R11104

model_2 R02029*, R04724, R02018, R04968*,

R01123*, R02323

R02029*, R01123*, R11104, R04725,

R04968*

model_3 R04426, R01773, R00803, R06447*, R02019,

R04960*

R07636, R06447*, R04960*

model_4 R09381*, R01715, R01061, R00260, R05068,

R00480

R00160, R09381*

model_5 R00104, R01706, R00239 R11104

model_6 R01397, R04377*, R10147 R00160, R04377*

model_7 R06863, R05069, R02295, R02569, R01658* R11104, R01658*

model_8 R09380*, R00416*, R02295, R00573,

R01220

R07636, R09380*, R00416*

∗ Matching reaction
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4.2.2 Draft models: Seeds and Targets identification

This section is related to the results of the step of identification of seeds and targets for the draft models

generated with merlin (2). Table 6 summarises the seeds and targets identified within the draft networks

of L. lactis, Synechocystis sp., and C. vulgaris.

The simplest case study with draft models refers to L. lactis model. The draft model of this species

has only the cytoplasm and extracellular environment, and the growth media contains a carbon source and

amino acids. Table S12 in the appendices offers a detailed overview of the identified seeds and targets

within the L. lactis metabolic model. This table classifies metabolites based on their respective compart-

ments and provides their associated metabolite IDs. These seeds span across cytoplasm and extracellular

space. Furthermore, specific target metabolites were identified within the cytoplasmic compartment, each

associated with various metabolic pathways. In total, were identified 47 seeds and 28 targets.

More detailed information is also available for Synechocystis sp. in Table S14. In total, 35 initial Seeds

were identified in the Synechocystis sp. metabolic model. Along the workflow, it was possible to identify

extra additional seeds. Regarding the targets, 42 dead-end metabolites were found within the cytoplasm.

The draft model of C. vulgaris is the most complex case study. As in Synechocystis sp, the media

for this algae only contains inorganic compounds. Since it is an eukaryotic organism, it presents several

subcellular compartments, including cytoplasm, mitochondria, chloroplast, endoplasmic reticulum, and

peroxisome, in addition to the extracellular space. Table S16 in the appendices provides a comprehensive

overview of the identified seeds and targets within the C. vulgaris metabolic model. This table classifies

metabolites based on their respective compartments and provides the number of identified metabolites

for each classification. Although most targets are located in the cytoplasm, the pigments (e.g., chlorophyll

a, β-carotene) were identified in the chloroplast, since they were introduced in the biomass reaction with

this compartment. In total, 43 seed metabolites were identified across multiple compartments and 47

target metabolites within the cytoplasm, chloroplast and endoplasmatic reticulum compartments in the C.

vulgaris model.

4.2.3 Draft Models: Custom Universal Model

This section delineates the results garnered from the construction of the custom universal model, as

explained in the Methods chapter. The universal model is a comprehensive representation encompassing
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Table 6: Summary of Seeds and Targets identified for the draft models of L. lactis, Synechocystis sp. and

C. vulgaris.

Model Total Seeds (Additional Seeds) Compartments Total Targets Compartments

Lactococcus lactis 47 (10) cytopa, extrb 28 cytop

Synechocystis sp. 54 (19) cytop, extr 42 cytop

Chlorella vulgaris 221 (144) cytop, extr, mitoc, 48 cytop, chlo, er

chlod, ere, perof

aCytoplasma bExtracellular cMitochondrion dChloroplast eEndoplasmic Reticulum fPeroxisome

almost all reactions, metabolites, and pathways within the KEGG’s database, encapsulating a total of 163

metabolic pathways. Shortly, a clone of the universal model is created, replicating the metabolites and

reactions to the compartments of the specific metabolic network under study. Then, demand reactions

are introduced to all KEGG metabolites that are only associated with one reaction. Transport reactions

are added to all targets between all internal compartments and the cytoplasm. Subsequently, a custom

universal model is built, filtering the pathways in the network associated with the previously identified

targets for the draft model. The core statistics pertaining to this process are succinctly presented in Table

7.

This compartmentalised model for L. lactis has a reaction count of 13,796, which is higher than the

Universal Model. This increase is attributed to the demand reactions that were added, as well as to the

transport reactions that were included in the model. The custom universal model, tailored specifically for

each draft model, comprises 11,730 reactions and 7,610 metabolites. This model narrows down the focus

to 100 metabolic pathways that are related to L. lactis’s metabolism and the previously identified targets.

