
 

  

 

Universidade do Minho 

Escola de Engenharia 

 
 
 
 
 

Ana Margarida Oliveira Ferreira 

 
Continuous Inspection of Software 
Quality in an Automotive Project 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
July 2023 

C
on

tin
uo

us
 In

sp
ec

tio
n 

of
 S

of
tw

ar
e 

Q
ua

lit
y 

in
 a

n 
Au

to
m

ot
iv

e 
Pr

oj
ec

t 
An

a 
M

ar
ga

rid
a 

O
liv

ei
ra

 F
er

re
ira

 
U

M
in

ho
 |

 2
02

3 



    

 

   

 



 

iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ana Margarida Oliveira Ferreira 
 
Continuous Inspection of Software Quality 
in an Automotive Project 

July 2023 

Master’s Work Dissertation Report 
Integrated Master’s in Engineering and Management of 
Information Systems 
 
 
Work performed under the supervision of 
Professor Doutor Miguel Abrunhosa de Brito 



 

iv 

COPYRIGHT AND TERMS OF USE OF THE WORK BY THIRD PARTIES 

This is an academic work that can be used by third parties as long as the internationally accepted rules 

and good practices are respected, with regard to copyright and related rights. 

Thus, the present work can be used under the terms foreseen in the license indicated below. 

If the user needs permission to be able to use the work under conditions not provided for in the indicated 

licensing, he/she should contact the author, through the RepositóriUM of the University of Minho. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Licença concedida aos utilizadores deste trabalho 

 
 

 

Atribuição-NãoComercial-SemDerivações  
CC BY-NC-ND  

https://creativecommons.org/licenses/by-nc-nd/4.0/  



 

v 

ACKNOWLEDGEMENTS 

 

I want to start by expressing my gratitude to my parents for their consistent support throughout my 

journey, for providing me this opportunity, and always fighting for my best interest. Then, thank Rodrigo 

for being the most important person in my life and for being able to bother me like anybody else can. 

A special thanks to my advisor, Professor Miguel Abrunhosa de Brito, for his support from day one and 

for helping me at any time. Your expertise, patience, and dedication have been instrumental in shaping 

my research and helping me navigate the challenges along the way. 

Additionally, I want to thank my colleagues at CI&Tools for helping me out, teaching me, and turning me 

into an authentic mechanic, I am very pleased to work and learn with you. Above all, I want to express 

my sincere thanks to José Lima and José Marques for all the patient examining the entire dissertation, 

for giving me this opportunity, for their support, and for being great mentors. 

I also want to show my gratitude to João for his unwavering support throughout my life's decisions, for 

his everlasting patience, and for being there for me on both good and bad days. Also, I'm grateful to my 

closest friends for their constant support and motivation, I hope we become rich together. Thanks to the 

course friends I've made over the past five years for adding to the beauty of this journey. 

Lastly, even if they couldn't tell anyone the name of my course, I'd want to thank my grandparents and 

all my family for being there and for keeping me motivated, I think this is calling for a toast. Particularly 

those who are no longer present physically to celebrate, I hope they are proud of my trip. PS: I am an 

engineer, not a computer specialist, and much less of a home appliance expert! 

 

 

 

 

 



 

vi 

STATEMENT OF INTEGRITY 

I hereby declare having conducted this academic work with integrity. I confirm that I have not used 

plagiarism or any form of undue use of information or falsification of results along the process leading to 

its elaboration.  

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho. 

  



 

vii 

ABSTRACT 

Continuous Inspection of Software Quality in an Automotive Project 

Due to the amount of software that is produced every day in the automotive industry, improve software 

quality became a necessity, especially in areas where safety is a critical point, such as autonomous 

driving. Following on from this, continuous inspection of software is important, timely and central, to 

guarantee software quality and avoid the worst scenarios related to the automotive industry, particularly 

with autonomous driving.  

Even so, this proposal is motivated by the huge number of failures associated with low quality software. 

Additionally, extending a new feature could damage the success of the entire project because of  potential 

software flaws or poor programming practices. After all, bad quality software leads to the need to review 

and rewrite the software and then, software’s lifecycle is always going around, so this has associated 

costs in terms of money, time and resources and can lead to a bad reputation for the company, due to 

not meeting deadlines, delivering low quality software, among other factors. 

In this way, the main objective of this research is to achieve a solution for continuous inspection of 

software quality in the context of the company Bosch Car Multimedia. For this, a tool called CIAnalyzer 

Tool was developed, and an architecture was designed and implemented in which CIAnalyzer acts as an 

intermediary between SonarQube and Jenkins providing an analysis of the software, every time someone 

delivers a software to the repository. This software passes through an analysis and, if it passes the 

analysis, is delivered to the repository, contributing to the continuous inspection of the software code.  

After the implementation of this solution, there was a 77.7% decrease in bugs, a 64.6% reduction in code 

smells, and 100% in vulnerabilities existing in the repository. The results were good, and this dissertation 

helps in theory and in practice in CI/CD area, and the knowledge created was helpful, contributing with 

a solution capable to provide continuous inspection of the software quality, in an automotive project. 

 

 

 

 

Keywords: continuous inspection; software quality; automotive industry; continuous delivery; continuous 

integration 



 

viii 

RESUMO 

Inspeção Contínua da Qualidade do Software num Projeto Automóvel 

Devido à quantidade de software que é produzido diariamente na indústria automóvel, melhorar a 

qualidade do software tornou-se uma necessidade, especialmente nas áreas em que a segurança é um 

ponto crítico, como a condução autónoma. Neste seguimento, a inspeção contínua do software é 

importante, oportuna e central, de forma a garantir a qualidade do software e evitar os piores cenários 

relacionados com a indústria automóvel, particularmente com a condução autónoma. 

Assim sendo, esta proposta é motivada pelo enorme número de falhas associadas a software com baixa 

qualidade. Além disso, estender uma nova funcionalidade poderia estragar o sucesso de todo o projeto, 

devido a falhas no software ou más práticas de programação. Software com má qualidade leva à 

necessidade de rever e reescrever o software e, por isso, o ciclo de vida do software anda sempre às 

voltas, o que tem associado custos em termos de dinheiro, tempo e recursos e pode levar a uma má 

reputação da empresa, devido ao incumprimento de prazos, entrega de software com baixa qualidade e 

outros fatores. 

Neste sentido, o principal objetivo desta dissertação é obter uma solução para inspeção contínua da 

qualidade do software, no contexto da empresa Bosch Car Multimedia. Para isso, uma ferramenta 

chamada CIAnalyzer Tool foi construída e foi desenhada e implementada uma arquitetura, onde o 

CIAnalyzer age como intermediário entre o SonarQube e o Jenkins, providenciando uma análise ao 

software, sempre que é entregue código para o repositório. Esse software passa por uma análise e, caso 

passe nessa análise, é entregue para o repositório, contribuindo para a inspeção contínua do software.  

Após a implementação da solução, houve uma diminuição em 77,7% dos bugs, 64,6% de code smells e 

100% das vulnerabilidades existentes no repositório. Assim, os resultados foram positivos e esta 

dissertação ajuda na teoria e na prática na área de integração e entrega contínua, e o conhecimento 

criado foi bastante útil, contribuindo com uma solução capaz de providenciar a inspeção contínua da 

qualidade do software, num projeto automóvel. 

 

 

Palavras-chave: inspeção contínua; qualidade do software; indústria automóvel; entrega contínua; 

integração contínua. 



 

ix 

INDEX 

Copyright and Terms of Use of the Work by Third Parties .................................................................... iv 

Acknowledgements .............................................................................................................................. v 

Statement of Integrity ......................................................................................................................... vi 

Abstract............................................................................................................................................. vii 

Resumo............................................................................................................................................ viii 

List of Abbreviations and Acronyms .................................................................................................... xii 

List of Figures ................................................................................................................................... xiii 

List of Tables ..................................................................................................................................... xv 

1. Introduction ................................................................................................................................ 1 

1.1 Context ................................................................................................................................ 1 

1.2 The Company ...................................................................................................................... 2 

1.3 Motivation ............................................................................................................................ 2 

1.4 Objectives ............................................................................................................................ 3 

1.5 Methodology ........................................................................................................................ 3 

1.6 Document Structure ............................................................................................................. 5 

2. State of Art ................................................................................................................................. 6 

2.1 Concepts ............................................................................................................................. 6 

2.1.1 Continuous Inspection .................................................................................................. 6 

2.1.2 Agile and DevOps ......................................................................................................... 8 

2.1.3 Continuous Integration and Continuous Delivery .......................................................... 10 

2.2 Literature Review ............................................................................................................... 13 

2.2.1 Challenges of CI/CD ................................................................................................... 13 

2.2.2 Benefits of software quality ......................................................................................... 15 

2.2.3 Case Studies .............................................................................................................. 15 



 

x 

2.2.4 Methodologies, Processes and Guidelines ................................................................... 17 

2.2.5 Tools .......................................................................................................................... 26 

3. Solution Specifications .............................................................................................................. 30 

3.1 Programming and Data Exchange Languages to be analyzed .............................................. 30 

3.2 Requirements .................................................................................................................... 31 

3.3 Tools and Technologies Analysis ........................................................................................ 33 

3.4 Selected Tools and Technologies ........................................................................................ 35 

4. Solution Design ......................................................................................................................... 35 

4.1 Architecture ....................................................................................................................... 35 

4.2 Proof of Concept ................................................................................................................ 37 

4.3 Analysis types .................................................................................................................... 40 

4.4 Design Decisions ............................................................................................................... 41 

4.4.1 Manage Quality Checks and Quality Gates .................................................................. 41 

4.4.2 Exclude files or directories from analyses .................................................................... 42 

4.4.3 Make two different analysis – Job definition ................................................................ 43 

4.4.4 Make two different analysis – Analysis content ............................................................ 45 

4.4.5 Analysis report and history .......................................................................................... 46 

4.5 Quality Gates Definition ...................................................................................................... 47 

5. Solution Implementation ........................................................................................................... 49 

5.1 SonarQube ........................................................................................................................ 50 

5.1.1 SonarQube configuration ............................................................................................ 50 

5.1.2 Quality Profiles ........................................................................................................... 51 

5.1.3 SonarQube issues ...................................................................................................... 52 

5.2 CIAnalyzer Tool .................................................................................................................. 53 

5.3 Jenkins .............................................................................................................................. 60 



 

xi 

6. Solution Validation .................................................................................................................... 63 

7. Results ..................................................................................................................................... 65 

7.1 First Analysis ..................................................................................................................... 65 

7.2 Last Analysis ..................................................................................................................... 68 

7.3 Discussion ......................................................................................................................... 72 

8. Conclusion and Future Work ..................................................................................................... 73 

8.1 Conclusion ........................................................................................................................ 73 

8.2 Future Work ....................................................................................................................... 75 

References ....................................................................................................................................... 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

LIST OF ABBREVIATIONS AND ACRONYMS 

ADS Autonomous Driving Systems 

API Application Programming Interface 

CD Continuous Delivery 

CI Continuous Integration 

CQID Code Quality Issues Density 

CSS Cascading Style Sheets 

DSR Design Science Research 

GUI Graphical User Interface 

HTML HyperText Markup Language 

IBM International Business Machines Corporation 

IEEE Institute of Electrical and Electronics Engineers 

IoT Internet of Things 

IT Information Technology 

Json JavaScript Object Notation 

LiDAR Light Detection and Ranging 

NPM Node Package Manager 

OEM Original Equipment Manufacturer 

S.A. Sociedade Anónima 

SAFe Scaled Agile Framework 

SPICE Software Process Improvement and Capability Determination 

Tapco Test Automation Progression in Continuous Practices 

XML Extensible Markup Language 

YAML Yet Another Markup Language 

 



 

xiii 

LIST OF FIGURES 

Figure 1 - DSR Process Model ............................................................................................................. 4 

Figure 2 – DevOps. (https://www.atlassian.com/devops) ................................................................... 9 

Figure 3 - Continuous Integration and Continuous Delivery. (https://www.mabl.com/blog/what-is-cicd)

 ........................................................................................................................................................ 10 

Figure 4 - Continuous Integration. (https://www.pagerduty.com/resources/learn/what-is-continuous-

integration/) ..................................................................................................................................... 11 

Figure 5 - Continuous Delivery. (https://www.altexsoft.com/blog/business/continuous-delivery-and-

integration-rapid-updates-by-automating-quality-assurance/) .............................................................. 12 

Figure 6 - Software Delivery Pipeline (Guşeilă et al., 2019) ................................................................ 22 

Figure 7 - Student's introduced CQIDs before and after adopting CI (Lu et al., 2018) ......................... 23 

Figure 8 - Proposed CI pipeline (Lavriv et al., 2017) .......................................................................... 24 

Figure 9 - Tapco model (Ståhl & Mårtensson, 2021) .......................................................................... 25 

Figure 10 - Architecture First Version ................................................................................................ 36 

Figure 11 - Architecture Second Version ............................................................................................ 37 

Figure 12 - SonarQube analysis result - Proof of Concept ................................................................... 38 

Figure 13 - Jenkins Job Proof of Concept .......................................................................................... 39 

Figure 14 - Solution 1 Manage Quality Checks and Quality Gates ....................................................... 41 

Figure 15 - Solution 2 Manage Quality Checks and Quality Gates ....................................................... 42 

Figure 16 - Solution 1 Exclude files or directories from analysis ......................................................... 43 

Figure 17 - Solution 2 Exclude files or directories from analysis ......................................................... 43 

Figure 18 - Solution 1 Make two different analysis – Job definition ..................................................... 44 

Figure 19 - Solution 2 Make two different analysis – Job “Utils_CIToolsAnalyzer” ............................... 44 

Figure 20 - Solution 2 Make two different analysis – Job “Utils_CIToolsAnalyzer_Nightly” .................. 44 

Figure 21 - Solution 1 Make two different analysis – Analysis content ................................................ 45 

Figure 22 - Solution 2 Make two different analysis – Analysis content ................................................ 46 

Figure 23 - Solution 1 Analysis report and history .............................................................................. 47 

Figure 24 - Solution 2 Analysis report and history .............................................................................. 47 

Figure 25 - SonarQube Dashboard .................................................................................................... 51 

Figure 26 – Example of Blocker Issue ............................................................................................... 52 

Figure 27 – Example of Critical Issue ................................................................................................ 52 



 

xiv 

Figure 28 – Example of Major Issue .................................................................................................. 52 

Figure 29 – Example of Minor Issue .................................................................................................. 52 

Figure 30 – Example of Info Issue ..................................................................................................... 53 

Figure 31 – CIAnalyzer Tool options .................................................................................................. 53 

Figure 32 - CIAnalyzer Tool commands ............................................................................................. 54 

Figure 33 - Function delete_project ................................................................................................... 56 

Figure 34 - Function delete_project_action ........................................................................................ 56 

Figure 35 - Function construct_url .................................................................................................... 56 

Figure 36 - Arguments required start-analysis .................................................................................... 57 

Figure 37 - Function start-analysis ..................................................................................................... 57 

Figure 38 - Analysis Report start-analysis........................................................................................... 58 

Figure 39 - Json analysis function ..................................................................................................... 59 

Figure 40 - Analysis report Json ........................................................................................................ 60 

Figure 41 - Jenkins Job ..................................................................................................................... 61 

Figure 42 - Code analysis stage ........................................................................................................ 62 

Figure 43 - Initial Analysis Overview .................................................................................................. 66 

Figure 44 - Initial Analysis Job Info .................................................................................................... 66 

Figure 45 - Initial Analysis Reliability .................................................................................................. 67 

Figure 46 - Initial Analysis Security .................................................................................................... 67 

Figure 47 - Initial Analysis Maintainability .......................................................................................... 68 

Figure 48 - Last Analysis Overview .................................................................................................... 69 

Figure 49 - Last Analysis Job Info ...................................................................................................... 69 

Figure 50 - Last Analysis Reliability ................................................................................................... 70 

Figure 51 – Last Analysis Security .................................................................................................... 70 

Figure 52 - Last Analysis Maintainability ............................................................................................ 71 

Figure 53 - Issues History ................................................................................................................. 71 



 

xv 

LIST OF TABLES 

Table 1 - Lessons learned in test automation (Gmeiner et al., 2015) .................................................. 17 

Table 2 - Quality before and after applying CI (Hamdan & Alramouni, 2015) ...................................... 19 

Table 3 - Comparison of source code management tools (Uzunbayir & Kurtel, 2018) ......................... 27 

Table 4 - Exclusions .......................................................................................................................... 31 

Table 5 - Requirements ..................................................................................................................... 32 

Table 6 - Tools and Technologies ...................................................................................................... 33 

Table 7 - Analysis Types.................................................................................................................... 40 

Table 8 - Quality gates – First Phase ................................................................................................. 48 

Table 9 - Quality Gates – Second Phase ............................................................................................ 49 

Table 10 - Quality Profiles ................................................................................................................. 51 

Table 11 - CIAnalyzer Tool Commands Information ........................................................................... 54 

Table 12 - Requirements Cross-Check ............................................................................................... 63 

 



 

1 

1. INTRODUCTION 

This chapter is intended to make a context of the subject under study, followed by a brief description of 

the company where the platform will be validated, the motivation and objectives for this dissertation. After 

that, the methodology is shown and, finally, the document structure is presented. 

1.1 Context 

With emerging technology and a multitude of factors such as business competitiveness, digital 

disruptions, and digital reinventions, the requirements of the markets have changed the environment for 

software companies (Gupta et al., 2022). Thousands and thousands of lines of source code are written 

every day to develop software. That software should be understandable by people other than its 

developers(Iqbal et al., 2017). According to (Lomio et al., 2022), developers spend more time fixing bugs 

and refactoring the code to increase maintainability than developing new features.  

In the automotive industry, the amount of software in modern cars is significant and is growing with the 

release of new cars (Durisic et al., 2011). In their words, the permanently increasing complexity of in-car 

electronics and the rapidly growing amount of automotive software running on embedded electronic 

control units, places higher demands on quality assurance for the future. Quality cannot be implemented 

into software on embedded control units after their development, so methods for defects detection must 

be constituted to automatically stop development to fix a problem before the defect continues downstream 

(Farkas, 2008). 

In this way, CI/CD have been shown to be very useful to improve the quality of software products 

(Zampetti et al., 2022). The sustainability of the utilization of CI/CD technologies is reflected within the 

detection of errors, which suggests the appliance of the law to attain profitability and therefore the long-

term aspect of the assembly of autonomous vehicles. By using appropriate code analysis and applying 

standards, software quality improvement techniques are integrated (Dakic et al., 2022). 



 

2 

1.2 The Company 

The solution will be validated by implementing a support platform in the context of Bosch Car Multimedia, 

S.A1. This unit belongs to the Automotive Eletronics division, and it is the group’s largest in Portugal. 

Focused on the development and production of multimedia solutions and car sensors, Bosch Car 

Multimedia export almost all of its production, being on the podium of the Portuguese companies that 

most exports in the country and also one of the largest employers in the Braga region. 

The platform will be validated in the context of the DevOps Team working in the LiDAR project. LiDAR 

(light detection and ranging) is a sensor that can be used in automobiles, thus making inroads into the 

key technology for fully automated driving. 

