
University of Minho
School of Engineering

Luís Filipe Cruz Sobral

Simulation of epidemic protocols

november 2023

University of Minho
School of Engineering

Luís Filipe Cruz Sobral

Simulation of epidemic protocols

Masters Dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
Ricardo Manuel Pereira Vilaça

november 2023

Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

License granted to users of this work:

CC BY

https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Ricardo Manuel Pereira Vilaça, for his

unwavering support and mentorship during the entire research process. Ricardo’s expertise, wisdom,

and dedication played a key role in shaping the direction and success of this study. His insightful feedback

and constructive criticism have been instrumental in refining the content and methodology of this article.

Furthermore, I wish to thank INESC TEC for providing the necessary resources, facilities, and funding

to make this research possible. Without their support, this project would not have been achievable.

Finally, I am deeply grateful to my friends and family for their encouragement and understanding during

the often-demanding phases of this research. Their unwavering support has been a constant source of

motivation and strength. Their belief in my abilities and willingness to stand by my side through the

challenges and triumphs are priceless.

In particular, I want to thank my parents for their continuous support and dedication, and for providing

everything I needed to be successful. Your individual efforts have made a profound impact on my work.

This article stands as a testament to the collective effort and commitment of these individuals and

entities. Thank you for making this research journey a rewarding and instructive experience.

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para

a Ciência e a Tecnologia, within project LA/P/0063/2020.

ii

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, Braga, november 2023

Luís Filipe Cruz Sobral

iii

Abstract

We live in a digital era, in a world connected by technology. The incredible capabilities of our mobile

phones and computers let us communicate and get data from all over the globe, in the instance of a

millisecond. However, technological progress doesn’t stop. We persist in looking for faster connections,

innovative applications and platforms, more efficient, scalable, and resilient. Distributed systems are the

fundamental basis driving this progress in several scientific and industry fields. Epidemic protocols are

crucial to ensure efficient data dissemination on these systems, providing fault tolerance, scalability, and

availability. Its relevance grows as networks become more dynamic and distributed, playing a main role in

ensuring the reliability and efficient operation of these systems.

Progress is not possible without studies and experimental evaluation of proposed algorithms. Although,

as they are projected to systems compromising millions of nodes and processes, these studies are almost

impossible at this scale, so most rely on simulation. Discrete-event simulation is one of the major experi-

mental methodologies in several scientific and engineering domains. The used simulator is often seen as

a technical detail, and many researchers develop their custom tool. Simulation tools vary in complexity

and application, catering to a wide range of industries and research domains. The choice of a specific tool

depends on the nature of the simulation, the problem being addressed, and the preferences and expertise

of the user.

In this dissertation, we present, analyze, and compare a set of selected simulation tools, to choose

the one that better fits epidemic protocol simulations in P2P systems. After choosing the most adequate

simulation tool, we defined a generic simulation framework for epidemic protocols, and implementations

of two different peer sampling services and one dissemination protocol. Leveraging this framework, we

perform a extensive evaluation of the different protocols.

Keywords Distributed and Parallel Computing, Discrete-Event Simulation, Epidemic protocols, Peer

Sampling Service, Performance, Scalability

iv

Resumo

Atualmente, vivemos na era digital, num mundo conectado pela tecnologia onde os nossos telemóveis

e computadores pessoais possuem capacidades incríveis que nos permite, em milésimas de segundo,

comunicar e obter informações vindas dos 4 cantos domundo. No entanto, o avanço tecnológico não para,

continuamos incessantemente à procura de conexões mais rápidas, aplicações e plataformas inovadoras,

mais eficientes, mais escaláveis e mais resilientes. Os sistemas distribuidos são a base fundamental que

impulsiona todo este avanço em diversas áreas da ciência e da indústria. Os protocolos epidémicos são

essenciais para garantir a disseminação eficaz de informações nestes sistemas, fornecendo tolerância a

falhas, escalabilidade e disponibilidade. A sua importância cresce à medida que as redes se tornam mais

dinâmicas e distribuídas, desempenhando um papel crítico em garantir a confiabilidade e o funcionamento

eficaz desses sistemas.

O avanço não é possível sem o estudo e avaliação experimental de novos algoritmos e protocolos.

Porém, sendo estes projetados para sistemas distribuídos compostos por milhões de nós e processos,

é quase impossível testá-los a esta escala, por isso a sua maioria depende da simulação. A simulação

por eventos é uma das principais metodologias experimentais no domínio da ciência e da engenharia.

Temos à nossa disposição várias ferramentas de simulação que variam na sua complexidade e areas de

aplicação. Contudo nem sempre é fácil escolher a ferramenta mais adequada e muitos investigadores

acabam por desenvolver o seu próprio simulador.

Nesta dissertação, apresentamos, analisamos e comparamos um conjunto de ferramentas de sim-

ulação selecionadas, de modo a escolher a ferramenta que melhor se adequa à simulação de proto-

colos epidémicos. Após escolher a ferramenta mais adequada, definimos uma framework de simulação

genérica, e implementação de 2 serviços de amostragem de nós e um protocolo epidémico. Aproveitando

esta framework, realizamos uma avaliação extensiva dos diferentes protocolos

Palavras-chave Computação Distribuída e Paralela, Simulação por eventos, Protocolos epidémicos,

Serviço de amostragem de nós, Performance, Escalabilidade

v

Contents

List of Acronyms x

1 Introduction 1

1.1 Problem . 2

1.2 Objectives . 2

1.3 Results . 3

1.4 Structure . 3

2 State of the Art 5

2.1 Discrete-Event Simulation . 5

2.1.1 Parallel Discrete-Event Simulation . 8

2.2 Simulation tools . 8

2.2.1 SimPy . 8

2.2.2 Simulus . 9

2.2.3 SimGrid . 10

2.2.4 Simian . 10

2.3 Gossip protocols . 11

2.3.1 Peer Sampling Service . 12

2.3.2 Dissemination Protocol - PlumTree . 15

2.3.3 Metrics . 17

2.4 Generic Gossip Frameworks . 18

2.4.1 GossipKit . 18

2.4.2 LUNES . 18

2.5 Discussion . 19

3 Simulators scalability evaluation 20

vi

3.1 PlumTree implementation . 20

3.1.1 Data . 21

3.1.2 Messages . 22

3.1.3 Overlay . 22

3.1.4 Simulus . 22

3.1.5 SimPy . 24

3.1.6 Simian . 26

3.2 Evaluation . 27

3.2.1 Experimental Settings . 27

3.2.2 Results . 27

4 Simulation Model 37

4.1 Architecture . 38

4.2 Implementation . 39

4.2.1 Peer Sampling Service . 39

4.2.2 Dissemination Protocol . 43

4.2.3 Metrics . 44

4.3 Evaluation . 44

4.3.1 Experimental settings . 45

4.3.2 Graph properties . 46

4.3.3 Scalability . 49

4.3.4 Failure recovery . 52

5 Conclusions 56

vii

List of Figures

1 Layered View of DES . 6

2 PlumTree architecture . 16

3 Results for: Lookahead-0.1s Distance:100 Seed:10 28

4 Results for distance = 75 . 30

5 Results for distance = 125 . 31

6 Results for lookahead = 0.3s . 32

7 Results for seed = 123 . 33

8 Results - cluster 114 and 119 . 34

9 Simian results: Sequential vs MPI versions . 36

10 Architecture . 38

11 Reliability . 46

12 Scalability - single sender . 49

13 Scalability - multiple sender . 50

14 Scalability - RMR . 51

15 Scalability - Memory usage . 52

16 Initial failure rate . 53

17 Final failure rate . 54

viii

List of Tables

1 Properties - Multiple Senders . 47

2 Properties - Single Sender . 48

ix

Acronyms

DES Discrete-event simulation. 1, 3, 5, 6, 56

HPV HyParView. 47, 48, 50, 51, 52, 53, 54

LDH Last delivery hop. 17, 46, 47, 48, 51

MPI Message-Passing Interface. 8, 10, 35

P2P Peer-to-peer. iv, 2, 6, 18, 19, 20, 56

PDES Parallel Discrete-event simulation. 8, 35

RMR Relative message redundancy. 17, 47, 51

SPMD Single Program Multiple Data. 8, 10

TCP Transmission Control Protocol. 13, 14, 39, 40, 41, 43, 49, 52, 53, 54

x

Chapter 1

Introduction

Nowadays, parallel and distributed computing platforms have a huge importance in a wide range of contexts

and applications. You can see it on telephone or computer networks, multiplayer online games, virtual

reality, aircraft control systems, peer-to-peer applications, and many other platforms.

High-performance computing (HPC) has played a significant role in consuming and driving these

platforms. Commodity clusters, built from off-the-shelf computers linked together through switches, have

been employed in a wide range of scientific and engineering fields. Moreover, there are ongoing discussions

about developing exascale systems with millions of processing cores [1]. Distributed applications and

platforms have also seen an increase in popularity in the peer-to-peer and volunteer computing areas.

At the same time, with the impressive capacities of our personal computers and the speed of personal

Internet connections, the biggest challenges have emerged. Some of the most relevant ones include

resource management, application scheduling, data management, decentralized algorithms, electrical

power management, fault tolerance, scalability, and performance.

Studying parallel and distributed applications and platforms sometimes requires empirical evaluation

of proposed algorithms. Gossip protocols, in particular, have been used in large-scale data centers [2] and

blockchains and are known for their efficiency, scalability, and simplicity. Researchers from the Peer-to-Peer

(P2P) community aim at constituting distributed systems comprising millions of processes collaborating

to a common goal. Studies on real systems became nearly impossible at this scale, so most rely on

simulation.

Discrete-event simulation (DES) [3] is one of the main experimental methodologies in several

scientific and engineering domains. Parallel Discrete Event Simulation (PDES) [4] has been a very active

research field for at least three decades to surpass speed and size limitations.

1

1.1 Problem

In the context of Peer-to-peer (P2P) protocols, most studies rely on simulation. Scalability is considered

one of the major quality metrics, although most of the discrete event simulators remain single-threaded

and none of the mainstream P2P simulators allow Parallel Simulation.

Many factors can influence the performance of a gossip protocol, including the network topology, the

rate at which messages are transmitted, and the rules for deciding which messages to forward. A discrete

event simulation can help explore the algorithm’s behavior under different conditions and optimize its

performance.

The used simulator is often seen as a technical detail, and many researchers develop their custom

tool. Simulation tools vary in complexity and application, catering to a wide range of industries and re-

search domains. The choice of a specific tool depends on the nature of the simulation, the problem being

addressed, and the preferences and expertise of the user.

Gossip simulation models provide a practical way to gain insights into the behavior of massive dis-

tributed systems and to test various strategies and protocols.

1.2 Objectives

This thesis aims to design and build a flexible simulation model for gossip protocols capable of generating

accurate results for different real scenarios. This model should take into account the scalability, perfor-

mance, and fault tolerance required by this type of protocols. Some main objectives we pretend to achieve

are:

• Evaluation of the main simulation tools. Choose 3 or 4 simulation tools and make a theoretical and

empirical evaluation to select the one that better fits epidemic protocol simulation in peer-to-peer

systems.

• Build a generic simulation model for gossip protocols using a suitable simulation platform. Select

2 peer sampling services and a dissemination protocol to implement.

• Test and compare the produced work with other existing solutions, in a suitable environment.

• Experimental evaluation and possible optimization of the proposed simulation model. Choose some

main metrics to help explain the obtained results.

2

1.3 Results

As a result of this work, we obtained a benchmark to compare simulation tools that better suit epidemic

protocols simulation, focused on scalability, memory usage efficiency, and CPU usage. This comparison

considers a description of a gossip protocol implementation on each simulator in terms of the main diffi-

culties, features, and code size and, then, an analysis of the results produced by several simulations under

different settings.