The custom universal model for Synechocystis sp., as summarised in Table 7, includes 13,3796

reactions and 13,311metabolites distributed in one compartment. Although the draft model contains other

compartments (extracellular, periplasmic space, and thylakoid lumen), only the cytoplasm was considered

for the gap-filling, as these three compartments are associated with a low number of metabolic reactions.

The number of reactions in the custom and compartmentalised model is similar. Since the number of

targets in this species is high and includes biosynthesis of different biomass components (e.g., nucleotides,

amino acids, lipids), most KEGG pathways were kept in the model, leading to a high number of reactions

and metabolites.

The construction of the custom universal model for C. vulgaris involved filtering and honing the reac-

tions and pathways from the Universal Model to focus on those imperative to C. vulgaris. As illustrated
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in Table 7, the custom universal model encapsulates a total of 70,563 reactions spanning 106 metabolic

pathways within 6 compartments, marking a significant reduction from the Universal Model. This con-

struction and refinement process may validated through the decrement in the number of reactions, whilst

still retaining a comprehensive representation of the target metabolic processes. In the custom universal

model for C. Vulgaris, 225 transport reactions were added to address the gaps in the model. Given the

complexities of metabolic networks related to transport reactions, the solution used in this workflow shows

space for improvement. One possible solution is to use a database with transport reactions that can be

added to the universal model. Although KEGG presents transport reactions, this database has its limita-

tions in representing them, as only the most common reactions are present, and the retrieval from the

KEGG’s remote accession is different from the metabolic reactions. Another potential solution to further

enhance the model’s accuracy is to augment the data with information from other databases that present

a wide set of transport reactions, such as ModelSEED or TranSyT. Incorporating data from these databases

can provide a more robust view of the transport mechanisms, ensuring that the custom universal models

are not only accurate but also exhaustive in their representation of metabolic processes.

The process of curating custom universal models from the overarching Universal Model is a meticulous

endeavour aimed at honing the focus on pathways that are pertinent to the metabolic networks of the

specific organisms under study. This tailored approach facilitates a more nuanced and organism-specific

analysis, which is important for accurate gap-filling and subsequent metabolic reconstructions.

The reduction in the number of pathways in the custom universal models, as compared to the 163

pathways in the Universal Model, is a deliberate stratagem to shed the extraneous pathways that hold

little to no relevance to the organisms in question. This reduction is emblematic of a more focused

and streamlined model that accentuates the pathways integral to the metabolic networks of L. lactis,

Synechocystis sp., and C. vulgaris.

Overall, the tailored nature of each custom universal model is exemplified by its alignment with the

metabolic fragment of the network pertinent to the respective organisms. The Custom Universal Models for

L. lactis, Synechocystis sp., and C. vulgaris encapsulated with success the relevant pathways associated

with each draft model. Each of these models constitutes a focused subset of the extensive pathway repos-

itory present in the Universal Model, thereby showcasing a tailored approach to the metabolic specificities

of each organism.
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Table 7: Summary of the results on the development of the compartmentalised model and custom univer-

sal model for Lactococcus lactis, Synechocystis sp. and Chlorella vulgaris

Organism Model Reactions TRa Metabolites Compartments Pathways

- Universal Model 10530 - 8677 - 163

Lactococcus lactis Compartmentalised Model 13796 - 8665 1 163

Custom Universal Model 11730 0 7610 1 100

Synechocystis sp. Compartmentalised Model 13797 - 8667 1 163

Custom Universal Model 13311 0 8470 1 142

Chlorella vulgaris Compartmentalised Model 82728 - 51996 6 163

Custom Universal Model 70563 225 45624 6 106

aTransport Reactions

4.2.4 Evaluation of Workflow’s performance

The comparison of draft models for gap-filling under the developed workflow, presented in Table 8, shows

the effectiveness of this process in the three case studies. The table summarises crucial metrics, includ-

ing the number of reconstructable Targets, unreconstructable Targets, the number of inimal completion

reactions, and the corresponding execution time. These metrics are all available in the JSON-generated

report after the final workflow process.