1.3 Motivation 

Due to the amount of software that is produced every day in the automotive industry, improving software 

quality became a necessity, especially in areas where safety is a critical point, such as autonomous 

driving. The sooner a software error is found, the easier it will be to change the code and less damage 

will be done to the project, avoiding compromising the whole project. Following on from this, continuous 

inspection of software is important, timely and central, to guarantee software quality and avoid worst 

scenarios related to the automotive industry, particularly with autonomous driving. 

Even so, this proposal is motivated by the huge number of failures associated with low quality software. 

Additionally, extending a new feature could damage the success of the entire project because of potential 

software flaws or poor programming practices. After all, bad quality software leads to the need to review 

and rewrite the software and then, software’s lifecycle is always going around, so this has associated 

costs in terms of money, time and resources and can lead to a bad reputation for the company, due to 

not meeting deadlines, delivering low quality software, among other factors. 

In this way, the present proposal intends to contribute to the theme with a solution for inspecting software 

quality in the context of an automotive project, related to autonomous driving. 

 

1 https://www.bosch.pt/a-nossa-empresa/bosch-em-portugal/  

https://www.bosch.pt/a-nossa-empresa/bosch-em-portugal/


 

3 

1.4 Objectives 

The main objective of this dissertation is to achieve a solution for continuous inspection of software quality, 

in order to ease the creation and maintenance of high-quality software. To achieve the main objective, it 

is important to highlight the following specific objectives: 

• Study the existing scientific knowledge about the research topic. 

• Define specifications for the support solution; 

• Analyze tools and technologies in the market for continuous inspection of software quality; 

• Implement a proof of concept of the support platform; 

• Implement the solution for continuous inspection of software quality; 

• Define and implement quality checks and quality gates in the support platform, based on 

specifications; 

• Validate the support solution after the implementation, based on the results, the objectives, and 

the requirements. 

1.5 Methodology 

In order to achieve the goals for this dissertation, the Design Science Research (DSR) will be the 

methodology for research. The DSR is a methodological approach that aims to provide solutions to issues 

encountered in the real world while also making a prescriptive scientific contribution. As a result of this 

kind of study, an artifact is created that provides a solution to a problem, contributes to the advancement 

of science, and aids in the problem-solving efforts of organizations (Dresch Aline and Lacerda, 2015). 

The process model of Design Science Research proposed by (Peffers et al., 2007)has six stages, and it 

is represented at Figure 1.  



 

4 

 

Figure 1 - DSR Process Model 

In this dissertation, the DSR method was used. For the first stage, "Identify Problem & Motivate" the 

problem, context, and motivation for the study were established. The objectives were then specified for 

the second stage, "Define Objectives of a Solution." The methodology for the development includes three 

steps for the third phase, "Design & Development": 

1. Study. 

2. Design. 

3. Implementation and validation. 

In the first phase – study – the state of art was made, where the concepts about continuous inspection, 

integration, testing and delivery, agile and DevOps were extended. In addition, a literature review was 

carried out, verifying the existing studies in the study area. Also, the specific characteristics and properties 

of the Bosch project, in which the support platform that was developed within the scope of this dissertation 

was be integrated, were deeply analyze, always having in mind the current state and possible points of 

improvement. 

Then, at the design phase, the specifications of the support solution were analyzed, and the architecture 

was constructed. Furthermore, a proof of concept of the support solution was made, according to the 

dissertation objectives and the defined solution specifications, the two analysis types were described, and 

the design decisions and quality gates were documented.  

Finally, the implementation and validation phase is where the system was deployed, making a full 

implementation of the support solution and documenting that.  

The fourth stage of the DSR Process Model is “Demonstration”, where the artifact was used to solve the 

problem, by testing it and validating the usefulness of the support solution to solve the identified problem. 



 

5 

The “Evaluation” stage has the observation and validation about how effective and efficient the artifact is 

to solve the problem, by observation, documenting the results of using the support solution. Finally, at 

the last stage “Communication”, is where the dissertation was delivered in order to communicate the 

artifact and its usefulness. 

In this dissertation document, the DSR Process Model is represented along the existing chapters. The 

first chapter, Introduction, corresponds to the stage “Identify Problem & Motivate” of DSR, where the 

problem and motivation were identified, and the stage “Define Objectives of a Solution”, where the 

objectives for the solution were described.  

Then, the State of Art chapter, represents the first phase of “Design & Development”, study, where a 

thorough research about the work areas was conducted, including a concept analysis and a literature 

review. The second phase of “Design & Development” is design, that matches with the Solution 

Specifications and Solution Design chapters of this document, showing the requirements and other 

specifications for the support solution, as well as the architecture, a proof of concept, the design decisions 

and the quality gates implemented. The last phase, Implementation and Validation, is represented by 

Solution Implementation and Solution Validation chapters, where the solution was deployed and the 

implementation was documented, as well as validated.  

Then, the stage “Evaluation” of the DSR Process Model corresponds to the Results chapter, where is 

showed how effective and efficient the support solution was to solve the problem, documenting the 

results. Finally, the stage “Communication” corresponds to the articles that have been published within 

the scope of this dissertation. 

1.6 Document Structure 

Following on from the methodology, the content of this document is organized in eight chapters, following 

a logical order according to the DSR process. 

In the chapter State of Art, an analysis of the central concepts was made and the literature review on the 

study area was carried out. Then, the Solution Specifications chapter shows the requirements, the files 

to be analyzed, an analysis of the existing tools and technologies for continuous inspection and a 

description of the selected ones.  

The Solution Design chapter demonstrates the architecture of the support platform, a proof of concept, a 

description of the two analysis types, the design decisions, and the quality gates defined for the support 



 

6 

solution. Then, in Solution Implementation, the support platform’s implementation is described, starting 

with SonarQube, CIAnalyzer Tool and, finally, Jenkins.  

In Solution Validation is checked if the requirements were met and, in Results, the results are shown, 

compared and there is a discussion of the improvements. Finally, in Conclusion and Future Work chapter 

the conclusion of the dissertation and future work to be done within the scope of the dissertation.  

2. STATE OF ART 

This chapter is divided into two subchapters. The first one presents the theoretical concepts for this study, 

based on articles found in Scopus and IEEE. To conduct this research, some strings were used, like 

“continuous inspection”, “continuous delivery”, “continuous integration”, “agile”, “DevOps” and 

“automotive" and the relevant concepts were extracted. 

In the same way, for the literature review, the second chapter, some services were used to search for 

documents related to the study areas covered, in particular Scopus, ResearchGate, Google Scholar and 

IEEE. In the literature review some keywords were used, including the words “continuous integration”, 

“continuous delivery”, “continuous inspection” and “software quality”. The search was based on finding 

existing studies on the area and, in the first instance, all the articles found were selected. Then, the title 

and the abstract were analyzed to eliminate studies that were not relevant and, whenever not enough, 

the introduction and/or conclusion were read. Through this, it was possible to eliminate irrelevant articles 

or the ones that seemed relevant but were not, that is, false positives. Finally, the content of the articles 

that passed these filters was analyzed and based on them, the literature review was written. 

2.1 Concepts 

2.1.1 Continuous Inspection 

Continuous Inspection is a process to detect the possible bugs in the source code which may occur due 

to bad code quality and lack of effective peer code review (Rajesh Kumar, 2021). According to the authors, 

the process of Continuous Inspection is to use available automated tools to continuously inspect code, 

generate a report on the overall code health, and point out if any violation was detected. 



 

7 

As mentioned by (Kosman & Restivo, 1992), the primary goal of inspection is to reduce software 

development costs and improve software quality by early defect detection. Early prediction of the quality 

of software modules prior to software testing and operations can yield great benefits to the software 

development teams, especially those of high-assurance and mission-critical systems (Khoshgoftaar et al., 

2002). So, early indicators of software quality are beneficial for software engineers and managers in 

determining the reliability of the system, estimating and prioritizing work items, focusing on areas that 

require more testing, inspections and in general identifying “problem-spots” to manage for unanticipated 

situations (Nagappan et al., 2008). 

In continuous inspection there is an important term: quality gate. Quality Gates indicates a status of 

approval or denial obtained for the snippet of code submitted to the (De Andrade Gomes et al., 2017). 

Due to the ever-growing importance of software in almost all human activities and recognizing the 

potentially catastrophic consequences of quality defects (Kokol, 2022), companies and countries continue 

to invest a great deal of time, money, and effort in improving software quality. (Kitchenham & Pfleeger, 

1996) believe that controlling the software’s overall quality by ensuring code quality is a crucial aspect of 

software development. In this way, low quality software can cost money and resources to the organization. 

Quality costs are important because every dollar and labor hour not spent on rework can be used for 

making better products more quickly or for improving existing products and processes (Slaughter et al., 

1998). In this way, low quality software can result in loss of reputation and loss of future business for the 

company (Tassey & Gregory, 2002). Assessment of software product quality can be achieved by analyzing 

and specifying the quality characteristics which is defined in software quality models and standards, 

based on the quality reports defined by the stakeholders. However, assessment of software quality is not 

an easy task and as time passes, the characteristics of new software systems and products will change 

(Forouzani et al., 2016). 

Throughout the last century, the automobile industry achieved remarkable milestones in manufacturing 

reliable, safe, and affordable vehicles. Because of significant recent advances in computation and 

communication technologies, autonomous cars are becoming a reality (Hussain & Zeadally, 2019). The 

automotive industry continues to change the way we live today, creating innovation and transforming the 

whole society. These changes are due to the application of new technologies within the vehicles we use 

today (Dakić & Źivković, 2021). In this way, as mentioned by (Czarnecki, 2018), automated vehicles will 

eventually completely transform the automotive industry. In the past years, autonomous driving has 

gained steady improvements and is getting more and more intelligent to precisely sense environments in 



 

8 

the real world, quickly analyze the sensor data, and autonomously make complex decisions (Ren et al., 

2020). Due to its direct impact on road safety, multiple prior efforts have been made to study it is the 

security of perception system (Cao et al., 2019) and, according to (Liu et al., 2019), safety is the most 

important requirement for autonomous vehicles, so modern vehicles are definitely “software-intensive” 

systems. Software is now implementing and/or controlling a growing number of traditional functions as 

well as new innovative functions, made possible only by software and is also taking charge of functions 

traditionally controlled by the driver (Panaroni et al., 2008). 

Autonomous Driving Systems control the physical vehicle using sensors and actuators with intelligence 

provided by software and data. Due to the close interaction with highly open and dynamic environments, 

the ADS is expected to meet multiple safety requirements. Failures of ADS could result in accidents that 

cause damage to the environment, financial losses, injury to people, and loss of lives (Luo et al., 2022). 

Because of the increasing use of software in the processes and products of automotive companies, 

software has a significant impact on product quality and company productivity (Grimm, 2003). Hereby, 

within this industry more and more innovations are based on electronics and software to enhance the 

safety of the vehicles but also to improve the comfort of the passengers and to reduce consumption and 

emission. In this way, as the size and complexity of automotive software increases, software requirements 

specification is gaining importance in automotive software system development (Takoshima & Aoyama, 

2015). 

2.1.2 Agile and DevOps 

The issue of how software development should be organized in order to deliver faster, better, and cheaper 

solutions has been discussed in software engineering circles for decades (Dybå & Dingsøyr, 2008). A 

company must adopt agile software delivery cycle to overcome these challenges (Gupta et al., 2022). As 

mentioned by (Dikert et al., 2016), agile methods have become an appealing alternative for companies 

striving to improve their performance, but the methods were originally designed for small and individual 

teams. This creates unique challenges when introducing agile at scale when development teams must 

synchronize their activities.  

Cars include more functional safety systems such as line departure warning, which in the long run may 

develop towards full autonomous driving and the software also monitors more of the critical operations 

such as alert monitoring of the driver. In this way, due to the growth in software size and complexity, agile 



 

9 

methods are introduced to improve communication between developers and customers, shorten the time 

to market and facilitate upgrades of the software with low turn-around times (Myklebust et al., 2020). 

Automotive companies must consider strategic initiatives such as agile manufacturing systems to 

compete globally and respond to dynamic customer demand. In the automotive industry, it is thought 

that agile manufacturing systems will permit fast cost-effective responses to unpredictable and ever-

changing product demand and support rapid product launches for previously unplanned products tailored 

to meet changing customer desires (Elkins et al., 2004). However, scaling agile is not easy, as large 

projects often are globally distributed, and have many teams that need to collaborate and coordinate 

(Paasivaara, 2017). 

In line with (Turetken et al., 2016), SAFe has gained rapid attention in the practice and has become an 

important choice for organizations that need approaches for scaling agile development. It addresses 

scalability not only by scaling up agile practices, but also by introducing new practices and concepts that 

integrate with basic and scaled agile practices.  In the automotive domain, several dozen development 

teams work together in a highly coordinated fashion towards the delivery of a product. Systems and 

software engineering need to be combined in these cases to deliver a final product and the chosen 

process needs to scale across many teams and different engineering disciplines (Steghöfer et al., 2019). 

Based on (Perera et al., 2017), DevOps is extended from certain agile practices with a mix of patterns 

intended to improve collaboration between development and operation teams. In order to manage the 

improve of product quality efficiently, classical development and operation tasks were combined which 

resulted in a development concept termed DevOps (Fitzgerald & Stol, 2017). Figure 2 shows the DevOps 

lifecycle, that is a loop because the need of collaboration and communication in the eight stages. 

 

Figure 2 – DevOps. (https://www.atlassian.com/devops) 

Essentially, DevOps is a set of methods, that can be seen in Figure 2, in which developers and operations 

communicate and collaborate to deliver software and services rapidly, reliably (Perera et al., 2017) while 



 

10 

maintaining a high software quality (Jonsson Wold, 2022) and, today, most of the organizations are 

switching to DevOps for faster and reliable delivery (Batra & Jatain, 2021). 

2.1.3 Continuous Integration and Continuous Delivery 

The popular agile practices of continuous integration and delivery (CI/CD) have become an essential part 

of the software development process in many companies (Ståhl & Bosch, 2017). Continuous Integration 

and Continuous delivery have emerged as a boon for traditional application development and release 

management practices to provide the capability to release quality artifacts continuously to customers with 

continuously integrated feedback (Soni, 2015). As mentioned by (Williams, 2018), CI/CD is a well-known 

practice in DevOps to ensure fast delivery of new features and it enables development teams to deliver 

code changes constantly and consistently in production, so CI/CD is widely used in DevOps communities, 

as it allows for teams of all sizes to deploy rapidly changing hardware and software resources quickly and 

confidently (Sampedro et al., 2018).  

CI/CD are the software development industry practices that enable organizations to frequently and reliably 

release new features and products (Shahin et al., 2017). In the words of (van der Valk et al., 2018), the 

pressure of reducing time to market and increasing flexibility while keeping quality are leading motivations 

for these companies to embrace system-wide Continuous Integration and Delivery. According to (Debroy 

et al., 2018), CI/CD are widely considered to be best practices in software development, allowing 

significantly reduce deployment time and increase reliability (Di Penta, 2020). 

Continuous Integration covers development and testing, and Continuous Delivery extends this with 

automated integration testing (Rangnau et al., 2020). In this way, Continuous Integration and Continuous 

Delivery are software engineering processes used in DevOps in order to improve the efficiency of projects, 

by helping to reduce the amount of time needed to release software to customers while also maintaining 

a high level of quality (Eddy et al., 2017). In Figure 3 it is possible to see the CI/CD pipeline workflow 

and all the phases of this method, as Code, Plan, Monitor, among others. 

 

Figure 3 - Continuous Integration and Continuous Delivery. (https://www.mabl.com/blog/what-is-cicd) 



 

11 

In the words of (Zampetti et al., 2021),CI/CD pipelines entail the build process automation on dedicated 

machines and have been demonstrated to produce several advantages including early defect discovery, 

increased productivity, and faster release cycles. They also said that effectiveness of CI/CD may depend 

on the extent to which such pipelines are properly maintained to cope with the system and its underlying 

technology evolution, as well as to limit bad practices. The results of (Johnson et al., 2013) study 

confirmed that false positives and developer overload play a part in developers’ dissatisfaction with current 

static analysis tools, so CI/CD platforms must be reliable and stable to avoid this kind of errors. 

Basically, CI refers to integrate early, don’t keep changes localized to your workspace for long, instead 

share your changes with team and validate how code behaves (Virmani, 2015). It is a software 

development practice that leads developers to integrate their work more frequently. Software projects 

have broadly adopted CI to ship new releases more frequently and to improve code integration.  

The adoption of CI is motivated by the allure of delivering new functionalities more quickly (Bernardo et 

al., 2018). Developers can check-In code frequently, this allows developer teams to check if the code 

passes testing phase or not consistently. It helps development teams by faster issue discovery, which 

means the issues and errors in code are found quickly through the automated test. The other benefit is, 

it reduces the possibilities of integration issues, large scale integration issues are less familiar with the 

adoption of CI (Garg & Garg, 2019). Main benefits of CI practices are reducing the risk and make software 

bug free and reliable, which removes the barrier of frequent delivery (Arachchi & Perera, 2018).Figure 4 

helps to see the stages of CI, which starts with developer and ends with the release.  

 

Figure 4 - Continuous Integration. (https://www.pagerduty.com/resources/learn/what-is-continuous-

integration/) 



 

12 

Continuous Delivery is a software engineering approach in which teams keep producing valuable software 

in short cycles and ensure that the software can be reliably released at any time (Chen, 2015). Allowing 

swift release cycles, Continuous Delivery has become popular in application software development and 

is starting to be applied in safety-critical domains such as the automotive industry (Vost & Wagner, 2017). 

As mentioned by (Vassallo et al., 2016), CD is an agile software development practice in which developers 

frequently integrate changes into the main development line and produce releases of their software. CD 

tries to optimize the infrastructure management and the critical need to balance out time and resources 

(Virmani, 2015). The CD approach goes even further in software development automation, it aims to 

enable on-demand software release and the practice employs a set of automated stages including the 

acceptance tests and release process (Górski, 2022). 

According to (Chen, 2017), companies that have adopted CD have reported significant benefits. 

Accelerated time to market, improve product quality, improved customer satisfaction, reliable release, 

improved productivity, and efficiency are key benefits which motivates companies to invest on CD (Chen, 

2015). Basically, CD has five different stages, that happen sequentially and allows to create builds 

multiple times per day, as it is possible to see in Figure 5. 

 

Figure 5 - Continuous Delivery. (https://www.altexsoft.com/blog/business/continuous-delivery-and-

integration-rapid-updates-by-automating-quality-assurance/) 

Figure 5 shows how Continuous Delivery works, demonstrating that it is a cycle and has many stages as 

Develop, Build, Automated Test, Automated Deploy and Automated/Controlled release. 