Taking into account the mentioned benchmarking results, we designed a generic simulation model for

epidemic protocols and implemented 2 peer sampling services and one dissemination protocol. This re-

sulted in an empirical evaluation and analysis of these two combinations considering several configuration

settings, and different membership and recovery strategies.

All implementations are available on https://github.com/luissobral4/EpidemicSimulationModels.

1.4 Structure

The following chapters compose this work: Chapter 1 - Introduction, Chapter 2 - State of the Art,

Chapter 3 - Simulators scalability evaluation, Chapter 4 - Simulation model, and Chapter 5 - Con-

clusions and Future Work.

State of art, Chapter 2, introduces the Discrete-event simulation (DES) and associated paradigms.

Describes existing simulation tools, their main features, advantages, and disadvantages. Explains gossip

protocols and peer sampling services, highlighting their relevance and giving some examples. Finally, we

present some Generic Gossip Frameworks.

Simulators scalability evaluation, Chapter 3, focuses on implementing the PlumTree protocol on 3

chosen simulation tools, considering some main questions related to data, communication, time, and

the overlay. Additionally, we present and analyze the results obtained from several simulations of these

implementations.

Simulation model, Chapter 4, considers the benchmarking results obtained to develop a more specific

model using a suitable simulation tool. This model implements 2 selected peer sampling services to com-

bine with the PlumTree gossip protocol and get comparative results. We provide an exhaustive explanation

of both implementations and the metrics used in their evaluation. Ultimately, we ran several simulations

and presented a detailed analysis, considering different configuration settings and distinct membership

and recovery strategies. This evaluation was divided into 3 phases: graph properties, scalability, and

3

https://github.com/luissobral4/EpidemicSimulationModels

failure recovery.

Finally, Conclusions, Chapter 5, presents a conclusion about the developed work and provided results,

also mentioning some considerations for future work.

4

Chapter 2

State of the Art

This chapter summarizes and presents the findings of our literature review for simulation models and

gossip protocols. This work plays a significant role in this dissertation. To improve and surpass the current

problems, it’s required to choose the simulation tool that best suits gossip protocols in terms of scalability,

performance, and other valuable evaluation metrics.

2.1 Discrete-Event Simulation

Discrete-event simulation (DES) [3] is a method used to model real-world systems as a discrete se-

quence of events in time. DES is used to model and analyze the behavior of systems that operate in a

discrete event-driven mode. The system’s progress is represented by a sequence of events that occur at

specific times or orders. Each event corresponds to a change in the system state and may trigger other

events to occur. Between consecutive events, there is no change in the system.

A Discrete-event simulation model is implemented using computer software, which allows the model

to be run and the results to be analyzed and visualized. Many distinct tools and approaches for building

and running discrete-event simulations are available, ranging from specialized simulation languages and

software packages to general-purpose programming languages.

Discrete-event simulation is often used to study the behavior of complex systems that are difficult to

analyze or experiment on real systems. It can provide insight into the performance of a system under

different conditions and help optimize its design or operation.

5

Figure 1: Layered View of DES [4]

Figure 1 is a layered view of classic Discrete-Event Simulation of Distributed Applications. As mentioned

in [4], most of the time is spent in the layers built on top of the simulation engine. The time of the events

is given by some hardware models of the network and computing resources. This model can be simplistic

in P2P simulators (PeerSim [5], ProtoPeer [6], etc) or more complex in packet-level simulators (Bit-SiEm

[7], NS2 [8]). On top of it, the virtualization layer is responsible for executing user code and converting its

action into user requests that will be changed to events by the hardware models.

There are 3 major discrete-event simulation paradigms [3]:

(i) Activity-Oriented Paradigm

The activity-oriented paradigm is an approach to discrete-event simulation that focuses on the actions

or activities that occur within the system being modeled. In this paradigm, the simulation model is

constructed around the activities that take place in the system and the resources required to perform

those activities.

The activity-oriented paradigm is often used to model complex systems with a high degree of con-

currency, where multiple activities may be in progress at the same time and may interact with each

other. It is particularly well-suited for modeling systems that involve processing items or objects, such

as manufacturing systems or supply chains.

One key feature of the activity-oriented paradigm is the use of activity-based components, which

represent the activities and resources in the system and define the rules for how they interact.

On activity-oriented paradigm, we break time into tiny increments. If, for example, the mean inter-

arrival time is 20 seconds, we might break time into increments of 0.001. At each time point, our

code looks around all the activities, checking for the occurrence of events or the completion of a

6

service. This will be very slow to execute once most time increments produce no state change to the

system, and activity checks will waste processor time.

(ii) Event-Oriented Paradigm

The event-oriented paradigm is an approach to discrete-event simulation that focuses on the events

that occur within the system being modeled. In this paradigm, the simulation model is constructed

around the events that trigger changes in the state of the system and the relationships between those

events.

This paradigm is often used to model systems driven by external events or inputs, such as communi-

cation networks or queueing systems. It is particularly well-suited for modeling systems that involve

the flow of information or the processing of requests, like computer systems or service systems.

The event-Oriented Paradigm dramatically increases simulation speed compared to Activity-Oriented

Paradigm. Instead of a small increment, we advance simulated time directly to the time of the next

event. There is an event set with all pending events, and in each iteration, we update SimTime to

the minimum among the scheduled event times and add a new event to the set. Compared to the

process-oriented paradigm, this is easier to implement, faster to execute, and more flexible.

(iii) Process-Oriented Paradigm

The process-oriented paradigm is a simulation model based on the idea that simulation models con-

sist of a collection of processes that interact with one another and with other elements of the simulated

system. In this paradigm, the focus is on modeling the processes that make up the system, rather

than on modeling the individual events that occur within the system. Processes in a process-oriented

simulation model are usually represented as entities that move through the system, performing ac-

tivities and interacting with other entities and resources as they go. Here, each simulation activity is

modeled by a process. The process-oriented paradigm produces more modular code, and it’s prob-

ably easier to write and easier for others to read. This paradigm is considered more elegant and is

the more popular of the two main world views today (Process-Oriented Paradigm and Event-Oriented

Paradigm).

7

2.1.1 Parallel Discrete-Event Simulation

Parallel Discrete-event simulation (PDES) [4] is a powerful technique for modeling and studying

complex dynamic systems. It is useful in scenarios where traditional sequential simulations may be im-

practical due to the computational intensity or scale of the system being analyzed. PDES introduces

parallel computing to process events concurrently on multiple processors or threads, potentially speeding

up the simulation significantly. However, it requires a careful balance between the benefit gained from

parallelism and synchronization overhead. PDES also introduces some new challenges, including load

balancing, managing shared resources, and synchronization mechanisms to ensure that events occurring

at the same simulated time are processed in the correct order.

Message-Passing Interface (MPI) [9] can be a powerful way to distribute the simulation across

multiple processors. The simulation is divided into logical units that can be processed independently by

different MPI processes. These units can be regions of a simulated space, different components of the

system, or separate entities within the simulation. Each MPI process will be responsible for simulating a

portion of the system or handling a subset of the discrete events. MPI can also be used to exchange infor-

mation and synchronize between processes, ensure workload is distributed evenly across MPI processes,

and run on parallel machines, in a multi-node architecture.

Another common approach for parallel programming is using Single Program Multiple Data

(SPMD). In this paradigm, multiple instances of the same program run concurrently, each working on

a different input or a different portion of the same data. SPMD divide the simulation space or entities

into multiple partitions, each representing a portion of the simulation world that will be processed by a

separate process or instance of the program. These partitions generally refer toMPI processes, because

the majority of MPI programs is based on this paradigm.

2.2 Simulation tools

2.2.1 SimPy

SimPy [10] is a process-based discrete-event simulation library based on standard Python. It is used to

model and simulate the operation of systems that consist of processes that interact with one another

and with other elements of the system. All processes live in an environment and interact with each other

and with the environment via Events. Instead of using threads, as is the case for most process-oriented

simulation packages, SimPy uses Python’s generator capability. This allows the programmer to specify that

8

a function can be prematurely exited and later re-entered at the point of the last exit, enabling coroutines.

The exit/re-entry points are marked by Python’s yield keyword. SimPy also provides various shared resource

types to model limited capacity congestion points. Simulation can be performed in real-time (wall clock

time) or by manually stepping through events.

SimPy is based on the process-oriented paradigm for discrete-event simulation, and it provides several

features and tools that make it easy to build and run simulation models. Some of the key features of SimPy

include:

• Process-based modeling: SimPy allows you to define and simulate processes that interact with

one another and with other elements of the system.

• Event scheduling: SimPy provides a flexible event scheduling mechanism that allows you to

specify when events should occur in the simulation.

• Resource modeling: SimPy provides tools for modeling and simulating the allocation and use of

shared resources, such as stores, containers, and resources shared by multiple processes.

• Data collection and analysis: SimPy provides tools for collecting data from the simulation and

analyzing it to understand the behavior of the system being simulated.

SimPy is widely used in a variety of fields, including manufacturing, logistics, and service systems. It is a

powerful and flexible tool for building and analyzing discrete-event simulation models.

2.2.2 Simulus

Simulus [11] is an open-source discrete-event simulator in Python. It implements a process-oriented sim-

ulation world-view with several advanced features to ease modeling and simulation tasks with both events

and processes. Simulus is designed to be easy to use and to provide fast and efficient simulation of systems

that consist of processes that interact with one another and with other elements of the system. There is

also support for parallel and distributed simulation via concurrent execution of multiple simulators. These

simulators can be created and run simultaneously on different processors or cores on the same or different

machines in a cluster.

To understand how simulus handles parallel and distributed simulation, we first introduce the concept

of a synchronized group of simulators, where time advances synchronously among the simulators in the

group. A synchronized group of simulators can run sequentially or in parallel by running on shared-memory

multiprocessors, on distributed-memory machines in a cluster, or a combination of both.

9

Simulus supports distributed simulation, allowing the synchronized group of simulators to be instan-

tiated and run on a parallel cluster. When running on parallel machines, Simulus instances need to

communicate using theMessage-Passing Interface (MPI) under the hood.

Single Program Multiple Data (SPMD) is the most common parallel programming paradigm.

In SPMD, multiple machines execute the same program simultaneously, each operating on a different

input or a different portion of the same data. Simulus offers an SPMD programming style for distributed

simulation on parallel computers, which can also be combined with shared-memory multiprocessing. [12]

Simulus is a relatively new simulation library, but it has gained popularity among Python users for its

simplicity and efficiency. It is a good choice for building and analyzing discrete-event simulation models in

Python.

2.2.3 SimGrid

SimGrid [13] is a framework for developing simulators of distributed applications targetting distributed

platforms that allows you to build and simulate the behavior of distributed systems, such as computer

networks, data centers, and other types of distributed systems. It is realistic, flexible, accurate, scalable,

and the validity of its analytical models was thoughtfully studied, ensuring their realism. Experimental

results show that the SimGrid sequential version is more scalable than the state-of-the-art simulators.

SimGrid is particularly relevant when:

• Compare an application to another: This is the classical use case for scientists who use Sim-

Grid to test how the solution they contribute compares to the existing solutions from the literature.

• Design the best-simulated platform for a given application: Tweaking the platform file is

much easier than building a new real platform for testing purposes. SimGrid also allows for the

co-design of the platform, and the application by modifying both.

• Debug real applications: With SimGrid, you are clairvoyant about your reproducible experiments:

you can explore every part of the system, and your probe will not change the simulated state.

SimGrid is widely used for research and development in distributed systems. It is a powerful and

flexible tool for building and analyzing simulation models of distributed systems.