For L. lactis, a total of 28 reconstructable Targets were identified, signifying the number of essential

metabolic processes that could be successfully restored. To achieve a Minimal Completion with 24 reac-

tions, the gap-filling algorithm necessitated an execution time of nearly 11 seconds. This demonstrates

the efficiency of Meneco’s algorithm when provided with well-established seeds, targets, and demand

reactions offered by the workflow. Regarding Synechocystis sp., exhibited a notably higher number of

reconstructable Targets, with all 42 targets successfully addressed. This suggests a more comprehensive

biomass composition for this organism, resulting in a Minimal Completion of 63 reactions. However, this

process took an amounting of approximately 69 minutes. This is related to the complexity and intricacy of

the metabolic pathways in Synechocystis sp. and to the growth media selected for each organism. Unlike

L. lactis, which has a medium enriched with glucose and amino acids, Synechocystis sp. relies predom-
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inantly on inorganic compounds, such as orthophosphate, nitrate, and sulfate. Thus, the cyanobacteria

require a more elaborate metabolic network to synthesise essential biomass components from inorganic

precursors. The reliance on inorganic materials means that Synechocystis sp. has to perform more com-

plex biochemical transformations, which in turn requires a larger number of reactions and pathways to

be considered during the gap-filling process. This intricacy is reflected in the extended execution time

of Meneco’s algorithm for Synechocystis sp. compared to L. lactis for both workflows in comparison at

Table 8 Similarly, C. vulgaris displayed a substantial number of reconstructable Targets, with 48 targets

successfully reconstructed. This relatively efficient gap-filling process led to a Minimal Completion of 47

reactions. The execution time for this model was around 47 min, reflecting more complexity related to

this metabolic network. For Synechocystis sp., the gap-filling process was more challenging. As this draft

model had fewer seeds identified compared to C. vulgaris, the Synechocystis seemed to be intrinsically

more ”gapped”, which led to a higher number of reactions at the minimal completion. Consequently,

the execution time for Synechocystis was significantly longer than that for C. vulgaris, taking almost 70

minutes for the developed workflow.

It’s essential to note that the growth rate values obtained, might seem unrealistic. This is because

the exchange fluxes weren’t limited, and this was not considered for sink reactions as well. However, the

primary focus here is to ensure that the growth rate value is greater than zero, indicating a viable network.

Furthermore, the developed workflow showed a growth rate greater than zero, while Meneco’s approach did

not. This discrepancy arises because the developed workflow incorporates demand reactions to address

the false positives issue associated with Meneco, as discussed in the State-of-the-art.

Table 8: Comparison between the developed workflow and the typical Meneco approach for Gap-Filling in

three utilised models, assessing Reconstructable Targets, Unreconstructable Targets, Minimal Completion

Reactions, Growth rate (h−1) and Execution Time (mm:ss:ms)

Workflow Model Reca : Unrecb Minimal Completion Growth rate Execution Time

Targets Reactions (h−1) (mm:ss:ms)

Developed Workflow

Lactococcus lactis 28:0 24 37.72 00:10:946

Synechocystis sp. 42:0 63 130.94 69:09:400

Chlorella vulgaris 48:0 47 204.76 46:32:294

Meneco’s Workflow

Lactococcus lactis 12:0 24 0.0 00:07:25

Synechocystis sp. 6:0 54 0.0 335:30:159

Chlorella vulgaris 7:0 42 0.0 60:03:481

aReconstructable bUnreconstructable
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In evaluating the gap-filling results from the developed workflow, detailed insights can be derived

from the appendices containing targeted and identified reactions for each model organism. This in-depth

analysis is essential to understand the specific metabolic pathways that have been impacted by the gap-

filling process.

For Lactococcus lactis, the appendices Tables S12 and S13 shed light on the reconstructable targets,

the additional seeds introduced, and the minimal set of reactions identified to fill the existing gaps in the

metabolic network.

On the other hand, Synechocystis sp. exhibits a robust metabolic model with all 42 targets successfully

addressed. Thus, a closer examination of Tables S14 and S15 reveals the specific reactions that were

identified to achieve this completeness in the metabolic model. The tables also display the additional

seeds which were crucial in realising the gap-filling objectives.

The analysis of C. vulgaris presented in Tables S16 and S17 offers an in-depth perspective on the

reconstructable targets, seeds and additional seeds, and demand reactions. A significant number of

additional seeds were necessitated for various compartments of the organism. The data also elucidates

how the gap-filling algorithm navigated throughmultiple compartments, such as the cytoplasm, chloroplast,

and endoplasmic reticulum, to ensure minimal completion. This suggests the presence of a more complex

metabolic network. Detailed insights about the suggested minimal completion can be found in Table S18.

