
Universidade do Minho
Escola de Engenharia

André Filipe Machado Lopes

Development of an embedded system
for tagging high impact zones in a car
accident

março de 2023U
M

in
ho

 |
 2

02
3

An
dr

é
Lo

pe
s

D
ev

el
op

m
en

t o
f a

n
em

be
dd

ed
 s

ys
te

m

fo
r

ta
gg

in
g

hi
gh

 im
pa

ct
 z

on
es

 in
 a

 c
ar

 a
cc

id
en

t

Universidade do Minho
Escola de Engenharia

André Filipe Machado Lopes

Development of an embedded system for tagging
high impact zones in a car accident

Master’s Dissertation

Master’s in Industrial Eletronics and Computers Engineering

Work supervised by

Rui Pedro Oliveira Machado

June, 2023

i

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and

good practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositóriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

”If you can’t explain it simply, you don’t understand it well

enough.”

Albert Einstein

ii

Agradecimentos

Em primeiro lugar gostaria de agradecer ao meu orientador, Professor Doutor Rui Machado, pelo

apoio durante toda a dissertação e por todo o conhecimento transmitido. Gostaria também de agradecer

ao professor João Carvalho por me ter ajudado e guiado nas questões mais técnicas e pelo seu apoio

nesta dissertação. Gostaria de agradecer também ao professor Jorge Cabral pela oportunidade e ajuda

neste projeto, bem como a todos os elementos que passaram pelo laboratório utilizado e que de alguma

forma me ajudaram a ultrapassar os obstáculos.

Um agradecimento especial a todos os meus amigos que me ajudaram a ultrapassar os momentos

mais dificeis da dissertação e pelo suporte e acompanhamento durante este ultimo ano de percurso

académico. Gostaria também de agradecer aos meus companheiros de curso por me acompanharem

durante todo este percurso e por toda ajuda e motivação.

Por fim e mais importante, quero deixar um agradecimento especial aos meus pais pela motivação

que me deram e por acreditarem em mim durante todo o curso.

iii

iv

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used pla-

giarism or any form of undue use of information or falsification of results along the process leading to its

elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do Minho.

Abstract

Development of an embedded system for tagging high impact zones in a car
accident

In the constantly evolving automotive industry, there is a growing focus on the development of advanced

safety mechanisms, such as sensors, algorithms, and devices for collision detection, to create a new gen-

eration of highly safe cars. One key safety element in vehicles is the airbag control unit, which detects

car crashes and triggers the airbag deployment. However, there is currently a gap in identifying the most

severe impact areas in a car seat, which can minimize the diagnostic time by identifying potentially life-

threatening injuries. In this research work, we aim to address this gap by developing an embedded system

prototype that can detect car collisions and acquire data for real-time analysis and future accident recon-

struction. The device, which will be placed in a car seat, is designed to detect high impacts and store data

in case of a collision. The system also samples data from acquisition sensors, applies filters, and performs

a collision algorithm in a typical operation. The main contribution of this study is the development of an

embedded system that can improve the diagnostic process for paramedics and provide more accurate

data for accident reconstruction. The research focuses on the reliable use of sensor data, high-impact

detection, and data storage. The prototype is tested using a shaker to confirm the accuracy and reliability

of the overall system. Also, the performance of the system is analyzed under high-acceleration conditions.

Keywords: automotive industry, safety, collision detection, car seat, embedded system, car collisions,

accident reconstruction, high impacts, sensor data, prototype testing, reliability, performance.

v

Resumo

Desenvolvimento de um sistema embebido para a marcação de zonas de alto
impacto num acidente de carro
Na constante evolução da indústria automóvel, existe um crescente foco no desenvolvimento de meca-

nismos de segurança avançados, tais como, sensores, algoritmos e dispositivos de detecção de colisão.

Atualmente, o mecanismo de segurança mais utilizado para a deteção de acidentes é o airbag, que per-

mite uma rápida identificação da colisão através do uso de diversos sensores posicionados em locais

estratégicos. Contudo, existe actualmente uma lacuna na identificação das áreas que sofreram um maior

impacto num assento automóvel. O preenchimento desta lacuna poderá minimizar o tempo de diagnóstico

efetuado pelos paramédicos, através da identificação da zona dos ferimentos. Neste estudo, o objectivo é

abordar esta lacuna através do desenvolvimento de um sistema embebido protótipo que detete colisões

de automóveis e adquira os dados para uma análise em tempo real e para uma possível reconstrução do

acidente. Sendo assim, este dispositivo terá de recolher amostras de dados dos sensores de aquisição,

aplicar os filtros necessários e executar o algoritmo de deteção.

Esta investigação centra-se na utilização fiável dos dados dos sensores, detecção de alto impacto,

e armazenamento de dados. O protótipo é testado utilizando um shaker para confirmar a exactidão e

fiabilidade do sistema no seu todo. Além disso, o desempenho do sistema é analisado em condições de

alta aceleração.

Palavras-chave: Industria automóvel, segurança, deteção de colisões, assento automóvel, sistema em-

bebido, reconstrução de acidentes, impactos elevados, protótipo, fiabilidade, desempenho.

vi

Contents

List of Figures x

List of Tables xii

Listings xiii

Acronyms xiv

1 Introduction 1

1.1 Contextualization and Motivation . 1

1.2 Objectives . 2

1.3 Methodology . 2

1.4 Document Structure . 3

2 Background and State of the Art 4

2.1 Basic Concepts . 4

2.1.1 Embedded System . 4

2.1.2 Real-Time System . 5

2.1.3 Operating System . 6

2.1.4 Multitasking . 7

2.1.5 Scheduling . 8

2.1.6 Inter-Process Communication . 8

2.2 Crash detection sensors . 9

2.2.1 Accelerometers . 10

2.2.2 IMU . 10

2.3 Crash detection algorithms . 11

2.3.1 ”Total and Partial Energies”, Diller . 12

2.3.2 ”Power-Rate Method”, Allen . 13

2.3.3 ”A Predictive Algorithm”, Gioutsos . 13

2.3.4 ”Adjustable Velocity Threshold”, Mattes 13

vii

CONTENTS

2.3.5 ”Multiple Evaluation and Expertise Algorithms”, Diller 13

2.3.6 ”Multiple Evaluation Circuits and Time Window”, Eigler 14

2.3.7 ”Power Spectrum of Acceleration Signal in a Frequency Range”, Tohbaru . . 14

2.3.8 ”Deployment Method Based on Occupant Displacement and Crash Severity”,

Cashler and Kelle . 14

2.3.9 ”Method and Apparatus for Sensing a Vehicle CrashCondition Using Velocity

Enhanced Acceleration Metrics”, McIver 15

2.3.10 ”Method and Apparatus for Crash Sensing Using Anticipatory Sensor Inputs”,

Kosiak . 15

2.4 Related Work . 16

2.4.1 Airbag . 16

2.4.2 High-impact scenarios . 19

2.4.3 Bosch Peripheral Acceleration Sensor (PAS) 21

2.4.4 Literature review . 22

2.5 Conclusions . 23

3 System Specification 25

3.1 Requirements . 25

3.1.1 Functional Requirements: . 25

3.1.2 Non-Functional Requirements: . 25

3.2 System Overview . 26

3.3 Hardware Specification . 26

3.3.1 Sensors . 27

3.3.2 CPU . 28

3.4 Software Specification . 29

3.5 Signal Processing . 30

3.5.1 Kalman Filter . 31

3.6 Conclusions . 34

4 Design 35

4.1 Hardware Considerations . 35

4.1.1 LDO (Low-Dropout) . 36

4.1.2 ADXL357 . 37

4.1.3 MicroSD Card . 38

4.1.4 MPU-6881 . 39

4.1.5 CPU . 40

4.1.6 Micro USB Connector . 41

viii

CONTENTS

4.1.7 CP2102N . 42

4.2 Software Considerations . 43

4.2.1 Task Overview . 43

4.2.2 Drivers . 45

4.2.3 Kalman . 47

4.2.4 FreeRTOS Tasks . 55

5 Implementation 61

5.1 Hardware Schematic . 61

5.1.1 Main sheet . 61

5.1.2 Micro USB . 63

5.2 Hardware Layout . 65

5.2.1 Layout Process . 65

5.3 Software . 67

5.3.1 Drivers . 68

5.3.2 Tasks . 75

6 Tests and Results 81

6.1 Shaker Tests . 81

6.2 Collision Test . 87

7 Conclusions 90

7.1 Future Work . 91

References 92

Appendices 95

A Appendix 1 95

A.1 SPI Driver . 95

A.2 SDCard Driver . 96

A.3 Matlab Kalman . 97

A.4 Python Code to present the results . 102

ix

List of Figures

1 Example of an embedded system . 5

2 Kernel Role in a computer system . 6

3 Scheduling States in FreeRTOS . 8

4 Airbag System Overview . 17

5 Airbag Control Unit . 17

6 Airbag Sensors . 18

7 Airbag signal Processing . 18

8 Car Coordinates . 20

9 Peripheral acceleration sensor . 21

10 System Overview . 26

11 ADXL357 Accelerometer . 27

12 ESP32-Mini-1 . 28

13 Software Architecture . 29

14 Signal Processing Overview . 30

15 Kalman Simple Overview . 31

16 Kalman Detailed Overview . 32

17 Kalman Equations Overview . 33

18 PCB Build Process . 36

19 PCB Overview . 36

20 LDO schematic . 37

21 ADXL357 schematic . 38

22 MicroSD Card schematic . 39

23 MicroSD Pin Number Order . 39

24 MPU-6881 schematic . 40

25 CPU schematic . 41

26 MicroUSB connector schematic . 42

27 CP2102N schematic . 42

x

List of Figures

28 Programming logic schematic . 43

29 Tasks Overview . 44

30 Tasks Synchronization . 45

31 SPI Format ADXL357 . 46

32 ADXL357 Sensitivity . 46

33 MPU-6881 SPI Format . 47

34 MPU-6881 sensitivity . 47

35 vAccelerometer task . 56

36 vIMU task . 57

37 vCollisionDetection task . 58

38 vSDCard task . 59

39 vMain . 60

40 Main schematic . 62

41 Altium Project Organization . 63

42 MicroUSB main schematic . 64

43 Layer Stack . 65

44 PCB layout LDO . 65

45 PCB layout ESP32 . 66

46 PCB layout layers . 67

47 3D PCB . 67

48 ADXL357 acceleration registers organization . 70

49 Shaker Components . 82

50 3D holder model . 82

51 PCB Mounting Configuration . 83

52 Shaker profile frequency ranges . 83

53 Shaker profile . 84

54 Kalman Shaker X . 84

55 Kalman Shaker Y . 85

56 Kalman Shaker Z . 85

57 PCB Kalman Shaker Y . 86

58 PCB Kalman Shaker X . 86

59 PCB Kalman Shaker Z . 87

60 Box enclusure . 88

61 3D Box model . 88

62 Collision Test . 89

xi

List of Tables

1 Accelerometer Grade and Typical Application Area . 10

2 IMU Grade and Typical Application Area . 11

3 Highlights and comparisons of a selected list of sensing algorithms 12

4 Human Tolerance Limits . 21

5 MicroSD pinout . 39

xii

Listings

1 ADXL Driver main functions . 68

2 ADXL Driver read function . 70

3 MPU Driver main functions . 70

4 MPU Driver read function . 71

5 Matrix Module main functions . 72

6 Kalman module init function . 73

7 Kalman module predict function . 73

8 Kalman module setup function . 74

9 Kalman module update function . 75

10 vMain Task . 76

11 vAccelerometer Task . 77

12 vIMU Task . 78

13 vColisionDetection Task . 78

14 vSDCard Task . 80

15 SPI Driver main header file functions . 95

16 SPI Driver main functions . 95

17 SD Card Driver mount function . 96

18 SD Card Driver init and close functions . 97

19 Matlab Kalman Implementation . 97

20 Python script to visualize results . 102

xiii

Acronyms

ADC Analog to Digital Converter

API Application Programming Interface

BOM Bill of Materials

CAN Controller Area Network

CPU Central Processing Unit

DMA Direct Memory Access

DRC Design Rule Checking

FAT File Allocation Table

FIFO First-In First-Out

GPOS General-Purpose Operating System

GPS Global Positioning System

IMU Inertial Measurement Unit

LDO Low-Dropout

MEMS Microelectrome-chanical systems

MISO Master In Slave Out

MOSI Master Out Slave In

MSB Most Significant Bit

PCB Printed Circuit Board

RAM Random Access Memory

xiv

ACRONYMS

RTC Real-Time Clock

RTOS Real-Time Operating System

SNR Signal to Noise Ratio

UART Universal Asynchronous Receiver/Transmitter

xv

C
h
a
p
te

r

1
Introduction

This introductory chapter aims to provide an overview of the scientific work presented in the follow-

ing chapters. This chapter will begin by contextualizing the research within the automotive industry and

discussing the motivation for creating a device that can detect car impacts. The main goals of the investi-

gation, and the intermediate steps needed to achieve those goals, will be explained after. The methodology

used during the dissertation, including the research design, research subjects, data collection and analysis

methods, and any statistical tests, will be discussed. Finally, the document structure will be presented to

provide a clear overview of the dissertation work.

1.1 Contextualization and Motivation

With the evolution of the automotive industry, the development of mechanisms to accomplish vehicle

safety is receiving more and more attention. Thus, currently, several projects aim for the latest techniques,

including new sensors, algorithms or devices to detect a crash, which will lead to a new generation of highly

safe cars. The airbag is one of the most relevant safety elements in a vehicle. Detecting a car crash and

triggering the airbag is part of the airbag control unit’s job. By understanding how the control unit operates,

researchers can design and create devices able to detect and respond to several types of collisions. Some

safety vehicle devices reduce the collision impact preventing and saving lives. However, there is a missing

gap in identifying the most severe impact areas in a car seat, which can reduce the diagnostic time. This

reduction can yield important clues to life-threatening injuries [1]. Since there is a growing demand to

perform accident reconstruction using sensor data, a device placed in a car seat can also provide more

information about the crash if the data can be saved [2].

The missing gap is the motivation for this dissertation. To fill this research gap becomes relevant to

1

CHAPTER 1. INTRODUCTION

build a system with detection abilities that can reduce the paramedic’s diagnostic time. Also, the device

data can be combined with other car elements, such as GPS (Global Positioning System), to obtain a

more precise vehicle location or associated with the airbag system for a second opinion. There are a lot of

functionalities that can be added, including a data-storing capability. This functionality allows the driver to

protect himself against possible scenarios where he is being accused and can also be used for accident

testing by industry companies [3].

1.2 Objectives

The goal of this dissertation is the development of an embedded system prototype that performs a

data acquisition and a real-time detection in case of car collision. This device will be present in a car seat

and should detect if the car seat received a higher impact in the accident. In that case, the embedded

system should store the data for a further collision reconstruction or investigation. In a normal operation,

the system should sample data from acquisition sensors, apply filters to that data and perform a collision

algorithm. Also, this device should be powered by the car and be reliable enough to not be destroyed

during the car accident. In order to achieve this goal, there are some objectives to be done:

• Reliable sensor data usage

• High impact detection

• Save information from the crash

1.3 Methodology

The following section outlines the methodology for achieving the defined goals of this dissertation.

The process begins with an analysis to identify the most appropriate sensors and algorithms for collision

detection based on existing devices such as airbags and previous studies with similar objectives. The

system components, including sensors, microcontrollers, and other elements, are then specified to begin

the design phase, during which schematics and software diagrams are created. The development of the

PCB (Printed Circuit Board) during the implementation phase involves creating a layout, generating Gerber

files, creating a Bill of Materials, and soldering it. This is followed by the preparation of firmware and the

implementation of all previously designed software. The filtering stage is integrated into the system during

this phase, with the optional use of a Kalman filter to improve accuracy and reliability. The performance

of the implemented embedded system is tested using a shaker test to confirm the accuracy and reliability

of the sensors and the overall system. Finally, the system’s overall performance under high-acceleration

2

CHAPTER 1. INTRODUCTION

conditions is analyzed and evaluated, including the performance of the sensors, the effectiveness of the

filtering stage, and the accuracy of the accident detection algorithm.

1.4 Document Structure

The document structure of this dissertation will consist of several chapters. The first chapter, Introduc-

tion, will provide an overview of the research, including the motivation for the study and the main goals

and objectives. The second chapter, Background and State-of-art will provide background information on

the automotive industry and the current state of the art in collision detection equipment. This chapter will

also introduce the necessary basic concepts and theories to understand the development of the disser-

tation. The third chapter, System Specification, will describe the requirements and specifications for the

system, including the choice of sensors, microcontroller, and other components. This chapter will also

provide a detailed system overview and describe the algorithms and methods used for data processing.

The fourth chapter, Design, will describe the design of the system, including the PCB and the software.

The fifth chapter, Implementation, will describe the steps taken to implement the system, including the

firmware and any hardware modifications. The sixth chapter, Tests, will present the results of the tests

conducted to evaluate the performance of the system, including the shaker test to evaluate the filtered

data performance. The final chapter, Conclusions, will summarize the main points of the dissertation and

provide conclusions and implications for future research in this area. Overall, this document structure will

provide a clear and organized presentation of the research and its findings.

3

C
h
a
p
te

r

2
Background and State of the Art

This chapter presents an overview of the technologies and concepts to be addressed during this dis-

sertation. Since the goal is to develop an embedded system for data acquisition, some fundaments about

these systems will be included for understanding how they are developed. Because this device will act

in high-impact scenarios, a characterization of this environment is necessary to make decisions that may

influence the system’s performance. Furthermore, this chapter will address what technologies, types of

sensors and algorithms are used in accident detection. Finally, a description of similar devices on the

market, similar studies and their functionalities will be presented in this chapter.

2.1 Basic Concepts

The development of an embedded system, including the hardware and software, is the core of this

dissertation, so it becomes necessary to present some concepts for its understanding. Therefore, the

definition and characteristics of this type of system will be described. In an embedded system, an operating

system is not always a requirement, but in systems with some deadlines and critical decisions, the use of

an operating system becomes imperative. For this reason, some concepts about operating systems and

their mechanisms for processing and communication between tasks will be introduced.

2.1.1 Embedded System

An embedded system is a computer system, a combination of hardware, software, and perhaps me-

chanical or other parts designed to perform a specific function [4]. Most of the time, these systems are

4

CHAPTER 2. BACKGROUND AND STATE OF THE ART

part of a higher system, so users are unfamiliar with their presence. These systems work in several envi-

ronments and range in size and complexity from personal devices such as digital watches to more complex

mechanisms such as a router or printers. Furthermore, depending on how they are designed, they can

range from the most powerful, with more computing resources or graphical capabilities, to the simplest

ones without any supporting operating system. Figure 1 shows some examples of embedded systems that

are present in our daily life, such as the smartphone and the microwave oven.

Figure 1: Example of an embedded system

By fulfilling all the requirements for the execution of a specific task or a restricted set of tasks, these

systems are generally made up of the following components:

• CPU (Central Processing Unit)

• Memory

• Inputs and outputs

• Communication Protocol

Moreover, they can have restrictions on energy consumption using batteries or alternative energy

sources and are programmed with a built-in software application that controls the hardware used. As

mentioned earlier, these devices may have no user interface at all, making most of these systems stand-

alone applications.

2.1.2 Real-Time System

A real-time system is a computational system with time constraints, which is partially specified in terms

of its ability to perform certain calculations or decisions in an appropriate time [4]. These calculations or

5

CHAPTER 2. BACKGROUND AND STATE OF THE ART

decisions have time deadlines for the execution of a task. Thus, real-time systems can be divided into two

categories, which range according to the importance that a failure has in the execution of a task. These

two categories are:

• Hard real-time

• Soft real-time

A hard Real-Time system is a system in which this failure is fatal to the system operation and makes

the whole system unusable, for example, a real-time system that is part of a control system in an airplane.

On the other hand, we have Soft Real-Time systems in which a failure to meet task deadlines is not

catastrophic. Streaming audio or video is an example of this kind of application in which a tolerance for

delay and even data loss is allowed. The designer of a real- time system must be careful because they

need to guarantee a reliable operation of the software and hardware in all possible conditions.

2.1.3 Operating System

An operating system typically consists of a set of ”function calls”, or software interrupts, and a periodic

clock tick. An operating system is responsible for deciding which task the processor should run at any given

time and controlling access to shared resources. The core of an operating system is the Kernel. It manages

most of the main details an operating system needs to deal with, including memory, task concurrency,

scheduling and I/O events [5], as represented in figure 2. In general, the Kernel is the part of the operating

system that interacts directly with hardware, thus acting as a resource manager. These resources can

be CPU time allocated to processes, management of existing RAM (Random Access Memory) or even

connected hardware devices.

Figure 2: Kernel Role in a computer system

There are many types of operating systems, but in general, they can be divided into two types:

6

CHAPTER 2. BACKGROUND AND STATE OF THE ART

• General-Purpose Operating Systems

• Real-Time Operating Systems

GPOS (General-Purpose Operating Systems) are designed to run generic tasks that don’t have time

constraints, such as opening a Word document. The scheduling of tasks is done dynamically and fairly

to improve overall performance, meaning that sometimes the jobs with the highest priority are not ex-

ecuted first. Such operating systems are typically found in PCs (Personal Computers), servers, tablets

and smartphones. Linux, Windows and macOS are some of the most popular general purpose operating

systems.

On the other hand, RTOS (Real Time Operating Systems) are designed with the aim of running applica-

tions at precise times. Task scheduling, unlike GPOS, is performed according to the highest priority tasks,

and all the data processing must obey time constraints. Otherwise, the system will fail [6].

2.1.4 Multitasking

As previously mentioned, the operating systems are responsible for deciding which tasks will execute

at a given moment. These threads are executed by the processor, which can switch between them and

allow interaction between these several jobs. The ability to process one or more tasks simultaneously in

an operating system is called multitasking [8]. This capability represents an advantage over basic systems

that execute only one task. This advantage is because every time a thread waits for some signal, the

processor can hold that thread and process other task. Therefore, the processor creates an illusion that

several tasks are executing simultaneously, even though instructions are being processed one at a time.

Using a multitasking operating system to design a software application has the following advantages:

• Improved throughput

• Execution of several tasks simultaneously

• Structured code that can be easily extended and modified

All these advantages mean that the design of a complex application can be divided into smaller tasks

that becomemore flexible. This divisions simplifies the development of an application, as it allows an easier

and faster testing phase. In addition, several teams can work on different parts being less dependent on

each other, and the code can be reused increasing productivity. Furthermore, all timing details can be

removed from the application code and become operating system’s responsibility.

7

CHAPTER 2. BACKGROUND AND STATE OF THE ART

2.1.5 Scheduling

After the multitasking concept explanation is applied at the operating system level, it is still necessary

to understand how the system selects the upcoming tasks to run. The scheduler is the part of the Kernel

responsible for deciding and selecting which task should execute at a given moment. The scheduler is also

responsible for switching between tasks in progress and changing the status of a task when necessary.

Figure 3 presents the FreeRTOS several states that a task may have in a multitasking operating system

[7].

Figure 3: Scheduling States in FreeRTOS [7]

Embedded systems, in particular real-time systems, almost always require a method for sharing the

”quantum” of processing between tasks. In most cases, this sharing respect scheduling rules determining

that the most critical functions, with higher priority, will have access to the processor when necessary.

Therefore, most real-time operating systems use pre-emptive scheduling, which implies that lower-priority

tasks will wait for higher-priority tasks.

