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Abstract

Spectre attacks pose a significant threat to modern computer systems, exploiting speculative execution

to leak sensitive information from a program. Since speculative execution is present in modern CPU it is

of high priority to protect programs against these spectre attacks without reducing performance.

This study presents a comprehensive comparison of mitigation strategies employed by different tools

to counteract the effects of spectre attacks. However, this paper focuses its analyses on the type system

from the Jasmin framework and on the Blade tool. The type system uses three main primitives that work

together to protect vulnerable variables from leaking. On the other hand, the Blade tool allows for an

automatic mitigation strategy that implements a Min-Cut algorithm to a graph representing the different

outputs of a program in order to find the minimal cut points that stop speculative execution from leaking

vulnerable variables.

Aside from these strategies, this study also presents in detail the oo7 tool that identifies spectre

vulnerable patterns which are used to easily identify if a program is vulnerable to spectre attacks.

Through an in-depth analysis of their techniques, performance implications, and applicability, this

research evaluates the suitability of both strategies to protect cryptography functions against spectre attacks

by protecting the Blake2b hash function. In the end, this comparative analysis between these twomitigation

strategies determines in which scenario or purpose which technique should be used.

Keywords Spectre attacks, Jasmin, type system, Blade, hash Blake2b, oo7, speculative execution
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Resumo

Os ataques spectre representam uma ameaça significativa para os todos os computadores modernos,

já que exploram a execução especulativa para obter informações sensíveis de um programa. Uma vez

que a execução especulativa está presente em todos os CPUs modernos, é de alta prioridade proteger

programas contra estes ataques sem reduzir a performance de um programa.

Este estudo apresenta uma comparação compreensível das estratégias de mitigação realizadas por

diferentes ferramentas para combater os efeitos dos ataques spectre. No entanto, este artigo concentra

a sua análise no type system da framework Jasmin e na ferramenta Blade. O type system utiliza três

primitivas principais que trabalham juntas para proteger variáveis vulneráveis de ser lidas por entidades

externas. Por outro lado, a ferramenta Blade fornece uma estratégia automática de mitigação que imple-

menta o algoritmo Min-Cut num gráfico que representa os diferentes outputs de um programa, a fim de

encontrar os cortes mínimos que impeçam a execução especulativa de ler variáveis vulneráveis.

Além destas estratégias, este estudo também apresenta em detalhe a ferramenta oo7, que identifica

padrões vulneráveis a ataques spectre que são usados para identificar facilmente se um programa é

vulnerável a ataques spectre.

Através de uma análise aprofundada das técnicas, implicações de performance e aplicabilidade, esta

pesquisa avalia o quão adequadas são as estratégias em proteger funções de criptografia, através da

proteção da função de hash, Blake2b. No final, esta análise comparativa irá determina em qual cenário

ou propósito cada estratégia de mitigação deve ser usada.

Palavras-chave ataques spectre, Jasmin, type system, Blade, hash Blake2b, oo7, execução especu-

lativa
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Chapter 1

Introduction

This chapter introduces the main concepts and topics on the study to be developed. It starts by

contextualising fundamental ideas about speculative execution and spectre attacks. Next, it explores the

motivation behind this study, followed by a description of the objectives in each stage. Finally, it ponders

over the expected results and conclusions from this thesis.

1.1 Contextualisation

In the last decades, the evolution of CPUs (Central Processing Unit) was driven by many investigators

and engineers to improve performance. Numerous physical advancements have been found to enhance

processing power and improve performance, including minimising processing technology and increasing

clock frequencies. However, physical improvements were hampered by physical limitations hence many

vendors of CPUs shifted their focus to increasing the number of cores in each CPU and optimising the

instruction pipeline. Therefore, modern CPUs are massively parallelised allowing hardware to perform

operations for subsequent instructions ahead of time or even out-of-order.

In out-of-order execution, complex instructions are first split up into micro-operations which are then

processed by the CPU in sequential order, provided by the instruction stream, but dispatching them in

parallel. Consequently, if an operand required for a micro-operation is available then the CPU will process

this micro-operation even if previous ones in the instruction stream have not finished yet. To keep track

of the states of these operations, CPUs use the Reorder Buffer (ROB) that allows them to discard micro-

operation results when, for example, an exception is thrown. When all micro-operations are complete

then the results are committed into the architecture state, freeing the space in the ROB buffer. When a

micro-operation whose result is never committed to the architecture state, then the instruction is called

transient.

Although out-of-order execution utilises the CPUs execution unit as much as possible and, thus, im-
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proves the overall performance, it also has its downsizes. When operations have a dependency on a

previous instruction that has not been executed yet, then the instruction pipeline stalls until the previous

instruction finishes. Hence, to keep the pipeline running at all times, it is fundamental to predict the con-

trol flow and data dependencies. This approach is implemented in CPU through speculative execution,

where a processor can make a prediction as to the path that the program will follow and speculatively ex-

ecute instructions along that path. If the prediction is correct then the CPU commits the results into the

architecture state and if the prediction is wrong then the CPU discards the changes made. This mecha-

nism is more advantageous than idling when waiting for an instruction to finish because the prediction is

made according to previous path outcomes, so the probability of a prediction being correct is high.

Another downsize of out-of-order execution is the existence of transient executions, since they reflect

unauthorised computations that were never supposed to happen, due to exceptions, mispredictions, or

interrupt requests. When an execution is discarded from the ROB, it may leave traces in microarchitectural

covert channels, such as cache, that could later be recovered by an attacker. This is the foundation for

transient attacks, where an attacker can exploit out-of-order and speculative execution to access private

data from the victim’s code.

According to Canella et al. [2019] there are two types of transient attacks, Spectre and Meltdown. Spec-

tre attacks exploit transient execution following control or data flow misprediction and Meltdown attacks

rely on transient execution following a CPU exception. Essentially, Meltdown exploits the CPU capacity to

implement out-of-order execution, while Spectre attacks rely on the use of speculative execution to steer

the victim into transiently computing on private memory locations. In this study, we will focus our attention

on spectre attacks.

Spectre attacks are built upon three phases as stated by Kocher et al. [2019]. In the first phase, the

attacker starts by mistraining the microarchitectural branch predictor to cause intentional misspeculation

of a particular victim’s branch. In the second phase, the processor executes an instruction that was

mispredicted allowing to transfer confidential data to the cache, to then realise that it occur an erroneous

speculative prediction, discarding the outcome of the execution. In the last phase, the attacker uses

Flush+Reload or Evict+Reload attack to recover the confidential data that was transferred to the cache, by

timing the access to memory addresses in monitored cache lines.

Note that the Flush+Reload and Evict+Reload are microarchitectural side-channel attacks that enable

the attacker to monitor cache lines by measuring the time that it takes to perform a memory access. If

the access is quick then the victim accessed the monitored cache line, otherwise, the access will be slow.

The main difference between these attacks is that Flush+Reload starts by flushing all cache lines using
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clflush, while Evict+Reload starts the attack by evicting all cache lines.

Following Canella et al. [2019], there are four types of spectre attacks that have been categorized

based on the root cause that triggered the misprediction and the method used to mistrain the branch

predictor. One type is the Spectre-PHT or Variant 1 which exploits the Pattern History Table (PHT) to

mispredict the direction of conditional branches. This attack also poisons the Branch History Buffer (BHB)

that accumulates the behaviour of the last N branches, because PHT uses BHB to predict which direction

to take when arriving at a conditional branch. Even though our focus in this study will be the Spectre-PHT

attacks, the other three types of spectre attacks are the Spectre-BTB or Variant 2 that poisons the Branch

Target Buffer (BTB) to allow the attacker to mispredict an indirect jump to other snippets of code in the

victim’s memory (gadgets), the Spectre-RSB which exploits the Return Stack Buffer (RSB), allowing the

attacker to overwrite return addresses and finally, the Spectre-STL that exploits memory disambiguation

for predicting Store-to-Load (STL) data dependencies which requires a memory load to not be executed

before all preceding stores, that write on the same location, have completed.

1.2 Motivation

Following the discussion of the previous section, speculative execution and transient computations

violate security mechanisms and assumptions allowing for CPUs to be vulnerable to spectre attacks. These

attacks represent a serious threat to current systems since vulnerable speculative execution capabilities

are found in microprocessors from Intel, AMD, and ARM, affecting billions of devices. The work developed

by Canella et al. [2019] concluded that microprocessors from these vendors are vulnerable to spectre-PHT

attacks. For this reason, it is essential to think of new methods to mitigate Spectre-PHT attacks1 as they

impose a significant hazard to modern CPUs.

Considering that speculative execution and transient computations were implemented in CPUs in order

to improve their performance, it is important that implementing solutions to mitigate spectre attacks does

not hinder processing. According to Kocher et al. [2019], one way to easily mitigate vulnerable speculative

executions and, thus, mitigate spectre attacks is to ensure that conditional branches are executed sequen-

tially by adding lfence instructions on the two outcomes of every conditional branch. This approach was

recommended by Intel and AMD and guarantees that the speculative execution will be disabled between

the lfence instructions. However, excessive usage of such a mechanism imposes a considerable toll on

performance, making this method not feasible to mitigate spectre attacks.

1 Throughout the rest of this chapter the Spectre-PHT attacks are going to be referred to as spectre attacks
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Since current devices have spectre vulnerabilities, these attacks can jeopardise many programs that

run on microprocessors. These programs and implementations may access or store in memory confi-

dential and private data, like secret keys, certificates, and other security elements that if compromised

could lead to other attacks and security breaches. Common implementations that deal with such sensitive

data are cryptography libraries that are often used to support many implementations for other programs.

Given how widespread these attacks and associated vulnerabilities are, it is of key importance to verify if

cryptography libraries can withstand such attacks.

1.3 Purpose

Taking into account that solutions to mitigate spectre attacks should not hinder CPU performance and

that cryptography libraries, which deal with secret data, are vulnerable to these attacks, it is vital to find

solutions that tackle these issues. This was the basis for researchers at the Max Planck Institute to develop

a type system Shivakumar et al. [2022] incorporated into the Jasmin framework Almeida et al. [2017] that

efficiently allows programmers to write cryptography implementations that are protected against spectre

attacks.

Jasmin is a framework that according to Almeida et al. [2017] allows programmers to develop high-

speed, high-assurance, and high-security cryptography software. This framework is structured around

the Jasmin programming language which supports high-level features, like loops and procedure calls,

leading to easily verifiable code and assembly-level instructions to give programmers control over the

generated code. This framework also implements a formally verified compiler that was designed to achieve

predictability and deliver efficient code by transforming Jasmin code into assembly programs.

Under the Jasmin framework, was created a type system Shivakumar et al. [2022] that protects

cryptography Jasmin programs and libraries from spectre attacks by ensuring speculative constant-time,

that is, guaranteeing the constant-time policy even during speculative execution. This policy mandates

that control flow and memory access be independent of secret data, so it does not leak sensitive data to

side-channels, hence, if a program is speculative constant-time its leakage does not depend on secrets,

for any branch prediction and unsafe memory accesses.

Due to the spectre vulnerabilities found in many cryptography libraries and the potential risk of sensitive

information leakage, this study aims to focus on protecting a cryptography library from such attacks by

using mitigation techniques. As the study will involve comparing and analysing the performance and

security of the several mitigation techniques, the selected library must already be implemented in Jasmin

5



and vulnerable to spectre attacks. For this purpose, the chosen library will be Blake2b which implements

the cryptography hash function blake2b. In the following chapters, this library and the implementation of

this hash function will be discussed in greater detail.

In summary, the main purpose of this study is to verify if the cryptography library Blake2b can resist

spectre attacks using mitigation techniques such as the type system. Essentially, this study will analyse

the implementation of several mitigation techniques and, in the end, compare them to the type system

technique to evaluate if the Jasmin implementation has better performance results than the others. To

pursue this goal, this study is organised into three different phases as described below.

The first phase is detailed in Chapter 2 and starts by exploring spectre-type attacks and possible mit-

igation tools and techniques, and by analysing the Jasmin specifications as well as protocols implemented

with it. This phase also examines the type system and its typing rules, and characteristics.

The second phase is demonstrated in Chapter 4 and begins by finding spectre vulnerabilities in the

Blake2b library by using a spectre detection tool. Subsequently, we apply the type system and the other

mitigation techniques to this library to mitigate these attacks so that the library can now withstand spectre

attacks.

The last and third phase shown in Chapter 5 compares and analysis the performance and security

results from the mitigation techniques we apply in the previous phase to evaluate if the type system has

better results than the other techniques.

1.4 Expected Results

At the end of this study, it is expected to acquire an organised and overall understanding of spectre

attacks and ways to mitigate them. It is also expected to gain a detailed view of the Jasmin framework and

its type system, and it is anticipated that this study analysis several mitigation techniques, including the

type system, by implementing them in the Blake2b library. Finally, it is expected to examine the results of

the assorted implementations by comparing them to the results of the type system.

In essence, this study aims to determine which countermeasures should be implemented in the

Blake2b library to withstand spectre attacks while ensuring that the performance and efficiency of the

library are not compromised.
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Chapter 2

State of the Art

This chapter discusses the foundations and theoretical concepts for the rest of the study. It starts

by describing spectre-type attacks by giving an overview on each type of attack, then introduces various

defences to protect software and devices against these attacks and, finally, explores the Jasmin language

including its security type system.

2.1 Spectre-type Attacks

As was discussed in the previous section, spectre attacks showed that branch or data misprediction

events might leave secret-dependent traces in the CPU’s microarchitectural state. Following Canella et al.

[2019] there are 4 types of spectre attacks which are categorised according to the root cause of the

misprediction and the method used to exploit these attacks based in how we mistrain the branch predictor.

The following sections describes each type of spectre attack, however spectre-PHT will be discussed

in more detailed than the other 3 attacks, as this study will focus on this type of attack.

2.1.1 Spectre-PHT

The Spectre-PHT or Variant 1 exploits conditional branch misprediction to allow an attacker to read

arbitrary secret memory from another process, by triggering a speculative execution of a sensitive operation

that would not be executed in normal program flow. As an example given by Kocher et al. [2019], the

following code snippet is vulnerable to Spectre-PHT attacks (variant 1).

1 if (x < array1_size){

2 y = array2[array1[x] * 4096] }

The listing begins by checking if the variable x is within the bounds of array1, which is essential for

security purposes. However, after repeatedly supplying valid values of x, the PHT will predict this branch
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as true. Thus, when the attacker finally supplies an out-of-bounds value of x, the PHT will mispredict this

branch as true. When the execution of the condition instruction finishes, the CPU realises that the PHT

mispredicted the branch and rolls back the changes made. Nevertheless, microarchitectural changes in

the cache are never discarded and, consequently, the attacker can access the value of array1[x] that

is confidential. To complete the attack, the attacker measures the time that takes to access the location

of y in the cache, using microarchitectural side-channel attacks. This reveals the value of array1[x],

which was also cached along with y.

Another example of a spectre-PHT vulnerability can be seen in the snippet below (variant 1.1). Although

the code does not store the value of array2[array1[x] * 4096], the value of x is still used as an

index into the array1, which may contain sensitive information. An attacker can use a spectre-PHT attack

to leak the value of array2[array1[x] * 4096] and then use it to access the corresponding value

of array1[x], by timing the access to the cache.

1 if (x < array1_size){

2 array2[array1[x] * 4096] = 0}

2.1.2 Spectre-BTB

The Spectre-BTB or Variant 2 exploits indirect branch misprediction to allow an attacker to speculatively

execute code that should not be executed in normal program flow. An indirect branch is a type of program

control instruction that uses a memory variable, that stores the function address, to allow the program

to jump to the next context, contrary to a direct branch that uses the function address for this jump. A

program might be vulnerable to spectre-BTB attacks as the execution of indirect branches are delayed due

to cache misses when obtaining the function address stored in the variable, allowing speculative execution

to predict the jump to improve performance. Therefore, it is possible that a misprediction occurs, letting

the program to execute a code snippet that might store vulnerable data in the cache and leaking sensitive

information through side channels.

2.1.3 Spectre-RSB

The Spectre-RSB exploits the Return Stack Buffer (RSB) to cause speculative execution of a Spectre

gadget that reads and exposes sensitive data by manipulate the software stack to create a mismatch

between this stack and the RSB. The software stack stores the return addresses after a call and the RSB

is a per-core microarchitectural buffer used to predict return addresses by pushing these addresses from
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a call instruction to the hardware stack. When the return is encountered, the RSB uses the top of the

buffer to predict the return address, supporting speculation with very high accuracy. If the RSB predicts

a return address to a code snippet that writes vulnerable data to a microarchitectural side channel, then

this creates a mismatch between the prediction and the software stack, making the program vulnerable

to spectre-RSB attacks.

2.1.4 Spectre-STL

Speculation in modern CPUs is not restricted to control flow but also includes predicting dependencies

in the data flow. The Spectre-STL attack exploits Store-to-Load (or RAW) dependencies which refer to an

instruction that is dependent on a result that has not yet been calculated or retrieved. As presented in

Horn [2018], the Spectre-STL attack start by mistraining the CPU’s memory disambiguator, which is a

set of techniques that predicts which loads are not dependent on previous stores and, therefore, can be

executed speculatively. The mistraining will enable the disambiguator to predict the execution of a load

that in reality dependent on a previous store and, consequently, letting the program to read secret data

into covert channels, like cache. When the prediction is verified, the load and all succeeding instructions

are discarded and re-executed. Finally, the attacker uses a microarchitectural side-channel attack to probe

the cache and, thus, access the secret data.

2.2 Defences against Spectre Attacks

As mentioned in the previously spectre attacks violate fundamental assumptions about architectural

abstractions, allowing attackers to steal sensitive data. Consequently, implementing defences against

spectre attacks is crucial to protect programs and devices from getting their sensitive data exposed to the

outside world. In this section, we discuss several countermeasures that reason microarchitectural details

such as speculative execution and side-channel attacks. Taking into account the systematisation found in

Cauligi et al. [2022] this section introduces a diverse group of verification and mitigation tools, frameworks,

and compile-based defences that grants protection against these attacks.

2.2.1 Pitchfork

As presented in Section 2.1, side-channels such as cache could serve as an intermediate carrier

through which private data could inadvertently be disclosed to observers by timing the cache visiting

latency. One way to mitigate this issue would be to enforce constant-time execution for all operations
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that deal with secret data, however, this mitigation may still get compromised by speculative execution.

Therefore, to mitigate timing side-channels vulnerabilities it is necessary to maintain constant-time even

in speculative execution so that no secret data is leaked through side-channels. To mitigate programs

against side-channels attacks during speculative execution, that is, against spectre attacks, it is necessary

to develop speculative constant-time programs. A program is speculative constant-time, when it neither

branch on secrets nor access memory based on secret data during speculative execution.