 

13 

2.2 Literature Review 

2.2.1 Challenges of CI/CD 

Notably, more and more companies are in the process of adopting modern continuous software 

development practices and approaches like continuous integration, continuous delivery, or DevOps. These 

approaches can support companies in order to increase the development speed, the frequency of product 

increments, and the time-to-market. To be able to get these advantages, especially the tooling and 

infrastructure need to be reliable and secure. Therefore, the goal of this research conducted by  (Paule 

et al., 2019) was to identify which vulnerabilities are present in industry of CD pipelines and how they 

can be detected. They present the results of an industry case study which includes a qualitative survey 

of agile project teams regarding the awareness of security in CI/CD, the analysis and abstraction of two 

CD pipelines measuring the overall risk, matching the impact with the likelihood. 

By conducting a survey and inspecting two CD pipelines from industry, they mentioned that found that 

the security of CD pipelines does not have high priority in development teams. Additionally, though most 

of the team members have access to the CD pipeline configuration, the lack of security awareness and 

background in the teams pose a risk to this increasingly business-critical development tool, both in terms 

of infrastructure, as well as in terms of application. The results of the case study, in their words, show 

that both investigated CD pipelines have included vulnerabilities which have an overall risk severity 

between medium and potentially high, because the project teams are dependent on the customers’ 

infrastructure. 

Based on metrics and interview results from a large-scale industry project, (Mårtensson et al., 2017) 

present the factors that, according to the developers themselves, affect how often they deliver software 

to the mainline. The authors said that the three factors found in this study which affect continuous 

integration behaviors are:  

• The delivery process is time-consuming. 

• It is too complicated to deliver. 

• No evident value to deliver often to the mainline.  

They also defend that build system capacity should be considered as an important factor, but other factors 

should be seen as at least as important. 



 

14 

In a similar way, because of challenges faced when shifting a primary web application to a micro-services-

based architecture and adapting the software for more effective CI/CD, (Debroy et al., 2018) focus on 

two challenges: related to ling wait times for builds/releases to be queued and completed and the lack 

of support for tooling, especially from a cross-cloud perspective. Then, they present the solutions that 

they came up with, which involved rethinking DevOps as it applied to them, and re-building their own 

CI/CD pipelines based on DevOps-supporting approaches such as containerization, infrastructure-as-

code, and orchestration.  

They said they were able to get around these barriers by applying DevOps principles such as 

containerization, orchestration, and cross-collaboration among teams, to ultimately develop a lean and 

robust CI/CD pipeline which has shown to be very performant and suitable for our needs. In doing so, 

they also achieved de-coupling and portability – which they defend that are good software engineering 

principles.   

To this extent, in the automotive, most of the innovation is nowadays coming from electronics and 

software. The pressure of reducing time to market and increasing flexibility while keeping quality are 

leading motivations for these companies to embrace system-wide continuous integration and delivery, 

which in the scope of complex automotive value-chains, implies inter-organizational CI/CD. (van der Valk 

et al., 2018) investigates the challenges and impediments posed by inter-organizational CI/CD in the 

automotive domain, focusing on legal contracts that regulate the agreements between these companies 

and transparency intended as the degree/level of information that is shared between the various 

companies in the value-chain.  

As mentioned by (van der Valk et al., 2018), the main findings of this study show that: 

• inter-organizational transparency is considered positive but not a necessary condition for inter-

organizational CI/CD. 

• transparency has positive effects on information sharing among different companies. 

• legal contracts are an impediment for inter-organizational CI/CD.  

They defend that the results of the study provide useful insights for practitioners that work in similar 

settings and show that more flexible contracts are needed, and that more transparency between the 

manufacturer and suppliers is considered as an enabler for interorganizational CI/CD. 



 

15 

2.2.2 Benefits of software quality 

According to (Paliotta, 2015), statistics show that more than 50% of auto recalls are now due to software 

bugs, not mechanical issues. His paper intends to outline why software quality needs to be at the top of 

the list for automotive OEMs looking to preserve and elevate their brand status. He defends that for quality 

to improve, continuous integration and continuous software testing are a necessity and well-designed test 

allow regressions to be caught prior to product release, and lead to a reduction in branch damage and 

costs associated with product recalls. 

The author conclude that are numerous process improvement initiatives that can easily be adopted by 

any development group regardless of size, as long as the entire team is committed to quality 

improvement. In his words, improving software quality results in the following business benefits:  

• Fewer bugs go to integration, which shortens integration time; 

• Shorter integration time means faster release cycles; 

• Fewer bugs go to customers, leading to happier customers; 

• Happier customers lead to increased revenue and brand loyalty. 

Finally, he said that software is the primary controller of the human interface and the majority and internal 

processing of most electronic devices, and the automobile is the largest and most complicated electronic 

device that any consumer will ever buy and improving software quality has the power to transform the 

reputation of automotive brands. 

2.2.3 Case Studies 

With the increasing interest in the literature on continuous practices, it is important to systematically 

review and synthesize the approaches, tools, challenges, and practices reported for adopting and 

implementing continuous practices. (Shahin et al., 2017) revise the state of the art of continuous 

practices to classify approaches and tools, identify challenges and practices in this regard, and identify 

the gaps for future research. Their paper also reveals that continuous practices have been successfully 

applied to both greenfield and maintenance projects.  

The results showed that the research on continuous practices is gaining interest and attention from 

software engineering researchers and revealed that continuous practices can be successfully applied to 

both greenfield and maintenance projects. 



 

16 

Years ago, automated test generation has been suggested as a way of creating tests at a lower cost. 

Nonetheless, it is not very well studied how such tests compare to manually written ones in terms of cost 

and effectiveness. This is particularly true for industrial control software, where strict requirements on 

both specification-based testing and code coverage typically are met with rigorous manual testing. To 

address this issue, (Mateen et al., 2018) conducted a case study to compare manually and automatically 

created tests. 

Their results showed, according to them, that automatically generated tests achieve similar code coverage 

as manually created tests, but in a fraction of the time (an average improvement of roughly 90%). They 

also found that the use of an automated test generation tool does not result in better fault detection in 

terms of mutation score compared to manual testing. Specifically, manual tests more effectively detect 

logical, timer and negation type of faults, compared to automatically generated tests. They defend that 

the results underscore the need to further study how manual testing is performed in industrial practice 

and the extent to which automated test generation can be used in the development of reliable systems. 

Continuous integration and delivery consolidate several activities, and, during these activities, software 

professionals seek additional information to perform the task at hand. Developers that spend a 

considerable amount of time and effort to identify such information can be distracted from doing 

productive work. A better understanding of the information needs of software practitioners has several 

benefits, such as staying competitive, increasing awareness of the issues that can hinder a timely release, 

and building a visualization tool that can help practitioners to address their information needs. In this 

way, (Ahmad et al., 2021) conducted a multiple-case holistic study to identify information needs in 

continuous integration and delivery. This study attempts to capture the importance, frequency, required 

effort (e.g., sequence of actions required to collect information), current approach to handling, and 

associated stakeholders with respect to identified needs. There were identified developer’s information 

needs and discussed whether the information needs were aligned with the tools used to address them. 

As stated by (Ahmad et al., 2021), the data produced in the continuous integration and delivery can 

provide significant insights such as teams performance, possible bottlenecks, or areas for improvements, 

etc. After the study, they observed that the identified needs were not aligned with the tools that are used 

to address them. Also, several information needs cannot be addressed through available tools, requiring 

manual inspections, and thus taking more time. Information needs that are related to code and commit, 

confidence level, and testing are marked as most important and most frequently sought. This study 



 

17 

concluded that companies do not put enough effort into development resources for building in-house 

tools, thus spending a considerable amount of time selecting unsuitable outsourced tools or plugins. 

With a specific context, (Gmeiner et al., 2015) defends that companies running an online business need 

to be able to frequently push new features and bug fixes from development into production. Successful 

high-performance online companies deliver code changes often several times per day. Their continuous 

delivery model supports the business needs of the online world. At the same time, however, such 

practices increase the risk of introducing quality issues and unwanted side effects. Rigorous test 

automation is therefore a key success factor for continuous delivery. In this paper, they describe how 

automated testing is used in the continuous delivery pipeline of an Austrian online business company. 

The paper illustrates the complex technical and organizational challenges involved and summarizes the 

lessons from more than six years of practical experience in establishing and maintaining an effective 

continuous delivery pipeline, as shows Table 1. 

Table 1 - Lessons learned in test automation (Gmeiner et al., 2015) 

 

They reported several lessons learned from more than six years of practical experience. These lessons, 

as can be seen in Table 1, from which it is possible to highlight take collective responsibility for the 

pipeline for establishing the pipeline and combine automated and manual testing for operating the 

pipeline, include success factors that had a huge impact on the setup and operation of the pipeline. In 

the beginning, as they said, the main purpose of the continuous delivery pipeline was to get the features 

of the software system ready for user acceptance testing in the best possible quality. As stated by the 

authors, few pre-conditions must be satisfied before this step can become reality. First, a fully automated 

capacity and security testing must be in place, unit test coverage must be increased, and the coverage 

has to be ensured in the commit stage. In addition, the plans for future are also driven by the fast-

changing online business.  

2.2.4 Methodologies, Processes and Guidelines 

Using the practice for introducing system test activities in the agile team activities every iteration, (Sandu 

& Salceanu, 2019) defend that organizations can improve the quality of the delivered products, reduce 



 

18 

costs, become more predictable, reduce time to market, increase sustainability of the development 

process, improve employee’s morale, strengthen their image, and increase customer satisfaction. 

According to them, only by adopting and implementing continuous software process improvement 

imposed and requested as well by the standard automotive SPICE, OEMs and their subcontractors which 

produce software based electronic components for automotive industry, will increase quality by reducing 

the number of unresolved bugs, unleashing the power of autonomous agile teams. 

Due to overcome the problem associated with the traditional load test methods, that are unable to identify 

production performance behavior because of simulates traffic patterns are highly deviated from 

production, (Arachchi & Perera, 2018) has presented an approach that has extended CI/CD pipeline to 

have three automation phases. That approach minimizes the system interruption by using test and scaling 

and it minimizes the system interruption by using test bench approach when system benchmarking and 

it uses the production traffic for load testing which gives more accurate results.  

According to (Arachchi & Perera, 2018), the proposed extended feature on CI/CD pipeline, has achieved 

goals through test bench approach, it enables continuous benchmark of each software version and go-

replay has given access to same live traffic on benchmark and load test phases. So, consistent with their 

results, test bench approach has proved that after scaling system could process same or better load with 

new development. 

With the same point of view, (Poornalinga & Rajkumar, 2016) defend that automating the integration, 

deployment and delivery of software development is one of the key solutions for attaining productive 

growth in software industries whereby which the ideas of agile and DevOps can be turned into practical 

solutions. In their paper, they demonstrated a newly structured cloud infrastructure in which the complete 

automation of the continuous integration, deployment and delivery are done and experimentally tested.  

Because of the importance of software quality, is significant to have a high-quality software on every 

project. CI mitigate the risks of software integration, improving its quality. In this way, (Hamdan & 

Alramouni, 2015) presents a framework that identifies software quality characteristics of the development 

process when applying the practices of continuous integration in the process of software projects 

development. Then, they construct a table with comparison criteria and the results before and after 

continuous integration, as shows Table 2. 



 

19 

Table 2 - Quality before and after applying CI (Hamdan & Alramouni, 2015) 

 

The results of the study are demonstrated through Table 2, where it is possible, through the different 

criteria, to compare before and after the continuous integration. According to the authors, the results 

showed that after using CI the project took less development time and less time to fix defects, so many 

of the risks involved in the software integration process were mitigated as a result of integrating parts of 

the developed software continuously once it is ready.  

As long as continuous delivery has become popular in application software development and starting to 

be applied in safety-critical domains such as automotive industry, a safe analysis has to be updated with 

every change to ensure the safety test suite is still up to date. In this way, (Vost & Wagner, 2017) propose 

that a safety analysis should be treated no differently from other deliverables, propose guidelines to adopt 

this and formulate implications for development process. 

They have identified safety analysis and testing as a crucial point for the wide-scale establishment of 

continuous delivery in industries producing safety-critical systems. Thus, they formulated guidelines for 

dealing with these issues in the form of continuous safety builds and proposed to treat results of a safety 

analysis no different than any other artifact. They said this requires a high amount of automatization and 

good tool support in iterative safety analysis and testing. 



 

20 

In that vein, recent practices of continuous delivery, which bring new content to the end user in days or 

hours rather than months or years, have generated a surge of industry-driven interest in the release 

engineering pipeline. (Adams & McIntosh, 2016) argues that the involvement of researchers is essential. 

While release engineering technology has flourished tremendously due to industry, empirical validation of 

best practices and the impact of the release engineering process on (amongst others) software quality is 

largely missing and provides major research opportunities. They provide some advice in form of a 

checklist about how release engineering can impact software engineering researchers who need to mine 

software repositories: 

• Not all releases are equal – each release has its own characteristics. 

• There are branches, and branches – most software projects have more than one branch open at 

a time. 

• Choose before you build – not every file in a project goes into a release. 

Specifically in the automotive area, due to the growth of software in modern cars and new releases, 

changes are required to the existing systems and the changes might have a positive and negative impact 

on the quality of the final product and software architects working with the changes often conduct impact 

analyses using metrics. In this way, to identify potential risk caused by these changes, (Durisic et al., 

2011) present metrics used to measure the complexity and size of software systems. The metrics support 

early phases of software development and help reduce costly late changes and their main goal is to 

identify parts that should be tested more to reduce the risk of deteriorated quality.  

In that paper, two metrics to support measuring the impact of changed were proposed - one for measuring 

complexity and one for measuring coupling of automotive software system design and architectural 

components. If applied regularly when significant architectural changes in the system need to be made, 

they can be used to verify certain non-functional properties of the system (such as maintainability and 

robustness) and indicate parts which should be tested more. They say that this increases overall product 

quality and decreases production cost, and the measures can be applied early in the development 

process, before sending requirements for specific component realization to the suppliers, in order to 

reduce the time and cost.  

In the same domain, due to the increasing of complexity of the automobile, (Sandu & Salceanu, 2019) 

presented a methodology for reducing the number of open defects for automotive software development 

when agile methodology is used. They exemplified a method used to increase the system testing 

awareness into the agile teams. In order to have fast feedback and to solve the defects discovered during 



 

21 

development as soon as possible, they showed the benefits of implementing system test activities on 

team level. They presented comparative results for implementing system test activities outside and inside 

the agile team. In their words, they could easily identify that executing the system test activities inside the 

agile team significantly improved the delivered products and reduced the development time, effort, and 

costs. 

Within the estimations, they defend that teams should consider the system test activities and should solve 

the defects discovered during the iteration execution in the same iteration. As part of the features and 

user stories development, the agile team should fix the critical defect before the working increment is 

delivered to the internal or external customer. If in isolated cases, from various reasons, the team can't 

fix these defects, then the affected feature will not be delivered and the activities for defects fixing will be 

planned for the next iteration. 

Still in the automotive field, is known that electronic content is increasing in automobiles day by day, 

many functionalities are related to automobile system safety and safety is one of the key issues of future 

automobile development and risk of system failure is high due to increasing technological complexity and 

software content, so the software shall be tested well to arrest almost all the defects. (Barhate, 2015) 

explains a test case development and execution strategy based on practical implementation. It explains 

how test case reduction using Taguchi method, prioritization of test execution and automation help to 

make testing effective. It also demonstrates how maximum defects are discovered in short time. 

The authors defend that the paper showed that test case prioritization logic demonstrated the 

effectiveness: 20% of defects discovered in 5% test cases within 6 hours of test execution. Also, according 

to the author, increasing testing depth as per increase in maturity of software and writing new test 

scenarios to avoid pesticide paradox led to huge number of new test cases and it was achieved due to 

automation in writing test cases.  

In particular, with the increased volume of data, IoT applications need to adapt frequently and rapidly to 

new requests to increase competition and rapidly change market needs required from companies, more 

and more organizations are relying on new IT technologies and software development processes. (Guşeilă 

et al., 2019) proposes a process, methods, and tools for introducing automation for continuous 

integration, deployment, and testing in agile software development process of IoT applications, that is 

shown at Figure 6. Through the figure, it is possible to visualize the entire proposed pipeline, as well as 

highlight the use of tools such as SonarQube and Nexus to assist in some phases. 



 

22 

 

Figure 6 - Software Delivery Pipeline (Guşeilă et al., 2019) 

 According to the authors, the presented software platform for CI/CD along with the implemented 

modules for automated testing is in close alignment with the agile development methodology and practice, 

as it is possible to see in Figure 6. The approach presented for continuous testing, in their words, is 

providing a clear view on the quality of software delivered and supports the delivery of high quality, stable 

and robust products to the customer. They defend that the presented software deployment pipeline is an 

excellent platform for all mobile and web-based applications running in the cloud and supporting the 

interconnected devices to benefit of the next generation of the Internet, the Internet-of-Things. 

In the same way, because of the necessity to defining the scaffold that is flexible enough to support 

multiple software products, but solid and durable when it comes to extensive usage in the context of 

continuous integration, (Khodiakova & Khodiakova, 2021) describes approaches that allow to implement 

a reusable CI infrastructure based on a chosen continuous integration system. 

They defend it is possible to create a reusable CI infrastructure based on any software system with 

continuous integration support. The infrastructure itself and the process of its creation need to be robust 

and reliable for both infrastructure and development team. As mentioned by them, collaboration between 

these two departments improves the quality of the outcome, as opinion and experience exchange play 

major role in creating complex and distributed software and infrastructure systems. The principles of 

building a reusable CI infrastructure are valid for most of the popular solutions. As any system, the CI 

infrastructure will change with time adapting to the changes in organization structure, requirements of 

international standards or local regulations. The ability to grow, as they said, adapt and change is the 

most crucial feature of such system, as it will accompany the changes and development of related 

software products. 

Due to the need of high-quality programming skills of college students and the increasing of continuous 

inspection paradigm utilization by developers on social coding sites, as an important method to ensure 

the internal quality of massive code contributions, (Lu et al., 2018) designed a specific continuous 



 

23 

inspection process for student's collaborative projects and conducted a controlled experiment to evaluate 

how the process affects their programming quality. The authors compared the CQIDs (Code Quality Issues 

Density) before and after adopting CI, as shows Figure 7. 

 

Figure 7 - Student's introduced CQIDs before and after adopting CI (Lu et al., 2018) 

They defend that the results, verified in Figure 7, show that continuous inspection can significantly reduce 

the density of code quality issues introduced in the code per changed code line. As an example, it is 

possible to highlight student six, who showed significant improvements, according to the figure. 

In turn, (Dakic et al., 2022) tried to determine the general indicators that are most often used in assessing 

the efficiency of sustainable production in companies to show the relationship between the financial 

element and the application of technologically innovative final products in the industry of autonomous 

vehicles. They defend that by producing new software components, it is necessary to meet the basic 

stability requirements without compromising the entire system with the best possible standards governing 

the area. In order to achieve this within continuous integration, continuous deployment (CI/CD) pipeline, 

it is necessary to define the stages and testing steps that are applied within the CI/CD environment. It is 

crucial to properly understand new ideas and the direction of technology development, which is 

accompanied by appropriate standards and processes.  

