

Universidade do Minho
Escola de Engenharia

Ana Maria Carvalho Balsa

Scan Metrics for Static Application
Security Testing (SAST)

October 2023

Sc
an

 M
et

ri
cs

 f
o

r
St

at
ic

 A
p

p
lic

at
io

n
 S

ec
u

ri
ty

Te

st
in

g
(S

A
ST

)
A

n
a

B
al

sa

U
M

in
h

o
 |

 2
0

2
3

Ana Maria Carvalho Balsa

Scan Metrics for Static Application Security
Testing (SAST)

October 2023

Master’s Dissertation Report
Integrated Master’s in Engineering and Management of
Information Systems

Work performed under the supervision of
Professor Henrique Santos

COPYRIGHT AND TERMS OF USE OF THE WORK BY THIRD PARTIES

This is an academic work that can be used by third parties as long as the internationally

accepted rules and good practices are respected, with regard to copyright and related rights.

Thus, the present work can be used under the terms foreseen in the license indicated below.

If the user needs permission to be able to use the work under conditions not provided for in

the indicated licensing, he/she should contact the author, through the RepositóriUM of the

University of Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

ii

ACKNOWLEDGEMENTS

This document is proof that I completed the five years of MIEGSI. The journey to get here was long and challenging,

but with the right support, it was accomplished. Thus, I would like to recognize those who have supported me

throughout this journey.

First of all, I would like to express my gratitude to Professor Henrique Santos, who kindly agreed to supervise

this dissertation. His straightforward approach and empathetic nature helped me to tackle all the challenges with

confidence and make the right decisions throughout this dissertation.

I am grateful to my mentor at Checkmarx, Nuno Oliveira, for his exceptional guidance, knowledge, and support

from the beginning. His dedicated effort enabled me to carry out my master’s thesis successfully. I also appreciate

his review of my entire dissertation. I want to thank my colleagues who generously provided their time and expertise

to review specific sections as well. I want to extend special thanks to my team, ACEofSpades, for their flexibility and

support in meeting all the deadlines.

I want to thank my closest family members, who have always been there to celebrate my success with the

same level of enthusiasm as their own. In particular, thank you, Mother, for all the support over the five years.

Her unconditional love and support have been a source of strength for me. Even though she mistakenly referred to

the name of my course for three consecutive years, I appreciate her support. I also want to thank my Father with

”Saudade”, who would have been proud of me, the Master Balsa that was being built over these years.

Finally, I want to express my gratitude to Bruno. He helped me with everything required and handled the

moments when the drama queen within me emerged during stressful times. I would also like to extend my thanks

to my close friends from Braga and Tabuaço, who played a crucial role in cheering me up throughout this journey,

especially on those days when writing this dissertation felt like an endless task. And lastly, I want to thank my

coursemates whose friendship made these five years much more enjoyable.

Thank you everyone,

Ana Balsa

iii

ABSTRACT

Scan Metrics for Static Application Security Testing (SAST)

In today’s business landscape, safeguarding sensitive data is paramount due to the growing risk of cyber threats.

Despite their incredible potential, technologies like AI, 5G, and blockchain come with security challenges that need to

be addressed. Security failures can result in substantial losses, emphasizing the need for a standardized definition

of cybersecurity. Vulnerability scanning tools like Static Application Security Testing (SAST), integrated into CI/CD

processes, help detect code vulnerabilities, enhancing overall software security. The main goal of this dissertation is

to establish criteria for assessing the quality of scans performed by SAST tools, with the ultimate goal of enhancing

software quality. To achieve this goal, the dissertation will explore various security testing techniques, including SAST

tools, identify essential metrics and their relevance across different scan phases, develop a comprehensive formula

for quantifying the overall scan quality using these metrics, create techniques for metric extraction, and finally,

apply this formula to guide the decisions of Quality Assurance (QA) team during software releases. This research

addresses a critical gap in evaluating the quality of SAST scans, which is essential given the increasing demand

for high-quality software products. To accomplish this goal, the approach involved the development of a service

named CxScanQuality, aimed at evaluating project scan quality based on SAST log files. CxScanQuality integration

was planned within a platform responsible for assessing the overall quality of SAST products used by the QA team,

along with integration into Continuous Integration (CI) pipelines. To assess scan quality through CxScanQuality,

it was essential to identify the set of characteristics contributing to it. These characteristics were segmented into

recognition coverage, DOM structure, and query execution. Based on that, raise for each component these quality

factors: Coverability, Domability, and Querability. The scan quality was an aggregated metric, representing the

sum of these quality factors, each with its specific impact on scan quality. Following this service’s integration, the

results show that the overall scan quality across the 23 languages and 160 projects is high, with an average score

of 89.07%. This master’s dissertation emphasizes that scan quality extends beyond result accuracy. These findings

are precious for the QA team, as they provide relevant data on scan quality for all projects in the organization. These

results also introduce a new method for ensuring the quality of the SAST product, ultimately contributing to enhanced

software quality.

Keywords: SAST, Software Quality, SDLC, Quality Metrics.

iv

RESUMO

Métricas de Scan para Static Application Security Testing (SAST)

No mundo empresarial atual, proteger dados sensíveis é crucial devido ao crescente perigo de ameaças

cibernéticas. Tecnologias como Inteligência Artificial, 5G e blockchain, embora promissoras, enfrentam desafios

de segurança. Falhas na área de desenvolvimento de software podem causar perdas monetárias significativas,

destacando a necessidade de normas de cibersegurança. Ferramentas de análise estática, como o SAST,

integradas nos processos de CI/CD, detetam vulnerabilidades no código-fonte, melhorando a segurança do

software. Posto isto, esta dissertação tem como objetivo principal estabelecer critérios de avaliação da qualidade

dos scans realizados por ferramentas SAST, com o propósito último de aprimorar a qualidade do software. Para

alcançar este objetivo, a dissertação explorará diversas técnicas de teste de segurança, incluindo ferramentas

SAST, identificará métricas essenciais e a sua relevância nas diferentes fases de scan, conceberá uma fórmula

abrangente para quantificar a qualidade global dos scans com base nessas métricas, desenvolverá técnicas de

extração dessas métricas e, por fim, aplicará essa fórmula para orientar as decisões da equipa de Garantia de

Qualidade durante os lançamentos de novas versões do produto SAST. A ausência de literatura sobre a avaliação

da qualidade dos scans do SAST foi a motivação central desta dissertação, uma vez que a qualidade destes scans

é fundamental no contexto do crescente interesse em software de alta qualidade. Assim, o serviço CxScanQuality

foi concebido para avaliar a qualidade dos scans com base nos logs fornecidos pelo SAST após a análise do

projeto. Este serviço integra-se em dois pontos cruciais: na plataforma de avaliação geral de produtos SAST

utilizada pela equipa de Garantia de Qualidade e nas pipelines de CI. Para avaliar a qualidade dos scans,

identificaram-se três componentes críticas: cobertura de reconhecimento do código-fonte, estrutura DOM e

execução de consultas por vulnerabilidades. Definiram-se fatores de qualidade para cada componente, a saber,

Coverability, Domability and Querability. A qualidade do scan é uma métrica agregada, refletindo a soma

ponderada desses fatores, cada um com o seu impacto específico na qualidade global do scan. Após a

implementação deste serviço, os resultados revelaram uma média de 89.07% na qualidade global dos scans, um

valor considerado positivo para esta métrica. Esta avaliação abrangeu 23 linguagens de programação e 160

projetos. Portanto, esta dissertação destaca que a qualidade dos scans de SAST não se limita à precisão dos

resultados do SAST, fornecendo informações relevantes para a equipa de Garantia de Qualidade, abarcando todos

os projetos da empresa. Além disso, esses resultados introduzem um novo método para garantir a qualidade dos

produtos SAST, contribuindo para a melhoria da qualidade do software.

Keywords: SAST, Ciclo de Vida do Desenvolvimento de Software, Qualidade do Software.

v

INDEX

List of Abbreviations and Acronyms xii

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 2

1.3 Research Method . 3

1.4 Document Structure . 4

2 State of the Art 5

2.1 Fundamental Concepts . 5

2.1.1 Vulnerabilities . 5

2.1.2 Security Testing . 8

2.1.3 Continuous Integration and Delivery . 10

2.1.4 Software Development Life Cycle . 10

2.1.5 Software Quality . 13

2.2 Related Work . 16

2.2.1 General Related Work . 17

2.2.2 Specific Related Work . 20

2.3 Summary . 21

3 Proposed Approach 22

3.1 SAST Scan Process and Core Concepts . 22

3.2 Overview of the Proposed Approach . 24

3.3 Requirements . 26

3.4 Architecture Design . 28

3.5 Technology Stack . 29

3.6 Design Decisions . 30

3.7 Summary . 31

4 Development 32

4.1 Data Extraction from a Scan . 32

4.1.1 Identifying Scan Phases in Log Files . 32

4.1.2 Analyzing Common Exceptions . 33

4.1.3 Updating the Engine Log Service . 34

4.2 Configuring Coverability . 36

vii

4.3 Configuring Domability . 37

4.4 Configuring Querability . 39

4.5 Configuring Scan Quality . 40

4.6 Statistical Analysis . 41

4.7 Scan Quality Metric Integration . 43

4.7.1 Plan for Scan Quality Metric Integration . 45

4.7.2 Publish Phase . 47

4.7.3 Deployment Phase . 48

4.8 Solution Validation . 49

4.9 Summary . 51

5 Results 52

5.1 Data Analysis and Visualization Using PowerBI . 52

5.2 Results Analysis . 53

5.3 Discussion . 56

5.4 Summary . 58

6 Conclusion 59

6.1 Future Work . 60

REFERENCES 62

Annex I 66

viii

LIST OF FIGURES

Security Testing Techniques . 8

Software Development Life Cycle . 12

Example of Scan Coverage . 20

Sequence Diagram for SAST Scanning Process . 23

Key Phases in a Standard Project Scanning Process . 23

Architecture Overview . 28

Technology Stack . 29

Illustrating a Log Entry from the AbsInt Stage . 32

Illustrating a Log Entry from the Type Inference Stage . 33

Engine Log Service Output . 34

Representative Graph for k Constant Generated by Desmos . 39

Linear Regression Data . 42

Distribution Plots . 43

Initial Core Metrics for Quality Assessment . 44

Improved Core Metrics for Quality Assessment After Integration . 44

Initial Dashboard of SK Platform . 45

Prototype of Scan Quality Integration in SK . 45

Scan Quality Metric Integration Phases . 46

Continuous Integration Workflow . 47

Dashboard for Scan Quality Analysis . 54

Dashboard for Top-tier Analysis . 54

ix

LIST OF TABLES

Software Quality Models Comparison adapted from Singh and Kannojia (2013) 16

Scan Quality Framework . 26

Requirements . 27

Overview of Exceptions Across Scan Stages . 33

Scan Stages and Corresponding RegEx Patterns . 37

Querability Indicators and Corresponding RegEx Patterns . 40

Requirements Validation . 50

Summary of Projects Analyzed Data . 55

General Information (1) . 66

General Information (2) . 67

General Information (3) . 68

General Information (4) . 69

General Information (5) . 70

General Information (6) . 71

Exceptions Information (1) . 72

Exceptions Information (2) . 73

Exceptions Information (3) . 74

Exceptions Information (4) . 75

Exceptions Information (5) . 76

Exceptions Information (6) . 77

Exceptions Information (7) . 78

LOC and Total Results Information (1) . 79

LOC and Total Results Information (2) . 80

LOC and Total Results Information (3) . 81

LOC and Total Results Information (4) . 82

LOC and Total Results Information (5) . 83

LOC and Total Results Information (6) . 84

Query Information (1) . 85

Query Information (2) . 86

Query Information (3) . 87

Query Information (4) . 88

Query Information (5) . 89

Query Information (6) . 90

Coverability, Domability, Querability and Scan Quality Information (1) . 91

x

Coverability, Domability, Querability and Scan Quality Information (2) . 92

Coverability, Domability, Querability and Scan Quality Information (3) . 93

Coverability, Domability, Querability and Scan Quality Information (4) . 94

Coverability, Domability, Querability and Scan Quality Information (5) . 95

Coverability, Domability, Querability and Scan Quality Information (6) . 96

xi

LIST OF ABBREVIATIONS AND ACRONYMS

SAST Static Application Security Testing

CI/CD Continuous Integration and Continuous Delivery

OWASP Open Web Application Security Project

DOM Domain Object Model

DSR Design Science Research

SDLC Software Development Life Cycle

CWE Common Weakness Enumeration

SQUARE Systems and software Quality Requirements and Evaluation

SVT Security Vulnerability Testing

DAST Dynamic Application Security Testing

IAST Interactive Application Security Testing

DevOps Development and Operations

LOC Lines of Code

AST Abstract Syntax Tree

AbsInt Abstract Interpretation

QA Quality Assurance

API Application Programming Interface

KPI Key Performance Indicator

RegEx Regular Expression

xii

1 INTRODUCTION

Nowadays, information security is one of the most relevant areas in the business world. Companies increasingly

have access to huge amounts of sensitive data. Therefore, they know the importance of securing their data, which

is the key to surviving in a competitive business environment. Exploiting vulnerabilities of business systems or any

other cyber attack may lead to catastrophic consequences resulting in confidential information losses, financial

losses, and reputation damage.

For instance, some technology trends, such as Artificial Intelligence, green technology, 5G networks, or blockchain

systems, handle large amounts of data. For example, the architecture of the 5G network adopts an open structure

with the advantage of rapid and flexible expansion of network functions. However, the open architecture brings new

software security issues and can become a national security issue (Chen et al., 2022). Moreover, smart contract

security is an emerging research area that deals with security issues arising from the execution of smart contracts in

a blockchain system. Unfortunately, some of these security issues have been reported in the media, often leading to

substantial financial losses (Huang et al., 2019). As a result, the potential security failures within these technology

trends can result in significant losses for the organizations involved.

That is why, as a crucial first step in mitigating vulnerabilities, defining the concept of cybersecurity becomes

imperative. However, this definition is highly variable. So, it is essential to have and use standardized terminology

and develop a comprehensive common understanding of what is meant by cybersecurity (Cains et al., 2022). One

possible definition describes cybersecurity as the set of resources, processes, and structures to protect cyberspace

and cyberspace-enabled systems from any occurrences that disrupt the rightful property rights (Craigen et al., 2014).

To reduce cybersecurity risk in software, the security community has widely adopted an approach involving a

collage of techniques, tools, and methods, each addressing some aspect of the threat implications of bad code

(Amoroso, 2018). The need for rapid and efficient software development pushes the demand for automation in test,

build, and release phases, such as the Continuous Integration and Continuous Deployment (CI/CD) process (Liao,

2020).

Static Application Security Testing (SAST) is a tool that can be integrated into the CI/CD process, enabling

developers to detect security vulnerabilities in the source code or compiled code of software. These tools can

analyze the source or compiled code and detect any weaknesses that could lead to a security issue. OWASP

categorizes these weaknesses into various types, such as input validation and representation (Aloraini et al., 2019).

In conclusion, the demand for high-quality software products from software stakeholders, including developers,

managers, and end users, is undeniable. To show the safety of software, it is crucial to have a reliable quality

1

measure of SAST scans. The literature has not extensively explored the quality metrics associated with SAST scans.

Therefore, this dissertation addresses this research gap and evaluates SAST scan quality.

1.1 Motivation

SAST tools play a vital role in detecting and mitigating security vulnerabilities in source code. The scan process

in these tools usually involves several phases, including source code recognition, abstract representation creation,

and vulnerability pattern detection. These phases have the potential to generate valuable data that can be analyzed

to evaluate the quality of a scan. The higher the scan quality, the higher the confidence in the results. Achieving

this quality is the main objective of the engineers involved in the development and quality assurance of SAST tools.

While several ways exist to assess this quality, looking into metrics during the scans and testing phases can provide

accurate insight. However, metrics written to scan logs are often inconsistent or undefined and, when defined, lack

standardization, and log files lack structure.

Reviewing the several scan phases can help identify factors in each stage and contribute to understanding the

overall scan quality. These factors and how to obtain them can be standardized and systematized. Furthermore, the

notion of quality is not only impacted by the phases of a scan but also by other factors, such as the language being

scanned. The quality standards for a language can vary based on its importance in the business domain, defined

as the language’s tier. A language with a higher tier is usually best supported in these tools as it will be in higher

demand for customers. Therefore, the scan quality of a tier 1 language must be superior to that of a tier 2 or tier 3

language.

To determine the quality of a scan, various factors must be considered. These include the recognition coverage

of the programming language, the structure of the Domain Object Model (DOM) and its syntactic and semantic

relationships, and the execution of queries on the DOM without compromising the performance of the scan. By

breaking down the quality of a scan into smaller components, such as Coverability, Domability, and Querability, it is

possible to understand better and evaluate the properties that contribute to the overall quality of the scan.

This master’s dissertation aims to build a notion of scan quality by considering the data extracted in each scan

phase. It was proposed by Checkmarx, which operates in the cybersecurity market with products focused on the

search for vulnerabilities in software applications.

1.2 Objectives

The main objective of this dissertation is to establish criteria for assessing the quality of scans performed by

a SAST tool, with the ultimate aim of achieving high-quality software. To accomplish this, the following specific

2

objectives will be addressed:

• Compare and analyze various security testing techniques and deepen knowledge of software quality and

security.

• Identify key metrics and their weight in each scan phase of a SAST tool.

• Research a formula to quantify overall scan quality, incorporating the metrics and their weights studied in the

previous item.

• Develop ways of extracting the metrics from a scan.

• Integrate the created formula to inform software release decisions by the Quality Assurance team.

1.3 Research Method

The research methodology adopted in this dissertation is Design Science Research (DSR). According to Venable

and Baskerville (2012), a widely recognized method in Information Systems focuses on inventing and evaluating new

artifacts to solve specific problems. The primary goal of DSR is to create new knowledge and innovative artifacts

that can positively impact and enhance the world.

The DSR involves six phases: identification and motivation, definition of the objectives for a solution, design and

development, demonstration, evaluation, and communication (Peffers et al., 2007). Therefore, these phases will be

adapted to the following objectives:

• Identify the research problem and outline the key aspects for resolution.

• Analyze and describe various aspects of vulnerabilities, security testing, continuous integration, and delivery,

software development life cycle, and software quality. Details are provided in 2.1.

• Conduct a comprehensive literature review to understand the current state of the art in software quality.

Details in 2.2.

• Develop a generic scan quality metric based on data extracted from SAST tools during a scan. Details can

be found in 3.2.

• Test and improve the scan quality metric and evaluate the fulfillment of all requirements. Details in 4.1.

• Analysis and discussion of the results. Details in 5.2 and 5.3.

This is an iterative process. Suppose the results achieved in one of the stages are not satisfactory. In that case, it

is important to return to one of the previous stages, deepen the literature research, or revise some project decisions.

3

1.4 Document Structure

This master’s dissertation is structured into six chapters, following the methodology adopted. The introduction,

motivation, objectives, and research method were covered up to this point. Each chapter includes a ”Summary”

section, which provides a brief overview of its contents. The ”State of the Art” chapter explores the latest

developments in the field of scan quality, including explanations of fundamental concepts and a literature review.

The ”Proposed Approach” chapter outlines the SAST scan process, requirements, architecture, technology stack,

and decisions made to achieve scan quality. The ”Development” chapter presents all the steps in developing the

new service to generate the scan quality and its integration into a quality platform and CI pipelines. It also includes

the ”Solution Validation” section that outlines which requirements were successfully achieved. Subsequently, the

”Results” chapter provides an overview of analyzing and discussing the results obtained. Finally, the ”Conclusion”

chapter summarizes the dissertation’s findings and outlines potential avenues for future work.

4

2 STATE OF THE ART

This section presents the latest developments in the field of scan quality. It begins with an overview of

fundamental concepts and continues with a comprehensive literature review. The literature research used various

paper databases, including IEEE Explorer, Google Scholar, Scopus, ACM, and ResearchGate. Search terms such

as ”security testing techniques and tools”, ”software security testing”, ”CI/CD”, ”CI/CD in software development

life cycle”, ”software development life cycle in SAST”, ”software development life cycle phases”, ”CI/CD KPIs”,

”quality metrics”, ”software metrics”, ”security vulnerability testing”, ”vulnerability detection tool”, ”benchmarks

for SAST”, ”vulnerability detection with metrics”, ”vulnerability discovery strategies”, ”software quality models”,

and ”software quality” were used to extract relevant information. The study period was focused on articles

published between 2016 and 2022, but other periods were also included if they had a significant number of

citations or relevant information.

Initially, all articles found were considered. However, after evaluating the title and abstract, non-relevant articles

were excluded. The introduction and conclusion were also reviewed where necessary. If the paper contained a

discussion of the results section, it was also analyzed. Finally, the relevant articles were analyzed to compile the

literature review.

2.1 Fundamental Concepts

This section offers a comprehensive overview of the fundamental software quality concepts. It also covers

crucial topics, including definitions and practices of vulnerabilities, security testing, continuous

integration/continuous delivery (CI/CD) pipelines, and the Software Development Life Cycle (SDLC). This

information is crucial for understanding and improving software quality.

2.1.1 Vulnerabilities

A software vulnerability is a weakness in the source code that can be exploited by hackers to cause harm or

damage, such as accessing unauthorized data or gaining administrative privileges (Pereira, 2020). To effectively

categorize these vulnerabilities and identify patterns, the Common Weakness Enumeration (CWE) was introduced to

group similar and related vulnerabilities (Aivatoglou et al., 2021). There are two typical categories of vulnerabilities:

implementation-level bugs and design-level flaws (McGraw & Potter, 2004).

Furthermore, understanding the types and categories of vulnerabilities is essential for devising appropriate

strategies to prevent their exploitation. Preventing software vulnerabilities can be achieved through a combination

of best coding practices and utilizing various vulnerability detection approaches and tools (B. C. Liu et al., 2012).

For example, the Security Quality Requirements Engineering (SQUARE) methodology determining and prioritizing

5

security requirements (Mead et al., 2005); the Open Web Application Security Project (OWASP1) offers secure

coding practices to prevent the introduction of vulnerabilities during the development process (Pereira et al.,

2019); techniques like Static Code Analysis (SCA) or penetration testing can be employed to detect and remediate

vulnerabilities once the code is complete (Pereira et al., 2019).

However, even with preventive measures in place, vulnerabilities may persist. Therefore, effective detection

techniques and tools are vital to identify and remediate these weaknesses.