On that account, Cauligi et al. [2020] lays foundations for constant-time programming in the presence

of speculative execution. It presents operational semantics and a formal new definition of speculative

constant-time (SCT) that enables us to discover violations of the constant-time property in programs.

As presented in the paper, given an attacker directive d the execution of a program goes from state C

to state C', producing an observation, that is a leakage. Hence, a program satisfies SCT iff every initial

state satisfies SCT under any directives. To build the operational semantics to implement this definition it

is necessary that semantics model conditional branching, memory operations, fence instructions, indirect

and direct jumps, and function calls. In the end, this semantics captures a variety of existing spectre

variants because it shows that these attacks violate the SCT definition by producing observations depending

on secrets.

In order to detect SCT violations and data leaks in real cryptography code, it was created the Pitchfork

analysis tool. This tool first generates a set of directives representing various worst-case attackers and then

checks for secret leakage by symbolically executing the program under each directive. To generate the

directives, Pitchfork maintains a limit size buffer that determines the depth of the speculation (speculation

bound). For conditional branches and memory operations, Pitchfork constructs directives for all possible

outcomes until the buffer is full, that is, the size of the buffer matches the speculation bound. Pitchfork

manages to expose attacks based on Spectre-PHT, Spectre-BTB, and Spectre-STL.

In summary, according to Cauligi et al. [2022] Pitchfork is a low-level approach to detect several

spectre vulnerabilities in programs by using directives to track the various outcomes of a program and by

reasoning about speculation fences and speculation window.

2.2.2 Kaibyo

Just like Pitchfork, de León et al. [2022] uses semantics that takes into account speculation to reliably

identify code patterns vulnerable to spectre attacks. However, unlike the semantics used in Pitchfork

that describes how valid a program is interpreted, Kaibyo uses axiomatic semantics that defines which

executions are valid. To create these semantics Kaibyo uses CAT Alglave et al. [2016], a relational language
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used to develop a set of models that describe speculative behaviour and their effect enabling us to capture

a variety of attacks in a simple, concise and unified manner.

Following the CAT approach, the paper defines the semantics of a program axiomatically in terms of

consistent executions, that is, the execution does not violate the software isolation property by leaking

the secret address. To construe the definition of consistent executions, the behaviours of a program

are represented by graphs where nodes model occurrences of instructions (events) and edges model

dependencies between events. In the end, the graph forms a group of candidate executions that define

possible behaviours of a program. Nevertheless, only certain behaviours can occur in practice. To define

which behaviours can befall, it is necessary to maintain certain event properties such as control and

data flow for the specific program. Therefore, the CAT constraints the candidate executions by inserting

different assertions each of them describing concrete properties. With this final graph, we can determine by

analysing each candidate execution whether the software isolation property is violated. An attacker breaks

the software isolation property when it reads a secret from an address outside its sandbox boundary by

tricking the victim into leaking sensitive information.

To analyse the graph created by the CAT model and to verify if a program violates the software isolation

property, the paper uses the analysis framework Kaibyo. Kaibyo takes as input a program written in

assembly, the CAT model that samples the program properties, an unrolling bound to limit the number

of iterations in each loop, and an address that should not violate the software isolation property. Then, it

generates a formula based on the CAT model and the unrolling bound which is satisfied iff all the candidate

executions are consistent.

In summary, Kaibyo only provides security guarantees up to a given bound and according to Cauligi

et al. [2022] is a high-level approach to detect violations of the software isolation property by using CAT

memory models to verify if programs are vulnerable to Spectre-PHT and Spectre-STL attacks. Kaibyo also

reasons about speculation fences and speculation window by checking over the whole program via a CAT

model.

2.2.3 oo7

While the last two approaches use semantics to model program behaviours, Wang et al. [2021] focuses

on identifying code patterns on the program binaries that are vulnerable to spectre attacks and patches

them with minimal performance overhead. This approach uses the static analysis oo7 to detect potentially

vulnerable code in the program’s binary and then introduces fence instructions at selected program points

to prevent speculative execution and thereby protect the code from spectre attacks. The oo7 tool contains
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two main modules, a vulnerability detection module that detects spectre vulnerabilities and a code repair

module that mitigates the vulnerabilities found.

The vulnerability detection module as shown in Figure 1, is supported by three technologies: forced

execution, taint analysis, and a vulnerability checker. The forced execution constructs a graph that repre-

sents all possible control flow edges of a branch, that is, forces the program to execute along all possible

outcomes of a branch to simulate different speculative executions and consequently expose the several

behaviours of a program. The taint analysis tracks the data and instructions that can be controlled by the

attacker. In the taint propagation engine every instruction or data that imports information from un-trusted

channels is considered a tainted object. This will be propagated along the path of that instruction or data

by applying several taint propagation rules. Finally, the vulnerability checker detects whether the current

state satisfies the condition for spectre vulnerabilities, by setting up the Speculative Execution Window

(SEW) which will determine the analysis limit of a tainted branch. When the vulnerability checker evaluates

instructions inside that branch as vulnerable or not, then the SEW is decremented by one, and so on until

the SEW limit is reached.

Figure 1: oo7 Framework - vulnerability detection module. Adapted from Wang et al. [2021]

This detection module is implemented using interfaces from a binary analysis platform called BAP.

According to Brumley et al. [2011], BAP provides a toolkit for implementing automated binary analysis by

including analyses, standard and microexecution interpreter, and a symbolic executor. BAP features its

own domain-specific language, Primus Lisp, that is used for implementing analyses, specific verification

conditions, model functions, and even an interface with the SMT solver. The microexectution interpreter

called Primus will use a personalised code written in Primus Lisp called recipe to then perform the forced

execution and the taint analysis as a part of the vulnerability checker. The recipe written in Primus Lisp,

in this case, is called spectre and has all the rules to detect spectre-vulnerable patterns in a binary code.

By using interfaces from the BAP toolkit, this detection module starts with creating a graph of all

possible outcomes of a program. When the forced execution evaluates a call instruction, the taint analysis
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engine checks if the destination belongs to the taint source list which is a set of APIs that can import

data from un-trusted sources. Then, after propagating the tainted objects along the graph edges, the

vulnerability checker checks if there are any potentially vulnerable code patterns as follows.

The pattern <TB, RS, LS> is vulnerable to spectre-PHT attacks and begins with a tainted branch

(TB), then reads a variable using a malicious input (read secret - RS) and finishes with memory accesses

that is dependent on a secret leading to a cache state change (leak secret - LS). For example, the code

from variant 1 found in Section 2.1.1 has this pattern. The condition evaluates a variable x that is imported

from an un-trusted source making this a tainted branch. Then, it reads a secret variable, array1[x],

because it accesses a secret address due to the malicious variable x and, finally, reads the variable y that

is dependent on the secret array1[x].

The pattern <TB, SW> is also vulnerable to spectre-PHT attacks and begins with a tainted branch (TB)

and then writes data to a private address that is dependent on a malicious variable (speculative write - SW).

For example, the code from variant 1.1 found in Section 2.1.1 has this pattern. The condition evaluates a

variable x that is imported from an un-trusted source making this a tainted branch. It then writes data into

array2[array1[x] * 4096], that is dependent on an malicious variable x. The attacker can then

access the corresponding value of array1[x], by using microarchitecture side-channel attacks.

Following the figure 1, after the detection module finds all the vulnerable patterns in the program, the

BAP interface produces a ”Pattern Found” report. This report has all the vulnerable patterns found in the

program’s binary code and helps the oo7 framework to create its own ”Report”, which details all the BAP

findings including a more complete view of the analysis by mentioning all tainted branches and all possible

vulnerable patterns found.

The code repair module takes the assembly and disassembly code from the program and the locations

of the vulnerable code patterns in the vulnerability detection module to modify the assembly code by

inserting memory fence instructions in the appropriate locations. In particular, it inserts memory fences

following the TB instructions and immediately before the execution of RS and SW for the vulnerable patterns

<TB, RS, LB> and <TB, SW>, respectively. This solution efficiently inserts a small but necessary

number of fences at targeted points in the code without changing the underlying operational system, thus,

indicating the practicality of this solution.

In summary, oo7 provides not only a detection tool for spectre-PHT vulnerabilities but also mitigates

them with a small overhead. According to Cauligi et al. [2022], oo7 does not use semantics to detect nor

mitigate these vulnerabilities but instead uses data flow analysis and reasons about speculation window

for that propose.
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2.2.4 SpecuSym

As mentioned in Section 2.2.1, the constant-time policy is largely used in real-world cryptographic li-

braries to eliminate leaks via side-channels, hence developing speculative constant-time programs protects

them against spectre attacks.

The study Guo et al. [2020] proposes a new symbolic execution-based method, SpecuSym, for pre-

cisely detecting cache timing leaks introduced by speculative execution. The SpecuSym explores the pro-

gram and models speculative behaviour at conditional branches and accumulates the cache side effects

along those paths. After this dynamic execution, SpecuSym conducts a constraint-solving based cache

behaviour analysis to generate the leak witnesses, that is, the amount of leakage found along those paths.

Symbolic execution is a systematic program testing and analysis method where interpreting an event,

e := (lb > inst > la) stands for the execution of an instruction, inst, where lb and la denote the

state, s, of a program before and after the instruction, respectively. Hence, a program execution explores

a sequence of events along program paths.

To describe this new symbolic execution of SpecuSym, the SpecuSym algorithm starts by checking

whether the event of symbolic state s, which is received by the algorithm, is a conditional branch or

memory access. If it is a branch, the algorithm checks if the branch predicate relies on memory access

to speculative explore each branch outcome and its condition. After this, the state becomes a speculative

state, s′, since it will mimic the speculation of a mispredicted branch. Then, the SpecuSym explores

recursively s′ and assesses the effects of the memory accesses on the cache. It then constructs the

leak constrains and solves this constraint to verify if a solution exists. If the solution does not exist then

SpecuSym claims there is no leakage at the event in that state. Finally, when the execution of s′ finishes,

we use accumulated cache data from s′ to update the cache data of state s and continue the normal

execution of s.

SpecuSym models speculative behaviour by transferring the cache information between symbolic

states and manages to create a leakage witness to determine the exposure of sensitive data from the

program that was analysed. However, in order to accomplish this goal, SpecuSym establishes a threshold

for the speculation window, thus, this tool can only analyse a program’s speculative execution to a certain

point.

In summary, SpecuSym provides a detection tool for spectre-PHT attacks by analysing the leakage

model of possible mispredictions, according to Cauligi et al. [2022]. The SpecuSym uses the speculation

window to limit the recursion of the algorithm as it is described previously.
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2.2.5 Venkman

As described in Section 2.1, spectre attacks can poison and target different hardware and software

elements. Even though this study mainly focuses on spectre-PHT attacks that target the Pattern History

Table (PHT), Venkman as explained in Shen et al. [2019], tries to mitigate spectre attacks that poison

entries in the Branch Target Buffer (BTB) and the Return Stack Buffer (RSB). For example, in the code

below, an attacker could mistrain the BTB so that in line 1 the program could speculatively jump to line 5,

bypassing the load fence placed in line 4 which protects the load at line 5 from speculative execution and

hence, spectre attacks.

1 (*func_ptr)()

2

3 if (x < array1_size){

4 load_fence();

5 y = array2[array1[x] * 4096];

6 }

On that account, Venkman transforms all code running on the system so that any BTB or RSB entry

does not bypass fence or other instructions inserted by the compiler to protect load instructions from

spectre attacks. To accomplish this, Venkman transforms the program so that instructions are grouped

into bundles and ensures that branches can only target the first instruction in the bundle. By doing this,

Venkman guarantees that as long as load instructions and the instructions that protect them are within

the same bundle, attackers cannot execute a load without first executing the protecting statement. To sum

up, attackers can only insert the initial address of a bundle into the BTB and RSB.

The Venkman tool supports two types of code: binary code and LLVM code. The binary code is

used to verify if the native code has been transformed as Venkman requires because it comes with Typed

Assemble Language annotations which can help the verifier to efficiently prove that the native code con-

forms to Venkman’s requirements. The LLVM code represents programs in a virtual instruction set that

makes program analysis and transformation efficient and accurate by organising a program as a set of

instructions.

Venkman starts by generating the native code from an LLVM executable for the potential victim and for

an unprotected program. The code for the potential victim is passed through a set of transformations that

add instructions to mitigate spectre attacks, like fence or SFI instructions. This code and the unprotected

program are then transformed so that all valid targets of a control-flow transfer have an identical alignment

in the virtual address space. It also transforms all branches to ensure that all entries added to the BTB
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and the RSB are properly aligned. By doing this, it groups the program’s instructions into bundles. This

combination between alignment and protective statements ensures that instructions that need protection

against spectre attacks are in the same bundle as instructions providing the protection and, therefore,

mistraining the BTB and RSB cannot cause execution to bypass the instructions proving protection. Finally,

the binary verifier checks whether the BTB and RSB have been applied correctly before allowing the code

to execute.

In summary, Venkman provides a mitigation tool for spectre-BTB, spectre-PHT, and spectre-RSB at-

tacks. According to Cauligi et al. [2022], Venkman combines a structure compilation of a program to not

allow the training of BTB and RSB to bypass the instructions proving protection.

2.2.6 Blade

The study Vassena et al. [2020], introduces a new approach to automatically and efficiently eliminate

speculative leaks from constant-time cryptography code written in C or in WebAssembly. It suffices to cut

the data flow from expressions that could speculatively introduce secrets (sources) to those that leak them

through the cache (sinks). To accomplish this, it was created an automatic push button tool, Blade, which

eliminates potential speculative leaks using three main contributions.

First, it is necessary to formalise the semantics that translates high-level commands to low-level ma-

chine instructions enabling source-level reasoning about the absence of speculative-based execution leaks.

For this was created an abstract primitive called protect that stops speculation for a given variable. For

example, x := protect(e) ensures that the value of e is assigned to x only after e has been assigned

its stable, non-speculative value. With this new primitive, Blade, manages to stop speculation along a

particular data path without eliminating all speculation, like what happens with the introduction of fences

that could incur a high-performance cost.

Furthermore, was created a static type system that types each expression as either transient (expres-

sions that may contain speculative secrets) or stable (expressions that do not contain speculative secrets).

The system prohibits speculative leaks by requiring that all sink expressions be stable. A sink expression,

as mentioned above, is an instruction that reads data from a variable, thus, loads the data to the cache

that can be leaked secret data through side-channels attacks.

Finally, was built an algorithm that finds potential speculative leaks and automatically synthesises a

minimal number of protecting statements to ensure that the program is speculatively constant-time. To

this end, was created a def-use graph that captures the data flow between program expressions. If the

path from transient sources to stable sinks is found in the graph it indicates a potential speculative leak in
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the program.

Blade addresses spectre vulnerabilities by incorporating a minimal number of protecting statements

in the program’s assembly code. The protecting statements could be fence or Speculative Load Hard-

ening (SLH) instructions. The lfence instruction is a speculation barrier that stops speculation over this

instruction, that is statements after the fence will not be executed until all statements up to the fence

are executed. SLH instructions stall speculative load instructions in condition blocks by inserting artificial

data-dependencies between loaded addresses and the value of the condition, which ensures that the load

is not executed before the branch condition is resolved, according to Vassena et al. [2020]. By efficiently

applying these protecting statements to the assembly code, it allows for SLH instructions to be applied

in a more selective manner by only applying them to individual load instructions whose result flows to an

instruction that might leak and prevents the usage of fences from being more restrictive than necessary

which could incur in a high-performance cost.

To illustrate the Blade process let’s use the example below, taken from Vassena et al. [2020], that

contains a speculation vulnerability. When reading the variables x and y, an attacker could give an out-of-

bounds input i1 e i2 that when executed speculatively could enable secret data to be stored in those two

variables. This private data then flows to variable z and finally leaks through the data cache when reading

b[z].

1 x = a[i1]

2 y = a[i2]

3 z = x + y

4 w = b[z]

To eliminate this vulnerability and to protect this program against spectre attacks, Blade builds a

def-use graph whose edges capture the data dependencies between the expressions and variables of a

program. For example, the node for expression a[i1] should be connected to the node for variable x

indicating that expression a[i1] is used to compute the variable x. To track how transient values (values

that might contain secret data) propagate through the def-use graph, Blade uses a special node T which

represents the source of transient values. This node T is connected with all other nodes that represent

transient expressions, which for the given example are the expressions a[i1] and a[i2] because they

depend on outside input that may be malicious. Lastly, to detect insecure uses of transient values, the

graph is extended with a special node S which represents the sink of stable (non-transient) values of a

program. This node S is connected with all other nodes that need to be stable expressions, for the given

example the variable z. The graph in Figure 2 represents a subset of the def-use graph for the given
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example. As it shows, the graph contains a path from node T to node S indicating that transient data flows

through data dependencies into a stable expression and, thus, a program may be leaky.

Figure 2: Subset of the def-use graph. Adapted from Vassena et al. [2020]

After creating the graph, Blade will find a cut-set (set of variables), such that removing them from the

graph will eliminate all paths from node T to node S. Each cut-set defines a way to repair the program

because for all variables in the set we will add the protect primitive, mitigating the spectre vulnerabilities

and, hence, protecting the program against spectre attacks. For the given example, there are two sets

of variables that stops the flow of transient data from T to S, as shown in Figure 2 in orange and green.

However, Blade mitigates spectre attacks by minimising the usage of protect primitives, therefore, for the

example shown in the figure the minimal usage of the protect primitive comes from removing the variable

z from the graph. In the end, to protect the given example with minimal usage of protecting primitives,

the Blade algorithm adds one protect to variable z as shown in the following code.

1 x = a[i1]

2 y = a[i2]

3 z = protect(x + y)

4 w = b[z]

Next, after patching the program, Blade uses the type system to test whether the program is secure,

that is if it satisfies a semantic security condition. This semantic condition ensures that transient expres-

sions are not used in positions that may leak data and are not written to stable variables. If a program

does not guarantee these conditions then it is rejected. For this evaluation, the type system generates

a set of constraints under an initial environment, then constructs the def-use graph from the constraint

and finds a proper cut-set as mentioned above. Finally, computes the final environment which types the

variables in the cut-set as stable, therefore, confirming that the patch program is secure.

In summary, according to Cauligi et al. [2022], Blade is a medium-level approach to mitigate spectre-

PHT by using an automated data flow analysis. The tool first identifies all sources and sinks. Then, it finds
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the cut points using the Max-flow/Min-Cut algorithm and either insert fences at the cut points or applies

SLH to all of the loads which feed the cut point in the graph. Therefore, it reasons about speculation

fences and models out-of-order execution when creating the def-use graph and when defining the minimal

cut-set to protect the program.