2.1.6 Inter-Process Communication

In a multitasking system, tasks interact with each other directly through some signalling or indirectly

through resource sharing. Thus, the operating system uses synchronization mechanisms to control all

these interactions. These interactions should be managed so that several tasks cannot access the same

8

CHAPTER 2. BACKGROUND AND STATE OF THE ART

resource simultaneously. Usually, this phenomenon is called ”race condition”. To avoid the ”race con-

dition”, the operating systems offer some synchronization mechanisms that allow the designer to have

greater variety in controlling access to shared resources. Some of these mechanisms are:

• Mutex

• Semaphore

• Interlocked Variable Access

Communication between these processes may be seen as a cooperation method between them. Pro-

cesses can communicate with each other through shared memory and data transfer. Some task commu-

nication mechanisms are:

• Pipes

• Message Queues

• Shared Memory

• Remote Procedure Call

2.2 Crash detection sensors

The detection of car accidents requires sensors that are capable of measuring the acceleration forces

experienced by the vehicle at the time of the collision. The most commonly used sensors for this purpose

are IMUs (Inertial Measurement Units), inertial sensors, and pressure sensors. IMUs combine accelerom-

eters, gyroscopes, and sometimes magnetometers to provide a comprehensive view of the vehicle’s ori-

entation and movement, allowing for accurate measurement of acceleration forces. Inertial sensors are

specialized accelerometers that are highly sensitive and can detect even small changes in acceleration.

Pressure sensors, meanwhile, are used to measure the forces applied to the vehicle during a collision, pro-

viding valuable information about the severity and distribution of forces across the vehicle. Together, these

sensors provide a complete picture of the forces experienced by the vehicle during a collision, allowing for

accurate and reliable detection of car accidents. However, for the proposed system the study of pressure

sensors can be discarded because the inteded system must be compact and the operation location is in

the car seat. Pressure sensors are very useful in other situations as explained further in this dissertation.

9

CHAPTER 2. BACKGROUND AND STATE OF THE ART

2.2.1 Accelerometers

Accelerometers are electromechanical sensors used to measure acceleration forces acting on an object

to determine the object’s position in space and monitor the motion of that object. These devices can

measure tilt, shock, vibration, and inertial acceleration. The main applications are shown in table 1 with

the respective g-Range [8].

Table 1: Accelerometer Grade and Typical Application Area

Accelerometer Grade Main Application g-Range
Consumer Motion, static acceleration 1g
Automotive Crash/Stability 200g
Industrial Platform Stability/Tilt 25g
Tactical Weapon/Craft navigation 8g
Navigation Submarine/Craft navigation 15g

Acceleration forces applied to an object can be either static or dynamic.

• Static acceleration is a force that is constantly being applied, such as gravity. These forces are

generally uniform and predictable

• Dynamic acceleration is a force that is not uniform, short-lived and has unexpected behaviour most

of the time. An accident or collision between two masses is an example of this force type.

Therefore, these devices are essential in detecting dynamic forces involved in road accidents. The ac-

celerometers used for crash detection and high-impact applications are typically ”High-g” and can detect

accelerations up to 200G or more depending on their properties. In recent years, accelerometers based on

microelectromechanical systems (MEMS) have been the most widely used due to their attractive charac-

teristics. MEMS devices are low cost, small in size, low power consumption, repeatability, high sensitivity

and quite good design flexibility. These types of devices end up being popular due to easy integration, high

level of functionality and excellent performance [8].

2.2.2 IMU

An Inertial Measurement Unit (IMU) is a device used to measure specific gravity and angular rate in

the object to which it is attached [9]. An IMU generally consists of 3 types of sensors:

• Gyroscopes: providing a measure of angular rate

• Accelerometers: providing a measure of specific force/acceleration

• Magnetometers (optional):measurement of the magnetic field surrounding the system

10

CHAPTER 2. BACKGROUND AND STATE OF THE ART

The main areas of an IMU are presented in table 2, which also shows some relevant applications for

each field. In the automotive field, this device is widely used in applications that require a calculation of the

vehicle position, estimating the direction and distance travelled through a provided starting point. Usually,

this type of device is combined with a GPS, thus ensuring greater accuracy in the vehicle position. The

IMU is used in automatic parking as well, where it is also used to calculate the car’s location and direction.

Table 2: IMU Grade and Typical Application Area

Accelerometer Grade Main Application
Consumer Motion tracker, entertainment systems
Industry Location of equipment such as antennas
Militar Maneuver aircraft
Navigation GPS system
Automotive Dead Reckoning, Automated Valet Parking

2.3 Crash detection algorithms

Crash detection algorithms are usually implemented in controllers and continuously monitor the sen-

sors used. In addition, they make their decision based on the sensor data and some parameters:

• Derivative of acceleration (called jerk)

• Speed (after integration of acceleration signal).

• Displacement, squeeze, deformation (double integration).

• The signal energy (acceleration or velocity).

• Signal power (acceleration or velocity).

Some of these parameters are used for crash detection algorithms in order to trigger the airbag. Thus,

several algorithms have been developed over the years. Table 3 presents different types of algorithms used

in airbag control units, as well as their characteristics and the type of approach used.

11

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Table 3: Highlights and comparisons of a selected list of sensing algorithms

Individual/Organization Main Theme or Features Approach
Diller/TRW Total and partial energies Energy in time domain

Allen/ASL Power rate
Energy + jerk + acceleration +
∆V

Gioutsos/ASL Waveform recognition Jerk

Watanabe,Umezawa Optimal timing
Predicted displacement +
acceleration + jerk + energy

Mattes /Robert Bosch GmbG Adjustable velocity threshold ∆V
Diller/TRW Summation of expert circuits ∆V + jerk + displacement

Eigler and Weber/SIemens
Multiple evaluation circuits and
time window

Acceleration recognition +
velocity + displacement

Tohbaru/Honda
Blackburn /TRW
Blackburn and Gentry/TRW

Power of acceleration signal in a
frequency range

∆V + energy in frequency
domain

Cashler and Kelly/Delco Electronics
Occupant displacement and
crash severity

Jerk + acceleration + ∆V +
displacement

Mclver/TRW Crash velocity and crash metrics
∆V + acceleration + shape
function

Sada and Moriyama/STC
Adjustable velocity based on
physical quantities

Jerk + acceleration + ∆V +
displacement

Kosiak/Delco Electronics
Crash sensing using anticipatory
sensor inputs

Acceleration scaling with
anticipatory sensors

2.3.1 ”Total and Partial Energies”, Diller

This algorithm was developed by R.W. Diller and analyzes the energy distributed during an accident.

The algorithm uses a sliding window in which it calculates and monitors the amount of energy. The basic

principle of the algorithm is based on the assumption that the energy dissipated in an accident (and

indirectly recorded by the accelerometers) is divided between a general deceleration of the vehicle and

energy dispersed in the structure of the vehicle (bending, vibration, strain, braking that are associated

with the individual components of total energy). The length of the time windows is suggested to be 12

milliseconds and updated every 2 milliseconds. The total energy in a crash is related to the root-mean-

square of the acceleration value, but the absolute value is substituted in the calculation. The partial energy

is calculated by subtracting the mean value.For firing to take place, the rule is that total and partial energies

must exceed their thresholds simultaneously prior to the end of a certain time interval. This is an algorithm

developed from the perspective of energy transition in a crash event. The calculation of the total energy

gives an indication of the overall slowing, while the amount of partial energy keeps track of the fluctuations

in the signal [10, 11].

12

CHAPTER 2. BACKGROUND AND STATE OF THE ART

2.3.2 ”Power-Rate Method”, Allen

In the Power-Rate Method developed by Allen, the first derivative of the designated course of signal

power is analysed. To determine the intensity of the crash, it uses measurements of acceleration, velocity,

and acceleration derivative [12]. The mathematical equations for calculating power rate are:

Energy:

E =
1
2
mv2

Power:

P =
dE

dt
=mv

dv

dt
=mva

Power-Rate:

P =
dP

dt
=m

(
v
da

dt
+
dv

dt
a

)
=m

(
v j + a2

)
2.3.3 ”A Predictive Algorithm”, Gioutsos

This algorithm is based on the slope of the acceleration sequence. One particular feature of this

approach is the claim of time-invariant criterion. The magnitude of the underlying waveform is correlated

with crash severity without the starting point of a crash event being identified [13].

2.3.4 ”Adjustable Velocity Threshold”, Mattes

The team of B. Mattes (Robert Bosch GmbH) developed an algorithm that initially integrates accelera-

tion signal in the time domain, and then the resulting waveform of velocity is used to activate the system.

Essentially, this concept is based on a ”varying ∆V” threshold. The threshold ∆V is adjusted according the

parameters of the crash pulses, such as acceleration or the variation of the velocity signal. The approach

asserts that it is especially advantageous to adjust the release threshold as a function of time for oblique

impact collisions [14].

2.3.5 ”Multiple Evaluation and Expertise Algorithms”, Diller

The approach uses multiple evaluation circuits, including core and supplementary algorithms. A eval-

uation circuit is a circuit that is responsible for a collision evaluation and is generally composed by a board

with some accelerometers. In this board, a alghoritm is implemented to detect the collision and this al-

ghoritm can be a simple or an advanced alghoritm. For example, velocity is used as the core whereas

displacement and jerk algorithms are supplementary. Each evaluation circuit conducts an assessment

of the signal and provides a vote of ”fire” signal if the situation indicates that the restraint should be

actuated. This invention suggests the use of multiple algorithms, including velocity, displacement, and

jerk. The method of varying weighting factors for individual circuits provides flexibility in adjusting sensor

performance [15].

13

CHAPTER 2. BACKGROUND AND STATE OF THE ART

2.3.6 ”Multiple Evaluation Circuits and Time Window”, Eigler

This approach uses multiple evaluation circuits, and each evaluation circuit evaluates the acceleration

signal in the time domain with different criteria. This approach utilizes a discrimination circuit to differen-

tiate types of accidents. Thresholds of different crashes are implemented in separate circuits. It also uses

the displacement evaluation to determine an ”optimal” timing of the restraint deployment [16].

2.3.7 ”Power Spectrum of Acceleration Signal in a Frequency Range”,

Tohbaru

The proposed method involves the following steps:

• Integrating the acceleration signal to determine the passenger’s inertial speed.

• Calculating the power of the filtered acceleration signal within a specific frequency range (100 to

200 Hz).

• Initiating the deployment of restraints when either the passenger’s inertial speed or the power

exceeds a predetermined reference value.

• Ensuring prompt and uninterrupted generation of the starting signal, even in oblique collision sce-

narios.

This method enables timely activation of restraints based on the passenger’s speed and the power of

the acceleration signal, ensuring effective protection during various types of collisions [17].

2.3.8 ”Deployment Method Based on Occupant Displacement and Crash

Severity”, Cashler and Kelle

The article presents the invention of a two-step deployment control for a supplemental inflatable re-

straint system in vehicles. The control algorithm consists of a ”time to wait” step and a ”severity” step,

which determine when and whether to deploy the restraint, respectively. The time to wait step relies on

estimating occupant displacement resulting from the crash, while the severity step relies on estimating

the severity of the crash. Notably, the control algorithm is enhanced to trigger earlier deployment when

the acceleration data indicates a localized impact, such as an angle or pole impact [18].

14

CHAPTER 2. BACKGROUND AND STATE OF THE ART

2.3.9 ”Method and Apparatus for Sensing a Vehicle CrashCondition

Using Velocity Enhanced Acceleration Metrics”, McIver

The invention described in the text involves a method and apparatus for sensing a vehicle crash con-

dition using velocity-enhanced acceleration metrics [19]. The key elements of the invention can be sum-

marized as follows:

• A crash velocity determining circuit calculates the crash velocity value based on accelerometer data.

• Crash metrics determining circuits calculate crash metric values related to acceleration.

• Threshold determining circuits establish threshold values associated with the crash velocity.

• Comparators compare the crash metric values with the corresponding thresholds.

• A shape monitoring circuit checks if the shape of the acceleration signal matches a predetermined

pattern.

• If the shape matches, a controller generates a signal to activate a restraining device.

The invention utilizes four measurements performed on the filtered acceleration signal to control the de-

ployment of occupant restraints:

• The first measurement filters the acceleration signal to obtain an acceleration value.

• The second measurement calculates the square of the acceleration signal.

• The third measurement computes the sum of the squared acceleration values over a specific time

period.

• The fourth measurement involves monitoring the shape of the crash velocity over a predetermined

time period.

2.3.10 ”Method and Apparatus for Crash Sensing Using Anticipatory

Sensor Inputs”, Kosiak

One of the suggested approaches is to “prepare” or “arm” the crash sensing system when a crash is

about to happen but has not actually happened yet. This example describes the use of anticipatory sensors

in crash sensing [20].

The invention is summarized below:

• Anticipatory crash sensors mounted on the front or the sides of a vehicle sense the speed of

approach to an obstacle.

15

CHAPTER 2. BACKGROUND AND STATE OF THE ART

• A signal processing algorithm determines the ratio of the speed to a threshold and multiplies the

output of an accelerometer by the ratio

• This enhanced acceleration signal is input to a single-point crash sensor algorithm to reduce the

time needed to generate a trigger signal.

• An anticipatory sensor capable of very near range sensing would permit calculation of the exact time

of impact and would reduce the possible variation in impact speed since last-instant maneuver is

accounted for.

• Through the use of two sensors spaced across the front of a vehicle, an indication may be made

about whether the impending impact is a full frontal or localized impact, and the point and angle

of impact may be determined.

2.4 Related Work

Due to the device characteristics, there are no identical products, so the existing work-study is carried

out using similar devices and other devices that perform similar operations, like data acquisition, logging

and, collision detection. In this section, an overview of the relevant studies and similar devices will be

address.

2.4.1 Airbag

The airbag and its control unit are essential for road safety. In a frontal crash, the airbags help oc-

cupants adapt to the vehicle’s deceleration with the lowest possible load values and prevent impacts on

hard vehicle components like the steering wheel or instrument panel. The airbag is pyrotechnically ignited

in a crash. Airbag electronics detect a crash and control the deployment of airbags and seat belt preten-

sioners. The airbag’s algorithm and sensor data determine when it is triggered. The study of this device is

important because it uses several methods and techniques to detect a collision, similar to other collision

detection systems. Airbag electronics also monitor the entire airbag system, store fault and crash data,

and activate the airbag indicator light in the event of system failure. They can notify other system compo-

nents of a crash via CAN (Controller Area Network) bus and store faults in an error memory. They have a

self-sufficient energy supply to ensure their function during a crash [21]. Figure 4 shows a typical airbag

system, where analogue sensors are the inputs and analogue actuators are the outputs. In this example,

sensors like buckle switches, accelerometers or pressure sensors are measuring the impact parameters.

The airbag ECU determine if a crash ocurred and deploy the airbags using the appropriate distribution

channels.

16

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Figure 4: Airbag System Overview [21]

Figure 5 presents an example of an airbag control unit where two independent processors are used.

One of the sensors is typically more reliable, so a complex algorithm is applied only to the data from this

sensor. The other sensor is used to supplement the collision detection and a simple algorithm is applied

to its data. The other processor is a simple processor that is only used to sample and save the data. All

these algorithms are combined to determine when to deploy the airbag. Figure 6 shows an example of the

sensor system in a car. Typically, four external acceleration sensors and two pressure sensors are used in

the front, rear, and sides to detect a collision. In the internal sensor system, some additional sensors are

also used to detect a car collision [22].

Figure 5: Airbag Control Unit [22]

17

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Figure 6: Airbag Sensors [22]

In the airbag control unit, the functional principle of the signal processing chain is shown in Figure 7.

Analogue signals from sensors are processed through an analogue-to-digital converter (A/D converter) that

converts the continuous input signal into discrete samples, which are then converted into digital values.

The parameters of the A/D converter include its bit depth and maximum sampling rate. The input signal

is first filtered by a low-pass filter, then sampled by the A/D converter, and finally processed by a digital

high-pass filter to eliminate zero-point shifts caused by temperature and ageing effects. This allows for

further processing in the crash algorithm. Sampling frequency is determined by the bandwidth of the input

signal and must be greater than twice the maximum possible frequency in order to reconstruct the signal

without loss. Bessel filters with a cut-off frequency of 400 Hz are commonly used for this purpose. Typical

sampling frequencies used in airbag control units are between 1 kHz and 4 kHz. These frequencies have

been found to be best suited for further processing in crash algorithms [22].

Figure 7: Airbag signal Processing

18

CHAPTER 2. BACKGROUND AND STATE OF THE ART

2.4.2 High-impact scenarios

Considering the conditions in which the equipment will work, it is necessary to analyse the character-

istics present in a car crash and attempt to define the limits to which the product should operate. A car

collision occurs when a vehicle collides with another object, be it another car, a wall, or a person. Each

vehicle has an energy associated called kinetic energy, defined as the work required to accelerate a body

of mass at rest to the acquire speed. In a car crash, this energy is transferred somewhere and usually

wasted as heat. In addition, much of this energy is absorbed by the body, especially if the seat belt is not

attached[23]. Today, as the automotive industry advances, vehicles are already designed to absorb much

of a car crash energy through structures such as bumper. Also, systems such as ABS or airbag are fitted

to reduce the impact.

In a high-impact scenario, it is usual to evaluate this impact based on the force exerted at the moment

of collision and the acceleration experienced by the vehicle. When measuring one of these factors, it is

possible to characterize and make decisions about vehicle collisions. Acceleration is one of the parameters

that allow an accident assessment and the main factor used in decision-making in a safety device such as

the airbag. Acceleration is defined as the rate of change of velocity of a mass, and its SI unit is metre per

second squared. However, to distinguish acceleration relative to free fall from simple acceleration (rate of

change of velocity), the unit g (or g) is often used. One g is the force per unit mass due to gravity at the

Earth’s surface and is the standard gravity, defined as 9.80665 metres per second squared [24] [25].

Before understanding and classifying which human tolerances are present in a car accident, it is

necessary to establish the vehicle’s coordinate axes. Figure 8 represents the coordinate system used as a

reference during this dissertation.

19

CHAPTER 2. BACKGROUND AND STATE OF THE ART

X

Y

Z

Figure 8: Car Coordinates

Usually, a road accident is described as a ”Crash Pulse”, which represents the acceleration that has

occurred, and which assumes a triangular shape. This description allows an accident classification in

terms of its peak or the duration of that acceleration peak [26]. For a better understanding of the human

tolerances to acceleration present in such accidents, the following factors should be considered:

• Magnitude

• Direction

• Duration

• Rate of onset

• Position/Restraint/Support

Through the exposed concepts, to design the detection algorithms of the proposed system, it is es-

sential to know the human limits. In table 4, it is possible to observe these limits and see the present

range of accelerations on all axes. As mentioned, these are extreme limits that a human can hold for a

few milliseconds.

20

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Table 4: Human Tolerance Limits [26]

Direction of Accelerating Force Occupant’s Inertial Response Tolerance Level
Headward (+Gz) Eyeballs Down 20-25 G
Tailward (-Gz) Eyeballs Up 15 G
Lateral Right (+Gy) Eyeballs Left 20 G
Lateral Left (-Gy) Eyeballs Right 20 G
Back to Chest (+Gx) Eyeballs Out 45 G
Chest to Back (-Gx) Eyeballs In 45 G

2.4.3 Bosch Peripheral Acceleration Sensor (PAS)

As meantion earlier in the airbag section, the airbag uses external and internal sensors present in

specific car areas. One example of a external sensor is the peripheral acceleration sensor (PAS) present

in figure 9.

Figure 9: Peripheral acceleration sensor

The Bosch Peripheral Acceleration Sensor (PAS) [27] provides information on steering and impact

levels by measuring accelerations during a crash. In addition, Bosch provides a two-channel peripheral

acceleration sensor, the enhanced PAS, which can record longitudinal and lateral accelerations of the vehi-

cle. The optional installation of this sensor can further improve the performance of the airbag system as it

provides additional acceleration information about the vehicle’s longitudinal direction. Special acceleration

sensors can be fitted in the ”crumple zone” at the front of the car to improve frontal impact detection.

21

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Bosch also provides acceleration sensors mounted in the front bumper to detect whether a pedestrian is

involved in the accident protecting pedestrians during a frontal collision.

2.4.4 Literature review

In this section, three studies will be presented that demonstrate the use of collision detection systems.

These studies highlight the effectiveness of these systems in several contexts and provide valuable insights

into their capabilities and limitations. The first study examines the use of a multi-sensor decision fusion

approach for reliable automotive crash detection, while the second study looks at the application of a low-

cost collision impact analyser based on MEMS accelerometers. The third study evaluates the performance

of an IMU sensor-based crash detection system. Through these examples, the versatility and potential of

collision detection systems in promoting safety and preventing accidents will be illustrated.

Reliable Automotive Crash Detection using Multi Sensor Decision Fusion

The aim of this study was to investigate the potential of multi-sensor decision fusion for reliable airbag

deployment in automobiles. The researchers used measurements from an accelerometer located on the

vehicle engine and a loadcell on the driver shoulder-belt to make the airbag deployment decision. They

developed and tuned Kalman filters for state estimation from the sensor data and used a cumulative

sum control chart (CUSUM) for crash detection at the individual sensor level. The resulting algorithm was

implemented in MATLAB and tested using US National Highway Traffic Safety Administration (NHTSA)

automobile crash data sets.

The results of the study showed that the use of multi-sensor decision fusion provided reliable crash de-

tection compared to single-sensor-based methods. The time taken for the worst-case scenario was within

the acceptable bounds of airbag deployment time (50 ms), even with the unoptimized MATLAB imple-

mentation. In conclusion, the study demonstrated the potential of multi-sensor decision fusion for reliable

airbag deployment in automobiles and suggested that further research could investigate the use of more

than two sensors and signal- level fusion [28].

22

CHAPTER 2. BACKGROUND AND STATE OF THE ART

MEMS Accelerometer based Low-Cost Collision Impact Analyzer

The aim of this study was to investigate the use of low-cost MEMS accelerometers for accident impact

analysis. The researchers developed a hardware and software system that was able to quickly collect,

process, and store large amounts of data from the accelerometers. The system was tested by simulating

an accident by dropping the system from a certain height, and the recorded data was later analysed on

a computer. The results of the study showed that the low-cost impact analyser could track the system

movement with a logging rate of 28 samples per second. However, the researchers also identified several

limitations of the system, including the slow data logging speed using a microSD card and the FAT (File

Allocation Table) file system. The researchers suggested that using wireless data logging with BLE devices

or GSM/GPRS modules could improve the throughput of data transmission.

In conclusion, the study demonstrated the potential of low-cost MEMS accelerometers for accident im-

pact analysis. Further research could investigate ways to improve the speed and accuracy of the system, as

well as its applications in different fields such as military, aerospace, sports, and automotive engineering.

The statistical analysis of g-force values in different crash scenarios could also provide valuable insights

for engineers designing more effective products [29].

Crash detection using IMU sensor

The aim of this study was to investigate the use of an MPU6050 IMU sensor for detecting motorcycle

accidents. The researchers used the sensor to measure the Euler angles (roll, pitch, yaw) and the G

forces on different axes. They also developed an algorithm that used data fusion between acceleration,

deceleration, and tilt angles to detect crashes. The results of the study showed that the MPU6050 sensor

was able to provide accurate and reliable data, even in the presence of vibrations from the motorcycle

engine. The crash detection algorithm had a high success rate, with no false positives or missed crashes

recorded in the tests.

In conclusion, the study demonstrated the potential of using an MPU6050 IMU sensor for detecting

motorcycle accidents. The low cost and high accuracy of the sensor make it a good choice for this appli-

cation. The use of the sensor in a system with E-call could decrease the time between the accident and

the arrival of emergency services by 50%, potentially saving lives. Further research could investigate the

use of automotive sensors, which are designed to reduce vibrations and improve accuracy, as well as the

integration of the crash detection system with other safety features on motorcycles [30].

2.5 Conclusions

In conclusion, this chapter presents an overview of the technologies and concepts that will be ad-

dressed in the dissertation. The goal is to develop an embedded system for data acquisition, so some

23

CHAPTER 2. BACKGROUND AND STATE OF THE ART

fundamentals of these systems are discussed. The characterization of the high-impact environment in

which the system will be used is also presented.

