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Abstract

Intelligent Transportation Systems (ITS) are systems that consist on a complex set of tech-
nologies that are applied to road agents, aiming to provide a more efficient and safe usage of the roads.
The safety aspect of ITS is particularly important for Vulnerable Road Users (VRUs), as they are typ-
ically more exposed to dangerous situations. The fact that these users typically possess poorer safety
mechanisms (comparing to regular vehicles), together with their high agility and hard to anticipate be-
havior, makes the implementation of automatic safety systems challenging. However, if road entities are
equipped with communication technologies, they are able to frequently disseminate high amounts of ego
and environmental traffic information. That huge collection of Vehicle to Anything (V2X) data can be
leveraged by Machine Learning (ML) mechanisms to implement such automatic safety systems for
VRUs.

Hence, this Ph.D. work aims to evaluate the feasibility of leveraging V2X communications data
when using ML to predict collisions related to VRUs (in particular, motorcycles). This thesis presents
a system architecture (based on Fog Computing) that gives support to the heavy requirements that are
required by the system - particularly regarding computation resources and large amounts of storage that
the MIL models require for training and testing. Two different safety systems are presented and evaluated:
one for the detection of collisions and one for the prediction of future collisions. The datasets that were
used for the ML models training, validation and testing were synthesized from simulation scenarios based
on European Telecommunications Standards Institute (ETSI) standards (implemented using the
Vehicles in Network Simulation (VEINS) framework). A simulation prototype was also developed to
evaluate the collision prediction system (running the models on-line on the simulation framework). The
results indicate that the proposed systems are able to detect and predict the collisions accurately. Further-
more, regarding the collision prediction system, most predictions are also achieved in a timely manner -
as predictions are made early enough, the vehicles have enough time to receive warning messages and

perform emergency brakes, thus being able to prevent the collisions.

Keywords Intelligent Transportation Systems, Vulnerable Road Users, V2X, Machine Learning



Resumo

ITS sédo sistemas que consistem num conjunto complexo de tecnologias que sao aplicados aos
agentes rodoviarios, com o objetivo de proporcionar um uso mais eficiente e seguro das vias. O aspeto
da seguranca em ITS é particularmente importante para os VRUs, pois estes estao tipicamente mais
expostos a situacdes perigosas. O facto desses utilizadores possuirem normalmente sistemas de segu-
ranca menos sofisticados (quando comparados com os veiculos normais), juntamente com a sua elevada
agilidade e comportamento dificil de antecipar, torna a implementacao de sistemas automaticos de se-
guranca num desafio. No entanto, se as entidades rodoviarias estiverem equipadas com tecnologias de
comunicacoes, elas podem disseminar com frequéncia grandes quantidades de informacao individual e
também ambiental. Essa grande quantidade de dados V2X pode ser aproveitada por mecanismos de
ML para implementar tais sistemas automaticos de seguranca para VRUs.

Assim, este trabalho de doutoramento visa avaliar a viabilidade de aproveitar os dados de comuni-
cacao V2X em tcnicas de ML para prever colisdes relacionadas com VRUs (em particular, motociclos).
Esta tese apresenta uma arquitetura baseada em Fog Computing, que da suporte aos requisitos pesados
que sao exigidos pelo sistema - particularmente em relacao aos recursos de computacéo e a grande ca-
pacidade de armazenamento que os modelos de ML exigem para treino e teste. Sao propostos e avaliados
dois sistemas de seguranca diferentes: um para o detecdo de colisdes e outro para previsdo de colisdes
futuras. Os conjuntos de dados que foram usados para o treino, validacao e teste dos modelos de ML
foram sintetizados a partir de cenarios de simulacdo baseados em standards da ETSI (implementados
usando a framework de simulacdo VEINS). Foi também desenvolvido um protdtipo de simulacao para
avaliar o sistema de previsao de colisdes, que executa os modelos on-line diretamente na framework de
simulacdo. Os resultados indicam que os sistemas sdo capazes de detetar e prever as colisdes com pre-
cisdo. Além disso, em relacao ao sistema de previsdo de colisdes, a maioria das previsdes é realizada em
tempo Uutil - como as previsdes sao feitas com antecedéncia suficiente, os veiculos tém tempo suficiente

para receber mensagens de alerta e realizar travagens de emergéncia, podendo assim evitar as colisoes.

Palavras-chave Intelligent Transportation Systems, Vulnerable Road Users, V2X, Machine Learning
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Chapter 1

Introduction

Intelligent Transportation Systems (ITS) are systems that consist on an intricate set of tech-
nologies applied to road agents (e.g. vehicles, pedestrians, infrastructures) that aim to provide a more
efficient and safe usage of the roads - allowing, for example, to control traffic operations or influence drivers
behavior. Furthermore, ITS has the potential to improve aspects such as productivity or even levels of
pollution. These systems enable the implementation of several applications that, relying on information
that is exchanged between the road agents, allow entities (e.g. drivers or controllers) to make smarter
choices - either manually or automatically. These applications can range from simple day-1 use cases
(e.g. Emergency Vehicle Warning) to more advanced solutions, such as Advanced Collisions Prediction
Systems.

The improvement of road safety is particularly important for Vulnerable Road Users (VRUs),
since (as the name suggests) they are the most vulnerable road agents existent and have a high casualty
rate. The VRUs group, as defined by the European Commission [1], consists of pedestrians, cyclists,
motor-cyclists and persons with disabilities or reduced mobility and orientation. Typically, these users do
not have a protective external 'shell’ and possess poorer safety mechanisms when, for instance, compared
to normal passenger cars or trucks. Most VRUs are typically very agile (e.g. pedestrians, motorcyclists)
and their movement and behavior is hard to anticipate (sometimes not even in compliance with traffic
rules).

In order to protect these users, there are more and more system whose goal is to improve their
road safety. Passive safety methods are essentially used to reduce the severity of injuries during/after
collisions involving VRUs (e.g. establish a call to an emergency center after a collision). Given that these
safety mechanisms are normally located on regular vehicles, they should preserve both the passengers of
the vehicles and the VRUs, who have less probability of possessing safety equipment.

On the other hand, active safety methods are, for instance, capable of predicting and avoid colli-

sions. These systems typically resort to sensors to obtain environment knowledge (e.g. cameras, RADAR,



LIDAR) and activate active safety measures (such as emergency breaking, automatic steering or airbag
deployment). However, this type of solutions still present poor efficiency in situations where Line of Sight
(LOS) is non-existent (e.g. pedestrian is in a blind spot, behind a traffic signal or a large vehicle), despite
the great investment and effort to overcome limitations such as rough weather, low light environments,
among others.

In contrast, wireless communications between VRUs and vehicles, who do not possess such lim-
itations, can have a great impact on collision prevention and in the general safety of road agents. Road
agents equipped with communication capabilities are able to exchange important knowledge that can help
saving lives by preventing/predicting collisions, improve traffic flow, etc. Naturally, given the increasing
number of equipped devices on ITS environments that are exchanging such information (e.g. about the
vehicles, the infrastructures, the road/traffic conditions), there is an huge amount of data that is generated
with high frequency.

According to some studies, the Vehicle to Anything (V2X) market is expected to largely grow in
the next upcoming years: Research and Markets [2, 3] projects the growth of global automotive V2X market
from 2.6 billion USD in 2022 to 19.5 hillion by 2028; ABIResearch [4, 5] suggests that, by 2025, more
than 10 million vehicles will be capable of using short-range V2X communications (364 million vehicles
if including cellular connectivity). An example of the integration of such technologies is the Cadillac CTS
since 2017 [6]. Naturally, the use of these devices, together with the IEEE WAVE/DSRC (American) [7]
and ETSI ITS-G5 (European) [8] standard communication stacks, requires the dissemination of cooperative
messages periodically: Basic Safety Messages (BSM) [9] and Cooperative Awareness Messages
(CAMs) [10], respectively. These messages contain updated information on the node’s direction, position,
speed, acceleration, among others. Additionally, there are some other standard messages, such as the
Decentralized Environmental Notification Messages (DENMs) from European standards, that
allow the notification of events and incidents related to the environment/traffic [11].

As stated before, predicting the behavior of VRUs is a very difficult task. However, Machine
Learning (ML) techniques can be used to implement more advanced systems that try to predict such
actions and prevent collisions. The application of ML techniques on vehicular environments data has the
potential to predict VRUs movement, detect/locate them, and even compute probabilities of collision with
them. These solutions may enable the avoidance of collisions and thus also achieve a more efficient and
safer traffic flow. This is particularly important, since these agents have an increased risk of injury in cases
of incidents, and represent a large portion of fatalities and injuries on roads.

Naturally, this implementation is only possible if these users posses communication capabilities that



allow communication between themselves and other road agents. Even though some VRUs may possess
communication capabilities (e.g. pedestrians using smart-phones with cellular technologies), it is unlikely
that they are able to communicate with other road agents in a direct way, as vehicles are typically equipped
with different technologies (such as IEEE 802.11p). Nonetheless, from the VRUs group, motorcycles are
fairly simple to equip with communication devices that are similar to regular vehicles (using similar On-
Board Units (OBUs)). Hence, motorcycles are the most appropriate subjects to survey the usage of
automatic solutions for VRUSs collisions prediction resorting to ML, applied to data that comes from V2X
communications.

This thesis main goal is to evaluate the feasibility of leveraging V2X communications data when
using ML mechanisms to predict collisions related to VRUs (in particular, motorcycles).

To achieve a concept proof, the following tasks were achieved: a system architecture was developed;
simulation scenarios based on standards were established; from the simulation scenarios, several datasets
were synthesized (based on V2X data); ML models were trained and tested, to predict collisions based
on the simulation datasets; Finally, a simulation prototype was developed to evaluate the solution (running
the models on-line).

The next section presents the methodology followed to fulfill the established objectives.

1.1 Methodology

This thesis intends to investigate if it is possible to predict collisions that involve VRUs by analyzing
the data that is exchanged by road agents using V2X communications. This document proposes, tests,
and evaluates a system’s architecture that aims to improve the safety of VRUs. The system aims to predict
motorcycle collisions on an intersection resorting to ML models (which leverage V2X data), and notify the
road users with warning messages.

The methodology to achieve a final prototype for proof of concept is described next.

Study ITS characteristics ITS are the underlying framework for the proposed system'’s architecture.
Hence, ITS should be surveyed, to identify its main characteristics in terms of communications
(communication modes and technologies) and also the most important standards. This should
include an analysis of standard messages and information that is typically exchanged in vehicular

environments.

Survey ML solutions applied to ITS ML solutions have a strong potential to help to solve many open

problems in the ITS field, as they may be able to leverage the huge amount of V2X data to per-



form classification and prediction of several different issues. In that sense, it is important to survey
the usefulness of ML learning in this context - both in ITS generally, but also related to the de-
tection/prediction of incidents. This study should also gather related work on incidents that are

particularly related to VRUs.

Research and design the system’s architecture As the proposed system resorts to the usage of
multiple types of road agents in different hierarchical levels, a proper system’s architecture should
be defined. The architecture should take into consideration the different levels of requirements that

are needed by the different users (e.g. in terms of computation, storage and latency).

Collect datasets related to VRU collisions and V2X data ML models typically require very large
amounts of data to be properly trained, validated and tested. Hence, it is important to survey the
existence of datasets related to the proposed use case. If they are non-existent (or non-available),
new datasets should be synthesized, resorting to simulation. In that case, it is important to: survey
tools and frameworks that allow to simulate road agents mobility and communication (simultane-
ously); study, define and implement simulation scenarios on the selected tools; collect V2X data

from the defined scenarios in order to finally compile the datasets.

Evaluate ML models for the prediction of collisions The proposed system should rely on ML al-
gorithms to perform the prediction of the collisions. So, first, it is important to research adequate
ML solutions for the proposed problem - predict collisions related to VRUs. The selected models
should be trained, validated, tested and eventually optimized (parameterized) to try to achieve the

optimal solution.

Develop and implement a prototype A prototype should be implemented for proof of concept. The
resulting ML model should be deployed and tested in a simulation tool or framework, as realistic
as possible. Thus, it is important to survey ITS simulation tools (if not achieved on the previous

steps).

Evaluate the Methodology The main goal is to test the proposed methodology and evaluate the sys-
tem’s capacity for improving traffic safety for VRUs. Itis important to evaluate the system’s accuracy
in terms of predicted collisions, the number of false positives and similar metrics. Additionally, it is
also important to verify the timeliness of the predictions (in other terms, if the predictions allow for

the users to prevent the collision).



1.2 Scientific Contributions

The research that was achieved for this thesis was aligned with two different Research and De-
velopment (R&D) projects, in a collaboration between the University of Minho (Portugal) and Bosch Car
Multimedia (Portugal) - EasyRide: Experience is everything (V2X Communications) and AURORA: Experi-
ence Mobility.

Both projects had similar research focus - V2X communications, with particular focus on the devel-
opment of safety applications for VRUs. This research included the following topics: survey and utilization
of simulation tools for ITS mobility and communications (focused on VRUs); compile simulation datasets
for the train and test of ITS safety applications; study of intelligent ML mechanisms to apply for VRUs
safety, in terms of predicting collisions; specification and development of intelligent applications for VRUs
safety (safety warnings).

This tasks resulted in the development of two application prototypes: use of Vehicle to Pedes-
trian (V2P) communications to notify vehicles of the detection of pedestrians crossing a crosswalk without
vision, in a real and controlled environment; Use of V2X communications for predicting collisions involv-
ing VRUs (motorcycles) and passengers on intersections, through automatic learning mechanisms, in a
simulation environment.

Additionally, this research also resulted in multiple scientific publications, which are listed next.

As first author:

Leveraging Vehicular Communications in Automatic VRUs Accidents Detection [12]
Bruno Ribeiro, Maria Jodo Nicolau, and Alexandre Santos. 2022 thirteenth international conference on

ubiquitous and future networks (ICUFN). IEEE, 2022.

[Poster] Machine Learning for VRUs Accidents Prediction Using V2X Data [13]
Bruno Ribeiro, Maria Joao Nicolau, and Alexandre Santos. Proceedings of the 38th ACM/SIGAPP Sympo-
sium on Applied Computing. 2023.

Using Machine Learning on V2X Communications Data for VRU Collision Prediction [14]

Bruno Ribeiro, Maria Jodo Nicolau, and Alexandre Santos. Sensors 23.3 (2023): 1260.



Evaluation of a Collision Prediction System for VRUs Using V2X and Machine Learning: In-
tersection Collision Avoidance for Motorcycles [15]
Bruno Ribeiro, Maria Jodo Nicolau, and Alexandre Santos. 28th IEEE Symposium on Computers and

Communications (ISCC). 2023.

As co-author:

Enhancing VRUs Safety with V2P Communications: an Experiment with Hidden Pedestri-
ans on a Crosswalk. [16]

Fabio Goncalves, Bruno Ribeiro, Jodo Santos, Oscar Gama, Francisco Castro, Jodo Fernandes, Antnio
Costa, Bruno Dias, Maria Jodo Nicolau, Joaquim Macedo, and Alexandre Santos. 2022 14th Interna-
tional Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE,

2022.

Design and Evaluation of an Adaptive Virtual Traffic Light System for VANETs. [17]
Oscar Gama, Antdnio Costa, Maria Jodo Nicolau, Alexandre Santos, Joaquim Macedo, Bruno Dias, Fabio
Goncalves, and Bruno Ribeiro. 14th International Congress on Ultra Modern Telecommunications and

Control Systems and Workshops (ICUMT). IEEE, 2022.

Agnostic Middleware for VANETSs: Specification Implementation and Testing. [18]
Fabio Goncalves, Bruno Ribeiro, Oscar Gama, Maria Joao Nicolau, Bruno Dias, Antdnio Costa, Alexandre
Santos, and Joaquim Macedo. WINSYS - 19th International Conference on Wireless Networks and Mobile

Systems, 2022.

Synthesizing Datasets with Security Threats for Vehicular Ad-hoc Networks. [19]

Fabio Goncalves, Bruno Ribeiro, Oscar Gama, Jodo Santos, Antnio Costa, Bruno Dias, Maria Joao Nicolau,
Joaquim Macedo, and Alexandre Santos. GLOBECOM 2020-2020 IEEE Global Communications Confer-
ence. |IEEE, 2020.



Evaluation of Push and Pull Communication Models on a VANET with Virtual Traffic Lights.
[20]
Oscar Gama, Alexandre Santos, Antbnio Costa, Maria Jodo Nicolau, Bruno Dias, Joaquim Macedo, Bruno

Ribeiro, Fabio Goncalves, and Jodo Simées. Information 11.11 (2020): 510.

Evaluation of Broadcast Storm Mitigation Techniques on Vehicular Networks Enabled by
WAVE or NDN. [21]

Oscar Gama, Alexandre Santos, Antdnio Costa, Bruno Dias, Joaquim Macedo, Maria Jodo Nicolau, Bruno
Ribeiro, and Fabio Goncalves. Intelligent Transport Systems. From Research and Development to the
Market Uptake: Third EAI International Conference, INTSYS 2019, Braga, Portugal, December 4-6, 2019.
Springer International Publishing, 2020.

A Systematic Review on Intelligent Intrusion Detection Systems for VANETs. [22]
Fabio Goncalves, Bruno Ribeiro, Oscar Gama, Alexandre Santos, Antdnio Costa, Bruno Dias, Joaquim
Macedo, and Maria Joao Nicolau. 2019 11th International Congress on Ultra Modern Telecommunica-

tions and Control Systems and Workshops (ICUMT). IEEE, 2019.

1.3 Document Structure

This first chapter of the document presents the motivation of the thesis work, along with its main
objectives. It also presents the methodology to achieve such goals and the scientific contributions that
were achieved. The remaining of this document is organized in six main chapters.

Chapter 2 presents the related work. Section 2.1 introduces an overview on the background and
basis of this thesis work, namely by presenting the most relevant and prominent ITS standards (both in
Europe and America) and V2X communications characteristics (communication modes and technologies).
Section 2.2 presents the most relevant works that rely on the usage of ML techniques for ITS solutions.
The works are organized from the most generic to the most alike ones (works that are related to the
prediction/detection of VRUs incidents).

The proposed work aims to take advantage of ML capabilities to improve the safety of VRUs, using
V2X communications data. Such ML mechanisms usually require large sets of data to perform both
training and testing. As discussed further ahead, no relevant datasets were found on the related works

(datasets related to VRUs incidents that contain ITS standard messages exchanges). For that reason,



there is a need to resort to simulation tools to synthesize datasets. Hence, Chapter 3 is focused on ITS
simulation. Section 3.1 surveys the most common ITS simulation tools (in terms of mobility simulators,
communications simulators and also coupled simulators) and presents the main requirements for the
simulation framework. Section 3.2 presents some preliminary tests, in order to perform a comparison
of the tools identified in the previous section. Section 3.3 finally presents the complete development
environment.

The proposed method of using ML techniques for the safety of VRUs requires heavy computation
resources and large amounts of storage, particularly for the training and testing processes. Additionally,
the use case of predicting collisions and sending warnings on such predictions also requires very low
latencies (in terms of information exchange and also the realtime analysis of V2X data), so that road
users have enough time to safely actuate. Hence, Chapter 4 starts by presenting the system’s architec-
ture in section 4.1, based on a Fog Computing approach, which organizes the entities and functionalities
of the system in hierarchical layers (according to their characteristics in terms of computation require-
ments, timeliness, and so on). Next, section 4.2 describes the established use case based on European
Telecommunications Standards Institute (ETSI) standards, where a passenger vehicle oversees an
approaching motorcycle when turning on an intersection, which results in a possible collision. Section 4.3
discusses the implementation of the simulation scenario on Vehicles in Network Simulation (VEINS),
including the details regarding the mobility on Simulation of Urban MObility (SUMO) and the commu-
nications setup of Objective Modular Network Testbed in C++ (OMNeT++). Also, it also presents
how (and what kind of) data is collected inside VEINS to synthesize the datasets that are to be used in
ML.

Chapter 5 presents a discussion on ML techniques for the development of the VRUSs safety systems.
Section 5.1 presents some preliminary ML tests - where different models were trained and tested to classify
the vehicle's type based on the generated V2X messages. Then, an initial work for the detection of
collisions (using the same traditional ML models) is achieved on section 5.1.2. This exploratory analysis
led to the conclusion that traditional models are unsuitable for the problem that is to be solved, as it
possesses some strong temporal concerns that is important for the learning process. Hence, section 5.2
discusses time series forecasting, including a discussion on the main characteristics of Long Short-Term
Memorys (LSTMs) and Multilayer Perceptrons (MLPs).

Chapter 6 presents the collision detection system, starting with a discussion focused on how the
data was collected and processed for the training and testing procedures (section 6.1). Section 6.2

presents the main results for the collision detection system evaluation (by aggregation time).