Empirical studies play a crucial role in evaluating the efficiency and effectiveness of vulnerability detection

techniques. Elder (2021) conducted empirical research to provide decision-makers in software development

projects with insightful information on the efficiency and effectiveness of various vulnerability detection techniques.

In the study, four techniques were used to detect vulnerabilities in Java Applications: Systematic Manual

Penetration Testing (SMPT), Exploratory Manual Penetration Testing (EMPT), Dynamic Application Security Testing

(DAST), and Static Application Security Testing (SAST). The choice of technique will depend on the practitioner’s

specific goals, as each technique detects different vulnerabilities in different phases of the Software Development

Life Cycle (SDLC). Finally, the expected contributions of this study include a decision support model to assist

practitioners in selecting the most appropriate technique and a dataset of vulnerabilities from two open-source

projects, including information on the detection technique used, type of vulnerability, and solution.

Beba et al. (2021) presented a study of three open-source IDE (Integrated Development Environment) plugins

for detecting web application security vulnerabilities in Java-based applications using static source code analysis.

The authors conducted a root cause analysis of false-negative and false-positive results, identifying factors that can

impact plugin performance. Based on their findings, they analyzed over 20,000 vulnerability reports across 11

categories and improved the plugins accordingly. The study also highlights the importance of conducting solid root

cause analyses when evaluating security vulnerability detection approaches and tools. Without this, the authors

warn that the evaluation and comparisons of these approaches could be misleading. To address this issue, Beba et

al. (2021) proposed a guideline for reporting the evaluation results of such approaches.

Furthermore, benchmarking and evaluation of Security Vulnerability Testing (SVT) tools are essential to assess

their performance.

Effective vulnerability discovery strategies can help practitioners identify vulnerabilities early in software

development. Bhuiyan et al. (2021) conducted a study to assess the effectiveness of four strategies for discovering

vulnerabilities in software: diagnostics, malicious payload construction, misconfiguration, and pernicious

execution. The authors surveyed 51 practitioners to gather their perceptions of these strategies and found that the

1
Available at: https://owasp.org/

6

majority agreed that all four strategies can be used to uncover vulnerabilities. The authors suggest that these

results validate previous research on vulnerability discovery strategies and offer guidance for practitioners to

identify latent vulnerabilities. Additionally, Bhuiyan et al. (2020) conducted a qualitative and quantitative analysis of

Open Source Software (OSS) bug reports over ten years and identified the same four strategies. However, the most

commonly used strategy differed between different software projects.

Moreover, Cadariu et al. (2015) presented a case study of the Vulnerability Alert Service (VAS) and its effectiveness

in addressing known vulnerabilities in software systems. Through an empirical investigation, the study found that

the problem of using components with known vulnerabilities is prevalent in the software industry, with an unknown

number of proprietary applications affected by it. The study also found that the VAS is a valuable tool for addressing

this problem in the context of external software product quality monitoring, and that means like OWASP Dependency

Check 2 can be used in external software product quality assurance. However, the false positive rate may be as

high as 70%. The study also conducted interviews with VAS operators and found that the information about using

the connector and the overview of vulnerabilities in the application was still considered valuable.

Additionally, Hao et al. (2019) proposed a new method for constructing benchmarks to evaluate SAST tools.

The method combines the benefits of real-world software and synthetic micro-benchmarks by extracting

representative source code from real-world software and using it to construct test cases with reduced syntactic

features and counterexamples. Therefore, the resulting benchmark will contain one original test case, one primary

test case, several test case variants, and counterexamples for each vulnerability. The authors demonstrate the

effectiveness of this method by applying it to an existing benchmark, generating ten groups of test cases, and

evaluating two SAST tools. The resulting evaluation is more explainable, allowing a better understanding of the

SAST tool’s vulnerability detection capabilities.

Furthermore, Parizi et al. (2018) provided a set of requirements for selecting a candidate benchmark project to be

used in the assessment of SVT and detection tools. The authors believe that by using these requirements, individuals

and companies can select the most appropriate SVT tool for their projects, and its developers will be motivated to

improve their tools to produce sharper results. The authors proposed a list of benchmark requirements. These

requirements are intended to be used by newcomers and researchers in software security to assess the performance

of off-the-shelf and newly proposed tools. The authors also demonstrate the use of these requirements by applying

them to select benchmark candidates from existing open-source projects.

2
Available at: https://owasp.org/www-project-dependency-check/

7

2.1.2 Security Testing

The concept of software security refers to designing software that continues to function correctly under malicious

attack (McGraw, 2004). The three pillars of software security are applied risk management, software security best

practices, and knowledge. The software security best practices include code review using static analysis tools,

architectural risk analysis, penetration testing, security testing, abuse case development, and security requirements

(McGraw, 2006). However, we will focus on security testing because it relates to software quality.

Testing is an essential component in the assurance process for safety-critical software. Demonstrating that the

software meets the required specifications and standards is necessary. It is estimated that most of the effort in

developing safety-critical software is dedicated to verification and validation, with testing being used to confirm that

the requirements and code structures have been adequately covered (Baker & Habli, 2012).

Security testing requires two distinct approaches - testing security mechanisms to guarantee correct functioning

and risk-based security testing, which involves analyzing and replicating potential attacker’s methods (McGraw &

Potter, 2004). Risk analysis, especially at the Software Development Life Cycle (SDLC) design level, can identify

potential security problems and their impact (Verdon & McGraw, 2004).

According to the existing literature, the security testing techniques take into account code reviews, automated

static analysis testing, binary code analysis, source, and binary code fault injection, risk analysis, vulnerability

scanning, and penetration testing (Al-Ghamdi, 2013). Figure 1 shows each Security Testing Technique.

Figure 1: Security Testing Techniques

Code review manually inspects source code to identify security vulnerabilities. It is considered the most reliable

technique for finding subtle security issues and is particularly useful for detecting malicious code, implementation

8

issues, and cryptography weaknesses.

Automated static analysis is a process of analyzing software without executing it, which involves using a static

analysis tool to analyze the program’s source code or binary executables. This process can be performed

iteratively throughout the software’s implementation to identify security flaws and potential fixes. Binary code

analysis is the process of reverse engineering and analyzing binary code to identify security flaws, with binary

scanning, decompilation, and disassembly being the three main techniques used.

Fuzz testing is a powerful technique for finding security-critical flaws in any software. It involves sending random

invalid data to the software to see how it responds. These techniques are generally specific to a particular input

type and are developed to test a specific program. They cannot be reused and are very effective in uncovering

security vulnerabilities that other testing tools cannot find. Fuzz testing can be conducted at various steps during

the development and testing and is a beneficial security assessment technique.

Source code fault injection is a testing technique used to induce stress in the software, simulate faults in the

execution environment, and reveal safety-threatening flaws. In contrast, binary fault injection is an adjunct to security

penetration testing used to monitor system call traces, inject faults into environmental resources, and simulate

real-world attack scenarios to gain a complete understanding of the software system’s security under all operating

conditions.

Risk analysis is a process used during the design phase of software development to review security

requirements and identify security risks. It involves analyzing software’s potential threats and vulnerabilities and

developing strategies to mitigate these risks.

Application vulnerability scanners are software security testing tools used to scan executing applications for

patterns associated with known vulnerabilities, including web servers, databases, and operating systems, to detect

known classes of attacks and vulnerabilities. However, they are limited to signature-based scanning. They can only

detect specific vulnerabilities, so combining different test techniques to examine the software for weaknesses is

essential. Penetration testing is used to test the security of a system or network to identify vulnerabilities that an

attacker may exploit. It involves simulating an attack on the system and analyzing the results to find any

weaknesses that could be used against it. White (e.g., SAST), black (e.g., DAST), and grey box testing (e.g., IAST)

are all forms of penetration testing, but each has a different focus. White box testing focuses on the system’s

internal structure, black box testing focuses on the external interfaces, and grey box testing combines the two

approaches. Each approach has advantages, so a comprehensive penetration testing strategy should include all

three.

9

Sheakh (2015) outlines software testing and emphasizes its role in software reliability. The study compares three

testing techniques (White box, Grey box, and Black box) and concludes that White box testing produces better results

for software reliability. This study highlights the importance of software testing for ensuring the validity and structure

of software for efficient performance.

2.1.3 Continuous Integration and Delivery

DevOps incorporates Continuous Integration (CI) and Continuous Delivery (CD) practices to increase the speed

and efficiency of software projects (Arachchi & Perera, 2018). DevOps combines concepts and techniques to bring

developers and operations teams closer to delivering software faster, more reliably, and with higher quality. It

emphasizes collaboration between these two teams throughout the software development process to identify and

address potential issues quickly and efficiently (Mowad et al., 2022).

The Continuous Integration stage starts with a commit, followed by a build of the modified application, which

is then verified using unit tests. The tested application is deployed to a testing environment when all test cases

pass. If Continuous Delivery is implemented, automated acceptance tests are executed to verify no regressions in

the system’s features. This step also helps to identify any errors that may occur due to a difference in the run-

time environment because the testing environment is usually a server with a similar configuration to the production

environment. Depending on the level of automation, this step can also involve manual testing and approval before

the pipeline advances to the next stage. When all previous stages have passed, the system is automatically deployed

to the production environment in the Continuous Deployment stage, where the users will have access to the new

version. If a test fails or when an error occurs during build or deployment, the pipeline is automatically stopped, and

developers are notified of the error. When a fix has been committed, the pipeline will re-test the entire application

(Rangnau, 2020).

2.1.4 Software Development Life Cycle

Software Development Life Cycle (SDLC) is a crucial software and systems development process involving several

steps, from initial feasibility studies to deployment and maintenance. There are different models for different types

of software, such as back-end, service-oriented, and visual interfaces, and the most popular models are waterfall,

spiral, unified, incrementing, rapid application development, v-model and w-model (Ruparelia, 2010).

The waterfall model consists of seven stages: operational analysis, operational specification, design and coding

specification, development, testing, deployment, and evaluation. After the operational analysis stage, a preliminary

design stage can be added before the analysis stage. At each stage, documents such as a requirements document,

initial design specification, interface design specification, final design specification, test plan, and operations manual

10

or instructions should be produced. Quality assurance is built in by verifying each stage. During the design stage,

verification is used to assess the design’s suitability. During the development stage, unit and integration testing

is performed. During the validation stage, system testing is conducted. After each stage, a feedback loop allows

for revisiting previous stages if needed. The model helps create complex software such as relational databases,

compilers, and secure operating systems (Ruparelia, 2010).

Software engineers should incorporate security from the start of the software design procedure. Examining and

assessing can result in the early recognition of mistakes or issues, quick implementation of appropriate solutions,

and, most of all, the manufacture of the safest software item. Addressing, analyzing, and lessening security

hazards will enable the creation of totally secure systems surveillance, shielding essential assets, enabling effective

security decision-making regulations, developing practical security regulations, and providing relevant data for

future forecasting (Alenezi & Almuairfi, 2019).

When discussing risk, it refers to an uncertain event with a certain probability of happening and a certain amount

of impact or loss (Alenezi & Almuairfi, 2019). Risk management is a process that helps us identify, address, and

avoid risks before they can cause damage. We need to be aware of two broad categories of risks - proactive and

reactive. Proactive risks might happen in the future, while reactive risks occur after the software has been released.

We can also divide risks into two more categories - systematic and unsystematic. Systematic risks are from external

sources like hacking and viruses, while unsystematic risks are unique to the company, such as data loss or misuse

and human error (Chowdhury & Arefeen, 2011). Risk management helps us identify, avoid, and minimize the risks

so that our software can be secure (Alenezi & Almuairfi, 2019).

The Software Development Life Cycle is a crucial concept software engineers use to produce high-quality software.

It involves many steps like Requirements, Architecture and Design, Implementation, Verification, and Release &

Maintenance (Alenezi & Almuairfi, 2019), as shown in Figure 2.

In the Requirements phase, software engineers have discussions with users to understand what the user wants

the software to do. They use different methods, such as studying existing software and systems, interviewing users,

and asking questions to collect information. This information is used to create and ensure the software meets quality

standards. Misuse cases are also used to make sure the software is secure. They help identify possible attacks and

how the system should respond to them (Alenezi & Almuairfi, 2019).

11

Figure 2: Software Development Life Cycle

The architecture phase involves creating and documenting a high-level structure for a software system. This is

analogous to the construction of a building’s architecture. Documentation ensures that all stakeholders understand

the design, enabling early decisions on high-level design and the reuse of design elements between projects (Imran

et al., 2016). Software architects work with project managers, discuss architecturally relevant requirements with

stakeholders, formulate software architecture, and evaluate and communicate the architecture. This involves four

core activities that are iteratively performed at various software development life cycle stages. Architectural Analysis

entails understanding the system’s operating environment and determining what is needed to function. Architectural

Synthesis is the creation of the architecture, while Architecture Evaluation assesses how well the architecture meets

the desired requirements. Lastly, Architecture Evolution deals with maintaining and adapting the architecture to new

requirements and environmental changes (Alenezi & Khellah, 2015).

The Design phase combines all the knowledge from the requirements and analysis and uses it to create the design.

Different designs, such as object-oriented and functional designs, and various tools, such as data dictionaries, entity-

relationship diagrams, and flow diagrams, can all be used in this stage. Addressing the security-related issues in

the early phases of SDLC can help reduce the time and cost spent on system security software (Kaur et al., 2018).

During the coding phase, the software development team writes program code using the appropriate programming

language and creates error-free executable programs. Integrating software with databases, libraries, and other

programs may also be necessary. The team needs expert-level programming skills to produce a high-quality software

12

product. The coding phase follows standard software engineering practices, such as using version control systems

like Git or SVN (stands for Subversion) (Payer, 2019) and adhering to strict coding standards. The code should

also go through a formal review process, either manual or automated, as part of the continuous integration process

to ensure it meets standards and does not disrupt existing code (Assal & Chiasson, 2018). Various tools, such

as GitHub and Gerrit, can aid in this process, and it is essential to evaluate and choose the one that best fits the

development process.

The Testing (Verification) phase is a crucial step in the software development process. This phase involves

thoroughly testing new commits and releases for functionality and security. Various testing methodologies, such

as unit testing, ensure the software is free of mistakes or errors and has high quality (Kaur et al., 2018). Testing

experts perform testing at different code levels, including program, object-oriented, module, and product testing at

both dynamic and static levels. Security testing is distinct from functional testing as it focuses on abstract properties

that are not easily testable. Automatic security testing can be done through fuzz testing, penetration testing, symbolic

execution, and formal verification to increase the likelihood of identifying vulnerabilities (Payer, 2019). A dedicated

security response team must address any discovered threats or vulnerabilities. This team prioritizes and manages

the response to any issues, including changes to the software environment.

The Release and Maintenance phase is the final stage in the Software Development Life Cycle. This phase includes

deploying the software and maintaining it over time. A life cycle maintenance approach plans how the software will

be updated and modified to meet the changing needs of users and clients. The phase includes installing the software

and its components in the production environment and developing a strategy to update and patch the software to

address any discovered flaws or vulnerabilities. Ensuring the security of updates is a crucial challenge, requiring a

mechanism that can securely check for updates while minimizing the load on update servers (Payer, 2019). During

the maintenance phase, the software is further optimized, and new features are added over time.

In summary, it is essential to integrate security best practices throughout the software development cycle by

conducting risk assessment at the start of the process, continuing to assess risk throughout each phase of the

cycle, and effectively managing any issues or errors that are detected to meet all requirements for secure software

development and satisfy clients and users (Alenezi & Almuairfi, 2019).

2.1.5 Software Quality

Software Quality Engineering (Kan, 2002) is focused on enhancing the methods used to ensure software quality.

In the software industry, it is widely accepted to utilize software quality models for managing the quality of software

systems (Ihirwe et al., 2022). A quality model can be defined as a group of sub-characteristics and their

interrelationships that form the foundation for establishing quality standards and assessing quality. Such models

13

are typically used for specifying quality requirements and evaluating the quality of software products throughout the

software development life cycle. However, due to the diverse perspectives encountered throughout the software

development process, there can be disagreements regarding what constitutes software quality (Ihirwe et al., 2022).

Software quality has several definitions in the literature. However, it can be divided into two categories (Yang et al.,

2012). The IEEE standard offers two possible definitions of software quality (Radatz, 1990). The first definition is the

degree to which a system, component, or process meets specified requirements. In contrast, the second definition

is the degree to which a system, component, or process meets customer or user needs or expectations. These

definitions highlight the importance of meeting technical requirements and satisfying customer needs regarding

software quality (Yang et al., 2012).

According to Yang et al. (2012), some well-known quality models are McCall, Boehm, FURPS, and Dromey. ISO

9126-1 is an international standard based on those quality models and was updated in 2011 to ISO 25010, also

known as Systems and software Quality Requirements and Evaluation (SQuaRE). The revised standard includes

seven new sub-characteristics: functional completeness, capacity, user error protection, accessibility, availability,

modularity, and reusability.

The McCall model, proposed in 1977 (McCall et al., 1977), is one of the earliest models for evaluating software

quality. It defines product quality from three perspectives: Product operation, Product revision, and Product

transition. Under each perspective, quality attributes are defined as a hierarchy of quality factors, quality criteria,

and quality metrics. Factors are user-oriented, and criteria are software-oriented. The model does not include

system or design elements.

The Boehm model, presented in 1978, is a hierarchical model that aims to qualitatively define software quality by

a given set of attributes and metrics. The model is similar to the McCall model and includes high-level characteristics

that address a software buyer’s three main questions: as-is utility, maintainability, and portability. The intermediate-

level characteristic includes Boehm’s seven quality factors: portability, reliability, efficiency, usability, testability,

understandability, and flexibility. The primitive characteristics provide the foundation for defining quality metrics,

with 17 attributes describing the product quality. The model is structured in a hierarchy, with each level contributing

to the overall quality level (Singh & Kannojia, 2013).

The FURPS model was originally presented by Grady (1992). FURPS stands for Functionality, Usability,

Reliability, Performance, and Supportability. Functionality refers to the software’s features and capabilities, while

Usability focuses on the ease of use and user experience. Reliability refers to the software’s ability to operate

without failure, and performance measures the software’s speed and efficiency. Supportability encompasses the

14

software’s ability to be maintained, tested, and evolved. The FURPS model is widely used as a checklist to evaluate

software requirements and ensure that all quality aspects are considered during development.

Dromey’s software product quality model proposes that software does not directly manifest quality attributes but

rather exhibits properties that contribute to them (Dromey, 1995). The model consists of three key elements: quality

attribute, product component, and quality carrying product property. This model focuses on the properties that must

be built into the software product to achieve the desired quality attributes. While the model does not guide how to

achieve product properties, it does consider quality definitions (Nistala et al., 2019).

In conclusion, selecting an appropriate software quality model is critical to ensure that a company’s software

products meet the necessary quality standards. Various software quality models are available. However, based on

multiple literature reviews, ISO 9126 appears to be the most suitable for software quality engineering, as it provides

a comprehensive framework for defining and measuring software quality attributes. Therefore, Table 1 provides an

overview of the Software Quality Models mentioned above.

15

Table 1: Software Quality Models Comparison adapted from Singh and Kannojia (2013)

Criteria/Factors/Goal McCall Boehm Dromey FURPS ISO 9126 & 25010
Q
u
a
li
ty
A
tt
ri
b
u
te
s

Correctness X X

Reliability X X X X X

Integrity X X

Usability X X X X X

Efficiency X X X X

Maintainability X X X X

Testability X

Interoperability X

Flexibility X X

Reusability X X

Portability X X X X

Clarity X

Modifiability X

Documentation X

Resilience X

Understandability X

Validity X

Functionality X X X

Generality X

Economy X

Compatibility X

Performance X

Supportability X

Security X

2.2 Related Work

This section is divided into two subsections. The first subsection (2.2.1) reviews relevant literature and scientific

papers. The second subsection (2.2.2) explores the state of the art in Checkmarx, explicitly focusing on existing

methods for measuring the quality of a scan.

16

2.2.1 General Related Work

This section covers various crucial topics studied in software engineering and quality. One of the primary

focuses is software quality evaluation, with three articles dedicated to exploring software quality evaluation

frameworks. Additionally, one article delves into the effectiveness of different software testing frameworks about

software quality. Another significant contribution in this section is the introduction of the SourceAudit Tool for

Software Quality Management. Furthermore, two articles evaluate specific metrics for object-oriented software,

while a final article explores software metrics for software security. This section provides a comprehensive overview

of recent research related to software quality, offering a solid foundation for the context and focus of this work.

According to Kato et al. (2022), Key Performance Indicators (KPIs) can ensure the quality of software products

in DevOps. The authors propose a method to visualize and control the quality of software products in DevOps

using quality characteristics as KPIs. The authors suggest that by categorizing the quality ensured by the CI/CD

pipeline testing into quality characteristics, it becomes possible to visualize and control the quality of the released

system using a quality model. They proposed the KPIs to define software quality goals before the project starts. This

involves managing the results of tests in each pipeline and comparing them with past builds. The test pyramid is

recommended as a valuable technique to prioritize tests in the CI/CD pipeline, with unit tests at the bottom, service

tests in the middle, and UI tests at the top. Furthermore, the CI/CD pipeline delivers minimum quality faster, and

test engineers can spend more time on test design and automation. Automated tests become the acceptance tests

for manual testing, allowing for more efficient and complex manual testing. The authors recommend incorporating

Agile processes, clarifying the prioritized quality characteristics in each sprint plan, and using the SQuaRE model to

build up quality efficiently. In conclusion, the study provides a method for visualizing and controlling the quality of

software products in DevOps using quality characteristics as KPIs and prioritizing tests using the test pyramid. It

highlights the importance of incorporating Agile processes and using SQuaRE to build quality efficiently.

The researchers Gu et al. (2015) investigate methods that can accurately predict software defects using metrics.

While many studies have investigated the best techniques for building defect prediction models, few have explored

the optimal number of software metrics. The authors propose a network-based approach using software metrics

to predict defects. The unique approach identifies relationships among features using a network based on the

correlation between components. The authors used metrics specific to Object-Oriented languages: CK Metrics

(a type of software metric) and two different association coefficients (Maximal Information Coefficient and Pearson

correlation coefficient) to measure the similarity between features. Then, they choose a representative set of metrics

by adjusting the correlation threshold. This subset selection approach is validated using a Poisson regression model,

and the results show that using metrics networks is an efficient way to build a defect prediction model compared to

using the complete set of metrics.