2.3 The Jasmin type system

The last section described six different tools to mitigate and/or detect spectre attacks and vulnerabili-

ties by using different levels of semantics. While Pitchfork uses low-level semantics, others like Kaibyo use

high-level semantics to detect spectre vulnerabilities. On one hand, tools such as oo7, SpecuSym, and

Venkman are not associated with formal semantics, while, Blade uses medium-level semantics to mitigate

spectre attacks. Similar to Blade, Jasmin also uses medium-level semantics to detect spectre-PHT and

spectre-STL vulnerabilities, but instead of being an automated tool to mitigate these vulnerabilities, Jasmin

is a framework for developing high-speed and high-assurance cryptography code, giving the programmer

the power to write cryptography functions and algorithms that are protected against spectre attacks.

This section describes the Jasmin framework and its properties, details some of Jasmin’s specifica-

tions, and specifies the type system implemented in the Jasmin framework which mitigates spectre attacks

in code developed in Jasmin.

2.3.1 Jasmin

As stated by Almeida et al. [2017], cryptography software is pervasive in software systems since it

is often their most critical part, forming the backbone of their security mechanisms. For this reason,

cryptography implementations must satisfy multiple properties. Some of those properties are efficiency

by implying minimal overhead for software performance, protection against side-channels attacks which

ensures that a program does not leak sensitive data through side-channels (also known as constant-time

security), and functional correctness which are mathematical specifications that cryptography components

should follow allowing to semantically detect bugs and, consequently, preventing security breaches. To

implement cryptography code that satisfies these properties, Almeida et al. [2017] proposes the Jasmin

framework which allows programmers to develop high-speed, high-assurance, and high-security cryptog-

raphy software.

To fulfil the properties stated above, the Jasmin framework needs to be implemented as an assembly-

level language in order to establish a minimal overhead performance and needs to implement high-level
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abstractions that allow the framework to ensure side-channel security and functional correctness. These

requirements are achieved by using the Easycrypt machine-assisted verification tool to build proof of func-

tional correctness and side-channel security.

Therefore, to accomplish these assembly-level and high-level conditions, the Jasmin programming

language is designed to support high-level features that are easy to verify and secure and assembly-level

instructions enabling programmers to precisely anticipate and shape the generated assembly code in order

to achieve optimal efficiency.

Language Specification

The two main properties that Jasmin aims to achieve are predictability by providing the highest levels

of control to programmers over the generated code and verifiability by including several features that allow

a streamlined formal verification. Therefore, the Jasmin language was created to provide a one-to-one

mapping between Jasmin high-level instructions and assembly-level instructions, thus, building a uniform

syntax that unifies machine instructions and high-level structures and collections to enhance predictability

and verifiability.

The following sections will discuss some of Jasmin’s language features. This is important because the

next chapters will showcase code snippets of the Jasmin implementation for the Blake2 library, therefore,

providing an overview of this language will make it easier to understand upcoming chapters.

Variables To declare variables in Jasmin, we start by specifying the storage class of the variable, fol-

lowed by the corresponding type and variable name, as shown in the figure below.

Figure 3: Jasmin declaration of variables

According to Oliveira [2022], there are four storage classes in Jasmin: stack, which allows variables to

be allocated in the program’s stack frame enabling the compiler to control its address, reg, that allocates
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variables to a register chosen by the compiler granting responsibility to the programmer to make sure there

are enough registers to allocate variables, inline, which initialises a variable with a statically know value,

and global, which is similar to inline but the value will be placed in the .data section of the assembly

file.

There are three categories of basic types in Jasmin. The word category can be used with all classes

previously mentioned and hold the types u8,u16,u32,u64,u128 and u256, allowing to declare the

number of bits that the variable holds. For example, in Figure 3 the variable va will hold 64 bits of data. The

boolean category can be used only with the class reg and provides a mechanism for handling arithmetic

flags and the category integer specifies an unbounded integer that should be statically known and can

only be used with the class inline.

The Jasmin language also allows programmers to declare arrays, supporting the declaration of reg

and stack arrays, for all word types. When accessing reg arrays the index should be statically known, while

accessing stack arrays the index can also be a run-time value. For instance, to declare an array in Jasmin

we can use the statement stack u64[25] as it declares a stack array with 25 elements with 64 bits of

data each.

Finally, Jasmin allows the programmer to declare a register pointer as reg u64 aux, which corre-

sponds to a register variable aux that points to a memory region with u64 corresponding to the number

of bits that are necessary to hold a pointer in 64-bit code, thus, all external pointers must be declared as

u64. Since pointers point to a memory region, there is an array-like notation to access information from

the pointer. By default, the accesses are made in 64-bit words, hence, each value is 8 bytes in size. The

Table 1 shows some examples to access information from a pointer in Jasmin.

Jasmin Description

[ptr] Accesses the first u64 value pointed by ptr.

[ptr + 8] Accesses the second u64 value pointed by ptr.

(u8)[ptr + 1] Accesses the second byte pointed by ptr.

(u256)[ptr] Accesses the first u256 value that is pointed by ptr.

Table 1: Access data from a pointer in Jasmin

Operators and Instructions As stated before, each instruction is usually mapped into one assembly

instruction and, thus, each operator (+, -, *, = and /) must be declared with a compatible storage

class and type for the corresponding assembly instruction. For instance, if an assembly instruction requires
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that each variable is in the register, then the Jasmin operator needs to receive the corresponding variables

declared using the reg storage class. It is the responsibility of the programmer to be aware of such

requirements and restrictions when writing Jasmin code.

For example, for the operator = the programmer is allowed to perform a copy from register to register,

stack to register, and vice-versa, but it is not allowed to copy a value from a stack variable to another stack

variable. To perform this copy, the programmer needs to first copy the stack variable to a register variable

and then copy this register variable to the stack variable, hence performing two assembly instructions and

two Jasmin instructions. Table 2 shows several arithmetic operators as implemented in Jasmin and its

corresponding assembly instruction for the types u8,u16,u32,u64.

Jasmin Assembly Notes

a+ = 1 inc a Addition by 1 is compiled into inc.

a+ = b add b, a Addition.

cf, a+ = b add b, a Same as previous, but carry flag can be used.

cf, a+ = b+cf adc b, a Addition with carry.

a = −a neg a Two’s complement negation.

a− = b sub b, a Subtraction.

cf, a− = b sub b, a Same as previous, but carry flag can be used.

cf, a− = b−cf sbb b, a Subtraction with borrow.

a = b+ c+ d lea d(b, c), a Addition using lea. Displacement d can be 0.

a = b ∗ s+ c+ d; lea d(b,c,s), a Same as previous. Scale factor can be 2, 4, or 8.

a = b ∗ s+ d; lea d(, b, s), a Same as previous. But c is omitted.

h, a = a ∗ b mul b Unsigned multiply. a allocated in rax. h in rdx.

a ∗ = b imul b, a Signed multiply.

a = b ∗ i imul i, b, a Signed multiply. i is an immediate value.

a = a/b div b Unsigned division. a in rax. rdx is 0.

Table 2: Arithmetic operators overview. Taken from Oliveira [2022]

Following Oliveira [2022], Jasmin also allows the programmer to perform operations in the context of

bitwise and shift instructions, as shown in the Table 3 for the types u8,u16,u32,u64.

Finally, there are several assembly instructions, such as BSWAP or ROL, which do not correspond to

any Jasmin operators previously mentioned. Therefore, Jasmin enables programmers to perform a direct

call to these instructions by declaring these instructions with the prefix # and suffixed with the size, indicat-
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Jasmin Assembly Notes

a∧ = b xor b, a Logical exclusive OR.

a |= b or b, a Logical inclusive OR.

a & = b and b, a Logical AND.

a =!a not a One’s complement negation.

a =!b&c andn c, b, a Logical AND NOT.

a <<= i shl i, a Shift logical left.

a >>= i shr i, a Shift logical right.

a >> s = i sar i, a Shift arithmetic right.

Table 3: Bitwise and shift operators overview. Taken from Oliveira [2022]

ing the types of inputs. For example, the instruction BSWAP can be declared as b = #BSWAP_64(b),

meaning that the instruction will reverse the byte order of the register 64-bit variable b. Figure 4 shows

the Jasmin instructions that are accepted for the types u8,u16,u32,u64.

Figure 4: Jasmin Instructions. Taken from Oliveira [2022]

Control-Flow As referred in this section, Jasmin achieves predictability and verifiability, by using the

following high-level and control-flow structures: if,for and while. These structures use conditions to

determine whether a certain branch should be executed or not. There are two types of conditions in Jasmin:

the run-time conditions that depend on run-time values which can be determined during the execution of a

program, like a < 4, and statically known conditions that do not depend on run-time values. For run-time

conditions, they can be grouped into boolean conditions which use arithmetic flags (reg bool variables),

and word conditions that require two operands of the same type with one being a run-time value and the

other being a statically known value.

The if statement can be used with or without the else clause and is written in Jasmin as

if(condition) {then_block} else {else_block}
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. This statement can use with both run-time and statically known conditions.

The for statement allows to specify loops that are unrolled during compilation for better performance,

thus, its conditions can only depend on statically known values. In Jasmin, the for statement can be

described as

for i = initial_value to end_value {loop_block}

when the structure indicates that the iterator i is incremented by 1, and as for i = initial_value

downto end_value {loop_block} if the iterator is decremented by 1.

At last, the statement while can be specified as

while (condition) {loop_block}

when we want to first verify the condition and then, if true, execute the loop_block or as while

{loop_block} (condition) {it_block} if we want to validate the condition at the end of each

loop_block and, if the condition is true, execute the it_block. For both definitions, the condition

can depend on run-time values, however, conditions that are statically known are not useful in this context

considering that Jasmin does not implement break statements the while loop would continuously be

executed. In comparison to the for statement, the while loop is preserved during compilation and is

never unrolled.

Functions In Jasmin, it is supported three types of functions: inline, which are inlined at the caller

and can be seen as an extended macro mechanism, local, which allows a programmer to write functions

whose code is shared, and export, that can be called from an external code and implement the System

V calling convention.

The inline functions can be declared as:

inline fn function_name (arguments) -> return_types { function_body }

These functions can receive reg, stack and inline variables or arrays and then return the same

storage classes. This type of function is mainly used to execute portion of the computation done by the

main program or other inline function and can include control-flow structures and function calls to other

inline and local functions.

Local functions are declared as:

fn function_name (arguments) -> return_types {function_body}
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They receive as input only register variables with any word type and as output any type that is allowed in

the input list. This type is used to share code between other functions and it is allowed to include function

calls to other inline or local functions.

Lastly, the export function is declared as:

export fn function_name (arguments) -> return_types {function_body}

They can receive up to 6 registers as arguments with types u8,u16,u32,u64 and 8 registers with types

u128,u256 and can only return one register variable or not return anything. This type can be used in

external programs, but can not call other export functions or define functions within the export function.

This type does not receive or return register arrays, but it can receive a register pointer to a memory

address.

Semantics

The behaviour of Jasmin programs can be described as a relation between initial and final states.

This semantics defines a partial function, that is, for every initial state there is at most one final state

which reflects that Jasmin programs have a deterministic behaviour making them predictable. A detailed

account of the semantic rules of the Jasmin language can be found in Almeida et al. [2017] (figure 4).

2.3.2 Type System

cryptography algorithms and libraries are a common and important part of current applications. As

stated in the previous section, cryptography code needs to be implemented by using a high-speed and

high-assurance framework, like Jasmin. However, it is also important that these cryptography algorithms

be protected against security breaches since they deal with private and confidential data like secret keys

and certificates that should not be leaked to outside entities.

For this reason, it was implemented, under the Jasmin framework, a type system Shivakumar et al.

[2022] that protects cryptography implementations against spectre-PHT attacks by ensuring speculative

constant-time. The speculative constant-time policy makes sure that control-flow and memory accesses be

independent of secret data during speculative execution, that is, a program is speculative constant time if

its leakage does not depend on secrets, for any execution of a program even during speculative execution.

Jasmin’s type system is comprised of three primitives that must be added to Jasmin code by the

programmer. When these primitives are added correctly and efficiently, they work together to protect any

Jasmin code that may be vulnerable to spectre attacks.
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At the assembly level, these primitives verify whether the CPU is correctly executing a branch instruction

speculatively by evaluating if the branch condition was wrongly evaluated as true. If it was, the primitives

discard the outcome of the branch instruction to prevent it from being stored in the cache and potentially

leaked.

Language Implementation

Since the type system protects cryptography code from spectre attacks, it needs to satisfy the same

properties as cryptography software, so it does not hinder the performance, execution, and security of

these programs. Therefore, the type system is composed of three different primitives, as presented by

Shivakumar et al. [2022], that guarantee speculative constant-time, minimal overhead, maintain normal

execution of a program, and protect it against spectre attacks1.

The following example given by Shivakumar et al. [2022] leaks secret data speculatively via a branch

prediction, similar to the example shown in Section 2.1.1. If the program receives as input an out-of-bounds

value of i and if the branch predictor incorrectly guesses the condition i < 10 as true it is possible, under

speculative execution, that a secret value at position p[i] is loaded into x, making x a transient variable.

A variable is transient when its value speculative depends on secrets and therefore, can be easily leaked

as it is shown in line 4.

1 if (i < 10) {

2 x = p[i];

3 }

4 w[x] = 0;

To protect this example, the programmer uses the primitive, init_msf(), to set the misspeculation

flag, ms, to 0, ensuring that the code is entered in normal execution mode. After a branch instruction

conditioned on b, the programmer needs to use the primitive set_msf(b, ms) which updates the

misspeculation flag ms. In this primitive, if the branch is executed in normal mode then ms is equal to 0,

but if the branch is being speculatively executed then ms is set to 1. Finally, the programmer needs to use

the primitive protect(x,ms) to protect the transient variable x from being leaked during speculative

execution. This primitive masks the variable x according to the flag ms, i.e., the value of x remains

unchanged in a normal execution mode or it is set to -1 if the ms flag is 1. Thereby, whenever the value of

x is -1, the variable is discarded, thus, the speculative value of x is never leaked. These primitives assure

that the result of the load instruction at line 2 is only registered in a normal execution mode maintaining

1 Throughout the rest of this section the spectre-PHT attacks are going to be referred to as spectre attacks
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a minimal overhead, the correct output of the program, and protecting the code against spectre attacks.

The ensuing example represents the protected version of the example given above.

1 ms = init_msf();

2 b = i < 10;

3 if (b) {

4 ms = set_msf(b,ms);

5 x = p[i];

6 x = protect(x,ms);

7 }

8 w[x] = 0;

Since the type system uses primitives that need to be manually implemented in the program, it is the

responsibility of the programmer to first determine the transient variables that need to be protected by

using the protect primitive and then decide where to implement the set_msf primitive. By manually

implementing these primitives into the cryptography code, the programmer manages to protect it against

spectre attacks by enforcing the speculative constant time policy before compiling the programs.

In order to integrate the type system into the Jasmin framework, the Jasmin language was extended

with the three primitives and security annotations to allow the framework compiler to produce valid assem-

bly instructions. The assembly code below shows the compiled assembly version of the protected example

given above.

1 example:

2 lfence

3 movq $0, %rcx

4 cmpq $10, %rdi

5 jnb Lexample$1

6 movq $-1, %rax

7 cmovnb %rax, %rcx

8 movq (%rsi,%rdi), %rax

9 orq %rcx, %rax

10 Lexample$1:

11 ret

The assembly code begins by compiling the primitive init_msf() into lines 2 and 3. It starts

by assigning the register %rcx, which corresponds to msf, to value 0 as shown in line 3. The Jasmin

framework then compiles the branch condition b and the primitive set_msf(c,msf) into lines 6 and
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7. If the program speculatively predicts the execution of line 6 while line 4 is being executed, the register

%rax is assigned to value -1. In the meantime, if the result of the comparison at line 4 determines a

misprediction, the result will carry the flag CF equal to 0. At line 7, the register %rcx is assigned to -1,

only if the CF flag is equal to 0, that is, the variable msf is set to -1 if the condition b is false, meaning

that the program is running at speculative mode. Finally, the compiler translates the instruction x =

p[i] into its assembly code at line 8 and protects the register %rax, which corresponds to variable x, by

masking its value with the value of %rcx at line 9. The masking is obtained by using the instruction orq

which maintains the value of %rax only if %rcx is 0, i.e. when the program is running in normal mode.

Semantics

Sequential semantics of the Jasmin framework reasons about non-speculative execution of programs.

It is, therefore, suitable to reason about functional correctness, but not about leakage under speculative

execution. Hence, to model the semantics of program behaviours within the type system, the type system

defines speculative constant-time as equality of observations, which represents the knowledge gained by

the attacker after an instruction is executed.

A program is speculative constant-time iff, for every directive that details the attack method to exploit

speculative execution, a program is executed at two initial states under each directive and produces two

observations that are equal to each other. Thus, an attacker does not gain any different information no

matter the initial state of the program and the directive in which the program is executed.
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Chapter 3

Use case

This chapter aims to give a detailed overview on the use case used for this study. It starts by giving a

comprehensive description on the several phases of this research and explains the algorithm behind the

Blake2b library to be used in the study.

3.1 Research Overview

The goal for this study is to verify if the cryptography library Blake2b can resist spectre attacks using

the type system from the Jasmin framework and the Blade tool as mitigation techniques and in the end

do a comparative analysis between the type system and the Blade tool.

Since the study aims to compare other mitigation techniques to the type system it is important to

choose a tool that mitigates code written in a different language than Jasmin, has a different algorithm

than the type system and that could easily be compared against the type system by having similar features.

Therefore, the Blade tool was chosen, considering that is still is being maintain by the developers, has

a different mitigating algorithm than the type system, and mitigates WebAssembly and C code. On the

other hand, similar to Blade, Jasmin and the type system also uses medium-level semantics to detect

spectre-PHT and spectre-STL vulnerabilities. In addition, it is a quite known and established mitigating

tool for spectre vulnerabilities and could be a great way to compare the benefits and disadvantage of the

Jasmin’s type system.

As detailed in section 2.2.6, the Blade tool effectively addresses spectre vulnerabilities in cryptography

code written C and WebAssembly. Given the distinct nature of these two programming languages in terms

of variable allocation and memory access, the Blade tool mitigates these vulnerabilities differently, even

when the two codes perform identical functions. However, this study will focus its attention in mitigating

spectre vulnerabilities in the Blake2b library written in C. This emphasis stems from the fact that the

entirety of this study has been directed towards mitigating spectre vulnerabilities identified in both the
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Jasmin code and the C implementation of the Blake2b library.

In order to develop a more complete research, this study also focus on detecting spectre vulnerabilities

in the Blake2b library. Since the type system mitigates cryptography code written in Jasmin and the Blade

tool patches code written in C, this study also aims to detect spectre vulnerabilities in the reference code

of the Blake2b library written in C and in the Jasmin version of this library. For this, the study will use the

detection module of the oo7 tool to detect spectre vulnerabilities in the reference code and Jasmin features

to detect these vulnerabilities in the Jasmin code of the Blake2b library. The oo7 was chosen to detect

spectre vulnerabilities in the reference code, as it is a tool that is still being maintained by the developers,

and it is easy to install, use and understand its algorithm. This tool could also be a good option to compare

its mitigation strategy against the type system and the Blade tool by using its detection module, however

this module is currently unavailable to the public.