Chapter 7 discusses the collision prediction system. It highlights the implementation differences to
the previous developed safety system (focusing on multi-step forecasting strategies on section 7.1) and also
presents several other important considerations are presented in section 7.2 (such as feature selection,
imbalanced data, etc.). Section 7.3 presents the evaluation results for the collision prediction system,
focusing on the metrics: Number of False Positives, Predicted Collisions, Collisions Prediction Percentage,
Correct Decision Percentage and Average Prediction Time. Finally, section 7.4 evaluates the system in
terms of collision avoidance capabilities and the timeliness of the collision predictions - if the prediction
gives enough time for drivers to actuate in order to avoid the collision.

Finally, Chapter 8 discusses the main conclusions of this thesis work. This chapter also discusses
some of the identified limitations and the future work possibilities that can complement this thesis (sec-

tion 8.2).



Chapter 2
Related Work

This chapter starts by providing an overview on the background of the work proposal and its context.
An introduction to ITS is presented, together with a description of the main European and American
standards and how the communications work on these systems (regarding communication modes and
technologies). Furthermore, it also presents some relevant related works, particularly focused on ML
solutions applied to ITS - both generic and incident detection related solutions (and even more particularly

for VRUs).

2.1 ITS Background

ITS is defined by the European Parliament as systems in which information and communication
technologies are applied in the field of road transport, including infrastructure, vehicles and users, traffic
management and mobility management, as well as for interfaces with other modes of transport[23]. There
are a series of ITS standards that are defined in order to establish and enable interoperability, by specifying
the communications and the type of messages that are meant to be exchanged, which communication
media and protocols should be used, etc.

The definition of these standard differs from region to region of the globe. For that reason, there are
several organizations in charge of developing such standards: European Committee for Standardiza-
tion (CEN), ETSI and International Organization for Standardization (I1S0) in Europe, Institute
of Electrical and Electronics Engineers (IEEE) and Society of Automotive Engineers (SAE) in
the USA, Association of Radio Industries and Businesses (ARIB) in Japan, among others.

The next subsections focus on European and American standards, as they are the most relevant to

this work.
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2.1.1 ITS Standards in Europe

Figure 2.1 shows the ITS station (e.g. vehicles, road-side units or pedestrians) reference architec-

ture, taken from the EN 302 665 European standard in [24].

Figure 2.1: ITS Station Reference Architecture [24]

The main aspects related to the layers are briefly presented below (not focusing on security or management

layers, which are transversal to all the other layers):

Application Layer This layer is where the ITS applications are meant to be deployed, for instance the
ones from the Basic Set of Applications [25] (e.g. Road Safety applications - e.g. Emergency vehicle
warning, slow vehicle - or traffic efficiency applications - e.g. speed limits notifications, enhanced

route guidance). These applications rely on services provided by the Facilities layer.

Facilities Layer The Facilities layer is designed to provide support to the applications on the top layer,
since ITS stations exchange information that may be useful to several applications. Some of the
most important facilities are CAM, DENM and Local Dynamic Map (LDM). The CAM service
[10] allow the exchange of messages that possess status information of ITS stations, such as
position, speed, moving direction, etc. DENM [11] messages deliver information on road traffic
events, such as traffic collisions, road work, etc. LDM [26] provides a representation of vehicle’s
surroundings (managing the vehicle sensor and map data), with information regarding all static and

dynamic safety elements.
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Network and Transport Layer This layer aggregates all the networking protocols that allow the dis-
semination of messages. Regarding networking, there are two essential standards that are allowed
in ITS: Internet Protocol (IP) and Geonetworking. Geonetworking [27] is a protocol for the de-
livery of information to a given geographical destination region. It can work on the following routing
schemes: Geobroadcast (messages are sent to all nodes in an area), Geounicast (to a node), Geo-
multicast (to a set of nodes) or GeoAnycast (to any node in an area). This protocol also allows the
building of a neighbor location table, using that for forwarding decisions. This layer also allows the
use of IP (both IPv4 and IPv6), to enable interchangeability between ITS and non-ITS sectors.
Regarding transport, it is important to mention the Basic Transport Protocol (BTP), which can
be described as an User Datagram Protocol (UDP)-like protocol for Geonetworking, providing

an end-to-end, connection-less transport service [28].

Access Layer This layer includes several access technologies (e.g. Infrared, cellular, microwave, among
others) that can be used for communication with other stations, even simultaneously, depending
on the purpose of the station. Still, ITS-G5 typically resorts to the use of IEEE 802.11p (Medium
Access Control (MAC) and PHY), similarly to the United States set of standards, but over the Eu-
ropean spectrum [29]. The IEEE 802.11p amendment introduced features to the Wireless Local
Area Network (WLAN) family of standards, in order to enable its use on V2X communication
- it was specifically built for vehicular environments, supporting applications that are very strict in

terms of communication requirements.

2.1.2 ITS Standards in America

Wireless Access in Vehicular Environments (WAVE) system is a radio communication sys-
tem that provides seamless, inter-operable services to users of a transportation system. WAVE aims to
provided communications between vehicles and infrastructure, and also communications amongst vehi-
cles themselves. Figure 2.2 illustrates the communication stack of the WAVE/Dedicated Short-Range
Communications (DSRC) architecture (published full-use WAVE standards), as defined in the IEEE
1609.0 standard [30].

12



Higher layer standards

“
WSMP Transport
UDP/TCP Protocols
WSMP Networking « ‘(E
IPv6 23
- Protocols > § 8
z % LLC
2 S WAVE MAC 3
(including channel coordination) -
2]
PHY ©

Figure 2.2: Full-use WAVE Standards (IEEE 1609 Standards)

In summary, the stack consists of standards from the IEEE 1609 family and IEEE 802.11p: IEEE
802.11p defines Physical and MAC layers while the upper layers are defined by IEEE 1609. The layers
are briefly briefly discussed below (not focusing on security or management layers, which are transversal

to all the other layers - similarly to the European stack):

Application Layer In the first trial-use standards, the IEEE 1609.1 [31] standard defined the usage of a
Resource Manager, which was useful for the application to communicate to components or some
other devices supported by OBUs. However, it was found unnecessary for WAVE standardization,
hence being withdrawn (without a planned revision). At this point, IEEE 1609.11 [32] is the only

application level standard and specifies a payment protocol for ITS, referencing 1SO standards.

Transport & Network Layer The IEEE 1609.3 [33] standard aims to give support to WAVE data ex-
change, by defining transport and network layer services, including how addressing and routing
should work. It also defines WAVE Short Message (WSM) (WAVE-specific alternative to IP),
which can be directly used by applications. It includes features such as: WAVE Service Ad-
vertisement (WSA) transmission and monitoring; channel access assignment; WAVE Short
Message Protocol (WSMP); usage of Logical Link Control (LLC) and EtherType Protocol
Discrimination (EPD); IPv6 (including streamlined configuration); Management Information
Base (MIB) maintenance; and others. IEEE 1609.12 [34] records the allocations of some identi-
fiers used by the WAVE standards, including Object Identifier (OID), EtherType, and Manage-
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ment ID.

Media Access Control Layer I[EEE 1609.4 [35] introduces enhancements to IEEE 802.11 MAC to
support WAVE and services that support multi-channel for the upper layers. It includes features
such as: channel coordination and routing; multi-channel synchronization; usage of IEEE 802.11
facilities (e.g., channel access) outside the context of a Basic Service Set (BSS); usage of IEEE
802.11 timing advertisement frames; MAC-layer readdressing in support of pseudonymity; MIB

maintenance; among others.

Physical Layer IEEE 802.11p [36] is an amendment to the 802.11 family of standards which intro-
duced new characteristics to support vehicular networks: longer ranges of operation (up to 1000
meters), mechanisms to deal with the high speed of the vehicles and the nature of the automotive

applications (e.g. having reliable broadcast), among others.

2.1.3 V2X Communications

Vehicle to Anything (V2X) is a term that is typically used to describe a new generation of in-
formation and communication technologies that allow vehicles to connect with any entity belonging to a
vehicular environment (and vice-versa). Connecting these vehicular entities (e.g. vehicles, pedestrians,
infrastructures, backbones, etc.) through the use of 0BUs and Roadside Units (RSUs), allows them to
work together: by sharing information with each other in a cooperative way (e.g. safety warnings), they are
able to address ITS issues more effectively than the traditional way where vehicles try to solve problems
by themselves.

Communication systems in ITS are very characteristic: vehicles tend to move at high speeds, which
may lead to loss of connections, packet losses and frequent topology changes. Furthermore, if there are
too many nodes communicating within a given area, it is frequent to have high channel loads. For these
reasons, communicating in ITS may be challenging at times.

The most common communication modes are described below:

Vehicle to Vehicle (V2V) This mode is used to describe direct communication between vehicles. It
is typically used to support cooperative applications (mostly aimed at preventing collisions) that
send messages with information to nearby vehicles (regarding position, speed and such). Due to
the highly dynamic nature of the vehicular traffic and its surroundings, technologies with native

broadcasting capabilities are the most suitable for these mode. Still, it is also possible to use this
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mode in a multi-hop fashion, where vehicles relay messages towards the intended destination (if

the destination is beyond the direct reach of the source node).

Vehicle to Infrastructure (V2I) This mode allows vehicles to communicate with the infrastructure
(and vice-versa). It is useful in both local broadcast and bidirectional modes. In local broadcast,
vehicles typically receive messages from the infrastructure RSUs (e.g. warning about poor road
conditions). The bidirectional mode is usually required by a lot of mobility and comfort applications,
such as navigation assistance, Internet access or media download. Furthermore, this mode can

also be used to broadcast messages from a vehicle to other vehicles via the infrastructure servers.

Communication Technologies

Connecting all the entities on a vehicular environment requires a very efficient vehicular communica-
tion system, primarily due to the short delay requirements of many applications, particularly those related
to safety. This section briefly describes the main characteristics of the most commonly used (wireless)

technologies in vehicular environments to support these applications.

Bluetooth Bluetooth [37] is a short-range wireless communications technology, which is intended to
replace the cable(s) connecting portable and/or fixed electronic devices. This technology is char-
acterized for being very low power consuming and having short range, while operating on the unli-
censed 2.4 GHz frequency band. Although it is not very suitable for V2V or V2I, it may be useful in
some use cases - e.g. connecting the driver's mobile phone to the vehicle or pedestrians to nearby
RSUs. This technology is adequate for audio or simple file transfers, and enables things such as
perform hands-free calls on a vehicle, download travel information, etc. Frank et al. [38] study the
applicability of Bluetooth on vehicular environments, analysing its performance on Vehicular Ad

Hoc Networks (VANETSs) in terms of range, signal quality or latency.

Visible Light Communications Visible Light Communication (VLC) is a bidirectional, high speed
wireless communication technology. In simple terms, VLC works in a similar way to Wi-Fi, but
instead of using radio signals, it relies on light waves to transmit data. The main difference be-
tween them is the amount of bandwidth available - VLC is much more plentiful when compared to
radio frequencies. IEEE introduced the IEEE 802.15.7 standard [39], which defines PHY and MAC
layers for short-range optical wireless communications. VLC systems can be deployed in vehicular
environments through the use of existing infrastructures to allow V21 or by, for instance, using the

vehicle head and back lights to allow V2V [40].
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IEEE 802.11p /EEE 802.11p (sometimes also referred to as WAVE), is an amendment to the tradi-
tional IEEE 802.11 standard, introducing wireless access in vehicular environments [41]. It defines
improvements that are required to support ITS applications, allowing data exchange between high-
speed nodes (vehicles) and vehicles and road-side infrastructures. IEEE 802.11p uses Orthogonal
Frequency Division Multiplexing (OFDM) applied to seven 10 MHz channels and supports
high data rates (from 6 to 27 Mb/s) with a maximum theoretical communication range of 1km.
This technology enables ad-hoc communication and direct information exchange between vehicles

and also road-side infrastructures, making it suitable for most of the applications on ITS.

Cellular Networks Cellular network technologies, such as the traditional Long-Term Evolution (LTE)
standard, are nowadays used by manufacturers to provide vehicles with applications and services
(e.g. Remote Diagnostics, Passenger Entertainment, etc.). Due to its centralized architecture, LTE
provides good V21 communications for its high data, penetration rate and large coverage. How-
ever, being centralized, it is challenging to implement V2V communications. For these reasons, a
standard was proposed in Release 14 of LTE: Long Term Evolution - Vehicle (LTE-V) [42]. This
release introduces two new communication modes: Mode 3 allows the selection and management
of the radio resources that are used by the vehicles in V2V communications; Mode 4 allows the ve-
hicles to select themselves the radio resources for V2V communications, which mean that they do
not depend on cellular coverage - particularly useful for safety applications. Mode 4 is considered
an alternative to the use of /EEE 802.11p. The 3GPP organization (responsible for the standards
development) proposed 5G V2X enhancements under Release 15. 5@G aims to significantly increase
cellular performance in terms of latency, throughput and reliability - while also supportive a huge
number of connected devices. On [43] it is possible to find a series of services that shall be sup-
ported by 5G from the following areas: non-safety (e.g. entertainment, mobile office, digital map
updates), safety (autonomous Driving, platooning) and services in multiple Radio Access Technolo-
gies and networks environment (e.g. interoperability with other V2X technology such as /TS-G5 or

DSRC).

2.2 Machine Learning in the ITS Field

Machine Learning (ML) is a term that is used to describe computational methods that aim to
improve performance or make predictions using past experience - past data that is available for analysis

[44]. NIL consists on algorithms that are designed to be efficient and to make accurate predictions,
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resorting to data mining methods in order to infer knowledge from data - in other words, to find patterns
on data.

The success of using ML techniques is highly dependent on the data available, since ML is inher-
ently related to statistics and analysis of data. These learning techniques combine methods from computer
science with statistics, optimization and probabilities.

Depending on the learning methods, ML techniques can be classified into several categories [45,

46]. Some of the most important are briefly described below:

Supervised Learning In these methods, the data that is studied is labeled (e.g. True or False) and a
classifier is the used to predict the label of the test data. The classifier is tuned and parametrized
in order to achieve a good level of accuracy. Decision Trees, Neural Networks, Support Vector

Machines, Fuzzy Logic and Genetic algorithms are examples of supervised learning.

Unsupervised learning In this case, the input/training data is not labeled. These classification meth-
ods can find patterns/clusters in unstructured data. Some examples of unsupervised learning are

K-Means, K-mediods and Bayesian clustering.

Semi-Supervised Learning Semi-supervised methods are hybrid, where that data can be either labeled

and unlabeled.

Reinforcement Learning These methods aim to take actions that would maximize rewards, or mini-
mize risks. This kind of algorithms learn from the environment in an iterative trial-and-error fashion,
training to find the most rewarding actions. Some examples are Q-Learning, Temporal Difference

and Deep Adversarial Networks.

ML can be applied to several areas and has a very broad set of uses: in text/document classifica-
tion (e.g. assigning topics to documents), speech processing (e.g. speech recognition), computer vision
(e.g. object and faces detection), among others. Naturally, ML techniques can also be applied on ITS
environments, as discussed next. The related works are presented from the most generic to the most
alike works. First, some generic ML solutions in the ITS field are presented, then solutions related to the

prediction/detection of incidents on the roads and finally such solutions related to VRUSs.

2.2.1 Generic Machine Learning Solutions for ITS

Applying ML techniques to the aforementioned information that is received by vehicles and VRUs

allows the collection and examination of complete datasets, instead of the traditional method of sampling
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and extrapolation [47]. Together with data that is collected through the use of sensors, cameras, and so
on, it is possible to obtain useful information in order to improve traffic [48]. For instance, the collection
of this data allows the later use of prediction models to foresee traffic jams and compute new routes for
vehicles, based on parameters such as consumptions or desired speed, and so on [49].

Collecting cooperative information allows the development of advanced solutions to predict traffic.
For instance, Terroso-Saenz et al. [50] show that it is possible to detect different levels of traffic through
the study of messages together with environmental data from external sources (e.g. weather conditions),
resorting to an event-driven architecture - through complex event processing on the exchanged beacons
(both achieved on vehicles and road infrastructures). Since the traffic density calculation relies on the
number of slow vehicles detected, the results show that the penetration rate of the system naturally has
direct affect on its performance and reliability.

The usage of ML techniques and data mining on these vehicular environments has the potential
to also solve some ITS inherent problems. A very large part of the research in this area is related to
communication issues (e.g. routing, link failure detection, malicious behaviors). For instance, Lai et al.
[51] propose a Machine Learning-assisted Route Selection (MARS) system for routing protocols,
where RSUs use ML on the road information to predict vehicles movement and the transmission capacity
of routing paths, choosing then the path that seems more suitable. Furthermore, MARS can also chose to
forward messages through other RSUs, according to the predicted destination location and the estimated
transmission delays.

Grover et al. [62] present a security framework for VANETs communications based on a ML
mechanism to classify misbehaviors (the misbehaviors are implemented by the authors by tampering the
information of the packets). These misbehaviors are classified based on features such as Received
Signal Strength (RSS), number of packets delivered, etc.

Although not particularly focused on vehicular communications, Bhutani [53] surveys the applica-
tion of ML prediction solutions to issues such as routing, handover latency, link duration, and so on, on
wireless networks. Naturally, some of these problems are also present on vehicular communications -
thus, they may also be applied to these environments.

Furthermore, managing and optimizing traffic is also a very important research subject. For exam-
ple, Gregoire et al. [54] propose the use of ML to optimize traffic lights control - controllers typically use
pre-timed stages, not considering dynamic changes in the traffic flow. The authors use a ML algorithm
that attributes rewards to the operating agents according to the results of their selected actions, aiming to

obtain an optimal control policy.
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Al Najada and Mahgoub [55] study the impact of human behavior in traffic and road safety decisions.
By applying techniques of feature selection to find the most important predictors, the authors analyzed a
big vehicular dataset containing examples of casualties and predicted things such as the driver's age, sex
and the collision severity from their behavior.

Finally, a very hot topic when talking about ML combined with vehicular environments is the de-
tection/prediction of collisions. The following subsection describes in more detail some of the main work

achieved in this area of research, also particularly focusing on VRUs.

2.2.2 Detection/Prediction of Traffic Incidents

Avery interesting area of research when talking about ML in vehicular environments is the detection
and prediction of incidents (a term used to describe events on the road) and collisions on traffic. Typically,
these works focus on applying machine learning to data collected in vehicular environments via cameras,
sensors, Global Positioning System (GPS) and similar, but also from V2V communications. The
following works are some of the most interesting related to generic incidents detection.

Junior et al. [56] present an evaluation of the performances of four different machine learning al-
gorithms (Artificial Neural Networks (ANN), Support Vector Machines (SVM), Random Forest
(RF), and Bayesian Network (BN)) in order to detect different driving event types (aggressive break-
ing, acceleration, turns and lane change, and other non-aggressive events) using data collected from
smartphone sensors (accelerometer, magnetometer, linear acceleration and gyroscope) in real-world ex-
periments. The data gathering was achieved by driving a real car (and performing different manoeuvres)
while collecting data from several sensors. The main goal of the work was to assess which combination of
sensors and methods achieves higher performance regarding their classification, aiming to find the best
combination match to each class of driving behavior. The processing steps are illustrated on Figure 2.3.
Although not being related to collisions, these predictions can still be useful to prevent them. The results
show that, in summary, the gyroscope and the accelerometer sensors are the best to detect the driving
events, and that RF is the best performing algorithms, followed by MLP (a simple form of an ANN).

Dogru and Subasi [57] focus on finding a way to reduce the frequency and severity of traffic ac-
cidents. To achieve such goal, the authors present an accident detection system that resorts to V2V
communications, in which vehicles exchange their information (speed and coordinates) and send traffic
alerts, improving safety and mobility. Furthermore, it also shows how ML techniques can leverage this
data to detect accidents - each communication node that possesses information from other vehicles is

able to determine the traffic condition. Resorting to simulation, the authors analyse the ANN, RF and
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Figure 2.3: High level view of our evaluation pipeline showing processing steps from raw sensor data
sampling to training, testing, and assessing MLAs. [56]

SVM algorithms to evaluate their performance. Using SUMO to simulate traffic and generate both posi-
tion and velocity data, this information is then used as input for the algorithms in each vehicle. Results
show that incidents can be regarded as outliers in data and, for this reason, ML techniques can be used
to detect them, allowing later actuation - e.g. warning other vehicles about the incident, resulting in route
redirection. From the simulations, the RF algorithm was found to perform better (in terms of accuracy)
when compared to the ANN and SVM.