2.2.4 Simian

Simian [12] is a process-oriented, conservative parallel discrete event simulator. It is designed to be easy

to use and to provide fast and efficient simulation and is implemented using interpreted languages and

10

just-in-time compilation techniques. Simian should be able to achieve an event rate comparable to the

performance of highly optimized parallel simulators implemented in C or C++. The user can run the

simulation mode in sequential mode or parallel, using MPI. Simian allows mixing both event-based and

process-oriented simulation techniques in the same model, and it’s extremely competitive in simulation

speed in terms of events/second. The aggregation of the following features makes Simian unique:

• Simple: Simian has a minimalistic design. For example, its Python implementation consists of

only three source files with less than 550 lines of code

• User-Friendly: Simian is designed for domain experts with minimal programming requirements.

The large set of libraries for Python and its script-like approach to input handling and output visual-

ization, allow the user to quickly come to tangible results.

• Pragmatically Scalable: Simian has full support for running on computing clusters of any size

using MPI and adopts a simple barrier-based synchronization protocol.

• Portable: On most platforms, Simian runs right out of the box. Simian minimizes its dependency

on third-party libraries. The only dependencies are for supporting data communications (MPI) and

user threads (greenlet for Python). Co-routines are a standard feature of Lua.

2.3 Gossip protocols

Gossip protocols (SCAMP [14], Directional Gossip [15], etc, PlumTree [16]) are a class of distributed algo-

rithms that are used to disseminate information or messages throughout a network of nodes or processors.

In a gossip protocol, each node communicates with a small number of other nodes at regular intervals,

and the information is spread throughout the network through a process of ”gossip”. Gossip protocols

are designed to be scalable, efficient, and robust, and they are often used in distributed systems to dis-

seminate information about system states, perform distributed computation, and support other types of

distributed communication and coordination. There are many distinct variants of gossip protocols, which

differ in the specific communication patterns and strategies used to spread information throughout the

network. Some key considerations in the design of gossip protocols include the degree of decentralization,

the rate of information dissemination, the amount of communication overhead, and the robustness of the

protocol in the face of node failures and network partitioning.

11

2.3.1 Peer Sampling Service

The peer sampling service [17] is applied within a collection of nodes that constitute the domain of gossip-

based protocols utilizing this service. Multiple gossip protocols can use the same sampling service con-

currently since they share the same target group. The service’s objective is to provide a participating node

in a gossip-based application with a subset of peers belonging to the same group, enabling the node to

transmit gossip messages.

This service plays a crucial role in gossip protocols. It forms the backbone for efficient communication

and information dissemination in distributed systems.

Gossip protocols are used for decentralized information dissemination, where nodes in the network

exchange information with their neighbors.

The Peer Sampling Service’s importance can be understood by analyzing the following key elements:

• Dynamic Network Topology: Frequently, nodes may join or leave the network. A Peer Sampling

Service provides a mechanism to maintain an up-to-date view of the overlay, by continuously sam-

pling and refreshing neighbor nodes. This ensures that the gossip protocol adapts to changes in

the network topology efficiently and maintains its effectiveness.

• Fault Tolerance: Peer Sampling Service contributes to fault tolerance by maintaining multiple

random connections to peers. If a node fails or becomes unreachable, other links can still ensure

the flow of information, reducing the impact of individual node failures on the overall system. Some

membership services can detect node failures and use strategies to recover and maintain overlay

connectivity.

• Scalability: In large-scale distributed systems, maintaining a complete view of all network nodes

can be impractical due to memory and communication overhead. Peer Sampling Service helps in

sampling a subset of nodes. This decreases significantly the number of connections and messages

required for efficient information exchange. This ensures that the gossip protocol remains scalable

even as the network grows.

• Randomization and Load Balancing: Gossip protocols benefit from the randomness intro-

duced by the Peer Sampling Service. Randomly selecting nodes to exchange information helps load

balancing, preventing any specific node from being overwhelmed with incoming gossip requests.

• Privacy and Security: By maintaining a random subset of connections, the Peer Sampling Ser-

vice improves the network’s privacy and security. It reduces the probability of malicious nodes

12

gaining complete knowledge of the entire network structure, making it harder for them to launch

targeted attacks or compromise the system’s integrity.

Overlay graphs should support fast dissemination and a high fault tolerance level to node failures. For

this, there are some desirable properties that node views must own:

• Connectivity: The overlay defined by node views must be connected to avoid isolated nodes.

• Degree distribution: To improve fault tolerance, both in-degree (number of nodes that have

a node n in their view) and out-degree (number of nodes in the node view) should be uniformly

distributed across all nodes.

• Average Path Length: This property is closely related to the overlay diameter. To improve the

overlay efficiency, low average Path Length values are essential.

• Clustering Coefficient: Indicates a density of neighbor relations across the neighbors of a node.

It’s a value between 0 and 1.

HyParView

HyParView [18] is a peer sampling service protocol that ensures high reliability even in the presence

of high rates of node failures. It proposes a new approach that relies on the use of two distinct partial

views (Active View and Passive View), maintained by different strategies. Its design provides a robust

and efficient mechanism for managing membership in large-scale distributed systems using gossip-based

communication.

Some HyParView [18] key features include:

• Gossip-basedMembershipManagement: The protocol uses a gossip-based approach to man-

age the membership information in the system. This approach relies on using a reliable transport

protocol, such as TCP, to gossip between peers. This way, the gossip does not need to be config-

ured to mask network omissions.

• Small symmetric active views: Each node maintains a small symmetric active view with the

length of fanout + 1. Assuming that the links do not omit messages, this strategy allows for using

smaller fanouts than protocols that use unreliable transport to support gossip exchanges. The

broadcast is performed by flooding the graph defined by the active views. While this graph is

generated randomly (using our membership service), gossip is deterministic as long as the graph

remains unchanged.

13

• Failure detection: TCP is also used as a failure detector, and since all members of the active

view are tested at each gossip step, node failures are detected quickly.

• Backup nodes: Each node maintains a passive view of backup nodes that can be promoted to

the active view when one of the nodes fails by either disconnecting, crashing, or blocking.

• Partial View Maintenance: A membership protocol is in charge of maintaining the passive view

and selecting members to promote to the active view. A reactive strategy is used to preserve

the active view that remains unaltered in stable conditions, while passive View is updated using a

cyclic strategy.

Brahms

Brahms [19] tackles the challenge of selecting random peers within an unstructured network. According

to the authors, this approach is robust to network changes and malicious actions. All while ensuring that

each peer maintains a compact view of the network. [20]

Unlike push-only gossip, where the whole view is updated with pushes only, Brahms is push–pull

gossip. A constant part of each view is updated with pushes, while the other part is updated with pulls.

While push flooding, in push-pull gossip, only affects a portion of the view, it still requires a logarithmic

amount of time, relative to the view size, to corrupt the entire view. This problem becomes more pro-

nounced because the other part of the view is updated with pull operations, which can suffer from skewed

pulls, where faulty nodes may respond only with incorrect IDs to pull requests.

Brahms requires extra care to protect against poisoning of the views with faulty IDs and uses the

following strategies:

• Limited pushes: Restricting the transmission of push messages (handled by send_lim) reduces

the proportion of faulty pushes. Since push messages are sent without request, an adversary with

unlimited capacity could flood the system with push requests, causing correct IDs to be primarily

spread through pull operations and reducing their representation exponentially.

• Attack detection and blocking: Brahms protects against targeted attack by blocking the update

of V if more than the expected αℓ1 pushes are received in a round. This policy hinders the pace

of advancement, and its anticipated effect is limited when there are no attacks (nodes frequently

recalculate the View in most rounds).

14

• Controlling the contribution of pushes versus pulls: Brahms updates V with randomly cho-

sen αℓ1 pushed ids and βℓ1 pulled ids. Views are at greater risk from neighbor-initiated pulls

than adversarial pushes because all pushes from valid nodes are accurate. A pull from a randomly

selected correct node may contain faulty IDs. It is essential to strike a balance in the contribution of

both pushes and pulls to the View: Pushes should be controlled to safeguard the nodes they target,

while pulls should also be constrained to protect the rest of the network.

• History samples: The attack detection and blocking techniques slow targeted attacks instead

of preventing them. When an adversary tries to boost its presence in a victim’s view through

targeted pushes, it compels the victim to request more data from faulty nodes. As a result, the

targeted node’s view deteriorates, decreasing its transmission of pushes to valid nodes and fewer

receptions of valid pushes, creating opportunities for more erroneous push attempts. Brahms

effectively counters such attacks by implementing a self-repairing mechanism, whereby a portion

γ of V reflects the history.

• Parameter settings: Brahms’s parameters allow a trade-off between performance and resilience

against Byzantine attacks. γ must not be too large since the algorithm needs to deal with churn,

and it must not be too small, or the feedback will be ineffective. The choice of βℓ2 and βℓ2 is

crucial for guaranteeing that a targeted attack can be contained until the attacked node’s sample

stabilizes.

2.3.2 Dissemination Protocol - PlumTree

Gossip protocols exhibit high message complexity in steady-state to ensure reliability. On the other hand,

tree-based approaches have a small message complexity in steady-state but are very fragile in the presence

of failures. PlumTree combines both approaches to use a low-cost scheme to build and maintain broadcast

trees embedded on a gossip-based overlay.

PlumTree [16] protocol operates as any pure gossip protocol. To broadcast a message, each node

gossips with f nodes provided by a peer sampling service (f is the protocol fanout). However, each node

uses a combination of eager push gossip, for a subset of f nodes, and lazy push gossip for the remaining

nodes. Plumtree protocol attempts to create a broadcast tree structure by using hybrid gossip. Eager push

links are selected in a way that their closure effectively builds a broadcast tree embedded in the random

overlay network. For lazy push, links are used to ensure gossip reliability in case of failure and to quickly

heal the broadcast tree. The set of peers doesn’t change at each gossip round like other gossip protocols

15

instead the same peers are used until failures are detected.

Plumtree has 2 main functions:

• Tree construction 2: This component is in charge of selecting which links of the random overlay

network will be used to forward the message payload using an eager push strategy. It aims to create

a tree construction mechanism as simple as possible, with minimal overhead in terms of control

messages.

• Tree repair 2: This component repairs the tree when failures occur. The process should ensure

that, despite failures, all nodes remain covered by the spanning tree. Therefore, it should be able

to detect and heal partitions of the tree. The overhead imposed by this operation should also be as

low as possible.

Figure 2: PlumTree architecture

Gossip and Tree Construction

The algorithm maintains two sets of peers for each node: eagerPushPeers, with which the node uses eager

push gossip and lazyPushPeers, with which it uses lazy push gossip. In the beginning, eagerPushPeers

contains f random peers obtained by the peer sampling service, and lazyPushPeers is empty. The protocol

operates as pure push gossip protocol at the first rounds, and the fanout value f must be selected such

that the overlay defined by the eagerPushPeers of all nodes is connected and covers all nodes. After this,

nodes construct the spanning tree by moving neighbors from eagerPushPeers to lazyPushPeers, in such

a way that, the overlay defined by the first set becomes a tree.

Fault Tolerance and Tree Repair

When failure is detected, at least one tree branch is affected. An eager push isn’t enough to ensure

message delivery, so lazy push messages exchanged through the remaining nodes of the gossip overlay

16

are used to recover missing messages and provide a quick mechanism to heal the multicast tree.

Essential Properties

• Connectivity: Overlay should be connected, despite failures that might occur. For this, all nodes

should have, at least, another correct node in their partial views and they should be in the partial

view of, at least, a correct node.

• Scalable: PlumTree protocol aims to support f large distributed applications. The peer sampling

service 2 should be able to operate in systems with more than 10,000 nodes.