Additionally, the chapter discusses the technologies, types of sensors, and algorithms used in accident

detection, as well as a description of similar devices on the market and similar studies. This information

provides the foundation for the development of an effective and reliable collision detection system. Further

research could investigate the use of more sensors and signal-level fusion, ways to improve the speed and

accuracy of systems, and the integration of crash detection systems with other safety features.

24

C
h
a
p
te

r

3
System Specification

The previous chapter introduced some basic concepts and theoretical backgrounds in the embedded

systems field. In addition, it showed the characteristics present in a high-impact scenario and the most

used sensors and algorithms to detect a car crash. The theoretical concepts and the presented application

scenario are relevant to understand the construction of an embedded system and the needs and choices

to be made. In this chapter, the system requirements will be presented, together with the component

selection and a system overview, which allows an understanding of the hardware and software to develop.

3.1 Requirements

The project requirements for the proposed system include the following functional and non- functional

elements:

3.1.1 Functional Requirements:

• Detect a car collision.

• Save collision data.

• Perform a real-time operation

3.1.2 Non-Functional Requirements:

• Compact Size

• Blackbox

25

CHAPTER 3. SYSTEM SPECIFICATION

3.2 System Overview

In order to fulfill the requirements of the project, Figure 10 presents the system overview. The main

component is the microcontroller, which will be responsible for detecting collisions. This detection is based

on data from the accelerometer and IMU sensors, which provide input to the system. In the event of a

collision, the proposed system will save the data to an SD card and provide a trigger signal to one of the

microcontroller’s pins. This will enable the system to respond to the collision and take appropriate action,

such as sending an alert or activating safety measures. The use of an SD card allows for the storage of

large amounts of data, which can be used for further analysis and investigation.

Outputs

MPU-6881

SD
ADXL357

MCU

Inputs

Trigger Signal

Figure 10: System Overview

3.3 Hardware Specification

This section will provide detailed information on the components required for the assembly, including

their technical specifications and justifications. It will follow the system overview and provide a compre-

hensive overview of the hardware components used.

Programming an embedded system platform usually involves the use of hardware, so the PCB must

be able to be programmed by micro-USB and must have support to allow data to be saved on an SD

card. There are other ways of storing the necessary data, which are widely used and allow this task to be

performed faster and more efficiently. However, as the intention is to build a prototype, a microSD card was

selected for its practical use. Moreover, when making a prototype, there are some errors associated. Either

at the level of component soldering or even in the ”footprint” of some components. Better observation of

26

CHAPTER 3. SYSTEM SPECIFICATION

some signals allows solving or helping to solve possible errors, so the project board should include LEDs

and test points to check and debug this errors easily.

3.3.1 Sensors

The sensors selection is based on the need to measure high accelerations and obtain accurate accel-

erations during a partial period of the accident. Thus, the choice fell on using an accelerometer capable

of detecting values above 30G and a second accelerometer to be combined. The first device allows the

storage of all the high acceleration peaks and uses an accelerometer with higher precision. The second

accelerometer is embedded in an inertial measurement unit that also contains a built-in gyroscope, thus

allowing the inclusion of this data for future analysis.

ADXL357

The ADXL357 is a high-performance accelerometer that is suitable for applications that require high

accuracy and precision measurements of acceleration. It offers a choice of three different ranges up to

40G, making it suitable for a wide range of applications. The low drift, low noise, and low power of the

ADXL357 enable accurate tilt measurement in high-vibration environments. The device also features good

signal-to-noise ratio, minimal drift over temperature, and long-term stability, making it ideal for precision

applications that require minimal calibration. Additionally, the ADXL357 contains antialiasing filters and

user-selected output data rates, making it easy to integrate into a variety of systems. Overall, the ADXL357

is a versatile and reliable accelerometer that is well-suited for applications that require high-performance

measurement of acceleration.

Figure 11: ADXL357 Accelerometer

27

CHAPTER 3. SYSTEM SPECIFICATION

MPU-6881

The inclusion of an IMU in the system is important because it allows for the combination of data

from multiple sensors, including accelerometers and gyroscopes. This can provide a more accurate and

comprehensive view of the device’s orientation and movement.

The IMU chosen for this application is the MPU-6881, which contains both a 3-axis accelerometer

and a 3-axis gyroscope. This allows for the measurement of both linear acceleration and angular velocity,

providing a complete picture of the device’s movement and orientation. The MPU-6881 accelerometer

is a MEMS accelerometer, which means that it uses tiny mechanical structures to detect acceleration.

The accelerometer has ADCs (Analog-to-Digital Converters) with 16-bit resolution, which allows for highly

accurate measurement of acceleration. The accelerometer uses different proof masses for each axis,

which means that an acceleration in a given direction will cause a displacement of the corresponding

proof mass. This displacement is then detected by capacitive sensors, which output a differential signal

that is converted to digital form by the ADCs. The digital output of the ADCs can be adjusted to a range of

±2g, ±4g, ±8g, or ±16g, depending on the specific application.

3.3.2 CPU

The central processing unit is the main component of this system because is responsible for running

and performing all the software functions.

The microprocessor selected for this application is the ESP32, presented in figure 12. This series of

chips are small, low-cost, and also low-power systems. Although there is no requirement for the application

to be low power, this is always an advantage for future modifications. These chips are integrated with Wi-Fi

and Bluetooth, which allows them to be included in a wide range of IoT systems. The module chosen is the

ESP32-MINI-1 which has only one core. ESP32, as the name implies, is 32bit and has a clock frequency

of up to 240Mhz.

Figure 12: ESP32-Mini-1

In terms of memory, the specifications are as follows:

28

CHAPTER 3. SYSTEM SPECIFICATION

• 448 KB ROM.

• 520 KB SRAM.

• 16 KB SRAM in (Real-Time Clock).

• 4 MB SPI flash.

3.4 Software Specification

The two main applications in the project are the detection and recording of collisions. For these pro-

grams to operate, data from both sensors must be collected. Therefore, drivers that can write and read

data are essential. Additionally, to control the SPI transactions between the sensors, a module known as

the SPI driver must be created to manage independent transactions between the sensors. This module is

responsible for managing all bus movements, such as insertion, removal, reading, and writing.

As shown in the Figure 13, after establishing connectivity and communication with the sensors, an

interface must be created to allow for the necessary configurations to start and stop sensor use, as well

as to structure the data from the drivers and provide it in a rearranged form for the application. In the

final phase of system operation, data recording is stored on a microSD card through the use of a driver

specifically created for this purpose. This driver uses the functions of the SPI driver to communicate with

the SD card present in the PCB connector.

Figure 13: Software Architecture

29

CHAPTER 3. SYSTEM SPECIFICATION

3.5 Signal Processing

An accident detection is an event that depends not only on the sensors used but also on the treatment

and processing that data goes through (as seen in the airbag review). So, it is necessary to study what

kind of processing will be applied in the system and how to combine the data from the sensors to obtain

a more accurate acceleration. This section will present all filters used and, in some cases, an explanation

of their selection or use.

When analysing the data flow in figure 14, it is possible to see that the accelerometer ADXL357 has

analogue and digital filters before and after the ADCs. These ADCs have a resolution of 20 bits, and the

sampling frequency used in this device is 4kHz. The analogue filters are low pass filters that are used for

antialiasing, which reduces the distortion in signals caused by aliasing. This type of filter is also present

in the digital part and performs the same function. In addition to the antialiasing filters, the ADXL357 also

has low pass and high pass filters that are customizable by the user. The second device only has a digital

low-pass custom filter.

For the application in question, the limitation to a frequency band becomes relevant because it allows

the elimination of some unnecessary data for a collision evaluation. Therefore, the range chosen was

10Hz-500Hz, which eliminates the DC component that, in this case, is the influence of gravity. As it is

possible to predict, the data from MPU-6881 were not in the same frequency range as the accelerometer

ADXL357 since it has no high-pass filter, so the use of a digital high-pass filter will be necessary at a later

stage.

ADC

ADXL357

Z

Y

X

3-Axis Sensor

Data
Combination

ADC

MPU-6881

Z

Y

X

3-Axis Sensor

Kalman
Filter

Detection
Algorithm

Anti-Aliasing

Low Pass
Filter

Low Pass
Filter

High Pass
Filter

Low Pass
Filter

High Pass
Filter

Colision Detection System

Figure 14: Signal Processing Overview

One of the system requirements is the ability to obtain an accurate acceleration. This requirement

can be obtained by combining the data from the sensors. One of the most used filters for this situation is

the Kalman filter. As mention earlier, this filter was not a requirement and was included in the system to

archieve a better precision and accuracy.

30

CHAPTER 3. SYSTEM SPECIFICATION

3.5.1 Kalman Filter

Nowadays, most of modern systems use multiple sensors to estimate a given variable. It is because

one of the biggest challenges in control systems is achieving great precision and accuracy when there are

some uncertainties. These uncertainties usually come from disturbances, such as noise or atmospheric

effects, making the sensor’s values not 100% reliable. The values uncertainty can be reduced by using

several sensors and combining their data to obtain an ”Optimized” value. One of the most commonly used

filters in this situation is the Kalman filter. The Kalman filter originated in 1960 when its creator Rudolf E.

Kálmán published a scientific paper that has become famous, where he presented a recursive solution

to a linear data filtering problem [31]. Nowadays, this filter is one of the most relevant and most used

estimation algorithms.

The Kalman filter can be divided into two phases, a prediction phase and a correction phase. Initially,

the system state is unknown, so the next state prediction is not reliable. Therefore, the system state is

initialized with an initial guess and calculate the predicted state for the next iteration using the system

dynamics model. The correction phase is the core of the filter and uses the predicted and measured

values to obtain a weighted and optimized value to correct the system state.

The diagram in Figure 15 illustrates a simplified version of the Kalman filter, showing the different

blocks that make up the filter and their inputs and outputs. The Kalman filter inputs include initial values

based on an initial guess and measurements taken by sensors, along with the uncertainties in these

measurements. The filter’s outputs consist of estimates of the current state and the uncertainty of these

estimates. It is common for the initial few iterations to not be precise, depending on the initial values, but

the Kalman filter will eventually converge to a more accurate value.

MEASUREMENTS:
	 Measurement Parameter
	 Measurement Parameter Uncertainty

Outputs:
	 System State Estimation

	 Estimate Uncertainty

Kalman Filter

INITIALIZATIONS:
	 Initial State
	 Initial State Uncertainty

Current becomes previous

Predict UpdatePrevious State

Figure 15: Kalman Simple Overview

To better understand the Kalman filter, it is necessary to explain the entire data flow and their respective

equations. Figure 16 presents a detailed Kalman filter view where it is possible to observe the several

variables implied. The first step is the filter initialization which only occurs at system start-up and provides

two parameters:

• Initial system state (X0)

31

CHAPTER 3. SYSTEM SPECIFICATION

• Initial system uncertainty (P0)

Then comes the system prediction phase, where the system dynamics are used to predict the future

values of the system state and the uncertainty associated. In the first iteration, the filter uses the values

provided by the initialization to predict the next system state. From this iteration on, the final values of the

correction phase of this filter are used.

The following step is the measurements that served as input for the correction phase. The measure-

ment process involves the use of two variables:

• State of the measuring system (Yk)

• Uncertainty of the measurement

Estimate Uncertainty
Initial Guess

System State Initial
Guess

Calculate the predicted
State using system's

Dynamic Model

Extrapolate the estimate
uncertainty

Predict

Calculate the Kalman
Gain(K)

Estimate the current
State using the State

Update Equation

Update

Update the current
estimate uncertainty

Estimate Uncertainty
Initial Guess

System State Initial
Guess

System State
Estimate(Xk)

Estimate
Uncertainty(Pk)

Current becomes
Previous

Xk → Xk-1

Kalman Filter

Measurements

Initialization Outputs

Figure 16: Kalman Detailed Overview

The state of the measuring system is the measured values from the sensors. The measurement un-

certainty is the uncertainty that those sensors have in the variable they are measuring and are usually

described in their datasheet. Thus, the correction phase presents the following inputs:

• Measured Values (Yk)

• Measurement Uncertainty

• Previous System State (Xk-1)

• Previous System Uncertainty (Pk-1)

32

CHAPTER 3. SYSTEM SPECIFICATION

Kalman Filter Equations

After a detailed description of the variables in the Kalman Filter, lets describe the main equations. It is

composed by five equations, two in the predict phase and three in the update phase, as shown in figure

17.

Initial

State

Previous

State

Output

State

Predict

Measurement Input

Update

Kalman Filter

Figure 17: Kalman Equations Overview

The predict phase begins with the State Extrapolation Equation, which is used to predict the next state

of the system based on the system dynamics that are already known. This equation takes the form of:

X kp = AX k-1 + BU k +W k

X kp is the predicted state, Xk-1 is the previous state, A is the state transition matrix, B is the input matrix,

and U is the current input. The second equation in the predict phase is the covariance extrapolation

equation, which is used to predict the covariance of the next state based on the covariance of the previous

state and the system dynamics. This equation generally takes the form of:

Pkp = APk-1A
T +Qk

Pkp is the covariance of the current state, APk-1A
T is the expected covariance of the current state given

the previous state and system dynamics, and Q is the process noise covariance matrix representing the

uncertainty in the system dynamics. After the predicted state and covariance have been calculated, the

Kalman filter moves on to the update phase. The first step in this phase is to calculate the Kalman gain

using the following equation:

K =
PkpH

HPkpH
T + R

K is the Kalman gain, Pkp is the predicted state covariance, H is the measurement matrix, and R is the

measurement noise covariance. The Kalman gain determines how much weight to give to the predicted

33

CHAPTER 3. SYSTEM SPECIFICATION

state and the actual measurement in the final estimate. The second step in the update phase is to update

the predicted state estimate (Xk) using the Kalman gain and the measurement. This is done using the

following equation:

X k = X kp + K(Y k − HX kp)

Xk is the updated predicted state estimate, Xkp is the previous state estimate, Yk is the current measure-

ment, and H is the measurement matrix.The third and final step in the update phase is to update the

predicted state covariance. This is done using the following equation:

Pk = (I − KH)Pkp(I − KH)T + KRKT

Pk is the updated predicted state covariance, I is the identity matrix, K is the Kalman gain, and H is the

measurement matrix. The result of the update phase is a new, improved estimate of the system’s state

and its associated covariance. These updated estimates are then used in the next iteration of the Kalman

filter to further improve the accuracy of the state estimation.

3.6 Conclusions

This chapter outlines the system specification process, starting by establishing the requirements to fulfil

all system functionalities. To achieve this, the entire system and its components are specified, including

hardware, software, and signal processing, with detailed descriptions provided for quick comprehension

of the system’s operation. Following this analysis and problem-solving approach, the system design will

begin detailing all the integration of the selected components and explaining how the different software

and hardware parts will be combined to achieve a working system.

34

C
h
a
p
te

r

4
Design

The design of a system is carried out through a set of tools that allow explanations for the problems and

specifications presented in the system analysis. Tools like diagrams and flowcharts were used to design

a viable solution by showing and justifying all the choices. Therefore, in this chapter, the hardware and

software used will be specified, together with some considerations and precautions. Regarding filters used,

the Kalman filter parameters and other digital filters shall be described.

4.1 Hardware Considerations

After the main components have been selected in the previous phase, the requirements for designing

a PCB are fulfilled. At this stage, it is relevant to design several schematics and connect all the components

to get a view of the several blocks from a theoretical perspective.

Before starting to design the schematics, let’s understand what’s the necessary steps to make a

PCB. Figure 18 shows the build process, that starts exactly by design all the schematics with the main

components previously selected. After that, its necessary to make a schematic error verification in order

to proceed to the layout phase. In this layout phase, first is defined the design rules that affects the way

how the designer will route and place the components. After that, the designer proceeds to implement

the PCB layout making several DRC (Design Rule Checking) verifications until the board is ready. The PCB

fabrication process begins after generating the required output files, including Gerber files, drill files, and

a bill of materials. These files are used to manufacture the PCB, which involves the application of various

processes such as drilling, plating, and solder masking to create a good quality board. Once the board is

fabricated, the components can be mounted and soldered onto the board, followed by thorough testing to

ensure proper functionality.

35

CHAPTER 4. DESIGN

Schematic
Design

Schematic errors
verification

Estalishment of
layout design

rules

PCB layout
placement and

routing
DRC verification

Gerber files, Drill
files and output
files generation

Fabrication and
Welding

PCB Build Process

Figure 18: PCB Build Process

Thus, at this stage, it is relevant to design several schematics and connect all the components to get

a view of the several blocks from a theoretical perspective. Figure 19 shows the PCB block diagram used,

where it is possible to see all the relevant components and connections that will be present in this board.

In this section, the first step of the build process is covered, where the operating mode of each device,

accompanied by the recommended schematic for its use, will be presented.

MOSI
MISO
SCLK

CS1
CS2
CS3

SD

ADXL357

ESP32

CP21012

U0_TX
U0_RX

Micro USB
Connector

LDO

VCC_5V

D+
D-

MPU-6881

VCC_3V3

Figure 19: PCB Overview

In figure 19, some components are chosen by the compatibility and usage in the ESP32 development

boards. This decision will be also covered in this section. Another important decision is the use of SPI

protocol instead of other protocols. The digital interfaces for the majority of components are I2C and SPI,

so it was decided to use SPI as a communication vehicle between these components. One of the reasons

for using this protocol is that it is faster than I2C. Besides that, it’s a full-duplex protocol, is generally easy

to understand and it encompasses all the sensors and the microSD, which make it pratical to use.

4.1.1 LDO (Low-Dropout)

The sensors and CPU specified in the previous phase uses 3.3V as supply voltage. Since, the intention

of this board is act as prototype, the choice to power-up the board was by using a micro-USB connection.

36

CHAPTER 4. DESIGN

However this connection uses 5V as power voltage, which makes necessary the use of a circuit to lower

the voltage in order to power the other components. Another choice was using an LDO to lower the voltage

and provide a stable output to the PCB.

The power schematic, shown in figure 20, shows the circuit responsible for reducing the voltage and

ensuring that all of the ICs on the PCB receive a stable power supply. This circuit is composed by an LDO

and a Led to indicate if the board is power-up. The LDO used is the LT1117, since it is a popular choice

on ESP32 development boards and it is a low dropout positive regulator that can provide a stable 3.3V

output voltage at up to 800mA of current. As meationed earlier, this LDO is used to reduce the voltage, and

its schematic is taken from the component’s datasheet to ensure proper operation [32]. The capacitors

has several important functions on the power sheet. The input capacitor filters out noise on the input

voltage, and it also prevents the malfunction of the LDO in the event of a drop in the input voltage due

to a sudden change in output current. The output capacitor improves the response to changes in output

current and provides phase compensation for the feedback loop. In addition to its low dropout voltage

and high current output, the LT1117 also has several protective features that make it well-suited for use in

this application. These features include overcurrent and thermal protection, short-circuit protection, and

overvoltage protection, which can help to prevent damage to the board and its components in the event of

a fault.

The power led is used to indicate if the board is powered up, and the resistor is calculated to set a

current limit in that LED.

GND

ADJ/GND
OUT
IN

VOUT

 LT1117

1

2

3

4

VCC_5V

GND GND

GND

VCC_3V3

C3

10uF

R2

10

C1

100nF

C2

22uF

VCC_3V3

R1

1K

LED
RED

GND

Figure 20: LDO schematic

4.1.2 ADXL357

The ADXL357 schematic, illustrated in Figure 21, shows all the necessary connections and components

for operating the device following the recommendations provided in the device’s datasheet, according to

SPI operation [33]. It is important to note that a pull-up resistor on the chip-select signal is required to

ensure the proper functioning of the SPI protocol, allowing this line to always stay in logic “1” outside the

37

CHAPTER 4. DESIGN

communication time. The DRDY, INT2, and INT1 signals, which can be programmed and may be useful

for future modifications, have been directly connected to the ESP32 GPIO pins. Internally, the interrupt

pins can map to 1 of the 5 bits of the status register, which allows versatility in the software driver design.

CS/SCL

SCLK/VSSIO
MOSI/SDA

D
R

D
Y

IN
T2

IN
T1

MISO/ASEL

VD
D

IO

VS
SI

O
R

ES
ER

VE
D

VSUPPLY
V1P8ANA

VSS
V1P8DIG

1

2

3

4

11

10

9

8

5 6 7

14 13 12

C12

0.1uF

GND

VCC_3V3

VCC_3V3

R13

10K

GND

VCC_3V3

CS2

SCLK

MOSI

MISO

DRDY

INT2

INT1

C16

1uF

C18

0.1uF

C19

0.1uF

C17

1uF

C13

1uF

C14

0.1uF

C15

1uF

ADXL357

Figure 21: ADXL357 schematic

4.1.3 MicroSD Card

In the previous phase, the micro SD card was the device and method chosen to save the colision

data. In order to connect a micro SD card to the PCB, the board must support this type of connection

through the use of a micro SD connector. The microSD connector has different types of schematics that

can be used. This particulary one, as illustrated in Figure 22, is designed to communicate with the micro

SD card via SPI. As it is possible to see, the schematic incorporates several pull-up resistors on most of

the SPI signals, which will prevent floating states in these signals. If a pull-up resistor is not used on the

chip-select line for example, it may lead to communication errors when multiple devices are connected.

The card detection signals in this schematic, which are used to detect the presence of a microSD card,

are not necessary to use, which explains their connection to the ground.

38

CHAPTER 4. DESIGN

VCC_3V3

SCLK

MOSI

MISO

CS3

CLK

CMD

DAT0

DAT1

DAT2

CD/DAT3

VDD

GND

SHLD
SHLD
SHLD
SHLD

CD_A
CD_B

GND

R14 10K

R15 10K

R16 10K

R17 10K

R18 10K

SD_AGND

Micro SDCard Connector

Figure 22: MicroSD Card schematic

In the schematic is not actually possible to understand how the connections to a real microSD Card

are linked, so in figure 23 is presented the pin number identification used and in table 5 is represented

the respective connection via SPI using the pin number of figure 23.

SD1

8

Figure 23: MicroSD Pin Number Order

Table 5: MicroSD pinout

Pin SPI
1 -
2 CS
3 Data In
4 VDD
5 SCLK
6 VSS
7 Data Out
8 -

4.1.4 MPU-6881

Figure 24 illustrates the schematic used to operate with the MPU-6881 device, including all necessary

connections. This sensor was described and chosen in the system specification phase and, similar to

39

CHAPTER 4. DESIGN

other schematics, the sensor circuit is based on the manufacturer’s recommendations and uses the SPI

protocol for communication [34]. A pull-up resistor has been included on the chip-select signal. The other

SPI signals are connected to the CPU sheet and this connection is only represented through labels. In

addition, the FSYNC and INT0 signals have been connected to the CPU in case they are needed for future

logic requirements.

RESV_1

RESV_2

AUX_DA

NCS

SCL/SCLK
SDA/SDI

EP

INT
FSYNC

REGOUT
SDO/ADO

VDDIO
AUX_CLN

C
_1

N

C
_2

N
C

_3
N

C
_4

N

C
_5

N
C

_6

G
N

D
N

C
_1

0
N

C
_9

N
C

_8
N

C
_7

VD
D

CS1

SCLK

MOSI

GND

VCC_3V3

R14

10K

VCC_3V3

INT0

FSYNC

MISO

VCC_3V3

GND

C22

10nF

C21

0.1uF

C20

0.1uF

N
C

_1

N
C

_2
N

C
_3

N
C

_4

N
C

_5

Figure 24: MPU-6881 schematic

4.1.5 CPU

In Figure 25, the schematic for the CPU operation is shown. This schematic follows the ESP32

datasheet recomendations [35]. In this circuit, starting from the pinout, it is possible to observe that

the most pins are connected to a bus that will be linked to the connectors sheet. The remain pins are the

power pin, reset pin, enable pin and the UART (Universal Asynchronous Receiver/Transmitter) pins.