Limitations of the developed workflow

Lastly, it’s imperative to acknowledge the limitations of this developed workflow. The first limitation is

associated with the base universal model reconstruction. As mentioned before, the KEGG database, while

extensive, presents a set of limitations for the purpose of this work. These include the presence of generic

metabolites and reactions, incomplete reactions, missing or partial biosynthetic pathways, and ambiguities

in reaction reversibility. The presence of generic compounds/reactions is not straightforward to solve, as

removing those elements would make the optimisation problem unsolvable. Incomplete reactions were

manually removed, solving this problem. However, a method to perform this task automatically must be

developed to prevent this issue in future KEGG updates. Although KEGG is a comprehensive and complete

biological database, it has deficiencies. Specifically, it presents incomplete pathways, particularly those

related to long-chain fatty acids and lipids in general. Furthermore, the database lacks a robust structural

definition for lipids. This shortcoming underscores the need for continuous refinement and expansion of

the database to ensure its relevance and applicability in diverse research contexts.

Finally, the reaction’s reversibility was corrected using the ModelSEED database. While ModelSEED is
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a robust and comprehensive resource, it is not immune to potential limitations. There might be occasions

when the database is not up-to-date, which can directly influence the outcomes of the workflow. For

instance, certain reactions might be inaccurately represented, especially in terms of their reversibility. Such

discrepancies can introduce challenges and uncertainties in the final results. Correcting the reversibility

of reactions with another database, such as MetaCyc, could potentially solve this issue. Furthermore,

while Meneco is a powerful tool for metabolic network completion, it has its limitations, as discussed in

the State-of-the-art chapter. Some of these limitations have been addressed in the developed workflow

through the development of specific methods. For example, some strategies were implemented to identify

additional seeds and incorporate demand reactions, thereby enhancing the capabilities of Meneco and

ensuring a more comprehensive and accurate gap-filling process. It is, therefore, crucial for users to be

aware of the ongoing updates and discussions related to the ModelSEED database, as highlighted in their

github repository, and to remain cognisant of the inherent challenges and solutions associated with tools

like Meneco.
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Chapter 5

Conclusions and Future Work

The research journey undertaken in this thesis was motivated by the pressing need for a more streamlined,

efficient, and comprehensive approach to metabolic network reconstruction. The developed workflow,

meticulously detailed in the preceding chapters, stands as a testament to the potential of harmoniously

integrating computational methodologies with biological databases, such as KEGG, and tools like BioISO

and Meneco.

When the results of the developed workflow are juxtaposed against the traditional Meneco approach,

the advancements and improvements become evident. The preliminary results suggest that the workflow

might possess the capability to handle a diverse array of organisms, ranging from the simpler metabolic

networks of L. lactis to more complex ones. This potential versatility of the workflow warrants further

exploration and validation. Besides, the observed efficiency in terms of time and computational resources

is promising, but it would be essential to validate these findings with broader datasets and scenarios.

However, no scientific endeavour is devoid of challenges. The limitations encountered, containing the

intricacies of the KEGG database and the inherent challenges of metabolic network reconstruction, were

not just obstacles but also learning opportunities. They underscored the importance of adaptability and

the need for continuous refinement in the realm of bioinformatics.

5.1 Future Directions

The developed workflow, while with significance, may offer several promising avenues to exploration:

1. Experimental Validation: The computational reconstructions, while robust, need to be anchored

in biological reality. Laboratory-based experiments can serve as the definitive benchmark, validating

the predictions and models generated by the workflow. Such validations would not only enhance

the trustworthiness of the workflow but also provide invaluable feedback for further refinement.
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2. Database synergy: Relying on a singular database, while effective, has its limitations. Integrating

multiple databases, such as MetaCyc, BiGG (144), could offer a more panoramic view of metabolic

pathways. Such integrations could mitigate the limitations of individual databases and provide a

richer fountain of information.

3. Algorithmic enhancements: The core of the workflow, the Meneco algorithm, was developed for

optimisation. Delving deeper into its intricacies, exploring alternative algorithms, or even enhancing

its current capabilities could lead to even faster execution times and heightened accuracy.

4. User-Centric development: To democratise access to the workflow, a user-friendly interface,

seamlessly integrated with merlin, would be invaluable. Such an interface would simplify data

input, facilitate real-time monitoring, and offer intuitive visualisation tools, making the workflow

accessible to a broader audience.

5. Broadening the horizon: The true test of the workflow’s adaptability would be its application to

a diverse array of organisms. Utilising the workflow beyond the organisms explored in this thesis

and testing the workflow on both simpler and more complex organisms could offer deeper insights

into its robustness and versatility.