• Reactive membership: The stability of the spanning tree structure depends on partial views

maintained by the peer sampling service. When a node is added or removed to the partial view of

a given node, it could produce changes in the spanning tree, so the peer sampling service should

employ a reactive strategy that maintains the same elements in partial views when operating in a

steady state.

2.3.3 Metrics

To evaluate the key properties of gossip protocols and identify what could be improved in the solution being

studied or compare it to other solutions, it is essential to identify some relevant metrics. [21]

• Reliability: Robustness is one of the key properties of these protocols and could be measured by

the percentage of nodes that receive a given message.

• Latency: Latency is always an interesting metric for these systems and could be measured by

the Last delivery hop (LDH), the number of rounds a gossip message took to be delivered to all

nodes, multiplied for the gossip round time.

• Redundancy: As gossip protocols tend to generate redundant information, it is important to de-

termine the overhead on the network by counting the number of redundant messages. Relative

message redundancy (RMR) measures the average number of message copies (besides the

first) that each node received and thus the overhead of the dissemination process, accounting for

scenarios where not all the nodes received the information.

• Average shortest path: This metric quantifies the average number of rounds a message takes

to be delivered.

17

• Connectivity degree: Refers to the number of connections a node has with other nodes in

the overlay. We also calculate the node with the minimum and maximum degree for a degree

distribution notion.

2.4 Generic Gossip Frameworks

2.4.1 GossipKit

GossipKit [22] is a comprehensive and unified framework designed to streamline the implementation of

gossip-based protocols in distributed computing and peer-to-peer systems. Some key features and benefits:

• Centralized Gossip Management: GOSSIPKIT serves as a central hub for managing and coor-

dinating gossip-based protocols, simplifying the development process and ensuring consistency in

protocol execution.

• Modular Components: It provides a set of modular components that can be easily integrated

into various applications. This modularity allows developers to select and combine components

based on their specific requirements.

• Scalability and Efficiency: GOSSIPKIT is designed to handle large and dynamic networks effi-

ciently, allowing for seamless scaling while minimizing the overhead of information dissemination.

• Robustness and Fault Tolerance: The framework enhances network robustness by facilitating

the dissemination of information in a decentralized and resilient manner, even in the presence of

node failures or network disruptions.

GOSSIPKIT simplifies the integration and management of gossip-based protocols in distributed sys-

tems, offering a flexible and unified framework that enhances scalability, robustness, and efficiency. It is a

valuable resource for developers seeking to implement and fine-tune gossip protocols in their applications.

2.4.2 LUNES

LUNES [23] is a specialized simulation tool designed for modeling and analyzing Peer-to-peer (P2P)

systems. This software serves as a valuable resource for researchers and practitioners in the field of

distributed computing. Some LUNE’s key features are:

18

• Agent-Based Simulation: LUNES employs an agent-based approach to simulate and model

P2P systems. This means it represents individual agents or nodes within the network, allowing for

granular analysis of their interactions and behaviors.

• P2P SystemModeling: The software is tailored specifically for simulating P2P systems, making

it a powerful tool for understanding the dynamics and performance of decentralized networks.

• Network Customization: LUNES offers flexibility in customizing the network topology and pa-

rameters. Users can design and simulate different types of P2P architectures, including structured

and unstructured networks, to study their behavior under varying conditions.

• Realistic Simulations: The agent-based approach allows for realistic modeling of node behaviors,

interactions, and communication protocols.

• Data Collection and Analysis: LUNES provides tools for data collection and analysis during

simulations. Researchers can gather insights into network metrics, performance indicators, and

emerging patterns, aiding in the evaluation of P2P system designs.

In summary, LUNES is an agent-based simulation tool designed for the comprehensive modeling and

analysis of Peer-to-Peer systems. It offers a flexible and realistic platform for studying various aspects of

P2P networks, aiding both researchers and educators in their exploration and understanding of decentral-

ized computing environments.

2.5 Discussion

We consider there is a gap in the studies of epidemic protocol simulation. There are options available that

can be adapted for such simulations, but none of them is specialized or tailored specifically for gossip

protocols. We found it critical to develop a benchmark methodology for this type of protocol, taking into

account some mainstream simulation tools. The chosen tools should let us develop efficient, adaptative,

and scalable simulations compromising thousands of nodes, via a scripting language like Python so it

could be easy and simple to implement.

We also believe that developing a specialized gossip protocol simulation model using a suitable simu-

lation tool might be a valuable initiative for researchers and developers interested in this area. A generic

simulation framework could offer predefined models, standard components for gossip communication,

and built-in performance analysis tools, making it easier to design and analyze gossip-based systems.

19

Chapter 3

Simulators scalability evaluation

In this section, we will develop a benchmark methodology for simulation tools in the context of epidemic

protocols in P2P systems. We will take into account each one of the 4 simulation tools mentioned above

(Simulus, Simian, SimPy and SimGrid), considering their main features and limitations. All steps, deci-

sions, difficulties, and choices we faced during this process will be detailed. We pretended to use Python

simulation tools, so we decided to exclude SimGrid. Despite providing a Python development environ-

ment, it is implemented in C++, and the task of creating P2P platforms compromising thousands of

Nodes (represented by Actors) dealing with resources such as Hosts, Links, and Disks revealed some

complex problems.

After that, we will proceed to the execution of several tests to choose the simulation tool that better suits

the epidemic protocols simulation. We need to compare them in similar environments and ensure that

the different executions under the same overlay should produce several simulated events and exchanged

messages as identically as possible. Once we verify this, we can start running simulations under different

environments, considering that our final choice will be sustained by 3 key concerns: scalability of the tool

under a large number of nodes, memory efficiency usage and ease of development.

The presented tests are the result of several executions on distinct machines, upon several settings

(overlay size, seed for the overlay generation, distance to neighbors, message delivery delay, number of

broadcast messages).

3.1 PlumTree implementation

Each simulation tool has its style, strategies, and features. We selected 3 process-oriented simulation

tools in Python (Simulus, Simian, and SimPy) and implemented a Plumtree protocol on each one of them,

which could be accessed on [24].

For these implementations, there are some main questions:

20

• Data: which data to store? which data to exchange? in which data structures? using which update

strategies?

• Communication: when to exchange data? in which direction? using which communication fea-

ture? how to simulate sending delay?

• Time: How to measure time to execute simulation? How to create timers?

• Overlay: how to create similar overlays for the 3 simulation tools?

3.1.1 Data

To resolve some of the problems related to the data exchanged, we created the following data structures

on all implementations:

• eagerPushPeers: list of peers that nodes will use for eager push gossip

• lazyPushPeers: list of peers that nodes will use for lazy push gossip

• lazyQueues: set of IHAVE messages

• missing: list of missing messages

• receivedMsgs: dictionary with received messages, for each message ID

• timers: dictionary with timers for each message ID

The class Msg defines the messages used to exchange data. These messages have 5 fields:

• type: there are 5 message types (PRUNE, IHAVE, GRAFT, GOSSIP, and BROADCAST)

• payload: carries the message data

• ID: Message ID

• round: message round

• sender: message sender

21

3.1.2 Messages

There are 5 message types exchanged between nodes (PRUNE, IHAVE, GRAFT, GOSSIP, and BROADCAST).

BROADCAST messages are created by the system, and inform a node to start message propagation. The

receiver adds it to its received messages and spreads it by eager and lazy push.

When a PRUNE message is received, the node removes the sender from its eagerPushPeers and adds

it to lazyPushPeers.

Lazy push is implemented by sending IHAVE messages. A node that receives an IHAVE message adds

it to its missing list and starts a timer for sending GRAFT messages asking for the lost message, if the

message ID received isn’t in the receivedMsgs list.

Upon receiving a GRAFT message, the node moves the sender to eagerPushPeers, the message ID is

stored in the receivedMsgs list, and replies with a GOSSIP message with the message content.

When a GOSSIP message is received, if this message has not yet been received, the node adds it

to its ReceivedMsgs list, clears all timers for that message, moves the sender to eagerPushPeers, and

propagates the message through lazy and eager push, with the round incremented. Otherwise, if the

message was already received, it moves the sender node to lazyPushPeers and replies with a PRUNE

message.

3.1.3 Overlay

To create the overlay, we defined a matrix where we display nodes by generating coordinates x and y.

We want similar overlays on all implementations, so we need to set an input seed for random numbers

generation and a distance to calculate neighbor peers. Each node neighbor’s peers are those whose

distances are less than the input distance given.

3.1.4 Simulus

Simulators in a synchronized group can send messages to named mailboxes that belong to other simula-

tors. Considering multiprocessors and MPI versions of Simulus, we need to create a simulator for each

Node with an associated mailbox to have a synchronized group of simulators that can run sequentially or

in parallel.

Mailboxes were used to exchange information by direct-event scheduling. It can be considered a store

with an infinite storage capacity, and allow nodes to schedule events on other mailboxes with a delay time,

using the mailbox’s send() method.

22

In Simulus, an event is simply a function to be invoked at a designated time. Simulus uses 2 main

methods. process() method is used to create a process to execute a function on a given simulator at a

given scheduled time. sched() method can be used for direct event scheduling and lets us schedule any

function on a given simulator.

PlumTree implementation makes use of process() method to create a process to execute the receive()

method, that will recursively look for received messages and implement each message strategy. sched()

schedules a timer event upon receiving an IHAVE message. This event is stored on the timers list and can

be canceled using cancel() method when receiving a GOSSIP message.

To monitor Simulus execution, Simulus has a show_runtime_reportdispay() method to display some

relevant values (execution time, scheduled events, canceled events, created processes, finished processes,

canceled processes, process context switches). We also used a Python timer to measure execution time,

but this time was very similar to the execution time on the runtime_reportdispay.

This was the first implementation, and it took some time to understand discrete event simulation, so it

took over two weeks to implement. Simulus features like mailboxes make communication between entities

easier, and after we get used to Simulus simulation, it is revealed to be easy to model. Simulus plumTree

has 276 code lines [24].

The code below presents some key details of the Simulus implementation:

1 # Node entity

2 # Create mailbox

3 self.mbox = sim.mailbox(name='mb%d'%idx, min_delay=lookahead)

4 # send message

5 self.sim.sync().send(self.sim, 'mb%d'% receiver , message ,delay)

6 # start receiving messages

7 self.sim.process(self.receive)

8 # schedule event Timer

9 self.timers[msg.ID] = self.sim.sched(self.timer ,until=self.sim.now+self

.lookahead ,mID=msg.ID)

10

11 nodes=[] # all nodes instantiated on this machine

12 sims = [] # all simulators instantiated on this machine

13

14 # create simulators and nodes

15 for s in range(BLOCK_LOW(rank, psize , args.nsims), BLOCK_LOW(rank+1, psize ,

args.nsims)):

16 sim = simulus.simulator(name='sim%d'%s)

23

17 sims.append(sim)

18 for idx in range(BLOCK_LOW(s, args.nsims , args.total_nodes),

19 BLOCK_LOW(s+1, args.nsims , args.total_nodes)):

20 nodes.append(node(sim, idx, args.total_nodes ,args.lookahead))

21

22 syn = simulus.sync(sims)

23 syn.run(args.endtime)

3.1.5 SimPy

On SimPy, the behavior of active components (like vehicles, customers, or messages) is modeled with

processes. All processes live in an environment and interact with each other and with the environment

via events. Therefore, we started by creating an environment where all nodes will schedule events in this

environment.

Processes are described by simple Python generators. A SimPy Process can be used like an event

(technically, a process is an event). Some key concepts are Environment.Process() method, which we

used to schedule events at the current simulation time, Environment.timeout() are used to simulate the

passage of time. Events of this type are triggered after a certain amount of (simulated) time has passed

and allow a process to sleep (or hold its state) for the given period. Another important concept is how to

use yield. When a process yields an event, the process gets suspended and will be resumed when the

event occurs. As SimPy runs sequentially, the process will pass the control flow back to the simulation

once a yield statement is reached.