The power line includes several capacitors to filter out the noise and smooth out voltage fluctuations.

The larger capacitor helps to stabilize lower-frequency variations in the supply voltage, while the smaller

capacitor effectively helps to filter out the high-frequency noise on the power line.

The reset and boot pins are both directly connected to a button. In the reset signal line, a RC filter is

also used to improve the reliability and accuracy of the enabled signal by removing noise and interference.

By default, the signal logic is “1”, and pressing the button initiates a reset of the CPU.

The boot pin is just a verification pin checked during the reset process, also called strapping pin. If

the boot pin is set to logic “1”, the CPU will not enter a downloading mode and will simply reset the CPU

state. However, if the reset occurs and the boot pin is “0”, the CPU will enter a downloading mode and

will wait for the binary software to be loaded via UART pins. This boot pin does not need to be connected

to the power line because the ESP32 has a weak pull-up on this pin. The button associated to this pin is

used to perform a manual downloading mode, however its possible through some logic to automaticaly

put ESP32 in downloading mode. This is done by changing the RTS and DTR signal from USB protocol

and is usually done by software. In this case the button is used in case of some failure or to debug errors

during the firmware installition and configuration process.

40

CHAPTER 4. DESIGN

Figure 25: CPU schematic

4.1.6 Micro USB Connector

In chapter 3, the micro USB was chosen to program the microcontroller. Also in the LDO section, for

pratical reasons, was chosen using the micro USB to power up the entire board. In this case, to support

this connection, figure 26 shows the schematic for the micro USB connector that accomplish the desired

purposes. The majority of the elements shown in the schematic are protection components, which are

used to protect the system from several types of damage. These components include a fuse to protect

against excess current, a Schottky diode to prevent voltage spikes from damaging the system, a ferrite to

filter out power line noise, and TVS diodes in all lines to protect against electrical transients. All of these

components are necessary for ensuring the reliability and longevity of the system.

41

CHAPTER 4. DESIGN

SD_AGND

MH2

MP1

MH1

VBUS VCC_5V

MP2

MP3

MP4

SP0503BAHTG

USB_DN

USB_DP

Micro USB Connector F1 500mA
 L1 600Ω
D2 MBR0520-TP

1
2
3
4
5

Figure 26: MicroUSB connector schematic

4.1.7 CP2102N

Another important decision was to use a “UART bridge” to facilitate communication between the

microprocessor and the PC. This device, also known as a UART converter, acts as an intermediary between

the two devices, allowing them to communicate using different interfaces. In this case, the PC sends

data via USB, and the UART bridge converts it to the UART protocol, allowing it to be received by the

microprocessor. The chip commonly used for this purpose on ESP32 development boards is the CP2102N.

Although it would have been possible to use a device with a built-in debugger, it was decided to use

an external debugger if necessary. The schematic for this component, shown in Figure 27, follows the

recommendations provided in the component datasheet, ensuring that is properly configured and works

as intended [36]. The UART lines, Tx and Rx, are then connected directly to the UART0 port on the ESP32

CPU.

RTS

U0TXD

U0RXD

DTR

VCC_3V3

GND

VCC_3V3

VBUS

C9

4.7uF

DCD

RI/CLK

GND

D+

D-

VDD

VREGIN

GPIO.5
GPIO.6

GPIO.0/TXT
GPIO.1/RXT

GPIO.2/RS485
GPIO.3/WAKEUP

CHR0

N
C

SU

SP
EN

D
B

SU
SP

EN
D

C
H

R
EN

C

H
R

1

VB
U

S

R

ST
B

D
SR TX

D
R

XD R
TS

C
TS

B
G

N
D

D
TR

G
PI

O
.4

C10

0.1uF

R7

22.1K

R8

47.5K

R6

1K

R4 0

R5 0

USB_DP

USB_DN

Figure 27: CP2102N schematic

42

CHAPTER 4. DESIGN

In the CPU section, was refered that the automaticly downloading mode is done by changing the RTS

and DTR signal from USB protocol. Figure 28 shows the logic used to automaticly put the CPU in the

downloading mode. The RTS and DTR signals are used to synchronize the communication between the

devices and to put the ESP32 in a programming state where it is ready to receive and execute instructions.

R11
10K

R10
10K

RTS

DTR

GPIO0

ESP_RST

Figure 28: Programming logic schematic

4.2 Software Considerations

The realization of an embedded system is only complete with the construction of the logical part of the

program that will run on the developed hardware. For the development of this software part, flowcharts

and diagrams will be used to organize the ideas. In this section, the tasks overview will be presented, as

well as a detailed explanation of the logic of each tasks and drivers.

4.2.1 Task Overview

The use of tasks in the software design provides several benefits, such as improved organization,

resource utilization, responsiveness, and fault isolation. By breaking down the data operations into separate

tasks, the code can be more modular and easier to maintain and scale. The ability to schedule tasks to run

at different times can improve the responsiveness of the system and allow it to react quickly to changes.

While the prototype creation did not require multitasking usage due to its sequential approach, the decision

was made to implement a multitasking system to improve the code’s scalability. This will make it easier to

add additional functionalities or acquisition tasks in the future.

Figure 29 presents an overview of the software tasks used and the logic between them. First, three

threads are used to perform the data operations, where SPI transactions are established to execute reading

and writing operations. Three queues that act as FIFO (First In, First Out) buffers are used to coordinate

the tasks in the system. These buffers are connected to the main task, which is responsible for performing

43

CHAPTER 4. DESIGN

collision detection. The FIFO buffers ensure that the threads are executed in a sequential order, allowing

the collision detection logic to function correctly.

The detection task presents itself as the control task of the whole system. This task will receive the

data from the two accelerometers, and this data will be combined and filtered. Then, the Kalman filter and

the detection collision algorithm are applied. After this task detects a crash, the SD card task is signalised

to write the data on the microSD card. Before this operation, this thread will get the time from RTC and

save this data too. Some logic is included in the collision task to save data after and before the crash.

MPU-6881

Hardware

DMA SPI3

Software

SRAM

A
H

B
_B

U
S

vIMU vAccelerometervSDCard

vColisionDetection

M
U

X

I/O
 M

U
X

FreeRTOS

IMU_Buffer SD_Buffer Accel_Buffer

SD

ADXL357

Figure 29: Tasks Overview

This task overview section is only complete with the presentation of how the data will be synchronize,

as well as the program flow (Figure 30). First the vaccelerometer task will be notified by a interrupt timer

that will be schedule with a sampling frequency of 1KHz. After the vaccelerometer task aquire one sample,

it will notify the IMU task that will do exactly the same but with the other sensor. This sequential order,

guarantee that the control task will have a sample of each sensor to combine. The acquisition of the two

sensors could be done in parallel, but as both sensors use the same SPI resource, one task always ends

44

CHAPTER 4. DESIGN

up waiting for the other. This way, the option taken was to approach the problem in a simpler and faster

way.

The vIMU task is responsible to notify the control task in the end of the sample aquisition mode. As

meantioned earlier, if the control task doesn’t detect a colision, the sensors tasks will again wait for a

notification to sample more data. However, if a colision occurs, this task should notify the vSD_Card task

to start the save data program.

ISR_Timer

vAcelerometer

Notification

vIMU
Notification

vSDCardvCollisionDetection
Notification Notification

Figure 30: Tasks Synchronization

4.2.2 Drivers

In system specification, all the software architecture necessary to solve the application requirements

was determined. The use of three devices connected by SPI requires the creation of a driver module

to manage read-and-write transactions with the board sensors. The ESP-IDF (Espressif IoT Development

Framework) essentially contains an API (Application Programming Interface) with drivers that communicate

with the SPI peripherals on the ESP32. These drivers allow the bus to be initialised and SPI transactions

to be performed according to several parameters, such as address bits, command bits, and buffers for

receiving or sending data. The SPI module creation should implement functions considering the ESP32

API driver. These functions will allow devices to be inserted and removed in the bus, reading and writing

from these devices.

ADXL357

The driver that will handle the communications with the ADXL357 accelerometer, have to consider two

factors in his design. The first one is the SPI data format that the device needs, specially, the necessary

address format and which bit from that address indicates a read or write operation. The other factor is the

conversion from the raw read data to the g’s unit. When a read operation is preformed from the acceleration

registers, that data should be converted to g’s.

To accomplish the first requirement of this driver, first is necessary to identify the SPI format of ADXL357

from the datasheet. Figure 31 presents the SPI communication diagram of the ADXL357 accelerometer

For reading or writing to the registers of this accelerometer, the processor must send seven bits with the

intended address and the last bit that will specify if the master wants to read or write. The master, which in

45

CHAPTER 4. DESIGN

this case is the processor, must send this address byte through the MOSI line, and the accelerometer, as

a slave, sends the information of this register through the MISO line. The processor is responsible for the

entire frame creation, which means that the chip selection, clock, and MOSI frames creation are entirely

responsability of the master. This way, if the processor wants to read the same register several times, it is

enough to extend the SCLK for one more byte, and the slave will continue to send the data.

Figure 31: SPI Format ADXL357

The conversion from raw data to g’s is the second factor to fulfil and to perform this conversion is

necessary to get the sensitivity factor from the datasheet. This value will allow to convert the raw data

according with the selected range. Using the values shown in figure 32, the conversion is done by dividing

the raw data by correct range sensitivity.

Figure 32: ADXL357 Sensitivity

MPU-6881

The MPU-6881 SPI format, shown in figure 33, follows a diffrent address scheme, because the bit

that indicates a read or write operation is now the MSB(Most significant bit). Depending on the master

intentions, the data bytes are received in the MISO line or sent by the MOSI line to this device. Remember

that this ”chip select” is a different signal from the one used for the ADXL357 accelerometer, so the

processor must handle the additions of these devices on the bus, indicating the corresponding pin.

46

CHAPTER 4. DESIGN

Figure 33: MPU-6881 SPI Format

The convertion from the raw data to G’s is again performed using the sensitivity factor from the device’s

datasheet. Then the acceleration value is obtaining by dividing the raw data by the sensitivity, according

with the operating range. The device sensitivity is presented in the figure 34.

Figure 34: MPU-6881 sensitivity

4.2.3 Kalman

In order to effectively implement the Kalman filter in this project, it is crucial to establish the model in

which the filter will operate. The prediction phase uses two key equations: the state extrapolation equation

and the covariance extrapolation equation. These equations are used in conjunction to estimate the posi-

tion, velocity, and acceleration of the system at any given time. As outlined in the design phase, the initial

step in this process is to compute the state extrapolation equation. Additionally, as this project does not

involve any control input from car acceleration, matrix U is not required.

The state extrapolation equation, as presented, is given by:

X kp = AX k-1 +���*0
BU k +W k

To predict the future state of the system, it is imperative to define the state transition matrix, which

describes the evolution of the system state over time. The state transition matrix can be calculated using

kinematics equations, which allow for the calculation of the position, velocity, and acceleration of the car

at any given time. These kinematics equations are given by:

47

CHAPTER 4. DESIGN



Xk = Xk−1 + ÛXk−1∆t +
1
2

ÜXk−1∆t2

ÛXk = ÛXk−1 + ÜXk−1∆t

ÜXk = ÜXk−1
Yk = Yk−1 + ÛYk−1∆t +

1
2

ÜYk−1∆t2

ÛYk = ÛYk−1 + ÜYk−1∆t

ÜYk = ÜYk−1
Yk = Zk−1 + ÛZk−1∆t +

1
2

ÜZk−1∆t2

ÛZk = ÛZk−1 + ÜZk−1∆t

ÜZk = ÜZk−1
The state transition matrix A and the state extrapolation equation, as presented in the equations below,

are crucial components in the adaptation of the Kalman filter for use in this dissertation. The matrix A,

obtained through the use of kinematics equations, represents the evolution of the system state over time

and is used to update the current state of the system by multiplying it with the previous state of the system.

The state extrapolation equation combines the state transition matrix A and the previous state of the system

to estimate the position, velocity, and acceleration of the system at any given time in the project.

A =



1 ∆t 1
2∆t

2 0 0 0 0 0 0
0 1 ∆t 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 ∆t 1

2∆t
2 0 0 0

0 0 0 0 1 ∆t 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 ∆t 1

2∆t
2

0 0 0 0 0 0 0 1 ∆t

0 0 0 0 0 0 0 0 1



48

CHAPTER 4. DESIGN



Ûxk
Üxk
Ýxk
Ûyk
Üyk
Ýyk
Ûzk
Üzk
Ýzk



=



1 ∆t 1
2∆t

2 0 0 0 0 0 0
0 1 ∆t 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 ∆t 1

2∆t
2 0 0 0

0 0 0 0 1 ∆t 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 ∆t 1

2∆t
2

0 0 0 0 0 0 0 1 ∆t

0 0 0 0 0 0 0 0 1





Ûxk−1
Üxk−1
Ýxk−1
Ûyk−1
Üyk−1
Ýyk−1
Ûzk−1
Üzk−1
Ýzk−1


To conclude the prediction phase, the covariance extrapolation equation is utilized to estimate the

uncertainty in the state estimate at time k, based on the uncertainty at time k-1. The equation for this

calculation is represented as:

Pkp = APk-1A
T +Qk

Where Pkp represents the uncertainty (covariance) matrix of the current state estimation, calculated by

combining the previous state’s uncertainty matrix, Pk-1, with the state transition matrix A and the process

noise matrix Qk. This calculation plays a crucial role in determining the accuracy of the state estimate and

is calculated by:

Pkp =



Px Px Ûx Px Üx Pxy Px Ûy Px Üy Pxz Px Ûz Px Üz
P Ûxx P Ûx P Ûx Üx P Ûxy P Ûx Ûy P Ûx Üy P Ûxz P Ûx Ûz P Ûx Üz
P Üxx P Üx Ûx P Üx P Üxy P Üx Ûy P Üx Üy P Üxz P Üx Ûz P Üx Üz
Pyx Py Ûx Py Üx Py Py Ûy Py Üy Pyz Py Ûz Py Üz
P Ûyx P Ûy Ûx P Ûy Üx P Ûyy P Ûy P Ûy Üy P Ûyz P Ûy Ûz P Ûy Üz
P Üyx P Üy Ûx P Üy Üx P Üyy P Üy Ûy P Üy P Üyz P Üy Ûz P Üy Üz
Pzx Pz Ûx Pz Üx Pzy Pz Ûy Pz Üy Pz Pz Ûz Pz Üz
P Ûzx P Ûz Ûx P Ûz Üx P Ûzy P Ûz Ûy P Ûz Üy P Ûzz P Ûz P Ûz Üz
P Üzx P Üz Ûx P Üz Üx P Üzy P Üz Ûy P Üz Üy P Üzz P Üz Ûz P Üz


The main diagonal elements of a matrix represent the variances of an estimation. In this case, the

matrix represents the variances of the X, Y, and Z coordinate positions, velocities, and accelerations.

Specifically, Px , P Ûx , P Üx represents the variance of the X coordinate position, velocity, and acceleration es-

timation respectively. Similarly, Py, P Ûy, P Üy and Pz, P Ûz, P Üz represent the variances of the Y and Z coordinate
estimations respectively.

It’s important to note that the off-diagonal elements of the matrix are covariances, which measure the

relationship between the different variables. In this case, it is assumed that the estimation errors in the

49

CHAPTER 4. DESIGN

X, Y, and Z axes are not correlated, so the mutual terms can be set to zero. This means that the estimate

uncertainty in matrix form is given by:

Pkp =



P2x P2x Ûx P2x Üx 0 0 0 0 0 0
P2Ûxx P2Ûx P2Ûx Üx 0 0 0 0 0 0
P2Üxx P2Üx Ûx P2Üx 0 0 0 0 0 0
0 0 0 P2y P2y Ûy P2y Üy 0 0 0

0 0 0 P2Ûyy P2Ûy P2Ûy Üy 0 0 0

0 0 0 P2Üyy P2Üy Ûy P2Üy 0 0 0

0 0 0 0 0 0 P2z P2z Ûz P2z Üz
0 0 0 0 0 0 P2Ûzz P2Ûz P2Ûz Üz
0 0 0 0 0 0 P2Üzz P2Üz Ûz P2Üz


The next step in the derivation process is to calculate the process noise matrix. The variance of the

process noise plays a crucial role in determining the performance of the Kalman filter. A low value for Q can

lead to lag errors, while a high value can result in noisy estimations that closely follow the measurements.

There are also two distinct models for environmental process noise to consider:

• Discrete noise model

• Continuous noise model

In this example, the discrete noise model is assumed, where the noise is different at each time sample

but is constant between time samples. The process noise matrix to this model is represented by:

Qk =



σ2x σ2x Ûx σ2x Üx 0 0 0 0 0 0
σ2Ûxx σ2Ûx σ2Ûx Üx 0 0 0 0 0 0
σ2Üxx σ2Üx Ûx σ2Üx 0 0 0 0 0 0
0 0 0 σ2y σ2y Ûy σ2y Üy 0 0 0

0 0 0 σ2Ûyy σ2Ûy σ2Ûy Üy 0 0 0

0 0 0 σ2Üyy σ2Üy Ûy σ2Üy 0 0 0

0 0 0 0 0 0 σ2z σ2z Ûz σ2z Üz
0 0 0 0 0 0 σ2Ûzz σ2Ûz σ2Ûz Üz
0 0 0 0 0 0 σ2Üzz σ2Üz Ûz σ2Üz


Assuming that X, Y and Z are not correlated, the process noise matrix becomes:

50

CHAPTER 4. DESIGN

Qk =



∆t4
4

∆t3
2

∆t2
2 0 0 0 0 0 0

∆t3
2 ∆t2 ∆t 0 0 0 0 0 0

∆t2
2 ∆t 1 0 0 0 0 0 0

0 0 0 ∆t4
4

∆t3
2

∆t2
2 0 0 0

0 0 0 ∆t3
2 ∆t2 ∆t 0 0 0

0 0 0 ∆t2
2 ∆t 1 0 0 0

0 0 0 0 0 0 ∆t4
4

∆t3
2

∆t2
2

0 0 0 0 0 0 ∆t3
2 ∆t2 ∆t

0 0 0 0 0 0 ∆t2
2 ∆t 1



σ2a

where ∆t is the time between sucessive measurements andσ2a is the random variance in acceleration.

With the transition matrix and process noise matrix derived, it is now possible to derive the covariance

extrapolation equation:

Pkp = APk-1A
T +Qk ⇔

⇔



P2x P2x Ûx P2x Üx 0 0 0 0 0 0
P2Ûxx P2Ûx P2Ûx Üx 0 0 0 0 0 0
P2Üxx P2Üx Ûx P2Üx 0 0 0 0 0 0
0 0 0 P2y P2y Ûy P2y Üy 0 0 0

0 0 0 P2Ûyy P2Ûy P2Ûy Üy 0 0 0

0 0 0 P2Üyy P2Üy Ûy P2Üy 0 0 0

0 0 0 0 0 0 P2z P2z Ûz P2z Üz
0 0 0 0 0 0 P2Ûzz P2Ûz P2Ûz Üz
0 0 0 0 0 0 P2Üzz P2Üz Ûz P2Üz



=



1 ∆t 1
2∆t

2 0 0 0 0 0 0
0 1 ∆t 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 ∆t 1

2∆t
2 0 0 0

0 0 0 0 1 ∆t 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 ∆t 1

2∆t
2

0 0 0 0 0 0 0 1 ∆t
0 0 0 0 0 0 0 0 1





P2xk−1 P2x Ûxk−1
P2x Üxk−1

0 0 0 0 0 0

P2Ûxxk−1
P2Ûxk−1

P2Ûx Üxk−1
0 0 0 0 0 0

P2Üxxk−1
P2Üx Ûxk−1

P2Üxk−1
0 0 0 0 0 0

0 0 0 P2yk−1 P2y Ûyk−1
P2y Üyk−1

0 0 0

0 0 0 P2Ûyyk−1
P2Ûyk−1

P2Ûy Üyk−1
0 0 0

0 0 0 P2Üyyk−1
P2Üy Ûyk−1

P2Üyk−1
0 0 0

0 0 0 0 0 0 P2zk−1 P2z Ûzk−1
P2z Üzk−1

0 0 0 0 0 0 P2Ûzzk−1
P2Ûzk−1

P2Ûz Üzk−1
0 0 0 0 0 0 P2Üzzk−1

P2Üz Ûzk−1
P2Üzk−1





1 0 0 0 0 0 0 0 0
∆t 1 0 0 0 0 0 0 0
1
2∆t

2 ∆t 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 ∆t 1 0 0 0
0 0 0 1

2∆t
2 ∆t 1 0 0 0

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 ∆t 1 0
0 0 0 0 0 0 1

2∆t
2 0 1


+



∆t4
4

∆t3
2

∆t2
2 0 0 0 0 0 0

∆t3
2 ∆t2 ∆t 0 0 0 0 0 0

∆t2
2 ∆t 1 0 0 0 0 0 0

0 0 0 ∆t4
4

∆t3
2

∆t2
2 0 0 0

0 0 0 ∆t3
2 ∆t2 ∆t 0 0 0

0 0 0 ∆t2
2 ∆t 1 0 0 0

0 0 0 0 0 0 ∆t4
4

∆t3
2

∆t2
2

0 0 0 0 0 0 ∆t3
2 ∆t2 ∆t

0 0 0 0 0 0 ∆t2
2 ∆t 1



σ2a

The parameter σ2a represents the random variance on acceleration, which will be further explained in the

next section.

Pre-processing step

Before advancing to the update phase, let’s define how the data from the two accelerometers will be

combined and how this will affect some other parameters, like the variance of acceleration. To fuse the

sensors data, it will combine measurements from multiple sensors based on the variances of each sensor.

The method uses a weighted average of the sensor measurements, where the weighting factors are the

inverse of the variances of the sensors. So the combined aceleration in each axis will be calculated by:

ā =

1
σ2a1

a1 +
1

σ2a2
a2

1
σ2a1
+ 1

σ2a2
This weighted formula makes use of accelerometers variance which is calculated by using the noise

spectral density from the devices datasheets and applying the formula for converting noise spectral density

to the variance that is given by:

σ2a =
∫ f2

f1
Sn(f)d f

51

CHAPTER 4. DESIGN

Where:

σ2 is the variance of the noise

Sn(f) is the noise spectral density
f1 is the lower frequency limit

f2 is the upper frequency limit

This formula is based on the concept that the variance is the integral of the power spectral density over

the frequency range of interest. Starting from the ADXL357 datasheet, the spectral density in all axis for

the 40G range is 110 g/
√
Hz.

Deriving using the formula:

σ2a =
∫ f2

f1
Sn(f)d f ⇔

⇔ σ2a =
∫ 1000

10

110 × 10−6√
(f)

d f = 110 × 10−6
∫ 1000

10
f
− 1
2 d f ⇔

⇔ σ2a =
[
110 × 10−6 × 1

1/2 f
1/2

]1000
10

= 110 × 10−6 × 2 ×
[√

1000 −
√
10
]
⇔

⇔ σ2a = 0.006261

The MPU accelerometer has a noise spectral density of 400 g/
√
Hz.