17

Medeiros et al. (2017) provides insights into the relationship between software security vulnerabilities and

software metrics in software development. The study aims to determine if software metrics can distinguish

vulnerable code from non-vulnerable code. To achieve this goal, the authors perform an exploratory analysis on a

dataset of software metrics and security vulnerabilities reported in five commonly used software projects. The

study includes an examination of the correlation between software metrics and the number of vulnerabilities, as

well as an analysis of the interdependency between software metrics. The results show a strong correlation

between several project-level metrics and the number of reported vulnerabilities, indicating that software metrics

can provide valuable insights into software security. The study also found that a group of metrics can accurately

distinguish between vulnerable and non-vulnerable code. Still, the best subset of metrics may vary from one

software system to another. The results also emphasize that considering metrics at different architectural levels,

such as the function, file, and project, can provide a more comprehensive understanding of software security. In

conclusion, the study highlights the potential of software metrics in detecting and preventing software security

vulnerabilities and offers valuable insights for future work in this area.

M. Liu et al. (2014) developed an appraisal target system for evaluating software product quality following

ISO/IEC 9126 standards. The authors devised a framework based on a hierarchical tree structure, which divided

software quality into multiple levels. The authors proposed a three-layer system, ”characteristic-sub

characteristic-indicator”, where each quality characteristic was further divided into sub-characteristics and refined

into relevant indicators. These indicators were derived primarily from software engineering experience,

encompassing code error rate and CPU utilization metrics. The appraisal target system, the key to software quality

metrics, was built upon five principles: Compatibility, Comprehensiveness, Effectiveness, Operability, and

Commonality. To determine the weight of the indicators, the authors employed the entropy and distance matrix

methods. The researchers also outlined the implementation of the software quality metrics, providing a

step-by-step process for assessing the quality of a software product using the appraisal target system. This

measurement process involved five stages: Goal Determination, Indicators Reduction, Data Collection, Weight

Determination, and Result Calculation. In conclusion, the study highlights a framework where indicators were

presented to assess the software product quality.

Nakai et al. (2016) proposed a comprehensive software quality evaluation framework based on the Systems

and software Quality Requirements and Evaluation (SQuaRE) series, specifically ISO/IEC 25022:2016 and ISO/IEC

25023:2016. The framework aims to provide a concrete set of quality metrics for software products, addressing

key quality characteristics such as functional suitability, maintainability, and user satisfaction. Comprising two

components, namely ”Product Quality” and ”Quality in Use”, it encompasses 47 product metrics and 18 quality-in-

use metrics, covering more than 50% of the metrics initially defined in the SQuaRE series. The framework requires

information from various sources, including documents, user tests, and questionnaires, to measure and evaluate

18

the quality metrics. Furthermore, the authors conducted a case study demonstrating the framework’s usefulness in

a commercial software product context. The case study yielded promising results, indicating the framework’s ability

to assess and improve software quality. Most metrics evaluated in the study achieved a 100% measurement rate,

which strongly shows high quality for the target product. These findings reinforce the notion that the framework can

serve as a valuable tool for software stakeholders, empowering them to evaluate and improve the quality of their

products effectively.

Bakota et al. (2014) presents a description of SourceAudit tool, a software quality management tool that addresses

the challenge of software erosion and the resulting decrease in internal quality over time. Software erosion leads

to higher development, testing, and operational costs. The tool measures source code maintainability based on

the ISO/IEC 25010 standard and the ColumbusQM model, offering a holistic view of software quality and warning

about maintainability decline. It enables benchmark management, quality model management, and certification

views, allowing users to assess and monitor software quality effectively. The tool benefits managers and software

developers, providing a comprehensive understanding of software quality, and improving source code quality and

development team performance.

The authors Lincke et al. (2008) evaluated a set of object-oriented software metrics using ten different software

metric tools. The findings revealed that calculating the same metrics by various tools resulted in varying values,

indicating a lack of consistency in metrics interpretation and implementation. The study emphasizes the need

to consider the tool-dependent nature of metrics when making decisions. Moreover, the research examined the

implications of these variations on client analyses, explicitly focusing on maintainability assessment using a software

quality model based on ISO 9126. The study raises concerns about the reliability and comparability of metrics results,

cautioning software engineers to be careful in relying solely on metrics for quality assessment. The authors also

suggest further research to explore additional metrics and programming languages, expand the scope of analyzed

software systems and revise metrics definitions to reduce ambiguity.

The authors Mladenova (2020) focus on the importance of software quality metrics in evaluating and assessing

the quality of software development. It emphasizes the need for well-selected metrics to provide a comprehensive

view of the development process and enable risk assessment and evaluation. The paper explores various quality

models and metrics, including project, process, and product metrics. It also highlights the significance of metrics

related to size and complexity, performance, maintenance, security, and software testing. The article concludes by

suggesting the development of a comprehensive tool for quality checks and measurements to aid organizations in

tracking their development, costs, risks, and defects.

The research opportunity presented in this dissertation lies in developing a novel tool that focuses on software

quality metrics to evaluate the quality of scans conducted by Static Application Security Testing (SAST) tools. While

19

the existing literature has extensively explored software quality metrics in various domains, the specific area of

scan quality assessment for SAST tools remains relatively unexplored. By creating a dedicated tool that retrieves

a scan quality metric, this research addresses the need for comprehensive evaluation and assessment of SAST

scans, ultimately enhancing the effectiveness of security testing in software development. This opportunity opens

avenues for investigating and defining appropriate scan quality characteristics and designing effective metrics and

measurement techniques to analyze log files from SAST tools.

2.2.2 Specific Related Work

Scan Coverage metric is the existing method used to assess scan quality. This metric considers the ratio of good

and bad files among the total files. Figure 3 illustrates the Scan Coverage and its corresponding indicators in the

log file. These indicators include:

• Total Files - This represents the files recognized by each language´s processor in the CxSAST Engine.

• Good Files - Files without parsing exceptions or parsing errors are considered good files.

• Partially Good Files - If a file encounters parsing exceptions or parsing errors but still successfully parses, it

is considered partially good.

• Bad Files - Files that fail to parse entirely are categorized as bad files.

Figure 3: Example of Scan Coverage

Scan Coverage metric is computed during the SAST scan process, and its value is expressed as a percentage

retrieved from the log file (see Figure 3). This metric is represented by the following formula:

Scan Coverage =

(
GoodFiles

Totalfiles
+

PartiallyGoodF iles

TotalF iles
× 0.66

)
× 100

20

However, the simplicity of this metric, which relies on the file count, presents particular challenges. These issues

are linked to the need for more differentiation in the ScanCoverage values across various projects. In the majority

of the cases, this percentage approximates 100%. Such uniformity makes it difficult to establish priorities, estimate

task completion times, and obtain relevant information regarding the location of problems. The lack of granularity

in the ScanCoverage metric limits effective management for Product Managers, Team Leaders, and Developers.

It also limits the ability of QA teams to make informed decisions related to software releases.

Considering these limitations, this master’s dissertation proposes a more sophisticated metric to address these

challenges and provide enhanced insights into scan quality.

2.3 Summary

This dissertation’s ”State of the Art” section begins by exploring fundamental concepts, including vulnerabilities,

security testing, continuous integration and delivery, software development life cycle, and software quality. It

discusses the significance of identifying vulnerabilities in software systems and emphasizes the importance of

conducting thorough security testing to ensure robustness. The section also covers the concepts of continuous

integration and delivery, highlighting their role in streamlining the software development process. It also examines

the software development life cycle and emphasizes the need for quality considerations throughout the process.

Following the discussion of fundamental concepts, the section provides an overview of related work in the master’s

research area. It reviews existing literature and studies that have explored topics relevant to scan metrics for SAST

tools. By examining prior research, this review helps to identify gaps in the literature and establishes the foundation

for the research conducted in this dissertation.

Overall, the ”State of the Art” section provides a comprehensive summary of fundamental concepts and related

work, laying the groundwork for the subsequent chapters of the dissertation and highlighting the research opportunity

to develop scan quality metrics for SAST tools.

21

3 PROPOSED APPROACH

This section outlines the overall strategy to achieve quality on a SAST tool scan. To comprehensively address

the issue, examining the SAST scan process is essential. The output of this process serves as a fundamental

component in accurately establishing a scan quality metric. Then, the overview of the proposed approach and all

related information will be presented, such as requirements for the new tool implementation, architecture design,

technology needed, and the decisions taken to address the problem.

3.1 SAST Scan Process and Core Concepts

The SAST scan plays an essential role in achieving the notion of scan quality. Once the scan is initiated, the

SAST tool performs an in-depth examination of the project’s source code. SAST builds a logical graph of the code’s

elements and flows. The scanning process involves examining the lines from the source code of a project written

in a specific programming language (or a combination of several) to uncover potential security vulnerabilities and

flaws. The scan operates on two key aspects:

• Syntactic Recognition: Ensuring that the code has the syntax rules of a programming language, verifying

correctness and compliance with guidelines.

• Semantic Recognition: The scan analyzes the code’s meaning and logic to understand how different

components interact, identifying potential security issues.

Besides these two key elements, SAST has an extensive list of hundreds of pre-configured queries for known

security vulnerabilities for each programming language. SAST provides scan results either as static reports or in

an interactive interface that enables tracking runtime behavior per vulnerability through the code and provides tools

and guidelines for remediation.

The input to SAST’s scanning and analysis is the source code, so no building or compiling is required, and no

libraries need to be available. The consumer must submit a project written in a supported programming language.

The SAST engine performs a static analysis of the source code, and then there are two options. The first option is for

the consumer to run a specific query to identify a particular vulnerability in their project. Alternatively, the consumer

can opt for comprehensive analysis by running all the available queries for the programming language used in their

project. The second option will be used in further analysis. Figure 4 illustrates the flow of this process.

In addition to the results being shown at the end of the scan and exported as a JSON file, a log file is generated.

It captures essential insights about the overall scanning process, such as information about the machine where the

SAST engine is running, scan phases, any errors encountered, and other relevant details that give us insights into

the analyses performed by the tool.

22

Figure 4: Sequence Diagram for SAST Scanning Process

The log file is the main object to build the notion of a scan quality for this master’s dissertation. By carefully

examining the log file, multiple scanning phases were identified. It involves many stages like Parsing, Resolver,

Abstract Interpretation (AbsInt), and Querying, as shown in Figure 5.

Figure 5: Key Phases in a Standard Project Scanning Process

The Parsing stage involves the syntactic and semantic recognition process. It is the most critical phase because

it is where the semantic representation model (Domain Object Model, or DOM for short, henceforth) is built. The

better the DOM is created, the more vulnerabilities are potentially detected. This stage also consists of 4 more

substages: Type Inference, Abstract Syntax Tree (AST) Construction, Conversions, and DOM Construction.

23

The Type Inference substage is responsible for inferring data types from navigation on the parse tree. The AST

Construction is responsible for traversing the parse tree generated by Antlr to create an abstract syntax tree. The

Conversions include all the transformations required to ”fit” the AST data structures in the abstractions of the DOM

representation (e.g., object restructuring into multiple variables). The DOM Construction is responsible for building

the DOM with all the necessary nodes mapped from AST into the DOM tree.

The Resolver stage is a processing stage executed immediately after parsing a language and is responsible for

relating symbol instances to definitions. Like Parsing, it also processes each language separately, working on the

symbols of that language.

Some stages are common to all scanned projects. These stages are AbsInt and Querying. In contrast, Parsing

and Resolver are executed for each programming language identified in the project.

The AbsInt (Abstract Interpretation) stage is responsible for abstracting the behavior of the source code project

by simplifying its values into abstract representations.

The Querying stage is the final phase of the scan process. It includes the results summary for each query executed

during the scan. This summary presents the query’s name, the number of results for each, its severity, CWE code,

and execution time.

To summarize, the quality of a scan relies on how well the programming language is recognized, the structure of

the DOM and its syntactic and semantic relations, as well as executing queries on the DOM without compromising

the scan’s performance.

3.2 Overview of the Proposed Approach

The proposed approach for building the notion of scan quality is to develop a service that can give the scan

quality of a project based on the SAST log file. This service, CxScanQuality, will be integrated into an internal

Quality Assurance (QA) platform (SK for short) to assess the overall SAST product quality. Additionally, it will be

integrated into Continuous Integration (CI) pipelines. SK is managed by the QA team, providing access to valuable

project-related data and enhancing their decision-making capabilities.

To determine the quality of a scan using CxScanQuality, it is important to identify the components that contribute

to scan quality. By analyzing the individual components - recognition coverage, DOM structure, and query execution

- a scan is considered to have good quality if all of its components exhibit good quality. As a result, the following

quality factors are relevant: Coverability, Domability, and Querability. The scan quality is measured as an aggregate

24

metric that combines all of the quality factors, with each factor having a varying impact on the overall scan quality.

The definitions of each factor are provided below:

• Coverability: Refers to the ability of the scan to recognize the syntax of the programming language used in

the source code. Measuring the Coverability of a scan is measuring the Parsing coverage.

• Domability: Refers to the ability to translate what was syntactically recognized into a semantic structure in

the DOM and its respective semantic relations. To measure the Domability in SAST, we need to measure the

quality of each scan phase that contributes to the DOM Construction and its semantic relations. These stages

are Type Inference, AST Construction, Conversions, DOM Construction, Resolver, and AbsInt. However, not

all stages are equally crucial to the final scan.

• Querability: Refers to the capability of executing all queries defined by CxSAST, which are related to the

source project’s scope, on the generated DOM. To determine the Querability, we need to evaluate the success

of each query’s execution and the number of exceptions encountered during this process. The queries can

be categorized based on their severity, such as High, Medium, Low, and Information (stands for Info), and

each category has a corresponding weight based on its impact on the quality perception of the scan.

The quality factors for measuring the scan quality are shown in Table 2, with corresponding indicators extracted

from log files at different stages of the scan. To measure Coverability, the number of recognized lines during Parsing

and the total lines of code are taken into account. For Domability, the indicators are the number of exceptions

thrown during each affected phase. Querability is measured by successful and unsuccessful queries, categorized

by severity, executed during the scan, as well as query exceptions.

The implementation of the indicators in Table 2 requires modifications to the Engine Log service for log file

analysis. Other services already use this service, which is responsible for displaying metrics from a log file. This

adaptation is necessary for computing the quality factors into CxScanQuality. Then, integration of CxScanQuality

into CI/CD pipelines and the SK platform becomes essential. In summary, extracting data from log file analysis

enhances the precision and depth of scan quality assessment.

25

Table 2: Scan Quality Framework

Scan Quality

Coverability Domability Querability

Parsed LOC Exceptions Parsing Total Success High queries

LOC Exceptions TypeInference Total Failed High queries

Exceptions AST Construction Total Success Medium queries

Exceptions Conversions Total Failed Medium queries

Exceptions DOM Construction Total Success Low queries

Exceptions Resolver Total Failed Low queries

Exceptions AbsInt Total Success Info queries

Total Failed Info queries

Total Success queries

Total Failed Info queries

Exceptions queries

3.3 Requirements

To design the CxScanQuality service, a set of requirements has been formulated to ensure that the outcomes

align with the expectations and objectives of the stakeholders. Table 3 presents a comprehensive breakdown of each

requirement, encompassing its unique identification (ID), the corresponding category, a descriptive summary, and

the specific service into which it has been integrated. These categories are classified into two distinct dimensions:

Non-Functional, regarding the performance characteristics the system should exhibit, and Functional, encompassing

the features that the system is expected to provide.

These requirements are essential for successfully developing and evaluating the CxScanQuality. Consider

Requirement 7 as an illustrative case in Table 3. This requirement falls under the Functional category and is

described as follows: ”The solution must be integrated into the CI pipelines”. This means that the CxScanQuality

service must be integrated into CI pipelines. However, it is important to note that this requirement does not specify

an ”Applicable Service” due to the complexity involved in the integration process. This is because modifying

multiple services makes listing each in this context impractical. However, the ”Development” chapter explains this

process in detail.

26

Table 3: Requirements

ID Requirement Category Requirement Description Applicable Service

1 Non-Functional

The solution must offer a

comprehensive assessment of the

scan quality for a project.

CxScanQuality

2 Functional

Provide an object containing relevant

information for each programming

language in the scanned source code.

The relevant data are the names and

number of exceptions encountered

during the various stages of the

scanning process.

Engine Log

3 Functional

Provide an object detailing the counts

of successful and unsuccessful queries

for each severity level and the overall

totals for successful and unsuccessful

queries.

Engine Log

4 Functional

The system should supply an object,

including information on Lines of Code

(LOC) and Parsed Lines of Code.

Engine Log

5 Functional
The solution must calculate and present

the quality factor in percentages.
CxScanQuality

6 Functional
The solution must be integrated into the

quality platform, which is SK.
SK platform

7 Functional
The solution must be integrated into the

CI pipelines.
Not Applicable

8 Functional

Implement a POST request to the

Engine Log API to retrieve indicators

related to each quality factor.

CxScanQuality

27

3.4 Architecture Design

The architecture design of the CxScanQuality service is shown in Figure 6 to aid in developing the proposed

approach.

Figure 6: Architecture Overview

Log Input - A log file generated from a project scanned by the SAST must be submitted to CxScanQuality to

obtain a scan quality score.

CxScanQuality - This API is responsible for receiving the log file and analyzing it using the indicators provided

by the Engine Log service. To achieve this, CxScanQuality initiates a POST request to the Engine Log service,

incorporating the log input in the request. The goal is to obtain all the necessary indicators for calculating the Scan

Quality metric, including its three components: Coverability, Domability, and Querability.

Engine Log service - This API is responsible for receiving the log file and providing the log’s raw data in JSON

format.

MongoDB Database - Utilized as a MongoDB database, this system stores metrics derived from log data

acquired through CxScanQuality. A new MongoDB collection must be established within the existing MongoDB

database to accommodate this storage.

28

3.5 Technology Stack

Following the requirements and architecture design, the technologies used to implement CxScanQuality are

represented in Figure 7. Furthermore, this section explores the chosen technologies and explains the reasons for

their selection.

Figure 7: Technology Stack

For the development of CxScanQuality, the programming language used was JavaScript. JavaScript is a

versatile and multipurpose language utilized for web development and across various domains, including

server-side programming with Node.js. Its advantages extend beyond web development, resulting in cost-efficiency

through multipurpose use and streamlined maintenance. JavaScript also seamlessly integrates with other

technologies like databases, APIs, and third-party services. Additionally, Node.js 3, an open-source, cross-platform

runtime environment for executing JavaScript code, was employed. The QA team chose these services because

they manage similar ones, allowing for more straightforward maintenance and support.

Express 4 is a lightweight and adaptable web application framework for Node.js, offering a comprehensive range

of features for building applications that can be used on both web and mobile platforms. It facilitates the rapid

development of Node-based web applications and APIs by simplifying common tasks such as routing, middleware

integration, request handling, and response management.

3
Available at: https://nodejs.org/en

4
Available at: https://expressjs.com/

29

Docker 5 is a containerization platform that enables developers to package applications and their dependencies

into portable containers. These containers can run consistently across various environments, making developing,

testing, and deploying software applications easier. This technology facilitates the integration of CxScanQuality into

both the SK platform and CI pipelines.

Jenkins 6 is an open-source automation server widely used for building, deploying, and automating software

projects. It provides a robust platform for Continuous Integration (CI) and Continuous Delivery (CD), helping

development teams automate repetitive tasks, test code changes, and streamline the software development and

deployment processes. This technology is applied in conjunction with Docker to push a Docker image of

CxScanQuality into the Amazon Elastic Container Registry (AWS ECR). This step aims to enhance the integration of

CxScanQuality into both the SK platform and CI pipelines.

MongoDB 7 is a widely adopted, open-source NoSQL (Not only SQL) database management system that stores

data in a flexible, schema-less format known as BSON (Binary JSON). It is designed for high scalability,

performance, and ease of development. MongoDB is classified as a document database, making it highly suitable

for managing large volumes of structured and unstructured data, particularly in modern web and mobile

applications. This technology enables the storage of all the metrics developed in CxScanQuality for various

projects.

3.6 Design Decisions

Developing a robust scan quality metric requires careful consideration of various design decisions. These

decisions play an important role in ensuring the accuracy and reliability of the metric. The following design choices

were made during the development process:

1. Handling Undefined Scan Stages: In cases where certain scan stages lacked well-defined boundaries,

exceptions occasionally exceeded the established limits of scan phases. To address this, a systematic

approach was adopted. Any exceptions arising from such scenarios were associated with the previous scan

stage. This decision maintains a coherent flow of exception handling while preserving the integrity of the

scan phases.

2. Standardizing Unnamed Exceptions: In cases where log entries indicated errors (ERROR) or warnings

(WARN) without explicitly specifying the exception’s name or when extraction of the actual name was

impossible, a default naming convention was implemented. The decision to assign default names, such as

5
Available at: https://www.docker.com/

6
Available at: https://www.jenkins.io/

7
Available at: https://www.mongodb.com/

30

”ERRORUnknownException” or ”WARNUnknownException” ensures consistency in exception labeling. This

enhances clarity and simplifies subsequent analysis.

3. Uniform Identification of Common Engine Stages: Certain engine stages were typical across different

languages throughout the scan process. To represent these stages cohesively and facilitate the identification

of language-specific exceptions within them, they were labeled as ”Common” for the respective language

names.

The design decisions mentioned above relate to the developments in Engine Log service, which ensures effective

log data management. These considerations collectively contribute to the robustness and consistency of the scan

quality metrics design.

3.7 Summary

This section discusses a proposed approach to achieving the quality of the CxSAST tool scan. It outlines the

process and core concepts of SAST scanning and introduces the ”Scan Quality” concept. It also outlines the

requirements, architecture design, technology stack, and decisions made.

The proposed approach aims to build the notion of scan quality using a service called CxScanQuality, which

analyzes SAST log files. The scan quality is divided into three quality factors: Coverability, Domability, and Querability.

Each factor contributes to overall scan quality, measuring various indicators from log files.

This approach has the potential to enhance the accuracy and effectiveness of SAST tool scans, providing insights

for the QA team to make informed decisions about the quality of scanned projects.

31

4 DEVELOPMENT

This chapter covers all the steps related to the development process. The development process includes creating a

new service (CxScanQuality) and updating an existing service (Engine Log service). To address this, topics discussed

here include methods for data extraction from a scan, configuration of Coverability, Domability, and Querability. It

also encompasses a statistical analysis, the integration process of CxScanQuality, and the solution validation.