For process communication, we used a simple BroadcastPipe constructed from Store (Store is a SimPy

resource used to model the production and consumption of concrete objects). There is a pipe per node,

and each node can get messages from its own pipe and schedule event messages in other pipes, using

the ’timeout’ method to simulate delay time.

Nodes start by using process() method to create a process to execute function receive(). This function

recursively looks for received messages (yield self.in_pipe.get(), creates a GET event, and suspends it

until there is a message to receive) and implements each message strategy. process() is also used to

create lazy and eager push events and to start a timer when receiving an IHAVE message. We use yield

env.timeout(delay) to simulate delay times. Timer events are stored on a timer list, and when receiving a

GOSSIP message they are interrupted using Process.interrupt() method.

SimPy doesn’t have resources to monitor the execution, which means that to trace all events created

(messages sent and received, canceled and executed events), the environment was associated with a trace

24

https://simpy.readthedocs.io/en/latest/examples/process_communication.html
https://simpy.readthedocs.io/en/latest/topical_guides/resources.html#stores

function that uses Environment.step() to trace all processed events. A Python timer is used to measure

execution time.

This simulator was the most difficult one to implement. It took over 2 weeks, and concepts like yield,

environments, timeouts to simulate passing time, and problems like how nodes will exchange messages

and how to trace the simulation were a bit more complex to understand. SimPy Plumtree was implemented

in 265 code lines [24], almost the same as Simulus Plumtree.

Here are some essential details of the SimPy implementation:

1 # Node entity

2 # send a message

3 yield env.timeout(self.lookahead)

4 pipes[receiverNode].put(msg)

5 # receive message

6 msg = yield self.in_pipe.get()

7 # start receiving messages process

8 self.env.process(self.receive())

9

10 env = simpy.Environment()

11

12 # create an environment tracer

13 def monitor(data, t, prio, eid, event):

14 if isinstance(event ,simpy.resources.store.StoreGet):

15 data[0] += 1 # msg received

16 elif isinstance(event ,simpy.resources.store.StorePut):

17 data[1] += 1 # msg sent

18 elif isinstance(event ,simpy.events.Interruption):

19 data[2] += 1 # timers cancelled

20 elif isinstance(event ,simpy.events.Timeout):

21 data[3] += 1

22

23 trace(env, monitor)

24

25 # create broadcast pipes and nodes

26 pipes=[]

27 nodes=[]

28 for i in range(args.total_nodes):

29 pipes.append(simpy.Store(env))

30 nodes.append(Node(env,pipes[i],i,args.total_nodes ,args.lookahead))

25

31

32 env.run(until=args.endtime)

3.1.6 Simian

Simian uses entities as objects containing event handling functions and can be distributed among the MPI

ranks for parallel processing [25].

The essential method of the Entity class is reqService, which is used to schedule a future event at the

entity to be processed by an event handler. If the event is destined for the same entity or one in the same

logical process, Simian inserts the event in the local event queue. Otherwise, a timestamped message

is sent to the appropriate logical process. The attachService method associates an event handler that

processes events destined for this entity.

The entity class also has several methods that deal with simulation processes, but we decide to base

our implementation on creating an Entity per node, and each node uses reqService method to schedule

future events on the local event queue or in other nodes event queues.

Contrary to other implementations where we create a process to execute a receive() function that

recursively looks for messages, this implementation is more simplistic. To transmit a message, a node

schedules a receive event on the destination node, using the reqServive method. Timers implementation

was as simple as using reqService to schedule a timer event on the same Entity and add it to the timers

list. There isn’t a method to interrupt events, so when a GOSSIP message is received, the message is

removed from the timers list, and the timer function executes if the message ID is still in the timers list.

To start the messages broadcast, we use the schedService method of the Simian Engine to schedule

a BROADCAST event on the node that will initiate the transmission.

Simian provides the execution time, number of simulated events, and events per second of each

execution. Therefore, we can monitor executions without implementing extra monitoring functions.

This implementation was the simplest and easiest to implement and took less than a week. The

biggest challenge was the MPI execution because the MPICH lib import path was not working, and we

changed the Simian base code to import MPI from mpi4py. Simian PlumTree was implemented in 208

code lines [24], less than the other simulators, highlighting Simian simplicity.

Simian main details are depicted in the following code:

1 simianEngine = Simian(simName , startTime , endTime , minDelay , useMPI)

2

3 # Node entity

26

4 # Schedule Receive event on the receiver node

5 self.reqService(lookahead , "Receive", message , "Node", receiver)

6 # Schedule Timer event

7 self.reqService(lookahead , "Timer", msg.ID)

8

9 # Create nodes

10 for i in range(nodes):

11 simianEngine.addEntity("Node", Node, i,i,nodes)

12

13 simianEngine.run()

3.2 Evaluation

3.2.1 Experimental Settings

All experiments were conducted in a network composed of 10.000, 62 500, 90 000, 160 000, and 250

000 nodes, and results show an aggregation from 3 runs of each experiment. This experiment compares

the 3 chosen simulation tools regarding scalability and memory used. To monitor these simulations, we

used a Python timer to measure the execution time, and psrecord [26] to record the memory usage.

The same peer sampling service [17] was used in all experiments. The distance matrix described

above 3.1.3 defines the overlay, depending on the input seed, and the number of neighbors is given by

the maximum distance input value.

For the simulations, we did not use any piggybacking policy for the IHAVE messages. An IHAVE

message is sent immediately in each lazy link. Almost all experiments show the results when sending one

broadcast message per 10 seconds from multiple senders. In the end, we will test the best simulation

tool scalability by starting 200 broadcast messages on a 1 msg/s rate. All simulations were executed for

200 simulation cycles.

3.2.2 Results

We started by testing Cluster 29, a machine with an Intel i3-2100 8GB HDD Processor, with the following

specifications: 2 cores, 3.10GHz, 3 MB Intel® Smart Cache, 8GB RAM. We made several experiments

on this machine under different input values for lookahead, seed and distance to measure the impact of

each of these values on the simulation. Then we tried 2 other machines with an Intel i5 processor using

the same values for lookahead, seed, and distance. Here, we tested the distributed versions of Simian

27

(using MPI) and Simulus versions (multiprocessors, MPI andmultiprocessors + MPI). These versions were

tested on a single machine and, using both, in a multi-node architecture. Finally, we performed specific

tests using the tool that provided the best results.

Cluster 29

(a) Execution time using sequential and distributed versions

(b) Memory usage

Figure 3: Results for: Lookahead-0.1s Distance:100 Seed:10

28

Figure 3 shows the execution time and used memory for the 3 chosen simulators. We also considered the

Simian MPI version and the 3 distributed versions of Simulus (2: using multiprocessors, 3: using MPI,

4: using MPI + multiprocessors). We tried different process numbers and selected the fastest to find the

perfect number of processes for the distributed versions. Simulus4 p2 means Simulus version using (MPI

+ multiprocessors) with 2 processors, and Simulus3 p4 and SimianMPI p4 refers to Simulus and Simian

MPI versions with 4 processors.

Under the base inputs used for these experiments (lookahead:0.1s distance:100 seed:10), in terms

of execution time, the Simian sequential version was revealed to be the fastest one running in less than

6 minutes for 160,000 nodes. Then comes the Simian MPI version, almost 3 times slower. Simulus

distributed versions didn’t run for 160 000 nodes, but for 10 000, 62 500, and 90 000 the 3 versions

obtained similar execution times, and these times were identical to the Simian MPI version.

Simulus sequential version and SimPy were the slowest and revealed similar execution times. However,

Simulus wasn’t able to run more than 90 000 nodes. For 160,000 nodes, SimPy took 40 minutes, which

is seven times more than Simian.

Simian was also the best on memory usage, with 750MB used for the 160,000 nodes simulation.

SimPy revealed promising results, with 1150MB, and Simulus used a lot of memory, almost 10 times

more than Simian.

All simulators revealed linear results for execution time and used memory.

After that, we tested simulations with different input values for seed, distance, and lookahead to see

the impact of each value on the execution time and memory usage.

29

(a) Execution time when decreasing distance

(b) Memory usage

Figure 4: Results for distance = 75

The results with decreased distance to select neighbors are depicted in figure 4. This will reduce the

connection degree and the number of messages exchanged in the system.

As expected, the execution time and memory usage decreased, and Simulus was able to perform

the simulation with 160 000 nodes. Simian simulation with a 160 000 nodes overlay changed from 6 to

more than 3 minutes, and the memory used from 750MB to 570MB. As before, Simian was the fastest

30

simulation, followed by Simulus2, and then SimPy and Simulus. SimPy was faster than Simulus, but still

too slow compared to Simian. Memory usage maintains the same order.

(a) Execution time when increasing distance

(b) Memory usage

Figure 5: Results for distance = 125

Then, we increased the distance used to select neighbors, and the results are shown in figure 5.

Contrary to the last experiment, the connection degree and the number of exchanged messages increased.

As we can observe, execution times and memory usage increased if compared to the initial experiment,

and Simulus couldn’t perform simulations with more than 90 000 nodes. Simian was the fastest simulation

and used almost the same memory as SimPy.

31

(a) Execution time when increasing sending delay

(b) Memory usage

Figure 6: Results for lookahead = 0.3s

In this experiment, results are in figure 6. We increased the lookahead value corresponding to the

message-sending delay from 0.1s to 0.3s. This will slow the message spreading, and it’s expected that

the execution time and memory usage will decrease.

As the number of exchanged messages decreased, Simulus could perform simulations with 160 000

nodes. Simian was still the fastest simulator and the one that used less memory.

32

(a) Execution time when using a different seed

(b) Memory usage

Figure 7: Results for seed = 123

In the last experiment on this machine, depicted in figure 7, we changed the seed used to generate

the node coordinates so we could analyze the impact of the overlay on the simulations.

From the obtained results, we can see small changes in execution times and memory, but the overall

results are very similar to the initial results 3.

33

Cluster 114 e 119

After the first phase, where we compared simulation tools under different values for sending delay, con-

nection degree, and overlay coordinates, we moved to the next stage.

From figure 3, we notice that the Simian MPI version took almost 3 times more than its sequential

version. The Simulus version using MPI revealed similar to the Simulus multiprocessors version, and the

MPI + multiprocessors version was a bit faster.

In this phase, we are going to focus on running MPI. We want to find if the processing power of the

used machine is limiting the execution time of distributed versions. We will run simulations on 2 different

machines, with a better processor.

Figure 8: Execution time, sequential and multi-node versions

Figure 8 shows the execution times for sequential versions of the 3 chosen simulation tools and the

distributed versions of Simian and Simulus. We run several simulations for the distributed versions using

2,4,8, and 16 processors. The 8 processors version was revealed to be the fastest on both Simian with

MPI and Simulus4 with MPI + multiprocessors.

We can notice that all sequential execution times decreased significantly, and Simulus and SimPy

could perform a 250 000 nodes simulation in less than 1 hour. Simian using MPI and Simian sequential

versions reveal very similar times, with 249 and 263 seconds, respectively, for 250,000 nodes. Simian

34

uses a conservative PDES strategy that, in the beginning, presented execution times 3 times slower than

its sequential version, however when using more processing power it revealed competitive times. Simulus

uses an optimistic approach to PDES and takes great advantage of MPI usage when increasing the

processing power. Simulus using MPI + multiprocessors was really fast when compared to other Simulus

versions and present execution times near to the Simian simulations, taking 359 seconds to perform a

250 000 nodes simulation. This Simulus version was the only one that could be compared to Simian

versions despite, as we saw in the first phase, it consumes more memory.