Applying the formula:

σ2a =
∫ f2

f1
Sn(f)d f ⇔

⇔ σ2a =
∫ 1000

10

400 × 10−6√
(f)

d f = 400 × 10−6
∫ 1000

10
f
− 1
2 d f ⇔

⇔ σ2a =
[
400 × 10−6 × 1

1/2 f
1/2

]1000
10

= 400 × 10−6 × 2 ×
[√

1000 −
√
10
]
⇔

⇔ σ2a = 0.0228

Now, the fusion variance of acceleration, assuming the sensors are not correlated, is given by:

σ2combined =
1

1
σ21
+ 1

σ22

=
1

1
σ2
ADXL

+ 1
σ2
MPU

=
1

1
0.006261 +

1
0.0228

⇔

⇔ σ2combined = 0.004912109012

Now the combined acceleration in each axis will be calculated by:

ā =

1
0.006261a1 +

1
0.00228a2

1
0.006261 +

1
0.00228

The measurement equation

52

CHAPTER 4. DESIGN

In the measurement equation, the Kalman filter uses the observed values from the system and com-

pares them to the predicted values. The observation matrix, C, is used to extract the relevant information

from the measured values. In this project, matrix C is set up to extract the x, y, and z accelerations from

the measured sensor values.

The generalized measurement equation in the matrix form is given by:

Yk = CYkmeasured
+ Zk

whereYk is the output matrix with only acceleration measured values,Ykmeasured is a hidden system

state matrix that contains all the observed variable values that can be provided from sensors or not. C is

the observation matrix that will select which values on the Ykmeasured are provided from sensors, which

in this case is the acceleration from x,y and z directions. So, in this case, the observation matrix C is given

by:

C =


0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


and the Ykmeasured is given by:

Ykmeasured
=



0
0

xmeasured

0
0

ymeasured

0
0

zmeasured


This allow to derive the measurement equation that will be given by:

Yk = CYkmeasured
+ Zk ⇔

53

CHAPTER 4. DESIGN

⇔


xmeasured

ymeasured

zmeasured

 =

0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1





0
0

xmeasured

0
0

ymeasured

0
0

zmeasured


The measurement uncertainty

In real-life applications, the measurement uncertainty can differ between measurements. In many sys-

tems, the measurement uncertainty depends on the measurement SNR (signal-to-noise ratio), the angle

between the sensor (or sensors) and target, signal frequency, and many other parameters. The measure-

ment covariance matrix is defined as:

R =


σ2xm σymσxm σzmσxm

σxmσxm σ2ym σzmσym

σxmσzm σymσzm σ2zm


This matrix represents the uncertainty associated of the measured values. If x,y and z measurements

are not correlated, the matrix assumes a diagonal form. Since the measured values are from MEMS

acceleroemters, and the axis are uncorrelated, this matrix is given by:

R =


σ2xm 0 0
0 σ2ym 0
0 0 σ2zm


The Kalman gain

After defining the measurement uncertainty matrix, all the necessary matrix are already defined and

the kalman gain can be derived by:

K =
PkpC

T

CPkpC
T + R

⇔

⇔ K =



P2x P2x Ûx P2x Üx 0 0 0 0 0 0
P2Ûxx P2Ûx P2Ûx Üx 0 0 0 0 0 0
P2Üxx P2Üx Ûx P2Üx 0 0 0 0 0 0
0 0 0 P2y P2y Ûy P2y Üy 0 0 0

0 0 0 P2Ûyy P2Ûy P2Ûy Üy 0 0 0

0 0 0 P2Üyy P2Üy Ûy P2Üy 0 0 0

0 0 0 0 0 0 P2z P2z Ûz P2z Üz
0 0 0 0 0 0 P2Ûzz P2Ûz P2Ûz Üz
0 0 0 0 0 0 P2Üzz P2Üz Ûz P2Üz





0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1



©­­­­­­­­­­­­­­­­­«

[0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

]


P2x P2x Ûx P2x Üx 0 0 0 0 0 0
P2Ûxx P2Ûx P2Ûx Üx 0 0 0 0 0 0
P2Üxx P2Üx Ûx P2Üx 0 0 0 0 0 0
0 0 0 P2y P2y Ûy P2y Üy 0 0 0

0 0 0 P2Ûyy P2Ûy P2Ûy Üy 0 0 0

0 0 0 P2Üyy P2Üy Ûy P2Üy 0 0 0

0 0 0 0 0 0 P2z P2z Ûz P2z Üz
0 0 0 0 0 0 P2Ûzz P2Ûz P2Ûz Üz
0 0 0 0 0 0 P2Üzz P2Üz Ûz P2Üz





0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1


+


σ2xm 0 0
0 σ2ym 0
0 0 σ2zm



ª®®®®®®®®®®®®®®®®®¬

−1

54

CHAPTER 4. DESIGN

The state update equation and covariance update equation

After obtaining the kalman matrix, all the necessary matrix’s has already been defined. Then, the state

update equation is calculated by:

X k = X kp + K(Y k − HX kp)

and the covariance update equation is calculated by:

Pk = (I − KH)Pkp(I − KH)T + KRKT

After completed all this stages is time to prepare the next iteration, where the current state matrix and

the covariance matrix becomes the previous values.

X k → X k-1

Pk → Pk-1

4.2.4 FreeRTOS Tasks

By developing modules with functions for each device, the software structure becomes more user-

friendly and easier to understand. This modularization enables a more intuitive task structure for the

operating system and facilitates redesigning. The designer can structure which tasks are required for data

acquisition, processing, and connection elements between threads. As a result, five tasks were created,

with three of them handling SPI device data, the control task and the main task that will create all the other

threads.

vAccelerometer

The main task goal is to perform the data acquisition of the ADXL357 accelerometer and provide that

data in a queue that acts as a FIFO. Figure 35 presents the task flowchart. This task is responsible for

initialising the variables used and starting the ADXL357 accelerometer. The accelerometer initialisation is

done by using a driver created for that purpose, which prepares the accelerometer and turns it into the

desired configuration to start readings. After the start-up process, it’s time to run the data acquisition loop.

Inside this loop, it should wait for a timer notification to start reading data. After the alert, the thread uses

a function to reserve the mutex associated with the SPI resource, making no other tasks use the peripheral

until this thread releases it. It then performs a data sample to an array previously created. After the data

acquisition, the next step is to pass these data to a buffer. This buffer is the Accel_Buffer that serves to

pass the data to the collision detection task.

55

CHAPTER 4. DESIGN

Init and allocate memory for variables

Init ADXL357 Peripheral

1? End

Take SPI mutex

Read ADXL chunk of data

Release SPI mutex

Send the Read Data to Accel_Buffer

Notify the IMU task

Init

Notification?

Yes

Yes

No

No

Init timer interrupt with 1KHz sampling
frequency

Figure 35: vAccelerometer task

vIMU

The task flowchart for data acquisition from the MPU-6881 sensor is shown in Figure 36. Similar to

the accelerometer task, this task is responsible for setting up and using the MPU-6881 sensor to acquire

data. After initialising memory for variables and starting the MPU-6881 peripheral, this task waits for a

notification from the accelerometer task. This notification is used as a synchronization mechanism and

allows the collision detection task to be organized. The next step is to read data from IMU, send that data

to the IMU_Buffer and notify the collision detection task. The SPI read transaction is accompanied by a

mutex that protects other tasks from accessing this resource. Usually, this mutex is not needed because

the use of the notification mechanism prevents the accelerometer and IMU task to read at the same time.

But, when detected a crash the situation is different. The collision detection task should notify the SDCard

task for writing in SD Card and to get time from RTC, which makes a race condition to the SPI resource.

To prevent that, a mutex is used before the read transaction and released after it.

56

CHAPTER 4. DESIGN

Init and allocate memory for variables

Init MPU-6881 Peripheral

1? End

Take SPI mutex

Read MPU chunk of data

Release SPI mutex

Send the Read Data to IMU_Buffer

Notify the Colision Detection task

Init

Notification?

Yes

Yes

No

No

Figure 36: vIMU task

vCollisionDetection

The collision detection task, shown in Figure 37, is responsible for continuously reading data from the

acquisition buffers, applying a Kalman filter, and performing a collision detection algorithm. It writes the

resulting data to the SD_Buffer. The task begins by initializing the necessary memory and variables and

initializing the Kalman filter module. It then enters a loop and waits for a notification from the IMU task,

indicating that data is available in the IMU_buffer and Accel_buffer. Upon receiving this notification, the

task reads the data and starts the Kalman prediction phase. It then performs the Kalman update phase

using the newly acquired data and executes a collision detection algorithm to determine if a crash has

occurred. In a colision, the data before and after the collision are also important, so in this project was

decided to reserve half of the buffer to the data before colision and the other half for after the collision.

In this case, the vSDCard task is notified only if a collision occurs and the SD_Buffer is full. In a normal

operation, half of the buffer retains the old data by removing the oldest element from the buffer each time

the half buffer is full.

57

CHAPTER 4. DESIGN

Init and allocate memory for variables

Init Kalman module

Init

Notification?

Kalman prediction

Kalman update with measurements

No

Yes

1? End
Yes

No

Write an item in SD_Buffer

Read an item from IMU_Buffer

Read an item from Accel_Buffer

Apply the collision detection
alghoritm

Collision &
SD_Buffer Full?

Remove the oldest element from the
SD_Buffer

Notify vSDCard task

SD_Buffer More
than half?

Yes

Yes

No

No

Figure 37: vCollisionDetection task

vSDCard

The SD Card task, present in figure 38 is responsible for saving data to an SD card and activating the

mesh in response to a car crash. First, the task initialize variables and allocate the necessary memory in

order to proceed to the micro SD card peripheral incialization, that includes mounting the Fat filesystem

and adding the microSD device to the SPI bus. The task then waits for a notification from the collision

58

CHAPTER 4. DESIGN

detection task before proceeding. Once notified, it reads data from the SD_Buffer and writes it to the SD

card. The thread then checks the number of items in the FIFO buffer, entering a loop until all data has

been stored. After all the data has been written to the SD card, the task sends a signal to activate a GPIO

and closes the microSD card, unmounting it and removing it from the SPI bus.

Init and allocate memory for variables

Init microSD Card Peripheral

End

Init

Notification?

SD_Buffer
empty?

Write the item data to microSD Card

Activate mesh

Close the file

No

Yes

Yes

No

Take SPI mutex

Open a file to write the data

Get RTC time

Read an item from SD_Buffer

Close the microSD Card Connection

Give SPI mutex

Figure 38: vSDCard task

vMain

The main task is the default task in the system and is used to create other FreeRTOS tasks and initialize

peripherals. As shown in figure 32, the main task starts by initializing the GPIOs and setting default values

59

CHAPTER 4. DESIGN

for them. It then initializes the SPI peripheral using the ESP32 SPI driver and initializes the RTC. Finally,

the main task creates the other threads and completes their execution.

Init

Init GPIO and set a default level

Init SPI Peripheral

Create vAccelerometer Task

Create vIMU Task

Create vColisionDetection Task

Create vSDCard Task

Init RTC and set time

End

Figure 39: vMain

60

C
h
a
p
te

r

5
Implementation

In this chapter, the implementation details of the proposed system are presented. The implementation

phase involves taking the plan developed during the design phase and bringing it to realization using the

necessary hardware and software components. A detailed description of the schematics implementation,

and the techniques used, are provided. The challenges encountered during the implementation of the

embedded system and the solutions adopted are also discussed. Finally, the results of the implemented

system are presented.

5.1 Hardware Schematic

This section describes the hardware components and their connections in the implemented system.

The hardware follows a hierarchical architecture, with the main sheet containing several blocks represent-

ing individual sheets with their respective circuits. All the schematics covered in the design phase were

implemented using Altium software.

5.1.1 Main sheet

The primary schematic, illustrated in Figure 40, comprises the key elements utilized on the PCB. The

micro-USB sheet supplies 5V to the board and converts the USB protocol to UART for communication

with the CPU sheet. The power sheet lowers the voltage to 3.3V to power all ICs. Additionally, the micro-

USB sheet enables the CPU to be programmed utilizing the reset and enable signals which initiate the

programming mode and allows for software to be loaded via UART.

61

CH
APTER

5.
IM
PLEM

EN
TATIO

N

Figure 40: Main schematic

62

CHAPTER 5. IMPLEMENTATION

On the other side of the main sheet, three devices are connected to the microprocessor via SPI. The

MISO, MOSI, and SCLK signals are all connected, and each SPI device has its chip-select signal connected

to a different GPIO. This allows for communication and control between the devices and the microproces-

sor. Moreover, the connector sheet is also linked to the CPU sheet, allowing external connections to the

system. As mentioned, the block diagrams represented are connected to individual sheets containing

several circuits. This main sheet acts as an abstraction sheet and provides an overview of the system’s

architecture, making it easy to understand the organization of the hardware components. Figure 41 also

helps to understand how all systems elements work together to accomplish the system’s purpose.

Figure 41: Altium Project Organization

5.1.2 Micro USB

Themicro USB sheet, as shown in figure 42, serves as another abstraction sheet, providing a visual rep-

resentation of several signals transmitted between the micro USB connector and the CPU. The schematic

of the micro USB connector is included in the micro USB sheet and is utilized to supply the system with

a 5V power source. The data received by the micro USB connector is then passed on to the UART-Bridge

sheet for translation into the UART protocol. The resulting UART signals, TX and RX, are then directed to

the ESP32 CPU. This connection allows for communication and data transfer between the system and

external devices connected via the micro USB connector. The RTS and DTR signals from the UART bridge

sheet are connected to a logic sheet, which can be used to initiate the CPU’s programming mode when

needed. This allows for the system to be reprogrammed or updated as necessary. The micro USB sheet

provides a comprehensive view of the interactions between the micro USB connector, UART-Bridge, and

the ESP32 CPU, making it easy to understand the communication flow and troubleshoot any issues that

may arise.

63

CH
APTER

5.
IM
PLEM

EN
TATIO

N

VCC_5V
VBUS

USB_DN
USB_DP

VCC_3V3

VBUS

USB_DN

USB_DP

GND

GND

VCC_5V
VBUS

USB_DN
DTR

U0RXD
U0TXD

RTS
DTR

RTS

GPIO0
ESP_RST

GND

VCC_3V3VBUSVCC_5V

U0RXD

U0TXD

ESP_RST

GPIO0

MicroUSB Connector Sheet CP2102N Sheet

DTR and RTS Sheet

Figure 42: MicroUSB main schematic

64

CHAPTER 5. IMPLEMENTATION

5.2 Hardware Layout

The development of a PCB layout is a crucial step in the design process as it can affect the final

product performance if not executed properly. Before starting the layout phase, it is relevant to ensure

that the footprints of all components is align with the recommendations outlined in their datasheets.

This verification may also involve creating custom footprints for parts that are not available. Once all the

footprints have been created and imported, the layout process can commence. In this case, the board

layout was designed to use two layers, as it is a cost-effective option, and the complexity of the board

does not necessitate the use of a four-layer board. The layer stack used is presented in figure 43, which

illustrates the two layers utilized in the design.

Figure 43: Layer Stack

5.2.1 Layout Process

The layout process of a PCB starts with the power part of the circuit, beginning with the placement

of the micro USB connector. This connector is a key component, and a correct positioning is relevant to

ensure proper operation and accessibility. Following the schematics, all parts are placed in sequential

order, as shown in figure 44. The micro USB connector has a different ground plane that connects to the

chassis.

Figure 44: PCB layout LDO

65

CHAPTER 5. IMPLEMENTATION

After the fuse, Schottky diode, and ferrite, the power line goes to the LDO. These components are

placed very close together in a sequential order to minimize trace lengths and improve performance.

The TVS diodes are placed in the different USB signal lines and the LDO capacitors (C1 and C3) are

placed close as possible to help the LDO to minimize trace lengths and reduce noise. A relief rectangle

is used in the LDO as recommended in the datasheet for proper operation and prevent any issues during

manufacturing. The UART bridge is placed close to where the data signals from the USB connector are

the inputs. This placement ensures that the data signals are properly routed and that the board is reliable

and performs as intended.

The layout process involves careful consideration of all the components and their placement, following

the schematics. For example, the ESP32 microcontroller and its associated bypass capacitors(C5 and C6)

are placed as close as possible to the ESP32. This step is relevant to ensure a stable power supply and

reduce noise. Also, the positioning of the ESP32 needs some attention, since a bad layout may compromise

the use of its antenna. Usually, the ESP32 is positioned in one edge of the board to avoid interference of

signals from the board with the antenna. However, the antenna can be used with the ESP32 placed in a

central position, as long as any existing signals or polygons are removed from under the antenna. At this

prototype stage, the ESP32’s antenna is not used, but this PCB is prepared for its use in the event of a

future need. Figure 45 shows the ESP32 layout and the connections to the connectors. This connectors are

labeled with the according GPIO’s name, except for debug pins that are used to facilate the connections

with an external debugger.

Figure 45: PCB layout ESP32

All other layout circuits are placed follwing the same rules with all the components like capacitors

placed properly in order to the components take the desired effect. After all the connections are made and

the DRC tests validate the board layout, the board is functionality ready to fabrique. Figure 46 present the

two final PCB layout layers.

66

CHAPTER 5. IMPLEMENTATION

(a) PCB Top layer (b) PCB Bottom layer

Figure 46: PCB layout layers

Figure 47 shows a 3D image of the two layers of the PCB.

(a) Front PCB (b) Bottom PCB

Figure 47: 3D PCB

5.3 Software

The hardware part describe, in detail, the whole PCB implementation in terms of its schematics and

layout. The software design presented a diagram with all the main tasks to be implemented, but for these

tasks to be implemented in practice, the board’s firmware will have to be prepared, and the drivers that

handle all the sensor read/write transactions will have to be developed. In this section, all the software

topics related to the preparation and implementation will be described. This description will be presented

in a sequential order to better explain the whole workflow.

67

CHAPTER 5. IMPLEMENTATION

5.3.1 Drivers

ESP-IDF is the official development framework for the ESP32 and is the first step to start the software

development. After the installation, a new default project is created specific to the processor in question.

Then, a communication with the hardware is necessary to be established in order to encounter a few errors

either from the hardware itself, related to the soldering of the components or from the firmware itself and

its configurations that may not be adequate. After the communication with the board is established, the

conditions are met to develop the drivers related to the chosen components. Sometimes, manufacturers

have drivers already implemented that can be added and modified. In this case, neither the accelerometer

ADXL357 nor the MPU-6881 have drivers already implemented, so the option was to create these drivers

from scratch.

SPI Driver

The driver that handles the API provided by the ESP-IDF includes, as main functions, inicialization of

the SPI driver, the establishment of read and write transactions and the option to add/remove devices

from the bus. In listing 15 present in appendix A.1, it’s possible to see the header file of this driver, which

provides all the necessary information for its handling. This driver contains the pins to which the used

SPI signals are connected and also the clock speed defined in the transactions. This speed is determined

by considering the specifications of the severals connected devices and pratical tested in order to find a

balance value for clock speed.

Both the receive function and the transmit function are quite similar since the arguments passed are

the same. What makes these functions different is the allocation of buffers used by the API. This difference

is presented in listing 16 of appendix A.1, where each transaction uses at least two buffers that can be

connected depending on the desired transaction. In this listing is also possible to see the init function

where the pin number of the SPI signals are used and a DMA (Direct Memory Access) indication is used

to perform the SPI transactions via DMA.

ADXL Driver

With the latest driver established, it is then possible to create transactions and communicate with

the various SPI sensors/devices. The creation of the SPI driver begins the initialisation process, where

settings, such as its operating range, the filters to be used and the start of the acquisition, is necessary

before performing the data acquisition. Listing 1 shows the three functions responsible by either SPI com-

munication and the sensor inicialization. The first two functions serve to write and read sensor registers.

In these functions, the particularity of the address and the bits indicating the read or write presented in the

design phase are taken into account. Once the address register has been set, the corresponding function

of the SPI driver is called. The other function is the initialisation function, that as mentioned, is responsible

in a first phase for adding the device to the SPI bus, configuring the sensor with the range allowed and

activating the sensor in the acquisition mode. The parameters of the filters used are also configured.

68

CHAPTER 5. IMPLEMENTATION

1 bool adxl_spi_read(uint8_t reg_addr, uint8_t length, uint8_t *data) {
2 reg_addr = (reg_addr << 0x01) | 0x01;

3 int retVal = 0;

4 spi_receive_transaction(reg_addr, length, data, adxl_handle);

5 return retVal != −1;
6 }

7 bool adxl_spi_write(uint8_t reg_addr, uint8_t length, uint8_t *data) {
8 int retVal = 0;

9 reg_addr = (reg_addr << 0x01);

10 spi_send_transaction(reg_addr, length, data, adxl_handle);

11 return retVal != −1;
12 }

13 void adxl_init(void) {

14 // Configuration

15 uint8_t command;

16 uint8_t *data;
17 data = &command;

18

19 spi_add_device(10, &dev_config, &adxl_handle, host); // Add ADXL357 acelerometer to SPI Bus

20 /*−−*/
21 /* Set ADXL range to +−40 g */
22 /*−−*/
23 command = 0b00000011; //+−40 g

24 adxl_spi_write(ADXL_RANGE, 1, data);

25 vTaskDelay(10 / portTICK_PERIOD_MS);

26 /*−−*/
27 /* DRDY_OFF output to 0, Temperature processing off and Measurement mode */
28 /*−−*/
29 command = 0b00000000;

30 adxl_spi_write(ADXL_POWER_CTL, 1, data);

31 vTaskDelay(10 / portTICK_PERIOD_MS);

32

33 command = 0b00010000; // 10hz High Pass; 1Khz Low Pass

34 adxl_spi_write(ADXL_FILTER, 1, data);

35 vTaskDelay(10 / portTICK_PERIOD_MS);

36 }

Listing 1: ADXL Driver main functions

Once the sensor is initialized, the read accelerometer function, presented in listing 2, is implemented

in order to obtain the correct acelerometer values. First, a sample containing the acelerometer values from

all the three axis are obtaining by reading nine bytes from the first register since all the bytes are sequential.

Figure 5 presents the ADXL357 aceleration registers and their organization. As is possible to see,

the nine registers are sequential and the third byte of each axis has only four important bits. With this

organization in mind, read function concatenates all this values in variables. Also, the read values are in a

two’s complement format. The conversion from raw data to G’s unit is realized by using the ADXL sensitivity

for 40G range.

69

CHAPTER 5. IMPLEMENTATION

Figure 48: ADXL357 acceleration registers organization

1 void adxl_read_accel(adxl_accel_t *p_accel, uint8_t *data) {
2 adxl_spi_read(ADXL_XDATA3, 9, data);

3 buffer3 = data; // buffer3 points to the begining of DMA buffer

4 for (uint8_t i = 0; i < 9; i++, buffer3++) {

5 RX_buffer[i] = *buffer3;
6 }

7 ACCEL_Z = (RX_buffer[6] << 12) | (RX_buffer[7] << 4) | (RX_buffer[8] >> 4);

8 ACCEL_Y = (RX_buffer[3] << 12) | (RX_buffer[4] << 4) | (RX_buffer[5] >> 4);

9 ACCEL_X = (RX_buffer[0] << 12) | (RX_buffer[1] << 4) | (RX_buffer[2] >> 4);

10

11 if (ACCEL_X & 0x80000)

12 ACCEL_X = (ACCEL_X & 0x7FFFF) − 0x80000;

13 if (ACCEL_Y & 0x80000)

14 ACCEL_Y = (ACCEL_Y & 0x7FFFF) − 0x80000;

15 if (ACCEL_Z & 0x80000)

16 ACCEL_Z = (ACCEL_Z & 0x7FFFF) − 0x80000;

17

18 p_accel−>ACCEL_X = (float)ACCEL_X / 51200;

19 p_accel−>ACCEL_Y = (float)ACCEL_Y / 51200;

20 p_accel−>ACCEL_Z = (float)ACCEL_Z / 51200;

21 }

Listing 2: ADXL Driver read function

MPU Driver

The driver responsible to communicate with the IMU device presents similar functions to those de-

scribed in the previous driver. Listing 3 shows the code used to read/write registers, and these again use

the SPI driver. As mentioned in the design phase, the first byte of the SPI temporal diagram presents the

address number and the write/read bit. In this case, only the read function has to modify the desired

address by setting the most significant bit. After the read/write transaction functions are implemented, the

sensor can start sampling. After the device is added to the bus, the next step is configure the peripheral

registers in order to change the accelerometer range, activate filters and start the sensor acquisition.