Ozbayoglu et al. [58] propose an accident-detection system based on computational intelligence
techniques where traffic-flow data is processed in real-time. The realtime traffic monitoring system en-
ables the detection of accidents immediately after an incident, allowing to take precautions preventively.
The traffic-flow data was collected using several sensor locations in Istanbul - the sensors collected data
related to the number of vehicles passing, their average speed, the average occupancy of the lane and in-
formation related to time/date. This work analyses three different models for accident detection: Nearest
Neighbour (NN), Regression Tree (RT), and Feedforward Neural Network (FNN). The inputs
for the models were obtained using big data techniques (since they allow realtime and scalability capa-
bilities). The raw original data goes through an Extract-Transform-Load Hadoop Distributed File System
process and Apache Spark. The raw data is stored in SQLServer and imported to Hadoop using Sqoop.
The extracted features are then fed into the models and the probability of an accident is computed as
output. The results indicate that the number of false alarms is greater than the accident cases. Still, the
system provides useful information that can be used for status analysis and enable early reactions, poten-
tially saving lives and time/resources. Despite the large number of false positives, the overall accuracy of

the models are mostly over 99%.

20



Zhang et al. [59] employ deep learning in order to detect a traffic accident from social media
data. In a first step, the authors investigate over 3 million tweet contents related to traffic accidents in
Northern Virginia and New York City (with explicit indications of traffic accidents - not including traffic
congestion, construction works, and so on). From the tweets, token features were found, both individual
and paired, that may indicate the event of a traffic accident. Results show that paired tokens can capture
the association rules inherent in the accident-related tweets and can increase the accuracy of the detection
(in particular when the number of individual token is more limited). Then, the Deep Belief Network
(DBN) and LSTM deep learning methods were implemented in the extracted tokens. Results show that
DBN can obtain an overall accuracy of 85%, outperforming SVM and supervised Latent Dirichlet
Allocation (sLDA). Finally, the accident-related tweets were compared with the traffic accident log on
highways and traffic data on local roads from 15,000 loop detectors - 66% of the tweets can be located by
the accident log and around 80% of them can be compared to nearby abnormal traffic.

Although not exactly related to incidents detection, [60] presents a mechanism that focuses on the
automatic detection of street elements (traffic lights, street crossings and roundabouts), combining outlier
detection with deep learning and classification from GPS data gathered while driving. The speed and
acceleration were derived from the collected GPS data. The data collection journey included two urban
areas and a connecting motorway. The dataset was generated by a driver which drove three different
vehicles while a mobile device recorded the GPS traces. The outlier detection algorithm is used first in
order to detect abnormal driving locations. Window-segments around these locations were classified as
outliers and used to train a DBN, followed by a classifier in order to detect them. Using deep learning,
speed and acceleration patterns were analysed at each outlier, enabling the extraction of features which
are then classified into a traffic light, street crossing, roundabout or other element. The mechanism is
validated using two different datasets: one with several drives following the same circuit by a single driver
and a second in which ten drivers follow a particular circuit each. The results are acceptable (combined
recall of 0.89 and a combined precision of 0.88 for classification) if the recall is accepted to be low, but
the performance worsens when the number of detected elements increases.

In addiction to the previously discussed works, there are some other interesting researches related
to communications and sensors/probe data, which can be found in [61-63]. Still, most of the works
regarding ML are typically applied to video data, as exemplified by [64-67].

Finally, the application of ML techniques to VRUs is introduced next.
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Vulnerable Road Users

Goldhammer et al. [68] present a set of VRUs movement models based on ML techniques, aiming
to classify VRUs current motion state and to predict the upcoming trajectory. The dataset consists of over
a thousand pedestrian and near five hundred cyclist scenes acquired at an urban intersection. The data
was collected using a mix of cameras and laser scanners. The recognition of the motion state and the
trajectory prediction is then tested using a method of polynomial approximation combined with MLPs -

called PolyMLP. The overview of this method is illustrated on Figure 2.4.
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Figure 2.4: Overview of the basic processing steps of the method PolyMLP [68]

The results show higher classification values and the system is able to recognize motion state
changes earlier, compared to Interacting Multiple Model (IMM) Kalman Filter.

Parada et al. [69] introduce a VRU trajectory prediction service, using regression algorithms on
Cartesian coordinates data. The authors compared different regression methods in terms of prediction
time window, position accuracy and processing time, resorting to the Weka tool. The system overview is
illustrated on Figure 2.5.

The system considers two types of users: vehicles and VRUs. A 5G cellular base station is con-
nected to a Multi-access Edge Computing (MEC) server (which possess resources in terms of storage
and computation). It is assumed that both kind of users transmit CAMs through 5G (using OBUs and
smartphones), which the MEC is able to receive. The Collision Avoidance Service application (running on
the MEEC) collects the position of the road users and then feeds them to a regression algorithm that tries
to predict the trajectories and, ultimately, the probability of collision between them. Using an Alternating
Model Tree (AMT), the next position is predicted with an error of less than 3.2 centimeters, increasing
up to 1 meter when predicting the next 5 positions (1s between consecutive positions). As future works,
the authors plan to use this service to estimate the collision probability.

Komol et al. [70] compare the use of different ML algorithms in the identification of crash severity
factors of different VRUs Groups (pedestrian, bicyclist and motorcyclist), using real data from Queensland,
Australia (from 2013 to 2019). Seventeen road crash parameters were considered as input features to

train models (k-Nearest Neighbor (KNN), SVM and RF) - related to road user characteristics, weather
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and environment, vehicle and driver condition, period, road characteristics and regions, traffic, and speed
jurisdiction. RF classification models performed more robustly in test accuracy: (motorcyclist: 72.30%,
bicyclist: 64.45%, pedestrian: 67.23% and unified VRU: 68.57%).

Vilaca et al. [71] propose a model that identifies risk factors for VRUs that can affect their injury
severity when involved in an accident. Records from VRUs related crash data from Portugal (both imbal-
anced and balanced datasets) were used to compare the performance of two ML classifiers - Decision
Tree (DT) and Logistic Regression (LR) -, also considering three different resampling techniques (un-
dersampling, oversampling and synthetic oversampling). The results indicated that DT outperformed LR,
since the coefficient correlations were not considered and all the variables were taken into account - the
model revealed to be more accurate considering the crash severity data under evaluation. Nevertheless,
both methods could correctly classify the classes with relatively high accuracy. The analysis of the results
also allowed to conclude that road markings, road conditions and luminosity greatly affected the severity of
pedestrian’s injuries. Regarding the cyclists injuries, age group and temporal variables (month, weekday
and time period) were the most significant risk factors.

The work in [72] analyses injury severity of three-wheeled motorized rickshaws, resorting to several
algorithms (Decision Jungle (DJ), RF, and DT) and data from the city of Rawalpindi, Pakistan. Results
showed that DJ outperformed the other solutions with an overall accuracy of 83.7%. The analysis also

showed that features such as the lighting condition, younger drivers, high-speed facilities, weekdays, off-
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peak, and shiny weather conditions were more likely to worsen injury severity of the crashes.

Volz et al. [73] study the behavior of pedestrians at cross-walks through ML, by training a model to
predict a pedestrian intention to cross the road. The database was build from real pedestrian trajectories
(from a city in Germany) using a Velodyne laser scanner, since cameras usually have a limited field of view.
The collected data contains a large set of possible features that could be suitable (e.g. distance to the
curb, distance to the cross-walk, distance to nearby cars, etc.). These features were there evaluated using
a Recursive Feature Elimination (RFE) algorithm (for relevance determination) and multiple SVMs.
Results show that the most relevant features are only related to the pedestrians trajectories and the local
map - the features related to the nearby road users are of less importance.

Jahn et al. [74] describe a system for detection of pedestrians crossing a curb, based on wireless
communications (e.g. WLAN or 5G/LTE) and a context filter that identifies VRUs at risk. The context filter
identifies VRUSs in potentially dangerous situations based on several information such as position, move-
ment direction or accelerations. The chosen scenario consists of the situation when a pedestrian steps
onto the road, investigating the performance of detecting this particular activity. The data is collected from
smart-phones sensors, particularly accelerometers and gyroscopes. The activity detection was performed
using several ML algorithms (KNN, C4.5, Repeated Incremental Pruning to Produce Error Re-
duction 2 (RIPPER2), Naive Bayes (NB), and Sequential Minimal Optimization (SMO)) - being
that KNN performed best. These results indicate that the use case can support the overall context filter
premise, in order to identify VRUs in potential danger.

Bieshaar et al. [75] present an holistic approach for detecting VRUs intentions (pedestrians and
bicyclists) by cooperative methods, consisting of basic movement prediction (e.g. standing, moving),
and future trajectory. Intelligent vehicles (equipped with sensors, data processing and communication
capabilities) should acquire and also maintain a local model of their surrounding traffic, which allows
the perception gained from individual agents (beyond their own sensor capabilities), enabling a more
extensive prediction. Some local inconsistencies may also be resolved by the cooperative intelligence of
these intelligent agents. All agents have the ability to locally detect VRUs and their intention, as well as
the ability to exchange information via communications. The global concept is shown in Figure 2.6.

The intention detection consists of two stages: basic movement and trajectory forecast. The basic
movement detection starts in each agent separately: the goal is to early detect/predict movement tran-
sitions (e.g. standing to walking) of VRUs. These transitions serve as indicator of the future behavior of
the VRUs. They should be detected using, for instance, SVM, trained on labeled data. The trajectory

prediction goal is to provide situational awareness, enabling vehicles to adapt and take action if necessary
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Figure 2.6: System architecture for cooperative VRU perception and intention detection [75]

- e.g. perform an emergency brake. The approach is based on supervised techniques, such as ANN and
kernel based regression algorithms, as well as on analytical models. The combination should take place

at both feature (different information sources are complemented) and decision levels (predictions from

different users are combined).

2.3 Summary

This chapter provided an overview on ITS, focusing on the main communication standards and
technologies. Additionally, it presented a survey on some of the most interesting works regarding the
application of ML methods in ITS.

First, some generic ML solutions for ITS are presented. A very large part of the research in this
area is related to managing and optimizing traffic (e.g. traffic lights control), although there are some

works that also focus on communication issues (e.g. routing protocols, security).

Then, the use of ML in the prediction of incidents and collisions is discussed. Typically, when talking

about applying ML techniques for this kind of prediction, most works tend to focus on data collected in
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vehicular environments via sensors, GPS, cameras or similar.
Finally the state of the art work particularly focused on VRUs is presented. In this case, the data
collection and the models testing tends to be similar to generic solutions. Still, most works tend to focus

on pedestrians and bicycles, and not particularly in reduced mobility persons or even motorcycles.
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Chapter 3

ITS Simulation

The development of advanced ITS systems requires a proper evaluation of their performance.
However, performing fields tests in vehicular environments is challenging. The large number of nodes and
traffic scenarios makes it very difficult to collect data in real experiments. Also, developing and testing real
prototypes is a very expensive task, both in terms of money and time (preparation and processing time).

On other hand, within the research community, simulators are a very popular choice for evalu-
ating communication and transportation solutions for ITS due to their capacity to conduct large-scale
assessments. Researchers have the advantage of having a much more controlled environment when us-
ing simulators: these tools offer the ability to parameterize and configure settings, control input data, and
facilitate easy deployment and repetition of tests, among other benefits. Furthermore, and since these
tools are widely used by the community, researchers can focus only on the development of their solutions,
as individual models are already considered as validated. Still, simulation typically resorts to simpler indi-
vidual models, which may impact the results veracity, as the implementation’s accuracy may reduce the
system’s realism.

In summary, using simulation applied to ITS brings benefits in terms of cost, repeatability, scale and
practical requirements. For these reasons, it is a very popular choice among researches when compared
to real-world field testing. The increasing popularity of ITS lead researchers towards the development of
accurate and realistic simulation tools, which are used to evaluate the performance of whole systems,
applications, communications solutions, among others.

At this point, it has not been found a dataset related to VRUs collisions that contains ITS standard
messages exchanges on the related works or projects (between vehicles/infrastructures and VRUs). For
that reason, there is a need to resort to simulation tools to construct one.

Hence, this chapter is focused on ITS simulation. First, ITS simulation tools are surveyed and
presented on Section 3.1. Additionally, the section also presents the established requirements for the

simulation framework. Section 3.2 discusses some initial tests on simulators, to enable a comparison
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between the identified tools. Finally, section 3.3 presents the development environment.

3.1 ITS Simulation Tools

In order to perform a proper simulation of vehicular networks, both a traffic and a network simu-
lator are required (they can work either in a dependent or independent way). This section identifies and
describes some of the most widely used tools/frameworks on the literature for the simulation of ITS. First,
some mobility simulators are presented, followed by some network simulators. Finally, some important

frameworks that integrate and interconnect both kinds of simulators are also presented.

3.1.1 Traffic Mobility Simulation

Traffic mobility simulation tools aim to replicate traffic flows within transportation networks. These
simulator tools are typically classified as microscopic, macroscopic, and mesoscopic. Microscopic tools
simulate traffic on a large scale considering each entity (e.g. vehicles) in an individually way. Macro-
scopic tools, on the other hand, model traffic as a fluid without focusing on individual nodes. Mesoscopic
simulation tools combine aspects of both previous models, representing traffic through aggregated traffic
platoons using simplified models, avoiding the time and complexity issues of microscopic solutions.

However, proper ITS simulation scenarios require and depend upon accurate models of communi-
cation between nodes and their exact position, which makes microscopic tools more robust and reliable
solutions when in comparison to both macroscopic and mesoscopic, since they offer less detail by com-
parison.

SUMO [76] is an open source microscopic simulation tool that is widely used in ITS research to
simulate driving and traffic management strategies [77]. Some of its most important features include the
ability to simulate large networks of roads, different vehicle types, individual routing, multi-lane streets,
and so on. SUMO also includes a graphic interface that illustrates the road network topology and the
movement of the nodes during the simulation runtime. Furthermore, it is possible to combine SUMO
with other tools such as OpenStreetMap (0SM) [78] to generate real road networks from any location
in the world and import them into the simulation environment. However, since SUMO is purely a mobility
simulator, the tool cannot be directly used to simulate communications. Still, SUMO provides the Traffic
Control Interface (TraCl) Application Programming Interface (API), which allows SUMO to act
as a server and to connect the tool to external applications through a Transmission Control Protocol

(TCP) socket.
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MObility model generator for VEhicular networks (MOVE) [79] (built on top of SUMO) is
a generator of realistic mobility models: MOVE generates mobility traces with data from realistic vehicles
movements. These movement can later be imported into network simulators (e.g. Network Simulator
2 (ns-2) communications simulator).

Although SUMO is indeed the most widely used tool when simulating traffic, there are also some
other important tools that have similar characteristics.

Verkehr In Stadten SIMulationsmodell (VISSIM) [80] is a microscopic, time-step and behaviour-
based traffic simulation tool. This framework provides users with the ability to define maps and scenarios
and to observe traffic conditions in a very high level of detail. VISSIM allows the simulation of impor-
tant road entities: vehicles, pedestrians, buses, bicycles, motorcycles, trams and even rickshaws. The
VISSIM tool contains a traffic model that takes into consideration driver's psychological aspects and also
provides a pedestrian mobility model.

VanetMobiSim [81] is an extension to CANU Mobility Simulation Environment (CanuMo-
biSim), which is a framework that is used for modelling mobility through the generation of trace files.
VanetMobiSim provides vehicular mobility at both microscopic and macroscopic levels. At microscopic
level, VanetMobiSim implements V2V and V21 models (that enable, for instance, vehicles to regulate
speed and obey traffic signs). VanetMobiSim mobility models have been validated by the Traffic Soft-
ware Integrated System - Corridor Simulation (TSIS-CORSIM) [82] traffic generator.

3.1.2 Network Simulation

Network simulation is one of the most prominent evaluation methods in computer networks, mod-
elling the behaviour of networks by calculating the interaction between the nodes. Naturally, the same
methods can also be applied in the field of vehicular communications.

Network Simulator 3 (ns-3) [83] is a very well-known discrete event simulator for communica-
tion networks, which evolved from ns-2 [84]. The ns-3 simulator introduced several improvements, in
particular related to scalability and memory efficiency, incorporating architectural concepts from Georgia
Tech Network Simulator (GTNetS) [85]. It supports realistic models of wireless communications for
cooperative ITS applications, providing models to emulate radio propagation effects and functionalities
and protocols for all layers of the ITS-G5/ WAVE stacks.

The Objective Modular Network Testbed in C++ (OMNeT++) [86] tool is a discrete event
network simulator. The OMNeT++ tool is not a concrete simulator by itself. Instead, OMNeT++ pro-

vides a component architecture for models that can be developed for several domains: communication
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networks, protocol modeling, modeling of queuing networks, among others. Generically, modules are
programmed in C++ and assembled into larger components and models using a high-level language (Net-
work Description (NED)). In that sense, the network simulation models are available as several external
frameworks, that are developed in an independent way by its user community. OMNeT++ is built upon
two main frameworks that together provide a specially designed propagation model for V2X: Mixed Sim-
ulator (MiXiM) [87] and INET Framework [88].

Java in Simulation Time (JiST) [89] is a discrete event simulation tool that allows the simulation
of Java applications. Although this tool allows generic network simulation, it is frequently used together with
Scalable Wireless Ad-Hoc Network Simulator (SWANS) [89], which is a highly scalable mobile ad
hoc networks simulator, that supports thousands of nodes. However, and despite its good characteristics,
JiST is no longer maintained, and the latest available version does not include models suitable for ITS.

SimuLTE [90] is an open-source simulator for LTE and Long Term Evolution - Advanced (LTE-
A) networks based on OMNeT++. Being open source, it allows the development of new modules con-
taining new algorithms and protocols. Additionally, since it is built on top of OMNeT++, it can be easily
integrated with all its modules (e.g. INET), enabling good simulation for applications that rely on hetero-

geneous technologies (e.g. LTE and IEEE 802.11p scenarios).

3.1.3 Coupled Simulation

The simulators presented earlier may work in an independent way, but there are some other addi-
tional tools that enable them to interconnect and work in conjunction. The combined utilization of these

tools can be characterized as follows [91]:

* One-way decoupled Solutions where the mobility tool generates a trace file from the intended

scenario which is later processed by the network simulator.

* Two-way loosely coupled Solutions where simulators communicate bidirectionally. For instance,
the network simulator controls the traffic simulator through commands (e.g. using TraCl from
SUMO) and the mobility simulator reports back information about the nodes (e.g. vehicle’s speed

and position).

* Two-way tightly coupled A single simulation tool handles both traffic and network simulation

simultaneously, operating in a coordinated and parallel way.

The relationship between the simulators is illustrated on Figure 3.1.
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Figure 3.1: Relationships between mobility and network simulators [91]

Although one-way decoupled simulation may be appropriate for some ITS applications, when testing
systems where communications have direct impact on traffic (and vice-versa), two-way coupled tools are
the most interesting kind of simulators. For example, a safety warning coming from an infrastructure
node that has detected an imminent collision may lead vehicles to break or change lane. For this reason,
researchers tend to use frameworks that couple these powerful simulators in order to obtain results as
accurate as possible. Some of these two-way coupled tools are presented next on Table 3.1.

One of the main tasks of this thesis is the simulation of scenarios of collisions related to VRUs. In
this case, the message exchanges between the road entities (and the collision events) may have impact
on the mobility configuration. Therefore, as the traffic dynamics may change abruptly, this thesis work will
use the same strategy (the mobility and network simulation tools must be linked).

The simulation framework should support the following requirements:
* Realistic vehicular mobility simulation.
¢ Realistic V2X communications simulation (realistic implementations of IEEE 802.11p).
* Support for modeling of vehicular domains such as vehicles, RSUs, collision events, and similar.

e Support for the deployment of individual applications for different road entities (e.g. passenger

vehicles, VRUs and RSUs).
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 Ability to import realistic map scenarios (or the ability to design them from scratch).
* Support for a Graphical User Interface (GUI) showcasing the collisions (in terms of mobility).

» Support for the collection of simulation statistics (e.g. messages statistics, vehicles data, collision

events, etc.).

e Support for the parameterization of both mobility (road entities parameterization) and communica-

tions (IEEE 802.11p specifics).

Simulator Open Active Language Iylobility I‘fetwork
Source Development Simulator Simulator
Artery Yes Yes C++ SUMO OMNet++
CAVENET No Yes Matlab Built-in ns-2
Ellcc!ispasii Yes Yes 8;\; on gbﬁgrt ” ﬁ:%posr;]fsm
(VSimRTI) VSImRTI) PHABMACS, OMNet++,
and others and others
EStiNET No Yes Java Built-in EStiNET
GrooveNet Yes No C/C++ Built-in Built-in
iTETRIS Yes No C++ SUMO ns-3
NCTUns Yes No C++ Built-in Built-in
NetSim No Yes SUMO NetSim
SWANS++ Yes No Java JiST/SWANS SWANS
TraNS Yes No Java/C++  SUMO ns-2
VANETSm ~ Yes Mo Java ]'c\:'jn‘foigaorted Builtin
VEINS Yes Yes C++ SUMO OMNet++
VENTOS Yes No C++ SUMO OMNet++

Table 3.1: Simulation Tools - Coupled Simulators for ITS

Additionally, it is also important that the selected framework is currently in development and also
open source (free to use and modify). Furthermore, they should be easy to setup and use and possesses
rich documentation, both for the setup of scenarios and for its parameterization.