4.1 Data Extraction from a Scan

The data extraction process from a scan involves updating the Engine Log service to compute the Scan Quality

metric. This section outlines the steps and methodologies employed to extract valuable data from the log files

generated during the scanning process.

4.1.1 Identifying Scan Phases in Log Files

The first step in data extraction from a scan involves identifying the scan phases within the log files. This task

was straightforward due to the patterns in each scan phase’s log entries. When a scan stage starts, the log entry

follows the pattern ”Engine Phase (Start): StageName”. Conversely, when a stage concludes, the design changes

to ”Engine Phase (End): StageName”. Figure 8 illustrates these patterns.

In certain stages, such as Parsing and Resolver, details related to the language name are added to the pattern.

For example, the log entries for these stages appear as ”Engine Phase (Start): StageName LanguageName” and

”Engine Phase (End): StageName LanguageName”. Substages within the Parsing phase exhibit a slight variation

in their entries, with the pattern for the start being ”Entering substageParsingName of LanguageName” and for the

end, ”Exiting substageParsingName of LanguageName”. Figure 9 illustrates these patterns.

Figure 8: Illustrating a Log Entry from the AbsInt Stage

32

Figure 9: Illustrating a Log Entry from the Type Inference Stage

4.1.2 Analyzing Common Exceptions

Once the various scan phases were identified, a comprehensive analysis was conducted to determine the

exceptions that occurred most frequently throughout the scanning process.

Table 4: Overview of Exceptions Across Scan Stages

Scan Stage Exception Names

Parsing

“Antlr4.Runtime.NoViableAltException”

“Antlr4.Runtime.InputMismatchException”

“unexpected token”

”Unexpected type for the Abstract Syntax Tree (No Definition)”

“unexpected char: ’#’ (No Definition)”

“NullReferenceException”

“ArgumentNullException”

“InvalidOperationException”

“InvalidCastException”

“ApplicationExceptions”

“OverflowException”

“ArgumentException”

Resolver

“RegexParseException”

“NullReferenceException”

“ArgumentException”

Querying “BasicDomIteratorManager”

33

This analysis was based on scanning log files from every project in the SK database to identify exceptions using

Checkmarx’s internal tool. Table 4 presents the results, listing all exceptions found during the analysis.

Our analysis reveals that the Parsing and Resolver stages had the most frequent occurrences of exceptions.

Among the different substages of the Parsing stage, we found that DOM Construction, Type Inference, and AST

Construction had the highest occurrence of exceptions.

Analyzing exceptions in the scanning process is a crucial step as it enables the measurement of their impact on

the quality of the scan. For instance, an exception like ’Antlr4.Runtime.NoViableAltException’ can significantly affect

the scan quality more than an ’ArgumentNullException.’ ANTLR (ANother Tool for Language Recognition), which is

a powerful parsing tool, plays a critical role in the DOM Construction of the source code and, thus, has a significant

impact on scan quality.

4.1.3 Updating the Engine Log Service

Once the necessary modifications are applied (further details provided in sections 4.2, 4.3, 4.4, and 4.5), the

next step is to update the Engine Log service. Figure 10 illustrates how the Postman software is employed to send

an HTTP request (specifically, a POST request) to the service. Postman was chosen as the testing tool for the Engine

Log service. The output of this request is a JSON object.

Figure 10: Engine Log Service Output

The Engine Log service, when receiving the request, generates a JSON response containing various log metrics.

In total, this service collects 39 metrics. Here, all the key metrics from the JSON object are presented: loc,

totalFiles, goodFiles, badFiles, parsedLoc, goodLoc, badLoc, domObjects, scanCoverage, scanCoverageLoc,

34

languages, frameworks, languagesMetrics, info, warn, debug, error, tested, results, exceptions, antlrExceptions,

queryCount, generalQueryCount, maxMemory, scanDuration, slowestQuery, slowestGeneralQuery, absintDuration,

ast2domDuration, flowDuration, queryDuration, parseDuration, parseLanguagesDuration,

ast2domLanguagesDuration, preprocessingLanguagesDuration, antlrParsingLanguagesDuration,

typeInferenceLanguagesDuration, astLanguagesDuration and conversionsLanguagesDuration

Two new metrics, querabilityThesis and domabilityThesis, were introduced to measure the quality factors of

Querability and Domability. These metrics can be used to calculate the scores for Querability and Domability. Below

is the expected JSON structure for the quality factor of Domability.

{

"domabilityThesis": {

"javaScript": [

{

"engineStage": "Parsing",

"exceptionsList": [

{

"exceptionName": "RecognitionException",

"count": 1

},

{

"exceptionName": "Json.JsonReaderException",

"count": 1

}

],

"total": 2

}

]

}

}

Here is an example JSON object that shows the metrics for measuring Querability.

{

"querabilityThesis": {

"totalSuccessQueries": 344,

"totalInsuccessQueries": 0,

"highQueries": {

"success": 67,

35

"insuccess": 0

},

"mediumQueries": {

"success": 107,

"insuccess": 0

},

"lowQueries": {

"success": 129,

"insuccess": 0

},

"infoQueries": {

"success": 41,

"insuccess": 0

}

}

}

4.2 Configuring Coverability

During the initial phase of the scan, Coverability is the first quality factor that the scan retrieves information on.

This information does not include the Coverability score, but it consists of the necessary calculation indicators. To

configure Coverability, two key metrics, namely LOC and ParsedLOC, need to be extracted from the Engine

Log service. These metrics are already available and require no further updates, as they are obtained through a

RegEx pattern-matching process.

The concept of Coverability is related to recognizing the programming language’s syntax used in the scanned

project. Coverability is expressed using the formula:

Coverability =
ParsedLOC

LOC
× 100 (4.1)

Formula (4.1) assesses the Parsing coverage of the project, where ParsedLOC represents lines recognized

during Parsing, and LOC includes all lines of code in the scanned project.

It is essential to exclude exceptions in the scan log related to Parsing issues from the Coverability formula. The

count of unrecognized Lines of Code already addresses this handling. A Parsing exception indicates a failure to

recognize certain LOC. In thread abort timeout exceptions cases, the entire file failed recognition, making the count

of unrecognized LOC equal to the total number of LOC in the file.

36

4.3 Configuring Domability

To configure Domability, the creation of new indicators was necessary to generate the Domability JSON object

(see JSON 4.1.3). Table 5 provides the required regular expressions.

Table 5: Scan Stages and Corresponding RegEx Patterns

To accommodate decision 1 (Handling Undefined Scan Stages) in section 3.6, it was essential to develop RegEx

patterns where the endpoint of each RegEx did not mark the ’End’ or ’Exiting’ entry, but rather the entrance where

the next stage or substage starts.

The concept of Domability is related to DOM Construction. Domability is represented using the following formula:

Domability = (0.6QParsing + 0.2QDOM Construction + 0.15QResolver + 0.05QAbsInt)× 100 (4.2)

Where:

Q = e−0.009×(Number_Of_Exceptions)

37

In formula (4.2), the variable QParsing represents the sum of exceptions in the Parsing, Type Inference, AST

Construction, and Conversions stages. The variable QDOM Construction represents the exceptions that occur in the

DOM Construction stage. The variable QResolver represents the sum of exceptions in the Resolver stages, and the

variable QAbsInt represents the sum of exceptions in the AbsInt stages.

The coefficients assigned to different components in the Domability formula have an explanation. Each attribute

may hold varying importance when assessing scan quality. These weights reflect this importance and contribute to

the overall Domability score. The coefficients are determined based on factors such as the attribute’s relevance to

the impact on scan quality and the importance of the attribute’s content. The weight assignment process involves

analyzing scan log files to understand the impact on the overall scan quality and collaborating with domain experts

to validate attribute importance.

Based on research conducted by Checkmarx, the Parsing stage is the one that takes more time in most languages,

with an average impact accounting for approximately 50% of the total scan time. This is because the Parsing stage

encompasses all the steps involved in constructing the DOM, and the accuracy of results relies on the structure of the

DOM. Therefore, exceptions occurring in this phase substantially impact result quality from the client’s perspective,

justifying a higher weight of 0.6. The remaining coefficients are attributed hierarchically to assess their impact on

scan quality, with 0.2 for the DOM Construction stage, 0.15 for Resolver, and 0.05 for AbsInt.

To understand why an exponential function is themost appropriate choice for Domability, it is important to consider

how exceptions affect the resulting Domability score. The decision to use an exponential decay function, represented

byQ = e−0.009×(Number_Of_Exceptions), was based on the fact that an increase in the number of exceptions will result

in a decrease in the scan quality, and therefore, Domability should also decrease. The graph in Figure 11 shows

exactly that. The more exceptions, the lower the value of Q. It also shows that as the number of exceptions grows,

the value of Q will decrease slowly towards 0, meaning that after a certain number of exceptions, the quality is

already bad, and it is harder to make it worse. On the opposite, the quality decays faster when the number of

exceptions is smaller. This conveys the real-world perception of quality degradation whenever a small amount of

things start to fail. Therefore, It is crucial to consider the number of exceptions present and their potential impact on

the overall Domability score. The negative exponent in the function (k = −0.009) results in an exponential decay

that appropriately mirrors this expected scenario.

The k = −0.009 was tested on a range of exceptions from 0 to 4200, which is the maximum number of

exceptions seen. This also confirmed that the k value is appropriate. Moreover, the weighted average approach to

calculate Domability allows for adjustments based on the importance of the scan stages.

38

Figure 11: Representative Graph for k Constant Generated by Desmos

As an example, Figure 11 demonstrates an exponential decay function that represents the equation

y = e−0.009×x. The X-axis of Figure 11 ranges between 0 and 400, while the Y-axis ranges between -1 and 1. It

is worth noting that this graph has no roots.

4.4 Configuring Querability

To configure Querability, it is necessary to set up each indicator to generate the Querability JSON object (see

JSON 4.1.3). Table 6 presents the required regular expressions.

The concept of Querability is related to query execution, and it is represented using the following formula:

Querability = (0.7(0.5Whigh + 0.3Wmedium + 0.15Wlow + 0.05Winfo) + 0.3Qquerying)× 100 (4.3)

Where:

Q = e−0.009×(Number_Of_Exceptions_Query_Stage)

W =

(
#SuccessedQueries

#TotalQueries

)
× 100

In formula (4.3), the first part pertains to the weights assigned to different query severity levels: high, medium,

low, and information attributes. These weights (0.5Whigh+0.3Wmedium+0.15Wlow+0.05Winfo) determine the

contribution of each severity to the overall Querability score based on the notion that higher severity queries play a

higher and more critical role in the severity posture of an application. The second part of the formula involves the

39

weight (0.3) assigned to exceptions (Qquerying) that occur during the Querying stage. This weight reflects the

significance of handling querying exceptions to maintain a high level of Querability.

Table 6: Querability Indicators and Corresponding RegEx Patterns

4.5 Configuring Scan Quality

All configuration belonging to Scan Quality was centralized within the CxScanQuality service. This service initiates

a POST request to the Engine Log service, retrieving the essential data for computing the Scan Quality metric. Scan

Quality is represented using the following formula:

Scan Quality = 0.4 · Coverability+ 0.4 · Domability+ 0.2 · Querability (4.4)

40

The output from CxScanQuality is presented as a JSON result for each project under analysis, as exemplified

below:

{

"ScanQuality":

{

"Percentage": <value >

"Coverability": <value >

"Domability": <value >

"Querability": <value >

}

}

In this output, all the values are expressed in percentages. The ”ScanQuality” object provides the following

information:

• Percentage: The overall scan quality score is in this field.

• Coverability: This field is the Coverability score.

• Domability: This field is the Domability score.

• Querability: This field is the Querability score.

The assignment of weights to each of the mentioned components was informed by domain experts to validate

their influence on the overall scan quality. Moreover, statistical analysis contributes to enhancing this assessment.

4.6 Statistical Analysis

This section discusses applying a statistical method for calculating the coefficients of the Scan Quality formula

considering the quality of the scan results in terms of True Positives, False Positives, True Negatives, and False

Negatives, i.e., their accuracy. During this statistical analysis, five projects were excluded due to insufficient

information regarding accuracy.

A linear regression analysis was conducted using the JASP software on 160 projects to assess the statistical

support for the weights assigned to the variables Coverability, Domability, and Querability in the Scan Quality formula.

The dependent variable was accuracy, derived from the proportion of True Positives and True Negatives in the total

results. The independent variables included Coverability, Domability, and Querability.

41

Linear regression is a widely used technique for exploring the relationships between variables and predicting

outcomes based on these relationships. In our case, we employed it to understand whether the assigned weights

accurately reflect the influence of Coverability, Domability, and Querability on Scan Quality.

The model was structured as follows:

Scan Quality = β0 + β1 · Coverability+ β2 · Domability+ β3 · Querability+ ε, (4.5)

where β0 is the intercept, β1, β2, and β3 are the coefficients for Coverability, Domability, and Querability

respectively, and ε represents the error term.

However, the outcome of this analysis indicates that the model failed to adequately fit the data, as evidenced

by an R-squared value of 0.008 (Fig.12). This R-squared suggests that the proposed model can explain only a tiny

proportion of the variance in Scan Quality. This indicates that the model’s predictions deviate significantly from the

actual data points.

Figure 12: Linear Regression Data

42

Figure 13: Distribution Plots

While there could be several reasons for this model fit failure, one prominent explanation might be the asymmetric

and limited variability within the dataset. Across all variables, data points tend to hover around 90% to 100% (Fig.13).

This restricted range of variation could contribute to the inability to construct a meaningful linear regression model.

4.7 Scan Quality Metric Integration

Integrating the Scan Quality metric as a new Key Performance Indicator (KPI) is a significant improvement for

Checkmarx’s QA team in monitoring the quality of the CxSAST product. Scan Quality encompasses sub-KPIs,

including Querability, Domability, and Coverability, alongside over 50 other metrics, collectively evaluating the

overall SAST performance. Figure 14 illustrates the initial set of over 50 metrics, while Figure 15 showcases the

scenario following this integration.

The importance of the Scan Quality KPI extends beyond the QA team, impacting all stakeholders. This KPI

enables real-time assessment of scan quality for each version of the SAST product. This real-time assessment is

made possible due to Checkmarx’s agile approach, with CI playing a key role in maintaining product quality.

Real-time assessment of Scan Quality impacts various organizational roles. Thanks to the CI process, developers,

QA teams, and Product Managers gain immediate insights into scan quality with each pull request a developer

generates. This ensures that Scan Quality is continuously monitored and improved throughout the development life

cycle.

43

Figure 14: Initial Core Metrics for Quality Assessment

Figure 15: Improved Core Metrics for Quality Assessment After Integration

44

Figure 16: Initial Dashboard of SK Platform

Figure 17: Prototype of Scan Quality Integration in SK

Platform

As a part of this master’s dissertation, one of the primary objectives is to integrate the Scan Quality metric and

its quality factors into the SK platform. The ultimate goal is to integrate this into the CI process. Figures 16 and 17

have been provided to demonstrate the before-and-after scenario when a user selects the metrics from Figures 14

and 15 within the SK dashboard. It is important to note that the values displayed in these figures are prototypes and

do not represent actual data. In the following subsections, we will discuss the integration steps and considerations

in detail.

4.7.1 Plan for Scan Quality Metric Integration

The successful integration of the Scan Quality Metric service (CxScanQuality) depends on two phases:

Publishing and Deployment. In the Publishing phase, the objective is to make CxScanQuality a service accessible

to other services, like the QA platform (SK). In contrast, the Deployment phase relies on utilizing a Container

Orchestration Tool, simplifying containerized applications’ management in a production environment. The

workflow of these phases is elucidated in Figure 18.

45

Figure 18: Scan Quality Metric Integration Phases

Figure 18 represents the entire Publishing and Deployment process workflow. In general, Jenkins plays a crucial

role in this process, with a dedicated job responsible for building the Docker image of the CxScanQuality service and

pushing it to the Amazon Elastic Container Registry (AWS ECR). Once available in AWS ECR, the deployment of the

software is triggered whenever there is a new image or update. The deployment logic is hosted on EC2 Instances

with Container orchestration software. This process will be explained in the subsequent subsections.

After completing the two phases, namely, Publish and Deployment, for the SK, the next step in the process

is to integrate the CxScanQuality into the company’s Continuous Integration (CI) pipeline. However, before the

CxScanQuality service can be effectively implemented within the CI environment, a thorough analysis of the data

from the CxScanQuality’s database is required. This analysis requires accumulating data over 3 to 5 months,

spanning at least two versions of SAST. This extended data collection period is essential to ensure that the service

can only be integrated into the company’s pipelines once it reaches a more stable version, thus guaranteeing its

reliability and performance within the CI system. Figure 19 simplifies the workflow of this process, and each step is

explained below:

46

1. A Jenkins job is triggered.

2. The CI projects run on the SAST engine.

3. Upon completion of each project, the ”ci-sk-updater” tool is executed. It manages any necessary tasks,

including logs or other functions. This tool acts as a wrapper, invoking the ”logs-uploader-cli.”

4. The ”logs-uploader-cli” is responsible for sending the logs from each project to any service utilized by the SK

platform.

Figure 19: Continuous Integration Workflow

Integrating the Scan Quality Metric service (CxScanQuality) requires a multi-phased approach that covers both

the Publishing and Deployment stages. It is crucial to integrate CxScanQuality into the CI pipeline to improve the

quality and security of the company’s software development processes.

4.7.2 Publish Phase

In the Publish phase, the creation of two complementary files is essential, requiring the following steps:

1. Jenkinsfile: In this type of pipeline, the definition of the pipeline is included within the code and is referred to

as a declarative pipeline. Consequently, a pipeline with four stages, namely ”build”, ”ECR”, ”Clean-up”, and

”Deploy”, is created. The first stage is responsible for building the Container image of CxScanQuality. A tag,

such as ”latest,” is assigned during this build command, which is necessary for subsequent steps. The ECR

stage sends the Docker image to the Amazon Elastic Container Registry (AWS ECR). This pipeline exclusively

47

handles building the Docker image of the service and sending it to AWS ECR. This tool enables registering

Docker images of existing services, making them accessible to those who need to use them. The ”Clean

Up” stage performs cleanup on the Docker image of the service. The ”Deploy” stage is triggered whenever

a newer image is available in AWS ECR, sending this information to another job responsible for deploying

the SK. Additionally, it is essential to configure the Jenkins platform with the CxScanQuality service. During

the configuration, specific information is required, such as indicating the repository where the CxScanQuality

service is hosted, credentials for the repository, and the path to the Jenkinsfile within the repository.

2. Dockerfile: This file is responsible for creating the CxScanQuality image used by the Jenkinsfile. The

Dockerfile contains instructions that detail how to configure and set up the container environment. These

instructions include installing software packages, copying files into the container, defining environment

variables, and executing specific commands.

In summary, Jenkins automates and orchestrates the software development pipeline, including building and

deploying applications. Dockerfile defines the containerized environment in which the application runs. Combining

these tools allows for efficient and consistent software development and deployment processes.

4.7.3 Deployment Phase

In the ”Deployment” phase, it is necessary to modify a configuration file for the Container orchestration tool used

in the SK Deployment process. It is important to modify the following information:

• Name of the New Service: Specify the new service’s name.

• AWS ECR Image Name: This contains the link to the specific service in AWS ECR.

• Port Definition: The port number is typically an increment 1 to the previously defined service.

• Environment File (if necessary): Include the necessary environment file.

• Policy Definitions (if necessary): Define policies, such as the restart time in case of application failures.

• Network Definition: Specify the network to which the container of the CxScanQuality service belongs,

typically ”production.”

In summary, this phase involves modifying a specific file with essential information mentioned previously. These

configurations are indispensable for ensuring the smooth and secure deployment of SK, facilitating the CxScanQuality

seamless integration.

48

4.8 Solution Validation

To ensure that the proposed solution is valid, it is important to evaluate how well it aligns with established

requirements. The important features and functionalities that support the solution’s effectiveness were initially

explained in section Requirements. Table 7 provides an overview of the requirements that have been achieved,

creating a strong validation framework.

The last column shows whether or not the requirement was achieved/implemented. The ‘Y’ represents Yes and

‘N’ No. The requirement with ID 4 has not been implemented because it already exists in the Engine Log service.

49

Table 7: Requirements Validation

ID Requirement Category Requirement Description Applicable Service Implemented?

1 Non-Functional

The solution must offer a

comprehensive assessment of the

scan quality for a project.

CxScanQuality Y

2 Functional

Provide an object containing relevant

information for each programming

language in the scanned source code.

The relevant data are the names and

number of exceptions encountered

during the various stages of the

scanning process.

Engine Log Y

3 Functional

Provide an object detailing the counts

of successful and unsuccessful queries

for each severity level and the overall

totals for successful and unsuccessful

queries.

Engine Log Y

4 Functional

The system should supply an object

including information on Lines of Code

(LOC) and Parsed Lines of Code.

Engine Log N

5 Functional
The solution must calculate and present

the quality factor in percentages.
CxScanQuality Y

6 Functional
The solution must be integrated into the

quality platform, which is SK.
SK platform Y

7 Functional
The solution must be integrated into the

CI pipelines.
Not Applicable Y

8 Functional

Implement a POST request to the

Engine Log API to retrieve indicators

related to each quality factor.

CxScanQuality Y

50

4.9 Summary

Throughout this chapter, we delved into the implementation of scan quality metrics, covering technical details,

strategic decision-making, and a thorough understanding of the approach taken to enhance the evaluation of scan

quality. Furthermore, we have highlighted the requirements that were met.

51

5 RESULTS

The following section presents the outcome of computing the scan quality, detailing the assessment of Domability,

Coverability, and Querability concerning the Scan Quality metric. Through a comprehensive examination, the results

shed light on the effectiveness of the metrics in quantifying key aspects of scan quality.

The results analysis includes 160 projects spanning 23 distinct programming languages. It is pertinent to

emphasize that each programming language exhibits varying levels of support, categorized into three tiers:

• Tier 1 - Characterized by the highest level of support.

• Tier 2 - Constituting intermediate support levels.

• Tier 3 - Reflecting the lowest level of support among the languages under examination.

Following the analysis of the results, the discussion subsection critically analyzes the implications and significance

of the findings, while the summary encapsulates the fundamental insights derived from this evaluation.