1 void mpu_spi_read(uint8_t reg_addr, const uint8_t length, uint8_t *data) {
2 reg_addr |= 0x80;

3 spi_receive_transaction(reg_addr, length, data, mpu_handle);

4 }

5 void mpu_spi_write(uint8_t reg_addr, const uint8_t length, uint8_t *data) {
6 spi_send_transaction(reg_addr, length, data, mpu_handle);

7 }

70

CHAPTER 5. IMPLEMENTATION

8 void mpu_init() {

9 // Configuration

10 uint8_t command;

11 uint8_t *data;
12 data = &command;

13

14 spi_add_device(9, &dev_config, &mpu_handle, host); // Add MPU acelerometer to SPI Bus

15 /*−−*/
16 /* Send Power Management Command: Reset registers and 20Mhz clock select */
17 /*−−*/
18 command = 0b10001000; // 20Mhz CLKSEL and Hard Reset all registers

19 mpu_spi_write(MPU_PWR_MGMT_1, 1, data);

20 vTaskDelay(10 / portTICK_PERIOD_MS);

21 /*−−*/
22 /* Send Accel configuration Command: Set Accel full scale to +/−16g */
23 /*−−*/
24 command = 0b00000000;

25 mpu_spi_write(MPU_CONFIG, 1, data);

26 vTaskDelay(10 / portTICK_PERIOD_MS);

27

28 command = 0b00000000;

29 mpu_spi_write(MPU_ACCEL_CONFIG, 1, data);

30 vTaskDelay(10 / portTICK_PERIOD_MS);

31

32 command = 0b00001000;

33 mpu_spi_write(MPU_ACCEL_CONFIG2, 1, data);

34 vTaskDelay(10 / portTICK_PERIOD_MS);

35 }

Listing 3: MPU Driver main functions

The read MPU function, shown in listing 4, is also similar to the ADXL357 driver because it follows

the same principles. The necessary bytes are read from the sensor to complete a sample with all the data

from the accelerometer axis. This that is then concatenated in variables divided by the three axis. In this

case the data is not in two’s complement format, so is just necessary to convert this data to G’s.

1 void mpu_read_accel(mpu_accel_t *p_accel, uint32_t length, uint8_t *data) {
2 mpu_spi_read(MPU_ACCEL_XOUT_H, 6, data);

3 buffer3 = data;

4 for (uint8_t i = 0; i < 6; i++, buffer3++)

5 RX_buffer[i] = *buffer3;
6 ACCEL_Z = (RX_buffer[4] << 8) | RX_buffer[5];

7 ACCEL_Y = (RX_buffer[2] << 8) | RX_buffer[3];

8 ACCEL_X = (RX_buffer[0] << 8) | RX_buffer[1];

9 p_accel[0].ACCEL_X = (float)ACCEL_X / 16384;

10 p_accel[0].ACCEL_Y = (float)ACCEL_Y / 16384;

11 p_accel[0].ACCEL_Z = (float)ACCEL_Z / 16384;

12 }

Listing 4: MPU Driver read function

SDCard Driver

71

CHAPTER 5. IMPLEMENTATION

Listing 17 in appendix A.2 presents the driver responsible for handling the microSD Card. This driver

starts by mounting a FAT filesystem on the micro SDCard. This Fat filesystem is implemented in the ESP-

IDF. This driver implemented by the framework, allows C library functions like fopen or fprintf to work with

the filesystem devices. In this listing, the “esp_vfs_fat_sdspi_mount” function is used to initializes an

SPI Master device based on the SPI Master driver with configuration in “slot_config”, and attach it to an

initialized SPI bus. This configuration takes in account the pin used for the chip select signal, which is

used to connect the CPU and the microSD card in the PCB implementation. After mounting the filesystem

with a given path, the communication with this device is ready.

The mount function is then used to initialize the micro SD Card. The base path used and all the code

for the init and close function is shown in listing 18 of appendix A.2.

Matrix module

The Kalman filter utilizes matrix operations to efficiently handle all necessary calculations and, when-

ever possible, enhance the performance of these calculations. All the functions that have been imple-

mented in the matrix module’s implementation, are presented in listing 5 that shows the header file of the

module.

1 typedef float matrix_data_t;

2 typedef struct matrix_s {

3 uint8_t rows;

4 uint8_t cols;

5 matrix_data_t *data;
6 } matrix_t;

7

8 void matrix_get_column_copy(const matrix_t *const mat, const uint8_t column, matrix_data_t *const row_data);
9 void matrix_init(int M, int N, double **mat);
10 void matrix_clean(int M, int N, double **mat);
11 void matrix_mul(matrix_t *A, matrix_t *B, matrix_t *C);
12 void matrix_mul_transb(const matrix_t *const a, const matrix_t *const b, const matrix_t *c);
13 void matrix_add(matrix_t *A, matrix_t *B, matrix_t *C);
14 void matrix_sub(const matrix_t *const a, matrix_t *const b, const matrix_t *c);
15 void matrix_invert_lower(const matrix_t *const lower, matrix_t *inverse);
16

17 void set_matrix_template(matrix_t *A, float *template, const uint8_t rows, const uint8_t columns);
18 void set_matrix(matrix_t *A, const uint8_t rows, const uint8_t columns);
19 void set_matrix_position(matrix_t *mat, const uint_fast8_t row, const uint_fast8_t column, const matrix_data_t value);
20 int cholesky_decompose_lower(const matrix_t *const mat);

Listing 5: Matrix Module main functions

Kalman module

The implementation of the matrix module is closely connected to the overall Kalman filter development.

Therefore, the two modules were developed in parallel. The initialization begins by utilizing predefined tem-

plates and placing them in a buffer for proper interpretation by the matrix module. Additionally, the matrix

module includes a function that fills all other matrices with zeros. The init function ultimately generates

the parameters for the specific high-pass filter that will be applied to the IMU data.

72

CHAPTER 5. IMPLEMENTATION

1 void kalman_init(void) {

2 set_matrix_template(&A, &template_A, 9, 9);

3 set_matrix_template(&Previous_P, &template_Previous_P, 9, 9);

4 set_matrix_template(&Q, &template_Q, 9, 9);

5 set_matrix_template(&C, &template_C, 3, 9);

6 set_matrix_template(&R, &template_R, 3, 3);

7 set_matrix_template(&I, &template_I, 9, 9);

8

9 set_matrix(&baux, 9, 1);

10 set_matrix(&Previous_X, 9, 1);

11 set_matrix(&X_p, 9, 1);

12 set_matrix(&aux_pre, 9, 9);

13 set_matrix(&aux_pre1, 9, 9);

14 set_matrix(&Pre, 9, 9);

15 set_matrix(&Y, 3, 1);

16 set_matrix(&S, 3, 3);

17 set_matrix(&S_inv, 3, 3);

18 set_matrix(&Y_meas, 9, 1);

19 set_matrix(&K, 9, 3);

20 set_matrix(&aux_K, 9, 3);

21 set_matrix(&aux_K2, 3, 3);

22 set_matrix(&aux_K1, 3, 9);

23 set_matrix(&aux_X1, 3, 1);

24 set_matrix(&aux_X2, 3, 1);

25 set_matrix(&aux_X3, 9, 1);

26 set_matrix(&X, 9, 1);

27 set_matrix(&P, 9, 9);

28 set_matrix(&aux_P1, 9, 9);

29 set_matrix(&aux_P2, 9, 9);

30

31 filtered = (kalman_accel_t *) malloc(sizeof(kalman_accel_t));
32

33 filter_x = create_bw_high_pass_filter(8,1000,10);

34 filter_y = create_bw_high_pass_filter(8,1000,10);

35 filter_z = create_bw_high_pass_filter(8,1000,10);

36 }

Listing 6: Kalman module init function

Listing 7 contains the predict function used to estimate the state of the system and estimate the

covariance. The functions implemented in the matrix module that handle different operations between the

matrices are now used to perform the two predict kalman equations presented earlier.

1 void kalman_predition(void) {

2 //−−
3 // The Predicted State −> X_p = A * Previous_X
4 //−−
5 matrix_mul(&A, &Previous_X, &X_p);

6

7 //−−
8 // The Predicted Process Covariance Matrix −> Pre = A*Previous_P*transpose(A)+Q
9 //−−
10 matrix_mul(&A, &Previous_P, &aux_pre);

73

CHAPTER 5. IMPLEMENTATION

11 matrix_mul_transb(&aux_pre, &A, &aux_pre1);

12 matrix_add(&aux_pre1, &Q, &Pre);

13 }

Listing 7: Kalman module predict function

Before the filter update phase, the function allows applying the high-pass filter on the IMU data and

preparing the combination of the acceleration values of the two sensors. This function is present in listing

8, where one can observe precisely this preparation that is accompanied by the variance values previously

calculated.

1 void kalman_update(kalman_accel_t *setup, kalman_accel_t *filtered) {
2 //−−
3 // The New Observation −> Y = C*Y_meas
4 //−−
5 set_matrix_position(&Y_meas, 2, 0, setup−>ACCEL_X);
6 set_matrix_position(&Y_meas, 5, 0, setup−>ACCEL_Y);
7 set_matrix_position(&Y_meas, 8, 0, setup−>ACCEL_Z);
8 matrix_mul(&C, &Y_meas, &Y); // Y = C*Y_meas
9 //−−
10 // Calculating the Kalman Gain −> K = Pre*transpose(C) / (C*Pre*transpose(C) + R)

11 //−−
12 matrix_mul_transb(&Pre, &C, &aux_K); // aux_K = Pre*transpose(C)
13 matrix_mul(&C, &Pre, &aux_K1); // aux_K1 = C*Pre
14 matrix_mul_transb(&aux_K1, &C, &aux_K2); // aux_K2 = aux_K1*transpose(C)
15 matrix_add(&aux_K2, &R, &S); // S = C*Pre*transpose(C) + R

16 cholesky_decompose_lower(&S); // Decompose Matrix using cholesky method

17 matrix_invert_lower(&S, &S_inv); // S_inv = S^−1
18 matrix_mul(&aux_K, &S_inv, &K); // aux_K1 = C*Pre
19

20 //−−
21 // Calculating the current State −> X = X_p + K * (Y − C * X_p)
22 //−−
23 matrix_mul(&C, &X_p, &aux_X1); // aux_X1 = C*X_p
24 matrix_sub(&Y, &aux_X1, &aux_X2); // aux_X2 = Y − aux_X1

25 matrix_mul(&K, &aux_X2, &aux_X3); // aux_X3 = K * aux_X2
26 matrix_add(&aux_X3, &X_p, &X); // X = X_p + aux_X3

27

28

29 //−−
30 // Updating the process Covariance Matrix −> P=(I−K*C)*Pre
31 //−−
32 matrix_mul(&K, &C, &aux_P1); // aux_P1 = K*C
33 matrix_sub(&I, &aux_P1, &aux_P2); // aux_P2 = I − aux_P1

34 matrix_mul(&aux_P2, &Pre, &P); // P = aux_P2 * Pre
35

36 //−−
37 // Current becomes previous

38 //−−
39 Previous_X = X;

40 Previous_P = P;

41

42 filtered−>ACCEL_X = Previous_X.data[2];

74

CHAPTER 5. IMPLEMENTATION

43 filtered−>ACCEL_Y = Previous_X.data[5];

44 filtered−>ACCEL_Z = Previous_X.data[8];

45 }

Listing 8: Kalman module setup function

After that, the Kalman filter update function described in listing 9 will go into action, starting by exe-

cuting the measurement equation where the acceleration values will be used. After that, the Kalman gain

is then calculated due to the shape of the equation forcing the use of a matrix division. For reasons of

optimization, the Cholesky decomposition is used, and all necessary matrix operations are performed to

obtain the Kalman gain matrix. Then, using the same procedures, the rest of the equations will use the

Kalman gain to update the system state and the covariance matrix. This function ends, preparing the next

iteration of the filter, where the current values of the state matrix and the covariance matrix are considered

as previous values.

1 void kalman_setup(kalman_accel_t *mpu_data, kalman_accel_t *adxl_data, kalman_accel_t* result){
2 mpu_data−>ACCEL_X = bw_high_pass(filter_x, mpu_data−>ACCEL_X);
3 mpu_data−>ACCEL_Y = bw_high_pass(filter_y, mpu_data−>ACCEL_Y);
4 mpu_data−>ACCEL_Z = bw_high_pass(filter_z, mpu_data−>ACCEL_Z);
5

6 result−>ACCEL_X = ((VARIANCE_ADXL_10G)*adxl_data−>ACCEL_X + (VARIANCE_MPU)*mpu_data−>ACCEL_X)
7 result−>ACCEL_X /= (VARIANCE_MPU + VARIANCE_ADXL_10G);

8

9 result−>ACCEL_Y = ((VARIANCE_ADXL_10G)*adxl_data−>ACCEL_Y + (VARIANCE_MPU)*mpu_data−>ACCEL_Y)
10 result−>ACCEL_Y /= (VARIANCE_MPU + VARIANCE_ADXL_10G);

11

12 result−>ACCEL_Z = ((VARIANCE_ADXL_10G)*adxl_data−>ACCEL_Z + (VARIANCE_MPU)*mpu_data−>ACCEL_Z)
13 result−>ACCEL_Z /= (VARIANCE_MPU + VARIANCE_ADXL_10G);

14 }

Listing 9: Kalman module update function

5.3.2 Tasks

The implementation of the necessary drivers and modules allows an easier implementation of the

FreeRTOS tasks. This way, the logic of the implemented code is easier to understand, which makes the

whole debugging process and error identification uncomplicated. Thus, this implementation phase starts

by developing the tasks responsible for all the data processing related to the sensors and then goes on to

the development of the control task, where this data is filtered and combined to process the kalman filter.

This control task ends with the detection algorithm implementation and deciding the next steps. Finally,

the project ends by implementing the saving data from the collision task.

vMain

The main task code, presented in listing 10, is the default task that FreeRTOS launch and is responsible

to prepare the other tasks and launch them. As is possible to see, first the GPIOs are set and the RTC is

75

CHAPTER 5. IMPLEMENTATION

prepared and configured to the correct timezone. Then, the current time for the RTC is setted and all the

FreeRTOS tasks are created.

1 void app_main() {

2 ESP_LOGI(Main_tag, ”Hello Main Task”);

3

4 //Init GPIO and set a default level

5 gpio_set_direction(5, GPIO_MODE_OUTPUT);

6 gpio_set_direction(26, GPIO_MODE_OUTPUT);

7 gpio_set_direction(33, GPIO_MODE_OUTPUT);

8 gpio_set_direction(21, GPIO_MODE_OUTPUT);

9 gpio_set_level(5, 0);

10 gpio_set_level(26, 0);

11 gpio_set_level(33, 0);

12 gpio_set_level(21, 0);

13

14 spi_master_init(host); //Init SPI pheripheral

15

16 //Init RTC

17 time_t now;

18 char strftime_buf[64];

19 struct tm timeinfo;

20

21 // Set timezone to Lisbon Standard Time

22 setenv(”TZ”, ”WET0WEST,M3.5.0/1,M10.5.0”, 1);

23 tzset();

24

25 // set current day/time

26 struct timeval tv;

27 tv.tv_sec = 1660141086; //enter UTC UNIX time (get it from https://www.unixtimestamp.com)

28 settimeofday(&tv, NULL);

29 time(&now);

30 localtime_r(&now, &timeinfo);

31 strftime(strftime_buf, sizeof(strftime_buf), ”%c”, &timeinfo);

32 ESP_LOGI(Main_tag, ”The current date/time in Portugal is: %s”, strftime_buf);

33

34 //Create all the tasks

35 xTaskCreate(&vAccelerometer, ”Accel_Task”, 2048, NULL, 5, &x_accel);

36 vTaskDelay(30 / portTICK_PERIOD_MS);

37 xTaskCreate(&vIMU, ”IMU_Task”, 5 * 1024, NULL, 5, &x_imu);
38 xTaskCreate(&vColisionDetection, ”Colision_Detection_Task”, 2*1024, NULL, 5, &x_colision);
39 xTaskCreate(&vSDCard, ”SD_Card_Task”, 3*1024, NULL, 5, &x_sdcard);
40 }

Listing 10: vMain Task

vAccelerometer

The task responsible for processing the ADXL accelerometer data, whose code is present in listing

11, was designed in the previous phase and starts by allocating the necessary memory for the variables

to be used. The data buffer, which is 9 bytes allocated, is used to store a sensor sample. This sample

takes into account the three axes and the bits needed for each axis. After the initialization phase, the

synchronization mechanisms like mutex and FIFO buffer are created, and the initialization function uses

76

CHAPTER 5. IMPLEMENTATION

the driver previously implemented. After that, before starting the acquisition loop, a timer is created, which

will be used to notify this task at a frequency of 1KHz. In the acquisition loop, after the notification of the

timer, the accelerometer values are read, and the samples are placed in the buffer previously created. The

read acceleration function called is protected by a mutex to guarantee that other tasks don’t use the same

SPI driver resource. Before ending the loop, this thread notifies the IMU task for the acquisition process to

become sequential.

1 void vAccelerometer(void *pvParameters) {
2 ESP_LOGI(vAccel_tag, ”Hello from Accelerometer Task”);

3

4 // Init and allocate memory for variables

5 spi_device_handle_t adxl_handle;

6 spi_device_interface_config_t dev_config;

7 uint32_t ulInterruptStatus;

8 uint8_t *data = (uint8_t *)heap_caps_malloc(9, MALLOC_CAP_8BIT);
9 p_accel = (adxl_accel_t *)heap_caps_malloc(1 * sizeof(adxl_accel_t), MALLOC_CAP_8BIT);
10 vSemaphoreCreateBinary(xSemaphore); // Create Mutex for SPI resource

11 Accel_Buffer = xQueueCreate(512, sizeof(adxl_accel_t)); // Create a FIFO Queue with 512 positions

12 if (Accel_Buffer == NULL) {

13 printf(”Failed to create Queue\r\n”);

14 return;

15 }

16

17 adxl_init(); //Init ADXL357 accelerometer

18

19 example_tg_timer_init(TIMER_GROUP_0, TIMER_0, true, 0.001); //Sampling frequency −>1000Hz
20

21 while(1){

22 xTaskNotifyWaitIndexed(0, 0x00, ULONG_MAX, &ulInterruptStatus, portMAX_DELAY);

23

24 xSemaphoreTake(xSemaphore, portMAX_DELAY); // Take SPI mutex

25

26 adxl_read_accel(p_accel, data); // Read ADXL chunk of data

27

28 xSemaphoreGive(xSemaphore); // Release SPI mutex

29 xQueueSendToBack(Accel_Buffer, (void *)&p_accel, portMAX_DELAY); // Send the data to Accel_Buffer
30 xTaskNotify(x_imu, 0, eNoAction); // Notify IMU task

31 }

32 }

Listing 11: vAccelerometer Task

vIMU

As already mentioned, the MPU-6881 warm-up task, shown in listing 12, follows the same model as

the previous task because it has the same structure. The task starts by initializing the variables to be used,

where the memory allocated to a data sample is 6 bytes. This allocation size is due to the fact that the

ADC bit resolution is smaller, which makes it need only 2 bytes per axis to store a data sample. Next,

the task initializes the sensor through its driver and creates the FIFO buffer necessary for communication

between the control task and it. Once everything is initialized, the thread enters a loop, where it waits for

77

CHAPTER 5. IMPLEMENTATION

the notification coming from the vAccelerometer task. After this event, it samples the data, accompanied

by the respective mutex, and sends them to the buffer, notifying the control task that it has the data from

the sensors ready to be processed.

1 void vIMU(void *pvParameters) {
2 ESP_LOGI(vIMU_tag, ”Hello from IMU Task”);

3

4 // Init and allocate memory for variables

5 data = malloc(6); // Allocate memory

6 p_imu = (mpu_accel_t *)heap_caps_malloc(sizeof(mpu_accel_t), MALLOC_CAP_8BIT);
7 IMU_Buffer = xQueueCreate(512, sizeof(mpu_accel_t)); // Create a Queue with 512 positions

8 if (IMU_Buffer == NULL) {

9 printf(”Failed to create Queue\r\n”);

10 return;

11 }

12

13 mpu_init(); // Init MPU−6881 Peripheral

14

15 while (1) {

16 xTaskNotifyWait(0,0x00, 0,portMAX_DELAY); // Wait for vAccelerometer notification

17

18 xSemaphoreTake(xSemaphore, portMAX_DELAY); // Take the SPI mutex

19

20 mpu_read_accel(p_imu, 1, data); // Read MPU chunk of data

21

22 xSemaphoreGive(xSemaphore); // Release the SPI mutex

23 xQueueSendToBack(IMU_Buffer, (void *)&p_imu, portMAX_DELAY); // Send the sample to the buffer
24 xTaskNotify(x_colision, 0, eNoAction); // Notify the vCollisionDetection task

25 }

26

27 }

Listing 12: vIMU Task

vColisionDetection

After acquiring data from the sensors, the detection task, presented in listing 13 uses this data to apply

the necessary filtering and proceed to collision detection. As defined in the design phase, the thread starts

by initializing the variables, creating the FIFO buffer and initializing the drivers responsible for filtering, such

as Kalman. After that, the task enters the loop where it waits for the notification that indicates that the

two accelerometers have already injected data in the buffer created. After the notification arrives, the data

is taken from the FIFO and the execution of the first phase of the Kalman filter proceeds. Also, the setup

function of the Kalman module is executed to perform the data combination in a weighted way according

to the variance of the sensors. Next, it proceeds to the update phase of this filter, thus concluding the

iteration of the Kalman filter. After the filtering phase comes the collision detection algorithm performed

according to a threshold and considering the modulus of accelerations. Finally, some logic is applied in

case of a collision, which causes the five previous second’s data to be saved along with the five subsequent

seconds. In case of a crash, these data are inserted in a buffer that is shared with the vSDCard task.

78

CHAPTER 5. IMPLEMENTATION

1 void vColisionDetection(void *pvParameters) {
2 ESP_LOGI(vCollisionDetection_tag, ”Hello from Colision Detection Task”);

3

4 // Init and allocate memory for variables

5 adxl_accel_t *p_ADXL_accel = (adxl_accel_t *)malloc(sizeof(adxl_accel_t));
6 mpu_accel_t *p_MPU_accel = (mpu_accel_t *)malloc(sizeof(mpu_accel_t));
7 sd_accel_t *SD_accel = (sd_accel_t *)malloc(sizeof(sd_accel_t));
8 sd_accel_t *SD_accel1 = (sd_accel_t *)malloc(sizeof(sd_accel_t));
9 kalman_accel_t *filtered = (kalman_accel_t *)malloc(sizeof(kalman_accel_t));
10 kalman_accel_t *setup = (kalman_accel_t *)malloc(sizeof(kalman_accel_t));
11 double acceleration_x = 0, acceleration_y = 0, acceleration_z = 0;

12 static uint8_t police = 0;

13 static int count = 0;

14

15 SD_Buffer = xQueueCreateStatic(QUEUE_LENGTH, ITEM_SIZE,&(ucQueueStorage[0]), &xQueueBuffer);

16 if (SD_Buffer == NULL) {

17 printf(”Failed to create the queue\r\n”);

18 return;

19 }

20

21 kalman_init(); //Init the kalman module

22

23 while (1) {

24 xTaskNotifyWait(0,0x00, 0,portMAX_DELAY);

25

26 // Read the data from the both sensors

27 xQueueReceive(Accel_Buffer, (void *)&p_ADXL_accel, portMAX_DELAY);
28 xQueueReceive(IMU_Buffer, (void *)&p_MPU_accel, portMAX_DELAY);
29

30 // Kalman filter

31 kalman_predition();

32 kalman_setup(p_MPU_accel, p_ADXL_accel, setup);

33 kalman_update(setup, filtered);

34 SD_accel−>kalman = *filtered;
35

36 xQueueSendToBack(SD_Buffer, (void *)SD_accel, portMAX_DELAY); // Write the result of kalman data
37

38 //Apply detection alghoritm and notify vSDCard task if a collision occurs

39 count++;

40 police = (sqrt(abs(p_ADXL_accel−>ACCEL_X)*abs(p_ADXL_accel−>ACCEL_X) + abs(p_ADXL_accel−>ACCEL_Y)*abs(p_ADXL_accel−>ACCEL_Y) +
↪→ abs(p_ADXL_accel−>ACCEL_Z)*abs(p_ADXL_accel−>ACCEL_Z)) > 5 || police);

41 (count > 9999 && police) ? xTaskNotify(x_sdcard, 0, eNoAction) : ((count > 5000 && !police) ? xQueueReceive(SD_Buffer, (void *)SD_accel1,
↪→ portMAX_DELAY), count = 5000 : NULL);

42 }

43 }

Listing 13: vColisionDetection Task

vSDCard

Software development ends with the implementation of the task responsible for sending the collision

data to the micro SD card. Listing 14 shows the code that was implemented. The task starts, as usual,

by initializing variables that are needed during its process. Then the task enters a loop, where it waits for

79

CHAPTER 5. IMPLEMENTATION

a notification from the collision detection task, suspends all other threads and initializes the sd card by

mounting its filesystem. After that, it opens a file in append mode, obtains the final collision time and sends

the combination of all data to the micro SD Card. This task ends with closing this file and unmounting the

filesystem.