The first elimination factor was to consider only open-source and actively in development frame-
works. Hence, VEINS, Artery and Eclipse MOSAIC are the most interesting solutions amongst the identi-

fied frameworks. For that reason, they are discussed next.
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Eclipse MOSAIC [92] (formerly known as V2X Simulation Runtime Infrastructure (VSimRTI))
is a tool for the development and evaluation of ITS systems that allows the coupling of different network
and mobility simulators. The Eclipse MOSAIC modules handle the management tasks, such as synchro-
nization, communication, and data exchange. As shown on Figure 3.2, Eclipse MOSAIC uses the concept
of Federates and Ambassadors to couple the simulation tools: each simulator is wrapped into a Federate

object and linked to an Ambassador to enable the connection with the runtime infrastructure.

o_———————— -~ _—m— =
/ Federate 1 \ / Federate X \
| Simulator 1 | | Simulator X |
I ijzrate R Mosaic I - I Pegrzrate R» Mosaic I
l Ambassador O Ambassador I l Ambassador O Ambassador I

\gi___ﬁL/ “_of _ ___ 30 7
0 | & |

Eclipse MOSAIC Runtime Infrastructure

Time Management Interaction Management

o]

Simulation Runner

Federation Management

Figure 3.2: Eclipse MOSAIC Concept [93]

This tool provides coupling for Eclipse SUMO, OMNeT++ and ns-3, as well as other proprietary
network and cellular communication simulators.

Vehicles in Network Simulation (VEINS) [94] is yet another open source integrated framework,
providing an interface between SUMO and ONMNeT++. VEINS framework development was based on
MiXiM. This framework resorts to SUMO’s TraCl API to enable the communication between the network
and mobility simulators - the OMMNeT++ tools is extended with the ability to control and command vehicles
directly (e.g. set their speed). The VEINS framework also contains modules that implement the DSRC
stack (together with the lower IEEE 802.11p standardlayers). Figure 3.3 illustrates the VEINS architecture.
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Artery is an open-source simulation tool that first appeared as an extension to VEINS [96], intro-
ducing the implementation of the European ETS/ ITS-G5V2X protocol stack and the feature of being able
to support multiple applications per simulation setup. However, current releases of Artery are independent
from VEINS - instead, Artery now incorporates VEINS within the framework as an option for the radio

model [97]. The integration of the components that is achieved by Artery is illustrated on Figure 3.4.
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Artery makes use of VEINS, OMNeT++ and Vanetza to implement the lower layers of the ar-
chitecture. Within the Facilities layer, the local vehicle data is gathered from the SUMO simulator tool.
Additionally, it also provides means for SUMO and OMNeT++ to interact (via SUMO'’s TraCl) in order
to handle the mobility of the nodes. The stack also enables the support for other communication tech-
nologies (e.g. Cellular V2X) - Artery allows the integration with SimuLTE to simulate joint cellular V2X

scenarios.

3.2 Preliminary Tests on the Simulators

As stated on the previous section, using coupled simulators (VEINS, Artery or Eclipse MOSAIC) is
the most interesting solutions for the development of simulation scenarios that involve V2X communica-
tions.

At this point, and due to the previously acquired experience on other R&D projects, the VEINS and
Eclipse MOSAIC (formerly VSImRTI) were already some very well know tools. Some different types of
vehicular applications have been previously developed on said frameworks and one is able to conclude
that they offer similar functionalities (with similar level of implementation difficulties).

Still, the Artery framework is particularly interesting for the fact that it implements the European
ETSI ITS-G5V2X protocol stack through the use of VANETZA (unlike VEINS, which does not possess /TS-
G5 integration). Hence, it was also important to carry out some preliminary tests on the Artery framework
to better understand its functionalities. This allows a better comparison with the other two platforms, in
order to establish the most suitable framework for the work to be developed.

The first step towards the framework testing was the development of a complete mobility scenario
resorting to the osmWebWizard.py script that is available in SUMGO. This script runs on a web browser and
allows the selection of a real geographic region of the map to be converted into a SUMO scenario. The
map is obtained from OSM, which provides free real geographic data that is maintained by a community.
The database that is kept by OSM includes information about roads, points of interest, buildings and other
interesting data such as road speed limits or turn restrictions. Using the mentioned script, one is able to
select a real-world map and easily generate traffic demand for a series of configurable entities.

In this case, as illustrated on Figure 3.5, a map from the area near the campus of Gualtar from the
University of Minho (Braga, Portugal) was selected, generating traffic for cars, buses, bikes, motorcycles

and also pedestrians using the default parameters.
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Figure 3.5: Importing Real World Maps and Generating Traffic using the osmWebWizard

The script generated the necessary configuration files, which resulted in the complete SUMO sce-

nario that is illustrated in Figure 3.6.

(3] osm.sumocfg - SUMO 0.32.0 - '3
|| 8 File Edit Setings Locate Simulation Windows Help R
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Figure 3.6: SUMO Scenario - University of Minho (Braga)

These configuration files were imported to the Artery framework, in order to test a very simple echo
application on top of the generated map and traffic. The out-of-the-box application consisted on nodes
simply echoing basic messages that were received on their communication interface.

The scenario was working as intended in a first instance where only regular vehicles were commu-

nicating. However, some difficulties soon appeared when configuring nodes positioning (particularly for
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the RSUs case positioning) and interfaces, mostly because of the lack of documentation available for the
tool, which could not be overcame. For that reason, the Artery framework was eventually excluded from
the list of possible usable tools.

Taken into consideration the previous discussion and the experimental tests, the simulation tools

overview (in terms of requirements fulfillment) is presented on Table 3.2.

VEINS Artery Eclipse Mosaic (VSimRTI)

Realistic Vehicle Mobility Yes Yes Yes
Realistic V2X Communications Yes Yes Yes
Different Road Entities Yes Yes Yes
Support for Multiple Applications Yes Yes Yes
Realistic Scenarios Yes Yes Yes
Real-Time GUI Yes Yes Yes
Simulation Parameterization Yes Yes Yes
Setup and usage Medium  Hard Easy
Documentation Medium Bad Good

Table 3.2: Simulation Tools - Requirements Overview

Hence, considering the Artery’s lack of documentation and that both remaining frameworks have
very similar characteristics, the VEINS tool was selected to be used, as it was a matter of personal pref-
erence. However, at this point, it is important to highlight that the communications stack is the American
one (WAVE/DSRC), which comes by default with VEINS. Additionally, VEINS does not possess out of
the box integration with pedestrians/persons, which limits the establishment of a scenario that is related

to VRUs.

3.3 Development Environment

Considering the discussion on the previous section, the Instant Veins 5.0-i1 version was selected to
be installed, since that release allows a quick use of the framework, containing all the necessary packages

and software already installed:

¢ Simulation Modules

o Veins 5.0
o INET Framework 4.1.1
o SimulLTE 1.0.1

o Veins_INET (included with Veins 5.0)
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e Software

o OMNeT++5.5.1

o SUMO 1.2.0

This VEINS software package was installed inside a Docker containeron Ubuntu 18.04 LTS. Docker
[98] is a platform that allows to package applications with their dependencies (including libraries, system
tools, code, and runtime) into standardized units called containers, and run them in lightweight isolated
environments. Unlike traditional Virtual Machines (VMs), these containers run on top of the host
Operating System (0S) - instead of booting up their own OS. These docker containers allow an easy
deployment of applications across different environments in a consistent way.

At first, this Docker container was being used on a laptop with limited computation and storage
resources. As it was soon perceived that the machine had performance limitations, the Docker container

was shipped to a more capable desktop, with the characteristics identified on Table 3.3:

0S Windows 10

Central Processing Unit (CPU)  AMD Ryzen 5 5600x
Graphics Processing Unit (GPU) NVIDIA GeForce GTX 1060 6GB
Random-access Memory (RAM) 32 GB DDR4 1200 MHz
Storage Samsung SSD 860 EVO 250GB

Table 3.3: Desktop Technical Specifications

Moving the container to a Windows machine brought some issues, as the established Docker con-
tainer was prepared for the Ubuntu 0S. At this point, Docker Desktop for Windows did not allow to run a

Ubuntu Docker container directly. Hence, three different solutions were identified to overcome this issue:

e Using a dual-boot environment (installing Ubuntu alongside Windows and choose one to initialize

at boot);
e |Installing an Ubuntu VM in Windows (resorting to software such as VM VirtualBox);

* Using the Windows Subsystem for Linux (WSL) (version 2.x), which is a Windows feature that
consists in a full Linux kernel, allowing to run Linux distributions (Ubuntu in this case) directly from

Windows, without the need for VMs or dual-booting.

Table 3.4 presents a comparison for some key factors to consider when choosing between WSL, VMs,

and dual-booting.
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WSL

VMs

Dual-booting

Good performance due to
lightweight virtualization

Performance depends

Native performance,

Performance ) on allocated resources  direct hardware access
and shared kernel with (and VM configuration)  to the operating system
Windows g P g5y
Shares host OS resources. Requires dedicated Requires dedicated
resources - separate
Resource Consumes fewer system resources; Depends on "
. . ) . partition and storage
Efficiency resources when compared  the VM configuration .
resources dedicated
to VM and allocated resources
to each 0OS
Limited integration
0Ss Seamless integration when compared to No direct integration;

Integration

between Windows and
Linux.

WSL; Guest OS
more isolated
from host OS;

Requires rebooting to
switch between OSs

File Sharing

Direct and easy access

Requires extra file
sharing mechanisms

Separate partitions.
Requires extra file
sharing mechanisms

to host files for data exchange
between 0Ss for data exchange
between 0Ss
Requires installation .
) . Requires separate
Easy setup and and configuration of _ _
. " . L installation and
Setup and management; Simple additional virtualization management of the
Maintenance installation; Updates via software on host OS; g

Windows Update

periodic updates for
both host and VM

0Ss; Updates are
handled independently

Accessibility

Quick startup time;
Guest 0S8 typically
starts within seconds

Longer startup time.

Requires rebooting
the entire system to
switch between 0Ss

Table 3.4: Characteristics Comparison Between WSL, VMs and Dual-booting.

The choice between WSL, VM or dual-booting offers different trade-offs in terms of performance,

this specific work.

The choice between WSL and dual-booting is naturally also dependent on the specific needs and
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resource efficiency, integration, file access, setup and maintenance and also accessibility. Still, when
comparing WSL to VM, the first one seems to be the better choice: WSL lightweight virtualization offers
better performance when compared to running a full VM; WSL consumes fewer resources, with a more
efficient use of CPU, memory, and storage; WSL allows an easier access to the system files; additionally, it
also offers an easier setup and quick access/boot. On the other hand, VM offers a more complete isolation

or the ability to simulate specific hardware configurations, although these aspects are not important for



preferences for the framework that is to be established. For instance, if a system requires isolation or
maximum compatibility, using a separated Linux installation is the better choice. On the other hand, if
convenience and integration/access to files are more important, the WSL choice provides a more simpli-
fied experience.

In this thesis work case, the ease of access to files is a key aspect, as the datasets are generated
from within the simulation framework. Being more familiar with Microsoft Excel, and given the fact the
Microsoft Office suite has some limitations in Linux, the data analysis are to be achieved in the Windows
0S (both before and after the ML procedures). Naturally, this task chaining (models training/testing and
data analysis) is also facilitated if the ML modules are installed in the Windows OS.

Taking this into consideration, the WSL solution was chosen, essentially for its convenience. This
way, it is pretty straightforward to run the simulations within the simulation framework, access the gener-
ated datasets from Windows and then run the ML procedures and the data analysis as well (without the
need to keep rebooting the entire system to switch between the 0Ss).

Figure 3.7 finally presents the complete development environment.

Windows 10
Docker
Desktop
(Windows)
WSL (Ubuntu 18.04) ML Modules
Anaconda
Tensorflow-GPU
Docker Container «  Spyder IDE
Scikit-learn
Instant-VEINS
. VEINS 5.0
INET
VEINS_INET
SimulLTE Data Analysis
OMNeT++ *  Microsoft Excel
SUMO

Figure 3.7: Development Environment Setup

In the final setup, the Docker container was shipped inside an Ubuntu that is running on WSL.
This container contains all the simulation tools that are necessary to implement the proposed scenario
and synthesize the datasets that are to be fed into the ML models. The ML modules were then installed
directly in Windows, as well as Microsoft Excel for the data analysis. Additionally, this setup required the
installation of the VcXsrv X Server [99] in Windows to provide a GUI. This was particularly important to

acess the GUI from OMNeT++ and to visually check the simulation scenario in SUMO.
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Naturally, the final configuration turned out to be more complex than intended at first, when the
laptop was being used. Still, it is important to highlight that the work that followed showed that the

performance overhead that comes from using WSL is not noticeable when running the simulations.

3.4 Summary

In order to be able to establish and analyze realistic and valuable ITS simulation scenarios, there is
a need to access to large datasets, involving both vehicles and vulnerable users. Currently, no dataset has
been identified that specifically includes VRUSs collision data along with ITS standard message exchanges
from existing works or projects. Therefore, it is necessary to utilize simulation tools to synthesize such a
dataset.

This chapter focused on ITS simulation tools, encompassing traffic simulation, network simulation,
and coupled simulation environments. From the identified tools, a subset of coupled frameworks was iden-
tified for further analysis, based on their potential to model integrated traffic and network dynamics. The
selected tools (VEINS, Artery and Eclipse MOSAIC) are then discussed, highlighting their functionalities
and characteristics.

Preliminary tests were conducted on the Artery framework to assess its suitability for the intended
research objectives. Some insights were gained into the strengths and limitations of the simulator, aiding
in the selection of an appropriate tool for subsequent research tasks.

Considering that the tools have similar characteristics, the VEINS framework was selected, taking
into account its good characteristics and previous knowledge and experience.

Furthermore, a development environment, suitable for programmed experimentation and also for
processing the outputs of different ITS simulations, involving vehicles and vulnerable users, was also

defined.
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Chapter 4

System’s Architecture and Simulation Scenario

The main goal of this research work is to evaluate the feasibility of using V2X data as input for ML
models to predict collisions for VRUs. As previously discussed, predicting the behavior of VRUs using
more traditional methods is a difficult task to perform. However, as road agents can be equipped with
communication capabilities, they are able to exchange a lot of ego and environmental information that can
be leveraged by ML techniques for the implementation of more advanced safety systems. Hence, ML
models that are fed with vehicular data have the potential to predict VRUs movement and even compute
probabilities of occurrence of collisions involving them. The implementation of said prediction system
requires heavy computation resources and large amounts of storage for training and testing the model.
Furthermore, the deployment and usage of the model/application also requires very low latencies, to allow
the users enough time to safely actuate on collision predictions. Being a safety application, is is critical
that the prediction is achieved within a reasonable time - including the exchange of information and also
real-time analysis and treatment of such data.

A very suitable solution is resorting to the Fog Computing paradigm. The usage of Fog Computing
introduces great benefits in terms of low-latency and mobility, given that it performs tasks of computation,
communication and storage near the edge users of the network [100]. By using a distributed network of
devices, this paradigm of computing (in comparison to more traditional cloud architectures) brings appli-
cations and services from the cloud to the edge of the network, greatly reducing the transfer times and
meeting the demands of real-time applications (such as the short term prediction of collisions). Gomes
et al. [101] presented an interesting and extensive survey on time-sensitive applications in fog comput-
ing environments, classifying the surveyed articles into five categories: Fog Computing Concept, Faster
Response, Low Latency, Data Streaming Application, and Time, Delay or Latency Constraint.

An example of applying the Fog Computing concept to ITS can be found in [102], where Liu et al.
propose a hierarchical system architecture, using both software Software-Defined Networking (SDN)

and Fog Computing in Internet of Vehicles (loV) paradigms. The architecture consists of four layers:
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application layer, control layer, virtualization layer, and data layer. The system was tested by implementing

two real-world environment prototype services:

See Through This service shares a real-time view of a front vehicle to its following vehicles. The vehicle
that intends to share its view registers at the SDN controller using LTE. Then, based on the vehicle
topology (and registered services), the SDN controller notifies available services to particular vehi-
cles, via control messages. Vehicles are then able to request the services from the SDN controller
using LTE. Once the service starts, the video can be streamed from the provider to the requesting

vehicles using DSRC at the fog layer.

Collision Warning This service triggers warning messages if a potential collision between two vehicles
is detected. The SDN controller communicates with vehicles via LTE. To support a large-scale
and real-time service, the computation and communication workload is offloaded to the fog server.
The vehicle constantly sends up-to-date information using DSRC to the fog server (10Hz), which
then processes the data and estimates if there is a risk of collision - in positive cases, the warning
message is triggered and sent to the vehicles - which are then displayed on a Human-Machine

Interface (HMI) (along with sound and vibration).

Another example of the application of Fog Computingin ITS is introduced by Alemneh et al. [103],
which present an infrastructure-less architecture (fog-based) named PV-Alert (Pedestrian-Vehicle Alert). In
this architecture, the fog nodes process delay sensitive data (that are obtained from smartphones) and
generates alerts for pedestrians and drivers when an imminent collision is detected - the collected data is
also sent to the cloud for further analysis. The proposed solution was evaluated using the ns-3 and SUMO
simulation tools. The architecture was compared to other (smartphone) VRU-related safety architectures,
and the results showed that it was able to scale well and be reliable, while also providing low latencies.

This paradigm of computing brings applications and services from the cloud to the edge of the
network, greatly reducing the transfer times and meeting the demands of realtime applications. In the
proposed use-case context, this means that the V2X communications data (including vehicle's speed,
acceleration, position, etc.) can be processed closer to the network edge, which allows the prediction
algorithms to quickly analyze the data and make decisions. Also, by adopting a multi-layered architecture,
it is possible to use an intermediate layer (the Fog Layer) to connect the vehicles (network’s edge) and the
centralized cloud server. Hence, on top of the the low-latency data processing, it is also possible to reduce
the burden on the network infrastructure (as only aggregated relevant data is transmitted to the cloud).

Moreover, the ability to distribute the computation in the Fog Layer also allows a more scalable solution for
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the collision prediction across several road points, without the need to rely on a unique centralized cloud
server.

In summary, by using a multi-layered architecture inspired on Fog Computing, it is possible to
deploy ML prediction models that can be executed in realtime, providing timely warnings to drivers when
a possible collision is predicted.

Furthermore, and because no datasets were found, it becomes necessary to generate and synthe-
size new datasets using simulation. For that reason, there is also a need to establish a proper use case
scenario.

This chapter first presents the defined system’s architecture, based on a Fog Computing approach.
Then, this chapter details the defined use case, which is based on ETSI standards. Additionally, the

implementation of the use case on the simulators is also discussed.

4.1 System’s Architecture

The system’s architecture is based on a multilayer hierarchical approach. The architecture design
consists on three different levels, where the road entities play different roles and also have different func-
tionalities, according to their needs and capabilities (in terms computation power, storage capacity, delay,
etc.) and needs. The main purpose of the proposed design is to place the heaviest computational and
less time-critical functions at the upper layer, and the lighter operations at the lower layer (while the middle
layer is a middle ground). By allocating the different functionalities at each layer according to the road
entities characteristics, rapid responses can be provided to the lower layers.

Figure 4.1 shows the hierarchical architecture of the proposed system, based on a Fog Computing
approach. As illustrated on the figure, the architecture is composed of three hierarchical layers, which are

described next.

Edge Layer This layer is the closest to the end users (drivers/vehicles), which are typically widely dis-
tributed in geographical terms. Most of the regular vehicles that travel on the road are equipped
with a large number of sensors. The information that is collected by such sensors can be shared
with other entities on the road using OBUs with communication capabilities. This information may

be useful to other users on this layer and particularly for RSUs on the Fog Layer.

Fog Layer This layer is situated on the edge of the core network. The nodes on this layer (Fog Nodes)
are also widely distributed - for instance, they can be located in every intersection on the road.

They are responsible for interconnecting the cloud and the end users, which aim to obtain services
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from these nodes. Additionally, they have ample capabilities to do heavier computation and to
transmit/receive data (and also to process and store it). The implementation of low-latency and
real-time applications can be achieved on this layer. Thus, this is the ideal place to deploy the ML
models for prediction of collisions - the application can receive the data that is disseminated from
the surrounding vehicles, treat it (aggregate it) and use it for the prediction of collisions. The Fog
Nodes also connect with the top layer (Cloud Layen in order to obtain more powerful computing

and storage capabilities.

Cloud Layer The Cloud Layer consists of servers and storage devices that possess great performance
capabilities (powerful computation and ability to store huge amounts of data) and can provide
several services. In this case (a service for the prediction of collisions related to VRUs), this layer
makes use of its ability to store the data that is sent from the Fog Nodes on the underlying layer

and use it to train (and eventually retrain) the ML models.