Simian has been the best tool in terms of execution time and memory usage in all experiments, so we

decided to choose Simian as the tool that better fits the simulations we want to perform.

To conclude, we decided to test Simian by increasing the exchanged messages to make a deeper

comparison between its sequential and parallel versions. To do this, we ran the same experiments as

above 8, but now a broadcast message is sent every second.

35

(a) Execution time when sending 1 msg/s

(b) Memory usage

Figure 9: Simian results: Sequential vs MPI versions

As shown in figure 9, both versions took similar execution times for under 100,000 nodes. Simian

MPI was faster for 160 000 nodes, and 250 000 nodes took 75 minutes, faster than the 81 minutes of

Simian.

In terms of memory usage, the Simian sequential version was a bit better, probably due to the extra

work parallel execution has on managing communication between different processors.

36

Chapter 4

Simulation Model

Taking into account the benchmarking results shown in Chapter 3, all simulations will be conducted with

Simian. We will present a generic model for epidemic protocols and we will detail its achitecture, compo-

nents and implementation.

First of all, we need to define our model architecture. Then we will take a look at two peer sampling

services (HyParView [18] and Brahms [19]) responsible for creating the overlay used by a chosen epi-

demic protocol for message dissemination, describing their implementation using Simian and all relevant

decisions we made during this process. We will also mention all setting properties relevant to each protocol

and how they could impact the experimental evaluation.

Afterwards, it’s time to analyze dissemination protocols to combine with the peer sampling services

mentioned above. We will use the PlumTree [16] gossip protocol. As this protocol has been implemented

in the Simian simulation tool, we will also detail all key points and decisions we made during the imple-

mentation process and the relevant setting properties.

Finally, we will present and analyze some experimental tests. The main goal here is to evaluate our

generic model for epidemic protocols, using two different peer sampling services (HyParView and Brahms)

and a dissemination protocol (PlumTree), comparing their performances in terms of scalability, degree

needed to achieve high reliability, performance in a stable environment, and in the presence of multiple

failures.

37

4.1 Architecture

Figure 10: Model Architecture

Our model architecture compromises 3 main components:

• Peer Sampling Service: This component is responsible for creating and maintaining the overlay.

• Dissemination Protocol: This component is responsible for the dissemination strategy taking

into account the views provided by the Peer Sampling Service.

• Periodic Trigger: This component compromises periodic triggers to execute membership cycles,

required by the Peer Sampling Service, start broadcast messages or to evaluate the system state.

These components interact with 2 entities:

• Node: Stores data and communicate with other nodes (all communications and data updates

follow the strategies of the 3 components mentioned above).

• ReportNode: Periodically receives system report messages from all active nodes and generates

evaluation metrics values.

38

4.2 Implementation

The model implementation is divided into 3 sections. We start by describing the Peer Sampling services

and respective membership cycles trigger implementation. This implementation compromises a descrip-

tion of the needed data structures and types of messages, peer sampling service strategy, and configura-

tion variables. Therefore, the dissemination protocol implementation is described just by mentioning the

small changes we made and some test settings. Finally, we explain how we measured simulations and

calculated the evaluation metrics values.

4.2.1 Peer Sampling Service

HyParView

To implement the HyParView protocol using Simian, we started creating 4 data structures on the Node

entity to store all information needed by HyParView.

• ActiveView: list of IDs that store active nodes

• PassiveView: list of IDs that store passive nodes

• TimerTCP: list of IDs that store nodes with pending TCP connections

• NeighborQueue: list of IDs that store nodes that rejected TCP connections

Then we defined the messages that will be exchanged by creating a classmsgHPV with the fields type,

newNode, timeToLive and sender.

The Message type could be one of the following:

• JOIN

• FORWARDJOIN

• DISCONNECT

• NEIGHBOR

• NEIGHBORREPLY

• TCPCONNECT

39

• TCPCONNECT_ACK

The function HyParView is responsible for implementing the desired behavior upon receiving each of

the messages above.

When receiving a JOIN message, the node appends the message sender to its activeView list and,

then, sends a FORWARDJOIN message to all neighbors on the activeView, using reqService to schedule

events on the receiving nodes.

Upon receiving a FORWARDJOIN message, the node adds the new node to its activeView if the time-

ToLive field is 0 or its activeView is empty. Otherwise, the passive view is updated if timeToLive is equal to

PRWL, and the message will be forwarded to a random neighbor, with the timeToLive being decremented.

A DISCONNECT message is used to remove a peer from the activeView, and the other four messages

are used to simulate the use of TCP.

When a node detects a failure, it tries to send a TCPCONNECTmessage to a random node in its passive

view and starts a timer to receive an ack. If TCPCONNECT_ACK is timely received, a NEIGHBOR message

is sent, and the source node is added to the neighborQueue. Otherwise, a TimerHPV event will remove

the peer from the passive view and try to establish another TCP connection. Finally, the node receives a

NEIGHBORREPLY. If the request is accepted, it adds the new node to its activeView. Otherwise, it tries to

establish a new TCP connection with a random node from its passiveView that isn’t in the neighborQueue

list.

To periodically update passiveViews, the event TriggerPassiveViewMaintain is responsible for starting

the transmission of a SHUFFLE message with ka random elements from its activeView and kp random ele-

ments from its passiveView. Shuffle requests are propagated using random walks and have an associated

“time to live”.

The function HyParViewShuffle is responsible for implementing the desired behavior upon receiving

SHUFFLE or SHUFFLEREPPLY messages.

Test settings

To configure HyParView to achieve the desired results, there are some settings to take into account:

• Active view size: logn+ c (c is an input value)

• Passive view size: k ∗ (logn+ c) (k is an input value)

• Active Random Walk Length (ARWL): specifies the maximum number of hops a ForwardJoin

request is propagated. For 10,000 nodes, the recommended value is 6.

40

• Passive RandomWalk Length (PRWL): specifies at which point in the walk the node is inserted

in the passive view. The ForwardJoin request carries a “time to live” field, initially set to ARWL,

that decreases at every hop. ARWL value should be less than PRWL, and for 10,000 nodes, the

recommended value is 3.

• Ka: number of active view elements sent in each Shuffle message

• Kp: number of passive view elements sent in each Shuffle message

• Trigger time for shuffle messages: Periodically, each node performs a shuffle operation with

one of its peers, selected randomly, to update passive views.

• TCP connections: HyParView assumes that nodes use a reliable transport protocol to broadcast

messages in the overlay. We need to set a timer to receive TCP acks and the delay time to send

TCP connection requests.

• Active view update: The active view is managed using a reactive strategy. When a node

suspects that one of the nodes present in its active view fails, it selects a random node from its

passive view and attempts to establish a TCP connection. To implement this, all nodes reply with

an ACK to all received gossip messages.

Brahms

Using the Simian simulation tool for Python, we started to implement Brahms protocol by creating four list

variables:

• V: list of view nodes

• S: list of samplers

• Vpush: list of node IDs that send a push request

• Vpull: list of node IDs that send a pull reply

To define the messages that will be exchanged by Bramhs protocol, we create a msgBrahms class

with three fields: (type,view and sender). Message type can take three values:

• PUSH

• PULL

41

• PULL_REPLY

Then, we started the implementation of Brahms’s strategy described above.

The Bramhs method is responsible for receiving Brahms gossip, and TriggerBrahmsSend event is

responsible for periodically (TriggerBrahmsTime value define the round duration) sending pull and push

requests to random αℓ1 and βℓ1 nodes, respectively. TriggerBrahmsSend is also responsible for updating

V and S before the beginning of each membership round.

Upon receiving a PUSH request, the sender is added to Vpush list. When a PULL request is received,

the node replies with a PULL_REPLY message containing its V.

Finally, when a node receives a PULL_REPLY, it appends the received nodes to its Vpull list.

The original design may contain duplicates on views and random subsets of a set. We decided to

deviate from the protocol here as we want to increase the number of different peer IDs, and a duplicated

node can be seen as a wasted slot of information. In this implementation, we aim to avoid duplicates in

every list (Vpush, Vpull and V).

Test settings There are some parameters on Brahms [19] protocol that could impact the desired

results:

• ℓ1: size of the dynamic views

• ℓ2: size of the Sampler, Brahms maintains a tuple of ℓ2 sampled elements in a vector of ℓ2

Sampler blocks. ℓ1, ℓ2 = 3
√
n suffices to protect even nodes that are attacked immediately upon

joining the system.

• Ping trigger: sampled IDs are periodically probed (e.g., using pings), and a sampler that holds

an inactive node is invalidated (re-initialized).

• Brahms gossip trigger: To update views, periodically, each node sends pull and push requests

to random neighbors.

• α, β, γ: Brahms uses parameters α > 0, β > 0, γ > 0 to satisfy α+ β + γ = 1 to control the

portion of pushed IDs, pulled IDs, and history samples in the new view, respectively. γ = 0.1 is

enough for protecting V from partitions.

42

4.2.2 Dissemination Protocol

PlumTree

PlumTree [16] aims to provide low overhead and support a large number of faults while maintaining

reliability. For that, this protocol proposes a combination of two different approaches, an epidemic and

a deterministic tree-based broadcast primitives, that allows the use of a low-cost scheme to build and

maintain broadcast trees embedded on a gossip-based overlay.

Spanning tree structure depends on the stability of the partial views, which is the responsibility of the

peer sampling service. When adding or removing a node from the partial view of a given node, it might

produce changes in the links used for the spanning tree, which may not be desirable. The peer sampling

service should employ a reactive strategy that maintains the same elements in partial views when operating

in a steady state.

As the PlumTree implementation on Simian was tested and detailed in the previous chapter, we will

only mention the changes made to support the two membership services mentioned above.

Implementation HyParView + PlumTree As HyParView [18] is based on the use of reliable trans-

port protocol, we need to simulate TCP connections where we need to ensure the successful delivery

of data and messages over the network. To detect node failures, each node replies with an ACK when

receiving a GOSSIP or IHAVE message.

To implement the strategy mentioned, we add an empty dictionary timersAck upon the Node entity

initialization. Afterward, we updated LazyPush and EagerPush events to, for each gossip message sent,

add a new timer entry to the timersAck dictionary and start a timer to receive the corresponding ACK

reply. The event responsible for this timer is TimerAck, and then an ACK isn’t timely received, this method

removes all timers for the receiver entry on timersAck and schedules a NodeFailure event.

The HyParView event, responsible for the strategy upon receiving each message, suffered some tiny

changes. If a GOSSIP or IHAVE message is received, the receiver replies with an ACK message. When

receiving an ACKmessage, the timer associated with that message on the timersAck dictionary is removed.

Implementation Brahms + PlumTree

Compared to HyParView [18], Brahms [19] deals with node failures differently. It periodically updates

the view to isolate malicious and crashed nodes instead of relying on TCP.

For this reason, we do not need to make any changes to the previous PlumTree implementation to

support Brahms protocol.

Test settings The Peer Sampling Service role used with this protocol is maintaining the overlay.

43

However, there are still some settings we need to take into account to achieve the best possible results:

• Threshold: when using Plumtree optimized version. The threshold value will affect the overall

stability of the spanning tree.

• Piggybacking policy for the IHAVE messages: A scheduling policy is used to piggyback mul-

tiple IHAVE announcements in a single control message. The only requirement for the scheduling

policy for IHAVE messages is that every IHAVE message is eventually scheduled for transmission.

• Timeout: When a node receives an IHAVE message, it marks the corresponding message as

missing and starts a timer with a predefined timeout value. Therefore, it waits for the missing

message to be received via eager push before the timer expires. Timeout value should be configured

considering the diameter of the overlay and a target maximum recovery latency.