As a conclusion of their work, authors defend that preservation of quality is achieved by various tools to 

improve software quality and, when creating final products, CI/CD development pipelines have been 

increasingly used in recent times. The idea of providing consumers with an equal experience is appealing 

in using a wide range of regional languages and many other innovations, setting new standards to be 

implemented in the automotive industry of autonomous vehicles.  



 

24 

As a consequence of the importance of CI in service lifecycle, due to demands of security and quality 

assurance at the stage of service deployment, (Lavriv et al., 2017) propose the infrastructure design and 

pipeline design for CI, which can be seen in Figure 8. The pipeline presented for continuous integration 

uses several tools, namely Jenkins as the core tool, SonarQube, PostgreSQL as a database, among 

others. 

 

Figure 8 - Proposed CI pipeline (Lavriv et al., 2017) 

According to the authors, the proposed scheme of Figure 8 is necessary to be implemented in modern 

information and communication systems because the service delivery includes service integration as well 

as service transferring to the end user. They need to consider the network related issues during the 

service integration process because build may be failed when code is written right but something went 

wrong in integration components interaction.  

They defend that their analysis shows that the proposed pipeline providing a productive environment for 

the developing team to automate the build and deploy their code up to the production line and the 

automation system effectively helps in saving the time and cost by increased software quality and 

productivity. Furthermore, in their words, the complete automated pipeline worked magically over the 

testing and deployment process within expected short time and their report shows that the proposed 

infrastructure could provide more productive product in development for companies adopting to CI/CD 

based agile and DevOps practices. 

Due to the problems associated with the adoption of continuous integration in industry because of social 

challenges, (Laukkanen et al., 2015) studied the adoption of continuous integration in a large-distributed 

organization.  



 

25 

In their case study, they found that a difficult architecture, lack of time, and the distribution of the 

organization can be the most influential factors hindering the adoption of CI. The authors give three 

guidelines to practitioners: 

1. Understand that the product architecture has a significant effect on the adoption. However, do 

not let architectural problems keep you from implementing CI. You may adjust the architecture 

by changing technologies or components if needed. 

2. Give enough time for the team members to overcome the initial learning phase. You must lower 

the priority of new features during the adoption.  

3. Invest in the communication between different sites and avoid centralizing different competencies 

to certain sites. Understand the value of face-to-face communication and local support personnel 

when adopting CI. 

Like this, (Ståhl & Mårtensson, 2021) present a set of under-reported challenges with continuous 

practices observed in multiple industry settings. Through a grounded theory approach, they construct the 

Tapco model — Test Automation Progression in Continuous Practices — identifying two distinct ways in 

which companies progress towards continuous delivery, into which the studied cases are mapped. The 

model is shown in Figure 9 and it is possible to see all the steps, in order by numbers or letters, for 

automation in the continuous practices. 

 

Figure 9 - Tapco model (Ståhl & Mårtensson, 2021) 

According to them, they find that companies often approach automation as an end in itself (automation 

driven automation), rather than as a means to an end. By automating tests for automation’s own sake 



 

26 

and starting where it is easy rather than planning for where it is hard, one can easily be led to forego 

certain capabilities when laying the groundwork for one’s continuous delivery pipelines — capabilities the 

necessity of which only becomes evident further on, as requirements become increasingly demanding. 

As one nears the goal of reliable software releases in a continuous delivery fashion along this path, one 

may experience diminishing returns and increasing costs while never quite achieving the goal. On the 

other hand, companies may take a different approach (strategy driven automation), treating automation 

to achieve better testing, taking them closer to the goal of actual continuous delivery. By presenting the 

resulting model to a total of seven cases in multiple industries and collecting their reflections with regards 

to its accuracy, relevancy, understandability, and novelty, they defend that the model is a valuable 

contribution, serving as a guide to practitioners who strive at great effort and expense to realize the 

promises of continuous delivery. 

2.2.5 Tools 

Once software maintenance and testing are very expensive and time-consuming activities for developers, 

several researchers in the field of software engineering devoted their effort in conceiving tools for boosting 

developers’ productivity during such development, maintenance, and testing tasks. In this way, 

(Panichella, 2018) discuss some empirical work he performed to understand the main socio-technical 

challenges developers face when joining a new software project.  

As a result, he defends that recent research in software engineering observed an increasing adoption of 

summarization techniques for accomplishing simple or more complex, development, maintenance, and 

testing tasks. 

With the same interpretation, (Deshpande et al., 2021) mentioned that test automation is the effective 

way to increase the test coverage and speed of the execution in software testing. As manual testing needs 

human effort and is prone to errors, CI is the best way to minimize risk. Software testing is becoming a 

compulsory process in assuring the quality of software product. Industries are facing challenges when 

developing software at different sites and testing on multiple platforms. Automating the build and the 

testing process is the best way to make continuous integration faster and more efficient. In this way, 

(Deshpande et al., 2021) discusses about the test automation execution setup, Jenkins’s master and 

slave communication architecture, usage of various plugins available and test execution. They used 

Jenkins because they believe Jenkins is the most effective continuous integration and continuous delivery 

tool because it helps in automating the complete process, reducing the work of a developer and can 



 

27 

check the development at each and every step of software evolution. The results, according to the authors, 

show that the limitations of the Jenkins are it has lot of redundant plugins which sometimes are confusing 

to use the correct one. 

In the same way, and because of the developed tools to facilitate such continuous activities, (Uzunbayir 

& Kurtel, 2018) identify, review, and reveal the characteristics of available tools to summarize their best 

features, as well as to identify which tools can be used for specific continuous software practices. They 

first identified the most popular tools according to their repository model to satisfy local, centralized, and 

distributed. Then, they explained how these models differ, and described them. To conform uncovering 

main characteristics of the tools, they identified 10 different characteristics, and presented a mapping 

between these characteristics and the tools, as it is possible to check through Table 3. 

Table 3 - Comparison of source code management tools (Uzunbayir & Kurtel, 2018) 

 

In Table 3 it is possible to see the comparison that was made by the authors, who crossed the tools and 

the characteristics, and it is possible to see similar characteristics between some tools, such as ArX and 

BitKeeper. According to them, many tools were similar in their working mentality. However, they differed 

according to their characteristics, and they all support and enhance continuous software practices, but 

just five of them support CI/CD at the same time. 

Similarly, due to the needs of maintaining a high quality of software releases and the costs associated, 

(Niæetin et al., 2018) argue that many open-source technologies and frameworks can be used in addition 

to field proven automotive development software so the total cost of the development, and time needed 

for testing and error checking can be reduced. Specifically, they extend the basic development process 

by using open-source build automation tools and servers to decrease the build and unit test time and 

incorporate code-based analysis tools for static and dynamic analysis.  



 

28 

In conclusion of their work, they defend that with servers for continuous integration, it is possible to 

decrease the time needed to test and integrate new changes into automotive software. In their words, 

with static analysis and dynamic analysis tools, it is possible to detect and document errors that can 

occur in automotive software and with unit testing frameworks, verify the validity of software on the unit 

and integration levels. So, they think it is shown that the approach is feasible and promising for more 

cost-effective development environments which are suitable for new companies and startups attempting 

to efficiently participate in the growing automotive industry. 

So, automatic static analysis tools are tools that support automatic code quality evaluation of software 

systems. To shed light on the impact of such contexts on the warning’s configuration, usage and adopted 

prioritization strategies of automatic static analysis tools, (Vassallo et al., 2018) surveyed developers and 

professionals in the area. In their words, the study highlights that 71% of developers do pay attention to 

different warning categories depending on the development context, and 63% of respondents rely on 

specific factors (e.g., team policies) when prioritizing warnings to fix during their programming. 

According to them, their findings show that developers mainly use automatic static analysis tools in three 

different development contexts, i.e., local environment, code review and continuous integration, 

developers configure automatic static analysis tools at least once during a project, and although 

developers do not change configuration when working in different contexts, they assign different priorities 

to different warnings along the contexts. 

Along the existing techniques, static analysis is a technique to identify and analyze software characteristics 

from source code, so it is possible to identify elements such as packages, classes, relationships, lines of 

code, bugs, complexity, coding violations and others. In this way, (Guaman et al., 2017) study, use as 

input the source code of the software applications written in different programming language for through 

static analysis identify metrics, characteristics, and technical debt with the aim to improve the quality 

when writing code. It also supports the identification of aspects such as correct apply of quality attributes, 

standards and best practices of programming that ensure the correct software development in terms of 

design and coding, using SonarQube. 

Based in their results, they defend that is advisable use standards, quality models and best programming 

practices improve in maintainability, security, changeability, reliability, and testability as part of technical 

debt pyramid. In their words, the issues major and critical are associated to bag programming practices.  

Software quality assurance is a sub-process that ensures that developed software meets and complies 

with defined or standardized quality specifications. Focusing on source code, there are characteristics 



 

29 

that can be used to evaluate the quality. From this perspective, (De Andrade Gomes et al., 2017) present 

a tool to source code quality evaluation aimed at supporting students to improve their source code and, 

consequently, their programming skills. The proposed tool uses quality reports (available to professional 

environment integrate with software repositories) to analyze students’ source code and provide feedback 

about the student coding. They prepared a source code by introducing common defects, what decreases 

the quality of source code, and ask students to perform maintenance tasks to both eliminate the 

introduced defects and introduce new features. After each modification, students must evaluate their 

code using the proposed tool to obtain feedback about quality of source code. 

The tool, named SMaRT, based on a well-known continuous inspection tool, aiming at supporting students 

to maintenance tasks – the analysis of source code allows the students to evaluate how the quality of the 

code present in their local repositories is, without compromises the project repository. The results, 

according to the authors, were positive to enhance the teaching-learning software quality assurance to 

the students. 

With the context of a static analysis tool, (Bolduc, 2016) share the lessons learned during the integration 

of the static analysis tool Klocwork with the continuous integration system. In context, in order to detect 

defects faster, some analysis tools offer an integration with the integrated development environment of 

the developers at the cost of not always detecting all the issues. To detect defects earlier and still provide 

a reliable solution, one could think of running an analysis tool at every build of a continuous integration 

system.  

The lessons learned, according to him, are: 

• Focus on the process on new defects 

• New defects management within the CI system should be driven by the types of defects sought 

out and the development process used 

• Exploit more precise initial defect data 

• Educate and engage the developers in the new process 

They have discussed some lessons learned while integrating their static code analysis tool called Klocwork 

into their continuous integration system for the Klocwork development team at Rogue Wave Software. 

They put emphasis on focusing only on newly introduced defects, managing these defects depending on 

the types of defects that one is looking for, and on the development process used, exploiting more precise 

initial defect data, and educating and engaging the developers in the new process. 



 

30 

(Armenise, 2015) defends that the ongoing transformation in the software industry, which requires fast 

response to changes and thus, across team communication and collaboration, brought Jenkins to extend 

its functionalities to impersonate the role of orchestrator for all and different roles involved in the product 

lifecycle. The need of managing the whole continuous delivery pipeline required the implementation of 

new features in Jenkins, with the objective of facilitating the creation of complex workflows, allowing the 

traceability, reducing the time-to-market, and improving the productivity. In this way, (Armenise, 2015) 

illustrates how Jenkins evolved from being a pure continuous integration platform to a continuous delivery 

one, embracing the new design tendency where not only the build but also the release and the delivery 

process of the product is automated. In this scenario, Jenkins becomes the orchestrator tool for all the 

teams/roles involved in the software lifecycle, thanks to which development, quality assurance and 

operations teams can work closely together.  

3. SOLUTION SPECIFICATIONS 

The goal of this chapter is to present the support solution's specifications. In this manner, the 

requirements imposed by the stakeholders were established after the programming and data exchange 

languages that would be examined. In addition, a market study of current tools and technologies was 

conducted. Finally, the tool was carefully selected based on the stated specifications. 

3.1 Programming and Data Exchange Languages to be analyzed 

The team’s existing repository, which contains all the relevant software for a CI/CD process, both software 

developed by the team and third-party software, has several different programming and data exchange 

language files. From this complete list of files, it was selected with the stakeholders which ones are 

relevant to be inspected.  

The relevant files to be analyzed are Groovy, PowerShell, JavaScript, Python, XML, CSS, HTML, JSON, 

YAML and IBM’s Load rule2 files. Markdown files don’t need to be analyzed because they don’t have a 

direct impact on the project. In the same way, GEN, STCFG and Configuration Source Files are third-party 

files, so they don’t need analysis. Finally, NPM ignore files are references for source control, so it doesn’t 

need analysis too. In a general way, the programming, and data exchange languages files relevant to be 

 

2 https://www.ibm.com/docs/en/elm/6.0.1?topic=build-component-load-rules  

https://www.ibm.com/docs/en/elm/6.0.1?topic=build-component-load-rules


 

31 

analyzed are the ones developed by the team and all the external libraries and third-party SW files are 

excluded. Also, all license files are third-party files, so they will be excluded too. 

All this information led to Table 4, which demonstrates all the exclusions that are configured in 

SonarScanner properties file, “sonar-scanner.properties”, with “sonar.exclusions” key, in order to narrow 

the focus of the analysis. For each exclusion, an ID and the motivation are explained. 

Table 4 - Exclusions 

ID Exclusion Motivation 

1 **/*.npmignore Exclude third-party files 

2 **/*.**/*.conf Exclude third-party files 

3 **/*.stcfg Exclude third-party files 

4 **/*.gen Exclude third-party files 

5 **/*.md Exclude third-party files 

6 **/*.jar Exclude third-party files 

7 jenkins/jobs/Obsolete/**/* Exclude obsolete directory 

8 **/license.* Exclude third-party files 

9 **/.idea/**/*.* Exclude third-party files 

 

As an example, as can be seen in Table 4, the exclusion “jenkins/jobs/Obsolete/**/*” has the ID 7 and 

the motivation is to exclude the directory, because there are obsolete files that are save for a little period 

of time and, then, are deleted, so doesn’t need to be included in the analysis since they take up memory 

and time to the system. 

3.2 Requirements 

To design the solution, some stakeholders impose requirements for the solution to guarantee that the 

implemented support solution meets all the needs. In this way, the requirements are presented in Table 

5. For each requirement was assigned an ID, the category, and a description. The category is divided into 

non-functional (how the system should perform), functional (features the system should offer) and domain 

(resulting from the domain of operation). 



 

32 

Table 5 - Requirements 

ID Requirement category Requirement description 

1 Non-Functional 

The solution must be easy to deploy. If the machine does not have 

the tool installed, there must be a script that installs and configures it 

on that machine. 

2 Non-Functional 
The platform shall provide means to enable/disable the configured 

Quality Checks and Quality Gates. 

3 Non-Functional 
It shall be possible to analyze a project locally on developer 

workstation and in a CI/CD Pipeline. 

4 Non-Functional The feedback must be provided in less than one minute. 

5 Functional 

The platform should perform continuous inspections of SW code by 

implementing predefined Quality Checks and Quality Gates in a 

CI/CD environment. 

6 Functional 
It must be possible to perform an analysis of the complete project, 

components, or individual files. 

7 Functional 
Feedback shall be provided upon analysis completion with reference 

to the generated report. 

8 Functional 
The platform shall report the projects’ code quality and depict the 

trend over time by saving historical data. 

9 Functional 
It shall be possible to do two different analyses: one every time 

someone delivers the code and the other once per night. 

10 Functional 
The platform shall provide means to exclude files or directories from 

the analysis. 

11 Domain 
The platform shall be developed adhering to the existing architecture 

and have a command line tool that can be used by external tools. 

12 Domain 
The Platform shall be integrated into the CI/CD Platform of the Bosch 

product. 

 

The support solution that will be implemented must be aligned with these requirements. As shown on 

Table 5, the requirement with ID 4, is a Non-Functional requirement and it says that “The feedback must 

be provided in less than one minute.”, which means that the feedback of the inspection must be provided 

in less than one minute. 



 

33 

3.3 Tools and Technologies Analysis 

In accordance with the requirements, a collection and analysis of tools and technologies that exist in the 

market for software code analysis and continuous inspection was completed, searching for the ones that 

support the relevant programming and data exchange languages. After a long search, analyzing 

comments and evaluations about each one in several separate places, reached a set of tools and 

technologies. This led to Table 6, which presents the technologies and tools and some features, pros, 

and cons of each one, allowing to define which one is closest to the needs.  

The information used was accomplished by analyzing the websites of each platform, as well as some 

websites that have analyzed them and addresses only the most relevant information according to the 

defined requirements and the programming languages to be analyzed.  

Table 6 - Tools and Technologies 

Tool Programming 

language 
Features345 Pros345 Cons345 

Codacy 

CSS, Groovy, 

JavaScript, 

JSON, 

PowerShell, 

Python, XML 

Code review 

Issue tracking 

Collaboration tools 

Issue management 

Security testing 

Static analysis 

Easy to use 

Quick to set up 

See grade for project and 

individual files 

See progress of fixing the 

issues 

Disconnects repository when 

not in use 

Does not have integration 

with continuous integration 

automation tools 

Coverity Python, 

JavaScript 

API 

Multi-language scanning 

Reporting/Analytics 

Application Security 

Software Development 

Details of existing and 

potential vulnerabilities 

Scalable 

Open source 

Could improve the ease of 

use 

Need to be faster 

Not stable 

Deepsource Python, 

JavaScript 

Static Analysis 

Security 

Easy to setup and 

customizable 

Problems are sorted by 

type/severity 

Open source 

Criticality of the vulnerability 

is overrated 

Only cosmetic issues 

Embold 
Java, JavaScript, 

Python, HTML, 

CSS 

Code review and quality 

monitoring 

KPI 

Refactoring support 

Clean and easy to use UI 

Good support 

Web integration 

Fast review 

More data flow analysis 

Multi-Language repository 

not supported  

 

3 https://www.g2.com/categories  
4 https://www.getapp.com/  
5 https://www.peerspot.com/categories/application-security-testing-ast  

https://www.g2.com/categories
https://www.getapp.com/
https://www.peerspot.com/categories/application-security-testing-ast


 

34 

Tool Programming 

language 
Features345 Pros345 Cons345 

Manage technical debt 

effectively 

Security and compliance 

Multi-dimensional scan 

Klocwork JavaScript, 

Python 

Security Standards 

Security vulnerability 

detection 

Bug, quality issue and 

code smell detection 

Mature, robust, and 

helpful 

Integrates well with CI/CD 

Confusing getting started 

Could improve the REST API 

Report created can be 

improved 

Web UI look and feels old 

SonarQube 

JavaScript, 

Python, CSS, 

HTML, XML, 

Groovy, YAML 

Detect bugs and 

vulnerabilities 

Review security hotspots 

Track code smells and fix 

technical debt 

Code Quality metrics and 

history 

CI/CD integration 

API 

Extensible, with 50+ 

community plugins 

Easy to navigate and 

configurate 

Quality gates 

Quick report 

Well integrated within the 

pipeline 

Quality of support 

Ease of use 

Open source 

Web API 

Bad exporting capabilities 

Veracode JavaScript, 

Python 

End-to-End Static Scanning 

Auto-Tuning Accuracy 

Prioritization and 

Remediation 

Reporting & Analytics 

Realtime resolution 

Detailed report 

Easy usability 

Integrating into CI/CD 

process to help catch and 

resolve new flaws 

Details on documentation 

Scan takes too long 

False positives  

 

Table 6 allow to evaluate the tools by showing the programming languages that each one examines (from 

the ones defined in Programming and Data Exchange Languages to be analyzed) as well as the features, 

pros, and cons of each one. As example, Veracode has the capability of analyze JavaScript and Python 

and the features of that tool are, for example, the end-to-end static scanning, auto-tuning accuracy. The 

real-time resolution and easy usability are pros and the fact that the scan takes too long is a con. 