5.2 Final Thoughts

The developed workflow represents decent progress in the domain of metabolic network reconstruction,

especially when compared with the conventional approach of Meneco. As the field of Bioinformatics and

Systems biology advance, methodologies and tools such as the one presented in this work become im-

perative for accurately aligning computational predictions with experimental biological data. While the

challenges in this field are multifaceted, they are paralleled by immense opportunities for innovative re-

search and groundbreaking discoveries. Looking forward, there is considerable potential for enhancing

the precision of these computational tools, deepening our comprehension of metabolic pathways, and

revealing novel scientific knowledge.
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Appendix A
Details of methods

A.1 Biomass composition for draft models

Table S1: Biomass composition of Lactococcus lactis, Synechocystis sp., and Chlorella vulgaris

Component Lactococcus lactis Synechosystis sp. Chlorella vulgaris

Proteins 46.0 51.0 66.0
DNA 2.3 3.1 1.0
RNA 10.0 17.0 2.0
Lipids 3.4 12.0 18.0
Carbohydrates 12.0 10.6 7.5
Cofactors – 6.3 1.0
Pigments – – 4.5
Lipoteichoic acids 8.0 – –
Peptidoglycan 11.8 – –
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A.2 Growth medium details for draft models

Table S2: Detailed comparative analysis of metabolite uptake rates in growth medium across three distinct
metabolic models: Lactococcus lactis, Synechosystis sp., and Chlorella vulgaris.

Metabolite Lactococcus lactis Synechosystis sp. Chlorella vulgaris

Adenine 1000.0 - -
Water 1000.0 1000.0 1000.0
L-Glutamate 1000.0 - -
Hypoxanthine 1000.0 - -
Uracil 1000.0 - -
Methionine 1000.0 - -
Proton 1000.0 1000.0 1000.0
Glucose 1000.0 - -
Cytosine 1000.0 - -
Xanthine 1000.0 - -
Guanine 1000.0 - -
Sulfate 1000.0 1000.0 1000.0
L-Arginine 1000.0 - -
L-Valine 1000.0 - -
Phosphate 1000.0 1000.0 1000.0
Nitrate - 1000.0 1000.0
Ferrous ion - 1000.0 1000.0
Carbon dioxide - 1000.0 1000.0
Magnesium cation - 1000.0 1000.0
Oxygen - 1000.0 1000.0
Sodium cation - 1000.0 1000.0
Ammonia - 1000.0 1000.0
Photon - 1000.0 1000.0
Chloride - 1000.0 1000.0
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Appendix B
Details of results

Details of results whose length would compromise the readability of the main text.

B.1 Streptococcus pneumoniae R6

B.1.1 Artificial gaps

Table S3: Details of the induced artificial gaps in the models of Streptococcus pneumoniae R6

Model id Number of gaps Removed Reactions id

model_1 5 R00239, R04559, R02294

R03509, R04428

model_2 6 R02029, R04724, R02018

R04968, R01123, R02323

model_3 6 R04426, R01773, R00803

R06447, R02019, R04960

model_4 6 R09381, R01715, R01061

R00260, R05068, R00480

model_5 3 R00104, R01706, R00239

model_6 3 R01397, R04377, R10147

model_7 5 R06863, R05069, R02295

R02569, R01658

model_8 5 R09380, R00416, R02295

R00573, R01220
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B.1.2 Targets and Seeds identified

Table S4: Seeds and Targets identified for model_1 of Streptococcus pneumoniae R6

Type of Metabolite Compartment Metabolite IDs

Seed

extrb

C00153, Biomass, C00123, C00407, C00243

C00042, C14818, C00255, C00079, C00469

C00064, C00134, C00059, C00492, C00750

C00062, C00253, C01762, C00288, C00188

C00041, C00033, C00147, C00007, C00073

C00011, C00392, C00159, C00097, C00135

C00001, C00864, C00025, C01613, C00022

C00014, C00080, C00124, C00242, C00047

C00058, C00140, C00065, C00078, C00250

C00262, C00049, C00037, C00504, C03089

C01330, C00120, C00114, C00378, C00027

C00266, C00148, C00082, C00089, C00009

C00106, C00152, C00186, C00122, C00183

cytopb C03089

Target cytop
C04046, C00162, C00116, C00344, C05980

C06040

aExtracellular bCytoplasm
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Table S5: Seeds and Targets identified for model_2 of Streptococcus pneumoniae R6