1 void vSDCard(void *pvParameters) {
2 ESP_LOGI(vSDCard_tag, ”Hello from SD Task”);

3

4 // Init and allocate memory for variables

5 char *file = ”/fat/Colision.txt”;

6 static uint32_t count = 0;

7 sd_accel_t *SD_accel = (sd_accel_t *)heap_caps_malloc(sizeof(sd_accel_t), MALLOC_CAP_8BIT);
8 uint16_t sample_rate = 1000; // hz

9 uint16_t time = 10; // Hours * Minutes * seconds
10 uint32_t Samples = time * sample_rate;
11

12 xTaskNotifyWait(0,0x00, 0,portMAX_DELAY); // Wait for vCollisionDetection task

13

14 xSemaphoreTake(xSemaphore, portMAX_DELAY); // Take SPI mutex

15 sdcard_init(); // Init SD Card and mount the filesystem

16

17 f = fopen(file, ”a+”); // Open the file

18 if (f == NULL) {

19 ESP_LOGE(vSDCard, ”Failed to open file for writing”);

20 return;

21 }

22

23 //Get RTC time

24 struct timeval tv_now;

25 gettimeofday(&tv_now, NULL);

26 int64_t time_us = (int64_t)tv_now.tv_sec * 1000000L + (int64_t)tv_now.tv_usec;

27

28 //Include RTC Time with the samples and save it on micro SD Card

29 for(int i=0; i<Samples−1; i++){
30 if(xQueueReceive(xQueue3, (void *)SD_accel, portMAX_DELAY) == pdTRUE){

31 custom_string(SD_accel,tv_now);

32 tv_now.tv_usec −= 1000; // 1/1000Hz = 0,001 = 1000*10^−6
33 }

34 }

35

36 mesh_on(); // activate mesh

37 fclose(f); //Close file

38 printf(”File Closed\r\n”);

39 sdcard_close(); // Unmount the filesystem

40 xSemaphoreGive(xSemaphore); // Give SPI mutex

41

42 while(1);

43 }

Listing 14: vSDCard Task

80

C
h
a
p
te

r

6
Tests and Results

The prototype developed in the previous phase must undergo rigorous testing to validate its effective-

ness and purpose. This chapter outlines the several tests conducted to assess the performance of the

acquisition system and the collision detection algorithm.

To evaluate the efficiency of the filters and the acquisition system, a shaker test with a closed-loop

system was performed. This allowed us to understand the embedded system’s performance following the

shaker profile. For the collision detection test, a drop test was executed by dropping the system from a

certain height and observing the outcome. This test was designed to determine the accuracy of the collision

detection algorithm and the correctness of the collision data.

6.1 Shaker Tests

Shaker tests are essential in evaluating the performance and durability of mechanical devices and

structures. The shaker test process utilizes three crucial elements, as illustrated in Figure 49. The primary

component of the process, the shaker, plays a crucial role in generating motion. It does so by producing

motion in a single direction, which is usually vertical.

The device under test is placed on a plate at the top of the shaker and an accelerometer is used to

monitor the motion and provide feedback to the system. The accelerometer is a critical component as it

allows for real-time measurement of the vibration, allowing for precise control and adjustment of the test.

The amplifier and controller work in conjunction with each other to ensure that the shaker operates in

a closed-loop manner, following a pre-defined profile. This ensures that the test results are accurate and

consistent, and that the device under test is subjected to the appropriate level of stress. To ensure accurate

results, shaker tests are performed in all three axes, and it is necessary to secure the device under test

81

CHAPTER 6. TESTS AND RESULTS

using coupling structures to prevent it from moving or becoming dislodged during the testing process.

(a) Shaker Controller

(b) Shaker Amplifier

(c) Shaker

Figure 49: Shaker Components

Figure 50 shows the 3D holder that was designed to hold the board properly to the shaker. After the

board is attached to this 3D model, it is then screwed to the board on top of the shaker. This module will

not only ensure that the board is coupled to the shaker, but it will also allow the board to experience the

same acceleration since it is attached.

Figure 50: 3D holder model

However, there is still an obstacle to these tests that have to do with the fact that it is not possible to

test all the axes of the prototype without some adaptation. The use of the holder only allows the PCB to be

tested in the Z axis. To test the remaining axes, a metal plate was used screwed to the shaker. This plate

allows coupling the 3D holder in the reamining two positions, as can be seen in figure 51, thus being able

to test all the axes of the prototype.

In terms of software, as is normal, there is some adaptation, since the acquisition of the sensor data

have to be permanently stored on the microSD card. This is due to some memory limitations on the part

of the ESP32 since if there was enough memory, the ESP32 could simply save the data in its memory and

at the end of the test send them to the microSD card.

82

CHAPTER 6. TESTS AND RESULTS

(a) 3D Z-Axis Configuration (b) 3D Y-Axis Configuration (c) 3D X-Axis Configuration

Figure 51: PCB Mounting Configuration

Due to these memory limitations and since the amount of data is significant given the roughly 10

minute test time, the sampling frequency ends up being affected. Since writing to the microSD card delays

the whole acquisition process. Therefore, the software used presents a sampling frequency of 1KHz, which

means that the projection of the shaker test only goes up to 500Hz in order to not incur in the aliasing

phenomenon. During this first process, the Kalman filter was disabled to increase the sampling frequency.

To test the performance of this filter, at an early stage, the Kalman filter was built in Matlab, which allowed

us to understand all the phases of this filter as well as helped in the development of the Kalman filter of

the prototype. This Kalman filter in Matlab is present in appendix A.3 and is used to understand and help

in the design of the results. In order to set up the shaker, one must establish a profile for the shaker to use

and set the frequency range that the shaker will run. The profile used by the shaker and the established

frequency range is shown in figures 53 and 52, respectively.

Figure 52: Shaker profile frequency ranges

83

CHAPTER 6. TESTS AND RESULTS

Figure 53: Shaker profile

The figures 54, 55 show the shaker test performed in the X-Axis and Y-Axis. These tests align with the

established shaker profile, but deviations in the results are noticeable at higher frequencies. The Kalman

filter gives priority to the High-G accelerometer in light of the variance observed in the IMU accelerometer.

The existence of vibrations and resonances in the metallic adaptation component also influences the

assessment of test performance.

Figure 54: Kalman Shaker X

84

CHAPTER 6. TESTS AND RESULTS

Figure 55: Kalman Shaker Y

Figure 56 presents the results of the shaker test along the Z-axis. The absence of the metal adaptation

part leads to improved performance in these tests. The Kalman filter effectively combines the data from

the sensors, giving a higher weight to the accelerometer ADXL357.

Figure 56: Kalman Shaker Z

However, the Kalman filter of the PCB also needs to be evaluated, so it proceeded again to the shaker

85

CHAPTER 6. TESTS AND RESULTS

tests, where only the final results are stored after the filter, guaranteeing a sampling frequency of 1KHz,

the same as the previous test. This time just the final filter values were shown, as can be seen in figures

57, 58 and 59.

Figure 57: PCB Kalman Shaker Y

Figure 58: PCB Kalman Shaker X

86

CHAPTER 6. TESTS AND RESULTS

Figure 59: PCB Kalman Shaker Z

The results of our tests indicate that the Kalman filter and the acquisition system effectively adhere

to the established profile for the shaker. However, the results obtained are not optimal due to several

factors including assembly issues and vibrations in the metal parts. Additionally, the limited accuracy of

the two accelerometers used in the tests also impact the results. Despite these limitations, the results are

acceptable given the constraints of the test.

To improve the performance of the system, the use of an extended Kalman filter is recommended, as

this would provide more accurate results. Furthermore, incorporating additional accelerometers into the

system would allow for a more comprehensive approximation of the real values experienced by the board.

In conclusion, despite the limitations, the purpose of the test was successfully achieved as the acqui-

sition system was found to follow the designated profile, which validates its suitability for further use.

6.2 Collision Test

The prototype crash tests were performed by dropping the prototype from a specified height due to lim-

itations in testing resources. The objective of these tests is to evaluate the efficacy of the collision detection

algorithm and the accuracy of the data stored on the microSD card. Although not entirely representative

of a real-life car crash, the tests are still valid as they simulate similar acceleration patterns. In actual col-

lisions, the acceleration experienced by the car seat is typically lower due to the presence of components

that dampen the impact. Conversely, the acceleration experienced by a plate hitting the ground during

these tests can sometimes be higher than what would be recorded in most real-world accidents.

87

CHAPTER 6. TESTS AND RESULTS

Conducting these tests with the plate fully exposed would result in potential damage to the prototype.

To mitigate this risk, a protective 3D-modeled box, presented in figure 60 was designed to secure the board

inside, ensuring that the acceleration experienced by the box is consistent with that of the prototype. This

box, as illustrated in figure 61, features a cover to completely enclose the frame.

Figure 60: Box enclusure

(a) 3D Box model open

(b) 3D Box model closed

Figure 61: 3D Box model

In accordance with the previous chapters, the board is equipped with the capability to store collision

data on a microSD card. To visualize this data, a python script, present in appendix A.4, was developed to

display the collision data graphically. Figure 62 presents an example of one such collision, where it can be

observed that the data of the collision is accurately recorded, including a five-second window before and

after the event, as well as the time of the collision.

88

CHAPTER 6. TESTS AND RESULTS

Figure 62: Collision Test

This data suggests that the board effectively detects the collision based on the specified threshold. It is

important to note that this test represents an extreme scenario, as a car seat would not typically experience

such abrupt accelerations. If such an occurrence were to occur in reality, it would likely result in a serious

accident.

To summarize, this test was valuable in demonstrating the effectiveness of the system and verifying its

compliance with established requirements. As noted, while this test was not a full-scale car crash test, it

successfully demonstrated the system’s ability to detect collisions through a defined threshold. The primary

objective of this dissertation is to develop an embedded system for collision detection and data acquisition.

This objective has been accomplished through the test, although there is room for improvement in terms

of refining the algorithm and conducting real-world car collision tests.

89

C
h
a
p
te

r

7
Conclusions

In summary, the goal to construct a device capable of detecting automobile collisions in a car seat has

been fulfilled. First, the state-of-the-art showed the study of similar devices and relevant studies to gain

a deeper understanding. Then, the project requirements were established, and a solution was presented

to meet these requirements. Key components were chosen, and the system was designed using graphs,

diagrams, and flowcharts. The hardware and software were then implemented and tested, proving the

usefulness of the system and ensuring that all requirements were met.

The collision tests and the corresponding algorithm proved sufficient in detecting most collisions,

although the algorithm is considered rudimentary. On the other hand, the shaker tests and the combination

of sensor data were performed with some success. The Kalman filter, in particular, demonstrated a good

performance in the shaker tests. Despite the limitations posed by the resonance of the metal plate and the

limitations of the shaker itself, the results of these tests are promising. The combination of the shaker tests

and the Kalman filter’s ability to effectively combine and filter sensor data confirms the system’s viability

for real-world applications. The collision test confirmed that the detection alghoritm can detect a collision

by a predefined threshold and the embedded system can save the collision data in the microSD Card for

future data reconstruction.

The project achieved its goals and demonstrated that the implemented prototype and the tests per-

formed are able to accurately detect and store collision data. The results of the tests provide a solid

foundation for future improvements and developments in the field.

90

CHAPTER 7. CONCLUSIONS

7.1 Future Work

Based on the results and limitations of the current prototype, future work should focus on optimize the

Kalman filter and incorporating more sensors, such as IMU or accelerometers, to enhance data fusion.

Also, the extended Kalman filter should be used to get a more realistic predictive model. This will lead to a

more sophisticated algorithm detection and improved robustness of the system. Furthermore, further tests

with real collisions should be performed to validate the system’s capability under real-world conditions.

In this project, the mesh actuation integration was not consider a requirement. As future work, connect

this device with a car ECU and activate an eletric mesh will provide a full system that can be used to inform

medical teams. An integration with other car devices, such as airbags can generate a second opinion about

the collision and provide to the airbag control unit more information about the car aceleration.

In summary, the future work should focus on enhance the current system’s performance and capabil-

ities, providing a more advanced and reliable solution for detecting and storing collision data. The aim is

to continuously improve the system and bring it closer to real-world applications, ensuring its viability and

impact in the field.

91

References

[1] F. E. Vaca, C. L. Anderson, H. Herrera, C. Patel, E. F. Silman, R. DeGuzman, S. Lahham, and V.

Kohl. “Crash Injury Prediction and Vehicle Damage Reporting by Paramedics.” In: Western Jour-

nal of Emergency Medicine 10 (2 May 2009), p. 62. issn: 1936-900X. url: /pmc/articles/

PMC2691511//pmc/articles/PMC2691511/?report=abstracthttps://www.ncbi.nlm.

nih.gov/pmc/articles/PMC2691511/.

[2] W. Wach. “Reconstruction of vehicle kinematics by transformations of raw measurement data.”

In: 11th International Science and Technical Conference Automotive Safety, AUTOMOTIVE SAFETY

2018 (June 2018), pp. 1–5. doi: 10.1109/AUTOSAFE.2018.8373324.

[3] D. S. Dima and D Covaciu. “Solutions for acceleration measurement in vehicle crash tests.” In:

IOP Conference Series: Materials Science and Engineering 252 (2017), p. 012007. doi: 10.1088/

1757-899x/252/1/012007.

[4] M. Barr. Programming embedded systems: with C and GNU development tools. 2006.

[5] Kernel (operating system) - Wikipedia. url: https://en.wikipedia.org/wiki/Kernel_

(operating_system).

[6] L. Kumar. Difference between RTOS and GPOS - CPQ Linux. url: https://www.cpqlinux.com/

difference-between-rtos-and-gpos.

[7] FreeRTOS task states and state transitions described. url: https://www.freertos.org/RTOS-

task-states.html.

[8] Choosing the Most Suitable MEMS Accelerometer for Your Application—Part 1 | Analog Devices.

url: https://www.analog.com/en/analog-dialogue/articles/choosing-the-most-

suitable-mems-accelerometer-for-your-application-part-1.html.

[9] What is an Inertial Measurement Unit? · VectorNav. url: https : / / www . vectornav . com /

resources/inertial-navigation-articles/what-is-an-inertial-measurement-

unit-imu.

92

/pmc/articles/PMC2691511/ /pmc/articles/PMC2691511/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691511/
/pmc/articles/PMC2691511/ /pmc/articles/PMC2691511/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691511/
/pmc/articles/PMC2691511/ /pmc/articles/PMC2691511/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691511/
https://doi.org/10.1109/AUTOSAFE.2018.8373324
https://doi.org/10.1088/1757-899x/252/1/012007
https://doi.org/10.1088/1757-899x/252/1/012007
https://en.wikipedia.org/wiki/Kernel_(operating_system)
https://en.wikipedia.org/wiki/Kernel_(operating_system)
https://www.cpqlinux.com/difference-between-rtos-and-gpos
https://www.cpqlinux.com/difference-between-rtos-and-gpos
https://www.freertos.org/RTOS-task-states.html
https://www.freertos.org/RTOS-task-states.html
https://www.analog.com/en/analog-dialogue/articles/choosing-the-most-suitable-mems-accelerometer-for-your-application-part-1.html
https://www.analog.com/en/analog-dialogue/articles/choosing-the-most-suitable-mems-accelerometer-for-your-application-part-1.html
https://www.vectornav.com/resources/inertial-navigation-articles/what-is-an-inertial-measurement-unit-imu
https://www.vectornav.com/resources/inertial-navigation-articles/what-is-an-inertial-measurement-unit-imu
https://www.vectornav.com/resources/inertial-navigation-articles/what-is-an-inertial-measurement-unit-imu

REFERENCES

[10] R. W. Diller, M. A. Ross, both of Calif, B. K. Blackburn, and J. F. Mazur. “Method and apparatus

for sensing a vehicle crash using energy and velocity as measures of crash violence.” In: 875 (358

May 1990), p. 763.

[11] R. W. Diller. “Electronic Sensing of Automobile Crashes for Airbag Deployment.” In: SAE Technical

Papers (Feb. 1991). issn: 0148-7191. doi: 10.4271/910276. url: https://www.sae.org/

publications/technical-papers/content/910276/.

[12] J. L. Allen. “Power-Rate Crash Sensing Method for Safety Device Actuation.” In: SAE Technical

Papers (Feb. 1992). issn: 0148-7191. doi: 10.4271/920478. url: https://www.sae.org/

publications/technical-papers/content/920478/.

[13] T. Gioutsos. “A Predictive Based Algorithm for Actuation of an Airbag.” In: SAE Technical Pa-

pers (Feb. 1992). issn: 0148-7191. doi: 10.4271/920479. url: https://www.sae.org/

publications/technical-papers/content/920479/.

[14] W. Nitschke, W. Kihn, W. Drobny, H. Weller, P. Taufer, E. Jeenicke, and K. Reischle. “Method for

controlling the release of passenger restraint systems.” In: (Dec. 1989).

[15] R. W. Diller. “Apparatus and method employing multiple crash evaluation algorithms and evaluation

expertise for actuating a restraint system in a passenger vehicle.” In: (Oct. 1990).

[16] J. Eigler and R. Weber. “Control unit for a passenger restraint system and/or passenger protection

system for vehicles.” In: (Sept. 1991).

[17] S. Tohbaru. “Collision Determining Circuit Having a Starting Signal Gen- erating Circuit.” In: (1993).

[18] R. Cashler and J. Kelley. “SIR Deployment Method Based on Occu- pant Displacement and Crash

Severity.” In: (1995).

[19] G. McIver. “Method and Apparatus for Sensing a Vehicle Crash Condition Using Velocity Enhanced

Acceleration Crash Metrics.” In: (1996).

[20] W. K. Kosiak. “Method and apparatus for crash sensing using anticipatory sensor inputs.” In: (Feb.

1997).

[21] T. Nguyen and S. Wooters. “FPGA-Based Development for Sophisticated Automotive Embedded

Safety Critical System.” In: SAE International Journal of Passenger Cars - Electronic and Electrical

Systems 7 (1 2014), pp. 125–132. issn: 19464622. doi: 10.4271/2014-01-0240.

[22] A. Leschke. Algorithm Concept for Crash Detection in Passenger Cars. Springer Fachmedien Wies-

baden, 2020, pp. 23–61. isbn: 978-3-658-29391-8. doi: 10.1007/978-3-658-29392-5.

[23] The Physics of a Car Collision. url: https://www.thoughtco.com/what-is-the-physics-

of-a-car-collision-2698920.

[24] Acceleration - Wikipedia. url: https://en.wikipedia.org/wiki/Acceleration.

93

https://doi.org/10.4271/910276
https://www.sae.org/publications/technical-papers/content/910276/
https://www.sae.org/publications/technical-papers/content/910276/
https://doi.org/10.4271/920478
https://www.sae.org/publications/technical-papers/content/920478/
https://www.sae.org/publications/technical-papers/content/920478/
https://doi.org/10.4271/920479
https://www.sae.org/publications/technical-papers/content/920479/
https://www.sae.org/publications/technical-papers/content/920479/
https://doi.org/10.4271/2014-01-0240
https://doi.org/10.1007/978-3-658-29392-5
https://www.thoughtco.com/what-is-the-physics-of-a-car-collision-2698920
https://www.thoughtco.com/what-is-the-physics-of-a-car-collision-2698920
https://en.wikipedia.org/wiki/Acceleration

REFERENCES

[25] g-force - Wikipedia. url: https://en.wikipedia.org/wiki/G-force.

[26] D. F. Shanahan. Human Tolerance and Crash Survivability.

[27] Peripheral acceleration sensor. url: https://www.bosch-mobility-solutions.com/en/

solutions/sensors/peripheral-acceleration-sensor/.

[28] S. MS, G. ND, and M. AG. Reliable Automotive Crash Detection using Multi Sensor Decision Fusion

Analysis of SDLC Models for Embedded Systems View project Reliable Automotive Crash Detection

using Multi Sensor Decision Fusion. url: https://www.researchgate.net/publication/

321759621.

[29] M. S. A. Rupok, H. K. Patnaik, X. Ding, and S. Ganesan. “MEMS accelerometer based low-cost

collision impact analyzer.” In: vol. 2016-August. IEEE Computer Society, Aug. 2016, pp. 393–396.

isbn: 9781467399852. doi: 10.1109/EIT.2016.7535272.

[30] A. Cismas, I. Matei, V. Ciobanu, and G. Casu. “Crash Detection Using IMU Sensors.” In: Institute

of Electrical and Electronics Engineers Inc., July 2017, pp. 672–676. isbn: 9781538618394. doi:

10.1109/CSCS.2017.103.

[31] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems.” In: Journal of Basic

Engineering 82 (1 Mar. 1960), pp. 35–45. issn: 0021-9223. doi: 10.1115/1.3662552.

[32] L. T. Corporation. LT1117/LT1117-2.85 LT1117-3.3/LT1117-5 - 800mA Low Dropout Positive Reg-

ulators Adjustable and Fixed 2.85V,3.3V, 5V. url: http://www.linear.com/leadfree/.

[33] A. Devices. ADXL356/ADXL357 (Rev. A). url: www.analog.com.

[34] MPU-6881 Product Specification Revision 1.0. 2014. url: www.invensense.com.

[35] ESP32 MINI 1 ESP32 MINI 1U Datasheet 2.4 GHz Wi Fi + Bluetooth ® + Bluetooth LE module Built

around ESP32 series of SoC, Xtensa ® dual core 32 bit LX6 microprocessor 4 MB flash 28 GPIOs,

rich set of peripherals On board PCB antenna or external antenna connector ESP32 MINI 1 ESP32 MINI 1U.

2021. url: https://espressif.com/sites/default/files/documentation/esp32-

mini-1_datasheet_en.pdf.

[36] S. Labs. USBXpress™ Family CP2102N Data Sheet.