 

35 

3.4 Selected Tools and Technologies 

Following the requirements and the files to be analyzed and looking for the Tools and Technologies 

analysis, SonarQube was the tool selected. SonarQube6 is a self-managed, automatic code review tool 

that systematically helps deliver clean code. As a core element of the Sonar solution, SonarQube 

integrates into the existing workflow and detects issues in the code to help perform continuous code 

inspections of projects. The tool analyses more than 30 different programming languages and integrates 

into the CI pipeline and DevOps platform to ensure that the code meets high-quality standards. Due to 

these features, mostly because of the multi-language analysis support and for the capability to analyze 

almost all the languages needed, the Web API and the capacity for extension with plugins, SonarQube 

was the selected tool.  

According to the requirement with ID 12, “The Platform shall be integrated in the CI/CD Platform of the 

Bosch product”, the platform will be integrated with Jenkins’s pipeline. 

4. SOLUTION DESIGN 

This chapter aims to present the support solution's design. It starts by showing the architecture, followed 

by a proof of concept of the solution. Then, the analysis types are described, and the design decisions 

are shown. Lastly, the defined quality gates are displayed. 

4.1 Architecture 

SonarQube and Jenkins are two tools that can be used together to manage and automate the software 

development process. SonarQube6 is a self-managed, automatic code review tool that systematically helps 

developers deliver clean code, that integrates into the existing workflow and detects issues in code to help 

perform continuous code inspections of projects. In turn, Jenkins7 is an open-source automation server 

which enables developers to reliably build, test, and deploy their software. In addition, SonarLint8 was 

used to integrate the existing IDE workflow and helps commit with confidence, by detecting coding issues 

 

6 https://docs.sonarsource.com/sonarqube/9.7/  
7 https://www.jenkins.io/  
8 https://www.sonarsource.com/products/sonarlint/  

https://docs.sonarsource.com/sonarqube/9.7/
https://www.jenkins.io/
https://www.sonarsource.com/products/sonarlint/


 

36 

in real-time and getting clear guidance on how to fix them. Then, a tool named CIAnalyzer Tool was 

created to keep the communication between SonarQube and Jenkins or another external tool. 

The architecture of the support solution has gone through two different versions, one in an initial phase, 

and the other after the proof of concept and after some design decisions. 

Figure 10 shows the first version of the architecture of the support solution, where Jenkins is the midway 

point control for the process, working as an orchestrator. The process starts when the developer produces 

software locally and, with the help of SonarLint, connected to the SonarQube Server and the specific 

project, a local and real-time analysis is performed. Then, the developer delivers the code to the team’s 

repository, that triggers a build in Jenkins. In turn, Jenkins triggers the analysis in CIAnalyzer Tool, that 

starts a SonarQube analysis, which at the end returns the results and then the CIAnalyzer Tool constructs 

the report and returns it to Jenkins. Finally, Jenkins returns to the developer the build status, which 

depends on the quality gate result, as well as the link for the results and analysis report, which contains 

information about the analysis of that software.  

 

Figure 10 - Architecture First Version 

Lately, it was realized that it makes sense to have two distinct analysis types, as shown 4.3 Analysis 

types, and, as a result, the architecture was updated to take this into consideration, by including the timer 

as other way to trigger Jenkins build. In this way, every night, a timer triggers a Jenkins build, and the 

analyzes are triggered. Additionally, the CIAnalyzer Tool was changed to make Json analysis, but it is not 

showed directly in the architecture, since it happens inside the CIAnalyzer Tool. In this case, the build 



 

37 

status depends on the quality gate result and the result of Json analysis. The last version of the 

architecture can be clarified with Figure 11. 

 

Figure 11 - Architecture Second Version 

Figure 11 shows the last version of the support solution’s architecture. It demonstrates how SonarQube 

and Jenkins can work together to provide and automate the development process of continuous 

inspection, by identifying code quality issues and then, improving software quality.  

4.2 Proof of Concept 

After defining the solution specifications, a small proof of concept was carried out. The proof of concept 

was used to test and validate the support solution and to identify potential issues or improvements earlier. 

For this, a section of the team's repository was analyzed, to explore the tools, understand the concepts, 

how it works, as well as its strengths and weaknesses.  

In this sense, firstly SonarQube and SonarScanner were installed and configured on local machine, and 

the part of the repository was analyzed, allowing an initial analysis of the existing software. Firstly, 

initializing SonarQube provides a path to the server. Then, access the server and start using SonarQube 

GUI to create a new project, providing a name, a key and, after that, a token is generated. Following that, 



 

38 

SonarScanner was set up and initialized to do an analysis of the repository. Finally, the SonarScanner 

gives the path to access the results of the analysis, that can be seen in Figure 12. 

 

Figure 12 - SonarQube analysis result - Proof of Concept 

Through Figure 12, in a very preliminary analysis with default quality profiles and quality gates, it possible 

to confirm that the existing software analyzed has 2.3k bugs, i.e., small errors can compound into larger 

ones, requiring software revisions and decreasing reliability. There also 30 security hotspots, which need 

to be reviewed but do not impact the entire project, one vulnerability, which should be changed as soon 

as possible because disturbs the security, and 937 code smells that, although they do not impact the 

project, they should not exist, since they are issues that make the code confusing and difficult to maintain. 

With this analysis it possible to have the information that there are 26.9% duplicate lines of code and that 

the time to fix all the bugs presented would be 25 days, a rather considerable number. 

To meet requirement with ID 11, that says the platform should have a command line tool that can be 

used by external tools, a tool named CIAnalyzer Tool was developed and the SonarQube Web API methods 

were used. This tool is described with detail in 5.2 CIAnalyzer Tool. 

After defining and testing the tool, SonarQube was integrated with Jenkins to automatically starts the 

analysis of the software that the user delivered, in order to keep the continuous inspection of software 

quality. In this way, a Jenkins Job was created with some pipeline stages, that are a block of code that 

defines a subset of tasks performed in the pipeline, to trigger the analysis and check if it passes or fails, 



 

39 

as it is showed in Figure 13.  A Jenkins Job9 is a sequential set of tasks that a user defines, a synonym 

to a project. The first stage “Loading sources” is where the last version of the team’s repository is loaded 

to a folder, to be analyzed later, and the snapshot is created. In the second stage, “Checking for 

differences”, the new snapshot is compared to the previous one, and it is checked if there are differences 

between them. Next, “Code analysis”, is where the analysis starts and then the results are checked in 

“Gate status”, to pass or fail the build and decide if the release will be created. If the analysis pass in all 

Quality Gate conditions, a release will be created in the last stage. 

 

Figure 13 - Jenkins Job Proof of Concept 

As it is possible to see in Figure 13, this build passed the analysis, and a release was created. After 

configuring SonarQube, creating the CIAnalyzer Tool and defining the pipeline, the proof of concept was 

complete. 

In conclusion, the proof of concept was essential, because it allowed to identify issues and other potential 

problems associated with the support solution. So, through the proof of concept it was possible to check 

that some files were not analyzed by SonarQube. Groovy, YAML, PowerShell and JSON files cannot be 

parsed with the installed version of SonarQube, so three plugins were selected, for Groovy10, YAML11 and 

PowerShell12, to complete the analysis of these files. However, because SonarQube does not support a 

built-in functionality to analyze the content of Json files, in the implementation phase a Python script was 

used to analyze these data. Initially, the idea was to analyze only the changed files but, after performing 

the proof of concept, it was concluded that it did not make sense, since changes made to one file can 

compromise other files, as it is detailed explained in Make two different analysis – Analysis content.  

After the proof of concept, the support solution was presented to the team and the initial feedback from 

stakeholders was good, mostly because of the usability and adaptability of the support solution. 

 

9 https://anto.online/code/jenkins-an-introduction-to-jobs-and-projects/  
10 https://www.sonarplugins.com/groovy 
11 https://github.com/sbaudoin/sonar-yaml  
12 https://github.com/gretard/sonar-ps-plugin 

https://anto.online/code/jenkins-an-introduction-to-jobs-and-projects/
https://www.sonarplugins.com/groovy
https://github.com/sbaudoin/sonar-yaml
https://github.com/gretard/sonar-ps-plugin


 

40 

Additionally, the proof of concept proved that the solution could be able to provide business value, by 

decreasing the time and resource costs associated with the need to review and modify the code, improving 

the overall quality of the software, enhancing the finished product, and demonstrating the effectiveness 

of the support solution. In this way, since the support solution has stakeholder support, business value 

since it appears to have the capacity to resolve the problem and the resources are available, it is 

appropriate to move forward with the implementation. 

4.3 Analysis types 

It was defined two analysis types: Full or Lightweight. Each one has distinctive characteristics, as it is 

possible to see in Table 7. In an initial phase, the goal is to ensure that software quality does not degrade, 

so that the team gets adapted to the solution, by applying quality gates that doesn’t allow to add issues 

to the overall quality. Then, in a second phase, the goal is to implement more strict quality gates and 

improve software overall quality. 

The team determined that the first phase should take around two weeks in order to provide time for 

adaptation. After that, the second phase is going to happen, and the analysis will be more restrict. 

Table 7 - Analysis Types 

Analysis type Characteristics 

Full 

Build is triggered by timer, once per night. 

CIAnalyzer Tool analyzes all Json files and ask SonarQube to analyze all 

the other repository files. 

Quality Gate focuses on Overall Code. 

Stage “Checking for Differences” and “Create release” are skipped. 

Lightweight 

Build is triggered when someone delivers to the stream. 

CIAnalyzer Tool analyzes just the modified Json files and ask 

SonarQube to analyze all the other repository files. 

Quality Gate focuses on New Code. 

Stage “Create Release” is not done if the repository fails the analysis. 

Build stops if there are no changes between the actual and the previous 

snapshot. 

 



 

41 

The Full analysis, as shows Table 7, will be triggered by timer once per night and will focus on overall 

code in order to assess the overall status of the repository. The Lightweight analysis will be focused on 

New Code and triggered every time that one member of the team delivers something to the stream, thus, 

in order to create the release, the given code must pass the analysis. The goal of Lightweight analysis is 

that New Code delivered cannot compromise the software quality so if the delivered code has any issue 

it will fail. 

4.4 Design Decisions 

4.4.1 Manage Quality Checks and Quality Gates 

Requirement: The platform shall provide means to enable/disable the configured Quality Checks and 

Quality Gates. 

Solutions: For this requirement, two potential solutions have been found. 

Solution 1 – SonarQube GUI 

SonarQube GUI may be accessed by using the admin credentials and, through the Quality Profile section, 

enable or disable a quality profile from a project and create or remove a quality profile. Through the 

Quality Gate section, the user can create or destroy a quality gate, add, or remove gate conditions and 

enable or disable quality gates from projects, as it is represented in Figure 14. 

 

Figure 14 - Solution 1 Manage Quality Checks and Quality Gates 

Solution 2 – CIAnalyzer Tool 

The user can access the CIAnalyzer Tool and enter the commands to deselect, select, create, destroy, 

and create or delete conditions from the quality gates. The commands will call the SonarQube Web API 



 

42 

methods, that will enable or disable, create, or destroy and add or remove the gate conditions, depending 

on the command. This solution can be clarified through Figure 15. 

 

Figure 15 - Solution 2 Manage Quality Checks and Quality Gates 

Decision: 

As it is possible to see in Figure 14, solution 1, using SonarQube GUI, is more intuitive and clearer to 

enable/disable several Quality Checks and Quality Gates configurations. Using Solution 2, Figure 15, 

although it is possible, it is not intuitive enough, the user will be more confused, and it takes additional 

effort to do that. In this way, solution 1 was the decided one. 

4.4.2 Exclude files or directories from analyses 

Requirement: The platform shall provide means to exclude files or directories from SonarQube analysis. 

Solutions: For this requirement, two potential solutions have been found. 

Solution 1 – Sonar-Scanner configuration file 

By adding the path from files or directories to be excluded, in “sonar.exclusions” property, these files or 

directories will be excluded in the next analysis. This should be added directly by the user in 

“%SONAR_HOME%\conf\sonar-scanner.properties” file, as it is possible to see in Figure 16. 



 

43 

 

Figure 16 - Solution 1 Exclude files or directories from analysis 

Solution 2 – CIAnalyzer Tool 

When the user invoke “start-analysis” command from the CIAnalyzer Tool, he should configure 

“sonar.exclusions” argument, that will be configured in sonar-scanner, as demonstrated in Figure 17. 

The CIAnalyzer Tool is not capable of doing that, so it will take time and effort to implement this 

functionality. 

 

Figure 17 - Solution 2 Exclude files or directories from analysis 

Decision: 

Through Figure 16, it is possible to check that solution 1, changing it directly in sonar-scanner 

configuration file, is a more intuitive and explicit approach to add “sonar.exclusions” property, because it 

is less error-prone. Using Solution 2, shown in Figure 17, will require additional configurations and effort, 

what was considered unnecessary. In this way, solution 1 was the decided one. 

4.4.3 Make two different analysis – Job definition 

Requirement: It shall be possible to do two different analyses: one every time someone delivers the 

code and the other once per night. 

Solutions: For this requirement, two potential solutions have been found. 



 

44 

Solution 1 – Using the same Jenkins Job 

Using the same Jenkins Job for the two analysis types. When the build starts, it is verified if it was triggered 

by a timer or a user. If the build is triggered by User Id, it means it is a Light analysis, as it is shown in 

Figure 18. 

 

Figure 18 - Solution 1 Make two different analysis – Job definition 

Solution 2 – Using two different Jenkins Jobs 

Using two different Jenkins Jobs, one for each analysis type. The Job “Utils_CIToolsAnalyzer” is for the 

Lightweight analysis and the Job “Utils_CIToolsAnalyzer_Nightly” is for Full analysis. In Figure 19 and 

Figure 20 it is possible to clarify this solution. 

 

Figure 19 - Solution 2 Make two different analysis – Job “Utils_CIToolsAnalyzer” 

 

Figure 20 - Solution 2 Make two different analysis – Job “Utils_CIToolsAnalyzer_Nightly” 

 

 



 

45 

Decision: 

Solution 1, using the same job, like it is showed in Figure 18, since “Full analysis” type does not create 

release, it will not allow to create the next release (when it is a Lightweight analysis) properly, because 

the last successful build doesn’t have a snapshot (because the snapshot is not available when the release 

is not created). Using Solution 2, in Figure 19 and Figure 20, allows to separate the two analysis types, 

enabling the correct release creation, so it was chosen. 

4.4.4 Make two different analysis – Analysis content 

Requirement: It shall be possible to do two different analyses: one every time someone delivers the 

code and the other once per night.  

Solutions: For this requirement, two potential solutions have been found. 

Solution 1 – Analyze just the changes 

When a user delivers software, the differences between the actual and last snapshots are compared to 

see whether there are any differences. After that, the changed files will be copied from a folder and only 

the content of this folder will be analyzed by SonarQube, as it is possible to see in Figure 21. 

 

Figure 21 - Solution 1 Make two different analysis – Analysis content 

Solution 2 – Analyze all repository 

When a user delivers software, the differences between the actual and last snapshots are compared to 

see whether there are any differences. After that, the changed files are copied from a folder and, if there 

are just Json files, the content of this folder is analyzed. If there are other files, all repository is analyzed 

by SonarQube as can be clarified through Figure 22. 



 

46 

 

Figure 22 - Solution 2 Make two different analysis – Analysis content 

Decision: 

Using solution 1, as it is possible to see through Figure 21, analyze just the changes could compromise 

the veracity of the analysis, since changes made to one file could damage other files. For example, 

changes in one method can compromise other files that use that method. Thus, by analyzing only the 

files with changes detected, these issues will not be detected, since SonarQube community version does 

not allow pull requests analysis. In this way, the decision was to always analyze the entire code, focusing 

on new code or overall code depending on the analysis type, as shows solution 2, in Figure 22. 

4.4.5 Analysis report and history 

Requirement: The platform shall report the project’s code quality and depict the trend over time by 

saving historical data. 

Solutions: For this requirement, two potential solutions have been found. 

Solution 1 – Using SonarQube GUI and the same project 

By using SonarQube GUI and the same project for the two analysis types, it is possible to access the 

project history. The report for each analysis is sent to Jenkins, developed through the SonarQube Web 

API. This can be seen through Figure 23. Using the same project could be more confused because the 

results of the two analysis types will be showed in the same trend chart. Due to the fact that all analyses, 

even unsuccessful ones, will be displayed on the chart and won't be able to see the repository's current 

status. 



 

47 

 

Figure 23 - Solution 1 Analysis report and history 

Solution 2 – Using SonarQube GUI and different projects 

By using SonarQube GUI and a different project for each analysis type, it is possible to see the history of 

each project, in the Activity page. The report for each analysis is sent to Jenkins, developed through the 

SonarQube Web API, as it is shown in Figure 24. Using different projects will provide a clearer and more 

precise view of the history and trend over time, because in the project “CITools” it is possible to see all 

analysis (failed or passed) and, with project “CITools_Nightly” it is possible to see the effective tend over 

time, because it runs once per night and aggregates all the results. 

 

Figure 24 - Solution 2 Analysis report and history 

Decision: 

As it is showed in Figure 23, solution 1, using the same project, will not allow to see the history with 

precision, because the two analyses will run in the same project. With solution 2 it is possible to have 

more accuracy results and to see the history in a clearer way, so it is the chosen solution.  

4.5 Quality Gates Definition 

To check if the analysis passes or fails, SonarQube has many quality gates that can be implemented in 

the project and has the option to create new ones, according to project needs. In this way, a careful and 

thorough investigation of existing quality gates on SonarQube was carried out, searching for the most 



 

48 

appropriate according to the goals and specifications of the solution. After that, two different quality gates 

were created, one for the Lightweight analysis, and another for the Full analysis.  

The Quality Gates defined for the project are shown in Table 8. The Quality Gate called “Commit” is for 

the Lightweight analysis and the other, with the name “Full” is for the Full analysis. For each analysis, 

some conditions were selected and, for each condition, the measure, the focus on new code or overall 

code, the operator and the value are shown. 

The Quality Gates were defined for the first phase, that has the goal to not degrade de existing software 

quality, in Table 8, and for a second phase, in Table 9, with the objective to improve the existing software 

quality.  

Table 8 - Quality gates – First Phase 

Name Measure New Code/Overall Code Operator Value 

Commit 

Blocker Issues on new code is greater than 0 

Critical Issues on new code is greater than 0 

Major Issues on new code is greater than 0 

Minor Issues on new code is greater than 0 

Bugs on new code is greater than 0 

Full 

Maintainability Rating on overall code Is worse than A 

Security Rating on overall code Is worse than C 

Reliability Rating on overall code Is worse than D 

 

As showed in Table 8, in the Lightweight analysis, the developers cannot add more blocker, critical, major, 

and minor issues, as well as bugs. Because these are the starting values from the initial analysis and 

should stay the same or get better, the maintainability rating cannot be worse than A, the security rating 

cannot be worse than C, and the reliability rating cannot be worse than D in the full analysis. 