Cloud Layer

* Data Center
* Model Training

Fog Layer i i i

» Data Collection i Ee i Es i ig
* Model Deployment -

ol A Ol A R

* Vehicular Data
Generation

Figure 4.1: System’s Hierarchical Architecture (Based on Fog Computing)
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An example of the deployment of the complete system is illustrated in Figure 4.2.
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Figure 4.2: Fog Architecture - The Prediction of Collisions Related to VRUs Use Case

In this architecture, each end device (vehicle) connects with a Fog Nodes - that is located on a road
intersection - using wireless access technologies (e.g. |EEE 802.11p). The Fog Nodes can be connected
to the Cloud by using the IP core network.

The application of predicting collisions related to VRUs using ML can be divided into two stages -
the offline stage (which consists on the model’s training and testing) and the online stage (when the model

is deployed). These stages are further explained next:

Offline On a first offline stage, it is important to collect sufficient data to parametrize, train/test and
deploy the ML models, which will later be used for the prediction of the collisions. The end users
(vehicles) broadcast data with fast rates (e.g., using BSMs every 100 ms) that can be collected by
the Fog Node that is placed on an intersection (acting as a RSU). This data can then be treated and
aggregated to be sent to the Cloud, which possesses better capabilities to store the huge amount
of data and use it to train the models - on this case, in a supervised manner. Thus, the Fog Node
should also complement the collected data with information related to collisions history, which is
useful for the training process. When the process of training and testing the model is finished,

the resulting model and weights can be sent back to the corresponding Fog Node, in order to be
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deployed. This process should be repeated for each Fog Node.

Online When the first stage is accomplished, a model can finally be deployed on a Fog Node in order
to start the prediction of the collisions. The Fog Node collects the broadcasted messages, treats
them and uses that compilation of data as input for the prediction. The aggregated data resulting
from this process is transmitted to the cloud for storage and subsequent utilization in retraining the
model, in order to allow a continuous tuning of the model. The weights resulting from the retraining
process are sent back to the Fog Node in order to update the model. When a collision is predicted
by a Fog Node, a message can be disseminated to the relevant end users, in order to allow them

to make an appropriate decision (e.g., perform an emergency brake).

4.2 Use Case Description

Although the first set of tests on Artery (discussed before on section 3.2) was important to get
acquainted with the simulation tools and how their configuration/parameterization works, it soon became
clear that the first developed scenario was problematic - too many variables on both traffic and communica-
tions, lack of scenario control, difficulties in understanding/locating the incidents, simulation performance
issues, and so on. This led to the decision of establishing a smaller scenario to better control the environ-
ment, which results in lighter simulations which are faster to design, develop, test and debug.

In order to establish the scenario and its requirements, several use cases from ETSI standards
were analyzed, such as Collision Risk Warning from RSU from [104], Turning collision risk warning from
[105] and, with particular emphasis, the Scooter/Bicyclist Safety with Turning Vehicle from [106].

This use case, illustrated in Figure 4.3, is described as a critical (and typical) traffic situation where a
vehicles makes a turn on an intersection and oversees a bicycle/scooter, which makes a collision between
the agents possible. On this use case, the scooter/bicycle is not equipped with any kind of device, the
vehicle possesses communication capabilities and an HMI and there is an RSU present on the intersection
that is equipped with both a communication device and some kind of sensor (e.g. a camera). This sensor
is used to detect both the VRUs and the vehicles, and the information is used to predict their path and
compute/detect possible collisions. If an imminent collision is detected, the RSU broadcasts warning
messages to the vehicles in the area. The vehicle, upon receiving the collision avoidance message, takes
appropriate actions to avoid or mitigate the collision. The standard also presents alternative collision
situations that are shown in Figure 4.4.

As is stated on the standard, the path prediction/collision detection plays a very important role in
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Figure 4.3: Scooter/Bicyclist Safety with Turning Vehicle Use Case [106]

Figure 4.4: Scooter/Bicyclist Safety with Turning Vehicle Use Case - Possible collision situations [106]

this use case. On this example, the information that is used to feed the detection mechanisms is collected
via sensors (e.g., Camera, RADAR, LIDAR).

However, this type of solutions may eventually perform poorly in situations where line of sight
is non-existent or limited (e.g., the VRU is in a blind spot, behind a parked vehicle). This situation is
aggravated due to their smaller size and high mobility, which make them harder to be detected. Hence,
the implementation of such systems resorting to wireless communications between VRUs and regular
vehicles/infrastructure may have a great impact on the general safety of those road agents.

For that reason, itis intended to study the feasibility of resorting to vehicular communications to feed
such detection mechanisms on the proposed scenario. Naturally, this implementation is only possible if
these users possess communication capabilities that allow communication between themselves and other

road agents. Although entities such as bicycles may possess communication capabilities (for instance,
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using the driver's smartphones), it is unlikely that they may communicate directly with other vehicles on
the road - which are typically equipped with IEEE 802.11p transmission capabilities. On the other hand,
motorcycles/scooters are fairly easy to equip with OBUs that possess communication technologies similar
to regular vehicles.

Hence, from the VRUs group, motorcycles make the better subject to study the potential use of
automatic solutions for collision prediction, which may passively improve their safety. Even the detection
of collisions may, for instance, trigger emergency services that may reduce the severity of injuries after the
collisions or even save lives. Even if motorcycles and regular passenger vehicles are not equipped with
sophisticated safety systems that enable them to detect that they are involved in collisions, it is possible to
resort to RSUs (infrastructure units on road environments) to implement such advanced safety systems
(as the standard’s use case suggests).

Taking into consideration the previous discussion, the proposed use case is described below:

Description

A passenger vehicle makes a turn on an intersection and oversees an approaching motorcycle, that

intends to go straight on the road, which results in a possible collision.

Actors
In this scenario there are the following actors:
* Passenger Vehicle - Equipped with an OBU (with IEEE 802.11p).
* Motorcycle - Equipped with an OBU (with IEEE 802.11p).

e RSU - Equipped with IEEE 802.11p and automatic ML mechanisms for the prediction of collisions.

Pre-conditions

Passenger vehicles, motorcycles and one RSU which are able to receive and broadcast standard
vehicular messages. RSU possesses mechanisms for the automatic prediction of collisions between

passenger vehicles and motorcycles.

Triggers
* Motorcycle and passenger vehicle are close to the intersection.
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* Motorcycle goes straight through the intersection.

* Vehicles makes a turn on the intersection, crossing roads with the motorcycle’s route.

Normal flow

* Passenger vehicles and motorcycles broadcast ego information using standard vehicular messages.

The RSU receives the standard vehicular messages and collects the data from those agents.

The RSU performs collision prediction using automatic ML mechanisms.

The RSU broadcasts collision warning messages to vehicles in the area.

The vehicles receive the collision avoidance messages.

Post-conditions

Vehicles are alerted of potential collisions and take appropriate actions to avoid or minimize its

effects.

4.3 Simulation Scenario Setup

Taking into consideration the scenario described on the previous section, a new traffic scenario was
designed from scratch using the netedit tool provided in the SUMO package. This tool is a GUI application
that allows the creation of new networks from scratch (and also their editing) and traffic demand (routes
and trips for the different kinds of vehicles). This tool allows users to easily design road networks and to
obtain the .xm/ files which are used as input on the SUMO simulator.

The design of the scenario is illustrated in Figure 4.5.

The SUMO tool aims to be collision-free when using the default mobility model (Krauss). For
that reason, some configuration is needed in order to create collisions on the simulations. Hence, there
was a need to follow the guide available in SUMO'’s documentation [107] in order to simulate collisions
(namely the Collisions at Intersections section). This guide suggests the configuration of junction model
parameters on the passenger vehicles in order to implement collisions at intersections. In this case, the

following parameters were tweaked:
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Figure 4.5: netedit Tool - Building the Intersection Scenario

jmlgnoreFoeProb / jmlgnoreFoeSpeed These parameters are used to ignore agents that are ap-
proaching the junction below the given speed with the given probability. The chosen values were
mignoreFoeProb = 1 and jmignoreFoeSpeed = 100. This results in ignoring all the agents approach-

ing with 100% probability.

jmTimegapMinor This parameter sets the safety time gap when passing an intersection without priority.
In this case, the chosen value was jmTimegapMinor = 0, the minimum possible value (in other

words, no safety time gap).

Hence, the usage of unsafe values for these parameters results in passenger vehicles ignoring foes
arriving at the intersection and even the safety time gaps when they have no priority. In this particular
case, there was also a need to reduced the emergencyDeceleration default values, since vehicles were
breaking in these emergency situations but were still not hitting using only said parameters. Lowering this
value to 4.5 finally resulted in collisions.

In this case, the motorcycle vehicles on the simulation use the default values, as there was no need
to change them. In that sense, the passenger vehicles are the ones causing the collisions.

Those parameters were defined on the scenario®.rou.xml configuration files of SUMO, which are
used to parametrize Vehicles, Vehicle Types, and Routes.

In addition to the discussed configuration, there was also a need to set the —collision.check-junctions
option to true, so that SUMO registers collisions on road junctions. Also, regarding collisions, SUMO

tracks the distances (gaps) between vehicles and, when the gap is below a given threshold, it registers
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a collision. In this case, by setting the option —collision.mingap-factor = 0, only physical collisions are
considered.

Furthermore, and in order to simulate the effects of the collision itself, the vehicles involved on the
collision halt on the lane for a fixed time. Since the remaining vehicles proceed normally according to their
movement model, this results in traffic jams while the vehicles are stopped, as illustrated in Figure 4.6

below.

Figure 4.6: Traffic Jams Caused by Collisions on SUMO

In this case, each simulation run lasts for 24 hours of simulation time (86400 seconds), and the
collision event is configured for lasting 500s (using the collision.stoptime parameter). When the stop time
is over, the vehicles are removed from the simulation (as if they were moved to the side of the road), using
the collision.action = remove parameter. These parameters were defined on the *.sumo.cfg configuration
files of SUMO.

Three different mobility instances were implemented on the intersection scenario, in order to simu-
late three different collision situations. These situations were based on the cases two, three and four from
the previously discussed use case from [106] (shown in Figure 4.4).

The first use case that is depicted on the figure, where the passenger vehicles and the motorcycles
are traveling on adjacent lanes, was not possible to implement on SUMO, since these kind of collisions
(from adjacent lanes) are very hard to simulate.

The first implemented scenario case was the second collision case (from now on designated as
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Scenario A), illustrated in Figure 4.7.

Figure 4.7: SUMO Scenario A (Cropped) - Collision Case 2

The scenario is not exactly as illustrated on the ETSI's standard - for some reason, which could
not be identified, the VEINS framework would sometimes crash (and close in a forced way) when some
passenger vehicles would arrive at the end of the road’s edge on the top side. The output logs did not
allow to understand the exact cause of the issue. For that reason, the mobility pattern had to be rotated -
avoiding the issue by simply not using the top edge of the road on the scenario. Still, the traffic behaves
in a similar way - the passenger vehicles makes a left turn on the intersection while the motorcycle comes
from the opposite side and follows straight.

The third collision case (from now on designated as Scenario B) is shown in Figure 4.8. On this
case, the passenger vehicle makes a left turn on the intersection, while the motorcycle comes from the
right and follows straight.

Finally, in the last implemented case (collision case 4 - Scenario C), the passenger vehicle makes
a right turn, while the motorcycle comes from the left and follows straight. This fourth collision case is
illustrated in Figure 4.9.

Initially, the parameters were set so that after two vehicles collided, they would stop on the road
for a pre-defined time and later return to their normal behavior and proceed on the road on the next edge
of the route. However, in some occasions, when the passenger vehicle that was involved in the collisions
tried to move after the stop time, the next passenger vehicle on the traffic queue would collide again from
the rear, causing another collision. This kept happening for the upcoming passenger vehicles on the traffic
queue as well, causing a weird (and undesired) rear collision chain. The reason behind this behavior could

not be found.
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Figure 4.8: SUMO Scenario B (Cropped) - Collision Case 3

Figure 4.9: SUMO Scenario C (Cropped) - Collision Case 4

To address this issue, the vehicles involved in the collision are removed from the simulation, as if
they were moved to the side of the road in a real collision situation. The remaining vehicles then proceed
normally on their predefined routes. This strategy worked well for both Scenario A and Scenario B were all
chain collisions were avoided. However, on Scenario C, there were still some chain collisions happening,
which unfortunately could not be overcame (although they were rare). This unrealistic behavior of vehicles
hitting each other immediately after starting moving (in a weird chain-collision loop) meant that the data
that was gathered on the Scenario C simulations was not usable for the collision prediction system (which

will be further discussed ahead).



4.3.1 Communications Setup

In terms of communications, all nodes on the simulation (both passenger and motorcycle vehicles
and also RSU that is placed on the intersection) are equipped with the DSRC/IEEE 802.11p stack to
communicate, using a special kind of beacons called BSMs. The BSMs beacons [9] are typically used to
exchange safety data regarding the vehicles state. They are broadcasted frequently to surrounding vehicles
with data content as required by safety and other applications.

On the simulation, the nodes are exchanging these BSMH-like beacons with a 10Hz rate (typical
when congestion control algorithms do not require a reduced rate) and the messages contents are filled
in VEINS with information that is extracted from the traffic simulator SUMO via the TraCl API.

The core data frame of BSMs [9] (often referred to as BSM Part One), contains the critical core
data elements necessary in every issued message, and are described on Table 4.1.

Unfortunately, it is not possible to obtain all the required data that a real BSM beacon usually
possesses when using the simulators (which is naturally a limitation when comparing to a real scenario
data collection). Still, even when using SUMO, most of the "core” data elements are currently being
exchanged.

The simulation scenarios beacons are being filled with the following information:

Station ID

* Longitude

e Latitude

e Elevation/Altitude

¢ Heading

e Speed

¢ Acceleration

¢ \ehicle Length

¢ Vehicle Width

* Vehicle Type (from Part Il of BSM)
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Type Description

Provides a sequence number within a stream of messages

MsgCount from the same sender.

Four octet random device identifier. For OBU devices, this
TemporarylD value changes periodically for anonymity reasons.
DSecond Time information.
Latitude Geographic latitude of an object.
Longitude Geographic longitude of an object.
Elevation Geographic position above or below the reference ellipsoid.

Parameters of quality used to model the accuracy of the
PositionAccuracy positional determination with respect to each given axis.

TransmissionState Provides the current state of the vehicle transmission.

Speed Represents the vehicle speed.

Heading Provides the current heading of the sending device.

SteeringWheelAngle  Represents the current steering angle of the steering wheel.

Set of acceleration values in three orthogonal directions of the
AccelerationSetdWay vehicle and with yaw rotation rates, expressed as a structure.

Information about the current brake and system control
BrakeSystemStatus  activity of the vehicle.

VehicleSize Represents the vehicle length and vehicle width.

Table 4.1: BSM Core Data - Part One

Vehicle Type was also added to the scenarios beacons, although it does not make part of the core
elements of BSMSs, since it was easy to obtain that information resorting to the API available on VEINS.
Furthermore, this particular information was useful for the initial tests regarding ML (discussed next on
subsection 5.1.1).

The main default (out of the box) communication parameters for the network interface cards were
used on the simulator. These parameters are presented on Table 4.2.

The simulation includes an analog model and a designated decider. The analog model specifies how
the signal attenuation is calculated (compute the decrease in the power of a radio signal as it propagates
away from the transmitter). In this case, the SimplePathLossModel is used. The decider decides if an
incoming packet is to be received or not (based for instance on the Signal to Noise Ratio (SNR)

threshold and on a defined bit error rate) - the simulation used the Decider80211p decider.
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Network Interface Card Parameters

TxPower 20 mwW

BitRate 6 Mbps

minPowerLevel -110 dBm

noiseFloor -98 dBm

Decider

Decider80211p centerFrequency = 5.89 GHz

Analogue Model
SimplePathLossModel o = 2.0

Table 4.2: OMNeT++ Network Interface Card - IEEE 802.11p Specific Parameters

4.3.2 Collecting Data for the Datasets

In order to compile the vehicle's V2X data (to be later processed and analyzed), it was necessary
to simulate the scenarios that were previously introduced in section 4.2, collecting all the data exchanged.
These datasets consist of the collection of beacons (BSM) that both passenger and motorcycle vehicles
are exchanged using DSRC.

The collected and compiled data is to be used to feed the ML scripts aimed at the collisions detection
and prediction. Each simulation run is executed for a total of 24h of simulation time and uses a different
simulation seed. Using a different seed causes randomness when inserting vehicles on the simulation,
which leads to different mobility behaviors for each run (and consequently different simulation results).

In order to build the datasets, the messages can be collected in two different ways:

1. Each individual vehicle writes to a Comma Separated Value (CSV) file (named after the vehicles
ID on the simulation) all the generated messages (each line as a record). A simple bash script was
built to compile all the generate files into a single CSV when the simulation is finished (hence

building the dataset that is loaded later into the ML script).

2. The RSU that is installed in the intersection collects and saves all the received messages in that
area to a single CSV file, line by line (each record is a message). In these particular scenarios, all

nodes are at all times within communication range and able to exchange messages.

At this point, only the second collection method has been selected and used; in fact, apart from
being simpler to implement, it is also the most reasonable approach for the purpose and also the one that
operationally fits into the overall architecture design. In fact, the V2X messages which are relevant for the

datasets constructs are generated by the vehicles around the geographic area where the RSU is located

57



and also where collisions are probable to take place.
On top of the aforementioned beacon fields, there is also an extra inCollision field (further discussed

ahead). The final format of the stored information is:

Station ID Identification of the vehicle that sent the message.
Longitude Longitude of the sender vehicle in degrees.

Latitude Latitude of the sender vehicle in degrees.

Elevation Elevation of the vehicle in meters.

Heading Heading of the sender vehicle in degrees.

Speed Speed of the sender vehicle in m/s.

Acceleration Acceleration of the sender vehicle in m /s

Vehicle Length Length of the sender vehicle in meters.

Vehicle Width Width of the sender vehicle in meters.

Sending Time Timestamp at which the message was generated in nanoseconds.
Vehicle Type Identification of the type of vehicle that sent the message.

In Collision Boolean stating if the sender vehicle is involved in a collision or not when the message was

generated.

The final datasets compilation is achieved by performing different simulation runs for both Scenario
A and Scenario B. Each simulation run uses a different simulation seed, which results in different mobility
patterns in each run. This leads to non-deterministic and different number of collisions between vehicles
and VRUs, occurring at different instants of time and with different traffic characteristics.

Firstly, for the collision detection system, ten different runs were used for each scenario. These
ten resulting datasets were afterwards aggregated into three final datasets: one for training (80% of total
data), one for validation (10%) and finally one for testing (10%) the collision detection ML approach. The
datasets were concatenated in a sequential manner: from seed O to seed 7 for the training dataset; seed
8 for validation; seed 9 for testing.

Later, a total of fifty runs were used to compiled the three final datasets which have been used to

evaluate the ML collision prediction system: 80% for training (from seed 0 to seed 39), 10% for validation
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(from seed 40 to seed 44) and 10% for testing (from seed 45 to seed 49). The need to increase the number
of simulation runs to compile the datasets was related to the fact that the amount of data was insufficient
for the prediction models to converge when trying to predict the collisions (this issue is discussed further
ahead). These final synthesized datasets (the basis for the collision prediction system) were submitted to

a public on-line platform and can be accessed in https://zenodo.org/record/ 7376770 [108].

4.4 Summary

In this chapter, the design of a Fog computinginspired system architecture was discussed. The
chapter starts by explaining the fundamental principles of Fog Computing and how they apply to the
system architecture, which aims to enhance efficiency and responsiveness - by decentralizing computing
resources closer to the data sources (the vehicles), it's possible to deploy real-time collision prediction
models to provide timely warnings to drivers.

A specific use case (derived from relevant ETSI standards) was then described in detail. This use
case served as a practical scenario to demonstrate the system’s functionalities.

This use case was then implemented using the VEINS simulator, combining SUMO for traffic
modeling and OMNeT++ for network simulation. The setup and configuration of these tools were detailed
to provide insights into the simulation process.

Finally, the chapter delved into the process of data collection from the simulations to synthesize the
datasets, discussing which concrete data is treated and how it can be collected. By collecting the messages
data (BSM beacons) that is generated during simulations, meaningful datasets were synthesized to enable

subsequent analysis and validation of the proposed system architecture.
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Chapter 5
Machine Learning Techniques for Vulnerable Road

Users Safety

ML may play a significant role in enhancing VRUs safety, which are typically more exposed to
incidents when compared to other road users traveling on regular vehicles. This work considers that, by
leveraging V2X data using ML algorithms and techniques, it may be possible to develop safety systems
for their protection - for instance, a system for prediction and warning of potential collisions. Such systems
may be able to learn from patterns and behaviors observed in historical data and use realtime inputs to
accurately assess collision risks. Such predictions, if achieved in a timely manner, may also allow the
sending of warnings to drivers - which ultimately may enable them to take preemptive safety actions to
avoid the collision.