Type of Metabolite Compartment Metabolite IDs

Seed
extrb

C00059, C00001, C00011, C00064, C00082

C00255, C00022, C00504, C00027, C00492

C00135, C00025, C00079, C00864, C00116

C00065, C00120, C00267, C00242, C00033

C00058, C00080, C00186, C00037, C00188

C01330, C00407, C00250, Biomass, C00253

C00378, C00123, C00049, C00078, C00159

C00062, C00007, C00750, C00229, C00041

C00122, C00148, C14818, C00042, C00140

C00124, C00134, C00106, C00097, C00262

C00073, C00243, C00153, C00266, C00089

C01762, C00147, C03089, C00114, C00183

C00469, C00047, C00392, C01613, C00014

C00288, C00152, C00009

cytopa C00229, C03089

Target cytop
C06040, C00344, C04046, C05980, C00116

C00162, C11826

aExtracellular bCytoplasm
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Table S6: Seeds and Targets identified for model_3 of Streptococcus pneumoniae R6

Type of Metabolite Compartment Metabolite IDs

Seed
extra

C00122, C14818, C00011, C00378, C00134

C00001, C00253, C00124, C00097, C00042

C00188, C00120, C00504, C00750, C00255

C00243, C00073, C00159, C00014, C00250

C00116, C00047, C00059, C00079, C00140

C00082, C00025, C00049, C00407, C00266

C00027, C00022, C01762, C01330, C00062

C00153, C00007, C00064, C00135, C00183

C00186, C00392, C01613, C00114, C00492

C00033, Biomass, C00037, C00147, C00065

C00041, C00058, C00123, C00009, C00106

C00080, C00242, C00152, C00288, C00089

C00267, C00078, C00864, C00148, C00262

C00469

cytopb C03089, C00229

Target cytop
C00344, C00162, C05980, C06040, C11826

C04046, C00116

aExtracellular bCytoplasm
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Table S7: Seeds and Targets identified for model_4 of Streptococcus pneumoniae R6

Type of Metabolite Compartment Metabolite IDs

Seed extra

C00407, C01762, C00022, C00243, C00267

C00134, C00080, C00025, C00250, C00255

Biomass, C00392, C00120, C00116, C01613

C00097, C00037, C00188, C00042, C00001

C00152, C00492, C00062, C00183, C00288

C00159, C00027, C00242, C00009, C00135

C00140, C01330, C00049, C00033, C00082

C00253, C00864, C00262, C00065, C00114

C00504, C00266, C00007, C03089, C00059

C00106, C00011, C00378, C00078, C00122

C00147, C00750, C00469, C00148, C00073

C00123, C00186, C00079, C00041, C00153

C00058, C00014, C00124, C00089, C14818

C00064, C00047

cytopb C00229, C03089

Target cytop C05980, C06040, C04046, C00116, C00344

aExtracellular bCytoplasm

Table S8: Seeds and Targets identified for model_5 of Streptococcus pneumoniae R6

Type of Metabolite Compartment Metabolite IDs

Seed
extra

C00097, C00089, C00183, C14818, C00025

C00123, C00062, C00148, C00027, C00140

C00001, C00504, C00009, C00186, C00047

C00064, C00267, C00014, C01330, C00042

C03089, C00011, C00407, C00049, C00152

C00262, C00007, C00079, C00124, C00243

C00114, C00122, C00378, C00106, C00116

C00037, C00250, C00147, C00022, C01613

C00134, C00059, C00082, C00253, C00469

C00080, C00073, C00065, C00041, C00159

C00288, C00120, C00242, C00153, C00135

C00864, C00266, C00492, C00750, C00188

C00078, C00392, C00058, Biomass, C00033

C01762, C00255

Target cytopb C00116, C00006

aExtracellular bCytoplasm
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Table S9: Seeds and Targets identified for model_6 of Streptococcus pneumoniae R6

Type of Metabolite Compartment Metabolite IDs

Seed extra

C00188, C00492, C00079, C00120, C00152

C00082, C00378, C00065, C00058, C00147

C00041, C00007, C00186, C00049, C00864

C14818, C00253, C00059, C00750, C01613

C00392, C00504, C00140, C00124, C00135

C00242, C00469, C00148, C00266, C00153

C00288, C00262, C00243, C00025, C00122

C00106, C00159, C00255, C00134, C00022

C01762, C00097, C00089, C00037, C00042

C00123, C00033, C00267, C00114, C00001

C00073, C00064, C00183, C00009, C00078

C00407, Biomass, C01330, C03089, C00011

C00014, C00047, C00062, C00116, C00027

C00250, C00080

Target cytopb C00116, C06040

aExtracellular bCytoplasm

Table S10: Seeds and Targets identified for model_7 of Streptococcus pneumoniae R6