94

https://en.wikipedia.org/wiki/G-force
https://www.bosch-mobility-solutions.com/en/solutions/sensors/peripheral-acceleration-sensor/
https://www.bosch-mobility-solutions.com/en/solutions/sensors/peripheral-acceleration-sensor/
https://www.researchgate.net/publication/321759621
https://www.researchgate.net/publication/321759621
https://doi.org/10.1109/EIT.2016.7535272
https://doi.org/10.1109/CSCS.2017.103
https://doi.org/10.1115/1.3662552
http://www.linear.com/leadfree/
www.analog.com
www.invensense.com
https://espressif.com/sites/default/files/documentation/esp32-mini-1_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-mini-1_datasheet_en.pdf

A
p
p
e
n
d
ix

A
Appendix 1

A.1 SPI Driver

1 #ifndef __SPI_BUS_H

2 #define __SPI_BUS_H

3

4 #include ”driver/spi_common.h”

5 #include ”driver/spi_master.h”

6

7 #define SPI_MODE 0

8 #define MISO_PIN 18

9 #define MOSI_PIN 23

10 #define SCLK_PIN 19

11 #define CS_PIN 10

12 #define CS1_PIN 9

13 #define CS3_PIN 4

14 #define SPI_CLOCK 1000000 // 1 MHz

15

16 void spi_master_init(spi_host_device_t host);

17 esp_err_t spi_receive_transaction(const uint8_t reg_addr, const uint8_t length, uint8_t *data, const spi_device_handle_t handle);
18 esp_err_t spi_send_transaction(const uint8_t reg_addr, const uint8_t length, uint8_t *data, const spi_device_handle_t handle);
19 void spi_add_device(const uint8_t CS_PI, spi_device_interface_config_t *dev_config, const spi_device_handle_t *handle, const spi_host_device_t

↪→ host);

20

21 #endif

Listing 15: SPI Driver main header file functions

1 void spi_master_init(spi_host_device_t host) {

2 spi_bus_config_t config;

3 memset(&config, 0, sizeof(spi_bus_config_t));

4 config.mosi_io_num = MOSI_PIN;

5 config.miso_io_num = MISO_PIN;

95

APPENDIX A. APPENDIX 1

6 config.sclk_io_num = SCLK_PIN;

7 config.quadwp_io_num = −1; // −1 not used

8 config.quadhd_io_num = −1; // −1 not used

9 config.max_transfer_sz = SPI_MAX_DMA_LEN;

10 spi_bus_initialize(host, &config, 1); // DMA used

11 }

12 esp_err_t spi_send_transaction(const uint8_t reg_addr, const uint8_t length, uint8_t *data, const spi_device_handle_t handle) {
13 // Create a SPI transaction

14 spi_transaction_t spi_trans;

15 spi_trans.flags = 0;

16 spi_trans.cmd = 0;

17 spi_trans.addr = reg_addr;

18 spi_trans.length = (uint8_t)length * 8;
19 spi_trans.rxlength = (uint8_t)length * 8;
20 spi_trans.user = NULL;

21 spi_trans.tx_buffer = data; // Pointer to the transmission buffer

22 spi_trans.rx_buffer = NULL; // Not used

23

24 return spi_device_transmit(handle, &spi_trans); // Queue the transaction as a interrupt

25 }

26

27 esp_err_t spi_receive_transaction(const uint8_t reg_addr, const uint8_t length, uint8_t *data, const spi_device_handle_t handle) {
28 // Create a SPI transaction

29 spi_transaction_t spi_trans;

30 spi_trans.flags = 0;

31 spi_trans.cmd = 0;

32 spi_trans.addr = reg_addr;

33 spi_trans.length = (uint8_t)length * 8;
34 spi_trans.rxlength = (uint8_t)length * 8;
35 spi_trans.user = NULL;

36 spi_trans.tx_buffer = NULL; // Not used

37 spi_trans.rx_buffer = data; // Pointer to the reveived buffer

38

39 return spi_device_transmit(handle, &spi_trans); // Queue the transaction as a interrupt

40 }

Listing 16: SPI Driver main functions

A.2 SDCard Driver

1 void mount_sdcard(const char *base_path) {
2 sdspi_device_config_t device;

3 sdspi_dev_handle_t out_handle;

4 sdmmc_host_t host1 = SDSPI_HOST_DEFAULT();

5 sdspi_device_config_t slot_config = SDSPI_DEVICE_CONFIG_DEFAULT();

6 slot_config.gpio_cs = CS3_PIN;

7 slot_config.host_id = host1.slot;

8

9

10 ESP_LOGI(sd_card_tag, ”Initializing SD card, using SPI peripheral”);

11 // Configure the mount config and mount

12 esp_vfs_fat_mount_config_t mount_config = {

96

APPENDIX A. APPENDIX 1

13 .format_if_mount_failed = true,

14 .max_files = 5,

15 .allocation_unit_size = 32*1024};
16 esp_err_t ret = esp_vfs_fat_sdspi_mount(base_path, &host1, &slot_config, &mount_config, &card);

17

18 if (ret != ESP_OK) {

19 if (ret == ESP_FAIL) {

20 ESP_LOGE(sd_card_tag,

21 ”Failed to mount filesystem. ”

22 ”If you want the card to be formatted, set format_if_mount_failed = true.”);

23 } else {

24 ESP_LOGE(sd_card_tag,

25 ”Failed to initialize the card (%d). ”

26 ”Make sure SD card lines have pull−up resistors in place.”,
27 ret);

28 }

29 return;

30 }

31 }

Listing 17: SD Card Driver mount function

1 const char *base_path = ”/fat”;

2 /*−−*/
3 void sdcard_init() {

4 mount_sdcard(base_path);

5 ESP_LOGI(sd_card_tag, ”Mounted in %s”, base_path);

6 }

7

8 void sdcard_close() {

9 esp_vfs_fat_sdcard_unmount(base_path, &card);

10 ESP_LOGI(sd_card_tag, ”Unmounted”);

11 }

Listing 18: SD Card Driver init and close functions

A.3 Matlab Kalman

1 % Kalman Filter Example

2 % Using Acelerometer data

3

4 %−−−
5 % Initialization

6 %−−−
7 Data_length = 599996;

8 M = readmatrix('shaker_results_MPU_y_1000Hz.csv',”Range”,3);

9 M1 = transpose(M);

10

11 N = readmatrix('shaker_results_ADXL_y_1000Hz.csv',”Range”,3);

12 N1 = transpose(N);

13

97

APPENDIX A. APPENDIX 1

14 K = readmatrix('shaker_results_Kalman_y_1000Hz.csv',”Range”,3);

15 K1 = transpose(K);

16

17 % Initialization values

18 declive = 0;

19 start_freq = 10;

20 stop_freq = 400;

21 start_profile_freq = 10;

22 stop_profile_freq = 300;

23 profile_value_start = 0.2;

24 profile_value_stop = 1;

25 profile_declive = (profile_value_stop−profile_value_start)/(stop_profile_freq−start_profile_freq);
26 profile_b = 1 − profile_declive*stop_profile_freq;
27 declive = (stop_freq − start_freq)/(Data_length−0); % y = mx + b

28 b = stop_freq − declive*Data_length; % y = mx + b

29 fs = 1000;

30 delta_t = 1/(fs);

31 x_0 = 0;

32 y_0 = 0;

33 z_0 = 0;

34 vx_0 = 0;

35 vy_0 = 0;

36 vz_0 = 0;

37 ax_0 = 0;

38 ay_0 = 0;

39 az_0 = 0;

40 x(1,Data_length) = zeros;

41 y(1,Data_length) = zeros;

42 z(1,Data_length) = zeros;

43 xK_Array(1,Data_length) = zeros;

44 yK_Array(1,Data_length) = zeros;

45 zK_Array(1,Data_length) = zeros;

46 xP_Array(1,Data_length) = zeros;

47 yP_Array(1,Data_length) = zeros;

48 zP_Array(1,Data_length) = zeros;

49

50 for i=1:Data_length

51 Time(1,i) = i;

52 ADXL_x(1,i) = N1(1,i);

53 ADXL_y(1,i) = N1(2,i);

54 ADXL_z(1,i) = N1(3,i);

55 IMU_x(1,i) = M1(1,i);

56 IMU_y(1,i) = M1(2,i);

57 IMU_z(1,i) = M1(3,i);

58 PCB_KALMAN_x(1,i) = K1(1,i);

59 PCB_KALMAN_y(1,i) = K1(2,i);

60 PCB_KALMAN_z(1,i) = K1(3,i);

61 hz(1,i) = (declive*i+b);
62 if hz(1,i) < 300

63 profile(1,i)= (profile_declive*hz(1,i)+profile_b);
64 else

65 profile(1,i) = 1;

66 end

67 profile_neg(1,i)=(profile(1,i)*−1);

98

APPENDIX A. APPENDIX 1

68 end

69 IMU_x = highpass(IMU_x,10,fs);

70 IMU_y = highpass(IMU_y,10,fs);

71 IMU_z = highpass(IMU_z,10,fs);

72

73 VARIANCE_ADXL_10G = 234.2;

74 VARIANCE_ADXL_40G = 159.71;

75 VARIANCE_MPU = 43.92;

76 DELTA_XM = 0.0701;

77 DELTA_YM = 0.0701;

78 DELTA_ZM = 0.0701;

79

80 VARIANCE_A = 0.0049;

81

82 % IMU_x = lowpass(IMU_x,1000,700);

83 % IMU_y = lowpass(IMU_y,1000,700);

84 % IMU_z = lowpass(IMU_z,1000,700);

85

86 x = (ADXL_x*VARIANCE_ADXL_10G + IMU_x*VARIANCE_MPU)/(VARIANCE_MPU+VARIANCE_ADXL_10G);
87 y = (ADXL_y*VARIANCE_ADXL_10G + IMU_y*VARIANCE_MPU)/(VARIANCE_MPU+VARIANCE_ADXL_10G);
88 z = (ADXL_z*VARIANCE_ADXL_10G + IMU_z*VARIANCE_MPU)/(VARIANCE_MPU+VARIANCE_ADXL_10G);
89 %−−−
90 % Initial Conditions

91 %−−−
92

93 %Observation

94 delta_xm = sqrt(1/(VARIANCE_MPU+VARIANCE_ADXL_10G)); %m

95 delta_ym = sqrt(1/(VARIANCE_MPU+VARIANCE_ADXL_10G)); %m

96 delta_zm = sqrt(1/(VARIANCE_MPU+VARIANCE_ADXL_10G)); %m

97

98 A = [1 delta_t (1/2)*(delta_t^2) 0 0 0 0 0 0;

99 0 1 delta_t 0 0 0 0 0 0;

100 0 0 1 0 0 0 0 0 0;

101 0 0 0 1 delta_t (1/2)*(delta_t^2) 0 0 0;

102 0 0 0 0 1 delta_t 0 0 0;

103 0 0 0 0 0 1 0 0 0;

104 0 0 0 0 0 0 1 delta_t (1/2)*(delta_t^2);
105 0 0 0 0 0 0 0 1 delta_t;

106 0 0 0 0 0 0 0 0 1];

107

108 Previous_X = [x_0;

109 vx_0;

110 ax_0;

111 y_0;

112 vy_0;

113 ay_0

114 z_0;

115 vz_0;

116 az_0];

117 %−−−
118 % The Initial Process Covariance Matrix

119 %−−−
120 Previous_P =[500 0 0 0 0 0 0 0 0;

121 0 500 0 0 0 0 0 0 0;

99

APPENDIX A. APPENDIX 1

122 0 0 500 0 0 0 0 0 0;

123 0 0 0 500 0 0 0 0 0;

124 0 0 0 0 500 0 0 0 0;

125 0 0 0 0 0 500 0 0 0;

126 0 0 0 0 0 0 500 0 0;

127 0 0 0 0 0 0 0 500 0;

128 0 0 0 0 0 0 0 0 500];

129

130 Q=[(delta_t^4)/4 (delta_t^3)/2 (delta_t^2)/2 0 0 0 0 0 0;

131 (delta_t^3)/2 delta_t^2 delta_t 0 0 0 0 0 0;

132 (delta_t^2)/2 delta_t 1 0 0 0 0 0 0;

133 0 0 0 (delta_t^4)/4 (delta_t^3)/2 (delta_t^2)/2 0 0 0;

134 0 0 0 (delta_t^3)/2 delta_t^2 delta_t 0 0 0;

135 0 0 0 (delta_t^2)/2 delta_t 1 0 0 0;

136 0 0 0 0 0 0 (delta_t^4)/4 (delta_t^3)/2 (delta_t^2)/2;

137 0 0 0 0 0 0 (delta_t^3)/2 delta_t^2 delta_t;

138 0 0 0 0 0 0 (delta_t^2)/2 delta_t 1] * sqrt(1/(VARIANCE_MPU
↪→ +VARIANCE_ADXL_40G));

139

140 % disp(”Initial Process Covariance Matrix: ”);

141

142 for i=1:Data_length

143

144 %−−−
145 % The Predicted State

146 %−−−
147 X_p = A * Previous_X;
148

149 % Save data to plot

150 xP_Array(1,i) = X_p(1,1);

151 vxP_Array(1,i) = X_p(2,1);

152 axP_Array(1,i) = X_p(3,1);

153 yP_Array(1,i) = X_p(4,1);

154 vyP_Array(1,i) = X_p(5,1);

155 ayP_Array(1,i) = X_p(6,1);

156 zP_Array(1,i) = X_p(7,1);

157 vzP_Array(1,i) = X_p(8,1);

158 azP_Array(1,i) = X_p(9,1);

159 %−−−
160 % The Predicted Process Covariance Matrix

161 %−−−
162 Pre = A*Previous_P*transpose(A)+Q;
163

164 %−−−
165 % The New Observation

166 %−−−
167 C = [0 0 1 0 0 0 0 0 0;

168 0 0 0 0 0 1 0 0 0;

169 0 0 0 0 0 0 0 0 1];

170

171 Y_meas = [0;

172 0;

173 x(1,i);

174 0;

100

APPENDIX A. APPENDIX 1

175 0;

176 y(1,i);

177 0;

178 0;

179 z(1,i)];

180

181 Y = C*Y_meas;
182 %−−−
183 % Calculating the Kalman Gain

184 %−−−;
185 R = [delta_xm^2 delta_ym*delta_xm delta_zm*delta_xm;
186 delta_xm*delta_ym delta_ym^2 delta_zm*delta_ym;
187 delta_xm*delta_zm delta_ym*delta_zm delta_zm^2;

188];

189 K = Pre*transpose(C) / (C*Pre*transpose(C) + R);

190 %−−−
191 % Calculating the current State

192 %−−−
193 X = X_p + K * (Y − C * X_p);
194

195 % Save data to plot

196 xK_Array(1,i) = X(1,1);

197 vxK_Array(1,i) = X(2,1);

198 axK_Array(1,i) = X(3,1);

199 yK_Array(1,i) = X(4,1);

200 vyK_Array(1,i) = X(5,1);

201 ayK_Array(1,i) = X(6,1);

202 zK_Array(1,i) = X(7,1);

203 vzK_Array(1,i) = X(8,1);

204 azK_Array(1,i) = X(9,1);

205 %−−−
206 % Updating the process Covariance Matrix

207 %−−−
208 I=[1 0 0 0 0 0 0 0 0;

209 0 1 0 0 0 0 0 0 0;

210 0 0 1 0 0 0 0 0 0;

211 0 0 0 1 0 0 0 0 0;

212 0 0 0 0 1 0 0 0 0;

213 0 0 0 0 0 1 0 0 0;

214 0 0 0 0 0 0 1 0 0;

215 0 0 0 0 0 0 0 1 0;

216 0 0 0 0 0 0 0 0 1];

217 % P=(I−K*C)*Pre*transpose(I−K*C) + K*R*transpose(K);
218 P=(I−K*C)*Pre;
219 %−−−
220 % Current becomes previous

221 %−−−
222 Previous_X = X;

223 Previous_P = P;

224 end

225

226 %−−−
227 % Plot Area

228 %−−−

101

APPENDIX A. APPENDIX 1

229

230 % Plot aceleration in x,y,z(Kalman + Predicted)

231 figure();

232

233 subplot(1,3,1);

234 plot(hz, ADXL_x, hz, profile, hz, profile_neg);

235 legend('ADXL ONLY', 'Profile');

236 xlabel('Hertz');

237 ylabel('Y−Axis');
238

239 subplot(1,3,2);

240 plot(hz, IMU_x, hz, profile, hz, profile_neg);

241 legend('IMU ONLY', 'Profile');

242 xlabel('Hertz');

243 ylabel('Y−Axis');
244

245 subplot(1,3,3);

246 plot(hz, axK_Array,hz, profile, hz, profile_neg);

247 legend('Kalman Filter', 'Trajectory Predicted', 'Profile');

248 xlabel('Hertz');

249 ylabel('Y−Axis');
250

251 sgtitle('Shaker Axis Z Test')

252

253 figure();

254 plot(hz, ayK_Array,hz, azK_Array,hz, axK_Array, hz, profile, hz, profile_neg);

255 legend('Matlab Kalman', 'Profile');

256 xlabel('Hertz');

257 ylabel('Y−Axis');
258

259 figure();

260 plot(hz, PCB_KALMAN_y,hz, PCB_KALMAN_z,hz, PCB_KALMAN_x, hz, profile, hz, profile_neg);

261 legend('PCB Kalman', 'Profile');

262 xlabel('Hertz');

263 ylabel('Y−Axis');
264

265

266 % saveas(gcf,'Shaker_x_test.png');

Listing 19: Matlab Kalman Implementation

A.4 Python Code to present the results

1 ##

2 # Imports

3 ##

4 import matplotlib.pyplot as plt

5 import matplotlib.pyplot as plt1

6 import pandas as pd

7 import seaborn as sns

8 import numpy as np

9 import math

102

APPENDIX A. APPENDIX 1

10 from math import sin, pi

11 import warnings

12 import csv

13 from qbstyles import mpl_style

14

15 ##

16 # Plot Style

17 ##

18 # plt.style.use('C://Users//drede//OneDrive//Ambiente de Trabalho//ShakerData//matplotlib//dracula.mplstyle')

19

20 ##

21 # Initialization

22 ##

23 Average,x,hz,profile_neg,profile,y0,y1,y2,y3,y4,y5,y6,y7,y8 = ([] for i in range(14))

24 row_count = 0

25 declive = 0

26 start_freq = 10

27 stop_freq = 400

28 start_profile_freq = 10

29 stop_profile_freq = 300

30 profile_value_start = 0.2

31 profile_value_stop = 1

32 profile_declive = (profile_value_stop−profile_value_start)/(stop_profile_freq−start_profile_freq)
33 profile_b = 1 − profile_declive*stop_profile_freq
34 ##

35 # Read data from csv

36 ##

37 # with open('D://Esp32//Thesis//ShakerData//PCB_KALMAN_Y.csv','r') as csvfile:

38 with open('D://Esp32//Thesis//Matlab//shaker_results_Kalman_x_1000Hz.csv','r') as csvfile:

39 plots = csv.reader(csvfile, delimiter = ';')

40 for row in plots:

41 row_count += 1

42 y0.append(float(row[0]))

43 y1.append(float(row[1]))

44 y2.append(float(row[2]))

45 Average.append(math.sqrt(abs(float(row[0])*float(row[0])) + abs(float(row[1])*float(row[1])) + abs(float(row[2])*float(row[2]))))
46 declive = (stop_freq − start_freq)/(row_count−0) # y = mx + b

47 b = stop_freq − declive*row_count # y = mx + b

48 for i in np.arange(0,row_count,1):

49 hz.append(declive*i+b)
50 if (hz[i] < 300):

51 profile.append(profile_declive*hz[i]+profile_b)
52 else:

53 profile.append(1)

54

55 profile_neg.append(profile[i]*−1)
56 ##

57 # Plot Settings

58 ##

59 left = 0.05

60 right = 0.98

61 bottom = 0.088

62 top = 0.938

63 wspace = 0.2

103

APPENDIX A. APPENDIX 1

64 hspace = 0.2

65 plt.figure(”PCB Kalman Shaker Y Test”)

66 plt.subplots_adjust(left,bottom,right,top,wspace,hspace)

67 plt.plot(hz,Average, label='Sum of all axis absolute values')

68 plt.plot(hz,y0, label='Kalman − X−Axis')
69 plt.plot(hz,y1, label='Kalman − Y−Axis')
70 plt.plot(hz,y2, label='Kalman − Z−Axis')
71 plt.plot(hz,profile,label='Profile')

72 plt.plot(hz,profile_neg)

73 plt.xlabel('Hz')

74 plt.ylabel('Aceleration')

75 plt.title('10 minutes Samples(W/Kalman)')

76 plt.legend()

77 plt.grid()

78 # plt.show()

79

80 plt.figure(”PCB Kalman Shaker X Test”)

81 plt.subplots_adjust(left,bottom,right,top,wspace,hspace)

82 plt.plot(hz,Average, label='Sum of all axis absolute values')

83 plt.plot(hz,y0, label='Kalman − X−Axis')
84 plt.plot(hz,y1, label='Kalman − Y−Axis')
85 plt.plot(hz,y2, label='Kalman − Z−Axis')
86 plt.plot(hz,profile,label='Profile')

87 plt.plot(hz,profile_neg)

88 plt.xlabel('Hz')

89 plt.ylabel('Aceleration')

90 plt.title('10 minutes Samples(W/Kalman)')

91 plt.legend()

92 plt.grid()

93 plt.show()

94

95 ##

96 # Reusable Code

97 ##

98 # plt.plot(hz,y0, label='Adxl − X−Axis')
99 # plt.plot(hz,y1, label='Adxl − Y−Axis')
100 # plt.plot(hz,y2, label='Adxl − Z−Axis')
101 # plt.plot(hz,y3, label='Mpu − X−Axis')
102 # plt.plot(hz,y4, label='Mpu − Y−Axis')
103 # plt.plot(hz,y5, label='Mpu − Z−Axis')
104 # with open('D://Esp32//Thesis//ShakerData//Kalman_shaker.csv','r') as csvfile:

Listing 20: Python script to visualize results

104

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Contextualization and Motivation
	Objectives
	Methodology
	Document Structure

	Background and State of the Art
	Basic Concepts
	Embedded System
	Real-Time System
	Operating System
	Multitasking
	Scheduling
	Inter-Process Communication

	Crash detection sensors
	Accelerometers
	IMU

	Crash detection algorithms
	''Total and Partial Energies'', Diller
	''Power-Rate Method'', Allen
	''A Predictive Algorithm'', Gioutsos
	''Adjustable Velocity Threshold'', Mattes
	''Multiple Evaluation and Expertise Algorithms'', Diller
	''Multiple Evaluation Circuits and Time Window'', Eigler
	''Power Spectrum of Acceleration Signal in a Frequency Range'', Tohbaru
	''Deployment Method Based on Occupant Displacement and Crash Severity'', Cashler and Kelle
	''Method and Apparatus for Sensing a Vehicle CrashCondition Using Velocity Enhanced Acceleration Metrics'', McIver
	''Method and Apparatus for Crash Sensing Using Anticipatory Sensor Inputs'', Kosiak

	Related Work
	Airbag
	High-impact scenarios
	Bosch Peripheral Acceleration Sensor (PAS)
	Literature review

	Conclusions

	System Specification
	Requirements
	Functional Requirements:
	Non-Functional Requirements:

	System Overview
	Hardware Specification
	Sensors
	CPU

	Software Specification
	Signal Processing
	Kalman Filter

	Conclusions

	Design
	Hardware Considerations
	LDO (Low-Dropout)
	ADXL357
	MicroSD Card
	MPU-6881
	CPU
	Micro USB Connector
	CP2102N

	Software Considerations
	Task Overview
	Drivers
	Kalman
	FreeRTOS Tasks

	Implementation
	Hardware Schematic
	Main sheet
	Micro USB

	Hardware Layout
	Layout Process

	Software
	Drivers
	Tasks

	Tests and Results
	Shaker Tests
	Collision Test

	Conclusions
	Future Work

	References
	Appendices
	Appendix 1
	SPI Driver
	SDCard Driver
	Matlab Kalman
	Python Code to present the results