To develop a concise and complete research, this study will start by detecting the spectre vulnerabilities

in the reference and Jasmin code of the Blake2b library to demonstrate how the library is vulnerable to

spectre attacks. It then, uses the Blade and the type system to mitigate the spectre vulnerabilities in the

C and Jasmin code, respectively. Finally, the study will evaluate and compare the outcomes of mitigating

the spectre vulnerabilities achieved through the usage of the Blade tool and the Jasmin framework. To

carry out this assessment and comparison, it is essential to define criteria for comparison and methods

for analysing these criteria. Using this criteria, the research will determine which tool is ideal for which

purpose.

To note that the code used for the reference and the Jasmin code of the Blake2b library can be found

in A.1 and in A.3, respectively.

3.2 Blake2 Library

As stated in the previous section, the Blake2b library will be used to be mitigated against spectre

attacks by the Blade tool and the type system from Jasmin. This section aims to give a complete overview

of the Blake2b library and its implementation of the Blake hash function, so that the study presented in

the next chapters becomes easier to understand.

3.2.1 Blake

Hash functions are mathematical algorithms that convert input data of arbitrary size into fixed-size

output values, called hash values or message digests. Hash functions are widely used in computer science
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and information security to provide a fast and efficient way to verify data integrity and detect any changes

or tampering in a message or file. These functions are also essential for secure password storage and

user authentication, as they allow passwords to be stored in a hashed form, rather than in plain text, which

can protect against unauthorised access or data breaches.

Therefore, it is essential for hash functions to maintain several properties to ensure the security and

reliability of digital data and communications. When hash functions fail to maintain these properties, they

become vulnerable to attacks and, hence unreliable to use. This was what happened to three of the most

popular and widely used hash algorithms, MDS, and SHA-1, as it was discovered that they were vulnerable

to attacks due to the absence of the collision resistance property. This was the catalyst for the SHA-3

competition, which was a global contest organised by NIST to choose a new cryptography hash algorithm

that would become the standard for federal government applications.

The BLAKE hash function was designed as a candidate for the SHA-3 competition and was created

in 2012. BLAKE is based on a new design strategy that combines the best features of previous hash

functions, such as SHA-2, while also improving upon them in terms of speed, security, and flexibility.

BLAKE supports hash output sizes of 224, 256, 384, and 512 bits, and it is known for its high level of

resistance against various types of attacks, including collision attacks, preimage attack, and differential

attacks. Overall, BLAKE is a well-regarded and widely-used hash function that has proven to be both

efficient and secure.

According to Aumasson et al. [2013], after the SHA-3 competition and after an extensive cryptanalysis

of BLAKE’s security and efficiency properties, the authors of BLAKE introduce BLAKE2, an improved

version of the BLAKE hash function. It was designed to be fast, secure, and highly flexible and it has

quickly gained popularity among developers and security experts due to its performance and versatility.

3.2.2 Blake2 Algorithm

The Blake2 hash function comes in two different versions. The Blake2b version is optimised for 64-bit

platforms and can produce a digest of any size between 1 and 64 bytes. On the other hand, the Blake2s

version is optimised for 8 to 32-bit platforms and can produce a digest between 1 and 32 bytes. Starting

from this section, the Blake2b version will be referred to as simply Blake2, as this study focuses on this

version.

The Blake2 algorithm that is going to be used, receives as input three general parameters as shown

in Table 4. With these parameters, the algorithm will perform three functions, init, update, final.

The purpose of the init function is to ensure that the hash function state is correctly initialised and
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Parameter Variable Type Optional Description

Message Bytes No Message to be converted to an hash value

Key Bytes Yes
A random string in bytes that can be used to modify the

hash function’s behaviour

Digest length Integer No
Size of the hash value. In this case, the maximum value is

64.

Table 4: Parameters for the Blake2 algorithm

ready to compute the hash of the input data. It achieves this by initialising every structure and variable and

applying the key parameter, if one is provided, to the hash. The update function is responsible for calling

the compression function, which is the core of the algorithm and it creates the hash from the input data by

using the initialisation, round function, and finalisation stage, following Rajaram and Mathi [2012]. Finally,

the final function applies the compression function to remaining data that has not been processed,

updates the length of the data, and applies any finalisation flags that have been set. These steps ensure

that the hash computation is correctly finalised, which is critical for maintaining the security and integrity

of the hash computation.

The Blake2 algorithm begins by padding the message to form a sequence of N 16-word blocks. For

each block message, the algorithm will perform the compress function to create the hash value of that

block. In the end, the algorithm will return the sum of all hash values.
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Chapter 4

Spectre Analysis

This chapter provides an analysis of the spectre vulnerabilities discovered in the reference code of the

Blake2b library using the oo7 vulnerability detection tool. It also investigates the spectre vulnerabilities

detected in the Jasmin code of the same library and demonstrates the application of mitigation techniques

such as the type system and Blade tool to address the vulnerabilities identified in both the reference and

Jasmin code for the Blake2b library.

4.1 Detecting Vulnerabilities

The following section outlines the process of detecting spectre vulnerabilities in the Blake2b library.

The oo7 tool, as explained in section 3.1, will be used to identify spectre vulnerabilities in the library’s

reference code written in C. In addition, the Jasmin framework will be employed to detect violations of the

speculative constant-time policy in the Jasmin code, which ensures that the code is susceptible of spectre

attacks, as described in section 2.3.2.

4.1.1 Reference Code

The oo7 tool works by finding potentially vulnerable patterns in the binary code of a program. Despite

the explanation provided in section 2.2.3 regarding the two primary modules within the oo7 framework,

namely one for detecting spectre vulnerabilities and another for mitigating these vulnerabilities, it is im-

portant to note that the mitigation module is currently unavailable to the public as stated in section 3.1.

For that reason, the oo7 tool will be used to detect spectre vulnerabilities in the reference code from the

Blake2b library shown in A.1.

The oo7 tool is publicly available on their Github page1 for anyone to install and use. In order to

streamline the installation process, a Dockerfile was created (as shown in B.1) that includes all the nec-

1 https://github.com/winter2020/oo7
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essary commands to fully install the tool within a docker container. To access greater processing power

and memory than a typical computer, the tool was installed on a remote machine named glorfindel,

which was made available by professors at Ghent University. This machine is composed of 8 processors

from Intel (Intel(R) Core(TM) i7-10700 CPU) with each having 8 CPU cores and the total amount of system

memory is 125GB.

Output Analysis

To test the tool and to better understand how this tool works before running the reference code of

Blake2b, it was used the following test code:

1 /* toy example from Spectre paper */

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <stdint.h>

5 #include <time.h>

6

7 unsigned int array1_size = 16;

8 uint8_t array1[16];

9 uint8_t array2[256 * 512];

10 uint8_t temp = 0;

11

12 struct timespec time_start , time_end;

13 size_t time_diff;

14

15 void victim_fun(int idx) {

16 if (idx < array1_size) {

17 temp &= array2[array1[idx] * 512];

18 }

19 }

20

21 int main(int argn, char* args[]) {

22 int source;

23

24 FILE *file = fopen("temp.txt", "r");

25

34



26 if (file == NULL) {

27 printf("No file!");

28 return 0;

29 }

30 source = fgetc(file); //taint source

31 victim_fun(source);

32 return 0;

33 }

To detect spectre vulnerabilities in the provided C code using the oo7 tool, it is necessary to generate

its binary code using the ”objdump” command. This binary code can then be used along with the recipe

”spectre” that has all the rules written in Primus Lips to detect spectre vulnerable patterns in the bap

test --recipe=spectre command to execute the oo7 tool.

The oo7 framework generates two distinct outputs. One output is generated by BAP through the ”grep

spectre-path incidents” command. Since this is an independent tool that was added to the oo7 frame-

work to detect vulnerable patterns, it provides its own report aside from the oo7 output. The other output

presents the report of the oo7 tool, which can be viewed by executing the command /incidents_profile.py

incidents test.asm. Here, ”test.asm” refers to the assembly code corresponding to test C code .

This final output represents the comprehensive report generated by the oo7 tool.

As mentioned in 2.2.3, a program is susceptible to spectre attacks if a pattern like <TB, RS, LS>

exists within the code. The TB denotes a tainted branch, that is a branch that is dependent on a variable

from un-trusted source, then the RS means that the program reads a variable using the un-trusted input,

and finally the LS indicates there is a memory access that is dependent on a secret which leads to a leak-

age. The output obtained from BAP for the provided code is (spectre-path (1:63u#2761 (9 (S3

(cond 6ec) (load 6fb) (last 70f))))), which corresponds to the <TB, RS, LS> pattern,

as depicted in Figure 5.

Figure 5: BAP output for test program
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The figure shows the vulnerable pattern in the assembly code along with the distance between the

TB and the LS instruction. In this case, the instruction 6ec in the assembly code represents the tainted

branch TB, the 6fb represents the RS instruction and the LS is display in the instruction 70f. These three

instructions together form the pattern <TB, RS, LS> which means that the program is vulnerable to

spectre attacks. The Figure 6 highlights part of the assembly code that is spectre vulnerable, as stated by

the output of BAP.

Figure 6: Part of the assembly for the test program

From the figure it can be seen that the instruction 6ec corresponds to the ”if” statement in the function

victim_fun. This ”if” is dependent on a un-trusted variable since the idx is loaded from un-trusted

source. The instructions 6fb corresponds to the load array1[idx], where the program reads a variable

that is dependent on idx. Finally, the instruction 70f represents a memory access that leads to the store

of array1[idx] in the cache. This value could then be leaked by using a microarchitectural side-channel

attack.

Similar to the BAP output, the oo7 tool also identifies the instructions that form a vulnerable pattern.

The oo7 generates a text file that provides a complete overview of the analysis, including all the tainted

instructions, tainted branches (TB), and vulnerable reads (RS), regardless of whether they are part of a

vulnerable pattern or not. This makes the oo7 output more comprehensive and detailed compared to the

BAP report.
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Figure 7: oo7 Report for the test program
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Figure 7 displays the complete oo7 report obtained from running the test code. The orange section

presents the number and assembly locations of TB, which are jump instructions influenced by variables

from un-trusted sources. However, not all of these instructions pose a threat to the program. Only the

tainted branches that form a<TB, RS, LS> pattern are considered hazardous. The blue area represents

the vulnerable reads that, in combination with the TB identified in orange, may be susceptible to spectre

attacks. The first ID corresponds to the associated tainted branch, the second ID represents the RS

instruction, and the final number denotes the distance between the TB and RS. The red section highlights

the vulnerable pattern also identified in the BAP output. It starts by identifying the hazardous tainted

branch in orange, followed by the RS instruction, and concludes with the LS instruction, thus constituting

the <TB, RS, LS> pattern. Lastly, the green section lists various instructions that acquire information

from un-trusted sources.

Blake2b Output

As mentioned earlier, the oo7 framework was employed to identify spectre vulnerabilities in the ref-

erence code (A.1) of the Blake2b library. Due to the code’s complexity, the analysis with the framework

requires a significant amount of time to execute. However, after several hours of running the tool on the

glorfindel machine, the process was terminated because it was consuming an excessive amount of

memory, approximately 125 GB.

To analyse the memory usage of the oo7 tool during the execution of the reference code, a graph

was generated to illustrate its memory consumption over time on the glorfindel machine before it

was terminated. Figure 8 presents the graph depicting the memory usage in gigabytes (GB) at 15-minute

intervals for a duration of fourteen and a half hours.

This graph reveals a significant increase in memory consumption approximately three hours and forty-

five minutes into the execution of the tool. Subsequently, from that point until the termination of the

execution, memory consumption continued to increase steadily. This graph pattern could indicate a mem-

ory leak or loss, resulting in excessive memory consumption and hindering the complete execution of the

spectre analysis.

Valgrind, a powerful debugging and profiling tool widely used by developers, was employed to inves-

tigate potential memory leaks and losses in the oo7 tool. The tool’s capability to identify memory leaks,

improper memory usage, and other programming errors in software makes it an essential resource in this

context. The summary below provides an overview of the memory leak findings obtained from Valgrind

after several hours of running the oo7 tool.
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Figure 8: oo7 Memory Consumption

1 LEAK SUMMARY:

2 definitely lost: 37 bytes in 1 blocks

3 indirectly lost: 0 bytes in 0 blocks

4 possibly lost: 2,704,315,633 bytes in 28 blocks

5 still reachable: 47,296,423 bytes in 4,371 blocks

6 suppressed: 0 bytes in 0 blocks

7 Reachable blocks (those to which a pointer was found) are not shown.

As shown in the summary there are plenty of bytes that are lost, therefore it can be concluded that

the oo7 tool sufferers from a memory leak that is responsible for the incorrect execution of the tool while

running a more complex code like the Blake2b code.

Despite the leakage issue hindering the generation of an analysis report by the oo7 tool, it is still

possible to obtain the BAP report after running the tool for a few hours. This discrepancy may be attributed

to the leakage problem specifically affecting the generation of the text file required for the oo7 tool to

produce its own report. However, since the vulnerability checker is executed by the BAP toolkit, it enables

the generation of the BAP report (”Patter Found” in figure 1). Therefore, although the oo7 tool cannot

provide a conclusive analysis, the BAP report can still be obtained, revealing all the spectre vulnerable

patterns present in the code. Figure 9 shows the BAP output taken from running the reference code with

the oo7 tool.

After analysing the output, it was concluded that the two highlighted patterns in pink, as shown in

Figure 9, were the primary vulnerable points in the Blake2b code. The other patterns exhibited some

level of correlation with these main patterns, indicating that if the two main vulnerabilities were addressed,
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Figure 9: BAP report for the Blake2b library

the remaining ones could be easily patched. For instance, in the first pattern, the TB corresponds to the

return jump in the blake2b_init function, the RS corresponds to the return in the blake2b_update

function, and the LS corresponds to the call to the blake2b_final function. As the highlighted patterns

are linked to vulnerabilities within the blake2b_final and blake2b_update functions, addressing

these vulnerabilities will automatically resolve the first pattern that was identified. The remaining patterns

show possible vulnerabilities within these functions, while the two main patterns specifically indicate the

vulnerable sections within these functions that are susceptible to spectre attacks.

The first main vulnerability that appears in the BAP output is related to the blake2b_final function.

The listing below shows the code snippet of the function that is vulnerable to spectre attacks. This snippet

is responsible to filled with 0 the last bytes of the input buffer until the size of the buffer becomes 128.

1 while (ctx->c < 128)

2 ctx->b[ctx->c++] = 0;

According to the analysis done by BAP, as shown in Figure 10, the previous snippet shows a <TB,

RS, LS> pattern making the program vulnerable to spectre attacks. BAP concluded that line 1 is a TB

since an attacker could access the memory address of the pointer ctx, which is a structure that has all

the information needed to produce the hash of an input message. The manipulation of this pointer could

then change the ctx->cmemory address to another that is not valid, by changing the value of ctx->c in

the RS instruction ctx->c++, leading to a change of value in a memory space that is private. This value

is then stored in cache since the LS instruction ctx->b[ctx->c++] uses the previous one to compute

its values, which allows the data in ctx->b to be overwritten by 0 in an invalid memory address.

The last main vulnerability that appears in the BAP output is related to the blake2b_update function.
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Figure 10: Vulnerability in the blake2b_final function

The listing below shows the code snippet of the function that is vulnerable to spectre attacks. This snippet

is responsible for calling the blake2b_compress, which creates the hash for each block of the input

message.

1 for (i = 0; i < inlen; i++) {

2 if (ctx->c == 128) {

3 ctx->t[0] += ctx->c;

4 if (ctx->t[0] < ctx->c)

5 ctx->t[1]++;

6 blake2b_compress(ctx, 0);

7 ctx->c = 0;

8 }

9 ctx->b[ctx->c++] = ((const uint8_t *) in)[i];

10 }

According to the BAP analysis, as shown in Figure 11, the snippet shows a <TB, RS, LS> pattern

making the program spectre vulnerable. In line 1, if the attacker could control the variable inlen it would

make this ”for” a tainted branch since the variable inlen comes from an un-trusted source. Similar to

what happened in the blake2b_final function, if the attacker could control the ctx pointer it could

then change the ctx->c memory address to another that is not valid, by changing the value of ctx->c

in the RS instruction ctx->c++. This allows the LS instruction in line 9 to overwrite in a private address

of ctx->b[ctx->c++] a value, that could be leaked, since the ctx->c++ was stored in cached.
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Figure 11: Vulnerability in the blake2b_update function

In summary, despite the memory consumption issues encountered while using the oo7 tool to analyse

more complex code, the BAP analysis within the oo7 framework determined that the reference code of the

Blake2b library is susceptible to spectre attacks. Consequently, it is crucial to address these vulnerabilities

by employing mitigation techniques to safeguard the library against such attacks.

4.1.2 Jasmin Code

The Jasmin framework incorporates various flags to verify compliance in Jasmin code. The -checkSCT

flag specifically examines violations of the speculative constant-time property (SCT), as described in sec-

tion 2.3.2. This flag ensures that control flow and memory accesses remain independent of secret data

during speculative execution. Thus, if a code violates this property, it indicates vulnerability to spectre

attacks. To identify vulnerabilities in the Jasmin code, the following command will be utilised: jasminc

-checkSCT Blake2b.jazz.

To detect spectre vulnerabilities in the Jasmin Blake2b library it will be used the code presented in

A.3. This code represents a fullstack Jasmin implementation of the reference code depicted in A.1. In

this implementation, external entities can solely use the blake2b function to create the hash for an input

message. It is impossible for the programmer to use the update or init function in its own. The output

of the command shown above can be seen in Figure 12.

The type system distinguishes three types of variables: transient, public, and secret variables. Public
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Figure 12: Output from -checkSCT flag

variables are independent of un-trusted data and are accessible to all. Therefore, any variable used in

conditions must be public to ensure that the program does not violate the SCT property. Private variables,

on the other hand, are inaccessible to anyone and should not be used in branch conditions. Lastly,

transient variables depend on un-trusted data but are employed in branch conditions.

The output distinguishes public variables as (n:public, s:public). This means that a vari-

able is considered public in both normal and speculative execution. Private variables are identified as

(n:private, s:private), indicating that they remain private in both modes of execution. Transient

variables are denoted as (n:public, s:secret). In normal execution, these variables are public but

may depend on secrets under speculative execution, since they depend on input values.