Type of Metabolite Compartment Metabolite IDs

Seed extra

C00114, Biomass, C00120, C00492, C00183

C00106, C00140, C03089, C00059, C00407

C00152, C00392, C00135, C00255, C00014

C00504, C00001, C00080, C00250, C00065

C00064, C00047, C00058, C00253, C00025

C00750, C00011, C00062, C00116, C00042

C00022, C00089, C00033, C00079, C00124

C00007, C00009, C00469, C00134, C00123

C00037, C00049, C00122, C14818, C00097

C00266, C01613, C00027, C01762, C00262

C00378, C00267, C00186, C01330, C00078

C00243, C00148, C00288, C00242, C00188

C00073, C00864, C00153, C00147, C00041

C00159, C00082

Target cytopb C11826, C00116

aExtracellular bCytoplasm
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Table S11: Seeds and Targets identified for model_8 of Streptococcus pneumoniae R6

Type of Metabolite Compartment Metabolite IDs

Seed extra

C01613, C00492, C00262, C00082, C00014

C00065, C00188, C00042, C00059, Biomass

C00140, C00120, C00049, C00080, C00106

C00073, C00134, C00001, C00255, C00378

C00114, C00392, C00407, C00186, C00079

C00504, C00123, C00122, C00116, C00183

C00288, C00253, C00047, C14818, C00007

C00750, C00243, C00242, C01330, C00147

C00097, C00037, C00022, C00009, C00011

C00124, C00152, C00135, C00033, C00064

C00078, C00025, C00058, C00089, C00250

C00153, C00267, C00229, C00469, C03089

C00864, C00041, C00027, C00159, C00062

C00148, C01762, C00266

Target cytopb
C04046, C00344, C06707, C06040, C00116

C05980, C00203, C11826

aExtracellular bCytoplasm
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B.2 Lactococcus lactis

B.2.1 Targets and Seeds identified

Table S12: Seeds and Targets metabolites identified for L. Lactis under the process of the developed
workflow

Type of Metabolite Compartment Metabolite IDs

Seeds

cytopa

C01645, C01653, C00999, C01651, C00787

C00004, C00019, C00005, C01640, C00016

C00010, C01643, C01639, C01649, C01636

C01642, C01648, C01638, C01647, C01644

C01652, C00028, C01646, C01635, C00229

C00003, C01637, C00030

extrb
C00013, C00031, C00009, C00262, C00147

C00062, C00106, C00073, C00080, C00242

C00183, C00385, C00380, C00059

Targets cytop

C01931, C02992, C03125, C02047, C02839

C02412, C00459, C05980, C00286, C03127

C02553, C00131, C00458, C02988, C02282

C03402, C06040, C00886, C02702, LTAala_LLA

C03512, dtdp6dm, C00344, C02984, C03511

C04046

aCytoplasm bExtracellular
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B.2.2 Gap-filling report

Table S13: Results related to All Completions, Additional Seeds, and Additional Demands for L. Lactis
present at the Gap-filling Report

All Completions Reaction ID Compartment

R01715, R02689, R02027, R01071, R02788, R11719
R04377, R00149, R11323, R03314, R02735, R12939 cytopa

R06447, R04467, R01213, R02029, R10052, R09381
R10431, R03245, R05553, R03652, R02030, R08633

Additional Demands ID Compartment

C05928, C06149, C21615, C11838 cytop

Additional Seeds ID Compartment

C00004, C00229, C01352, C00005, C00010 cytop
C00173, C00019, C00006, C00003, C00016

aCytoplasm
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B.3 Synechocystis sp.

B.3.1 Targets and Seeds identified

Table S14: Seeds and Targets information for Synechocystis sp.