• Timeout2: When a GRAFT message is sent, another timer is started to ensure the message will

be requested to another neighbor if it is not received. This second timeout value should be smaller

than the first, in the order of an average round trip time to a neighbor.

4.2.3 Metrics

Simian doesn’t have shared resources like stores, so we implemented the system evaluation by creating

a new entity Report Node. Each node, before ending its execution, uses the Simian method reqService to

send a report message to the reporting node. This report includes the out-degree and, for each received

message ID, the number of IHAVE, GOSSIP, and GRAFT messages received. Report Node aggregates all

information and calculates, for each broadcast message, the reliability (number of received messages

/ total nodes), latency (last delivery hop is given by the message with the highest round), redundancy

(provided by the formula m
n−1

−1wherem is the number of payloadmessages and n is the number of nodes

that received the message) and the number of messages received divided into types (HAVE, GOSSIP, and

GRAFT). Ultimately, it presents the average of these values, considering the total of broadcast messages,

and other relevant values (minimum and maximum out-degree values, average out-degree, and average

shortest path).

4.3 Evaluation

We conducted simulations using Simian simulator [12] to implement HyParView and Brahms strategies

and get comparable results. We compared the obtained results with published results for these systems

44

to validate our simulations.

Finally, we implemented the PlumTree gossip protocol, which will be combined with the two member-

ship services mentioned above.

All simulations were conducted in three phases:

1. Overlay creation: HyParView nodes start joining the overlay one by one using the contact node

0. Brahms uses a different strategy, as it needs to receive an already connected overlay, all nodes

start by having two neighbor nodes (nodeID - 1 and nodeID + 1).

2. Stabilization period: Some cycles of membership protocol are executed on the first fifty simu-

lated seconds to guarantee stabilization. HyParView uses this period mostly to fill passive views.

Brahms updates all views several times to shuffle the basic starting overlay and fill active views.

3. Broadcast: The created overlay is tested by starting the transmission of 1000 broadcast mes-

sages.

The plumTree protocol creates trees optimized for a specific sender, which is the source of the first

broadcast message. On multiple senders simulations, we decided to use a single shared plumTree where

the last delivered hop and latency values may be sub-optimal for all senders except the one that created

the tree. For this reason, we also conducted simulations using a single sender (this one should be more

efficient and with a low relative message redundancy).

4.3.1 Experimental settings

Almost all experiments were conducted in a 10,000 node overlay, except scalability tests, where we also

used overlays with 25,000, 50,000, 75,000 and 100,000 nodes.

HyParView was configured with the following settings: active membership set to log n + c (we present

some tests using c between -1 and 2), passive membership size set to Active view * 6. Active Random

Walk Length parameter was set to 6, and the Passive Random Walk Length was set to 3. In each shuffle

message, kp = 4 nodes were sent from the passive view, and ka = 3 nodes were sent from the active view.

The shuffle message length was set to 8, as nodes also send their identifier in each shuffle message.

Each node sends shuffle messages at a rate of 0.2 msg/s.

Brahms was configured with ℓ1 = ℓ2 = log n + c (we present some tests using c between 2 and 5

to find the optimal version) and α, β = 0,5. As Brahms was designed to be resilient in the presence of

byzantine attacks, it updates its views periodically, so we set this update time value to 1s.

45

We do not use the plumTree optimized version. This version could improve LDH when new nodes are

added, it could be interesting if we measured the LDH upon fail induction, but we used reliability as the

main metric for fail recovery. All IHAVE messages are sent immediately, and timeout and timeout2 values

are set to lookahead and lookahead / 2, respectively.

4.3.2 Graph properties

On this evaluation, we will take into account the graph properties mentioned in 2 (connectivity, degree

distribution, and average Path Length).

We started this experimental evaluation by testing different view sizes on a 10,000 nodes overlay

to find the optimal view size value for each protocol. This view size value should be able to produce a

connected overlay and a low average path length so that broadcast messages don’t take too much time to

be delivered.

HyParView’s symmetric active view ensures that almost all nodes in the overlay are known by the

maximum amount of nodes possible, which is the active view length (5). This means that all nodes, with

high probability, will receive each message the same amount of times and that there is little probability

for any node not to receive a message at least once. For that reason, it’s expected that HyParView can

produce a connected overlay with a small active view size.

(a) Reliability (b) Last delivery hop (LDH)

Figure 11: Reliability and LDH for 1000 messages on a 10,000 nodes overlay

Figure 11a shows reliability using different fanout values. These values are the same for single and

multiple senders because they use the same overlay. In figure 11b, we notice a significant difference

on LDH between single and multiple senders versions (MS refers to multiple senders and SS to single

sender).

46

As we can see in figure 11a, HyParView can produce a connected overlay with small fanout values.

Due to its symmetric views, almost all nodes in the overlay are known by the maximum amount of nodes

possible, so the connection degree is nearly the fanout value. HPV can produce a connected overlay

with an impressive connection degree value (4). This simulation took less than 21 minutes using multiple

senders and a last delivery hop value of 17,2. Using a single sender, the execution time dropped from 21

to more than 13 minutes with an LDH of 11.

When the active view was incremented to 5, the simulation took 10more minutes with multiple senders

and 6 more with a single sender. The last delivery hop shifted to 16,5 and 9, respectively. This significant

difference between single and multiple senders simulation was because PlumTree creates trees optimized

for a specific sender. For this reason, when simulating a single sender broadcast, the number of redundant

messages drops drastically to near 0, and the last delivery hop to the optimal value.

We decided to choose the fanout value 5 as the optimal value. Despite not being the fastest, it reveals

a better value for the average shortest path and last delivery hop. It also uses a higher connection degree

and is more resilient in the presence of failures.

Brahms membership protocol creates asymmetric views, causing the overlay connection degree to be

lower than the fanout value. Simulations with fanouts 7 and 8 generated overlays with partitions. Their

connection degrees were 5.2 and 6,4, respectively, and the last delivery hop was 9 for both.

We then incremented the fanout to 9, and Brahms finally created a connected overlay with a 6.8

connection degree. This simulation took almost 19 minutes with a single sender and less than 40 minutes

with multiple senders. The last delivery hop value was 8 and 11, respectively.

We can notice that the difference between multiple and single sender simulations was smaller than on

HyParView. This is because every time Brahms updates its views, the tree created by the plumTree gossip

is destroyed, and the subsequent broadcast message will repair them but will exhibit high relative message

redundancy, causing the overall RMR to take a value around 0.8. The fanout value 9 was chosen as the

optimal value for the next simulation.

Defined the optimal fanout values, let’s take a look at other relevant properties:

Properties Average shortest path Maximum hops to delivery out-Degree

HPV 9.40 16.5 3 - 5

Brahms 6.22 11.0 4 - 9

Table 1: Multiple senders

47

We notice that HyParView produced the highest values for the average shortest path and maximum

hops to delivery, which is no surprise. It maintains small active views, so the number of distinct routes

existing across all nodes is limited.

The last delivery hop suffered a significant impact when using multiple senders. The first message

delivered took 8 hops to be delivered, but, as nodes use a shared tree optimized to the node that starts

the first message, broadcasts starting on other nodes have sub-optimal LDH values, causing the average

LDH to go up to 16,5.

As Brahms periodically updates its views, the broadcast trees are affected. This should be the reason

why the impact on the LDH, using a shared tree for multiple senders simulation, was minimized, as every

time the tree is repaired LDH takes optimal values (8 or 9 when views are updated and 11 for the 1000

messages average LDH).

Another crucial property is the out-degree distribution. As HyParview uses symmetric active views,

practically all nodes in the overlay are known by the maximum amount of nodes possible. This means that

all nodes should receive each message the same amount of times. For this reason, HyParView has a dis-

tribution of out-degree across a smaller range of values (between 3 and 5) than Brahms (between 4 and 9).

Properties Average shortest path Maximum hops to delivery out-Degree

HPV 6.53 9 3 - 5

Brahms 5.47 8 4 - 9

Table 2: Single sender

Now, looking at the single sender simulation properties, we can see that the out-degree distribution

remains the same, as the generated overlay is the same for both protocols, although the big difference in

the average shortest path and maximum hops to delivery values.

LDH now took optimal values (9 for HPV and 8 for Brahms) because the tree built by Plumtree is

optimized for a specific sender. The average shortest path value also dropped for the same reason, but

the difference between HPV and Brahms is less significant. This is because HPV takes advantage of the

tree built by Plumtree since the first message and reveals an overall relative message redundancy near 0.

On the other hand, Brahms can not use the most optimized path continuously. Every time views are

updated, the tree is affected and needs to be repaired.

48

4.3.3 Scalability

As mentioned above, scalability is one of the main concerns in distributed applications. Looking at Hy-

ParView and Brahms protocols, we can note some main concerns that could impact scalability.

HyParView’s gossip strategy is based on using a reliable transport protocol, like TCP. To simulate the

use of TCP, HyParView does some extra work, such as creating a new TCP connection every time a new

node joins the active view and ensuring the successful delivery of data by sending acknowledgments.

On the other hand, Brahms updates all views periodically to isolate malicious nodes, which affects

the number of overall membership messages exchanged and damages the PlumTree shared tree created.

Every time a node updates its view, the broadcast tree is affected and needs to be repaired, causing the

number of redundant messages to increase.

Figure 12: Single sender

From figure 12, we can notice that both protocols exhibit similar execution times under 25,000 nodes

on single sender simulation with a small difference on the 50,000 and 75,000 nodes simulation. For the

100 000 nodes simulation, we can see some differences with Brahms taking 30 minutes less.

49

Figure 13: Multiple senders

The multiple sender simulations, figure 13, produced considerable differences. Brahms revealed

slower executions and the difference between both protocols grew when increasing the overlay size. For

50,000 nodes, HPV took around 4 hours and 12 minutes, and Brahms took 5 hours and 5 minutes. This

contrast becomes more significant when increasing the overlay to 100,000 nodes with Brahms taking 14,5

hours long, 4 hours more than the HyParView simulation.

To explain the obtained results, let’s look at the average relative message redundancy exhibited by

1000 messages.

50

Figure 14: Relative message redundancy (RMR)

HyParView single sender simulation exhibits a RMR near zero, and the number of IHAVE messages

exchanged is 4 times more than the number of nodes. Brahms produced a RMR of around 0.8, and each

node exchanged approximately 6 IHAVE messages per broadcast message. Brahms simulations exchange

more gossip messages for two reasons. A higher connection degree means more exchanged messages

and damage on the shared tree. Every time views are updated, RMR goes to nearly 4.8 until it’s repaired

again, causing the average RMR to be about 0.8 and not near zero, as happens with HPV. We can also

notice that, because for 100,000 nodes we needed to increase the fanout value to get a connected overlay,

the RMR is higher. Although Brahms exchanges more gossip and membership messages, surprisingly, on

single sender, the execution times are similar because HPV replies with an ack to all received messages,

causing the number of exchangedmessages to duplicate. On amore realistic system,HPV should produce

faster simulations as gossip messages have a higher payload (IHAVE and ACK messages should have less

impact on the execution time), but, on these simulations, all messages have the same length.

On multiple senders simulations, we can notice a significant difference between both protocols. Hy-

ParView revealed a RMR of around 1.5, and each node sends an average of a bit more than 3 IHAVE

messages per broadcast. Brahms maintains a higher RMR with 1.9 and the same average of 6 IHAVE

messages per broadcast for each node. For 75,000 and 100,000 nodes, because the fanout is increased,

these values change to 2.1 and 6.5, respectively. Brahms revealed high relative message redundancy

due to the periodic view updates that damage the shared tree. These were the expected results, as nodes

use the same shared tree for each broadcast, LDH and RMR take sub-optimal values leading to slower

51

simulations.