The output displayed in 12 indicates that in line 441 of the Jasmin code, there is a variable named

keylen that should be public but is instead identified as transient. The code snippet below illustrates the

vulnerable section of code, with line 441 corresponding to line 9 in the provided listing. In this snippet, the

init function employs various input variables, including keylen. The usage of keylen within a branch

condition in this function renders it as transient, as it is accessible to external entities but it is treated as

private during speculative execution of the branch condition. If the keylen variable is considered private

in speculative mode, it becomes susceptible to manipulation through spectre attacks. In such scenarios,

attackers can exploit this vulnerability to influence the branch condition and potentially gain unauthorised

access to private data. Consequently, it is crucial to fortify this specific section of the code against spectre

attacks by leveraging the primitives offered by the type system.

1 export fn blake2b(reg u64 in inlen, reg u64 out outlen , reg u64 key

keylen) {

2

3 reg u64 outlenCpy;

4 stack u64[8] h;

5 stack u64[2] t;

6

7 outlenCpy = outlen;

8

9 h,t = init(outlenCpy , keylen, key, inlen);

43



10

11 h = update(in, inlen, h, t);

12

13 final(out, outlenCpy , h);

14 }

4.2 Mitigating Vulnerabilities

The subsequent section provides a comprehensive overview of the mitigation process used to address

spectre vulnerabilities in the Blake2b library. To mitigate these vulnerabilities in the reference code written

in C, it will be employed the tool Blade 2.2.6. Furthermore, the type system from the Jasmin framework

will be used to solve potential violations of the speculative constant-time policy in the Jasmin code. These

approaches ensure that both programs become resilient against spectre attacks.

4.2.1 Reference Code

The Blade tool, as it was presented in 2.2.6, automatically mitigates spectre attacks in C code by

efficiently adding lfences or Speculative Load Hardening (SLH) instructions to its assembly code. Thus,

this tool will be used to mitigate the spectre vulnerabilities found in the reference code from the Blake2b

library. The first section presents a test code that is going to be used in order to better understand the

behaviour of the blade tool, while the second section will apply this tool to the reference code from the

Blake2b library.

Following section 2.2.6, the Blade tool could implement into the program’s assembly code two types of

protecting statements: fence and Speculative Load Hardening (SLH) instructions. This study will focus its

attention on the addition of fence instructions since the usage of SLH instructions could require more code

insertions into more locations which might end up decreasing the program’s performance in comparison

with the addition of fence instructions, according to Vassena et al. [2020].

At its essence, the Blade repair algorithm primarily deals with spectre v1 attacks that stem from PHT

mispredictions. Nevertheless, this tool has been enhanced with supplementary mitigation methods to

combat spectre v1.1 as well. In the context of this research, spectre v1.1 is identified as Spectre-PHT

attacks as it is discussed in section 2.1.1. For the purposes of this study, the algorithm chosen is the one

designed to counter spectre v1.1., since this particular algorithm effectively addresses both spectre v1 and

v1.1, encompassing the realm of Spectre-PHT attacks in its entirety.
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The Blade tool is publicly available on their Github page2 for anyone to install and use. In order

to streamline the installation process, a Dockerfile was created (as shown in B.2 ) that includes all the

necessary commands to fully install the tool within a docker container. In order to maintain the same

analysis environment as the one use for the oo7 tool, the Blade tool was also installed on the remote

machine glorfindel.

Test Code

To test the tool and to better understand how this tool works before running the reference code of

Blake2b, it was used a similar code from the 4.1.1 as shown below.

1 #include <stdint.h>

2

3 unsigned int array1_size = 16;

4 uint8_t array1[16];

5 uint8_t array2[256 * 512];

6 uint8_t temp = 0;

7

8

9 void victim_fun(int idx) {

10 if (idx < array1_size) {

11 temp &= array2[array1[idx] * 512];

12 }

13 }

14

15 int main(int argn, char* args[]) {

16

17 victim_fun(argn);

18 return 0;

19 }

As discussed in section 4.1.1, the code shown above has a spectre vulnerability within the lines 16

through 17. To mitigate the vulnerability found in this test code, it was created a Makefile, as shown

in B.3 that compiles all the necessary steps for the Blade tool to mitigate this vulnerability by adding

fence instructions. After running this Makefile with the command make build, all the files are created

2 https://github.com/PLSysSec/blade
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including the files ref.so and lfence_with_v1_1.so. The first file creates the binary reference

code and the second code creates the binary code with the necessary fence instructions. By using the

command objdump -S lfence_with_v1_1.so it creates the assembly code shown in the link.

The Figure 13 shows the victim function for the reference code and for the mitigated code. The

reference code (ref.so) presents the vulnerable pattern in the victim function. This pattern was de-

tected by the oo7 tool and it was discussed in detail in the section 4.1. The Blade tool, as seen in

the lfence_with_v1_1.so file, also detected this vulnerable pattern within this test code. To mitigate

this vulnerability the tool added two lfences, in order to stop speculative execution between those two

instructions. The addition of these two lfences is an essential and highly efficient approach to mitigate the

spectre vulnerabilities present in this code by using fence instructions.

Figure 13: Mitigation for spectre vulnerabilities using the lfence approach by the Blade tool

Blake2b library

To run the Blade tool using the Blake2b library, it was created a Makefile similar to the one presented

in B.3, but instead of using the test code it was used the code presented in A.2. There was made some

changes to this file in comparison to the one presented in A.1 since the Blade tool is not able to read

external inputs from a file, as shown in the main function of this code. This function was changed in order

for the tool to take as input variables from the command line which come from an un-trusted source. It was

also removed from this new file, the function blake2b_long since the output of the Blade tool became

easier to read and understand without this function which does not affect the outcome of the program.

As mentioned in 4.1, the vulnerabilities in the reference code of the Blake2b library, can be found

in the blake2b_update and blake2b_final function. To mitigate these vulnerabilities by adding
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fence instructions, the Blade tool needs to add these instructions throughout the code so it is completely

protected against spectre attacks. To abbreviate the discussion of the mitigation result, the study will focus

on the fence instructions added to the blake2b_update and blake2b_final function. In the link it is

shown the complete assembly code with all the fence instructions added to mitigate spectre vulnerabilities.

Figure 14 shows portion of the blake2b_update function that was mitigated using fence instruc-

tions. The yellow section in the file ref.so corresponds to the following code snippet from the reference

code.

1 int blake2b_update(blake2b_ctx *ctx, const void *in, size_t inlen) {

2 ...

3 if (ctx->c == 128) {

4 ctx->t[0] += ctx->c;

5 if (ctx->t[0] < ctx->c)

6 ...

7 }

8 ...

9 }

The Blade tool considered that these two conditions use vulnerable variables which could be manip-

ulate to be invalid allowing for attackers to leak private information under speculative execution. Hence,

in accordance with the details provided in Figure 14, Blade incorporated fence instructions preceding

the initial condition and following the second. This strategic inclusion effectively prevents the CPU from

speculatively executing this particular code segment by requiring the prior instructions to complete their

execution before entry into the branch becomes viable. As a result, potential attackers are unable to exploit

out-of-bounds variables to access both conditional branches.

Figure 14: Mitigation for spectre vulnerabilities found in blake2b_update function
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Figure 16 shows portion of the blake2b_final function that was mitigated using fence instructions.

Both blue, yellow and red sections from the ref.so file correspond to the code snippets shown in Figure

15.

Figure 15: Vulnerable code snippets from the blake2b_final function

In the blue section, it can be seen that Blade adds two fence instructions to stop speculative execution

before the branch condition. This way it is possible that all variables inside this branch condition are valid

and thus, not allowing attackers to leak confidential data. The yellow section corresponds to the end of

the while loop and the begin of the for loop. The addition of fence instructions in this spots allows for

the call to the blake2b_compress function and for the storage of all the variables used in this called to

never be execute under speculative execution. Finally, the red section corresponds to the end of the for

loop which allows the program to exit the for loop correctly by executing the final jump after the condition

completely executes.

Besides the fences added to the blake2b_update and the blake2b_final function, the Blade

tool also adds other fences in other functions and locations. In total the Blade tool adds a total of 304

fence instructions throughout the code, in locations different than the ones mentioned as vulnerable by

the oo7 tool. However, not all of these fence instructions were added to the main functions of this code

(blake2b_init, blake2b_update, blake2b_final and blake2b). The Blade tool in order to

mitigate code written in C creates new functions which represents other functions that are called within

the implementation of the main functions. For example, the guest_func_2 as shown in ?? is called

in blake2b_init, blake2b_update, blake2b_final and blake2b and represents all of these

functions aside from the blake2b_compress. Therefore, this new function created by Blade represents

all the other main functions which forces the tool to also mitigate the guest_func_2 function which

would be unnecessary if the the code would jump to their original functions instead of this created one.

48



Figure 16: Mitigation for spectre vulnerabilities found in blake2b_final function

In addition, the Blade tool also mitigates outside functions that are called within the main functions, like

strlen, realloc, memcpy, among others. In summary, the Blade tool adds 21 fence instructions

between all the main functions, 12 in the blake2b function, 5 in the blake2b_final function and 2

in the blake2b_init and blake2b_update function.

4.2.2 Jasmin Code

As it was presented in the section 4.1.2, the flag -checkSCT shows all the speculative constant-time

violations in a program, which implies that a program has spectre vulnerabilities. For the Jasmin program

presented in A.3, the flag alerted for a vulnerability in line 441 as shown in Figure 12.

To mitigate this vulnerability will be necessary to use the type system primitives that were presented

in section 2.3.2. As presented in this section there are three primitives (#init_msf, #set_msf and

#protect) that combine mitigate spectre vulnerabilities in Jasmin code. However, in order to mitigate

the vulnerability found in the Blake2b Jasmin code it is necessary to only use the primitive #init_msf,

as seen below.

1 export fn blake2b(reg u64 in inlen, reg u64 out outlen , reg u64 key
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keylen) {

2

3 reg u64 outlenCpy;

4 stack u64[8] h;

5 stack u64[2] t;

6 #msf reg u64 ms;

7

8 outlenCpy = outlen;

9

10 _ = #init_msf();

11 h,t = init(outlenCpy , keylen, key, inlen);

12

13 h = update(in, inlen, h, t);

14

15 final(out, outlenCpy , h);

16 }

As explained previously, all the variables that depend on input from outside entities are normally

considered transient by the type system, therefore variables like inlen, in, out, outlen, key

and keylen that are taken from user input are considered private values under speculative mode and

need to be carefully protected since their use in branch conditions could lead to spectre vulnerabilities.

In order for those variables to be considered public under speculative mode, it is necessary to implement

the primitive #init_msf. This primitive as stated above, creates a lfence in the assembly code, which

settles every variable to public in the type system. Therefore, when the execution arrives at the fence

instruction it waits for previous instructions to be complete, making all transient variables public after the

fence instruction. This allows the variables to be used in branch conditions making the branches protected

against spectre attacks. This simple primitive solves all the spectre vulnerabilities that might occur in the

program without the need to use the rest of the primitives in the type system. The assembly code below

shows a snippet of the blake2b function in assembly after the addition of the primitive #init_msf. As

seen in the cod, this primitive translates to a fence instruction that protects the code against spectre

attacks.

1 blake2b :

2 movq %rsp , %rax

3 leaq -352(% rsp), %rsp
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4 andq $-8, %rsp

5 movq %rax , 336(% rsp)

6 movq %rbp , 344(% rsp)

7 movq %rcx , %rax

8 lfence

9 movq $0 , %rcx

10 movq $7640891576956012808 , %rcx

11 movq %rcx , 16(% rsp)

12 ...

Lastly, by using the flag referenced in section 4.1.2, the system can verify whether this protective

statement effectively secures the program against Spectre vulnerabilities. By executing the command

jasminc -checkSCT Blake2b.jazz, the subsequent output is displayed.

Figure 17: Output from -checkSCT flag after the mitigation

Figure 17 shows that there are no violations of the SCT property, meaning that the program is protected

against spectre attacks.
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Chapter 5

Evaluation and Comparison of Results

This chapter is dedicated to the evaluation and comparison the results obtained by using the Jasmin

Framework and the Blade tool to mitigate the spectre vulnerabilities found in the reference code and in

the Jasmin version of the Blake2b library. The purpose of this evaluation is to establish which tool or

framework is better in terms of efficiency, security, complexity, and knowledge level. This chapter starts by

establishing the criteria to be employed in the comparison of the Jasmin Framework and the Blade tool.

This will be followed by an analysis of each tool in relation to the other. Ultimately, this study will analyse

comparatively the Jasmin framework and the Blade tool taking into account the criteria discussed in the

following section.

5.1 Comparison criteria

The subsequent sections delineate distinct criteria intended for comparing the mitigation outcomes

and strategies employed within the Jasmin Framework and the Blade tool.Each section will detail the

purpose of the respective criterion, explain the methodology for its measurement, and conclude with a

comparative assessment of both tools.

5.1.1 Availability and Installation Process

This criteria evaluates the installation process of the Jasmin framework and the Blade Tool and deter-

mines the availability of these tools for the public. For this, the study will focus on the amount of time that

took to install and compile both tools including the amount of compile errors that were found in order to

test and use both tools.

The Jasmin framework is publicly available on their Github page1. Installing this framework merely

requires cloning the Git repository and setting up the Nix shell. Once this is done, the framework and its type

1 https://github.com/jasmin-lang/jasmin
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system becomes accessible for anyone to write cryptography code or for mitigate spectre vulnerabilities in

a Jasmin program.

The Blade tool as mentioned previously is available on their Github page. To install the tool it is

necessary to clone the git repository from this tool and from lucet, WASI-SDK, WABT, Binaryan, and

HACL tool. In order to compile this tool, first it is fundamental that all of these aforementioned tools

also be compiled according to their Github. The developers created a Makefile that compiles and runs

all the benchmarks stated in Vassena et al. [2020] by using the compiled programs from the other tools.

However, when trying to compile using this Makefile, it occurs an error that seemed to be connected

with the WASI-SDK documentation, since the WASI-SDK could not find a library that was mentioned in

one of the benchmarks . After a long time trying to solve the problem, it was added the following line

--sysroot=$(WASI_SDK)/wasi-sdk-12.0/share/wasi-sysroot which allows for the wasi-

sdk-12.0 to search for libraries outside the ones in the WASI-SDK folder. After solving this problem, it

was possible to run the tool with different benchmarks.

The installation processes for both tools differed significantly. Setting up the Jasmin framework was

smooth, with no compilation errors encountered. However, the Blade tool encountered compilation errors

that required a substantial amount of time to resolve. Upon examining their GitHub pages in more detail,

it became apparent that the Jasmin framework receives more frequent updates compared to the Blade

tool. The latest commit for the Blade tool was made three years ago, whereas the Jasmin framework had

a commit just a few days ago. This discrepancy becomes particularly relevant when aiming to maintain

versions of these tools that are compatible with the versions of other tools that are used in both the Jasmin

framework and the Blade tool.

5.1.2 Level of Knowledge

This indicator was created to assess the amount of technical knowledge it is necessary for a program-

mer to have in order to use the Jasmin framework and the Blade Tool. This criteria will evaluate how easy

it is to use both tools, by comparing their implementation strategy (automatic or manual) and by reasoning

about the necessary programming skills.

To mitigate spectre vulnerabilities in a cryptography function with the Jasmin framework it is necessary

to add the type system primitives to the Jasmin version of the function. For that, it is necessary for the

user to write the cryptography function in the Jasmin language and then it needs to add the primitives to

particular location within the code. To accomplish this, the user must possess an intricate understanding

of the Jasmin language, along with a comprehensive grasp of the nuanced application of the type system.
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This depth of understanding is essential for using the primitives in the most optimal manner.

In the Blade tool, the mitigation process is done automatically by the tool. The user needs to give to

the tool the cryptography code written in C or WebAssembly, which is easily found online. The tool, then

automatically mitigates all the spectre vulnerabilities found without any interaction from the user.

For a user aiming to mitigate Spectre vulnerabilities within a cryptography code using the Jasmin

framework, the initial step involves dedicating time to comprehend the intricacies of the Jasmin frame-

work, including its type system. In contrast, when dealing with the Blade tool, the user can simply use

a cryptography code written in C or WebAssembly, for Blade to then automatically apply the necessary

protecting statements to the code.

5.1.3 Mitigation customisation

The criteria for Mitigation Customisation assesses the extent to which a user can tailor the mitigation

strategy within both the Jasmin framework and the Blade Tool. This involves evaluating the degree of

programming effort required for a user to effectively mitigate a program.

As previously mentioned, the Jasmin framework requires users to manually incorporate mitigation

primitives from the type system into the code. Consequently, there exists a substantial degree of customi-

sation available to users. This is due to the freedom to introduce these primitives at locations designated

by the user. This level of control empowers users to tailor the mitigation approach according to their

preferences, thereby enabling the mitigation to be as customised as the user desires.

Since the Blade tool automatically inserts protective statements without requiring any user input, it

lacks the ability to adapt these insertions. As a result, users are unable to personalise the mitigation

technique provided by the Blade tool.

5.1.4 Mitigation Strategy

This criteria measure the amount of protecting statements added to the mitigated program by the

Jasmin framework and the Blade Tool. Considering that the number of protecting statements added to

the code, could have a toll on the performance and efficiency, the less protecting statements allows for a

possible more efficient code.

The Jasmin framework according to the assembly snippet found in 4.2.2 has 1 fence instruction, which

was added because of the #init_msf() primitive as discussed previously, while the blade tool inserted

21 fence instructions into the main functions of the assembly code found in ?? as explained in 4.2.1.

Therefore, the Jasmin framework provides a more efficient method for inserting protecting statements
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compared to the Blade tool.

5.1.5 Efficiency and Performance

This metric quantifies the time required for the program, when mitigated using either the Jasmin

framework or the Blade Tool, to accomplish its task, as opposed to the unmitigated version. To measure

this performance it will be used the same environment as the one that the Blade tool was installed, in the

glorfindel machine mentioned in section 4.1. For the inputs to be used in both the Jasmin framework and

the Blade Tool, the input message will be ”cryptography Component - Blake2b hash function” and the key

will be ”Blake2b Project”.

To calculate the time that it takes to create an hash function with the mitigated Jasmin code, it will be

use the Linux command time which determines how long a specific command will take to run and gives

as output three measurements. The first is the real-life time it takes for the process to run from start to

finish (real). The second one is the amount of CPU time spent in user mode during the process (user).

The final one measures the total CPU time spent in kernel mode during the process (sys). For this study

it will be used the real measurement since it includes all time spent waiting for I/O and other processes,

making this the most important measurement of the three.

The Table 5 shows the performance measurements for the the reference Jasmin code and for the

Jasmin mitigated code. As seen in the table the reference Jasmin code takes in average 0,0016 seconds

to complete the task, while the protected Jasmin code takes 0,0023 seconds. The addition of the fence

instructions cost 0,0007 seconds in performance, which is quite insignificant and establishes that the

protected version of the Jasmin implementation does not take a toll on performance, making this version

feasible to be used.