5.1 Data Analysis and Visualization Using PowerBI

To derive meaningful insights from the dataset generated by the CxScanQuality service, Microsoft PowerBI was

employed as the chosen Business Intelligence (BI) tool. PowerBI was chosen based on factors such as accessibility

and robust capabilities in transforming raw data into informative visualizations, all without incurring additional costs.

The data analysis approach in PowerBI consisted of several crucial steps, highlighting the accuracy and

comprehensiveness of the analysis. Two tables with information for all 160 projects were imported into the

PowerBI environment. The first table contained information for all projects, which can be seen in ANNEX I. The

second table contained only the project name, programming language, and tier. Since each project had more than

one programming language, it was necessary to split each language for each cell and make multiple entries for

each project’s name.

As a result, the following data transformations were carried out:

• Grouping by Language: The data was grouped by language and tier to gain insights into the distribution of

projects across various programming languages. The total number of projects associated with each language

was calculated, enabling comprehension of the prevalence of different programming languages within the

dataset.

• Filtering Rows: To better understand the impact of the Scan Quality on each tier, the programming language

was filtered by tier into separate tables. Each table includes the programming language, the average scan

quality, and the total number of projects.

52

• Removing Blank Spaces: To ensure data accuracy and avoid duplication, blank spaces from the

programming language cells were removed. This minor but essential transformation prevented erroneous

language counting and provided a more precise representation of language usage.

Once the data was appropriately prepared, the powerful visualization capabilities of PowerBI were employed to

generate the charts illustrated in Figures 20 and 21. Using PowerBI, along with the execution of data transformation

and visualization, valuable insights were extracted from the dataset generated by the CxScanQuality service.

5.2 Results Analysis

To fully grasp the importance of Scan Quality for each project, it is crucial to understand that this metric

expresses a quantifiable measure as a percentage. This metric is the output generated by CxScanQuality

mentioned in section Configuring Scan Quality. This metric derives its value from Coverability, Domability, and

Querability. Coverability and Domability each contribute 40% to the overall scan quality. This equivalence

underscores their parallel impact on the scan’s overall quality. In contrast, Querability contributes 20%, indicating

its somewhat lesser but still meaningful influence on the scan’s quality evaluation.

Each analyzed project contributed to constructing a dataset comprising 27 columns, as elaborated in ANNEX

I. These columns include information such as scanned language, maximum Tier, exceptions encountered in each

scan phase, total exceptions, LOC, parsed LOC, the total number of results (vulnerabilities), counts of successful

and unsuccessful queries per severity, and the implemented metrics, namely Coverability, Domability, Querability,

and Scan Quality.

In Figure 20, a dashboard with multiple components is presented to provide a comprehensive view of scan quality

across all projects in the dataset. The donut chart visually illustrates the distribution of projects across different

programming languages, while the line chart showcases the average scan quality for each programming language.

The table provides detailed numerical values corresponding to the charts. Note that the count exceeds 160 as many

projects used multiple languages. The cards display different tiers’ average scan quality, with an overall average of

89.07%.

To focus on tier-1 programming languages, Figure 21 presents another dashboard, highlighting a detailed analysis

of these languages due to their high priority and support level. The clustered column chart reveals the scan quality

factors, Coverability, Domability, and Querability for tier-1 programming languages. The cards display the average

value of each quality factor, while the table showcases the average value visualized in the clustered column chart.

53

Figure 20: Dashboard for Scan Quality Analysis

Figure 21: Dashboard for Top-tier Analysis

54

Table 8: Summary of Projects Analyzed Data

To gain a comprehensive understanding of the scan quality within the tier-1 projects, we will analyze four projects

in more detail. By concentrating our efforts on a smaller, representative subset, we can explain the value of the

Scan Quality metric. We based the project selection on the following criteria:

• Number of Scan Exceptions: The project selection criteria included the number of exceptions encountered

during the scan, allowing for the identification of each scan phase’s impact on the Domability score.

• Scan Quality Score: Selected projects had both high and low scan quality scores to ensure a diverse

representation. Above-average projects had scores close to 100% or even 100%.

• Programming Language Used by the Project: Based on the distribution observed in Figure 20,

JavaScript emerges as the predominant programming language with 127 projects, followed by Java and

55

Objective-C. Consequently, three selected projects used JavaScript in combination with other languages.

Table 8 presents the outcomes derived from 4 out of 160 projects that are well-suited for in-depth examination.

Project 1 was selected because it combines programming languages from tier 1, which includes JavaScript,

Objective-C, Swift, and the large number of exceptions that should impact the Domability score. Project 2, on the

other hand, due to its high number of exceptions and Coverability score, makes it a suitable project for

comparative analysis with Project 1. Project 3 was selected due to its low Scan Quality score among tier 1

projects. In contrast, Project 4 was chosen for a comparative analysis with Project 3, as it has the highest Scan

Quality score and is a Lua project.

5.3 Discussion

This section delves into the key findings of this master’s dissertation. The main objective of this dissertation was

to gain a comprehensive understanding of the scan quality performed by a SAST tool. An extensive investigation of

the overall scan quality of different programming languages was carried out to achieve this objective, as illustrated

in Figure 20. Figure 21 demonstrates the overall scan quality for tier-1 projects. Table 8 provides a detailed analysis

of four specific projects.

Let us begin by comparing Project 1 and Project 2. In terms of Coverability, Project 1 had a LOC count of 188,159

and 155,883 of Parsed LOC, resulting in a Coverability of 82.85%. On the other hand, Project 2 had a LOC count

of 646,102 and 308,417 Parsed LOC, achieving a Coverability of 47.74%.

Regarding Domability, when we look at the Total_Exceptions indicator, it is clear that Project 1 has a significantly

higher value, at 693, compared to the 160 exceptions observed in Project 2. Project 2’s exceptions are concentrated

in the Parsing stage, with 99 exceptions, followed by 11 in the Type Inference stage, 1 in AST Construction, and

49 in DOM Construction exceptions. In contrast, Project 1 presents exceptions spread across multiple stages, with

501 in Parsing, 2 in Type Inference, 5 in AST Construction, 119 in DOM Construction, and 66 in Resolver. The

Domability value is higher for Project 2, which is 54.96% than Project 1, 20.76%, for the following three reasons:

1. Project 1 has a higher number of exceptions during the Parsing stage than Project 2. In the Domability

formula, QParsing is calculated by adding the exceptions that occur during the Parsing, Type Inference, AST

Construction, and Conversions stages. Since Project 1 has more exceptions in these stages (except for the

Type Inference stage) than Project 2, it directly impacts 60% of the Domability score.

2. Project 1 has more exceptions in DOM Construction than Project 2. DOM Construction is the second stage

with more impact on the Domability score, which is 20%.

56

3. Project 1 has additional exceptions in the Resolver stage, while Project 2 has no exceptions in this stage. The

Resolver stage impacts 15% of the Coverability score.

Regarding Querability, both Projects 1 and 2 achieved a 100% score, indicating that no query failures of any

severity category (high, medium, low, or informational) were observed. However, when it comes to Scan Quality,

Project 1 scored higher at 61.44% compared to Project 2 at 61.08%. It is necessary to note that both projects’ Scan

Quality scores were below the Tier 1 average of 90.74%.

Let us compare Project 3 and Project 4. Project 3 had a low Scan Quality score of 58.26% due to a coverability

score of only 17.06%, indicating that only a tiny portion of LOC were parsed and analyzed effectively. Furthermore,

Project 3’s domability score was 78.6% because all 49 exceptions were related to the Parsing stage, which carries

a high weight and significantly affected the Scan Quality score. However, Project 3 had a Querability score of 100%.

In contrast, Project 4 scored 100% for all quality factors, unlike Project 3.

The dashboard in Figure 20 shows that the average Scan Quality for all languages across the three tiers is 89.07%.

Tier 1 languages have a higher Scan Quality of 90.74%, while Tier 2 languages have a lower Scan Quality of 82.62%

(below the average). Tier 3 languages have a greater Scan Quality of 90.01% than Tier 2, despite having lower

support levels. This value is because most Tier 3 projects include some Tier 1 languages. On the other hand, most

Tier 2 projects only have Tier 2 languages, with a few exceptions that may include the use of Tier 1 languages. The

dashboard in Figure 21 highlights that Tier 1 languages such as Python, Java, Dart, Go, and Lua have exceeded the

average scan quality, demonstrating their alignment with the established quality standards of their tier. However,

six other languages have fallen below the average, indicating the need for additional efforts to improve scan quality.

The language with the lowest Scan Quality is Apex.

Table 8 provides a comparison between the old and new methods of evaluating the scan quality of SAST. The

old method used to rely on the Scan Coverage metric, which was assumed by the QA team to determine the scan

quality. However, this metric presented almost 100% homogeneity across the majority of projects, as we can see

from the values of Scan Coverage across the four projects: Project 1 - 97.18%, Project 2 - 99.98%, Project 3 - 100%,

and Project 4 - 100%.

The new method of evaluating scan quality relies on the Scan Quality metric by the CxScanQuality service.

Unlike Scan Coverage, Scan Quality allows us to identify the possible location of the problem, the first step to

improve a specific project, and the priority projects and languages. This method has several benefits. Firstly, it

empowers developers by allowing them to identify and address areas with lower scores, which makes

troubleshooting and optimization easier. Secondly, it enables management roles, such as Product Managers,

Directors, or Team Leaders, to make informed decisions by providing valuable information on the criticality of

57

projects and programming languages. This knowledge helps prioritize interventions and allocate resources

efficiently.

During this master’s dissertation, we came across several limitations. One of the main limitations we encountered

was related to the weighting assigned to the Coverability, Domability, Querability, and Scan Quality formulas. We

attempted to use statistical techniques to determine the optimal solution. However, unfortunately, we were unable

to find any correlation between the accuracy of project results and their Scan Quality score.

Another limitation is the challenge of accurately naming exceptions that occur due to information gaps in the log

files. To address this issue, we relied on the domabilityThesis field within the Engine Log service. This field helped to

identify exception names by examining WARN or ERROR log entries. We established two new conventions for these

scenarios, resulting in default exception names: ”WARNUnknownExceptions” and ”ERRORUnknownException”.

In summary, Scan Quality is a more effective metric for evaluating scan quality than Scan Coverage, which only

provides a value based on files recognized by SAST. Its benefits are numerous and make it an essential metric

for both developers and management roles. These findings shed light on the significance of understanding and

improving scan quality, ultimately contributing to enhanced security in software development practices.

5.4 Summary

This chapter delves into the findings obtained from this master’s dissertation and provides a detailed discussion.

To analyze these results, we used Microsoft PowerBI as a BI tool. Using this tool helped us gain deeper insights

into the data extracted by the CxScanQuality service. However, it was necessary to perform specific data

transformations to enhance the accuracy of the information. This analysis used a dataset of 160 projects from 23

different programming languages. The main focus of this analysis was to evaluate the expected scan quality across

different programming languages and, in particular, Tier 1 programming languages. Four projects from Tier 1 were

selected to illustrate distinct scenarios of Scan Quality scores.

58

6 CONCLUSION

In this master’s dissertation, the primary objective was to establish a notion of scan quality conducted by SAST

tools, mainly focusing on the data derived from each scanning phase. These phases yield crucial data points for

evaluating the quality of scans, encompassing aspects such as exceptions generated, the number of parsed files, the

volume of queries executed during the scan, which produces vulnerability findings, and the LOC identified, among

other relevant metrics. Consequently, this master’s dissertation has delineated Scan Quality into three distinct

components - Coverability, Domability, and Querability. Each component contributes to the overall scan quality with

varying degrees of impact. These components are quantifiable, and their contributions to Scan Quality are formalized

within a comprehensive Scan Quality formula.

Furthermore, associated indicators have been developed to assess the relative significance of each component.

In pursuit of these objectives, the CxScanQuality has been created, enabling the assignment of a Scan Quality score

to log files generated from scanned projects. Before the development of this approach, obtaining such information

required manual inference examining each log file individually, and the concept of Scan Quality remained largely

unexplored within the field.

For this master’s dissertation, five objectives were outlined. Below is explained how each one of them was

successfully achieved:

1. Compare and analyze various security testing techniques and deepen knowledge of software quality and

security. To tackle this objective, an extensive study and literature review were conducted. This objective

involved an in-depth analysis of over 50 articles sourced through relevant keywords such as ”software

metrics”, ”software quality models”, ”quality metrics”, ”CI/CD”, ”KPIs”, and ”security vulnerability testing”.

2. Identify key metrics and their weight in each scan phase of a SAST tool. To identify critical metrics and

their respective weights in each scan phase of a SAST tool, a comprehensive analysis of numerous log files

generated by CxSAST was undertaken. This analysis focused on pinpointing the start and end of each scan

phase within the log files and extracting relevant information that directly impacts scan quality.

3. Research a formula to quantify overall scan quality, incorporating the metrics and their weights studied in the

previous item. An initial version of the formula was proposed to formulate a comprehensive formula to quantify

overall scan quality, including the metrics and weights studied in the previous objective. Subsequently, this

version underwent substantial refinement, particularly in adjusting each indicator’s coefficients within the

formula, to determine a more precise means of assessing scan quality. Additionally, specific improvements

were made at the indicator level due to limitations in the available information in the log files.

4. Develop ways of extracting the metrics from a scan. To achieve this objective, regular expressions were

created to efficiently extract the necessary indicators for each component of scan quality. Furthermore, a

59

new service, CxScanQuality, was introduced alongside updates to an existing service, the engine log service.

5. Integrate the created formula to inform software release decisions by the Quality Assurance (QA) team. The

final objective, involving the application of the formulated scan quality formula to inform software release

decisions by the QA team, has also been accomplished. This was achieved by successfully integrating

CxScanQuality into the QA platform and Continuous Integration (CI) pipelines, facilitating informed and

data-driven QA decision-making.

Design Science Research (DSR) served as the guiding methodology for this study. DSR is a systematic approach

focusing on creating innovative solutions to real-world problems. It combines the rigor of academic research with

the practicality of solving practical issues. In this dissertation, DSR played a crucial role in enabling the creation of

tangible solutions (CxScanQuality), which directly confronts the challenge of assessing the quality of SAST scans.

The proposed solution’s findings are based on analyzing 160 projects across 23 distinct programming

languages. To visualize the large dataset, we utilized the Microsoft PowerBI tool. We selected four projects from

top-tier languages to serve as illustrative examples based on criteria such as the number of exceptions, the Scan

Quality score, and the programming language used in each project.

The overall scan quality across the 23 languages is high, with an average score of 89.07%. This contribution

holds particular significance for the QA team, as it provides them with relevant data on scan quality for all projects

in the organization. This data empowers developers and decision-making for Management roles and offers a new

way to ensure the quality of the Static Application Security Testing (SAST) product.

Furthermore, this work extends its implications to encompass organizational decision-makers. They can now

incorporate another factor to consider into their decision-making processes. For instance, they could require that

a new SAST version achieve a specific Scan Quality score before it is released or that a new version can not be

released if the new Scan Quality is worse than the previous.

In conclusion, given the successful fulfillment of the study’s requirements and objectives, the methodology’s

demonstrated effectiveness, and the promising results obtained, this dissertation contributes theoretically and

practically to the domains of software security and software quality. The knowledge generated throughout this

research provides a solution capable of establishing the scan quality of a SAST tool.

6.1 Future Work

Throughout the development of this master’s dissertation, some interesting ideas came up. However, they could

not be pursued owing to contextual constraints and the limitations of available time. Below are some of these ideas:

60

• Real-time Scan Quality Integration: In real-time, incorporate Scan Quality calculations into the log file

during the scanning process. Currently, scan quality is determined after scanning, but the goal is to modify

the log file directly to include a scan quality score.

• CxScanQuality Integration in CI Pipelines: This idea involves populating the CxScanQuality database

with more data from two versions of the SAST product. This process typically takes three to four months to

complete, as gathering and analyzing data between these versions is necessary.

• Customize Domability formula: Adapt the Domability formula to match the programming language used

in each scanned project. Some languages have better support for specific stages of this formula. For that

reason, the formula can be adapted for each case to have a suitable score.

61

REFERENCES

Aivatoglou, G., Anastasiadis, M., Spanos, G., Voulgaridis, A., Votis, K., & Tzovaras, D. (2021). A tree-based machine

learning methodology to automatically classify software vulnerabilities. In 2021 ieee international conference

on cyber security and resilience (csr) (pp. 312–317).

Alenezi, M., & Almuairfi, S. (2019). Security risks in the software development lifecycle. International Journal of

Recent Technology and Engineering, 8(3), 7048–7055.

Alenezi, M., & Khellah, F. (2015). Evolution impact on architecture stability in open-source projects. International

Journal of Cloud Applications and Computing (IJCAC), 5(4), 17.

Al-Ghamdi, A. (2013). A survey on software security testing techniques. International Journal of Computer Science

and Telecommunications, 4(4), 14–18.

Aloraini, B., Nagappan, M., German, D. M., Hayashi, S., & Higo, Y. (2019). An empirical study of security warnings

from static application security testing tools. Journal of Systems and Software, 158, 110427.

Amoroso, E. (2018). Recent progress in software security. IEEE Software, 35(2), 11–13.

Arachchi, S., & Perera, I. (2018). Continuous integration and continuous delivery pipeline automation for agile

software project management. In 2018moratuwa engineering research conference (mercon) (pp. 156–161).

Assal, H., & Chiasson, S. (2018). Security in the software development lifecycle. In Soups@ usenix security

symposium (pp. 281–296).

Baker, R., & Habli, I. (2012). An empirical evaluation of mutation testing for improving the test quality of safety-critical

software. IEEE Transactions on Software Engineering, 39(6), 787–805.

Bakota, T., Hegedűs, P., Siket, I., Ladányi, G., & Ferenc, R. (2014). Qualitygate sourceaudit: A tool for assessing

the technical quality of software. In 2014 software evolution week-ieee conference on software maintenance,

reengineering, and reverse engineering (csmr-wcre) (pp. 440–445).

Beba, S., Karlsen, M. M., Li, J., & Zhang, B. (2021). Critical understanding of security vulnerability detection plugin

evaluation reports. In 2021 28th asia-pacific software engineering conference (apsec) (pp. 275–284).

Bhuiyan, F. A., Murphy, J., Morrison, P., & Rahman, A. (2021). Practitioner perception of vulnerability discovery

strategies. In 2021 ieee/acm 2nd international workshop on engineering and cybersecurity of critical systems

(encycris) (pp. 41–44).

Bhuiyan, F. A., Rahman, A., & Morrison, P. (2020). Vulnerability discovery strategies used in software projects. In

Proceedings of the 35th ieee/acm international conference on automated software engineering workshops

(pp. 13–18).

Cadariu, M., Bouwers, E., Visser, J., & van Deursen, A. (2015). Tracking known security vulnerabilities in

proprietary software systems. In 2015 ieee 22nd international conference on software analysis, evolution,

and reengineering (saner) (pp. 516–519).

Cains, M. G., Flora, L., Taber, D., King, Z., & Henshel, D. S. (2022). Defining cyber security and cyber security risk

within a multidisciplinary context using expert elicitation. Risk Analysis, 42(8), 1643–1669.

62

Chen, S.-J., Pan, Y.-C., Ma, Y.-W., & Chiang, C.-M. (2022). The impact of the practical security test during the software

development lifecycle. In 2022 24th international conference on advanced communication technology (icact)

(pp. 313–316).

Chowdhury, A. A. M., & Arefeen, S. (2011). Software risk management : Importance and practices. In

(p. 2078–5828). Citeseer.

Craigen, D., Diakun-Thibault, N., & Purse, R. (2014). Defining cybersecurity. Technology Innovation Management

Review, 4(10).

Dromey, R. (1995). A model for software product quality. IEEE Transactions on Software Engineering, 21(2),

146–162.

Elder, S. (2021). Vulnerability detection is just the beginning. In 2021 ieee/acm 43rd international conference on

software engineering: Companion proceedings (icse-companion) (pp. 304–308).

Grady, R. B. (1992). Practical software metrics for project management and process improvement. Upper Saddle

River, NJ, USA: Prentice-Hall, Inc.

Gu, S., Kim, S. Y., Jeong, H.-h., & Sohn, K.-A. (2015). Constructing and exploiting software metrics networks for

software quality assessment. In 2015 5th international conference on it convergence and security (icitcs)

(pp. 1–5).

Hao, G., Li, F., Huo, W., Sun, Q., Wang, W., Li, X., & Zou, W. (2019). Constructing benchmarks for supporting

explainable evaluations of static application security testing tools. In 2019 international symposium on

theoretical aspects of software engineering (tase) (pp. 65–72).

Huang, Y., Bian, Y., Li, R., Zhao, J. L., & Shi, P. (2019). Smart contract security: A software lifecycle perspective.

IEEE Access, 7, 150184–150202.

Ihirwe, F., Di Ruscio, D., Gianfranceschi, S., & Pierantonio, A. (2022). Assessing the quality of low-code and model-

driven engineering platforms for engineering iot systems. In 2022 ieee 22nd international conference on

software quality, reliability and security (qrs) (p. 583-594). doi: 10.1109/QRS57517.2022.00065

Imran, M., Alghamdi, A. A., & Ahmad, B. (2016). International journal of computer science and mobile computing

software engineering: Architecture, design and frameworks. International Journal of Computer Science and

Mobile Computing, 5, 801-815.

Kan, S. H. (2002). Metrics and models in software quality engineering (2nd ed.). USA: Addison-Wesley Longman

Publishing Co., Inc.

Kato, D., Shimizu, A., & Ishikawa, H. (2022). Quality classification for testing work in devops. In Proceedings of the

14th international conference on management of digital ecosystems (pp. 156–162).

Kaur, J., Alka, R., & Khan, A. (2018). Major software security risks at design phase. ICIC Express Lett Int J Res

Surv.

Liao, Q. (2020, 10). Modelling ci/cd pipeline through agent-based simulation. 2020 IEEE International Symposium

63

on Software Reliability Engineering Workshops (ISSREW), 155-156. doi: 10.1109/ISSREW51248.2020

.00059

Lincke, R., Lundberg, J., & Löwe, W. (2008). Comparing software metrics tools. In Proceedings of the 2008

international symposium on software testing and analysis (p. 131–142). New York, NY, USA: Association for

Computing Machinery. doi: 10.1145/1390630.1390648

Liu, B. C., Shi, L., Cai, Z., & Li, M. (2012). Software vulnerability discovery techniques: A survey. 2012 Fourth

International Conference on Multimedia Information Networking and Security, 152-156.