Figure 15: Memory usage - Multiple senders

Figure 15 shows the memory usage of the multiple sender simulations. Brahms uses a bit more

memory, although this contrast is mitigated by the 100,000 nodes simulation where both use 30GB

memory, which seems to be the simulator limit.

Overall, HyParView should be able to produce faster simulations. Almost half of the messages ex-

changed by HPV are acknowledgments inducted by TCP. We believe the difference in the execution times

would be more significant if we could minimize the impact of ACKS and IHAVE messages on the execution,

as these are small messages without any payload and should take less time to process.

4.3.4 Failure recovery

To make a good evaluation of how both protocols recover from node failures, we need to take a look at

their recovery strategies. HyParView uses a reactive strategy. If a node sends a gossip message and

doesn’t receive an ACK message reply, it drops the receiver node from its view and selects a new one.

On the other way, Brahms uses a cyclic strategy. Periodically, all nodes update their views considering

all PUSH and PULL messages received. For this reason, using HyParView, a node needs to attempt to

send a message to an inactive node to detect a failure. However, in Brahms, all nodes update their view

periodically, isolating inactive nodes.

52

To simulate failures on the overlay, we select random nodes to fail, and then we initiate sending

broadcast messages starting on active nodes.

Figure 16: Reliability right after induction of failures

From the figure 16, we can see the initial impact the induction of failures has in both overlays. This is

the reliability of the first broadcast message, before starting any recovery strategy.

For a percentage of failures up to 60%, both protocols can maintain more than 80% reliability. Then,

whenmassive failures are induced, it starts to drop drastically with a more significant impact on HyParView,

because it has a lower connection degree (view size is 5), than on Brahms (average view size is 6,8). On

an 80% failure level, HPV becomes totally disconnected, but Brahmsmaintains around 50% reliability. For

higher failure levels both become completely disconnected.

Afterwards, 1000 broadcast messages were transmitted by random nodes and distributed on 150

simulation cycles. As mentioned above, the two peer sample services use different recovery strategies.

HyParView uses each message to test TCP connections, detect failures, and recover. On the other hand,

Brahms will update views on each second (150 times for 150 simulated cycles), ignoring inactive nodes.

53

Figure 17: Reliability 1000 messages

Figure 17 shows the reliability achieved when sending 1,000 messages on experiments with several

values, ranging from 10% to 95%, of node failures.

We can see that until 70% of failures level, Brahms reveals good reliability values (over 85%). At 80%,

it drops to around 55% and for higher failure levels the overlay remains totally disconnected. Brahms can’t

recover more than 9% (at level 70 recovers from 77% to 86% and at level 80 from 47% to 56%) and, then,

drops drastically until at 90% the reliability maintains around 1%.

In contrast, HyParView offers better and faster recovery usually near the 100%. It was able to recover

from an overlay completely disconnected to 100% reliability, showing high reliability values even when

massive failures were inducted (93% when 95% of failures).

This behavior highlights the importance of fast failure detection in gossip protocols. HyParView re-

covers almost immediately from the failures because all members of the active views are tested in each

broadcast. We can also notice higher recoveries when using HyParView for two reasons. Large passive

views maintained by each peer let them quickly switch a detected inactive node on the active view to an-

other on the passive view. HPV also uses symmetric views, which means that if a node can reach another

correct node in the overlay, it is necessarily reachable by messages sent by other nodes.

Brahms membership protocol does not use a failure detector like TCP and couldn’t recover until

the membership protocol is executed again. As it uses asymmetric views, some nodes may have outgoing

links and no incoming connections. To maintain reliability under a massive percentage of failures, Brahms

would have to be configured with higher fanouts (which is a cost-inefficient strategy in steady state) so the

54

initial impact on reliability could be mitigated.

55

Chapter 5

Conclusions

Epidemic protocols are highly important in the field of distributed computing and networking. They are used

in P2P systems compromising thousands of peers, so studies need to rely on simulation. Discrete-event

simulation (DES) plays a crucial and highly relevant role in these studies. We present a comprehensive

comparison and analysis of Discrete-event simulation (DES) tools commonly employed in evaluating

distributed protocols. This comparative study provided valuable insights into the strengths and weaknesses

of these tools and let us select Simian as the most suitable DES platform for studying epidemic protocols.

Subsequently, we developed a generic model for epidemic protocols using the Simian tool to implement

this model. Two peer sampling services were implemented (HyParView and Brahms) and one dissemi-

nation protocol (PlumTree). The integration of these protocols within the Simian environment offered a

unique opportunity to evaluate our model in terms of performance, scalability, created graph properties,

and membership and recovery strategies. Through meticulous analysis, we acquired deeper insights into

how these protocols work together and identified potential areas for optimization and refinement.

We expect this work to contribute to the growing body of knowledge in epidemic protocol research

and provide valuable guidance for researchers, developers, and network architects seeking to enhance the

robustness and efficiency of distributed systems. We hope the findings and methodologies presented in

this article could inspire further innovation and collaboration in the field, and lead to more reliable and

resilient distributed systems.

The exploration of epidemic protocol simulation models has opened doors to several avenues for future

research and development in the distributed computing field.

Additionally, future research can delve deeper into optimizing the performance of epidemic protocols.

Already available and new peer sampling services and dissemination protocols should be added to the

simulation model, leading to more robust, efficient, and resilient systems in this field. We also hope for

more evaluation with bigger networks, adding the possibility of testing different types of overlay topology,

and optimization of MPI simulations.

56

Bibliography

[1] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric Suter. Versatile,

Scalable, and Accurate Simulation of Distributed Applications and Platforms. Journal of Parallel and

Distributed Computing, 74(10):2899–2917, June 2014.

[2] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis,

Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated database maintenance. In

Proceedings of the sixth annual ACM Symposium on Principles of distributed computing, pages 1–

12, 1987.

[3] Norm Matloff. Introduction to discrete-event simulation and the simpy language. Davis, CA. Dept of

Computer Science. University of California at Davis. Retrieved on August, 2(2009):1–33, 2008.

[4] Martin Quinson, Cristian Rosa, and Christophe Thiery. Parallel Simulation of Peer-to-Peer Systems. In

CCGrid 2012 – The 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

CCGRID ’12 Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing, pages 668–675, Ottawa, Canada, May 2011. IEEE.

[5] Alberto Montresor and Márk Jelasity. Peersim: A scalable p2p simulator. In 2009 IEEE Ninth

International Conference on Peer-to-Peer Computing, pages 99–100. IEEE, 2009.

[6] Wojciech Galuba, Karl Aberer, Zoran Despotovic, and Wolfgang Kellerer. Protopeer: a p2p toolkit

bridging the gap between simulation and live deployement. In Proceedings of the 2nd International

Conference on Simulation Tools and Techniques, pages 1–9, 2009.

[7] Alberto Aguilar-Gonzalez, Camilo Lozoya, Carlos Ventura-Molina, Rodolfo Castelló, and Armando

Román-Flores. Bit-siem: A packet-level simulation and emulation platform for bittorrent. Journal

of applied research and technology, 15(6):513–523, 2017.

[8] Iftekharul Mobin, Sifat Momen, and Nabeel Mohammed. A packet level simulation study of adhoc net-

57

work with network simulator-2 (ns-2). In 2016 3rd International Conference on Electrical Engineering

and Information Communication Technology (ICEEICT), pages 1–6. IEEE, 2016.

[9] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. The mpi message passing interface standard. In

Programming Environments for Massively Parallel Distributed Systems: Working Conference of the

IFIP WG 10.3, April 25–29, 1994, pages 213–218. Springer, 1994.

[10] Team SimPy. Simpy. https://simpy.readthedocs.io/en/latest/index.html, 2020.

Accessed: 2023-01-02.

[11] Jason Liu. Simulus. https://github.com/liuxfiu/simulus, 2019.

[12] Pujyam. Simian. https://pujyam.github.io/simian/, 2022. Accessed: 2023-01-02.

[13] SimGrid Team. Simgrid. https://simgrid.org/doc/latest/Introduction.html#

main-concepts, 2022. Accessed: 2023-01-02.

[14] Ayalvadi J Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié. Scamp: Peer-to-peer lightweight

membership service for large-scale group communication. In Networked Group Communication:

Third International COST264 Workshop, NGC 2001 London, UK, November 7–9, 2001 Proceedings

3, pages 44–55. Springer, 2001.

[15] Meng-Jang Lin and Keith Marzullo. Directional gossip: Gossip in a wide area network. In Dependable

Computing—EDCC-3: Third European Dependable Computing Conference Prague, Czech Republic,

September 15–17, 1999 Proceedings 3, pages 364–379. Springer, 1999.

[16] Joao Leitao. Gossip-based broadcast protocols. PhD thesis, Master’s thesis, University of Lisbon,

2007.

[17] Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten Van Steen. The peer sam-

pling service: Experimental evaluation of unstructured gossip-based implementations. In ACM/I-

FIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Pro-

cessing, pages 79–98. Springer, 2004.

[18] Joao Leitao, José Pereira, and Luis Rodrigues. Hyparview: A membership protocol for reliable gossip-

based broadcast. In 37th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN’07), pages 419–429. IEEE, 2007.

58

https://simpy.readthedocs.io/en/latest/index.html
https://github.com/liuxfiu/simulus
https://pujyam.github.io/simian/
https://simgrid.org/doc/latest/Introduction.html#main-concepts
https://simgrid.org/doc/latest/Introduction.html#main-concepts

[19] Edward Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot, and Alexander Shraer. Brahms: Byzan-

tine resilient random membership sampling. In Proceedings of the twenty-seventh ACM symposium

on Principles of distributed computing, pages 145–154, 2008.

[20] Julius Bünger. Implementation and evaluation of brahms in the gnunet framework. 2015.

[21] Miguel Jorge Cardoso Branco. Godacen: Optimizing gossip for use in datacenters.

[22] François Taïani, Shen Lin, and Gordon S Blair. Gossipkit: A unified componentframework for gossip.

IEEE Transactions on Software Engineering, 40(2):123–136, 2013.

[23] Gabriele D’Angelo and Stefano Ferretti. Lunes: Agent-based simulation of p2p systems. In 2011

International Conference on High Performance Computing Simulation, pages 593–599, 2011.

[24] Luís Sobral. Epidemic simulation models. https://github.com/luissobral4/

EpidemicSimulationModels, October 2023.

[25] Nandakishore Santhi, Stephan Eidenbenz, and Jason Liu. The simian concept: Parallel discrete

event simulation with interpreted languages and just-in-time compilation. In 2015 Winter Simulation

Conference (WSC), pages 3013–3024, 2015.

[26] Thomas P. Robitaille. psrecord. https://github.com/astrofrog/psrecord, 2013.

59

https://github.com/luissobral4/EpidemicSimulationModels
https://github.com/luissobral4/EpidemicSimulationModels
https://github.com/astrofrog/psrecord

	List of Acronyms
	Introduction
	Problem
	Objectives
	Results
	Structure

	State of the Art
	Discrete-Event Simulation
	Parallel Discrete-Event Simulation

	Simulation tools
	SimPy
	Simulus
	SimGrid
	Simian

	Gossip protocols
	Peer Sampling Service
	Dissemination Protocol - PlumTree
	Metrics

	Generic Gossip Frameworks
	GossipKit
	LUNES

	Discussion

	Simulators scalability evaluation
	PlumTree implementation
	Data
	Messages
	Overlay
	Simulus
	SimPy
	Simian

	Evaluation
	Experimental Settings
	Results

	Simulation Model
	Architecture
	Implementation
	Peer Sampling Service
	Dissemination Protocol
	Metrics

	Evaluation
	Experimental settings
	Graph properties
	Scalability
	Failure recovery

	Conclusions