Measure 1 Measure 2 Measure 3

Reference 0,001 s 0,001 s 0,003 s 0,0016 s

Protected 0,001 s 0,003 s 0,003 s 0,0023 s

Table 5: Performance measurements for Jasmin Blake2b version

For the Blade tool to measure the performance of the protected code, it is necessary to create a Rust

program that measures the time that it takes to run the mitigated code with the defined inputs. The main

two files for this program can be found in B.4.

The Table 6 shows the performance measurements for the the reference C code and for the protected

code by using the Blade tool. As seen in the table the reference code takes in average 0,0031 seconds to
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complete the task, while the protected code takes 0,0055 seconds. The addition of the fence instructions

cost 0,0024 seconds in performance, which in comparison to the Jasmin version is more significant.

However, the results establish that the protected version does not take a massive toll on performance,

making this version also feasible to be used.

Measure 1 Measure 2 Measure 3

Reference 0,0031 s 0,0031 s 0,0031 s 0,0031 s

Protected 0,0055 s 0,0055 s 0,0055 s 0,0055 s

Table 6: Performance measurements for Blade Blake2b version

5.1.6 Security

This final criteria will evaluate if the Jasmin framework and the Blade Tool adds enough protecting

statements in order to protect the code against spectre attacks. It also reasons about the consistency of

the mitigated program, that is, if the insertion of the protecting statements do not change the output of

the program and will analyse other relevant properties from both tools. To this this evaluation the study

will take into account some mathematical proofs developed by Vassena et al. [2020] and by Shivakumar

et al. [2022].

According to Shivakumar et al. [2022] the type system from the Jasmin framework is considered

to be sound and expressive. The article mathematically proves that the type system is sound since it

only accepts speculative constant-time programs which implies that control-flow and memory accesses be

independent of secret data during speculative execution, after the insertion of the type system primitives.

This article also proves how expressive the type system is. It asserts the type system’s primitives could be

added to any Jasmin program, making any Jasmin program typable by the type system.

The Vassena et al. [2020] proves that Blade is consistent and sound. Blade is consistent since the

programs that were protected by the Blade processor produce the same results and output as the program

without the protect statements. The article also proves that Blade’s type system is sound since the addition

of the protect statements enforce constant time under speculative executions, similar to the Jasmin type

system.

In line with the mathematical proofs shown in both articles, the Jasmin framework and Blade make

the program secure against spectre attacks by having mitigating algorithms that automatically or manually

insert enough protecting statements.
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5.2 Comparative analysis

The Table 7 summarises all the comparison criteria between the Jasmin and Blade presented in the

last section.

Jasmin Blade

Available Yes Yes

Installation Easy Complex

Skill Level High Low

Mitigation Strategy Manual Automatic

Protecting Statements 1
21

(in main functions)

Performance 0,0023 s 0,0055 s

Security Yes Yes

Table 7: Summary of the criteria results

When it comes to installation, Jasmin framework is way easier to install and compile than Blade

and it also adds less number of fence instructions than Blade which takes a toll on performance. When

comparing the performance results, it is evident that Jasmin reference code executes faster than the C

version of the code, since the Jasmin language it was build to implement high-speed cryptography code.

In addition, the protected code using the Jasmin type system tends to have a better performance than

the code protected by Blade, not only because the Jasmin code executes faster than the C code but also

because the Jasmin type system enables a more judicious placement of less protecting statements than

the Blade tool.

The Blade tool also presents its own advantages, since it allows for users with a low level of technical

skills to use the tool without needing to understand to the fullest how this tool works. Seeing that the Blade

tool implements an automatic strategy of mitigating spectre vulnerabilities it does not allow for the user

to customise the addition of protecting statements but it allows an easier mitigation strategy than the one

presented by the Jasmin framework.

The table shows that both the Jasmin framework and the Blade tool are feasible to be used in a real-life

setting when protecting a cryptography library, since both are available to the public and manage to protect

the library by using the necessary number of fence instructions in order to make the library secure.
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Chapter 6

Conclusions and future work

This final chapter presents the conclusion for this study and summaries some details about the al-

gorithms from the tools and frameworks used. This chapter also introduces some work that could be

developed and implemented in the future.

6.1 Conclusion

Software security techniques rely on the fact that processors will faithfully execute program instruc-

tions, including safety checks. Nevertheless, spectre attacks leverage the usage of speculative execution

in processors to violate this assumption.

As it is presented in this document spectre vulnerabilities arise from a longstanding focus in the tech-

nology industry on maximising performance and as a result, many hardware components and operating

systems compound layers of complex optimisations that introduce security risks. Therefore, it is manda-

tory to apply countermeasures to mitigate these vulnerabilities so that no secret data is leaked to outside

entities, compromising programs and entire systems. While there are many tools and techniques that

protect systems against spectre attacks, it is still difficult to find an optimal solution that does not hinder

performance.

One solution that tries to develop high-assurance and high-speed cryptography code without decreasing

performance is the framework Jasmin and its type system. This type system uses three main primitives

that compile into assembly-level instructions in order to create cryptography algorithms that are protected

against spectre attacks. To use these primitives, the user needs to first identify transient variables within

the code, that is, variables whose value speculative depends on secrets. These primitives work together in

order to track whether the program is being executed in speculative or normal mode. If a program is being

executed in speculative mode, then the value of a transient variable is discarded for it not to be leaked and

thereby, protecting the program against spectre attacks.
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Another solution called Blade, automatically eliminates spectre vulnerabilities in a cryptography code

written in a WebAssembly or C. It starts identifying all vulnerable expressions and possible ways of leaking

secret data. Then, it creates a def-use graph, whose edges capture the data dependencies between the

expressions and variables of a program, in order to track how secret data could flow within the exaction

of a program. To stop the flow of such secret data, the Blade tool either inserts fences or Speculative

Load Hardening instructions at cut points in the graph that minimise the usage of these protect primitives.

Consequently, this algorithm protects the program efficiently against spectre attacks.

To compare both solutions, that was used the hash function library, Blake2b. Using the tool oo7,

which focus on identifying code patterns on program binaries that are vulnerable to spectre attacks, it was

demonstrated that the library was vulnerable to spectre attacks. Then, in the Jasmin version of this library

was implemented the Jasmin type system in order to mitigate the code and the C version was used by the

Blade tool to automatically protect the code against spectre attacks.

Both tools could be easily used in a real-life setting for different proposes. If the user has an high

technical skill level then the Jasmin framework might be the best suit, since it allows for customisation in

the addition of the protecting statements and has the best results performance wise. For users with a low

technical level the Blade tool also protects the program with a small performance overhead.

6.2 Prospect for future work

This study was focused on comparing the Jasmin framework and its type system with the Blade tool

by using the Blake2b library. To accomplish this, was used the Blake2b library written in Jasmin and the C

version of the same library. This section focus on presenting possible future approaches to this study that

could lead to valuable results which would allow for this study to become more complete. The following

sections introduce different approaches to this study and ways that could improve future work.

6.2.1 Analyse the addition of SLH instructions

As stated previously, the Blade tool could either insert fence and speculative load hardening (SLH)

instructions. The study was focus on the insertion of fence instructions since the usage of SLH instructions

could require more code insertions into more locations which might end up decreasing the program’s

performance in comparison with the addition of fence instructions. However, it would be beneficial to this

study to better understand the impact of adding SLH instructions to the Blake2b library and comparing the

results to addition of fence instructions to study the change of performance between these two protecting
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statements.

6.2.2 Analyse the WebAssembly version of the library

The Blade tools allows the user to protect C and WebAssembly code against spectre attacks. Since the

begin of this study that the focus was to compare the C and Jasmin version of the Blake2b library, however

WebAssembly code allows for more statically allocated variables and arrays in the memory which results

in many constant-address loads, opposite to the the C version where variables are constantly changing its

address in memory. This difference could lead to less insertion of protecting statements which might result

in better performance for the WebAssembly protected code. Therefore, comparing the C and WebAssembly

version of the Blake2b library could improve the conclusions of this study.

6.2.3 Analyse other tools and libraries

This study only compares the Jasmin Framework and the Blade tool by using the Blake2b library,

nonetheless this study would gain a more complete view of the different mitigation techniques if it compared

the Jasmin tool against other techniques, like the ones presented in 2.2. The comparison results could

be evaluated in detail for the study to gain a better understand of the real-life use of these tools.

Finally, it would also be very beneficial to the study if these tools and the Jasmin framework were

compared against different libraries. Even though this library determined that the Jasmin framework has

a better performance then the Blade tool, it could be possible that with a different library the results could

reverse. By determine the reason why this might happened could improve the study and its results.
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Appendix A
Listings

This chapter introduces the code files for the Blake2b library written in Jasmin, C and for the Blade

tool.

A.1 Blake2b - Reference Code

This section presents the reference code written in C of the Blake2b library.

1 #include <stdint.h>
2 #include <stddef.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
6
7 // state context
8 typedef struct {
9 uint8_t b[128]; // input buffer

10 uint64_t h[8]; // chained state
11 uint64_t t[2]; // total number of bytes
12 size_t c; // pointer for b[]
13 size_t outlen; // digest size
14 } blake2b_ctx;
15
16 /* Necessary to blake2b_long */
17 static void store32(void *dst, uint32_t w) {
18 #if defined(NATIVE_LITTLE_ENDIAN)
19 memcpy(dst, &w, sizeof w);
20 #else
21 uint8_t *p = (uint8_t *)dst;
22 *p++ = (uint8_t)w;
23 w >>= 8;
24 *p++ = (uint8_t)w;
25 w >>= 8;
26 *p++ = (uint8_t)w;
27 w >>= 8;
28 *p++ = (uint8_t)w;
29 #endif
30 }
31
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32 #ifndef ROTR64
33 #define ROTR64(x, y) ( ( (x) >> (y) ) ^ ( (x) << (64 - (y)) ))
34 #endif
35
36 #define B2B_GET64(p) \
37 (((uint64_t) ((uint8_t *) (p))[0]) ^ \
38 (((uint64_t) ((uint8_t *) (p))[1]) << 8) ^ \
39 (((uint64_t) ((uint8_t *) (p))[2]) << 16) ^ \
40 (((uint64_t) ((uint8_t *) (p))[3]) << 24) ^ \
41 (((uint64_t) ((uint8_t *) (p))[4]) << 32) ^ \
42 (((uint64_t) ((uint8_t *) (p))[5]) << 40) ^ \
43 (((uint64_t) ((uint8_t *) (p))[6]) << 48) ^ \
44 (((uint64_t) ((uint8_t *) (p))[7]) << 56))
45
46
47 #define B2B_G(a, b, c, d, x, y) { \
48 v[a] = v[a] + v[b] + x; \
49 v[d] = ROTR64(v[d] ^ v[a], 32); \
50 v[c] = v[c] + v[d]; \
51 v[b] = ROTR64(v[b] ^ v[c], 24); \
52 v[a] = v[a] + v[b] + y; \
53 v[d] = ROTR64(v[d] ^ v[a], 16); \
54 v[c] = v[c] + v[d]; \
55 v[b] = ROTR64(v[b] ^ v[c], 63); }
56
57
58 static const uint64_t blake2b_iv[8] = {
59 0x6A09E667F3BCC908 , 0xBB67AE8584CAA73B ,
60 0x3C6EF372FE94F82B , 0xA54FF53A5F1D36F1 ,
61 0x510E527FADE682D1 , 0x9B05688C2B3E6C1F ,
62 0x1F83D9ABFB41BD6B , 0x5BE0CD19137E2179
63 };
64
65
66 static void blake2b_compress(blake2b_ctx *ctx, int last) {
67 //printf("Start Compress. \n");
68 const uint8_t sigma[12][16] = {
69 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
70 { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
71 { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
72 { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
73 { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
74 { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
75 { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
76 { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
77 { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
78 { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
79 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
80 { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
81 };
82

65



83 int i;
84 uint64_t v[16], m[16];
85
86 for (i = 0; i < 8; i++) { // init work variables
87 v[i] = ctx->h[i];
88 v[i + 8] = blake2b_iv[i];
89 }
90
91 v[12] ^= ctx->t[0]; // low 64 bits of offset
92 v[13] ^= ctx->t[1]; // high 64 bits
93 if (last) // last block flag set ?
94 v[14] = ~v[14];
95
96 for (i = 0; i < 16; i++) // get little-endian words
97 m[i] = B2B_GET64(&ctx->b[8 * i]);
98
99

100 for (i = 0; i < 12; i++) { // twelve rounds
101
102 B2B_G( 0, 4, 8, 12, m[sigma[i][0]], m[sigma[i][ 1]]);
103
104 B2B_G( 1, 5, 9, 13, m[sigma[i][2]], m[sigma[i][ 3]]);
105
106 B2B_G( 2, 6, 10, 14, m[sigma[i][4]], m[sigma[i][ 5]]);
107
108 B2B_G( 3, 7, 11, 15, m[sigma[i][6]], m[sigma[i][ 7]]);
109
110 B2B_G( 0, 5, 10, 15, m[sigma[i][8]], m[sigma[i][ 9]]);
111
112 B2B_G( 1, 6, 11, 12, m[sigma[i][10]], m[sigma[i][11]]);
113
114 B2B_G( 2, 7, 8, 13, m[sigma[i][12]], m[sigma[i][13]]);
115
116 B2B_G( 3, 4, 9, 14, m[sigma[i][14]], m[sigma[i][15]]);
117 }
118
119
120 for( i = 0; i < 8; ++i )
121 ctx->h[i] ^= v[i] ^ v[i + 8];
122
123 }
124
125
126 int blake2b_init(blake2b_ctx *ctx, size_t outlen, const void *key,

size_t keylen) {
127 size_t i;
128 if (outlen == 0 || outlen > 64 || keylen > 64)
129 return -1; // illegal parameters
130
131 for (i = 0; i < 8; i++) // state, "param block"
132 ctx->h[i] = blake2b_iv[i];
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133
134 ctx->h[0] ^= 0x01010000 ^ (keylen << 8) ^ outlen;
135
136 ctx->t[0] = 0; // input count low word
137 ctx->t[1] = 0; // input count high word
138
139 ctx->c = 0; // pointer within buffer
140 ctx->outlen = outlen;
141
142 for (i = keylen; i < 128; i++) // zero input block
143 ctx->b[i] = 0;
144
145 if (keylen > 0) {
146 blake2b_update(ctx, key, keylen);
147 ctx->c = 128; // at the end
148 }
149 return 0;
150 }
151
152 int blake2b_update(blake2b_ctx *ctx, const void *in, size_t inlen) {
153 size_t i;
154 for (i = 0; i < inlen; i++) {
155 if (ctx->c == 128) { // buffer full ?
156 ctx->t[0] += ctx->c; // add counters
157 if (ctx->t[0] < ctx->c) // carry overflow ?
158 ctx->t[1]++; // high word
159 blake2b_compress(ctx, 0); // compress (not last)
160 ctx->c = 0; // counter to zero
161 }
162 ctx->b[ctx->c++] = ((const uint8_t *) in)[i]; /* ----

Spectre vulnerability ---- */
163 }
164 //printf("[update] c: %d\n",ctx->c);
165 return 0;
166 }
167
168 int blake2b_final(blake2b_ctx *ctx, void *out) {
169 size_t i;
170
171 ctx->t[0] += ctx->c; // mark last block offset
172
173 if (ctx->t[0] < ctx->c) // carry overflow
174 ctx->t[1]++; // high word
175
176 while (ctx->c < 128) // fill up with zeros
177 ctx->b[ctx->c++] = 0; /* ---- Spectre vulnerability

---- */
178
179 blake2b_compress(ctx, 1); // final block flag = 1
180
181 // little endian convert and store
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182 for (i = 0; i < ctx->outlen; i++) {
183 ((uint8_t *) out)[i] = (ctx->h[i >> 3] >> (8 * (i & 7))) & 0

xFF;
184 }
185 return 0;
186 }
187
188 int blake2b(void *out, size_t outlen, const void *key, size_t keylen,

const void *in, size_t inlen) {
189 blake2b_ctx ctx;
190
191 if (blake2b_init(&ctx, outlen, key, keylen))
192 return -1;
193
194 blake2b_update(&ctx, in, inlen);
195
196 blake2b_final(&ctx, out);
197 return 0;
198 }
199
200
201 int blake2b_long(void *pout, size_t outlen, const void *in, size_t

inlen) {
202 uint8_t *out = (uint8_t *)pout;
203 blake2b_ctx blake_state;
204 uint8_t outlen_bytes[sizeof(uint32_t)] = {0};
205 int ret = -1;
206
207 if (outlen > UINT32_MAX) {
208 goto fail;
209 }
210
211 // Ensure little-endian byte order!
212 store32(outlen_bytes , (uint32_t)outlen);
213
214 #define TRY(statement)

\
215 do {

\
216 ret = statement;

\
217 if (ret < 0) {

\
218 goto fail;

\
219 }

\
220 } while ((void)0, 0)
221
222 if (outlen <= 64) {
223 TRY(blake2b_init(&blake_state , outlen, NULL,0));
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224 TRY(blake2b_update(&blake_state , outlen_bytes , sizeof(
outlen_bytes)));

225 TRY(blake2b_update(&blake_state , in, inlen));
226 TRY(blake2b_final(&blake_state , out));
227 } else {
228 uint32_t toproduce;
229 uint8_t out_buffer[64];
230 uint8_t in_buffer[64];
231 TRY(blake2b_init(&blake_state , 64, NULL, 0));
232 TRY(blake2b_update(&blake_state , outlen_bytes , sizeof(

outlen_bytes)));
233 TRY(blake2b_update(&blake_state , in, inlen));
234 TRY(blake2b_final(&blake_state , out_buffer));
235 memcpy(out, out_buffer , 64 / 2);
236 out += 64 / 2;
237 toproduce = (uint32_t)outlen - 64 / 2;
238
239 while (toproduce > 64) {
240 memcpy(in_buffer , out_buffer , 64);
241 TRY(blake2b(out_buffer , 64, NULL, 0, in_buffer , 64));
242 memcpy(out, out_buffer , 64 / 2);
243 out += 64 / 2;
244 toproduce -= 64 / 2;
245 }
246
247 memcpy(in_buffer , out_buffer , 64);
248 TRY(blake2b(out_buffer , toproduce , NULL, 0, in_buffer , 64));
249 memcpy(out, out_buffer , toproduce);
250 }
251
252 fail:
253 //clear_internal_memory(&blake_state , sizeof(blake_state));
254 return ret;
255
256 #undef TRY
257 }
258
259
260 int main(int argc, char *argv[]){
261
262 FILE *file = fopen("temp.txt", "r");
263 char in[1000];
264 char key[512];
265
266 if (file == NULL) {
267 printf("No file!\n\n");
268 return 0;
269 }
270
271 uint8_t* out = (uint8_t*) calloc(0x20, sizeof(uint8_t));
272
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273 fgets(in, 1000, file);
274 fgets(key, 512, file);
275
276 //char* in = "Certificação da Componente Criptográfica: Blake2b

Hash Function";
277 //char* key = "PassCert";
278
279 blake2b(out, 0x20, key, strlen(key), in, strlen(in));
280
281 printf("\n\nC Implementation - Blake2b Hash Function(\"%s\") with

 [ \"%s\" ] as key:\n",in,key);
282
283 for(int i = 0; i < 0x20; i++){
284 printf("%02x", out[i]);
285 }
286
287 printf("\n\n\n");
288 }

A.2 Blake2b - Reference Code - Blade

This section presents the reference code written in C of the Blake2b library for the Blade tool.