Liu, M., Tan, L., Yu, M., & Wang, Q. (2014). Research on appraisal target system of software product quality metrics

and evaluation. In 2014 10th international conference on reliability, maintainability and safety (icrms) (pp.

401–406).

McCall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in software quality. volume-iii. preliminary handbook

on software quality for an acquisition manager (Tech. Rep.). Fort Belvoir, VA: Defense Technical Information

Center.

McGraw, G. (2004). Software security. IEEE Security & Privacy, 2(2), 80–83.

McGraw, G. (2006). Software security: Building security in. Proceedings - International Symposium on Software

Reliability Engineering, ISSRE, 6. doi: 10.1109/ISSRE.2006.43

McGraw, G., & Potter, B. (2004). Software security testing. IEEE Security & Privacy, 2, 81-85.

Mead, N., Hough, E., & Stehney II, T. (2005). Security quality requirements engineering technical report. Tech.

Rep. CMU/SEI-2005-TR-009.

Medeiros, N., Ivaki, N., Costa, P., & Vieira, M. (2017). Software metrics as indicators of security vulnerabilities. In

2017 ieee 28th international symposium on software reliability engineering (issre) (pp. 216–227).

Mladenova, T. (2020). Software quality metrics–research, analysis and recommendation. In 2020 international

conference automatics and informatics (icai) (pp. 1–5).

Mowad, A. M., Fawareh, H., & Hassan, M. A. (2022). Effect of using continuous integration (ci) and continuous

delivery (cd) deployment in devops to reduce the gap between developer and operation. In 2022 international

arab conference on information technology (acit) (pp. 1–8).

Nakai, H., Tsuda, N., Honda, K., Washizaki, H., & Fukazawa, Y. (2016). A square-based software quality evaluation

framework and its case study. In 2016 ieee region 10 conference (tencon) (p. 3704-3707). doi: 10.1109/

TENCON.2016.7848750

Nistala, P., Nori, K. V., & Reddy, R. (2019). Software quality models: A systematic mapping study. In 2019

ieee/acm international conference on software and system processes (icssp) (pp. 125–134).

Parizi, R. M., Qian, K., Shahriar, H., Wu, F., & Tao, L. (2018). Benchmark requirements for assessing software

security vulnerability testing tools. In 2018 ieee 42nd annual computer software and applications conference

(compsac) (Vol. 1, pp. 825–826).

64

Payer, M. (2019). Software security: Principles, policies, and protection. HexHive Books, April.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research methodology for

information systems research. Journal of Management Information Systems, 24(3), 45-77. doi: 10.2753/

MIS0742-1222240302

Pereira, J. D. (2020). Techniques and tools for advanced software vulnerability detection. In 2020 ieee international

symposium on software reliability engineering workshops (issrew) (pp. 123–126).

Pereira, J. D., Campos, J. R., & Vieira, M. (2019). An exploratory study on machine learning to combine

security vulnerability alerts from static analysis tools. In 2019 9th latin-american symposium on dependable

computing (ladc) (pp. 1–10).

Radatz, J. (1990). Ieee standard glossary of software engineering terminology (Vol. 12) (No. 610121990). IEEE.

Rangnau, T. (2020). Remco v. buijtenen, frank fransen, and fatih turkmen. continuous security testing: A case study

on integrating dynamic security testing tools in ci/cd pipelines. In 2020 ieee 24th international enterprise

distributed object computing conference (edoc) (pp. 145–154).

Ruparelia, N. B. (2010). Software development lifecycle models. ACM SIGSOFT Software Engineering Notes, 35(3),

8–13.

Sheakh, T. (2015, 05). A comparative study of software testing techniques viz. white box testing black box testing

and grey box testing. International Journal of Allied Practice, Research and Review Website: www.ijaprr.com

(ISSN 2350-1294), Vol. II, Issue V, p.n. 01-08, 2015, Vol. II, Issue V, p.n. 01-08, 2015.

Singh, B., & Kannojia, S. P. (2013). A review on software quality models. In 2013 international conference on

communication systems and network technologies (p. 801-806). doi: 10.1109/CSNT.2013.171

Venable, J., & Baskerville, R. (2012). Eating our own cooking: Toward a more rigorous design science of research

methods. Electronic Journal of Business Research Methods, 10(2), pp141–153.

Verdon, D., & McGraw, G. (2004). Risk analysis in software design. IEEE Security & Privacy, 2(4), 79–84.

Yang, H., Zheng, S., Chu, W. C.-C., & Tsai, C.-T. (2012). Linking functions and quality attributes for software

evolution. In 2012 19th asia-pacific software engineering conference (Vol. 1, pp. 250–259).

65

ANNEX I

Table 9: General Information (1)

Project_Name Language Max_Tier

30DaysofSwift JavaScript, Objc, Swift 1

Aerial JavaScript, Objc, Swift 1

akka-main Java, JavaScript, Scala 2

Alamofire JavaScript, Objc, Swift 1

Angular2-master Java, JavaScript, VbScript, Groovy, Scala 3

angular-cosmosdb-master JavaScript, VbScript 3

Angular-Full-Stack-master JavaScript, VbScript, PHP 3

AngularJS-CafeTownsend-master JavaScript, VbScript 3

AngularJS-ColorGame-master JavaScript, VbScript 3

AngularJS-info-cars JavaScript, Apex, VbScript 3

AngularJS-java-server-midi-master JavaScript, VbScript 3

AspNuke08052934_52934_lines JavaScript, VbScript, ASP, PLSQL 3

asptemplate131487_1487_lines JavaScript, VbNet, VbScript 3

ATE754 Cobol 3

backboneboilerplate-gh-pages-JSv2 JavaScript, VbScript 3

BBS400-main RPG 3

Benchmark-master Java, JavaScript, VbScript 3

Benchmark-master_JS CSharp, JavaScript, VbScript 3

BitTorrent-5.0.9_ReWrite JavaScript, VbScript, Python 3

blueblog Java, JavaScript, VbScript 3

BookStoreJava_21403_lines Java 1

BookStoreVBDotnet_22163_lines VbNet 3

botpress-botpress-v12.19.2-35 JavaScript, VbScript, Ruby 3

breakableflask-master Python 1

CAF-master RPG 3

catiline-gh-pages JavaScript, VbScript 3

66

Table 10: General Information (2)

Project_Name Language Max_Tier

celestia_1.6.0_198563lines CPP, JavaScript, VbScript 3

Chocobozzz-PeerTube-v3.1.0-47 JavaScript, VbScript 3

ci-brakeman Go 1

climbers_master Objc 1

CSharp_Rewrite_Cosmos_181269lines CSharp, JavaScript, VbScript 3

CSharp_Rewrite_log4net_72646_lines CSharp, JavaScript, VbScript 3

CSharp_Rewrite_northwindtraders_aspnetcore CSharp, JavaScript, VbScript 3

CSharp_Rewrite_Rainbow_209794_lines CSharp, JavaScript, VbScript, PLSQL 3

CxPlayGround-Mobile-master Java, JavaScript, Objc, Kotlin, Swift, Dart 1

CxPlayGround-Web Java, JavaScript, VbScript, Groovy 3

dart-pad-master Dart 1

dashboard-master JavaScript, VbScript, PHP 3

deplate_30457_lines JavaScript, VbScript, Ruby 3

df17-ant-to-sfdx-master JavaScript, Apex 1

Dollar_Bets_master Objc 1

drone-master_458434_lines_goV2 JavaScript, VbScript, PLSQL, Go 3

eclipse-theia-theia-v1.11.0-55 JavaScript, VbScript 3

emule4_172454_lines CPP, JavaScript 2

evans_goV2 Go 1

finch-master Scala 2

fintrospect-master Scala 2

firefox-ios (Project 1) JavaScript, VbScript, Objc, Swift 3

flame-main Dart 1

FlightGear_1.0.0_230815lines CPP, JavaScript, VbScript 3

flutter-master Dart 1

flutter-quill-master Dart 1

67

Table 11: General Information (3)

Project_Name Language Max_Tier

FusionChartsFree28681_28681_lines-JSv2 JavaScript, VbScript, Ruby, PLSQL 3

gatsby JavaScript, VbScript, Ruby 3

GitterMobile-master JavaScript, Objc 1

gizmo-master_11638_lines_goV2 JavaScript, Go 1

gogs_master_goV2 JavaScript, VbScript, PLSQL, Go 3

groove-dl-master_ReWrite JavaScript, VbScript, Python 3

groovywebconsole-master JavaScript, VbScript, Groovy 3

habitica-develop CSharp, JavaScript, VbScript 3

hermes-master JavaScript, Python 1

hooligram-client-develop JavaScript, Objc 1

hugo-master_50147_lines_goV2 JavaScript, VbScript, Go 3

iFixit_iOS_master Objc 1

Inuendo-master RPG 3

jade_agents-master Java, JavaScript, VbScript 3

jade-master-JSv2 JavaScript, VbScript 3

jasperreports_4_0_0_proje_350576_lines Java, JavaScript, VbScript 3

Java11and12NewFeatures Java, JavaScript, VbScript 3

jboard_jspff Java, JavaScript, VbScript, PLSQL 3

jetspeed_1_6_206226_lines_jspff Java, JavaScript, VbScript, PLSQL 3

juice-shop-4.2.1 JavaScript, VbScript, PHP 3

knockout_js_samples_master-JSv2 JavaScript, VbScript 3

leaky-angular-master JavaScript, VbScript 3

LightningWorkingApp_ReWrite (Project 3) JavaScript, Apex 1

lila-master Java, JavaScript, VbScript, Scala 3

lua_samples-master Lua 1

luaSample-master Lua 1

68

Table 12: General Information (4)

Project_Name Language Max_Tier

lwc_goat JavaScript, Apex, VbScript 3

mingw32_make CPP 2

MISRA_C_celestia CPP, JavaScript, VbScript 3

MISRA_C_FlightGear CPP, JavaScript, VbScript 3

MISRA_C_mingw32 CPP 2

MISRA_C_UltimateToolbox93 CPP, JavaScript, VbScript 3

mleung_feather JavaScript, VbScript, Ruby 3

MSDN JavaScript, VbNet, VbScript, PLSQL 3

MTOS_4_38_en_390199_lines JavaScript, VbScript, Perl 3

MySQLdb1-master_ReWrite JavaScript, VbScript, Python 3

NetNewsWire JavaScript, VbScript, Objc, Swift 3

nodejs-mysql-native-master-JSv2 (Project 4) JavaScript, PLSQL 3

node-mongodb-native-1.4-JSv2_ReWrite JavaScript, VbScript, Python 3

OSSILE-master RPG 3

owasp-top10-salesforce-master JavaScript, Apex 1

pebble_jspff Java, JavaScript, VbScript 3

Pebble_Spring_Example Java 1

perl_5_16_0_898436_lines JavaScript, VbScript, Perl 3

personalblog_jspff Java, JavaScript 1

PHP_Rewrite_AlegroCart_1.2.5_125254_lines-JSv2 JavaScript, VbScript, PHP, PLSQL 3

PHP_Rewrite_Sylius_1.2 JavaScript, VbScript, PHP 3

PHP_Rewrite_symfony-master(Project2) JavaScript, PHP 2

play-groovy-master Java, JavaScript, VbScript, Groovy 3

pokerBuddyApp-master JavaScript, Ruby 3

polynote-master Java, JavaScript, VbScript, Scala 3

Probabilistic-Programming JavaScript, VbScript, Python 3

Programming_In_Lua-master Lua 1

69

Table 13: General Information (5)

Project_Name Language Max_Tier

PSLQL_OSCOMMAND PLSQL 3

Public-Corona-Lua-master(project 4) Lua 1

quasar-dev JavaScript, VbScript, Ruby 3

qxmpp_0_2_0_20478_lines CPP, JavaScript, VbScript 3

railsgoat-master JavaScript, VbScript, Ruby 3

react-datasheet-master JavaScript, Ruby 3

react-native-elements-next JavaScript, Ruby 3

react-security JavaScript, VbScript, PHP, PLSQL 3

react-swipeable-views-master JavaScript, VbScript, Ruby 3

rico2143347_43347_lines JavaScript, VbNet, VbScript, PLSQL 3

riverpod-master Dart 1

rmux JavaScript, Go 1

roller_jspff Java, JavaScript, VbScript, PLSQL 3

RxSwift JavaScript, Objc, Swift 1

Scala_ReWrite_apache-samza-0.10.0-src Java, JavaScript, VbScript, Scala 3

Scala_ReWrite_atlas-master Java, JavaScript, VbScript, Scala 3

Scala_ReWrite_casbah-master-JSv2 JavaScript, VbScript, Scala 3

Scala_ReWrite_finagle-develop Java, JavaScript, VbScript, PLSQL, Scala 3

Scala_ReWrite_miniboxing-plugin-wip Java, Scala 2

shadowsocks-android-master Java, JavaScript, VbScript, Groovy, Kotlin 3

singularity_master_goV2 JavaScript, Go 1

snipsnap Java, JavaScript, VbScript 3

soundcloud-redux-master JavaScript 1

Spring_Rewrite_AwesomeNotes Java, JavaScript, VbScript, Kotlin 3

Spring_Rewrite_compass Java, JavaScript, VbScript 3

Spring_Rewrite_SpringBootGoat Java, JavaScript, VbScript, PLSQL 3

Swift_Rewrite_Cards-master JavaScript, Objc, Swift 1

Swift_Rewrite_CVCalendar-master JavaScript, Objc, Swift 1

Swift_Rewrite_ImagePickerTrayController JavaScript, Objc, Swift 1

Swift_Rewrite_Maria-master JavaScript, Objc, Swift 1

70

Table 14: General Information (6)

Project_Name Language Max_Tier

Swift_Rewrite_SwiftGoat-master JavaScript, VbScript, Objc, Swift 3

Swift_Rewrite_Swift Objc, Swift 1

Swift_Rewrite_SwiftLanguageWeather JavaScript, Objc, Swift 1

Swift_Rewrite_Swift-Master_Of_Swift JavaScript, VbScript, Objc, Swift 3

Swift_Rewrite_SwiftMessages-master JavaScript, Objc, Swift 1

Swift_Rewrite_Xniffer-master JavaScript, Objc, Swift 1

tables-3.0.0_ReWrite JavaScript, VbScript, Python 3

testcodav3_79566_lines_ReWrite Apex 1

testVbNet JavaScript, VbNet, VbScript 3

tiny-dnn-master_cpp11 CPP, JavaScript, VbScript 3

trape-master JavaScript, VbScript, Python 3

Twidere-Android-master-Kotlin Java, JavaScript, VbScript, Groovy, Kotlin 3

twitter-finagle Java, JavaScript, VbScript, PLSQL, Scala 3

UltimateToolbox93_src_322262_lines CPP, JavaScript, VbScript 3

Verademo-Dotnet CSharp, JavaScript, VbScript 3

Vertical-Fill-master Lua 1

vuetify-master JavaScript, VbScript, Ruby 3

vulnerable-app-master JavaScript, VbScript 3

vux-2 JavaScript, VbScript, Ruby 3

WebGoat_5.4_117234_lines_jspff Java, JavaScript, VbScript, PLSQL 3

webmin_1_570_220564_lines JavaScript, VbScript, Perl 3

WeiPulse_OpenSource JavaScript, VbScript, Objc 3

wikihow_iphone_app_master JavaScript, VbScript, Objc 3

WordPress_iOS_develop JavaScript, VbScript, Objc 3

xmlservice-master RPG 3

71

Table 15: Exceptions Information (1)

Project_Name

E
x
c
e
p
ti
o
n
s
_
P
a
rs
in
g

E
x
c
e
p
ti
o
n
s
_
T
y
p
e
In
fe
re
n
c
e

E
x
c
e
p
ti
o
n
s
_
A
S
T
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
C
o
n
v
e
rs
io
n
s

E
x
c
e
p
ti
o
n
s
_
D
O
M
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
R
e
s
o
lv
e
r

E
x
c
e
p
ti
o
n
s
_
A
b
s
In
t

E
x
c
e
p
ti
o
n
s
_
Q
u
e
ri
e
s

T
o
ta
l_
E
x
c
e
p
ti
o
n
s

30DaysofSwift 3 0 0 0 1 0 0 0 4

Aerial 0 0 0 0 0 0 0 0 0

akka-main 0 0 4 0 7 1 0 0 12

Alamofire 4 0 0 0 3 1 0 2 10

Angular2-master 0 8 33 0 0 0 0 0 41

angular-cosmosdb-master 0 0 0 0 0 0 0 0 0

Angular-Full-Stack-master 0 0 0 0 0 1 0 0 1

AngularJS-CafeTownsend-master 0 0 0 0 0 0 0 0 0

AngularJS-ColorGame-master 0 0 0 0 0 0 0 0 0

AngularJS-info-cars 0 0 0 0 0 0 0 0 0

AngularJS-java-server-midi-master 0 0 0 0 0 0 0 0 0

AspNuke08052934_52934_lines 124 1 0 0 0 0 0 0 125

asptemplate131487_1487_lines 0 0 0 0 0 0 0 0 0

ATE754 28 0 0 0 0 0 0 0 28

backboneboilerplate-gh-pages-JSv2 0 2 0 0 0 0 0 0 2

BBS400-main 3 0 0 0 0 0 0 0 3

Benchmark-master 15 0 0 0 0 0 0 0 15

Benchmark-master_JS 0 0 0 0 0 0 0 0 0

BitTorrent-5.0.9_ReWrite 0 0 0 0 5 0 0 0 5

blueblog 0 0 0 0 0 0 0 0 0

BookStoreJava_21403_lines 0 0 0 0 0 0 0 0 0

BookStoreVBDotnet_22163_lines 2 0 0 0 0 0 0 0 2

botpress-botpress-v12.19.2-35 0 58 12 0 0 0 0 0 70

breakableflask-master 0 0 0 0 0 0 0 0 0

CAF-master 143 0 0 0 0 0 0 0 143

catiline-gh-pages 0 2 0 0 0 0 0 0 2

72

Table 16: Exceptions Information (2)

Project_Name

E
x
c
e
p
ti
o
n
s
_
P
a
rs
in
g

E
x
c
e
p
ti
o
n
s
_
T
y
p
e
In
fe
re
n
c
e

E
x
c
e
p
ti
o
n
s
_
A
S
T
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
C
o
n
v
e
rs
io
n
s

E
x
c
e
p
ti
o
n
s
_
D
O
M
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
R
e
s
o
lv
e
r

E
x
c
e
p
ti
o
n
s
_
A
b
s
In
t

E
x
c
e
p
ti
o
n
s
_
Q
u
e
ri
e
s

T
o
ta
l_
E
x
c
e
p
ti
o
n
s

celestia_1.6.0_198563lines 262 0 4 0 0 0 0 0 266

Chocobozzz-PeerTube-v3.1.0-47 0 108 37 0 0 0 0 0 145

ci-brakeman 0 0 0 0 0 0 0 0 0

climbers_master 61 0 0 0 0 0 0 0 61

CSharp_Rewrite_Cosmos_181269lines 0 2 0 0 0 0 0 0 2

CSharp_Rewrite_log4net_72646_lines 0 42 0 0 0 0 0 0 42

CSharp_Rewrite_northwindtraders_aspnetcore 0 0 0 0 0 0 0 0 0

CSharp_Rewrite_Rainbow_209794_lines 0 0 0 0 0 0 0 0 0

CxPlayGround-Mobile-master 22 0 0 0 0 0 0 0 22

CxPlayGround-Web 0 3 0 0 0 0 0 0 3

dart-pad-master 0 0 0 0 0 0 0 0 0

dashboard-master 0 0 0 0 1 0 0 0 1

deplate_30457_lines 1 2 0 0 0 0 0 0 3

df17-ant-to-sfdx-master 0 4 2 0 0 0 0 0 6

Dollar_Bets_master 1 0 0 0 0 0 0 0 1

drone-master_458434_lines_goV2 0 0 1 0 14 0 0 8 23

eclipse-theia-theia-v1.11.0-55 0 16 1 0 0 0 0 0 17

emule4_172454_lines 121 0 2 0 0 0 0 0 123

evans_goV2 0 0 0 0 0 0 0 0 0

finch-master 0 0 0 0 2 0 0 0 2

fintrospect-master 0 0 0 0 0 0 0 0 0

firefox-ios (Project 1) 501 2 5 0 119 66 0 0 693

flame-main 0 0 0 0 0 0 0 0 0

FlightGear_1.0.0_230815lines 0 0 1 0 0 0 0 0 1

flutter-master 44 0 0 0 0 0 0 6 50

flutter-quill-master 0 0 0 0 0 0 0 0 0

73

Table 17: Exceptions Information (3)

Project_Name

E
x
c
e
p
ti
o
n
s
_
P
a
rs
in
g

E
x
c
e
p
ti
o
n
s
_
T
y
p
e
In
fe
re
n
c
e

E
x
c
e
p
ti
o
n
s
_
A
S
T
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
C
o
n
v
e
rs
io
n
s

E
x
c
e
p
ti
o
n
s
_
D
O
M
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
R
e
s
o
lv
e
r

E
x
c
e
p
ti
o
n
s
_
A
b
s
In
t

E
x
c
e
p
ti
o
n
s
_
Q
u
e
ri
e
s

T
o
ta
l_
E
x
c
e
p
ti
o
n
s

FusionChartsFree28681_28681_lines-JSv2 0 0 0 0 0 0 0 0 0

gatsby 0 182 7 0 0 0 0 0 189

GitterMobile-master 63 0 0 0 0 0 0 0 63

gizmo-master_11638_lines_goV2 0 0 0 0 0 0 0 0 0

gogs_master_goV2 151 1 0 0 0 0 0 0 152

groove-dl-master_ReWrite 0 0 0 0 0 0 0 0 0

groovywebconsole-master 0 0 0 0 0 0 0 0 0

habitica-develop 0 7 0 0 0 0 0 0 7

hermes-master 0 0 0 0 0 0 0 0 0

hooligram-client-develop 0 0 0 0 0 0 0 0 0

hugo-master_50147_lines_goV2 0 0 0 0 0 0 0 0 0

iFixit_iOS_master 20 0 0 0 0 0 0 0 20

Inuendo-master 0 0 0 0 0 0 0 0 0

jade_agents-master 0 0 0 0 0 0 0 0 0

jade-master-JSv2 32 99 1 0 0 0 0 0 132

jasperreports_4_0_0_proje_350576_lines 1 0 0 0 0 0 0 0 1

Java11and12NewFeatures 8 0 0 0 1 0 0 0 9

jboard_jspff 2 0 0 0 0 0 0 0 2

jetspeed_1_6_206226_lines_jspff 2 5 0 0 0 0 0 0 7

juice-shop-4.2.1 0 0 0 0 0 0 0 0 0

knockout_js_samples_master-JSv2 0 0 0 0 0 0 0 0 0

leaky-angular-master 0 0 0 0 0 0 0 0 0

LightningWorkingApp_ReWrite (Project 3) 49 0 0 0 0 0 0 0 49

lila-master 0 0 0 0 5 0 0 0 5

lua_samples-master 1 0 0 0 0 0 0 0 1

luaSample-master 0 0 0 0 0 0 0 0 0

74

Table 18: Exceptions Information (4)