One of the first steps towards the analysis of the quality of the synthesized datasets and to explore
some ML predicting techniques was the development of a simple system that aimed to classify the orig-
inator of the V2X messages. In this case, try to predict if the message was originated by a passenger
vehicle or a motorcycle. This preliminary work, that is discussed on section 5.1, was important for the first
interactions with the ML framework tools. Furthermore, this initial work was also important to reach the
conclusion that traditional ML models are not suitable for the proposed final system. Hence, section 5.2
discusses two identified types of models that are more suitable to the use case in question: LSTMSs and

MLPs. The section presents the main characteristics of both techniques.

5.1 Machine Learning: Exploratory Analysis and Data
Preprocessing

In order to get acquaintance with the ML tools, a simple script was developed, which aimed at

classifying the vehicles type based on the messages content from a single run dataset (from seed 0 of
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Scenario A). In other worlds, the models classifies if a given message was originated by a passengervehicle
or a motorcycle.

This script (and also the more advanced systems that are discussed later on) were developed using
the Spyder Integrated Development Environment (IDE) [109], which allows the usage of Python in
an interactive environment, providing advanced editing, analysis, debugging, and profiling functionalities.
The IDE environment is illustrated on Figure 5.1. The Anaconda tool [110] (Anaconda Navigator) was used

to manage the Python distributions and modules.

% Spyder (Python 3.8) - o x

File Edit Search Source Run Debug

I'G = @ @

d.sqrt(tf.keras.backend.mean(tf.keras.backend. square(y_pred - y ti

telp [Variable Explorer Plots  History

Figure 5.1: Spyder IDE

This first basic predictive model script was built resorting to the Scikit-learn [111] library. This
library is available for the Python programming language [112] that provides a lot of efficient ML tools and
statistical modeling.

Additionally, the Tensorflow-GPU library [113] was also installed. This library provides ML and Arti-
ficial Intelligence functionalities, namely the possibility for training and inference of deep neural networks.
The tensorflow-gpu version allows the usage of a GPU instead of a CPU, as the process is more efficient.
In this case, the following GPU was used: MSI GeForce GTX 1060 Gaming X (6 GB DDR5).

The process of developing the first basic script is described on the next subsection.
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5.1.1 Datasets Preprocessing and Automatic Classification of

Vehicle’s Type

In a first step, the dataset was loaded using the read_csv() function available on the Pandas library
[114] (which provides tools for data analysis and manipulation).

Since the dataset is loaded without any treatment or pre-processing (the messages are simply
received and written to a file on the simulation), the column titles were also defined, in order to clearly
identify them, allowing an easier manipulation and analysis.

In order to prepare the dataset to be used classify the type of the vehicle, the first ten columns
(features) are considered to be data (x), while the 'SenderVehicleType’ feature is defined as being the
target (y).

Then, the 'NodelD’ and ’'SenderVehicleType’ features must be encoded (in this case using the
LabelEncoder() function). Although categorical features make the data more understandable (human-
readable), ML algorithms typically don't handle well categorical data; in order to train and predict, this
data should be transformed into numerical data.

The label encoder function encodes labels with values between "0” and "numberOfClasses-1". In

this case, two different classes (passenger - 0, motorcycle - 1), as illustrated on the example on Figure 5.2.

u SendingTime | SenderVehicleType ! SendingTime | SenderVehicleType

15879678 passenger LabeIEncoderl 15879678 0
15879779 motorcycle 15879779 1
158796989 passenger ... 158796989 0

Figure 5.2: Categorical Encoding Using Label Encoding

At this point, being the first basic ML script, only a few common ML prediction models were chosen
for initial testing: LR, KNN, Gaussian Naive Bayes (GNB), SVM and ANN.

The K-Fold method was used for the training and testing of the algorithms. This method divides the
dataset into k subsets (in this case k=10) and each individual subset is then used as the fest set, while
the remaining k-1 subsets are used for training. The model’s performance score consists on these results
average.

This method is more robust than simply splitting the datasetinto a trainand testset (e.g. 80%-20%).
Cross-validation is usually a preferred method for that kind of problems because it gives a better indication

of model performance on unseen data. On other hand, cross-validation requires more computation and
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time resources.

Thus, using the data collected from the messages on the simulation, this initial script used the
aforementioned ML algorithms to classify the type of vehicle that sent the message. In other words, the
algorithms classified if the messages were originated from passenger vehicles or by motorcycles.

Naturally, and given the simplicity of the problem, all the algorithms had 100% accuracy. Accu-
racy is one of the most common metrics for evaluating classification models, and is defined as seen in
Equation 5.1.:

Number of Correct Predictions

A = 5.1
cenracy Total Number of Predictions 1)

5.1.2 Datasets Preprocessing and Automatic Classification of Collisions

Even though the first developed script was a good transition from the simulation to the ML envi-
ronment, the script still required a lot of work to achieve the global purpose of predicting collisions.

For that reason, and in order to introduce the notion of collisions into the dataset, a feature named
inCollision was added to the dataset. In order to achieve this, a new boolean field was added to the beacon
messages on the simulation, that states if the vehicle was involved (or not involved) in a collisions when
that particular beacon was sent.

During every single simulation step, each individual node computes if he is involved in a collision at
that instant, resorting to functionalities available on TraCl. In positive cases (i.e. if the vehicle is involved
in a collision), the messages that these nodes generate are marked with a positive value.

Instead of marking each individual message during the simulation, another way of achieving this
would be to feed the collisions information to the dataset during the pre-processing phase of the ML script.
However, this would require to process the output logs of the SUMO simulator to identify which vehicles
were involved in collisions (and at which instants) and later sweep the entire dataset in order to integrate
the collision data. For its simplicity, the first solution was chosen - even though the beacons now possess
an extra field that is not part of the standard message.

At this point, the script is updated to include the inCollision feature, which is now defined as being
the Target (Y), while SenderVehicleType is now added to x. The same algorithms were used to classify if the
message belonged to a collision or not (without changes to the rest of the script), all achieving accuracy
values above 80%.

At a first glance, the high value of the metric may sound promising. However, in fact, and as

expected at this point, the solution of simply adding the new inCollision feature is a very poor one. Since
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there are few collisions happening during the simulation (they are rare events), only a few messages are
effectively marked as true on the inCollision feature column (in an universe of several hundreds of thousand
of messages). For this reason, the dataset is considered to be imbalanced - too many messages marked
as false when in comparison to the ones marked as true. This also explains why the algorithms have
good levels of accuracy at this point - even if the models label every single record as false (messages from
vehicles not involved in a collision), the accuracy is very high, because only a very little subset of records
is being marked inappropriately.

Regarding the collision classification itself (the problem that is to be solved), all models performed
poorly and were not able to classify properly. For that reason, it has become evident that the traditional
models performance is unsatisfactory, and a different approach is necessary to address the problem

effectively.

5.2 Time Series Forecasting

One of the key aspects of the proposed use case is that there are clearly very strong temporal
concerns, which make the learning more complicated and difficult to handle by the traditional ML models,
due to the sequence dependence among the input variables. Unlike most traditional ML models, that do
not consider the time aspect at all (or operate on datasets that have a single slice of time), the core
idea of time series forecasting modeling is to look at data from a time’s perspective, defining patterns and
predicting (in short or long-term) how target variables will change in the future. In other words, forecasting is
the process of using machine learning models that were fit on historical data to predict future observations.

Based on the observed V2X messages, it is intended to automatically detect (and eventually predict)
the occurrence of collisions, defining automatic ML mechanisms that send alerts to the driver in such
cases (and thus try to avoid them). Hence, it is necessary to carry out a temporal analysis of the collected
V2X messages data.

The state of the art works on time series forecasting systems refer architectures such as Elman
Recurrent Neural Network (ENN), Gated Recurrent Units (GRU) Deep Recurrent Neural Net-
work (DRNN) or LSTM [115-117].

One particularly suitable deep learning model for the proposed use case is the LSTM. This deep
learning model allows the capture of existing patterns in the data, as well as their long-term dependencies
- they are very useful for its ability to hold information for long periods of time (information that is learned

early on can still be impactful later on the model’s decision).
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LSTMs are a type of Recurrent Neural Networks (RNNs), which in turn are a type of ANNSs.
This terms are briefly explained next.

ANN are computational systems that were modeled (in a simple way) on the central nervous system
of human beings, using connections in order to solve problems - these networks are defined by a structure
that interconnects computation units named neurons that possess learning abilities. These kind of neural
networks consist in stacks of one or more hidden layers (which are used for learning) and a dense layer
which is used to generate an output.

However, the usage of traditional ANN in this kind of problems has a major drawback because they
do not possess memory - without the notion of memory present, it becomes harder to work on sequential
data and on time-series data.

RNN are a subtype of ANN that aim to overcome this problem - unlike traditional NNs, RNNs
address the persistence issue. In these systems, the evolution of the state depends both on the current
and on the previous input, connecting outgoing nodes to the next incoming nodes. Such characteristic
permits the process of context-dependent information and also the learning of long-term dependencies.

A RNN works as shown on Figure 5.3 below, where a chunk of the NN (A) looks at an input z;
and outputs the value h; and then passes that information to the next step. This way, a RNN can handle

data in a sequential manner, accepting both current input data and information from previous inputs.
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Figure 5.3: Unrolled Reccurent Neural Network [118]

In summary, RNNs may be interesting for their ability to connect recent data when performing a
given task [118] - e.g. trying to complete the phrase: “The sun is in the ____". The most evident answer
to the problem is the word sky-as in "The sun is in the sky”. RNNs tend to perform well when the interval
is short (between relevant data and the data that must be predicted). However, RNNs start to struggle

when more context is needed to solve the problem. For example, when trying to complete the text: “/ was

born in Portugal. I've been living there for 30 years. Therefore, i speak fluent

”. In this case, using
only the most recent data is not enough to solve the problem. Data indicates the next word is probably

a language but more context is needed from previous information to conclude that the answer should be
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Portuguese. On some other more complex examples, the gap to the relevant information may become
very large and, unfortunately, the RNNs performance will become deteriorated as the gap grows, since
they are unable to connect the relevant data.

LSTMs [119] are a specialized type of RNN architecture, capable of better learning long-term
dependencies - the main advantage of LSTMs, when comparing to traditional RNNs, is that they retain
information for longer periods of time, which allows the early learned important information to also be
impactful on the decision of the model, even if it is at the end of the sequence. Similarly to the previous
discussion, and as shown on the top-side of Figure 5.4, A represents a complete RNN cell - which takes
the current input (z;) of the sequence and outputs the current hidden state (h,), passing it to the next
RNN cell. Each cell has a single layer that acts on its current state and input.
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Figure 5.4: Unrolled RNN Cell (Top) vs LSTM Cell (Bottom) [118]
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On the other hand, LSTM cells are more complex than traditional RN cells, containing three
internal layers acting on the state and input (shown on bottom-side of Figure 5.4). These internal gates
(which are composed out of a sigmoid neural net layer and a pointwise multiplication operation) are the

key to LSTM cells - they are weighted functions that govern the information flow (information state):

Forget Gate Decides what information to discard from the internal state (on other words, which infor-

mation is maintained from the previous state).
Input (Update) Gate Decides which values from the input to add to the internal state (updates the state
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based on the current input).

Output Gate Decides what to output based on the input and internal state (which information gets passed

to the next state).

The control of the cell state is of utmost importance for L§TMs to properly work. Information is
removed or added to the cell state using the aforementioned gates: the "forget” and "input” gates are
used to update the internal state of the neuron, and the "output” gate is a final limiter on what the cell
actually outputs.

Hence, LSTMs are very well suited for the task of predicting collisions, for its ability to capture
long-term dependencies and handle sequential data. In the context of road safety for vulnerable road
users, where context and temporal patterns are crucial, LSTMs are able to analyze and predict potential
collisions patterns in realtime input data, and assist the road users in the decision making process if they
are warned in a timely manner.

Furthermore, and as it is important to have a comparison point, another subtype of ANN was also
identified for the implementation of the system: MLPs. MLPs are a classical type of neural networks
[120] and they typically consists of one or more layers of interconnected artificial neurons, known as

perceptrons. MILP consist of three main types of layers:

Input Layer This layer receives as input the initial data and passes it on to the next hidden layers. Here,

each neuron in represents a feature of the input data.

Hidden Layer A hidden layer consists of multiple neurons which are connected to the previous and
subsequent layers. Here, the input data is transform to extract higher-level features, providing

levels of abstraction.

Output Layer This layer produces the final output (predictions) of the network, based on the input data

and learned patterns.

MLPs use a series of equations with inputs, outputs and weights, and transform inputs into singular
outputs between 0 and 1. That generated output serves as input to another layer, and the process continues
until a singular output is reached. In other words, it is a feed-forward NN (the information moves only
in one direction - from input nodes, through hidden nodes into output nodes). In that sense, information
flows without any cycles or feedback connections.

MLPs can be used for time series forecasting and to predict future values based on previously

observed data. Although they are not particularly designed to deal with longterm dependencies (unlike
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LSTMs), they were still selected since they are very suitable for tabular datasets, as they have the ability
to model complex non-linear relationships between the input features and the target variable. Also, MLPs
can be particularly suitable for binary classification prediction problems - on this case, collision or not in
collision. The output layer of the MLP can be designed to have two neurons that represent the probabilities
of belonging to each class (1 or O; collision or not in collision). Using an appropriate activation function
(e.g the sigmoid function), the values that are outputted can be transformed into probabilities. Finally, the
model can predict by assigning the fed input to the class with the highest probability outputted.
Considering their characteristics, both these ML techniques can contribute to the development of
an automatic and intelligent system that can predict potential collisions involving VRUs, by leveraging the

power of V2X data analysis and pattern recognition.

5.3 Summary

This chapter explores the application of ML methods to enhance safety measures within ITS.
In a first instance, this chapter focuses on the development of a simple classification system aimed at
predicting the originator of the messages (differentiating between passenger vehicles and motorcycles).
This foundational work was an essential first step towards establishing interactions with the ML tools and
assessing the quality of the synthesized datasets.

This exploratory investigation also revealed that traditional ML models are not suitable for the
intended goal - the tested models performed poorly and were not able to classify the collisions properly.
Thus, different types of models were identified that exhibit greater suitability for the specific use case: in
this case, LSTMs and MLPs. Furthermore, the key characteristics and functionalities of LSTMs and
MLPs techniques have been presented and analyzed.

The exploration of ML techniques that is achieved in this chapter lays the groundwork for subse-
quent model development, targeted at enhancing the safety and efficiency of ITS, particularly in safe-

guarding VRUs.
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Chapter 6

Collision Detection System

A collision prediction system for VRUs is a critical safety feature that aims to reduce collisions
involving pedestrians, cyclists, and other vulnerable users such as motorcycles. The main goal of such a
system is to provide timely warnings to the interested actors when a potential collision is predicted, so that
its effects can be avoided (or at least minimized).

Before achieving the prediction of potential collisions, an automatic collision detection system was
first developed and evaluated, in order to have a starting point towards the more complex issue of pre-
diction. This detection system aims to detect if a collision has occurred between passenger vehicles and
motorcycles on an intersection. Despite not being able to prevent the collision, the development of such
a system still allows the employment of various safety measures that try to minimize their severity and to
mitigate further risks: for instance, by warning surrounding entities that a collisions has occurred; perform
calls to alert emergency services and provide them with the collision location and details; control traffic
and road closure to divert traffic away from the area; etc.

Hence, this chapter discusses the development of the first safety system: a collision detection
system. It focuses on detailing the main characteristics of the system and also the results obtained from
the evaluation. To achieve such a system that relies on leveraging ML mechanisms, two types of NNs
were explored: LSTMs and MLPs.

Both types of models possess an input layer which expects (at most) 8 features - Number of Vehicles,
X Position, Y Position, Speed, Heading, Acceleration, Length and Width - and an output layer with a sigmoid
activation function, which outputs a value in the range 0 to 1. Several variations regarding the number of
hidden layers (and dropout layers) and the set of input features were tested. The best performing models
are presented in the results section 6.2.

The following sections describe how the data was gathered and processed, and also how the model

was trained and tested.
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6.1 System’s Development - Considerations and Discussion

As stated before in section 4.3.2, the datasets that are built to feed the ML models consist of
the collected messages that both passenger and motorcycle vehicles are exchanging through the use of
communications. In order to compile the datasets, the RSU that is installed in the intersection collects all
broadcasted messages and saves all the received messages in that area to a CSV file, line by line (each
line corresponds to a collected message).

As each simulation run uses a different simulation seed, they produce different datasets with dif-
ferent results (in terms of mobility, as vehicles are inserted with randomness).

In this case, only Scenario A was considered for training and testing of the collision detection models. A

total of 10 simulation runs were used to build the datasets:
* Training dataset - Aggregation of datasets from seed O to seed 7 (80%).
* Validation dataset - Dataset from seed 8 (10%).
* Test dataset - Dataset from seed 9 (10%), containing a total of 14 collisions.

The ML model must be constantly updated with all the changes in the whole environment so that
it can take them all into account when performing the classification.

A possible solution for the later prediction of collisions could consist on training a model to predict
the path of the nodes individually, using the predicted positions to compute Cartesian distances between
the nodes and the corresponding probabilities of collisions (based on that predicted distance). However,
such an approach requires the treatment of data in an individual manner (keeping information for each
individual node) and the computation of distances to all nodes that are traveling in the vicinity. Naturally,
as the number of vehicles may increase, the management of the system becomes more complicated,
which may cause some performance issues.

As an alternative, in order to avoid the problem of having a large collection of singularvehicular data,
another possible solution is to aggregate data in a temporal fashion - turning individual records into envi-
ronmental information. Not having to treat data in an individual manner allows for a more straightforward
and simpler implementation.

Hence, the datasets were split in fixed time intervals (1s, 0.5s and 0.1s were tested) and several
methods were tested for aggregation (minimum, maximum, sum and average). Figure 6.1 below illustrates

an example where messages are aggregated using 1 second for aggregation time and the sum function.
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MNode ID PosX | PosY| PosZ | Speed Heading Acceleration | Length | width | Timestamp | VehicleType | Accident
motorcycle.0 | 181.60| 23.40| 0.00 10.10 269.98 6.00 2.20 0.90 0.1848 maotorcycle 0
passenger.0 | 181.54| 20.02| 0.00 14.00 359.98 5.74 5.00 1.20 0.2185 passenger ]
motorcycle.d | 181.43] 23.42| 0.00 10.15 269.98 5.99 2.20 0.90 0.2849 motorcycle 0
passenger.1 | 181.60| 20.05| 0.00 13.95 359.98 5.85 5.00 1.80 1000.1547 | passenger 0
motorcycle.l | 181.54| 23.45| 0.00 12.50 269.98 5.74 2.20 0.30 1000.2480 | motorcycle
passenger.2 | 181.43| 20.07| 0.00 13.70 269.98 2.99 5.00 1.80 1000.2545 | passenger 1

Condensing all messages within 1 second using the "sum" operation

Ne of Vehicles | Pos X | Pos Y | Speed | Heading | Acceleration Length Width | Accident
2 544,57 66.85 | 34.25 | 899.95 17.73 9.40 3.60 0
3 | 544.57]| 63.57| 4015 ] 89955 | 1758 | 1220 | aso | 1

Figure 6.1: Aggregating Several Messages into a Single Record - Example with 1s sum Aggregation

Since the system is now using condensed environmental data, some features are now removed from
each record, since they no longer make sense as aggregated information, namely the Station ID, Vehicle
Type and Timestamp. Additionally, the Position Z (elevation) feature is also removed. The simulation
scenario does not consider this information and all values are equal to zero, which makes the feature
irrelevant for the model. However, a new Vehicle Count feature is added to each record, in order to
complement the aggregation data - which states how many different vehicles sent messages during that
period of time.

The main challenge in the defined use case (detecting collisions related to VRUs on a crossing)
is that the dataset can be considered as imbalanced. There are only a few collisions in each simulation,
hence only a few records on the dataset set to be inCollision = true. In a way, these records represent
anomalies in the complete data (may be considered outliers).

In order to address the issue of having unequal representation of classes in the dataset target value

there are some approaches that can be followed, such as:

* Data Resampling - If a class is significantly underrepresented, one can generate more instances
of the minority class (oversampling) or remove some instances from the majority class (undersam-

pling) to achieve a more balanced dataset.

* Weighted Loss Function - Tune the /oss function during training to give more importance to the

underrepresented class, helping the model to achieve better predictions.

¢ Ensemble Methods - Combine multiple prediction models to improve the performance. Their

prediction aggregation may help to reduce the impact of data imbalance.
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* Adjust Decision Threshold - In binary classification problems, the classification threshold is set
by default to 0.5 (i.e., <0.5 equals to a negative classification) . Adjusting this decision threshold

may help to predict the classes more accurately.