1 #include <stdint.h>
2 #include <stddef.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
6
7 // state context
8 typedef struct {
9 uint8_t b[128]; // input buffer

10 uint64_t h[8]; // chained state
11 uint64_t t[2]; // total number of bytes
12 size_t c; // pointer for b[]
13 size_t outlen; // digest size
14 } blake2b_ctx;
15
16 #ifndef ROTR64
17 #define ROTR64(x, y) ( ( (x) >> (y) ) ^ ( (x) << (64 - (y)) ))
18 #endif
19
20 #define B2B_GET64(p) \
21 (((uint64_t) ((uint8_t *) (p))[0]) ^ \
22 (((uint64_t) ((uint8_t *) (p))[1]) << 8) ^ \
23 (((uint64_t) ((uint8_t *) (p))[2]) << 16) ^ \
24 (((uint64_t) ((uint8_t *) (p))[3]) << 24) ^ \
25 (((uint64_t) ((uint8_t *) (p))[4]) << 32) ^ \
26 (((uint64_t) ((uint8_t *) (p))[5]) << 40) ^ \
27 (((uint64_t) ((uint8_t *) (p))[6]) << 48) ^ \
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28 (((uint64_t) ((uint8_t *) (p))[7]) << 56))
29
30
31 #define B2B_G(a, b, c, d, x, y) { \
32 v[a] = v[a] + v[b] + x; \
33 v[d] = ROTR64(v[d] ^ v[a], 32); \
34 v[c] = v[c] + v[d]; \
35 v[b] = ROTR64(v[b] ^ v[c], 24); \
36 v[a] = v[a] + v[b] + y; \
37 v[d] = ROTR64(v[d] ^ v[a], 16); \
38 v[c] = v[c] + v[d]; \
39 v[b] = ROTR64(v[b] ^ v[c], 63); }
40
41
42 static const uint64_t blake2b_iv[8] = {
43 0x6A09E667F3BCC908 , 0xBB67AE8584CAA73B ,
44 0x3C6EF372FE94F82B , 0xA54FF53A5F1D36F1 ,
45 0x510E527FADE682D1 , 0x9B05688C2B3E6C1F ,
46 0x1F83D9ABFB41BD6B , 0x5BE0CD19137E2179
47 };
48
49
50 static void blake2b_compress(blake2b_ctx *ctx, int last) {
51 //printf("Start Compress. \n");
52 const uint8_t sigma[12][16] = {
53 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
54 { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
55 { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
56 { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
57 { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
58 { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
59 { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
60 { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
61 { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
62 { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
63 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
64 { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
65 };
66
67 int i;
68 uint64_t v[16], m[16];
69
70 for (i = 0; i < 8; i++) { // init work variables
71 v[i] = ctx->h[i];
72 v[i + 8] = blake2b_iv[i];
73 }
74
75 v[12] ^= ctx->t[0]; // low 64 bits of offset
76 v[13] ^= ctx->t[1]; // high 64 bits
77 if (last) // last block flag set ?
78 v[14] = ~v[14];
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79
80 for (i = 0; i < 16; i++) // get little-endian words
81 m[i] = B2B_GET64(&ctx->b[8 * i]);
82
83
84 for (i = 0; i < 12; i++) { // twelve rounds
85
86 B2B_G( 0, 4, 8, 12, m[sigma[i][0]], m[sigma[i][ 1]]);
87
88 B2B_G( 1, 5, 9, 13, m[sigma[i][2]], m[sigma[i][ 3]]);
89
90 B2B_G( 2, 6, 10, 14, m[sigma[i][4]], m[sigma[i][ 5]]);
91
92 B2B_G( 3, 7, 11, 15, m[sigma[i][6]], m[sigma[i][ 7]]);
93
94 B2B_G( 0, 5, 10, 15, m[sigma[i][8]], m[sigma[i][ 9]]);
95
96 B2B_G( 1, 6, 11, 12, m[sigma[i][10]], m[sigma[i][11]]);
97
98 B2B_G( 2, 7, 8, 13, m[sigma[i][12]], m[sigma[i][13]]);
99

100 B2B_G( 3, 4, 9, 14, m[sigma[i][14]], m[sigma[i][15]]);
101 }
102
103
104 for( i = 0; i < 8; ++i )
105 ctx->h[i] ^= v[i] ^ v[i + 8];
106
107 }
108
109
110 int blake2b_init(blake2b_ctx *ctx, size_t outlen, const void *key,

size_t keylen) {
111 size_t i;
112 if (outlen == 0 || outlen > 64 || keylen > 64)
113 return -1; // illegal parameters
114
115 for (i = 0; i < 8; i++) // state, "param block"
116 ctx->h[i] = blake2b_iv[i];
117
118 ctx->h[0] ^= 0x01010000 ^ (keylen << 8) ^ outlen;
119
120 ctx->t[0] = 0; // input count low word
121 ctx->t[1] = 0; // input count high word
122
123 ctx->c = 0; // pointer within buffer
124 ctx->outlen = outlen;
125
126 for (i = keylen; i < 128; i++) // zero input block
127 ctx->b[i] = 0;
128

72



129 if (keylen > 0) {
130 blake2b_update(ctx, key, keylen);
131 ctx->c = 128; // at the end
132 }
133 return 0;
134 }
135
136 int blake2b_update(blake2b_ctx *ctx, const void *in, size_t inlen) {
137 size_t i;
138 for (i = 0; i < inlen; i++) {
139 if (ctx->c == 128) { // buffer full ?
140 ctx->t[0] += ctx->c; // add counters
141 if (ctx->t[0] < ctx->c) // carry overflow ?
142 ctx->t[1]++; // high word
143 blake2b_compress(ctx, 0); // compress (not last)
144 ctx->c = 0; // counter to zero
145 }
146 ctx->b[ctx->c++] = ((const uint8_t *) in)[i]; /* ----

Spectre vulnerability ---- */
147 }
148 //printf("[update] c: %d\n",ctx->c);
149 return 0;
150 }
151
152 int blake2b_final(blake2b_ctx *ctx, void *out) {
153 size_t i;
154
155 ctx->t[0] += ctx->c; // mark last block offset
156
157 if (ctx->t[0] < ctx->c) // carry overflow
158 ctx->t[1]++; // high word
159
160 while (ctx->c < 128) // fill up with zeros
161 ctx->b[ctx->c++] = 0; /* ---- Spectre vulnerability

---- */
162
163 blake2b_compress(ctx, 1); // final block flag = 1
164
165 // little endian convert and store
166 for (i = 0; i < ctx->outlen; i++) {
167 ((uint8_t *) out)[i] = (ctx->h[i >> 3] >> (8 * (i & 7))) & 0

xFF;
168 }
169 return 0;
170 }
171
172 int blake2b(void *out, size_t outlen, const void *key, size_t keylen,

const void *in, size_t inlen) {
173 blake2b_ctx ctx;
174
175 if (blake2b_init(&ctx, outlen, key, keylen))
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176 return -1;
177
178 blake2b_update(&ctx, in, inlen);
179
180 blake2b_final(&ctx, out);
181 return 0;
182 }
183
184 int main(int argc, char *argv[]){
185
186 char in[1000];
187 char key[512];
188
189 uint8_t* out = (uint8_t*) calloc(0x20, sizeof(uint8_t));
190
191 //char* in = "Certificação da Componente Criptográfica: Blake2b

Hash Function";
192 //char* key = "PassCert";
193
194 for (int i = 0; i < 1000; i++) {
195 in[i] = argv[1][i];
196 }
197
198 for (int i = 0; i < 512; i++) {
199 key[i] = argv[2][i];
200 }
201
202 blake2b(out, 0x20, key, strlen(key), in, strlen(in));
203 }

A.3 Blake2b - Jasmin Code

This section presents the reference code written in Jasmin of the blake2b library.

1 /*-----Updates Buffer-----*/
2 inline fn addFullBlock(reg u64 input) -> stack u64[16] {
3 reg u64 i temp;
4 stack u64[16] buffer;
5
6 i=0;
7
8 while( i < 16) {
9 temp = [input + i*8];

10 buffer[(int) i]= temp;
11 i += 1;
12 }
13 return buffer; //Full tested and Correct
14 }
15
16 inline fn addLastBlock(reg u64 input inlen) -> stack u64[16] {
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17 reg u64 i i8 counter temp mask;
18 reg u8 temp_u8;
19 stack u64[16] buffer;
20
21 i=0;
22 i8 = 8;
23 counter = 0;
24
25 while(i8 <= inlen){ //has some u64 left
26 temp = [input + 8*i];
27 buffer[(int)i] = temp;
28 i += 1;
29 counter += 8; //counts every u64 left
30 inlen -= 8;
31 }
32
33 input += counter;
34 mask = 0;
35
36 while(inlen > 0) { //some u8 left
37 inlen -=1 ;
38 mask <<= 8;
39
40 temp_u8 = (u8)[input + inlen]; //get u8
41
42 temp = (64u)temp_u8;
43
44 mask ^= temp;
45 }
46
47 buffer[(int)i] = mask; //put the last bytes in buffer
48 i += 1;
49
50 while(i < 16){ // No more bytes left, fill the buffer with 0's;
51 buffer[(int)i] = 0x0;
52 i += 1;
53 }
54
55 return buffer;
56 }
57 /*-----Updates Buffer-----*/
58
59
60 /*-----UPDATE V-----*/
61 inline fn array_v(stack u64[8] h, stack u64[2] t, inline int last) ->

stack u64[16] {
62 stack u64[16] v;
63
64 reg u64 temp t0 t1;
65
66 inline int i;
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67
68 for i = 0 to 8 { // fill first 8 positions [0 .. 7] of array v

with array h
69 temp = h[i];
70 v[i] = temp;
71 }
72
73 temp = 0x6a09e667f3bcc908; v[8] = temp;
74 temp = 0xbb67ae8584caa73b; v[9] = temp;
75 temp = 0x3c6ef372fe94f82b; v[10] = temp;
76 temp = 0xa54ff53a5f1d36f1; v[11] = temp;
77 temp = 0x510e527fade682d1; v[12] = temp;
78 temp = 0x9b05688c2b3e6c1f; v[13] = temp;
79 temp = 0x1f83d9abfb41bd6b; v[14] = temp;
80 temp = 0x5be0cd19137e2179; v[15] = temp;
81
82 t0 = t[0] ; v[12] ^= t0;
83 t1 = t[1] ; v[13] ^= t1;
84
85
86 if(last == 1) {
87 v[14] ^= 0xFFFFFFFFFFFFFFFF;
88 }
89
90 return v;
91 }
92 /*-----UPDATE V-----*/
93
94
95 /*-----BLAKE FUNCTIONS -----*/
96
97 /* Mix Function */
98 inline fn doubleG(stack u64[16] v, inline int a0 b0 c0 d0, reg u64 x0

y0, inline int a1 b1 c1 d1, reg u64 x1 y1) -> stack u64[16] {
99 reg u64 v_a, v_b, v_c, v_d;

100
101 v_b = v[b0] ; v[a0] += v_b ; v[a0] += x0;
102 v_b = v[b1] ; v[a1] += v_b ; v[a1] += x1;
103
104 v_a = v[a0] ; v_d = v[d0] ; v_d ^= v_a ; _,_,v_d = #ROR_64(v_d, 32)

; v[d0] = v_d;
105 v_a = v[a1] ; v_d = v[d1] ; v_d ^= v_a ; _,_,v_d = #ROR_64(v_d, 32)

; v[d1] = v_d;
106
107
108 v_d = v[d0] ; v[c0] += v_d;
109 v_d = v[d1] ; v[c1] += v_d;
110
111 v_b = v[b0] ; v_c = v[c0] ; v_b ^= v_c ; _,_,v_b = #ROR_64(v_b, 24)

; v[b0] = v_b;
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112 v_b = v[b1] ; v_c = v[c1] ; v_b ^= v_c ; _,_,v_b = #ROR_64(v_b, 24)
; v[b1] = v_b;

113
114 v_b = v[b0] ; v[a0] += v_b ; v[a0] += y0;
115 v_b = v[b1] ; v[a1] += v_b ; v[a1] += y1;
116
117 v_a = v[a0] ; v_d = v[d0] ; v_d ^= v_a ; _,_,v_d = #ROR_64(v_d, 16)

; v[d0] = v_d;
118 v_a = v[a1] ; v_d = v[d1] ; v_d ^= v_a ; _,_,v_d = #ROR_64(v_d, 16)

; v[d1] = v_d;
119
120 v_d = v[d0] ; v[c0] += v_d;
121 v_d = v[d1] ; v[c1] += v_d;
122
123 v_b = v[b0] ; v_c = v[c0] ; v_b ^= v_c ; _,_,v_b = #ROR_64(v_b, 63)

; v[b0] = v_b;
124 v_b = v[b1] ; v_c = v[c1] ; v_b ^= v_c ; _,_,v_b = #ROR_64(v_b, 63)

; v[b1] = v_b;
125
126 return v;
127 }
128
129 /* Compressions */
130 inline fn compressMix(stack u64[16] buffer , stack u64[16]v ) ->

stack u64[16] {
131 // i = 0
132 v = doubleG(v, 0, 4, 8, 12, buffer[0], buffer[1],
133 1, 5, 9, 13, buffer[2], buffer[3]);
134
135 v = doubleG(v, 2, 6, 10, 14, buffer[4], buffer[5],
136 3, 7, 11, 15, buffer[6], buffer[7]);
137
138 v = doubleG(v, 0, 5, 10, 15, buffer[8], buffer[9],
139 1, 6, 11, 12, buffer[10], buffer[11]);
140
141 v = doubleG(v, 2, 7, 8, 13, buffer[12], buffer[13],
142 3, 4, 9, 14, buffer[14], buffer[15]);
143
144
145 // i = 1
146 v = doubleG(v, 0, 4, 8, 12, buffer[14], buffer[10],
147 1, 5, 9, 13, buffer[4], buffer[8]);
148
149 v = doubleG(v, 2, 6, 10, 14, buffer[9], buffer[15],
150 3, 7, 11, 15, buffer[13], buffer[6]);
151
152 v = doubleG(v, 0, 5, 10, 15, buffer[1], buffer[12],
153 1, 6, 11, 12, buffer[0], buffer[2]);
154
155 v = doubleG(v, 2, 7, 8, 13, buffer[11], buffer[7],
156 3, 4, 9, 14, buffer[5], buffer[3]);
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157
158
159 // i = 2
160 v = doubleG(v, 0, 4, 8, 12, buffer[11], buffer[8],
161 1, 5, 9, 13, buffer[12], buffer[0]);
162
163 v = doubleG(v, 2, 6, 10, 14, buffer[5], buffer[2],
164 3, 7, 11, 15, buffer[15], buffer[13]);
165
166 v = doubleG(v, 0, 5, 10, 15, buffer[10], buffer[14],
167 1, 6, 11, 12, buffer[3], buffer[6]);
168
169 v = doubleG(v, 2, 7, 8, 13, buffer[7], buffer[1],
170 3, 4, 9, 14, buffer[9], buffer[4]);
171
172
173 // i = 3
174 v = doubleG(v, 0, 4, 8, 12, buffer[7], buffer[9],
175 1, 5, 9, 13, buffer[3], buffer[1]);
176
177 v = doubleG(v, 2, 6, 10, 14, buffer[13], buffer[12],
178 3, 7, 11, 15, buffer[11], buffer[14]);
179
180 v = doubleG(v, 0, 5, 10, 15, buffer[2], buffer[6],
181 1, 6, 11, 12, buffer[5], buffer[10]);
182
183 v = doubleG(v, 2, 7, 8, 13, buffer[4], buffer[0],
184 3, 4, 9, 14, buffer[15], buffer[8]);
185
186
187
188 // i = 4
189 v = doubleG(v, 0, 4, 8, 12, buffer[9], buffer[0],
190 1, 5, 9, 13, buffer[5], buffer[7]);
191
192 v = doubleG(v, 2, 6, 10, 14, buffer[2], buffer[4],
193 3, 7, 11, 15, buffer[10], buffer[15]);
194
195 v = doubleG(v, 0, 5, 10, 15, buffer[14], buffer[1],
196 1, 6, 11, 12, buffer[11], buffer[12]);
197
198 v = doubleG(v, 2, 7, 8, 13, buffer[6], buffer[8],
199 3, 4, 9, 14, buffer[3], buffer[13]);
200
201
202 // i = 5
203 v = doubleG(v, 0, 4, 8, 12, buffer[2], buffer[12],
204 1, 5, 9, 13, buffer[6], buffer[10]);
205
206 v = doubleG(v, 2, 6, 10, 14, buffer[0], buffer[11],
207 3, 7, 11, 15, buffer[8], buffer[3]);
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208
209 v = doubleG(v, 0, 5, 10, 15, buffer[4], buffer[13],
210 1, 6, 11, 12, buffer[7], buffer[5]);
211
212 v = doubleG(v, 2, 7, 8, 13, buffer[15], buffer[14],
213 3, 4, 9, 14, buffer[1], buffer[9]);
214
215
216
217 // i = 6
218 v = doubleG(v, 0, 4, 8, 12, buffer[12], buffer[5],
219 1, 5, 9, 13, buffer[1], buffer[15]);
220
221 v = doubleG(v, 2, 6, 10, 14, buffer[14], buffer[13],
222 3, 7, 11, 15, buffer[4], buffer[10]);
223
224 v = doubleG(v, 0, 5, 10, 15, buffer[0], buffer[7],
225 1, 6, 11, 12, buffer[6], buffer[3]);
226
227 v = doubleG(v, 2, 7, 8, 13, buffer[9], buffer[2],
228 3, 4, 9, 14, buffer[8], buffer[11]);
229
230
231
232 // i = 7
233 v = doubleG(v, 0, 4, 8, 12, buffer[13], buffer[11],
234 1, 5, 9, 13, buffer[7], buffer[14]);
235
236 v = doubleG(v, 2, 6, 10, 14, buffer[12], buffer[1],
237 3, 7, 11, 15, buffer[3], buffer[9]);
238
239 v = doubleG(v, 0, 5, 10, 15, buffer[5], buffer[0],
240 1, 6, 11, 12, buffer[15], buffer[4]);
241
242 v = doubleG(v, 2, 7, 8, 13, buffer[8], buffer[6],
243 3, 4, 9, 14, buffer[2], buffer[10]);
244
245
246 // i = 8
247 v = doubleG(v, 0, 4, 8, 12, buffer[6], buffer[15],
248 1, 5, 9, 13, buffer[14], buffer[9]);
249
250 v = doubleG(v, 2, 6, 10, 14, buffer[11], buffer[3],
251 3, 7, 11, 15, buffer[0], buffer[8]);
252
253 v = doubleG(v, 0, 5, 10, 15, buffer[12], buffer[2],
254 1, 6, 11, 12, buffer[13], buffer[7]);
255
256 v = doubleG(v, 2, 7, 8, 13, buffer[1], buffer[4],
257 3, 4, 9, 14, buffer[10], buffer[5]);
258
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259
260
261 //i = 9
262 v = doubleG(v, 0, 4, 8, 12, buffer[10], buffer[2],
263 1, 5, 9, 13, buffer[8], buffer[4]);
264
265 v = doubleG(v, 2, 6, 10, 14, buffer[7], buffer[6],
266 3, 7, 11, 15, buffer[1], buffer[5]);
267
268 v = doubleG(v, 0, 5, 10, 15, buffer[15], buffer[11],
269 1, 6, 11, 12, buffer[9], buffer[14]);
270
271 v = doubleG(v, 2, 7, 8, 13, buffer[3], buffer[12],
272 3, 4, 9, 14, buffer[13], buffer[0]);
273
274
275 // i = 10
276 v = doubleG(v, 0, 4, 8, 12, buffer[0], buffer[1],
277 1, 5, 9, 13, buffer[2], buffer[3]);
278
279 v = doubleG(v, 2, 6, 10, 14, buffer[4], buffer[5],
280 3, 7, 11, 15, buffer[6], buffer[7]);
281
282 v = doubleG(v, 0, 5, 10, 15, buffer[8], buffer[9],
283 1, 6, 11, 12, buffer[10], buffer[11]);
284
285 v = doubleG(v, 2, 7, 8, 13, buffer[12], buffer[13],
286 3, 4, 9, 14, buffer[14], buffer[15]);
287
288
289 // i = 11
290 v = doubleG(v, 0, 4, 8, 12, buffer[14], buffer[10],
291 1, 5, 9, 13, buffer[4], buffer[8]);
292
293 v = doubleG(v, 2, 6, 10, 14, buffer[9], buffer[15],
294 3, 7, 11, 15, buffer[13], buffer[6]);
295
296 v = doubleG(v, 0, 5, 10, 15, buffer[1], buffer[12],
297 1, 6, 11, 12, buffer[0], buffer[2]);
298
299 v = doubleG(v, 2, 7, 8, 13, buffer[11], buffer[7],
300 3, 4, 9, 14, buffer[5], buffer[3]);
301
302 return v;
303 }
304
305 inline fn compression(stack u64[16] buffer, stack u64[8] h, stack u64