Type of Metabolite Compartment Metabolite IDs

Seeds

cytopa

C00787, C01644, C01638, C01653, C00205

C01649, C01643, C00011, C01651, C01640

C00007, C00244, C01647, C01650, C00003

C00080, C00031, C01645, C01636, C00001

C01642, C01646, C00009, C01639, C01635

extrb
C00305, C00059, C14818, C01330

C01648

Targets cytop

C00010, C02412, C02163, C00255, C00004

C00016, C00019, C00063, C00344, C00051

C00061, C02430, C02839, C02553, C00002

C02282, C02702, C03402, C02988, C00131

C03511, C13508, C00458, C04932, C00390

C00286, C00032, C00075, C06037, C00044

C00459, C00005, C03125, C02047, C03512

C00378, C04315, C00018, C00369, C01931

C02987, C00422

aCytoplasm bExtracellular
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B.3.2 Gap-filling report

Table S15: Results related to Minimal Completion and Additional Seeds for Synechosystis sp. draft model
present at the Gap-filling Report

Minimal Completion Reactions ID Compartment

R04953, R04964, R00351, R01801, R00479, R00894
R04725, R11634, R00671, R02029, R03652, R01626
R01072, R04549, R04536, R12026, R02110, R10711
R04550, R01964, R11633, R02100, R02421, R01826
R02251, R00123, R11636, R01130, R04958, R09489
R04606, R03145, R01728, R08553, R04566, R01373 cytopa

R04955, R04534, R10987, R04430, R06867, R04533
R04509, R04474, R07613, R04961, R00548, R01071
R01866, R00310, R10088, R00451, R04037, R00667
R01213, R11080, R01200, R04469, R03165, R12150

R00578, R04035

Additional Seeds ID Compartment

C00138, C15603, C02745, C00126, C00399, C00390
C03024, C00028, C00030, C00010, C01352, C00016 cytop
C00006, C00019, C00005, C00003, C00061, C00004

C15602

aCytoplasm

B.4 Chlorella vulgaris

B.4.1 Targets and Seeds identified

Table S16: Metabolite Information for Chlorella vulgaris

Type of metabolite Compartment Number of metabolites

Seed

cytopa 25
extrb 12
mitoc 3
erd 2
chloe 1

Target
cytop 32
chlo 11
er 4

aCytoplasm bExtracellular cMitochondria dEndoplasmic Reticulum eChloroplast
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B.4.2 Gap-filling report

Table S17: Results related to Minimal Completion and Additional Seeds for C. Vulgaris draft model present
at the Gap-filling Report

Target Metabolite ID Compartment Reconstructable

C03512, C00378, C00002, C00286, C00369
C00120, C00131, C00029, C00935, C02839
C00255, C00010, C00458, C00003, C00459 cytopa Yes
C03511, C02702, C00032, C00005, C02094
C00052, C06098, C00096, C00101, C05307
C00190, C00568, C00019, C00061, C00063

C03692, C00390, C00075, C00044

C08601, C08606, C00344, C05433, C13508 chlob Yes
C05306, C08614, C06037

C00350, C00422, C00157, C01194 erc Yes

Number of additional seeds Compartment

20 cytop
12 er
12 golgd

12 peroe

12 chlo
12 mitof

Essential additional seeds and demands Compartment

Skg_C00219, Sk_C16535, Sk_C02869, Sk_C00004, Sk_C08281
Sk_C16537, Sk_C06425, Sk_C01595, Sk_C21944, Sk_C15602 cytop

Sk_C02745, Sk_C00016, Sk_C00010, Sk_C16525, DMh_C04051
DM_C22288, DM_C04425 Sk_C15603, DM_C15596

Sk_C03024, DM_C03161 chlo

aCytoplasm bChloroplast cEndoplasmic Reticulum dGolgi Apparatus ePeroxisome fMitochondria gSink reaction hDemand reaction



Table S18: Minimal set of reactions identified at the final gap-filling report for C. Vulgaris

Reaction ID Compartment Reaction Type

R11636, R08159, R03332, R05553, R00936,

R01406, R02421, R02814, R09450, R00310,

R07531, R11633, R06963, R10123, R06867,

R09069, R03084, R08162, R07764, R04861, cytopa Metabolic
R01078, R03182, R08163, R01473, R03013,

R12026, R03314, R12757, R07511, R10711,

R11634, R04470, R04509, R07377, R01716,

R01870, R09655

R10070, R06963, R07531, R02421, R09069, chloa Metabolic
R06948, R04470

R03332 erc Metabolic

T_C06037, T_C13508, T_C05307, T_C00344, chlo-to-cytopa,b Transport
T_C05433, T_C06098, T_C02094

aCytoplasm bChloroplast cEndoplasmic Reticulum
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