* Feature Engineering - Transforming the input features, or create new ones, may help the models

in capturing patterns in the imbalanced data.

In this case, different class weights were estimated for the models training - the models foss function is
assigned higher value to the positive instances, which are rarer. In other words, this intends to tell the
models to pay more attention to the positive cases (collisions) during classification. The models were
compiled using binary crossentropy for the loss function (typical loss function for binary classification
problems, measuring the dissimilarity between the predicted and the true labels) and the Adam optimizer
(responsible for updating the model’s weights during training).

The pseudo-code for the data loading and treatment is illustrated in Code Block 6.1.

#Load and Treat Datasets
#Compile VEINS datasets into three datasets: Train - 80%, Validation
—~ = 10%, Test - 10%
trainDataset, validationDataset, testDataset = Load csv_datasets()
For each dataset:
Split into Aggregation Time second slices
For each slice:
Remove undesired features
Aggregate slice into single record using Aggregation
-~ Type
Insert VehicleCount feature
Normalize data (in a [-1, 1] interval)

Code Block 6.1: Collision Detection System - Data Processing

After loading and treating the data, the training and testing models are slightly different between
the MLPs and the LSTMs. Both of them resorted to the usage of two callbacks during the model fitting

process:

ModelCheckpoint Used to save the weights of the model into a checkpoint file. This is useful so the

weights can be loaded later to continue the training from the saved state.
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EarlyStopping Useful for stopping the training when a monitored metric is no longer improving after a

certain number of training epochs.

The pseudo-code for the MLPs training and testing is illustrated in Code Block 6.2.

# MLP Training Procedure

# Build the MLP model, inputing the (sub)set of features to be used
— and the number of neurons on the layers

mlpModel = build MLP model (features, neurons)

# Compute class weights
class_weights = compute_class_weights(targetData)

#Training (fitting) the model
mlpModel.fit(trainData, validationData, epochs,
- callbacks=[modelCheckpoint, earlyStopping],
- class_weight=class_weights)

#MLP Testing Procedure
# Obtain test results metrics
results = mlpModel.evaluate(test X, test_Y)

#0btain the predicted values and write to a .csv file for later
— analysis on Excel

predicted_Y = mlpModel.predict(test_X)
printPredictionsToFile(test Y, predicted Y)

Code Block 6.2: Collision Detection System - Training and Testing the MLPs

The LSTMs training and testing process is similar but slightly different. This is related to the fact
that LSTMs require 3D inputs (batch size; timesteps; features), which requires some extra steps to be

able to train. The pseudo-code for the LSTMs training and testing is illustrated next in Code Block 6.3.

73



#LSTM Training procedure

# Build the LSTM model, inputing the number of timesteps, the

<~ (sub)set of features to be used and the number of neurons on the
- layers

build LSTM_model (timesteps, set_of Features, neurons)

#Split train and validation data into sequences as LSTM expects 3D
< inputs [batch, timesteps, feature]

trainX, trainY = split_sequences(trainData, timesteps)
validationX, validationY = split_sequences(validationData,

< timesteps)

# Compute class weights
class_weights = compute_class_weights(targetData)

#Training (fitting) the model

lstmModel.fit(trainData, validationData, epochs, batchSize,

- shuffle=False, callbacks=[modelCheckpoint, earlyStopping],
- class_weight=class_weights)

#LSTM Testing Procedure

test X, test_Y = split_sequences(testData, timesteps)

# Obtain test results metrics

results = lstmModel.evaluate(test X, test_Y)

#0btain the predicted values and write to a .csv file for later
— analysis on Excel

predicted_Y = lstmModel.predict(test_X)
printPredictionsToFile(test_Y, predicted_Y)

Code Block 6.3: Collision Detection System - Training and Testing the LSTMs

A different model was trained and tested for each combination of parameters (presented ahead),
saving the results onto CSV files, using the format [Real Value, Model’s Prediction Value] to allow a later
more in-depth analysis.

The analysis of the obtained results is discussed next.
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6.2 Evaluation of the Collision Detection System

This section focuses on the evaluation of the collision detection system performance. On this
particular use case, unlike some other systems evaluation, simply analyzing the accuracy of the models to
determine its performance is misleading. Although the high value of the metric may sound promising, the
model’s performance in terms of detecting the collisions may actually be poor. Since there are only a few
collisions happening during the simulation time (they are rare events), only a few records on the dataset
are effectively marked as true on the inCollision target column. For this reason, the dataset is considered
to be imbalanced - too many messages marked as false when in comparison to the ones marked as frue.
This also explains why the models have good levels of accuracy in every combination of parameters. Even
if, hypothetically, a model classifies every single record as false (vehicles are not involved in an collision),
the accuracy metric has still a very high value, because only a very little subset of records are being marked

inappropriately. For this fact, the following metrics were also considered:

* Precision - measure of how many of the positive predictions are actually correct (the accuracy of

positive predictions).

* Recall - also sometimes described as sensitivity or true positive rate, it measures how many of the
actual positive instances were correctly classified by the model. In other words, it measures the

ability to find all positive instances.

* f-Score - combines the precision and recall metrics in a single score value (which may be useful

in imbalanced datasets analysis).

» Specificity - sometimes described as true negative rate, it measures the model’s ability to identify
negative instances correctly (proportion of actual negative instances that were correctly predicted

by the model).

Still, all those metrics had values very close to 1 (maximum value) when the models were being evaluated.
Hence, they do not allow, by their own, to make a proper decision on which subset of parameters performs
better. As an example, Table 6.1 shows the average results of the best performing parameters (for each
aggregation time) when analyzing the MLPs results.

As the table shows, the results are close to perfection, but are still misleading - a more in-depth anal-
ysis of the results is necessary, with particular focus on the False Positives (FPs) and False Negatives

(FNs) cases.
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Aggregation Time Neurons \ Accuracy Precision Recall F-Score Specificity

1 32 1.000 0.999 0.998  0.998 1.000
0.5 64 1.000 0.999 0999  0.999 1.000
0.1 32 1.000 0.998 0.999  0.998 1.000

Table 6.1: Example Subset of Results (MLP Analysis)

In particular, and taking into consideration the goal of the system (detecting collisions), lowering
the number of FNs is of the utmost importance - it is crucial that the model is able to detect all collisions
and, furthermore, detect it as soon as possible. Naturally, a high number of FPs may also be a problem -
it is not intended for the model to classify normal traffic situation as collisions.

Hence, in summary, in order to conclude which parameters perform better, it is important to analyze
how fast the collision is detected and the total number of FP cases.

Several parameters were experimented when training and testing the models, in order to find which

one performed better:

Aggregation Time - 1s, 0.5s and 0.1s.

Aggregation Type - max, min, sum and average.

Number of neurons on the models layers - 32, 64 and 128.

Different (sub)sets of input features.

Timesteps - 5, 10, 15 and 20, in the LSTMs case.

Additionally, several model variations in terms of number of hidden layers (layers between the input
and output layers) and dropout layers were evaluated (dropout layers are used to prevent overfitting in a
NN). Every model possessed an output layer with a sigmoid activation function - producing a probability
output value (value between 0 and 1).
To simplify the analysis, the results are presented regarding the best performance models for each ag-
gregation time. All the following discussed results consider the sum aggregation type - which performed

better in all cases.

6.2.1 Analysis Using Aggregation Intervals of 1.0 Seconds

Starting with the analysis of the Is results, a LSTM model with two hidden layers and two dropout
layers performed best - which had 64 neurons on the hidden layers, 5 features in the input layer (Number

of vehicles, Position X, Position Y, Heading, Vehicle Width) and 20 timesteps, as shown on Figure 6.2.
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mput: | [(None, 20, 5)]
output: | [(None, 20, 5)]

l

mput: | (None, 20, 5)
output: | (None, 20, 64)

l

mput: | (None, 20, 64)
output: | (None, 20, 64)

l

mput: | (None, 20, 64)
output: (None, 64)

l
l

mput: | (None, 64)
output: | (None, 1)

lstm_mput: InputLayer

Istm: LSTM

dropout: Dropout

Istm 1: LSTM

input: | (None, 64)

dropout_1: Dropout
output: | (None, 64)

dense: Denge

Figure 6.2: LSTM Model Summary - Aggregation Interval of 1.0s

In this case, and considering a threshold of 0.9 on the output (which means that a value greater
than 0.9 is considered a positive classification), 2 FPs and 28 FNs were found (out of 167435 entries on
the test dataset).

Most of the FNs classifications happen right at the beginning of the collision, which means that the
model is not able to detect it immediately.

As exemplified on Figure 6.3, taken from the analysis of the first collision happening on the test
dataset, the model outputs an higher value on the first occurrence (compared to the when the collision is
not yet happening) but still not high enough to be above the threshold of what is considered to be positive
(in this case >0.9). In this case, the collision is only detected on the second positive instance (in other
words, after 2s).

Naturally, lowering this threshold (e.g. threshold = 0.17) would allow to correctly classify the first
collision record and detect the collision sooner but, unfortunately, it also results in a very high number of

FPs, which makes the solution unfeasible.
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Real Value |Predicted Value
0 0.017
0 0.011
1 0.173
1 0.996
1 0.999

Figure 6.3: False Negative Example - First Collision on the Test Dataset

In summary, Table 6.2 presents the results obtained for the 1s aggregation time (how long it took

to detect the collision).

Detection Number of
Time (s) Detected Collisions
2 2
3 10
4 2

Table 6.2: Results for an Aggregation Interval of 1.0s

Considering a total of 14 collisions that happen on the test data, two collisions were detected in 2
seconds, ten in 3s and two in 4s, which results in an average detection of 3s.
At this point, and although the model is performing good in absolute values (very low number of

FPs and FNs), the collision detection results are below the expectations for an automatic system.

6.2.2 Analysis Using Aggregation Intervals of 0.5 Seconds

Looking at the results when aggregating the values in a smaller time window (now using 0.5s), the
best performing model was an MLP with two hidden layers (with 64 neurons each) and all 8 features on
the input layer (Number of vehicles, Position X, Position Y, Speed, Heading, Acceleration, Vehicle Length,
Vehicle Width), as shown on Figure 6.4.

Using this model, and considering a threshold of 0.95, a total of 29 FPs and 12 FNs were achieved.
The first noticeable difference from the previous case is the increase of FPs and FNs classifications. This
behavior was expected: using a smaller time window for the aggregation time results in more condensed
records on the dataset (using half the aggregation time roughly doubles the number of existent records).
Although 29 FPs may be considered good results in terms of the model’s overall performance, it still
may raise issues in terms of the goal of the use case: the number of FPs cases is more than double the
number of collisions happening on the training dataset (fourteen collisions), which leads to the need of

establishing a strategy to mitigate this issue (which was not a problem so far on the 1s case).
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mput: | [(None, 8)]
output: | [(None, 8)]

dengze_input: InputLayer

mput: | (None, §)
output: | (None, 64)

dense: Dense

mput: | (None, 64)

densze 1: Dense -
output: | (None, 64)

mput: | {(None, 64)
output: | (None, 1)

densge 2: Denge

Figure 6.4: MLP Model Summary - Aggregation Interval of 0.5s

The list of FPs from the test dataset is shown in Figure 6.5.

Real Predicted |Record
Value Value Index
0.96038 (46123
0.99084 |[104656
0.99230 |104658
0.99908 (123676 Immediatly
0.99760 |123677 after
0.98224 |[123678 Acident
0.98345 139291
0.97748 |145654
1.00000 (1495144
1.00000 (149145
1.00000 (149146 Immediatly
0.999599 145147 after
0.99977 [145148 Acident
0.98209 149149
0.99161 (14595150
0.96081 |[185581
0.96008 (151544
0.96156 |204029
0.97178 |218979
0.97291 |245862
0.95352 |253536
0.950859 |274851
0.98226 |[307559
0.95696 [318B679
0.95686 (319829
0.99997 |[330023 Immediatly
0.99957 |[330024 after
0.99634 |[330025 Acident
0.98126 (330795

ool | oo oo |o|0 (0|0 |o|o|o|o|o (D)ool |o|lo|olo|o|oo|o|D

Figure 6.5: Collision Detection System - List of FPs on the Test Dataset when using 0.5s for Aggregation
Time
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From the analysis of the list of FPs, two main conclusions were drawn. First, thirteen of the FPs
happen immediately after the collision is over, and in a consecutive way. This is most likely related to
the behavior of the vehicles in the mobility simulation - when the collision is over, the configuration of the
vehicles on the road is still somewhat similar for some time, which may cause the model to continue to
classify the entries as positive for some time in the end. To overcome this problem, it is proposed that
these FPs are ignored if they happen immediately after a collision has already occurred - they can safely
be disregarded.

The second conclusion is that the remaining FPs happen in isolated cases (there are not two
consecutive FPs classifications). So, to avoid FPs classifications, it is established that a collision is
detected only if the model classifies two consecutive record as positives. On the other hand, this also
means that even if the model classifies the first entry of a collision correctly, we will only consider the
collision as detected on the second entry. In other words, if the model correctly classifies the first two 0.5s
records, the collision itself will only be effectively detected in Is.

Thus, there is a certain trade-off when implementing this strategy to overcome the problem of the
FPs cases - one minimizes/mitigate the FPs problem, but also delays the actual detection on positive
cases.

This collisions detection logic, illustrated on Figure 6.6, removes all FPs cases.

; Predicted Real
Value Value
1s 0 0
25 1 0 Mot considered
3s 0 0
4 1 0 -
> False Positive
55 1 0
as 0 0
7s 1 1
a3 1 1 .
> True Positive
3085 1 1
3095 1 0 False Positive
310s 1 0 {ignored)

Figure 6.6: Collisions Detection Logic

In this case, regarding the FNs, they also tend to happen right in the beginning of the collision,
similarly to the 1s case. Table 6.3 presents the results obtained for the 0.5s aggregation time - how long

it took to detect the collision. In summary, a total of twelve collisions were detected in 1.5s and two in 1s

80



Detection Number of
Time (s) Detected Collisions

1 2
1.5 12

Table 6.3: Results for an Aggregation Interval of 0.5s

(averaging 1.43s). Hence, in terms of the time needed to detect collisions, this solution performs better
than the previous one, despite the model’s initial worse performance in terms of increasing absolute values

for FPs and FNs cases.

6.2.3 Analysis Using Aggregation Intervals of 0.1 Seconds

Finally, the 0.1sresults are consistent with the previous cases: lowering the aggregation time results
in higher FPs and FNs numbers (141 and 83, respectively). Similarly, FNs also follow the same pattern
as the other options and most of the FPs happen immediately and consecutively after a collision, while
the remaining ones happen as isolated cases, which allows to apply the same strategy, thus mitigating the

problem. Table 6.4 presents the results obtained for the 0.1s aggregation time.

Detection Number of
Time (s) Collisions

0.3 2
0.4 1
0.5 1
0.6 4
0.7 3
1
1
1

0.8
0.9
1.0

Table 6.4: Results for an Aggregation Interval of 0.1s

This way, two collisions were detected in 0.3s, one was detected in 0.4s, one in 0.5s, four in 0.6s,
three in 0.7s, one in 0.8s, one in 0.9s and one in 1s (averaging 0.62s).

These results were obtained using exactly the same model and parameters as in the 0.5s use case.
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6.3 Summary

This chapter described the results obtained when evaluating a system aimed at improving road
safety, by collecting and treating ITS data, using ML techniques in order to detect collisions related to
VRUs (motorcycles).

The tested models tend to perform relatively well but they present some limitations, specially re-
garding the high number of FPs - which were mitigated through the use of a specific collision detection
logic after the model finishes its classification. On the other hand, the use of such a detection logic of the
collision also slightly delays the detection itself, so there is a certain trade-of when applying such solution
- between the performance of the model per si and the performance of the collision detection.

Additionally, and although the performance of the models per si gets worse when lowering the
aggregation time (resulting in an higher absolute number of FPs and FNs), its capacity to detect collisions
also becomes more efficient in terms of timeliness.

With the best parameter configuration - a MLP model with two dense layers (64 neurons) and all
features on the input layer - the system was able to detect every collision in 1s or less (taking 0.62s on
average), when using the 0.1s aggregation time.

This fast detection opens the possibility to trigger passive safety measures, such as notify surround-
ing vehicles of the collision, call emergency services or divert traffic to other roads.

The next chapter of this thesis presents a more complex system for the prediction of collisions,

instead of just detecting them.
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Chapter 7

Collision Prediction System

The previous chapter focused on the development and evaluation of an automatic collision detection
system. This chapter presents a more complex safety system for VRUs - a collision prediction system.
Such a system goes beyond the simpler detection of collisions and aims to predict them in advance. It
utilizes more complex and advanced models to analyze the collected data and estimate the likelihood of
a potential collision scenarios before they occur. Naturally, by providing a predictive capability beyond the
simpler detection, and if achieved in a timely manner, it allows for preemptive driving decisions to enhance
road safety, particularly for VRUs. This chapter describes the main enhancements that were made on top
of the previously developed system, describing different possible strategies for the forecasting and several
other important considerations regarding the system optimizations, including a discussion on another main
issue in the defined use case - the dataset is imbalanced.

The previous system aimed to detect if a collision is occurring between passenger vehicles and
motorcycles at an intersection. Until this point, at every instance t, the models would take N previously
observed values (timesteps) and try to classify if that instant is part of a collision or not, as it is illustrated

in Figure 7.1.

Timesteps
A

v

Time

Figure 7.1: Collision Detection Classification
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Now it is intended to go one step further on the complexity of the solution, and try to predict the
collision in the future, instead of just detecting it. Generally speaking, when talking about forecasting, the
most common use case is the one-step ahead forecasting, where a model tries to predict one value into
the future, taking N tfimesteps of previously observed values - e.g. using the weather data of the last 7
days to predict the weather for tomorrow. The generic logic of one step-ahead prediction is illustrated in

Figure 7.2.

Timesteps
A

v

Time

Figure 7.2: One-step Ahead Forecasting

On the other hand, there is the case of multi-step forecasting, where N timesteps are used to predict
M Multi-steps (MS) in the future, as exemplified in Figure 7.3. An example of such solution is using the

weather data of the last 12 months to predict the weather for the next two months.

Prediction
Timesteps :

A
[ !

e (] [ | [ | @ @

Time

Figure 7.3: Multi-step Forecasting

Taking into consideration the proposed use case of predicting collisions, where the data aggrega-
tion is achieved in a 1s time window (further discussed ahead), the one-step ahead scheme may not be
sufficient, since it only allows for the forecasting of one second into the future (as one step equals to one
second).

Predicting collisions just one second before they happen may not allow for a proper preemptive
action (e.g. drivers won't have enough time to manually react to the warning) and even the usage of
automatic safety mechanisms (e.g. automatic breaking) may fall short, although they could minimize the

impacts of the collisions. Still, naturally, resorting to automatic safety mechanisms may also be problematic
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when considering the existence of possible False Positive cases during the forecasting - it is not intended
for the system to automatically act on such cases (breaking in situations where it shouldn'’t).

For that reason, it is pre-established as a requirement that the forecast of the collisions should be
achieved using the multi-step forecasting, and it should be within a reasonable time frame that allows for

preemptive defensive actions by the drivers (further discussed ahead).

7.1 Multi-Step Forecasting Strategies

When talking about multi-step forecasting, there are different strategies that could be followed to
make the forecasts [121], which are discussed next.

The first possible strategy is the Direct Multi-step Forecasting. This direct method requires the use
of a separate model for each forecast MIS. This means that, if one want to forecast 2 seconds into the
future using the last 5 observed seconds, two different and separated models should be developed - one
for each step in the future. However, using a solution where a unique model is needed for each step in the
future may soon become very heavy in terms of computation requirements (and also on the maintenance

of the solution itself), which can be a major drawback. This method is illustrated on Figure 7.4.

Timesteps -
A
[ |
a8 a8 e a8 e @ O
Time
Timesteps -
|
[ \ :
] ] ] e 6 0O @
Time

Figure 7.4: Multi-step Forecasting - Direct

A second possible strategy - Recursive Multi-step Forecasting - consists in the usage of a one step
ahead model where the prediction of the model is recursively used as input for the forecast of the next
steps. This means that, using the same analogy of predicting the next two seconds, the model would first
predict the value for the 1% second and then use that prediction as an observation value (timestep) for the

next prediction. This strategy is illustrated on Figure 7.5.
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Model’s 1st Prediction

Timesteps ————
A )
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Time
Model’s 2nd Prediction
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[ \ .
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Time

Figure 7.5: Multi-step Forecasting - Recursive

The main downside of this strategy is that it relies on the usage of predictions instead of real
observations, which can cause the accumulation of prediction errors and ultimately lead to degradation of
the performance of the model’s forecast (specially as the number of MS grows).

A third possible solution is the usage of a strategy that combines the first two - Direct-Recursive
Hybrid Forecasting. Using such mechanism, it is possible to developed separated models for each step to
be predicted but use the prior model’s predictions as input for the next ones. This behavior is illustrated
on Figure 7.6.