In SonarQube, blocker issues are bugs with high probability to impact the behavior, critical issues are 

bugs with a low probability to impact the behavior or an issue that represents a security flaw and a major 

issue is a quality flaw that can highly impact the developer’s productivity. Additionally, a minor issue is a 

quality flaw that can slightly impact the developer’s productivity. Finally, a bug is a coding mistake that 

can lead to an error or unexpected behavior at runtime. The maintainability rating is related to code 

smells, that are issues that make the code confusing and difficult to maintain and the security rating is 

related to vulnerabilities, that are points in the code open to attack. 



 

49 

In a second phase, with the goal of improving the existing software quality, the Quality Gates for the Full 

analysis were modified to be stricter, as represented in Table 9.  

Table 9 - Quality Gates – Second Phase 

Name Measure New Code/Overall Code Operator Value 

Commit 

Blocker Issues on new code is greater than 0 

Critical Issues on new code is greater than 0 

Major Issues on new code is greater than 0 

Minor Issues on new code is greater than 0 

Bugs on new code is greater than 0 

Full 

Maintainability Rating on overall code Is worse than A 

Security Rating on overall code Is worse than A 

Reliability Rating on overall code Is worse than A 

 

The conditions for the second phase were upgraded to be more restricted than the first phase, so for the 

Full analysis, the conditions required the security and reliability rating to be better. The conditions for the 

Commit quality gate, for the Light analysis, are the same as the ones in the first phase because these 

conditions do not allow to add more issues to the code. 

5. SOLUTION IMPLEMENTATION 

After understanding the most relevant concepts and searching for research related to the study areas 

covered, defining the specifications, and designing the solution, the implementation of the solution was 

done. This phase is a crucial step in the overall project lifecycle because it is where the defined plan is 

put into action and the solution is built and deployed. In this way, this chapter details the implementation, 

according to the design and solution specifications. 



 

50 

5.1 SonarQube 

5.1.1 SonarQube configuration 

The implementation started with the configuration of SonarQube. Firstly, the SonarQube Server and 

SonarScanner were installed on a virtual machine, and the server was configurated by defining the 

“sonar.web.port = port” and the “sonar.web.host = webhost”, with the correct values. There was created 

an environment variable called “SONAR_HOME” with the path to SonarQube folder. 

After that, the plugins for Groovy, PowerShell and YAML were added to 

“%SONAR_HOME%\extensions\plugins” folder, by downloading it. Then, SonarQube was defined as a 

service in Windows, by installing and starting the “SonarService.bat”, to keep the server up all the time, 

using the commands “%SONAR_HOME%\bin\windows-x86-64\SonarService.bat install” and 

“%SONAR_HOME%\bin\windows-x86-64\SonarService.bat start” and SonarQube was ready to be 

accessed, trough the URL “webhost:port”. Then, a token was created in SonarQube to authenticate with 

SonarQube through the CIAnalyzer Tool. 

To meet the third requirement, “It shall be possible to analyze a project locally on developer workstation 

and in a CI/CD Pipeline”, SonarLint was chosen for the local analysis and Jenkins for the CI/CD Pipeline. 

SonarLint is a plugin that connects with the SonarQube server and provides a real-time analysis in the 

IDE, with the same quality profiles implemented in the specific project. All team members added the 

plugin to IntelliJ, the IDE used by the team, and establish the connection by configuring the server, the 

token and associating a SonarQube project. To the CI/CD Pipeline, a Job was created in Jenkins in order 

to analyze the software code and return the results, what can be seen in more detail in 5.3 Jenkins. 

SonarQube provides a Dashboard with the result of the analysis, based on the Quality Profiles and Quality 

Gates implemented for the project. As an example, Figure 25 shows the dashboard for the project 

“Test9”, a test project that analyzes one part of the repository with predefined Quality Gates. 



 

51 

 

Figure 25 - SonarQube Dashboard 

As it is possible to see through Figure 25, this project failed the analysis due to the failure of five quality 

gate conditions. The results of the SonarQube analysis to the complete team’s repository can be seen 

with detail in 7.1 First analysis. 

5.1.2 Quality Profiles 

The Quality Profiles implemented for the SonarQube analysis have all existing rules, except the deprecated 

ones, for each language, since every rule appeared to be significant and necessary. In this way, Table 10 

shows the Quality Profiles used for the SonarQube analysis, with the name given in SonarQube, language, 

and the number of rules.  

Table 10 - Quality Profiles 

Quality Profile Name Language Number of Rules 

CSS CSS 25 

Groovy Groovy 384 

HTML HTML 58 

JS JavaScript 258 

PS PowerShell 65 

Python Python 209 

YAML Analyzer YAML 19 



 

52 

 

For example, for the JavaScript files, the quality profile named “JS”, which has 65 rules, is used, as 

shows Table 10. 

5.1.3 SonarQube issues 

SonarQube divides the issues into five types: critical, blocker, major, minor and info. Some examples of 

issues reported in the analysis are represented in the figures below. In Figure 26 it is possible to see an 

example of a blocker issue in Python, that is a code smell and needs 2 minutes of effort to solve it. There 

is a good chance that this problem will affect how the application behaves. 

 

Figure 26 – Example of Blocker Issue 

In Figure 27 is showed an example of a critical issue, that has a low probability to impact the behavior of 

the application and will take 2 minutes to resolve it. This issue appears in a JavaScript file. 

 

Figure 27 – Example of Critical Issue 

Figure 28 shows an example of a major issue. In this case also a code smell in PowerShell language. 

This issue represents a quality flaw that can highly impact the productivity of the team. 

 

Figure 28 – Example of Major Issue 

Figure 29 has an example of a minor issue in HTML, that is also a quality flaw that can slightly impact 

the team’s productivity and is a code smell because level H1 is skipped. 

 

Figure 29 – Example of Minor Issue 

Finally, Figure 30 shows an example of an info issue in Python, that is also a code smell and needs 0 

minutes of effort to solve it.  



 

53 

 

Figure 30 – Example of Info Issue 

5.2 CIAnalyzer Tool 

According to the requirement with ID 11 ”The platform shall be developed adhering to the existing 

architecture and have a Command Line Tool that can be used by external tools”, a tool called CIAnalyzer 

Tool was implemented, to be used by external tools. This tool is using the Web API of SonarQube, and, 

in this way, some methods were created in the CIAnalyzer Tool to manage the analysis, like create project, 

start analysis, select quality gate and other ones. To develop the CIAnalyzer Tool, Python was used to 

receive the arguments and call each chosen Web API method, acting as an intermediary between 

SonarQube and the user or other external tool, and have other methods to manage the analysis. 

When calling each command, the user is required to enter the URL of the server, the authentication token, 

the path to the configuration file and the exceptions file as arguments as it is possible to see in Figure 

31. 

 

Figure 31 – CIAnalyzer Tool options 

Figure 31 shows the CIAnalyzer Tool options, so it is needed to do something like this before the specific 

command:  

static-analysis-tool -s localhost:8080 -u sq2527sg26 -c C:/Desktop/config.json -e C:/Desktop/excep.json 

The CIAnalyzer Tool has many features which provide several options to configure SonarQube 

information, like create projects, start analysis, among others. Figure 32 shows all the commands and 

their description and, to call each command, some arguments will be required to be provided. 



 

54 

 

Figure 32 - CIAnalyzer Tool commands 

Figure 32 displays the features of the tool and each one has different arguments and goals. In Table 11 

it is possible to see the details about each command. For each one, the command, description, 

arguments, and an example are detailed. The necessary arguments are shown in bold type in the 

argument's column.  

Table 11 - CIAnalyzer Tool Commands Information 

Command Description Arguments Example 

create-analysis-
event 

To create a project 
analysis event 

-n analysis name 
-i analysis id 

-c category 
(OTHER/VERSION) 

create-analysis-event -n 
newanalysis -i 152 -c 

VERSION 

create-condition-
qg 

To create a new Quality 
Gate condition 

-e error value 
-m metric 

-n quality gate name 
-o operator (LT/GT) 

create-condition-qg -e 2 -
m bugs -n commit -p gt 

create-project To create a new project 
-p project key 

-v visibility (private/public) 
create-project -p key -v 

public 

create-qg 
To create a new quality 

gate 
-n quality gate name create-qg -n light 

define-branch 
To define an analysis 

as the branch 

-p project key 
-t type 

-v value (analysis id, 
number of days, string) 

define-branch -p key -t 
SPECIFIC_ANALYSIS -v 

27163 

delete-condition-
qg 

To delete a quality gate 
condition 

-i quality gate id 
delete-condition-qg -i 

5262 
delete-project To delete a project -p project key delete-project -p key 



 

55 

Command Description Arguments Example 

deselect-qg 
To deselect a quality 
gate from a project 

-n quality gate name 
-p project key 

deselect-qg -n light -p key 

destroy-qg To delete a quality gate -n quality gate name destroy-qg -n light 

get-conditions-qg 
To display the 

conditions of a quality 
gate 

-n quality gate name get-conditions-qg -n light 

get-project-
analysis 

To display the details 
of project analysis 

-p project key 
-a after date 

-b before date 

get-project-analysis -p key 
-a 2022-05-01 -b 2023-

03-22 

get-project-
components 

To get the components 
of a project 

-p project key 
-o order (ascending sort) 

-l limit 

get-project-components -p 
key -o yes -l sonar 

get-project-qg 
To get the quality gate 
associated to a project 

-p project key get-project-qg -p key 

get-project-qg-
status 

To get the status of the 
project quality gate 

-p project key 
-a analysis id 

get-project-qg-status -p 
key -a 152 

get-projects 
To get a list of existing 

projects 

-d older than given date 
-p project keys 

-l limit 

get-projects -d 2022-02-
21 -p key,test -l sonar 

get-qg 
To get a list of existing 

quality gates 
__________ get-qg 

get-qg-projects 
To get projects 

associated to a quality 
gate 

-n quality gate name 
-l limit 

-s selected 

get-qg-projects -n light -l 
sonar -s yes 

select-qg 
To associate a project 

to a quality gate 
-n quality gate name 

-p project key 
select-qg -n light -p key 

start-analysis To start a new analysis 

-p project-key 
-d directory for analysis 

-t type (Light/Full) 
-c path to changes file 

-j job name 
-b build number 

start-analysis -p key -d 
C:/Desktop/project/  -t 

Commit -c 
C:/Desktop/changes.json 
-j Utils_CIAnalyzer -b 451 

update-analysis-
event 

To update an analysis 
event 

-e event id 
-n event name 

update-analysis-event -e 
16627 -n newevent 

 

Table 11 explains how to use each command. For instance, the command “delete-project” may be used 

to remove a project by using “delete-project -p key”, which asks for the key to the project to be deleted. 

For this example, a complete command will be something like that: 

static-analysis-tool -s localhost:8080 -u sq2527sg26 -c config.json -e excep.json delete-project -p key 

This command will call the “delete_project” function, that receive the project “key” and send it as an 

argument for the function “delete_project_action”, as it is possible to see in Figure 33. 



 

56 

 

Figure 33 - Function delete_project 

Then, in “delete_project_action”, showed in Figure 34, there is developed the URL to call the SonarQube 

WEB API method to delete the specific project. 

 

Figure 34 - Function delete_project_action 

This function, “construct_url”, receives the arguments and develops the URL to call the specific Web API 

method. In the case of the function shown in Figure 34, the method of Web API called has de URL 

“server_url/api/projects/delete?project=key” and it asks for the key to the project to be deleted. In Figure 

35 it is possible to see the function “construct_url” and its utility, since almost all functions of the 

CIAnalyzer Tool uses this one to call the Web API methods. 

 

Figure 35 - Function construct_url 

To see what arguments are necessary to pass in each command, it is possible to do the following 

command in the command line: 

static-analysis-tool -s localhost:8080 -u sq2527sg26 -c C:/Desktop/config.json -e 

C:/Desktop/excep.json start-analysis --help 

By introducing it in command line, you will get the arguments needed to start the analysis, that are already 

showed in Table 11, as it is possible to see in Figure 36. 



 

57 

 

Figure 36 - Arguments required start-analysis 

According to the arguments showed in Figure 36, to start the analysis the user should insert a similar 

command to the command line, as shown below. Because is a Lightweight analysis, the path to changes 

file needs to be provide. 

static-analysis-tool -s localhost:8080 -u sq2527sg26 -c C:/Desktop/config.json -e 

C:/Desktop/excep.json start-analysis -p Tools -d C:/Desktop/project/ -t Light -c 

C:/Desktop/changes.json -j Utils_CIToolsAnalyzer -b 938 

When calling this command, the function “start_analysis” is requested and, consequently, starts 

“check_analysis”. The function “start_analysis” can be checked in Figure 37.  

 

Figure 37 - Function start-analysis 

Using click, a Python package, as can be seen in Figure 37, the function receives the parameters and 

call “check_analysis” function, passing the received arguments. In function “check_analysis”, the 

changes are checked and then, files for Json analysis are separated from the others for SonarQube 

analysis and the analyses are started, passing the required parameters. 

After that, if there are files for SonarQube analysis when checking for differences, all sonar-scanner’s 

configurations needed are set, like host, login, project name, base directory, exclusions and then a report 

with the results of the analysis is returned. In Figure 38 it is possible to see an example of the report, 

with the analysis overview of the SonarQube analysis, showing the job info, the overview with times, 

measures, and results and also the quality gates implemented. 



 

58 

 

Figure 38 - Analysis Report start-analysis 



 

59 

In the case of Figure 38, it was a Light analysis, and the report shows the results on new code. The 

project “CITools” passed the analysis, and it is also possible to see that build number 1658 of the Job 

“Utils_CIToolsAnalyzer” was the one that triggered this analysis. 

The CIAnalyzer Tool is also capable to generate and return a report with the results of Json analysis, as 

shows Figure 40. The command to analyze Json is the same for the SonarQube analysis, start-analysis, 

because the tool can detect if the file is a Json or not and analyze depending on it. The Json analysis is 

made with the help of the “json.load()” Python function, that returns the first error that it encounters in 

each file, as shows Figure 39. 

 

Figure 39 - Json analysis function 

The report generated after Json analysis is similar to the report generated for SonarQube analysis, with 

the information about the Job, an overview of the analysis and the specific errors that it founds, as it is 

showed in Figure 40. 



 

60 

 

Figure 40 - Analysis report Json 

In this analysis, the project failed Json analysis because the “clone.json” and “configure.json” files have 

errors, as it is possible to check in Figure 40. The Job Utils_CIToolsAnalyzer_Nightly and the build number 

24 were the ones that triggered this analysis. 

5.3 Jenkins 

A Jenkins Job, with eight stages, was created to analyze the software code and get the results, as can be 

seen in Figure 41. Jenkins offers a simple way to set up a continuous integration or continuous delivery 

(CI/CD) environment for almost any combination of languages and source code repositories using 

pipelines, as well as automating other routine development tasks (Heller Martin, 2023). This tool is 

already used by the team as the CI/CD Platform of the Bosch product. After the proof of concept and 

some design decisions, the Jenkins Job had changes, comparing to the Job defined in the proof of 

concept. 



 

61 

 

Figure 41 - Jenkins Job 

Figure 41 shows the Job and all stages were developed using Groovy programming language. There is 

one Job for each analysis type, but they are equal, only the name and the analysis type differ, as stated 

in 4.4.3 Make two different analysis – Job definition. If it is a Full analysis, the stages “Checking for 

Differences” and “Create Release” are skipped. On the other hand, the focus of the Lightweight analysis 

is on the new code and all the stages are fulfilled, unless if the analysis is failed.  Comparing to the Job 

defined in the proof of concept, this Job has three more stages: “Prepare analysis”, “Get analysis results” 

and “Define branch”. 

In the first stage of the Job, “Loading sources”, the sources, i.e., the content of the team’s repository, is 

downloaded to a machine. It starts with the definition of the key to the project, in case it is the first 

analysis, and the checking of the build cause, i.e., what triggered the build (a commit made by a user, or 

a timer), in order to define what is going to be the analysis type. Next, a new snapshot with the current 

image of the repository is created, and the content of the snapshot is loaded to a folder in order to be 

analyzed later. 

The purpose of the “Checking for differences” stage is to check if any changes have been added to the 

code. In this way, firstly a file with the list of snapshots is loaded and, if it has at least one snapshot, the 

new snapshot is compared to the last successful one, and the result of this comparison is saved in a file. 

After that, if there are no changes between the snapshots, which means that no changes have been 

added to the repository, the process is stopped, because there is no need to build. Otherwise, if there are 

changes, the snapshot for this release is named and a file with snapshot’s information is loaded.  

In “Prepare analysis” stage, if there are changes, the quality gate is selected based on the analysis type: 

Full or Lightweight. The stage “Code analysis” is where the analysis is started, by passing the directory, 

the project key, analysis type, job name, build number and, in case of a Lightweight analysis, the path to 

changes file. After that, it will start the specific analysis (SonarQube analysis, Json analysis or both) and 

then the reports of the analyses are constructed and saved in a file. In Figure 42 it is possible to see what 

were described before, the stage “Code analysis”. 



 

62 

 

Figure 42 - Code analysis stage 

The results of the analysis that has started in the stage represented in Figure 42 are showed in the stage 

“Get analysis results” and the results are read from the report files, that were loaded in the previous 

stage. Finally, an analysis event in SonarQube is created and the job name and build number are set as 

the event name, in order to append this information in SonarQube GUI. This information will appear in 

activity page, to provide an easy identification of which build triggered each analysis, and the report files 

are copied to a shared folder. 

“Define branch” stage is where, if the code passes SonarQube analysis, trough the CIAnalyzer Tool the 

ID of the analysis is sought, and this analysis is defined as comparison for New Code on the next 

SonarQube analysis. If the code fails the analysis, this stage is skipped. Then, in stage “Get status”, the 

results of the analysis are shown, in order to decide if the build passes or fails. This way, the results of 

the analysis are checked, and it is defined whether the build passed, if both of the analyses passed, or 

failed, if one of the analyses failed. For each decision, a message is sent to a team’s channel on Microsoft 

Teams and the description of the build is set with the build result and the associated message. Finally, 

the last stage “Create release” is the creation of the release, only if the code passes the analyses, and if 

it is a Lightweight analysis. In this stage, the snapshot is provided, and the owner is set. 



 

63 

6. SOLUTION VALIDATION 

To validate the solution, it is crucial to verify if all the requirements were met. To outline the required 

features and functionalities that affect the success of the solution, the requirements for the support 

solution were defined in Solution Specifications chapter. In this approach, it is crucial to double-check the 

requirements once the solution has been implemented, by carefully reviewing and validating each need 

to see whether it has been met. In this manner, Table 12 displays the cross-checks for the requirements 

and describes how it is checked. 