Project_Name

E
x
c
e
p
ti
o
n
s
_
P
a
rs
in
g

E
x
c
e
p
ti
o
n
s
_
T
y
p
e
In
fe
re
n
c
e

E
x
c
e
p
ti
o
n
s
_
A
S
T
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
C
o
n
v
e
rs
io
n
s

E
x
c
e
p
ti
o
n
s
_
D
O
M
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
R
e
s
o
lv
e
r

E
x
c
e
p
ti
o
n
s
_
A
b
s
In
t

E
x
c
e
p
ti
o
n
s
_
Q
u
e
ri
e
s

T
o
ta
l_
E
x
c
e
p
ti
o
n
s

lwc_goat 0 0 0 0 0 0 0 0 0

mingw32_make 21 0 1 0 0 0 0 0 22

MISRA_C_celestia 262 0 4 0 0 0 0 0 266

MISRA_C_FlightGear 0 0 1 0 0 0 0 0 1

MISRA_C_mingw32 21 0 1 0 0 0 0 0 22

MISRA_C_UltimateToolbox93 124 0 0 0 0 0 0 0 124

mleung_feather 14 0 0 0 0 2 0 0 16

MSDN 1 0 0 0 0 5 0 0 6

MTOS_4_38_en_390199_lines 202 2 0 0 0 0 0 0 204

MySQLdb1-master_ReWrite 0 0 0 0 0 0 0 0 0

NetNewsWire 35 3 2 0 10 0 0 2 52

nodejs-mysql-native-master-JSv2 (Project 4) 0 0 0 0 0 0 0 0 0

node-mongodb-native-1.4-JSv2_ReWrite 0 2 0 0 0 0 0 0 2

OSSILE-master 0 0 0 0 0 0 0 0 0

owasp-top10-salesforce-master 0 0 0 0 0 0 0 0 0

pebble_jspff 6 0 0 0 0 0 0 0 6

Pebble_Spring_Example 0 0 0 0 0 0 0 0 0

perl_5_16_0_898436_lines 1659 0 0 0 0 0 0 0 1659

personalblog_jspff 0 0 0 0 0 0 0 0 0

PHP_Rewrite_AlegroCart_1.2.5_125254_lines-JSv2 122 0 1 0 75 0 0 0 198

PHP_Rewrite_Sylius_1.2 39 4 0 0 8 0 0 0 51

PHP_Rewrite_symfony-master(Project2) 99 11 1 0 49 0 0 0 160

play-groovy-master 0 0 0 0 0 0 0 0 0

pokerBuddyApp-master 0 0 0 0 0 0 0 0 0

polynote-master 0 0 0 0 9 0 0 0 9

75

Table 19: Exceptions Information (5)

Project_Name

E
x
c
e
p
ti
o
n
s
_
P
a
rs
in
g

E
x
c
e
p
ti
o
n
s
_
T
y
p
e
In
fe
re
n
c
e

E
x
c
e
p
ti
o
n
s
_
A
S
T
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
C
o
n
v
e
rs
io
n
s

E
x
c
e
p
ti
o
n
s
_
D
O
M
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
R
e
s
o
lv
e
r

E
x
c
e
p
ti
o
n
s
_
A
b
s
In
t

E
x
c
e
p
ti
o
n
s
_
Q
u
e
ri
e
s

T
o
ta
l_
E
x
c
e
p
ti
o
n
s

Probabilistic-Programming 0 0 0 0 0 0 0 0 0

Programming_In_Lua-master 0 0 0 0 0 0 0 0 0

PSLQL_OSCOMMAND 0 0 0 0 0 0 0 0 0

Public-Corona-Lua-master(project 4) 0 0 0 0 0 0 0 0 0

quasar-dev 0 42 0 0 0 0 0 0 42

qxmpp_0_2_0_20478_lines 16 0 0 0 0 0 0 0 16

railsgoat-master 61 0 0 0 0 0 0 0 61

react-datasheet-master 0 0 0 0 0 0 0 0 0

react-native-elements-next 0 2 0 0 0 0 0 0 2

react-security 0 0 0 0 0 0 0 0 0

react-swipeable-views-master 0 2 0 0 0 0 0 0 2

rico2143347_43347_lines 10 50 12 0 0 0 0 0 72

riverpod-master 0 0 0 0 0 0 0 0 0

rmux 0 0 0 0 0 0 0 0 0

roller_jspff 14 0 0 0 0 0 0 0 14

RxSwift 179 23 28 0 64 0 0 34 328

Scala_ReWrite_apache-samza-0.10.0-src 1 0 0 0 0 0 0 0 1

Scala_ReWrite_atlas-master 0 0 0 0 0 0 0 0 0

Scala_ReWrite_casbah-master-JSv2 0 0 1 0 0 0 0 0 1

Scala_ReWrite_finagle-develop 0 0 0 0 2 27 0 0 29

Scala_ReWrite_miniboxing-plugin-wip 0 0 0 0 2 0 0 0 2

shadowsocks-android-master 0 0 0 0 0 0 0 0 0

singularity_master_goV2 1 0 0 0 0 0 0 0 1

snipsnap 4 4 0 0 0 0 0 0 8

soundcloud-redux-master 0 0 0 0 0 0 0 0 0

Spring_Rewrite_AwesomeNotes 0 0 0 0 0 0 0 0 0

76

Table 20: Exceptions Information (6)

Project_Name

E
x
c
e
p
ti
o
n
s
_
P
a
rs
in
g

E
x
c
e
p
ti
o
n
s
_
T
y
p
e
In
fe
re
n
c
e

E
x
c
e
p
ti
o
n
s
_
A
S
T
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
C
o
n
v
e
rs
io
n
s

E
x
c
e
p
ti
o
n
s
_
D
O
M
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
R
e
s
o
lv
e
r

E
x
c
e
p
ti
o
n
s
_
A
b
s
In
t

E
x
c
e
p
ti
o
n
s
_
Q
u
e
ri
e
s

T
o
ta
l_
E
x
c
e
p
ti
o
n
s

Spring_Rewrite_compass 0 0 0 0 0 0 0 0 0

Spring_Rewrite_SpringBootGoat 1 0 0 0 0 0 0 0 1

Swift_Rewrite_Cards-master 0 0 0 0 0 0 0 0 0

Swift_Rewrite_CVCalendar-master 4 2 2 0 2 0 0 0 10

Swift_Rewrite_ImagePickerTrayController 0 0 0 0 0 0 0 0 0

Swift_Rewrite_Maria-master 0 0 0 0 0 0 0 0 0

Swift_Rewrite_SwiftGoat-master 73 0 0 0 1 0 0 0 74

Swift_Rewrite_Swift 0 0 0 0 1 0 0 0 1

Swift_Rewrite_SwiftLanguageWeather 0 0 0 0 0 0 0 0 0

Swift_Rewrite_Swift-Master_Of_Swift 77 0 0 0 0 0 0 0 77

Swift_Rewrite_SwiftMessages-master 0 0 1 0 0 0 0 0 1

Swift_Rewrite_Xniffer-master 0 0 0 0 0 0 0 0 0

tables-3.0.0_ReWrite 0 4 0 0 0 0 0 0 4

testcodav3_79566_lines_ReWrite 0 0 0 0 0 0 0 0 0

testVbNet 29 0 0 0 0 5 0 0 34

tiny-dnn-master_cpp11 19 0 1 0 12 1 0 0 33

trape-master 0 0 0 0 0 0 0 0 0

Twidere-Android-master-Kotlin 1 0 1 0 10 0 0 4 16

twitter-finagle 0 0 0 0 4 0 0 0 4

UltimateToolbox93_src_322262_lines 124 0 0 0 0 0 0 0 124

Verademo-Dotnet 0 0 0 0 0 0 0 0 0

Vertical-Fill-master 0 0 0 0 0 0 0 0 0

77

Table 21: Exceptions Information (7)

Project_Name

E
x
c
e
p
ti
o
n
s
_
P
a
rs
in
g

E
x
c
e
p
ti
o
n
s
_
T
y
p
e
In
fe
re
n
c
e

E
x
c
e
p
ti
o
n
s
_
A
S
T
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
C
o
n
v
e
rs
io
n
s

E
x
c
e
p
ti
o
n
s
_
D
O
M
_
C
o
n
s
tr
u
c
ti
o
n

E
x
c
e
p
ti
o
n
s
_
R
e
s
o
lv
e
r

E
x
c
e
p
ti
o
n
s
_
A
b
s
In
t

E
x
c
e
p
ti
o
n
s
_
Q
u
e
ri
e
s

T
o
ta
l_
E
x
c
e
p
ti
o
n
s

vuetify-master 0 40 7 0 1 0 0 0 48

vulnerable-app-master 0 0 0 0 0 0 0 0 0

vux-2 0 67 4 0 0 0 0 0 71

WebGoat_5.4_117234_lines_jspff 13 0 0 0 0 0 0 0 13

webmin_1_570_220564_lines 541 0 0 0 0 0 0 0 541

WeiPulse_OpenSource 25 0 0 0 0 0 0 0 25

wikihow_iphone_app_master 0 0 0 0 0 0 0 0 0

WordPress_iOS_develop 621 3 0 0 0 0 0 0 624

xmlservice-master 7 0 0 0 0 0 0 0 7

78

Table 22: LOC and Total Results Information (1)

Project_Name LOC Parsed_LOC Total_Results

30DaysofSwift 19539 10856 211

Aerial 35764 22195 31

akka-main 494098 494080 3801

Alamofire 34910 34221 64

Angular2-master 422766 405413 799

angular-cosmosdb-master 13217 559 3

Angular-Full-Stack-master 19181 2109 106

AngularJS-CafeTownsend-master 1403 1204 3

AngularJS-ColorGame-master 760 759 9

AngularJS-info-cars 1033 621 3

AngularJS-java-server-midi-master 217 216 1

AspNuke08052934_52934_lines 63804 61100 1496

asptemplate131487_1487_lines 1467 726 8

ATE754 8551 8551 30

backboneboilerplate-gh-pages-JSv2 41940 41847 223

BBS400-main 7118 7118 359

Benchmark-master 366449 364484 27350

Benchmark-master_JS 105902 102745 1085

BitTorrent-5.0.9_ReWrite 82933 82930 206

blueblog 4626 4431 276

BookStoreJava_21403_lines 24517 24517 5069

BookStoreVBDotnet_22163_lines 7864 6556 577

botpress-botpress-v12.19.2-35 155851 154804 476

breakableflask-master 243 243 25

CAF-master 45055 45055 997

catiline-gh-pages 17797 17718 114

79

Table 23: LOC and Total Results Information (2)

Project_Name LOC Parsed_LOC Total_Results

celestia_1.6.0_198563lines 192136 183157 4929

Chocobozzz-PeerTube-v3.1.0-47 166435 165628 665

ci-brakeman 109883 109811 729

climbers_master 52677 52445 155

CSharp_Rewrite_Cosmos_181269lines 140229 138550 1063

CSharp_Rewrite_log4net_72646_lines 208386 80401 543

CSharp_Rewrite_northwindtraders_aspnetcore 20424 7649 54

CSharp_Rewrite_Rainbow_209794_lines 301275 234617 5386

CxPlayGround-Mobile-master 12946 8331 549

CxPlayGround-Web 4221 3930 110

dart-pad-master 15607 15607 73

dashboard-master 51978 30107 164

deplate_30457_lines 30696 30387 26

df17-ant-to-sfdx-master 5797 5773 225

Dollar_Bets_master 27827 5886 13

drone-master_458434_lines_goV2 272394 261377 3303

eclipse-theia-theia-v1.11.0-55 230924 230762 173

emule4_172454_lines 168872 167336 4171

evans_goV2 84828 84827 425

finch-master 5719 5719 3

fintrospect-master 6294 6294 2

firefox-ios (Project 1) 188159 155883 348

flame-main 50639 50639 118

FlightGear_1.0.0_230815lines 238487 234094 11897

flutter-master 1351024 1351024 564

flutter-quill-master 18541 18541 16

80

Table 24: LOC and Total Results Information (3)

Project_Name LOC Parsed_LOC Total_Results

FusionChartsFree28681_28681_lines-JSv2 76631 34822 359

gatsby 117449 105081 243

GitterMobile-master 17994 16694 44

gizmo-master_11638_lines_goV2 11649 11559 75

gogs_master_goV2 161824 147615 572

groove-dl-master_ReWrite 865 863 25

groovywebconsole-master 4728 4727 51

habitica-develop 371278 162438 931

hermes-master 16615 16613 42

hooligram-client-develop 13037 4993 36

hugo-master_50147_lines_goV2 52556 51570 365

iFixit_iOS_master 29850 17671 148

Inuendo-master 12345 12345 16

jade_agents-master 195675 195112 10895

jade-master-JSv2 7478 4125 20

jasperreports_4_0_0_proje_350576_lines 1799156 1749597 11150

Java11and12NewFeatures 2066 2057 280

jboard_jspff 89670 75815 1927

jetspeed_1_6_206226_lines_jspff 305325 281301 7114

juice-shop-4.2.1 19038 15377 124

knockout_js_samples_master-JSv2 13857 13299 82

leaky-angular-master 12164 1474 30

LightningWorkingApp_ReWrite (Project 3) 6039 1030 150

lila-master 148386 146289 248

lua_samples-master 3242 3242 63

luaSample-master 727 727 18

81

Table 25: LOC and Total Results Information (4)

Project_Name LOC Parsed_LOC Total_Results

lwc_goat 15618 1605 50

mingw32_make 35050 34327 2158

MISRA_C_celestia 192136 183157 29423

MISRA_C_FlightGear 238487 234094 41571

MISRA_C_mingw32 35050 34327 8085

MISRA_C_UltimateToolbox93 323231 322922 41767

mleung_feather 50844 46730 145

MSDN 88582 84306 983

MTOS_4_38_en_390199_lines 373959 335526 6013

MySQLdb1-master_ReWrite 7701 4472 8

NetNewsWire 106188 91305 247

nodejs-mysql-native-master-JSv2 (Project 4) 3173 3173 24

node-mongodb-native-1.4-JSv2_ReWrite 58639 58169 357

OSSILE-master 14867 14854 53

owasp-top10-salesforce-master 638 556 49

pebble_jspff 53546 49894 2372

Pebble_Spring_Example 354 354 9

perl_5_16_0_898436_lines 765937 480567 11466

personalblog_jspff 24277 13237 1313

PHP_Rewrite_AlegroCart_1.2.5_125254_lines-JSv2 178143 165848 2421

PHP_Rewrite_Sylius_1.2 262028 244642 1748

PHP_Rewrite_symfony-master(Project2) 646102 308417 5182

play-groovy-master 2980 2647 68

pokerBuddyApp-master 17948 8397 398

polynote-master 44900 17889 13

Probabilistic-Programming 184048 1765 12

Programming_In_Lua-master 1246 1246 7

82

Table 26: LOC and Total Results Information (5)

Project_Name LOC Parsed_LOC Total_Results

PSLQL_OSCOMMAND 4025 1682 26

Public-Corona-Lua-master(project 4) 9388 9388 173

quasar-dev 166306 141865 377

qxmpp_0_2_0_20478_lines 53212 52292 365

railsgoat-master 87365 84959 863

react-datasheet-master 18500 8987 25

react-native-elements-next 27369 26756 21

react-security 13904 826 32

react-swipeable-views-master 27139 26616 30

rico2143347_43347_lines 77697 66694 516

riverpod-master 48655 48655 15

rmux 5762 5748 69

roller_jspff 99244 92070 4160

RxSwift 99883 98549 80

Scala_ReWrite_apache-samza-0.10.0-src 50802 48077 581

Scala_ReWrite_atlas-master 32324 32316 22

Scala_ReWrite_casbah-master-JSv2 288471 287629 902

Scala_ReWrite_finagle-develop 148294 146996 1884

Scala_ReWrite_miniboxing-plugin-wip 72952 72952 921

shadowsocks-android-master 10181 8685 70

singularity_master_goV2 85769 80563 336

snipsnap 445588 81090 6194

soundcloud-redux-master 20818 7696 20

Spring_Rewrite_AwesomeNotes 5595 4024 126

Spring_Rewrite_compass 1217321 1204701 7756

Spring_Rewrite_SpringBootGoat 2049 1975 112

Swift_Rewrite_Cards-master 4447 3910 15

Swift_Rewrite_CVCalendar-master 5317 5119 20

Swift_Rewrite_ImagePickerTrayController 1684 1294 7

Swift_Rewrite_Maria-master 4092 2954 5

83

Table 27: LOC and Total Results Information (6)

Project_Name LOC Parsed_LOC Total_Results

Swift_Rewrite_SwiftGoat-master 18341 9005 91

Swift_Rewrite_Swift 2232 2193 14

Swift_Rewrite_SwiftLanguageWeather 1709 1428 13

Swift_Rewrite_Swift-Master_Of_Swift 62602 58912 598

Swift_Rewrite_SwiftMessages-master 4924 3749 16

Swift_Rewrite_Xniffer-master 1379 1158 17

tables-3.0.0_ReWrite 232167 142206 300

testcodav3_79566_lines_ReWrite 79566 79566 1385

testVbNet 100501 100091 1345

tiny-dnn-master_cpp11 137537 126724 1540

trape-master 14710 14618 120

Twidere-Android-master-Kotlin 95731 95592 213

twitter-finagle 179200 178349 803

UltimateToolbox93_src_322262_lines 323231 322922 3578

Verademo-Dotnet 5720 5709 85

Vertical-Fill-master 122 122 12

vuetify-master 127057 95118 350

vulnerable-app-master 6217 5831 17

vux-2 158243 75519 179

WebGoat_5.4_117234_lines_jspff 85910 57344 4768

webmin_1_570_220564_lines 476118 411694 13763

WeiPulse_OpenSource 85160 85086 589

wikihow_iphone_app_master 15840 15107 59

WordPress_iOS_develop 156214 145823 616

xmlservice-master 49068 49058 17

84

Table 28: Query Information (1)

Project_Name

S
u
c
c
e
s
s
_
H
ig
h

In
s
u
c
c
e
s
s
_
H
ig
h

S
u
c
c
e
s
s
_
M
e
d
iu
m

In
s
u
c
c
e
s
s
_
M
e
d
iu
m

S
u
c
c
e
s
s
_
L
o
w

In
s
u
c
c
e
s
s
_
L
o
w

S
u
c
c
e
s
s
_
In
fo

In
s
u
c
c
e
s
s
_
In
fo

30DaysofSwift 67 0 107 0 129 0 107 0

Aerial 67 0 107 0 129 0 107 0

akka-main 82 0 198 0 232 0 198 0

Alamofire 67 0 107 0 129 0 107 0

Angular2-master 95 0 248 0 319 0 248 0

angular-cosmosdb-master 46 0 81 0 74 0 81 0

Angular-Full-Stack-master 66 0 132 0 97 0 132 0

AngularJS-CafeTownsend-master 46 0 81 0 74 0 81 0

AngularJS-ColorGame-master 46 0 81 0 74 0 81 0

AngularJS-info-cars 50 0 97 0 96 0 97 0

AngularJS-java-server-midi-master 46 0 81 0 74 0 81 0

AspNuke08052934_52934_lines 63 0 105 0 114 0 105 0

asptemplate131487_1487_lines 59 0 110 0 114 0 110 0

ATE754 5 0 2 0 2 0 2 0

backboneboilerplate-gh-pages-JSv2 46 0 81 0 74 0 81 0

BBS400-main 3 0 3 0 7 0 3 0

Benchmark-master 70 0 160 0 208 0 160 0

Benchmark-master_JS 62 0 134 0 134 0 134 0

BitTorrent-5.0.9_ReWrite 61 0 112 0 97 0 112 0

blueblog 70 0 160 0 208 0 160 0

BookStoreJava_21403_lines 24 0 79 0 134 0 79 0

BookStoreVBDotnet_22163_lines 13 0 29 0 40 0 29 0

botpress-botpress-v12.19.2-35 53 0 105 0 108 0 105 0

breakableflask-master 15 0 31 0 23 0 31 0

CAF-master 3 0 3 0 7 0 3 0

catiline-gh-pages 46 0 81 0 74 0 81 0

85

Table 29: Query Information (2)

Project_Name

S
u
c
c
e
s
s
_
H
ig
h

In
s
u
c
c
e
s
s
_
H
ig
h

S
u
c
c
e
s
s
_
M
e
d
iu
m

In
s
u
c
c
e
s
s
_
M
e
d
iu
m

S
u
c
c
e
s
s
_
L
o
w

In
s
u
c
c
e
s
s
_
L
o
w

S
u
c
c
e
s
s
_
In
fo

In
s
u
c
c
e
s
s
_
In
fo

celestia_1.6.0_198563lines 75 0 153 0 123 0 153 0

Chocobozzz-PeerTube-v3.1.0-47 46 0 81 0 74 0 81 0

ci-brakeman 13 0 32 0 21 0 32 0

climbers_master 16 0 15 0 34 0 15 0

CSharp_Rewrite_Cosmos_181269lines 62 0 134 0 134 0 134 0

CSharp_Rewrite_log4net_72646_lines 62 0 134 0 134 0 134 0

CSharp_Rewrite_northwindtraders_aspnetcore 62 0 134 0 134 0 134 0

CSharp_Rewrite_Rainbow_209794_lines 67 0 144 0 142 0 144 0

CxPlayGround-Mobile-master 114 0 247 0 312 0 247 0

CxPlayGround-Web 81 0 206 0 292 0 206 0

dart-pad-master 5 0 23 0 23 0 23 0

dashboard-master 66 0 132 0 97 0 132 0

deplate_30457_lines 53 0 105 0 108 0 105 0

df17-ant-to-sfdx-master 48 0 93 0 93 0 93 0

Dollar_Bets_master 16 0 15 0 34 0 15 0

drone-master_458434_lines_goV2 64 0 123 0 103 0 123 0

eclipse-theia-theia-v1.11.0-55 46 0 81 0 74 0 81 0

emule4_172454_lines 73 0 149 0 120 0 149 0

evans_goV2 13 0 32 0 21 0 32 0

finch-master 14 0 42 0 27 0 42 0

fintrospect-master 14 0 42 0 27 0 42 0

firefox-ios (Project 1) 69 0 111 0 132 0 111 0

flame-main 5 0 23 0 23 0 23 0

FlightGear_1.0.0_230815lines 75 0 153 0 123 0 153 0

flutter-master 5 0 23 0 23 0 23 0

flutter-quill-master 5 0 23 0 23 0 23 0

86

Table 30: Query Information (3)