[2] t, inline int last) -> stack u64[8] {
306 stack u64[16] v;
307 reg u64[8] rh;
308 reg u64 vi vi_plus8;
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309
310 inline int i;
311
312 v = array_v(h,t,last);
313
314 v = compressMix(buffer,v);
315
316 for i = 0 to 8 {
317 vi = v[i]; vi_plus8 = v[i+8];
318
319 h[i] ^= vi; h[i] ^= vi_plus8;
320 }
321
322 return h;
323 }
324
325 /* Initialize arrays ** h ** and ** t ** */
326 inline fn init(reg u64 outlen keylen key inlen) -> stack u64[8],

stack u64[2] {
327 stack u64[16] buffer;
328 stack u64[8] h ;
329 stack u64[2] t ;
330 reg u64 h0_xor temp;
331
332 temp = 0x6a09e667f3bcc908; h[0] = temp;
333 temp = 0xbb67ae8584caa73b; h[1] = temp;
334 temp = 0x3c6ef372fe94f82b; h[2] = temp;
335 temp = 0xa54ff53a5f1d36f1; h[3] = temp;
336 temp = 0x510e527fade682d1; h[4] = temp;
337 temp = 0x9b05688c2b3e6c1f; h[5] = temp;
338 temp = 0x1f83d9abfb41bd6b; h[6] = temp;
339 temp = 0x5be0cd19137e2179; h[7] = temp;
340
341 h0_xor = keylen;
342 h0_xor <<= 8;
343 h0_xor ^= 0x01010000;
344 h0_xor ^= outlen;
345
346 h[0] ^= h0_xor;
347
348 if (keylen > 0 ){
349 t[0] = 128;
350 t[1] = 0;
351
352 if(keylen > 0) { //some remain bytes
353 buffer = addLastBlock(key, keylen);
354
355 if(inlen == 0){
356 h = compression(buffer,h,t,1);
357 }
358 else{
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359 h = compression(buffer,h,t,0);
360 }
361
362 }
363 }
364 else {
365 t[0] = 0; t[1] = 0;
366 }
367
368 return h, t;
369 }
370
371 inline fn update( reg u64 input inlen, stack u64[8] h, stack u64[2]

t) -> stack u64[8] {
372
373 stack u64[16] buffer;
374 reg u64 sum_t;
375 regx u64 inlen_s;
376
377 while (inlen >= 128) {
378
379 buffer = addFullBlock(input);
380
381 inlen -= 128;
382 input += 128;
383
384 t[0] += 128; // Add to t[0] the number of bytes read : 16 * 8

bytes [ 8 bytes == 64 bits ] = 128;
385
386 if(inlen == 0) { //last block
387 h = compression(buffer,h,t,1);
388 }
389 else{ //not the last block
390 h = compression(buffer,h,t,0);
391 }
392 }
393
394 if(inlen > 0) { //some remain bytes
395 sum_t = inlen;
396 buffer = addLastBlock(input, inlen);
397 t[0] += sum_t; // Add to t[0] the remaining bytes;
398
399 h = compression (buffer,h,t,1);
400 }
401
402 return h;
403 }
404
405 inline fn final(reg u64 out outlen, stack u64[8] h) {
406 reg u64 x y h_x i;
407
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408 i = 0;
409
410 while(i < outlen) {
411 x = i;
412
413 x >>= 3;
414
415 y = i;
416 y &= 7;
417 y *= 8;
418
419 h_x = h[(int) x]; // <-
420
421 h_x >>= y;
422
423 h_x &= 0xFF;
424
425 [out + i] = h_x;
426
427 i+=1;
428 }
429 }
430
431 /*-----BLAKE FUNCTIONS -----*/
432 export fn blake2b(reg u64 in inlen, reg u64 out outlen , reg u64 key

keylen) {
433
434 reg u64 outlenCpy;
435 stack u64[8] h;
436
437 stack u64[2] t;
438
439 outlenCpy = outlen;
440
441 h,t = init(outlenCpy , keylen, key, inlen);
442
443 h = update(in, inlen, h, t);
444
445 final(out, outlenCpy , h);
446 }
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Appendix B
Tooling

This chapter presents all the files necessary to install or compile tools with different restrictions. It

also shows a program that measures the performance of the resulting files from the Blade.

B.1 oo7 - Dockerfile

This section presents the dockerfile to install the oo7 tool in a docker container.

1 FROM ubuntu:18.04
2
3 RUN apt-get update && \
4 apt-get -y install sudo
5
6 RUN useradd -m docker && echo "docker:docker" | chpasswd && adduser

docker sudo
7
8 USER docker
9 CMD /bin/bash

10
11 WORKDIR /home/docker
12
13 USER root
14 RUN apt-get update
15 RUN apt-get -y install build-essential
16 RUN apt-get -y install software-properties -common
17 RUN apt-get -y install zip
18 RUN apt-get -y install wget
19 RUN apt-get -y install git
20 RUN apt-get -y install cmake
21 RUN apt-get -y install clang
22 RUN apt-get -y install python
23 RUN apt-get -y install vim
24 RUN apt-get -y install cargo
25 RUN wget -qO /usr/local/bin/ninja.gz https://github.com/ninja-build/

ninja/releases/latest/download/ninja-linux.zip
26 RUN gunzip /usr/local/bin/ninja.gz
27 RUN chmod a+x /usr/local/bin/ninja
28
29 USER docker
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30 RUN git clone https://github.com/PLSysSec/blade.git
31 RUN git clone https://github.com/PLSysSec/lucet-blade.git -b blade
32 RUN git clone --recursive https://github.com/WebAssembly/wasi-sdk.git
33 RUN git clone --recursive https://github.com/WebAssembly/wabt.git -b

1.0.15
34 RUN git clone https://github.com/WebAssembly/binaryen.git -b

version_90
35 RUN git clone https://github.com/hacl-star/hacl-star.git
36
37 WORKDIR /home/docker/lucet-blade
38 RUN git submodule update --init --recursive
39
40 WORKDIR /home/docker/wasi-sdk
41 RUN wget https://github.com/WebAssembly/wasi-sdk/releases/download/

wasi-sdk-12/wasi-sdk-12.0-linux.tar.gz
42 RUN tar xvf wasi-sdk-12.0-linux.tar.gz
43
44 WORKDIR /home/docker/wabt
45 RUN git submodule update --init
46 RUN make
47
48 WORKDIR /home/docker/binaryen
49 RUN git submodule init
50 RUN git submodule update
51 RUN cmake . && make
52
53 WORKDIR /home/docker/hacl-star
54 RUN git checkout de6a314ab
55
56 WORKDIR /home/docker

B.2 Blade - Dockerfile

This section presents the dockerfile to install the Blade tool in a docker container.

1 FROM ubuntu:18.04
2
3 RUN apt-get update && \
4 apt-get -y install sudo
5
6 RUN useradd -m docker && echo "docker:docker" | chpasswd && adduser

docker sudo
7
8 USER docker
9 CMD /bin/bash

10
11 WORKDIR /home/docker
12
13 USER root
14 RUN apt-get update
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15 RUN apt-get -y install build-essential
16 RUN apt-get -y install software-properties -common
17 RUN apt-get -y install zip
18 RUN apt-get -y install wget
19 RUN apt-get -y install git
20 RUN apt-get -y install cmake
21 RUN apt-get -y install clang
22 RUN apt-get -y install python
23 RUN apt-get -y install vim
24 RUN apt-get -y install cargo
25 RUN wget -qO /usr/local/bin/ninja.gz https://github.com/ninja-build/

ninja/releases/latest/download/ninja-linux.zip
26 RUN gunzip /usr/local/bin/ninja.gz
27 RUN chmod a+x /usr/local/bin/ninja
28
29 USER docker
30 RUN git clone https://github.com/PLSysSec/blade.git
31 RUN git clone https://github.com/PLSysSec/lucet-blade.git -b blade
32 RUN git clone --recursive https://github.com/WebAssembly/wasi-sdk.git
33 RUN git clone --recursive https://github.com/WebAssembly/wabt.git -b

1.0.15
34 RUN git clone https://github.com/WebAssembly/binaryen.git -b

version_90
35 RUN git clone https://github.com/hacl-star/hacl-star.git
36
37 WORKDIR /home/docker/lucet-blade
38 RUN git submodule update --init --recursive
39
40 WORKDIR /home/docker/wasi-sdk
41 RUN wget https://github.com/WebAssembly/wasi-sdk/releases/download/

wasi-sdk-12/wasi-sdk-12.0-linux.tar.gz
42 RUN tar xvf wasi-sdk-12.0-linux.tar.gz
43
44 WORKDIR /home/docker/wabt
45 RUN git submodule update --init
46 RUN make
47
48 WORKDIR /home/docker/binaryen
49 RUN git submodule init
50 RUN git submodule update
51 RUN cmake . && make
52
53 WORKDIR /home/docker/hacl-star
54 RUN git checkout de6a314ab
55
56 WORKDIR /home/docker
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B.3 Blade - Makefile to add fence instructions

This section presents the Makefile to add all the lfences necessary to mitigate spectre vulnerabilities

in a test C code by using the Blade tool.

1 LUCET_BLADE=$(HOME)/lucet-blade
2 WASI_SDK=$(HOME)/wasi-sdk
3 WABT=$(HOME)/wabt
4 BINARYEN=$(HOME)/binaryen
5 HACL_STAR=$(HOME)/hacl-star
6
7 LUCETC=$(LUCET_BLADE)/target/debug/lucetc
8 LUCETC_FLAGS=--emit=asm --guard-size "4GiB" --min-reserved-size "4GiB

" --max-reserved -size "4GiB"
9 WASI_CLANG=$(WASI_SDK)/wasi-sdk-12.0/bin/clang

10 WASI_CLANG_FLAGS=-O3 --sysroot=$(WASI_SDK)/wasi-sdk-12.0/share/wasi-
sysroot

11 WASI_LINK_FLAGS=-nostartfiles -Wl,--no-entry -Wl,--export-all
12 WAT2WASM=$(WABT)/out/clang/Debug/wat2wasm
13 WASM2WAT=$(WABT)/out/clang/Debug/wasm2wat
14 WASM_OPT=$(BINARYEN)/bin/wasm-opt
15 HACL_FLAGS=-I$(HACL_STAR)/dist/kremlin/include -I$(HACL_STAR)/dist/

kremlin/kremlib/dist/minimal
16
17 .DEFAULT_GOAL=build
18
19 FORCE:
20 $(LUCETC): FORCE
21 cd $(LUCET_BLADE) && cargo build
22
23 wasm_src/%.wasm.unopt: c_code/%.c
24 $(WASI_CLANG) $(WASI_CLANG_FLAGS) $(HACL_FLAGS) $< -o $@ $(

WASI_LINK_FLAGS)
25
26 wasm_src/%.wasm: wasm_src/%.wasm.unopt
27 $(WASM_OPT) -mvp --disable-mutable-globals -O4 $< -o $@
28
29 wasm_src/%.wasm: wasm_src/%.wat
30 $(WAT2WASM) $< -o $@
31
32 wasm_wat/%.wat: wasm_src/%.wasm
33 mkdir -p wasm_wat
34 $(WASM2WAT) $< -o $@
35
36 wasm_obj/%/ref.so: wasm_src/%.wasm $(LUCETC)
37 mkdir -p wasm_obj/$*
38 $(LUCETC) $(LUCETC_FLAGS) --blade-type=none $< -o $@
39
40 wasm_obj/%/lfence_with_v1_1.so: wasm_src/%.wasm $(LUCETC)
41 mkdir -p wasm_obj/$*
42 $(LUCETC) $(LUCETC_FLAGS) --blade-type=lfence --blade-v1-1 $< -o $@
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43
44 wasm_obj/%/lfence_per_block_with_v1_1.so: wasm_src/%.wasm $(LUCETC)
45 mkdir -p wasm_obj/$*
46 $(LUCETC) $(LUCETC_FLAGS) --blade-type=lfence_per_block --blade-v1

-1 $< -o $@
47
48 wasm_obj/%/slh_with_v1_1.so: wasm_src/%.wasm $(LUCETC)
49 mkdir -p wasm_obj/$*
50 $(LUCETC) $(LUCETC_FLAGS) --blade-type=slh --blade-v1-1 $< -o $@
51
52 all_spectre: spectre_unopt spectre_wasm spectre_so
53
54 spectre_unopt: \
55 wasm_src/test.wasm.unopt
56
57 spectre_wasm: \
58 wasm_src/test.wasm
59
60 spectre_so: \
61 wasm_obj/test/ref.so \
62 wasm_obj/test/lfence_with_v1_1.so \
63 wasm_obj/test/lfence_per_block_with_v1_1.so \
64 wasm_obj/test/slh_with_v1_1.so \
65
66 target/debug/spectre: all_spectre
67 cargo build
68
69 build: target/debug/spectre

B.4 Blade - Measure Performance - Reference Code

This section presents the main files of a Rust program that measures the performance of the Blake2b

code with the added fence instructions and without.

B.4.1 Main

1 use blade_benchmarks::{blake2b, blade_setting::BladeType , BladeModule
};

2
3 fn main() {
4 lucet_runtime::lucet_internal_ensure_linked();
5
6 let mut module = blake2b::Blake2bModule::new(BladeType::None,

false);
7 let message = String::from("Cryptographic Component - Blake2b

hash function").into_bytes();
8 let key = String::from("Blake2b Project").into_bytes();
9
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10 let hash = module.blake2b(&key, &message);
11
12 println!("Blake2b hash of \"{}\" with key {} is {}", std::str::

from_utf8(&message).unwrap(), std::str::from_utf8(&key).unwrap(),
hex::encode(&hash));

13 }

B.4.2 Blake2b

1 use crate::blade_setting::BladeType;
2 use crate::module::{get_lucet_module , BladeModule};
3
4 use lucet_runtime::InstanceHandle;
5 use std::fmt;
6
7 const OUT_BYTES: usize = 32;
8
9 pub struct Blake2bModule {

10 so: InstanceHandle ,
11 }
12
13 impl BladeModule for Blake2bModule {
14 fn new(blade_type: BladeType , blade_v1_1: bool) -> Self {
15 Self {
16 so: get_lucet_module("wasm_obj/blake", blade_type ,

blade_v1_1),
17 }
18 }
19 }
20
21 impl Blake2bModule {
22 /// Returns the encryption of `msg`. Result will have the same

length as `msg`.
23 pub fn blake2b(&mut self, key: &[u8], msg: &[u8]) -> Vec<u8> {
24 // allocation
25 let mut heap_base = unsafe {
26 self.so.globals()[0].i_32 as u32 // seems like global 0

is the heap base?
27 };
28 let key_ptr = heap_base;
29 heap_base += key.len() as u32;
30 let msg_ptr = heap_base;
31 heap_base += msg.len() as u32;
32 let out_ptr = heap_base;
33
34 // set up inputs
35 let heap = self.so.heap_mut();
36 let key_heap_idx = key_ptr as usize;
37 for i in 0 .. key.len() {
38 heap[key_heap_idx + i] = key[i];
39 }
40 let msg_heap_idx = msg_ptr as usize;
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41 for i in 0 .. msg.len() {
42 heap[msg_heap_idx + i] = msg[i];
43 }
44
45 // call wasm
46 let _ = self.so.run("blake2b", &[
47 out_ptr.into(),
48 OUT_BYTES.into(),
49 key_ptr.into(),
50 key.len().into(),
51 msg_ptr.into(),
52 msg.len().into(),
53 ]).unwrap();
54
55 let mut output = vec![];
56 let heap = self.so.heap();
57 let out_heap_idx = out_ptr as usize;
58 for i in 0 .. OUT_BYTES {
59 output.push(heap[out_heap_idx + i]);
60 }
61 output
62 }
63 }
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