Table 12 - Requirements Cross-Check 

ID Requirement 
category 

Requirement description Checked? How it is checked? 

1 Non-Functional 

The solution must be easy to 

deploy. If the machine does not 

have the tool installed, there must 

be a script that installs and 

configures it on that machine. 

Yes 

Sonar Scanner has been 

introduced to the pipeline as a 

resource, making it automatically 

accessible at all times. SonarQube 

server is allocated in one machine, 

which operates as a service, and it 

is always accessible. 

2 Non-Functional 

The platform shall provide means 

to enable/disable the configured 

Quality Checks and Quality Gates. 

Yes 
Detailed in 4.4.1 Manage Quality 

Checks and Quality Gates. 

3 Non-Functional 

It shall be possible to analyze a 

project locally on developer 

workstation and in a CI/CD 

Pipeline. 

Yes 

Detailed in 5.1.1 SonarQube 

configuration, when talking about 

SonarLint. 

4 Non-Functional 
The feedback must be provided in 

less than one minute. 
Yes 

The feedback it is showed in 5.2 

CIAnalyzer Tool and is provided in 

57s after the analysis. 

5 Functional 

The platform should perform 

continuous inspections of SW code 

by implementing predefined 

Quality Checks and Quality Gates 

in a CI/CD environment. 

Yes 

Through SonarQube analysis, 

integrated in the CI/CD pipeline, 

the continuous inspection is done, 

and the Quality Checks and Quality 

Gates were previously 

implemented in SonarQube. 



 

64 

ID Requirement 
category 

Requirement description Checked? How it is checked? 

6 Functional 

It must be possible to perform an 

analysis of the complete project, 

components, or individual files. 

Yes 

It is possible to analyze the content 

that the user want’s, by providing 

the path to the project, component 

or to the individual file to be 

analyzed as an argument in “start-

analysis” function of CIAnalyzer 

Tool. 

7 Functional 

Feedback shall be provided upon 

analysis completion with reference 

to the generated report. 

Yes 

The feedback is made available as 

output in the pipeline together with 

links to the SonarQube analysis 

findings and the SonarQube and 

Json analysis reports made with 

the CIAnalyzer Tool. Additionally, a 

message with the overall result 

and a link to the analysis results is 

delivered to a Microsoft Teams 

channel. 

8 Functional 

The platform shall report the 

projects’ code quality and depict 

the trend over time by saving 

historical data. 

Yes 
Detailed in 4.4.5 Analysis report 

and history. 

9 Functional 

It shall be possible to do two 

different analyses: one every time 

someone delivers the code and 

the other once per night. 

Yes 

Detailed in 4.4.3 Make two 

different analysis – Job definition 

and in 4.4.4 Make two different 

analysis – Analysis content. 

10 Functional 

The platform shall provide means 

to exclude files or directories from 

the SonarQube analysis. 

Yes 
Detailed in 4.4.2 Exclude files or 

directories from analysis. 

11 Domain 

The platform shall be developed 

adhering to the existing 

architecture and have a command 

line tool that can be used by 

external tools. 

Yes 

The platform is adhering to the 

existing architecture, as detailed in 

4.1 Architecture, and has a 

command line tool, as detailed in 

5.2 CIAnalyzer Tool. 



 

65 

ID Requirement 
category 

Requirement description Checked? How it is checked? 

12 Domain 

The Platform shall be integrated 

into the CI/CD Platform of the 

Bosch product. 

Yes 

The Bosch product CI/CD 

Platform is Jenkins, so this 

platform was integrated in there. 

Detailed in 5.3 Jenkins. 

 

As an example, the requirement with ID 4, “The feedback must be provided in less than one minute.” It 

is checked and can be seen with more detail in 5.2 CIAnalyzer Tool. So, through Table 12 it is possible 

to confirm that after the implementation all the requirements are met, so the support solution can be 

validated. 

7. RESULTS 

The findings of the support solution are presented in this chapter, along with a thorough examination of 

the outcomes of its use. The findings of the last analysis are presented first, followed by the findings of 

the first analysis, and the results are compared and discussed. After the findings, it is important to assess 

if the goals have been achieved since they are essential for validating the solution. 

7.1 First Analysis 

An initial analysis was made in order to compare the changes over time. In this way, the dashboards of 

SonarQube were used to track if the results were getting better or staying constant. So, the initial analysis 

got the results showed in Figure 43, that has an overview of the initial analysis. 



 

66 

 

Figure 43 - Initial Analysis Overview 

In this initial analysis, through Figure 43 it is possible to check that the repository has 7k bugs, 28 

vulnerabilities, 83 security spots, 370d of debt time, i.e., time that will be needed to solve the code smells, 

33k code smells. In Figure 43 it is showed that the reliability and security review have the worst value, E, 

the security has a rating of D, and the maintainability is good, with the best possible value, A. This analysis 

was triggered by the Job “Utils_CIToolsAnalyzer” with the build number 1, on April 12, as it is possible 

to check in Figure 44. 

 

Figure 44 - Initial Analysis Job Info 

Detailing the results, the reliability, showed in Figure 45,  has a general rating of E and the graph 

represents the bugs’ operational risks, sorted by volume of bugs per file. Each bubble in this graph 

represents a file, and the color symbolizes the reliability rating. The closer a bubble's color is to red, the 

more severe the bugs are; the closer it is to green, the better. The bubble size represents the bug volume 

in each file, so if the file has many bugs, the bubble will be bigger, and the position represents the 

estimated time to resolve the bugs.  



 

67 

 

Figure 45 - Initial Analysis Reliability 

Because the bubbles in Figure 45 are large and the remediation effort is also quite significant, it is possible 

to observe that the reliability rating of the files in repository is not good. Also, there are a lot of files with 

a reliability rating of C, which is not a good value, and a lot of bugs. 

In the security level, there are represented the vulnerabilities’ operational risks, as it is detailed in Figure 

46. The graph is constructed like the one in Figure 45, so the explanation is the same, but now the size 

of the bubbles is the number of vulnerabilities, instead of bugs. 

 

Figure 46 - Initial Analysis Security 

 



 

68 

In a general way, the security as a rating of D and, through Figure 46, it is possible to check that are 

some files with a big number of vulnerabilities, but it will not take too long to address them. 

The maintainability, represented in Figure 47, shows the code smells’ long-term risks, so the size of the 

bubbles represents the number of code smells. The maintainability is rated A overall, which is a great 

score. 

 
Figure 47 - Initial Analysis Maintainability 

It shows from Figure 47 that there are some files with a lot of code smells and with a big number of 

technical debt time. 

7.2 Last Analysis 

Two months after the support solution’s implementation, the results seem to be much better. The 

overview of the analysis, made on June 28, 2023, demonstrates a significant improvement in the results. 

In Figure 48 it is possible to see the overview of the results in the last analysis that was made.  



 

69 

 

Figure 48 - Last Analysis Overview 

With the results showed in Figure 48 it is possible to check that the security and maintainability rating 

have a value of A, the best possible value, and the reliability rating is C. In a general way, the project has 

1.6k of bugs, 12k code smells and it will take 142 days to resolve the current code smells. This analysis 

was triggered by the Job “Utils_CIToolsAnalyzer” with the build number 84, on June 28, 2023, as can 

be seen in Figure 49. 

 

Figure 49 - Last Analysis Job Info 

Looking for the reliability, it has a rating of C and, as explained before, the graph represents the bugs’ 

operational risks, sorted by volume of bugs per file. In the graph showed in Figure 50, the color represents 

the reliability rating, and each bubble represents one file. The color of the bubbles indicates the reliability 

rating, so the closer a bubble's color is to red, the more severe the bugs are, and the greener they are, 

the better. The bubble size represents the bug volume in each file, so if the file has many bugs, the bubble 

will be bigger, and the position represents the estimated time to resolve the bugs.  



 

70 

 

Figure 50 - Last Analysis Reliability 

In Figure 50 it is possible to see that are many files with a rating of A, but also files with a rating of B and 

C, and some files has a big bubble, which indicates that the file has many bugs, but the reliability 

remediation effort is not so high. 

Looking for the security, there are represented the vulnerabilities’ operational risks, as it is detailed in 

Figure 51. The graph has the same logic of the one in Figure 50, so the explanation is the same, but now 

the size of the bubbles is the number of vulnerabilities, instead of bugs. 

 

Figure 51 – Last Analysis Security 

Through Figure 51 can be seen that the security as a rating of A and there are no files with vulnerabilities, 

which is great.  



 

71 

The maintainability, represented in Figure 52, as explained before, shows the code smells’ long-term 

risks, so the size of the bubbles represents the number of code smells. The general rating of the 

maintainability is A, which is a great value. 

 

Figure 52 - Last Analysis Maintainability 

Through the Figure 52 seems that the technical debt is a little high for some files, but, in general, the 

files have little bubbles, which means that they have few code smells, and almost all have rating of A and 

B, which are good values. 

In a general way, in Figure 53 it is possible to see all the history of the number of issues, from April 12 

to June 28.  

 

Figure 53 - Issues History 



 

72 

 

The chart in Figure 53 shows that the number of issues was either dropping or remaining constant, 

implying that once the solution had been implemented, no additional issues were ever added to the code. 

7.3 Discussion 

That are several improvements that may be found by searching for the results of the last analysis and 

contrasting them with those from the initial analysis. The results from the second analysis appear to be 

significantly better when comparing the two analyses. Overall, the reliability rating improves from E to C, 

the security rating improves from D to A, and the maintainability rating remains at A, which are great 

values. Figure 44 and Figure 49, which contrast the findings of the first analysis with the last, show that 

there was a 77.7% decrease in bugs, a 64.6% reduction in code smells, and 100% in vulnerabilities and 

these are all very encouraging results. 

When comparing the reliability overview of the second analysis to the first analysis, the second analysis 

looks better and contains much less bugs. Looking for Figure 45 and Figure 50, it is possible to check 

how the security remediation effort differs from a maximum of 7d2h to a maximum of 1d2h. The number 

of issues in each file decreased, and each file’s rating is better in Figure 50, as opposed to Figure 45, 

where there are fewer files with a rating of A. Then, the security overview results show that, in the second 

analysis, all security issues, i.e., vulnerabilities were resolved and now there are no vulnerabilities in the 

repository. Figure 46 and Figure 51 can be compared to determine whether there has been a full 

upgrading, with all the vulnerabilities solved. Looking for the maintainability, the highest technical debt 

from Figure 52 is 3d1h, which is lower than the number from Figure 47, which is upper than 8d2h. As a 

result, looking at maintainability comparing both figures, it is also possible to detect an increase in the 

software quality. Additionally, the number of green bubbles increased, which is positive because it means 

that more files overall have a higher maintainability rating.  

Through the results, it is possible to say that, with the implementation of the solution, the number of 

issues in the software has improved and in comparison to the outcomes of the initial analysis, it is 

currently considerably better. In this way, it is possible to determine if all of the goals for this dissertation 

have been achieved by looking at 1.4 Objectives. It is possible to emphasize that the support solution has 

contributed to the creation and maintenance of high-quality, since the number of issues decreased, as a 

result of the implementation of the support solution. With this, it is possible to confirm that the solution 

is capable of carrying out a continuous inspection of the software quality. 



 

73 

8.  CONCLUSION AND FUTURE WORK 

This Chapter aims to provide an overview of the work completed for this dissertation, highlighting its 

strengths and contributions while also drawing attention to its shortcomings. There are also some 

suggestions for future study that might be conducted to extend this research. 

8.1 Conclusion 

This work provides a thorough understanding of how to achieve continuous inspection of software quality 

in an automotive project, in order to ease the creation and maintenance of high-quality. A support solution 

was built to do this, and some issues that already existed were manually corrected. 

It was a good choice to use Design Science Research as the dissertation's methodology since it offers an 

organized process for creating artifacts and solutions that successfully address real-world problems. 

According to the results, it is possible to verify that the support solution and the entire dissertation have 

effectively supported reaching the main goal, which was to achieve a solution for continuous inspection 

of software quality, in order to ease the creation and maintenance of high-quality software. With the 

implementation of the solution, the developers can no longer deliver software with issues, and the team 

has already manually fixed 66.7% of the issues that were initially presented.  

Saying that the ideal situation is to resolve every issue is impractical since the team would have to put 

development on hold for a certain period of time, which is not expected to occur. In this way, while not 

all of the problems were resolved, a significant number of them were within the aim of this dissertation. 

In general, there was no rise in the number of issues in the repository following the adoption of the 

solution, and it is evident that the number of issues has decreased, as it is possible to see through the 

results, and it is really advantageous for the team, the product, and the company. 

Additionally, it is now (after this implementation) possible to observe an improvement in the way that all 

team members produce cleaner software code, use best practices, and stay careful to any potential issue 

they may be adding to the software that they are producing. 

Looking for the objectives, for the objective “Study the existing scientific knowledge about the research 

topic” a study of the concepts and a literature review was done in the research topic based on 90 articles, 

obtained through the keywords “continuous integration”, “continuous delivery”, “continuous inspection” 

and “software quality”. To achieve the objective “Define specifications for the support solution”, there 



 

74 

was a meeting with the involved stakeholders to define the programming and data exchange languages 

to be analyzed and the requirements. Then, a study of seven currently available tools and technologies 

linked to continuous inspection and related to the requirements was done for the second objective 

“Analyze tools and technologies in the market for continuous inspection of software quality” and one was 

selected. With the creation of a proof-of-concept for the support platform, the objective of "Implement a 

proof of concept of the support platform" was accomplished, as was the objective of "Determine whether 

it makes sense to continue with the implementation of the support platform, after the proof of concept”, 

which was verified following the proof-of-concept to see whether the solution could help in achieving the 

objectives. With the definition of the quality gates to be implemented on the solution, as well as the quality 

profiles defined, the objective “Define and implement quality checks and quality gates in the support 

platform, based on specifications” was also done. Next, to “Manually decrease the number of legacy 

issues”, some existing issues were manually resolved, using the SonarQube report and the knowledge to 

see the issue and check how to resolve it. Finally, the objective “Validate the support solution after the 

implementation, based on the results, the objectives, and the requirements” was completed following the 

solution’s validation, which determined whether the results were good and if the support solution met the 

requirements and the dissertation’s objectives. This makes it feasible to claim that all of the objectives 

set forth for this dissertation were achieved. 

During this work, the lack of technical understanding and the time-consuming initial ramp-up to 

comprehend all the principles and operation of the organization were two of the challenges that were 

encountered during the dissertation. On the other side, the dissertation's strengths might be highlighted 

as the company's team members' and the dissertation supervisor's assistance, knowledge gained through 

time, the learning of new programming languages and the fact that the dissertation has a real-world 

application. Furthermore, the time spent correcting SonarQube issues in the team’s repository, allowed 

to learn and understand the rules and best practices of each programming language, as well as an 

overview of the work done by the team, which can be considered quite positive. 

In sum, since the requirements and objectives were accomplished, the methodology was effective and 

the results are promising, it can be said that this dissertation adds in theory and in practice to the CI/CD 

area, and the knowledge created during the dissertation was helpful, contributing with a solution capable 

to provide continuous inspection of the software quality, in an automotive project. 



 

75 

8.2 Future Work 

Although the main goal of this dissertation — contributing to continuous inspection of software quality —

has been accomplished, there is always opportunity for improvement. In this manner, additional 

improvements to this work can be made to improve this dissertation in the following ways: 

• Continue correcting the existing issues in the repository, in order to improve even more the quality 

of the software. 

• Apply this solution to other projects because it worked effectively, received positive team input, 

and produced good outcomes after adoption.  

• Include the development of new specific rules and best practices and their adaptation for each 

project, according to the project specifications. 

• To afford an in-depth analysis for Json files, SonarQube may be integrated with another analysis 

tool that supports this programming language. 

• Build a dashboard that includes more detailed data and useful visuals to promote improved 

decision-making.



 

76 

REFERENCES 

Adams, B., & McIntosh, S. (2016). Modern Release Engineering in a Nutshell – Why Researchers Should 

Care. 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering 

(SANER), 5, 78–90. https://doi.org/10.1109/SANER.2016.108 

Ahmad, A., Leifler, O., & Sandahl, K. (2021). Software Professionals’ Information Needs in Continuous 

Integration and Delivery. Proceedings of the 36th Annual ACM Symposium on Applied Computing, 

1513–1520. https://doi.org/10.1145/3412841.3442026 

Arachchi, S. A. I. B. S., & Perera, I. (2018). Continuous Integration and Continuous Delivery Pipeline 

Automation for Agile Software Project Management. 2018 Moratuwa Engineering Research 

Conference (MERCon), 156–161. https://doi.org/10.1109/MERCon.2018.8421965 

Armenise, V. (2015). Continuous Delivery with Jenkins: Jenkins Solutions to Implement Continuous 

Delivery. 2015 IEEE/ACM 3rd International Workshop on Release Engineering, 24–27. 

https://doi.org/10.1109/RELENG.2015.19 

Barhate, S. S. (2015). Effective test strategy for testing automotive software. 2015 International 

Conference on Industrial Instrumentation and Control (ICIC), 645–649. 

https://doi.org/10.1109/IIC.2015.7150821 

Batra, P., & Jatain, A. (2021). Hybrid model for evaluation of quality aware DevOps. International Journal 

of Applied Science and Engineering, 18(5), 1–11. 

https://doi.org/10.6703/IJASE.202109_18(5).013 

Bernardo, J. H., Da Costa, D. A., & Kulesza, U. (2018). Studying the impact of adopting continuous 

integration on the delivery time of pull requests. Proceedings - International Conference on Software 

Engineering, 131–141. https://doi.org/10.1145/3196398.3196421 

Bolduc, C. (2016). Lessons Learned: Using a Static Analysis Tool within a Continuous Integration System. 

2016 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), 37–

40. https://doi.org/10.1109/ISSREW.2016.48 

Cao, Y., Xiao, C., Cyr, B., Zhou, Y., Park, W., Rampazzi, S., Chen, Q. A., Fu, K., & Mao, Z. M. (2019). 

Adversarial Sensor Attack on LiDAR-Based Perception in Autonomous Driving. Proceedings of the 



 

77 

2019 ACM SIGSAC Conference on Computer and Communications Security, 2267–2281. 

https://doi.org/10.1145/3319535.3339815 

Chen, L. (2015). Continuous Delivery: Huge Benefits, but Challenges Too. IEEE Software, 32(2), 50–54. 

https://doi.org/10.1109/MS.2015.27 

Chen, L. (2017). Continuous Delivery: Overcoming adoption challenges. Journal of Systems and Software, 

128, 72–86. https://doi.org/https://doi.org/10.1016/j.jss.2017.02.013 

Czarnecki, K. (2018). Requirements Engineering in the Age of Societal-Scale Cyber-Physical Systems: 

The Case of Automated Driving. 2018 IEEE 26th International Requirements Engineering 

Conference (RE), 3–4. https://doi.org/10.1109/RE.2018.00-57 

Dakic, P., Todorovic, V., & Vranic, V. (2022). Financial Justification for using CI/CD and Code Analysis 

for Software Quality Improvement in the Automotive Industry. 2022 IEEE Zooming Innovation in 

Consumer Technologies Conference, ZINC 2022, 149–154. 

https://doi.org/10.1109/ZINC55034.2022.9840702 

Dakić, P., & Źivković, M. (2021). An Overview of the Challenges for Developing Software within the Field 

of Autonomous Vehicles. 7th Conference on the Engineering of Computer Based Systems. 

https://doi.org/10.1145/3459960.3459972 

De Andrade Gomes, P. H., Garcia, R. E., Spadon, G., Eler, D. M., Olivete, C., & Correia, R. C. M. (2017). 