Project_Name

S
u
c
c
e
s
s
_
H
ig
h

In
s
u
c
c
e
s
s
_
H
ig
h

S
u
c
c
e
s
s
_
M
e
d
iu
m

In
s
u
c
c
e
s
s
_
M
e
d
iu
m

S
u
c
c
e
s
s
_
L
o
w

In
s
u
c
c
e
s
s
_
L
o
w

S
u
c
c
e
s
s
_
In
fo

In
s
u
c
c
e
s
s
_
In
fo

FusionChartsFree28681_28681_lines-JSv2 58 0 115 0 116 0 115 0

gatsby 53 0 105 0 108 0 105 0

GitterMobile-master 60 0 92 0 105 0 92 0

gizmo-master_11638_lines_goV2 57 0 109 0 92 0 109 0

gogs_master_goV2 64 0 123 0 103 0 123 0

groove-dl-master_ReWrite 61 0 112 0 97 0 112 0

groovywebconsole-master 57 0 127 0 158 0 127 0

habitica-develop 62 0 134 0 134 0 134 0

hermes-master 59 0 108 0 94 0 108 0

hooligram-client-develop 60 0 92 0 105 0 92 0

hugo-master_50147_lines_goV2 59 0 113 0 95 0 113 0

iFixit_iOS_master 16 0 15 0 34 0 15 0

Inuendo-master 3 0 3 0 7 0 3 0

jade_agents-master 70 0 160 0 208 0 160 0

jade-master-JSv2 46 0 81 0 74 0 81 0

jasperreports_4_0_0_proje_350576_lines 70 0 160 0 208 0 160 0

Java11and12NewFeatures 70 0 160 0 208 0 160 0

jboard_jspff 75 0 170 0 216 0 170 0

jetspeed_1_6_206226_lines_jspff 75 0 170 0 216 0 170 0

juice-shop-4.2.1 66 0 132 0 97 0 132 0

knockout_js_samples_master-JSv2 46 0 81 0 74 0 81 0

leaky-angular-master 46 0 81 0 74 0 81 0

LightningWorkingApp_ReWrite (Project 3) 48 0 93 0 93 0 93 0

lila-master 84 0 202 0 235 0 202 0

lua_samples-master 15 0 40 0 52 0 40 0

luaSample-master 15 0 40 0 52 0 40 0

87

Table 31: Query Information (4)

Project_Name

S
u
c
c
e
s
s
_
H
ig
h

In
s
u
c
c
e
s
s
_
H
ig
h

S
u
c
c
e
s
s
_
M
e
d
iu
m

In
s
u
c
c
e
s
s
_
M
e
d
iu
m

S
u
c
c
e
s
s
_
L
o
w

In
s
u
c
c
e
s
s
_
L
o
w

S
u
c
c
e
s
s
_
In
fo

In
s
u
c
c
e
s
s
_
In
fo

lwc_goat 50 0 97 0 96 0 97 0

mingw32_make 29 0 72 0 49 0 72 0

MISRA_C_celestia 0 0 0 0 0 0 0 0

MISRA_C_FlightGear 0 0 0 0 0 0 0 0

MISRA_C_mingw32 0 0 0 0 0 0 0 0

MISRA_C_UltimateToolbox93 0 0 0 0 0 0 0 0

mleung_feather 53 0 105 0 108 0 105 0

MSDN 64 0 120 0 122 0 120 0

MTOS_4_38_en_390199_lines 56 0 97 0 87 0 97 0

MySQLdb1-master_ReWrite 61 0 112 0 97 0 112 0

NetNewsWire 69 0 111 0 132 0 111 0

nodejs-mysql-native-master-JSv2 (Project 4) 49 0 87 0 79 0 87 0

node-mongodb-native-1.4-JSv2_ReWrite 61 0 112 0 97 0 112 0

OSSILE-master 3 0 3 0 7 0 3 0

owasp-top10-salesforce-master 48 0 93 0 93 0 93 0

pebble_jspff 70 0 160 0 208 0 160 0

Pebble_Spring_Example 24 0 79 0 134 0 79 0

perl_5_16_0_898436_lines 56 0 97 0 87 0 97 0

personalblog_jspff 68 0 156 0 205 0 156 0

PHP_Rewrite_AlegroCart_1.2.5_125254_lines-JSv2 71 0 142 0 105 0 142 0

PHP_Rewrite_Sylius_1.2 66 0 132 0 97 0 132 0

PHP_Rewrite_symfony-master(Project2) 64 0 128 0 94 0 128 0

play-groovy-master 81 0 206 0 292 0 206 0

pokerBuddyApp-master 51 0 101 0 105 0 101 0

polynote-master 84 0 202 0 235 0 202 0

Probabilistic-Programming 61 0 112 0 97 0 112 0

Programming_In_Lua-master 15 0 40 0 52 0 40 0

88

Table 32: Query Information (5)

Project_Name

S
u
c
c
e
s
s
_
H
ig
h

In
s
u
c
c
e
s
s
_
H
ig
h

S
u
c
c
e
s
s
_
M
e
d
iu
m

In
s
u
c
c
e
s
s
_
M
e
d
iu
m

S
u
c
c
e
s
s
_
L
o
w

In
s
u
c
c
e
s
s
_
L
o
w

S
u
c
c
e
s
s
_
In
fo

In
s
u
c
c
e
s
s
_
In
fo

PSLQL_OSCOMMAND 5 0 10 0 8 0 10 0

Public-Corona-Lua-master(project 4) 15 0 40 0 52 0 40 0

quasar-dev 53 0 105 0 108 0 105 0

qxmpp_0_2_0_20478_lines 75 0 153 0 123 0 153 0

railsgoat-master 53 0 105 0 108 0 105 0

react-datasheet-master 51 0 101 0 105 0 101 0

react-native-elements-next 51 0 101 0 105 0 101 0

react-security 71 0 142 0 105 0 142 0

react-swipeable-views-master 53 0 105 0 108 0 105 0

rico2143347_43347_lines 64 0 120 0 122 0 120 0

riverpod-master 5 0 23 0 23 0 23 0

rmux 57 0 109 0 92 0 109 0

roller_jspff 75 0 170 0 216 0 170 0

RxSwift 67 0 107 0 129 0 107 0

Scala_ReWrite_apache-samza-0.10.0-src 84 0 202 0 235 0 202 0

Scala_ReWrite_atlas-master 84 0 202 0 235 0 202 0

Scala_ReWrite_casbah-master-JSv2 60 0 123 0 101 0 123 0

Scala_ReWrite_finagle-develop 89 0 212 0 243 0 212 0

Scala_ReWrite_miniboxing-plugin-wip 38 0 121 0 161 0 121 0

shadowsocks-android-master 21 0 34 0 50 0 34 0

singularity_master_goV2 57 0 109 0 92 0 109 0

snipsnap 70 0 160 0 208 0 160 0

soundcloud-redux-master 44 0 77 0 71 0 77 0

Spring_Rewrite_AwesomeNotes 88 0 198 0 234 0 198 0

Spring_Rewrite_compass 70 0 160 0 208 0 160 0

Spring_Rewrite_SpringBootGoat 75 0 170 0 216 0 170 0

Swift_Rewrite_Cards-master 67 0 107 0 129 0 107 0

Swift_Rewrite_CVCalendar-master 67 0 107 0 129 0 107 0

89

Table 33: Query Information (6)

Project_Name

S
u
c
c
e
s
s
_
H
ig
h

In
s
u
c
c
e
s
s
_
H
ig
h

S
u
c
c
e
s
s
_
M
e
d
iu
m

In
s
u
c
c
e
s
s
_
M
e
d
iu
m

S
u
c
c
e
s
s
_
L
o
w

In
s
u
c
c
e
s
s
_
L
o
w

S
u
c
c
e
s
s
_
In
fo

In
s
u
c
c
e
s
s
_
In
fo

Swift_Rewrite_ImagePickerTrayController 67 0 107 0 129 0 107 0

Swift_Rewrite_Maria-master 67 0 107 0 129 0 107 0

Swift_Rewrite_SwiftGoat-master 69 0 111 0 132 0 111 0

Swift_Rewrite_Swift 23 0 30 0 58 0 30 0

Swift_Rewrite_SwiftLanguageWeather 67 0 107 0 129 0 107 0

Swift_Rewrite_Swift-Master_Of_Swift 69 0 111 0 132 0 111 0

Swift_Rewrite_SwiftMessages-master 67 0 107 0 129 0 107 0

Swift_Rewrite_Xniffer-master 67 0 107 0 129 0 107 0

tables-3.0.0_ReWrite 61 0 112 0 97 0 112 0

testcodav3_79566_lines_ReWrite 4 0 16 0 22 0 16 0

testVbNet 59 0 110 0 114 0 110 0

tiny-dnn-master_cpp11 75 0 153 0 123 0 153 0

trape-master 61 0 112 0 97 0 112 0

Twidere-Android-master-Kotlin 21 0 34 0 50 0 34 0

twitter-finagle 89 0 212 0 243 0 212 0

UltimateToolbox93_src_322262_lines 75 0 153 0 123 0 153 0

Verademo-Dotnet 62 0 134 0 134 0 134 0

Vertical-Fill-master 15 0 40 0 52 0 40 0

vuetify-master 53 0 105 0 108 0 105 0

vulnerable-app-master 46 0 81 0 74 0 81 0

vux-2 53 0 105 0 108 0 105 0

WebGoat_5.4_117234_lines_jspff 75 0 170 0 216 0 170 0

webmin_1_570_220564_lines 56 0 97 0 87 0 97 0

WeiPulse_OpenSource 26 0 27 0 39 0 27 0

wikihow_iphone_app_master 26 0 27 0 39 0 27 0

WordPress_iOS_develop 62 0 96 0 108 0 96 0

xmlservice-master 3 0 3 0 7 0 3 0

90

Table 34: Coverability, Domability, Querability and Scan Quality Information (1)

Project_Name Coverability Domability Querability Scan Quality

30DaysofSwift 55.56 98.22 100 81.512

Aerial 62.06 100 100 84.824

akka-main 100 96.52 100 98.608

Alamofire 98.03 97.21 99.46 97.988

Angular2-master 95.9 81.49 100 90.956

angular-cosmosdb-master 4.23 100 100 61.692

Angular-Full-Stack-master 11 99.87 100 64.348

AngularJS-CafeTownsend-master 85.82 100 100 94.328

AngularJS-ColorGame-master 99.87 100 100 99.948

AngularJS-info-cars 60.12 100 100 84.048

AngularJS-java-server-midi-master 99.54 100 100 99.816

AspNuke08052934_52934_lines 95.76 59.48 100 82.096

asptemplate131487_1487_lines 49.49 100 100 79.796

ATE754 100 86.63 100 94.652

backboneboilerplate-gh-pages-JSv2 99.78 98.93 100 99.484

BBS400-main 100 98.4 100 99.36

Benchmark-master 99.46 92.42 100 96.752

Benchmark-master_JS 97.02 100 100 98.808

BitTorrent-5.0.9_ReWrite 100 99.12 100 99.648

blueblog 95.78 100 100 98.312

BookStoreJava_21403_lines 100 100 100 100

BookStoreVBDotnet_22163_lines 83.37 98.93 100 92.92

botpress-botpress-v12.19.2-35 99.33 71.96 100 88.516

breakableflask-master 100 100 100 100

CAF-master 100 56.57 100 82.628

catiline-gh-pages 99.56 98.93 100 99.396

91

Table 35: Coverability, Domability, Querability and Scan Quality Information (2)

Project_Name Coverability Domability Querability Scan Quality

celestia_1.6.0_198563lines 95.33 45.48 100 76.324

Chocobozzz-PeerTube-v3.1.0-47 99.52 56.27 100 82.316

ci-brakeman 99.93 100 100 99.972

climbers_master 99.56 74.65 100 89.684

CSharp_Rewrite_Cosmos_181269lines 98.8 98.93 100 99.092

CSharp_Rewrite_log4net_72646_lines 38.58 81.11 100 67.876

CSharp_Rewrite_northwindtraders_aspnetcore 37.45 100 100 74.98

CSharp_Rewrite_Rainbow_209794_lines 77.87 100 100 91.148

CxPlayGround-Mobile-master 64.35 89.22 100 81.428

CxPlayGround-Web 93.11 98.4 100 96.604

dart-pad-master 100 100 100 100

dashboard-master 57.92 99.82 100 83.096

deplate_30457_lines 98.99 98.4 100 98.956

df17-ant-to-sfdx-master 99.59 96.85 100 98.576

Dollar_Bets_master 21.15 99.46 100 68.244

drone-master_458434_lines_goV2 95.96 97.09 97.92 96.804

eclipse-theia-theia-v1.11.0-55 99.93 91.49 100 96.568

emule4_172454_lines 99.09 59.83 100 83.568

evans_goV2 100 100 100 100

finch-master 100 99.64 100 99.856

fintrospect-master 100 100 100 100

firefox-ios (Project 1) 82.85 20.76 100 61.444

flame-main 100 100 100 100

FlightGear_1.0.0_230815lines 98.16 99.46 100 99.048

flutter-master 100 80.38 98.42 91.836

flutter-quill-master 100 100 100 100

92

Table 36: Coverability, Domability, Querability and Scan Quality Information (3)

Project_Name Coverability Domability Querability Scan Quality

FusionChartsFree28681_28681_lines-JSv2 45.44 100 100 78.176

gatsby 89.47 50.95 100 76.168

GitterMobile-master 92.78 74.03 100 86.724

gizmo-master_11638_lines_goV2 99.23 100 100 99.692

gogs_master_goV2 91.22 55.28 100 78.6

groove-dl-master_ReWrite 99.77 100 100 99.908

groovywebconsole-master 99.98 100 100 99.992

habitica-develop 43.75 96.34 100 76.036

hermes-master 99.99 100 100 99.996

hooligram-client-develop 38.3 100 100 75.32

hugo-master_50147_lines_goV2 98.12 100 100 99.248

iFixit_iOS_master 59.2 90.12 100 79.728

Inuendo-master 100 100 100 100

jade_agents-master 99.71 100 100 99.884

jade-master-JSv2 55.16 58.29 100 65.38

jasperreports_4_0_0_proje_350576_lines 97.25 99.46 100 98.684

Java11and12NewFeatures 99.56 95.65 100 98.084

jboard_jspff 84.55 98.93 100 93.392

jetspeed_1_6_206226_lines_jspff 92.13 96.34 100 95.388

juice-shop-4.2.1 80.77 100 100 92.308

knockout_js_samples_master-JSv2 95.97 100 100 98.388

leaky-angular-master 12.12 100 100 64.848

LightningWorkingApp_ReWrite (Project 3) 17.06 78.6 100 58.264

lila-master 98.59 99.12 100 99.084

lua_samples-master 100 99.46 100 99.784

luaSample-master 100 100 100 100

93

Table 37: Coverability, Domability, Querability and Scan Quality Information (4)

Project_Name Coverability Domability Querability Scan Quality

lwc_goat 10.28 100 100 64.112

mingw32_make 97.94 89.22 100 94.864

MISRA_C_celestia 95.33 45.48 100 76.324

MISRA_C_FlightGear 98.16 99.46 100 99.048

MISRA_C_mingw32 97.94 89.22 100 94.864

MISRA_C_UltimateToolbox93 99.9 59.66 100 83.824

mleung_feather 91.91 92.63 100 93.816

MSDN 95.17 98.8 100 97.588

MTOS_4_38_en_390199_lines 89.72 49.57 100 75.716

MySQLdb1-master_ReWrite 58.07 100 100 83.228

NetNewsWire 85.98 80.14 99.46 86.34

nodejs-mysql-native-master-JSv2 (Project 4) 100 100 100 100

node-mongodb-native-1.4-JSv2_ReWrite 99.2 98.93 100 99.252

OSSILE-master 99.91 100 100 99.964

owasp-top10-salesforce-master 87.15 100 100 94.86

pebble_jspff 93.18 96.85 100 96.012

Pebble_Spring_Example 100 100 100 100

perl_5_16_0_898436_lines 62.74 40 100 61.096

personalblog_jspff 54.52 100 100 81.808

PHP_Rewrite_AlegroCart_1.2.5_125254_lines-JSv2 93.1 50.02 100 77.248

PHP_Rewrite_Sylius_1.2 93.36 79.36 100 89.088

PHP_Rewrite_symfony-master(Project2) 47.74 54.96 100 61.08

play-groovy-master 88.83 100 100 95.532

pokerBuddyApp-master 46.79 100 100 78.716

polynote-master 39.84 98.44 100 75.312

Probabilistic-Programming 0.96 100 100 60.384

Programming_In_Lua-master 100 100 100 100

94

Table 38: Coverability, Domability, Querability and Scan Quality Information (5)

Project_Name Coverability Domability Querability Scan Quality

PSLQL_OSCOMMAND 41.79 100 100 76.716

Public-Corona-Lua-master(project 4) 100 100 100 100

quasar-dev 85.3 81.11 100 86.564

qxmpp_0_2_0_20478_lines 98.27 91.95 100 96.088

railsgoat-master 97.25 74.65 100 88.76

react-datasheet-master 48.58 100 100 79.432

react-native-elements-next 97.76 98.93 100 98.676

react-security 5.94 100 100 62.376

react-swipeable-views-master 98.07 98.93 100 98.8

rico2143347_43347_lines 85.84 71.39 100 82.892

riverpod-master 100 100 100 100

rmux 99.76 100 100 99.904

roller_jspff 92.77 92.9 100 94.268

RxSwift 98.66 38.81 92.09 73.406

Scala_ReWrite_apache-samza-0.10.0-src 94.64 99.46 100 97.64

Scala_ReWrite_atlas-master 99.98 100 100 99.992

Scala_ReWrite_casbah-master-JSv2 99.71 99.46 100 99.668

Scala_ReWrite_finagle-develop 99.12 96.41 100 98.212

Scala_ReWrite_miniboxing-plugin-wip 100 99.64 100 99.856

shadowsocks-android-master 85.31 100 100 94.124

singularity_master_goV2 93.93 99.46 100 97.356

snipsnap 18.2 95.83 100 65.612

soundcloud-redux-master 36.97 100 100 74.788

Spring_Rewrite_AwesomeNotes 71.92 100 100 88.768

Spring_Rewrite_compass 98.96 100 100 99.584

Spring_Rewrite_SpringBootGoat 96.39 99.46 100 98.34

Swift_Rewrite_Cards-master 87.92 100 100 95.168

Swift_Rewrite_CVCalendar-master 96.28 95.48 100 96.704

Swift_Rewrite_ImagePickerTrayController 76.84 100 100 90.736

Swift_Rewrite_Maria-master 72.19 100 100 88.876

95

Table 39: Coverability, Domability, Querability and Scan Quality Information (6)

Project_Name Coverability Domability Querability Scan Quality

Swift_Rewrite_SwiftGoat-master 49.1 70.93 100 68.012

Swift_Rewrite_Swift 98.25 99.82 100 99.228

Swift_Rewrite_SwiftLanguageWeather 83.56 100 100 93.424

Swift_Rewrite_Swift-Master_Of_Swift 94.11 70 100 85.644

Swift_Rewrite_SwiftMessages-master 76.14 99.46 100 90.24

Swift_Rewrite_Xniffer-master 83.97 100 100 93.588

tables-3.0.0_ReWrite 61.25 97.88 100 83.652

testcodav3_79566_lines_ReWrite 100 100 100 100

testVbNet 99.59 85.56 100 94.06

tiny-dnn-master_cpp11 92.14 87.93 100 92.028

trape-master 99.37 100 100 99.748

Twidere-Android-master-Kotlin 99.85 97.21 98.94 98.612

twitter-finagle 99.53 99.29 100 99.528

UltimateToolbox93_src_322262_lines 99.9 59.66 100 83.824

Verademo-Dotnet 99.81 100 100 99.924

Vertical-Fill-master 100 100 100 100

vuetify-master 74.86 79.13 100 81.596

vulnerable-app-master 93.79 100 100 97.516

vux-2 47.72 71.67 100 67.756

WebGoat_5.4_117234_lines_jspff 66.75 93.38 100 84.052

webmin_1_570_220564_lines 86.47 40.46 100 70.772

WeiPulse_OpenSource 99.91 87.91 100 95.128

wikihow_iphone_app_master 95.37 100 100 98.148

WordPress_iOS_develop 93.35 40.22 100 73.428

xmlservice-master 99.98 96.34 100 98.528

96

	List of Abbreviations and Acronyms
	Introduction
	Motivation
	Objectives
	Research Method
	Document Structure

	State of the Art
	Fundamental Concepts
	Vulnerabilities
	Security Testing
	Continuous Integration and Delivery
	Software Development Life Cycle
	Software Quality

	Related Work
	General Related Work
	Specific Related Work

	Summary

	Proposed Approach
	SAST Scan Process and Core Concepts
	Overview of the Proposed Approach
	Requirements
	Architecture Design
	Technology Stack
	Design Decisions
	Summary

	Development
	Data Extraction from a Scan
	Identifying Scan Phases in Log Files
	Analyzing Common Exceptions
	Updating the Engine Log Service

	Configuring Coverability
	Configuring Domability
	Configuring Querability
	Configuring Scan Quality
	Statistical Analysis
	Scan Quality Metric Integration
	Plan for Scan Quality Metric Integration
	Publish Phase
	Deployment Phase

	Solution Validation
	Summary

	Results
	Data Analysis and Visualization Using PowerBI
	Results Analysis
	Discussion
	Summary

	Conclusion
	Future Work

	REFERENCES
	ANNEX I