Teaching software quality via source code inspection tool. Proceedings - Frontiers in Education 

Conference, FIE, 2017-October, 1–8. https://doi.org/10.1109/FIE.2017.8190658 

Debroy, V., Miller, S., & Brimble, L. (2018). Building Lean Continuous Integration and Delivery Pipelines 

by Applying DevOps Principles: A Case Study at Varidesk. Proceedings of the 2018 26th ACM Joint 

Meeting on European Software Engineering Conference and Symposium on the Foundations of 

Software Engineering, 851–856. https://doi.org/10.1145/3236024.3275528 

Deshpande, A., Veenadevi, S. V, & Aleti, S. (2021). Test Automation and Continuous Integration using 

Jenkins for Smart Card OS. 2021 12th International Conference on Computing Communication and 

Networking Technologies (ICCCNT), 1–5. https://doi.org/10.1109/ICCCNT51525.2021.9580021 

Di Penta, M. (2020). Understanding and Improving Continuous Integration and Delivery Practice Using 

Data from the Wild. Proceedings of the 13th Innovations in Software Engineering Conference on 

Formerly Known as India Software Engineering Conference. 

https://doi.org/10.1145/3385032.3385059 



 

78 

Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and success factors for large-scale agile 

transformations: A systematic literature review. Journal of Systems and Software, 119, 87–108. 

https://doi.org/10.1016/j.jss.2016.06.013 

Dresch Aline and Lacerda, D. P. and A. J. A. V. (2015). Design Science Research. In Design Science 

Research: A Method for Science and Technology Advancement (pp. 67–102). Springer International 

Publishing. https://doi.org/10.1007/978-3-319-07374-3_4 

Durisic, D., Staron, M., & Nilsson, M. (2011). Measuring the Size of Changes in Automotive Software 

Systems and Their Impact on Product Quality. Proceedings of the 12th International Conference on 

Product Focused Software Development and Process Improvement, 10–13. 

https://doi.org/10.1145/2181101.2181104 

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic review. 

Information and Software Technology, 50(9–10), 833–859. 

https://doi.org/10.1016/j.infsof.2008.01.006 

Eddy, B. P., Wilde, N., Cooper, N. A., Mishra, B., Gamboa, V. S., Shah, K. M., Deleon, A. M., & Shields, 

N. A. (2017). A Pilot Study on Introducing Continuous Integration and Delivery into Undergraduate 

Software Engineering Courses. 2017 IEEE 30th Conference on Software Engineering Education and 

Training (CSEE&T), 47–56. https://doi.org/10.1109/CSEET.2017.18 

Elkins, D. A., Huang, N., & Alden, J. M. (2004). Agile manufacturing systems in the automotive industry. 

International Journal of Production Economics, 91(3), 201–214. 

https://doi.org/10.1016/j.ijpe.2003.07.006 

Farkas, T. (2008). Quality improvement in automotive software engineering using a model-based 

approach. In Model-Driven Software Development: Integrating Quality Assurance. 

https://doi.org/10.4018/978-1-60566-006-6.ch015 

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and agenda. J. Syst. 

Softw., 123, 176–189. 

Forouzani, S., Chiam, Y., & Forouzani, S. (2016). Method for Assessing Software Quality Using Source 

Code Analysis. 166–170. https://doi.org/10.1145/3033288.3033316 

Garg, S., & Garg, S. (2019). Automated Cloud Infrastructure, Continuous Integration and Continuous 

Delivery using Docker with Robust Container Security. 2019 IEEE Conference on Multimedia 



 

79 

Information Processing and Retrieval (MIPR), 467–470. 

https://doi.org/10.1109/MIPR.2019.00094 

Gmeiner, J., Ramler, R., & Haslinger, J. (2015). Automated testing in the continuous delivery pipeline: A 

case study of an online company. 2015 IEEE Eighth International Conference on Software Testing, 

Verification and Validation Workshops (ICSTW), 1–6. 

https://doi.org/10.1109/ICSTW.2015.7107423 

Górski, T. (2022). Continuous delivery of blockchain distributed applications. Sensors, 22(1). 

https://doi.org/10.3390/s22010128 

Grimm, K. (2003). Software technology in an automotive company - Major challenges. Proceedings - 

International Conference on Software Engineering, 498–503. 

https://doi.org/10.1109/ICSE.2003.1201228 

Guaman, D., Sarmiento, P. A.-Q., Barba-Guamán, L., Cabrera, P., & Enciso, L. (2017). SonarQube as a 

tool to identify software metrics and technical debt in the source code through static analysis. 2017 

7th International Workshop on Computer Science and Engineering, WCSE 2017, 171–175. 

Gupta, S., Bhatia, M., Memoria, M., & Manani, P. (2022). Prevalence of GitOps, DevOps in Fast CI/CD 

Cycles. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel 

Computing (COM-IT-CON), 1, 589–596. https://doi.org/10.1109/COM-IT-

CON54601.2022.9850786 

Guşeilă, L. G., Bratu, D.-V., & Moraru, S.-A. (2019). Continuous Testing in the Development of IoT 

Applications. 2019 International Conference on Sensing and Instrumentation in IoT Era (ISSI), 1–

6. https://doi.org/10.1109/ISSI47111.2019.9043692 

Hamdan, S., & Alramouni, S. (2015). A Quality Framework for Software Continuous Integration. Procedia 

Manufacturing, 3, 2019–2025. https://doi.org/https://doi.org/10.1016/j.promfg.2015.07.249 

Heller Martin. (2023, March 15). What is Jenkins? The CI server explained | InfoWorld. 

https://www.infoworld.com/article/3239666/what-is-jenkins-the-ci-server-explained.html 

Hussain, R., & Zeadally, S. (2019). Autonomous Cars: Research Results, Issues, and Future Challenges. 

IEEE Communications Surveys & Tutorials, 21(2), 1275–1313. 

https://doi.org/10.1109/COMST.2018.2869360 



 

80 

Iqbal, T., Iqbal, M., Asad, M., & Khan, A. (2017). A source code quality analysis approach. SKIMA 2016 

- 2016 10th International Conference on Software, Knowledge, Information Management and 

Applications, 142–145. https://doi.org/10.1109/SKIMA.2016.7916211 

Johnson, B., Song, Y., Murphy-Hill, E., & Bowdidge, R. (2013). Why don’t software developers use static 

analysis tools to find bugs? 2013 35th International Conference on Software Engineering (ICSE), 

672–681. https://doi.org/10.1109/ICSE.2013.6606613 

Jonsson Wold, S. (2022). Evaluation of different runner set-ups for CI/CD pipelines. 98. 

Khodiakova, H., & Khodiakova, N. (2021). Creating a reusable infrastructure for continuous integration 

in software engineering. 2021 IEEE 16th International Conference on Computer Sciences and 

Information Technologies (CSIT), 1, 357–360. 

https://doi.org/10.1109/CSIT52700.2021.9648613 

Khoshgoftaar, T. M., Geleyn, E., Nguyen, L., & Bullard, L. (2002). Cost-sensitive boosting in software 

quality modeling. 7th IEEE International Symposium on High Assurance Systems Engineering, 

2002. Proceedings., 51–60. https://doi.org/10.1109/HASE.2002.1173102 

Kitchenham, B., & Pfleeger, S. L. (1996). Software quality: the elusive target. IEEE Software, 13(1), 12–

21. https://doi.org/10.1109/52.476281 

Kokol, P. (2022). Software Quality: How Much Does It Matter? Electronics, 11, 2485. 

https://doi.org/10.3390/electronics11162485 

Kosman, R. J., & Restivo, T. J. (1992). Incorporating the inspection process into a software maintenance 

organization. Proceedings Conference on Software Maintenance 1992, 51–56. 

https://doi.org/10.1109/ICSM.1992.242559 

Laukkanen, E., Paasivaara, M., & Arvonen, T. (2015). Stakeholder Perceptions of the Adoption of 

Continuous Integration – A Case Study. 2015 Agile Conference, 11–20. 

https://doi.org/10.1109/Agile.2015.15 

Lavriv, O., Buhyl, B., Klymash, M., & Grynkevych, G. (2017). Services continuous integration based on 

modern free infrastructure. https://doi.org/10.1109/AIACT.2017.8020087 

Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., & Shi, W. (2019). Edge Computing for Autonomous Driving: 

Opportunities and Challenges. Proceedings of the IEEE. 

https://doi.org/10.1109/JPROC.2019.2915983 



 

81 

Lomio, F., Moreschini, S., & Lenarduzzi, V. (2022). A Machine and Deep Learning analysis among 

SonarQube rules, Product, and Process Metrics for Faults Prediction. Empirical Software 

Engineering, 27. https://doi.org/10.1007/s10664-022-10164-z 

Lu, Y., Mao, X., Wang, T., Yin, G., Li, Z., & Wang, H. (2018). Poster: Continuous Inspection in the 

Classroom: Improving Students’ Programming Quality with Social Coding Methods. 2018 

IEEE/ACM 40th International Conference on Software Engineering: Companion (ICSE-Companion), 

141–142. 

Luo, Y., Zhang, X.-Y., Arcaini, P., Jin, Z., Zhao, H., Zhang, L., & Ishikawa, F. (2022). Hierarchical 

Assessment of Safety Requirements for Configurations of Autonomous Driving Systems. 2022 IEEE 

30th International Requirements Engineering Conference (RE), 88–100. 

https://doi.org/10.1109/RE54965.2022.00015 

Mårtensson, T., Hammarström, P., & Bosch, J. (2017). Continuous Integration is Not About Build 

Systems. 2017 43rd Euromicro Conference on Software Engineering and Advanced Applications 

(SEAA), 1–9. https://doi.org/10.1109/SEAA.2017.30 

Mateen, A., Afsar, S., & Zhu, Q. (2018). Comparitive analysis of manual vs automotive testing for software 

quality. ACM International Conference Proceeding Series. 

https://doi.org/10.1145/3330089.3330121 

Myklebust, T., Stålhane, T., & Hanssen, G. (2020). Agile Safety Case and DevOps for the Automotive 

Industry. 4652–4657. https://doi.org/10.3850/978-981-14-8593-0_3495-cd 

Nagappan, N., Murphy, B., & Basili, V. R. (2008). The influence of organizational structure on software 

quality: An empirical case study. Proceedings - International Conference on Software Engineering, 

521–530. https://doi.org/10.1145/1368088.1368160 

Niæetin, S., Šandor, R., Stupar, G., & Tesliæ, N. (2018). Maximizing the Efficiency of Automotive Software 

Development Environment Using Open Source Technologies. 2018 IEEE 8th International 

Conference on Consumer Electronics - Berlin (ICCE-Berlin), 1–3. https://doi.org/10.1109/ICCE-

Berlin.2018.8576212 

Paasivaara, M. (2017). Adopting SAFe to scale agile in a globally distributed organization. Proceedings - 

2017 IEEE 12th International Conference on Global Software Engineering, ICGSE 2017, 36–40. 

https://doi.org/10.1109/ICGSE.2017.15 



 

82 

Paliotta, J. (2015). The quality of your code is the quality of your brand - and it’s time to pay attention to 

software testing. 2015 IEEE AUTOTESTCON, 186–193. 

https://doi.org/10.1109/AUTEST.2015.7356487 

Panaroni, P., Sartori, G., Fabbrini, F., Fusani, M., & Lami, G. (2008). Safety in Automotive Software: An 

Overview of Current Practices. 2008 32nd Annual IEEE International Computer Software and 

Applications Conference, 1053–1058. https://doi.org/10.1109/COMPSAC.2008.139 

Panichella, S. (2018). Summarization techniques for code, change, testing, and user feedback (Invited 

paper). 2018 IEEE Workshop on Validation, Analysis and Evolution of Software Tests (VST), 1–5. 

https://doi.org/10.1109/VST.2018.8327148 

Paule, C., Düllmann, T. F., & Van Hoorn, A. (2019). Vulnerabilities in Continuous Delivery Pipelines? A 

Case Study. 2019 IEEE International Conference on Software Architecture Companion (ICSA-C), 

102–108. https://doi.org/10.1109/ICSA-C.2019.00026 

Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2007). A design science research 

methodology for information systems research. Journal of Management Information Systems, 24, 

45–77. 

Perera, P., Silva, R., & Perera, I. (2017). Improve software quality through practicing DevOps. 17th 

International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings, 

2018-Janua, 13–18. https://doi.org/10.1109/ICTER.2017.8257807 

Poornalinga, K. S., & Rajkumar, Dr. P. (2016). Continuous Integration, Deployment and Delivery 

Automation in AWS Cloud Infrastructure. 

Rajesh Kumar. (2021, April 24). What is Continuous Inspection? 

https://www.devopsschool.com/blog/what-is-continuous-inspection/ 

Rangnau, T., Buijtenen, R., Fransen, F., & Turkmen, F. (2020). Continuous Security Testing: A Case Study 

on Integrating Dynamic Security Testing Tools in CI/CD Pipelines. 

https://doi.org/10.1109/EDOC49727.2020.00026 

Ren, K., Wang, Q., Wang, C., Qin, Z., & Lin, X. (2020). The Security of Autonomous Driving: Threats, 

Defenses, and Future Directions. Proceedings of the IEEE, 108, 357–372. 



 

83 

Sampedro, Z., Holt, A., & Hauser, T. (2018). Continuous integration and delivery for HPC: Using 

Singularity and Jenkins. ACM International Conference Proceeding Series. 

https://doi.org/10.1145/3219104.3219147 

Sandu, I.-A., & Salceanu, A. (2019). System Testing in Agile SW Development of the Electronic 

Components Based on Software from the Automotive Industry. 2019 11th International Symposium 

on Advanced Topics in Electrical Engineering (ATEE), 1–4. 

https://doi.org/10.1109/ATEE.2019.8724968 

Shahin, M., Ali Babar, M., & Zhu, L. (2017). Continuous Integration, Delivery and Deployment: A 

Systematic Review on Approaches, Tools, Challenges and Practices. IEEE Access, 5, 3909–3943. 

https://doi.org/10.1109/ACCESS.2017.2685629 

Slaughter, S., Harter, D., & Krishnan, M. (1998). Evaluating the Cost of Software Quality. Commun. ACM, 

41, 67–73. https://doi.org/10.1145/280324.280335 

Soni, M. (2015). End to End Automation on Cloud with Build Pipeline: The Case for DevOps in Insurance 

Industry, Continuous Integration, Continuous Testing, and Continuous Delivery. Proceedings - 2015 

IEEE International Conference on Cloud Computing in Emerging Markets, CCEM 2015, 85–89. 

https://doi.org/10.1109/CCEM.2015.29 

Ståhl, D., & Bosch, J. (2017). Cinders: The continuous integration and delivery architecture framework. 

Information and Software Technology, 83, 76–93. https://doi.org/10.1016/j.infsof.2016.11.006 

Ståhl, D., & Mårtensson, T. (2021). Won’t Somebody Please Think of the Tests? A Grounded Theory 

Approach to Industry Challenges in Continuous Practices. 2021 47th Euromicro Conference on 

Software Engineering and Advanced Applications (SEAA), 70–77. 

https://doi.org/10.1109/SEAA53835.2021.00018 

Steghöfer, J.-P., Knauss, E., Horkoff, J., & Wohlrab, R. (2019). Challenges of Scaled Agile for Safety-

Critical Systems. In Lecture Notes in Computer Science (including subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11915 LNCS. 

https://doi.org/10.1007/978-3-030-35333-9_26 

Takoshima, A., & Aoyama, M. (2015). Assessing the Quality of Software Requirements Specifications for 

Automotive Software Systems. 2015 Asia-Pacific Software Engineering Conference (APSEC), 393–

400. https://doi.org/10.1109/APSEC.2015.57 

Tassey, & Gregory. (2002). The Economic Impacts of Inadequate Infrastructure for Software Testing. 



 

84 

Turetken, O., Stojanov, I., & Trienekens, J. (2016). Assessing the adoption level of scaled agile 

development: a maturity model for Scaled Agile Framework (SAFe). Journal of Software: Evolution 

and Process, 29. https://doi.org/10.1002/smr.1796 

Uzunbayir, S., & Kurtel, K. (2018). A Review of Source Code Management Tools for Continuous Software 

Development. 2018 3rd International Conference on Computer Science and Engineering (UBMK), 

414–419. https://doi.org/10.1109/UBMK.2018.8566644 

van der Valk, R., Pelliccione, P., Lago, P., Heldal, R., Knauss, E., & Juul, J. (2018). Transparency and 

Contracts: Continuous Integration and Delivery in the Automotive Ecosystem. 2018 IEEE/ACM 40th 

International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-

SEIP), 23–32. 

Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Zaidman, A., & Gall, H. C. (2018). Context is king: 

The developer perspective on the usage of static analysis tools. 2018 IEEE 25th International 

Conference on Software Analysis, Evolution and Reengineering (SANER), 38–49. 

https://doi.org/10.1109/SANER.2018.8330195 

Vassallo, C., Zampetti, F., Romano, D., Beller, M., Panichella, A., Di Penta, M., & Zaidman, A. (2016). 

Continuous Delivery Practices in a Large Financial Organization. 2016 IEEE International 

Conference on Software Maintenance and Evolution (ICSME), 519–528. 

https://doi.org/10.1109/ICSME.2016.72 

Virmani, M. (2015). Understanding DevOps & bridging the gap from continuous integration to continuous 

delivery. Fifth International Conference on the Innovative Computing Technology (INTECH 2015), 

78–82. https://doi.org/10.1109/INTECH.2015.7173368 

Vost, S., & Wagner, S. (2017). Keeping Continuous Deliveries Safe. 2017 IEEE/ACM 39th International 

Conference on Software Engineering Companion (ICSE-C), 259–261. 

https://doi.org/10.1109/ICSE-C.2017.135 

Williams, L. (2018). Continuously integrating security. https://doi.org/10.1145/3194707.3194717 

Zampetti, F., Geremia, S., Bavota, G., & Di Penta, M. (2021). CI/CD Pipelines Evolution and 

Restructuring: A Qualitative and Quantitative Study. Proceedings - 2021 IEEE International 

Conference on Software Maintenance and Evolution, ICSME 2021, 471–482. 

https://doi.org/10.1109/ICSME52107.2021.00048 



 

85 

Zampetti, F., Nardone, V., & Di Penta, M. (2022). Problems and Solutions in Applying Continuous 

Integration and Delivery to 20 Open-Source Cyber-Physical Systems. Proceedings - 2022 Mining 

Software Repositories Conference, MSR 2022, 646–657. 

https://doi.org/10.1145/3524842.3527948 

  

 

 

  