Naturally, and although this solution may try to overcome the limitations of the Recursive Multi-step
forecast, it still may possess the same limitations of the Direct Multi-step - heavy in terms of computation

and maintenance.

Model1l Prediction

Timesteps ——————
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[ | N
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Time
Model2 Prediction
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Time

Figure 7.6: Multi-step Forecasting - Direct-Recursive Hybrid
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Finally, a more straightforward solution is the simple usage of a single model to predict the entire
forecast (all time steps in the future) - called Multiple Output Forecasting, as illustrated on Figure 7.7.
These kind of models may eventually become more complex as they learn the dependencies between
the inputs and the multiple outputs, which can cause them to be slower during training and be prone to

overfitting (they typically require more data for proper training).

Timesteps

A
[ |
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Time

Figure 7.7: Multi-step Forecasting - Multiple Output

The main advantages and disadvantages of the four described strategies are presented on Table 7.1.

Strategy Advantages Disadvantages

Complex: Developing and managing several
models is challenging.

High computational cost: Multiple models
requires significant computational resources.
Lack of global knowledge: Using separate
models for each step may not capture the
overall system dynamics as effectively.

Flexible: Each individual model can
be adapted to the data of a specific
timestep.

Allows individual Tuning: Models
parameters can be tuned individually,
potentially leading to better results.

Direct

Accumulated Errors: Errors can propagate
with each successive step (potentially
amplifying each time).

Slower inference: Having a sequential
process for prediction is slower
(compared to direct strategies).

Recursive Simple to implement

Combines the advantages of both

Direct- . : .
] direct and recursive strategies. . .
-Recursive . _ More complex implementation
. Better error handling than direct
Hybrid .
multistep
Models are more complex, as they forecast
Multiple Simple to implement several steps
P Less error accumulation than the Potential high computation cost: forecasting
-Output . . .
other strategies multiple steps simultaneously can be

computationally demanding.

Table 7.1: Main Advantages and Disadvantages of the Multi-step Forecasting Strategies
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Taking into consideration the pros and cons of said solutions, it was established that the Multiple
Output Forecasting would be used to predict the collisions. This strategy requires only the usage of a single
model and relies only on real observed values to predict future ones (avoiding error propagation), despite

the potential higher computational costs.

7.2 System’s Development - Considerations and Discussion

The process of developing the model’s for the prediction was reasonably similar to the detection
process and the same two types of NNs were tested: MLPs and LSTMs. The same data was used to
feed the models and the same variations of parameters were trained and tested (set of input features,
number of layers, number of neurons, and so on).

However, regarding the prediction of the collision, only the 1.0s aggregation time was considered.
Lowering the value of the time window makes it harder to perform the forecast, as more MS are required
(e.g. using the 0.5s aggregation requires the double of the MIS to forecast the same time window, when
compared to the 1.0s). On the other hand, enlarging the time window (e.g. aggregating for 2.0s, 3.0s and
so on) dilutes the information and makes it less precise, which could lead to worse performances. For
that reason, that option was not explored.

The process of developing the best performing models was arduous and immensely time consum-
ing. It occupied most of the time dedicated to the thesis and it took several months of work to be able to
achieve the first promising results (which were still very far away from the expected). Optimizing the pre-
diction models was hard to learn and required great effort, especially as there wasn’t any kind of previous
experience on the (complex) subject.

At first, this process of trying to establish a stable and good performing model was achieved con-
sidering only Scenario A. The first attempts to predict the collisions were mostly unproductive and unsuc-
cessful. This was mostly related to the fact that the datasets were highly imbalanced. Despite the models
having good training results in terms of the traditional metrics such as Accuracy, Precision, Recall, and
even F-Score measures (all values very close to 100%), the collisions could simply not be predicted. Fig-
ure 7.8 presents a fictitious (simple) example to better understand why the predictions were not working
as intended. In this simplified example, the model tries to predict 1 second into the future, outputting a
value between 0 and 1 using a sigmoid output dense layer (one assumes a positive classification if the
value is equal or greater to 0.5). In this example, the model is able to predict accurately 90% of the time.

However, the model does not predict correctly the first instance of the collision (t=5, identified in red, is
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the most crucial point of prediction). Despite accurately predicting =6, the collision had already occurred

at that stage. Hence, the collision was not in fact predicted in useful time.

Real Value | Predicted Value
0 0.12

0.15

0.21

0.16

0.19

o |

0.56

0.75 Collision

0.99

1.00

W o [~ | | [ |w |- S|~
R T I T T T T e e

Figure 7.8: Failing Collision Predictions - Simple Example

The results were similar to the example even when using larger values for MS (predict more sec-
onds into the future). Lowering the threshold value for the output (e.g., equal or greater than 0.2 as in
the example) was a possible solution to overcome the problem. However, and as expected, using lower
threshold values resulted in very large numbers of FPs (considering the example, using a threshold of 0.2
results in a FP in =2). Hence, it was not a viable solution.

The first attempt at improving the model’s performance was to test different feature selection meth-
ods. The feature selection process is useful to reduce the number of input variables when developing a
predictive model. By using less variables, the computation cost is also reduced and, in some cases, the

performance of the models may actually be improved. The following methods were explored:

Variance Threshold This method removes features with low-variance (variance is a measure of how
much the values of a feature vary in the dataset. Features with low variance have similar values for
most of the dataset, while features with high variance have a wider range of values. For instance,
features that have constant values in all samples (zero variance) don’t contribute much to the
learning process, and should be removed. On the other hand, features with higher variance should
be kept, as they show more significant variations in the data. Figure 7.9 presents the selected

features (green cells) when using a threshold ¢ = 0.1 (a typical value).

Variance Threshold [ nVehicles| PosX PosY Speed | Heading |Acceleration| Length Width
threshold = 0.1

Figure 7.9: Feature Selection Results - Variance Threshold
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Univariate feature selection This technique works by selecting the best features based on univariate
statistical tests. In this case, two were tested: selectkBest (removes all but the k highest scoring
features) and selectPercentile (removes all but a highest scoring percentage of features). Figure 7.10
presents the selected features (green cells) for those methods. Both selection methods achieve the

same results, consistent with Variance Threshold when considering six features.

Univariate Feature Selection | nVehicles Heading | Acceleration| Length

SelectKBest

k=6
p=30
p=50
p=60
p=80

SelectPercentile

Figure 7.10: Feature Selection Results - Univariate Feature Selection

Recursive feature elimination RFE is a wrapper-type feature selection method. A different ML algo-
rithm is wrapped by RFE and used to help select features. This method fits a model and removes
the weakest feature(s) - it ranks features by importance and discards the least important feature,
and re-fits the model. This process is repeated until achieving the specified number of desired
features. Naturally, this approach is more heavy in computational terms when in comparison to
the first ones. Figure 7.11 presents the selected features (green cells) when using the DT and LR

estimators.

Recursive Feature Selection | nVehicles| PosX Heading | Acceleration| Length Width
k=3
Logistic k=4
k=5

k=6

Regression

k=3

Decision Tree k=4
Classifier k=5
k=6

Figure 7.11: Feature Selection Results - Recursive Feature Selection

Sequential Feature Selection Sequential Feature Selection (SFS) is a greedy method for select-
ing features. It can work in two manners: Forward-SF$ starts with zero features and adds a new
best feature iteratively (based on the score obtained by the estimator), until the desired number

of features is reached; Backward-SFS works similarly but instead of starting with zero features, it
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starts with all features and greedily remove features from the set. Figure 7.12 presents the selected

features (green cells) when using the same estimators as RFE (DT and LR).

Sequential Feature Selection| nVehicles| PosX PosY Heading | Acceleration
k=3
Decision Tree k=4
(Forward) k=5

k=3
Decision Tree k=4
(Backwards) k=5

Logistic
Regression
Forward
( ) -
_— k=3
OgIStI.C -
Regression k=5
(Backwards) —
k=6

Figure 7.12: Feature Selection Results - Sequential Feature Selection

Table 7.2 presents the summary results of the achieved study. The table presents the number of
total selections and the percentage of selections for each feature. This approach assigns more weight
to features which are first selected for lower k values (meaning they are more relevant). Considering the
example of LR (Backwards) from SFS, PosY, Speed and Heading will have the higher value (4), followed
by Acceleration (3), then Width (2) and finally nVehicles (1). In this case, PosX and Length have a value
of 0, as they were not selected. Based on that logic, the table finally presents the ranking results of the

features, being Speed the most relevant and Acceleration the least relevant.

Features nVehicles PosX PosY Speed Heading Acceleration Length Width

Total selections 26 23 23 32 28 13 18 23
Percentage 14% 12% 12% 17% 15% 7% 10% 12%
Ranking 3 4 4 1 2 6 5 4

Table 7.2: Feature Selection - Summary Results

Additionally, a subset of features was also selected from an analysis of the features values on
collision points. Figure 7.13 presents the features values from 50 seconds before and after a collision
(that happens on =50, represented by inCollision), taken from the 1%t collision on the train dataset of
Scenario A.

Subfigure 7.13a presents all the features, while subfigure 7.13b presents only the selected features

which values that tend to grow and approach 1 when a collision occurs. In this case, the Speed and
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Acceleration features were removed from this particular set, as they followed a different pattern from the

other features.

1.0 4
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inCollision

VehicleCount
PosX

PosY

Heading
VehicleLength
VehicleWidth
inCollision

Figure 7.13: Feature Selection: Collision Point Analysis (Scenario A 1%t Collision on Train Dataset)

Hence, considering the previous discussion, the following subsets of features were selected for

training and testing the models:

[speed, Heading, nVehicles]

[speed, Heading, nVehicles, PosX, PosY]

[speed, Heading, nVehicles, PosX, PosY, Width]

[speed, Heading, nVehicles, PosX, PosY, Width, Length]
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* [speed, Heading, nVehicles, PosX, PosY, Width, Length, Acceleration] - All Features

* [nVehicles, Heading, PosX, PosY, Width, Length] - Taken from manual observation of the

collision

Testing several conjugations of parameters took a lot of time to perform, and the gain was at
first, minimal. Despite the efforts, the best performing models would still only be able to predict one third
(roughly) of the collisions accurately, while still having a high number of FPs. These results were consistent
(both in LSTMs and MLPs) despite several attempts to improve the training of the model: using different
data preprocessing techniques (standardization vs normalization); experimenting with hyper-parameter
optimization techniques (Grid Search and Random Search); and other tweaks (e.g., using sum vs average
when aggregating the data).

The fact that the models were unable to produce acceptable results raised questions regarding the
datasets that were being used. In particular, whether the available amount of data was sufficient for the
model’s to converge and learn. Despite the fact that the datasets contained hundred’s of thousands of
entries, the collisions were still rare occasions - a few tens of collisions on the training data. So, to try
to understand if this could be the cause for the model’s poor performance, more simulation runs were
performed to collect more data and build new datasets - first 20 runs were trained and tested, then 30,
50 and finally 100.

In fact, increasing the amount of data greatly improved the performance of the forecasts, which
led to the conclusion that there was an insufficient amount of data for the model’s to converge properly
- although this was previously not an issue, when performing the collision detection. The models were
achieving higher numbers of accurate positive collision predictions when increasing the data collection to
20, 30 and 50 runs - the accuracy was getting higher as the number of total simulation runs to compile
the datasets was raising. However, no meaningful differences were noticed when raising from 50 to 100
simulation runs in terms of the prediction capacity ability, but the 100 runs made the learning computation
much heavier. For that reason, the results presented ahead rely on the usage of the 50 datasets to compile
a very large dataset for training (80%), for validation (10%) and testing (10%).

However, increasing the amount of data naturally makes the learning process much slower and
heavier in terms of computation (it even caused issues in terms of memory when using the larger values
of timesteps and MS). In order to overcome that limitation, the training data was truncated on those
large periods of time where there are no collisions. Different time windows (1000s, 1500s and 2000s)
were tested to check which one performed better - e.g. keep 1000s before and after every collision, while

removing the remaining information. The validation and test data remained unmodified. This solution is
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illustrated on Figure 7.14.

[l collision

[ Time Window Data (Keep)

. Unnecessary Data (Remove)

Figure 7.14: Truncating Unnecessary Data - Time Window Logic

Such a solution also helps to deal with the data imbalance. By removing those large amounts of less
useful information, one is also reducing the amount of negative samples - in other words, undersampling
the majority class, as discussed before on section 6.1. Naturally, by making the dataset more balanced,
it also helps the model to converge better and to perform more accurate predictions.

All things considered, the established architecture (the one which had the highest number of pre-
dicted collisions so far) consisted on three LSTM layers and two dropout layers (used to prevent overfitting).
It used all features on the input layer and the sum aggregation method for the input data. Additionally,
it resorted to the hyperbolic tangent (tanh) activation function in all LSTM layers (the activation function
helps determine the output of that layer - how the weighted sum of the input is transformed into an output
from a node). The output layer used a sigmoid activation function, taking the input from the previous layer
and producing a probability (value between O and 1) to produce the output. The comparison between
the models performance (in this stage of establishing an architecture) considered a threshold=0.5 on this

output layer.
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The model architecture was compiled using binary crossentropy for the loss function and the Adam
optimizer.

The final established architecture of the model is presented on Figure 7.15.

Input
(8 features)

A

LSTM Layer

[ neurons, activation=tanh, input_shape=(timesteps, features), return_sequences=True }

A

[ LSTM Layer }

neurons, activation=tanh, return_sequences=True

Dropout (0.3)

A

LSTM Layer
neurons, activation=tanh
Dropout (0.3)
Output (Dense) Layer
(multisteps, activation=sigmoid)

Figure 7.15: The Established ML Model Architecture for the Collision Prediction System

This architecture was established to be used for the collisions prediction system evaluation that is
presented on section 7.3 (in both scenarios). The next section results explored the usage of the following

parameters:

Batch size - 64, 128, 256

Neurons - 16, 32, 64

Timesteps - 10, 15, 20

MS-1,2 3,45

Time Window - 1000s, 1500s, 2000s
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7.3 Evaluation of the Collisions Prediction System

The results that are discussed next were achieved in an iterative fashion. This means that first,
different sets of parameters for one-step ahead forecast (1s in the future) were trained and tested. Then, the
best performing runs were used to perform the multi-step forecast. Naturally, this procedure may not end
up presenting the optimal results - some other parameters that were not tested could eventually perform
better. However, performing all runs on all is very consuming, both in terms of time and computation -
which makes it impractical.

As stated on the before on section 4.3, only two scenarios were explored due to some limitations

on the SUMO simulator behavior regarding collisions. Results are then presented in an individual manner.

7.3.1 Results for Scenario A

This subsection presents the best achieved results for Scenario A, where the Correct Decision
Percentage (CDP) is higher than 33% (this metric is further discussed ahead). The remaining runs,
who achieved lower CDP, are disregarded from this point on.

The first part of the results, presented on Table 7.3, show some partial results of the Model.evaluate()
function that is available on the Tensorflow built-in APl (which returns both the loss and metrics values of

the model after testing it, using the test dataset).

Time Batch
Run Window Size Neurons Timesteps | Precision Recall F-Score
3 2000 256 16 10 0.9981 0.9990 0.9985
6 2000 128 32 10 0.9979  0.9993 0.9986
8 1500 256 32 15 0.9986  0.9990 0.9988
11 1500 128 32 20 0.9986  0.9825 0.9905
15 2000 128 64 15 0.9977 0.9983 0.9980
17 1500 256 64 20 0.9979  0.9992 0.9986
21 2000 256 64 10 0.9981 0.9991 0.9986

Table 7.3: Scenario A: One-step Ahead Forecasting Results - Part |

Similarly to what was discussed before, typical metrics such as Precision, Recall or F-Score (ex-
emplified on the table) do not allow by themselves to make decisions on which model performs best - all
values are very close to 1 (100%). For that reason, a more in-depth analysis was also needed.

Considering the use case of predicting collisions, the most important metric is, in a first instance,

the Collision Prediction Percentage (CPP) - how many collisions from the test dataset were in fact
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predicted. The second most important metric is the number of FPs - situations where the model wrongly
forecasts a collision.
In order to make a proper decision related to these two metrics, a new metric that combines them

was defined:
Predicted Collisions

False Positives + Total Collisions

Correct Decision Percentage =

The CDP metric gives a value related to the number of correct decisions in the critical points
of decision:. the collisions and the FPs instances as well. In other words, it states how many positive
predictions were actually correct (in percentage).

As a simple example, imagining a situation where a model predicts 5 collisions accurately (out of

10 existent collisions) and 15 FP, it means the system had a CDP of:

Correct Decision Percentage = = 0.2 =20%

15+ 10

In other words, only 20% of the decisions taken at the critical points were correct.

For each run, different thresholds were tested in order to achieve the best CDP value. This analysis
was achieved using Microsoft Excel, using a spreadsheet that computes the number of predicted collisions
(percentage as well) and the list of FPs for a given threshold - which ultimately allows to compute the CDP.

The summary of the analysis of that metric is presented on Table 7.4 and on the bar charts on

Figure 7.16.
Collisions Correct
Predicted Prediction False Decision
Run Threshold Collisions Percentage Positives Percentage

3 0.50 38 67% 39 40%
6 0.70 41 72% 27 49%
8 0.69 42 74% 20 55%
11 0.50 40 70% 30 46%
15 0.70 41 72% 36 44%
17 0.60 44 77% 36 47%
21 0.80 37 65% 22 47%

Table 7.4: Scenario A: One-step Ahead Forecasting Analysis - Part ||
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Predicted Collisions Percentage of Predicted Collisions

45 80%
43 75%
41
70%
39
37 I 65% I I
35 I 60%
3 6 8 11 15 17 21 3 6 8 11 15 17 21
Run Run
False Positives Correct Decision Percentage
40 60%
35 50%
40%
30
30%
25
20%
20 I I 10%
15 0%
3 6 8 11 15 17 21 3 6 8 11 15 17 21
Run Run

Figure 7.16: Scenario A: One-step Ahead Forecasting Analysis (Bar Charts)

When looking at the results, the best performing run regarding the CDP metric is number 8, with
55% of correct decisions. Although, for instance, Run 17 predicted correctly more collisions (44 instead of
42 on Run 8), it has an higher number of FPs (36 vs 20), which leads to globally worse performance. This
is the reason why the comparison is mostly based on CDP, which relates both metrics, and not simply on
the number of total predicted collisions.

All of the aforementioned runs were selected to train and test new models for the multi-step fore-
casting, using the same parameters from Table 7.3. The obtained results are presented on Table 7.5.

Globally, the obtained results were positive. If one takes Run 8 as an example (which was the best
performing run on the one-step ahead forecast), the CPP was high for every MS possible - the lowest
score was obtained at 2 MS, but still all of them managed to predict at least 50 collisions (in 57 possible).

However, there are still present a relatively high number of FPs, specially as the number of MS
increases. Taking the 2 MS run as example, we have a total of 42 FPs and 50 predicted collisions (out of
57). This means that the number of FPs is somewhat close to the number of actual correct predictions.

The two and three MIS runs were able to keep the CDP above the 50% - in other words, at least
one in every two predictions actually predicts in collision. However, as the number of MS increases, this
metric’s values decrease - at 5 MS, the number of correct decisions is roughly one in every four (24%), a

much lower value.
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Collisions Correct Average

Multi- False  Predicted Predictions Decision Prediction
Run -steps Positives Collisions Percentage Percentage Time (s)
2 51 51 89% 47% 1.76
3 3 54 47 82% 42% 2.49
4 44 49 86% 49% 2.29
5 69 52 91% 41% 3.33
2 43 52 91% 52% 1.81
6 3 34 47 82% 52% 2.70
4 55 50 88% 45% 2.48
5 81 55 96% 40% 4,51
2 42 50 88% 51% 2.06
8 3 40 52 91% 54% 2.67
4 59 53 93% 46% 2.74
5 170 54 95% 24% 4.56
2 45 43 75% 42% 1.98
1 3 45 52 91% 51% 2.90
4 39 49 86% 51% 2.76
5 78 55 96% 41% 4.53
2 39 45 79% 47% 1.82
15 3 39 49 86% 51% 2.76
4 49 52 91% 49% 2.88
5 84 53 93% 38% 4.26
2 49 47 82% 44% 2.00
17 3 36 49 86% 53% 2.63
4 64 54 95% 45% 2.72
5 82 55 96% 40% 4.56
2 38 47 82% 49% 2.00
o1 3 41 52 91% 53% 2.65
4 49 50 88% 47% 3.02
5 88 54 95% 37% 4.50

Table 7.5: Scenario A: MS Forecasting Results

In this case, the sweet spot seems to be at 3 MIS, where the model is able to keep the CDP above
50% and achieved an Average Prediction Time (APT) of 2.67s.

Here, the model’s APT is slightly lower than 3 seconds because the model doesn't always neces-
sarily predict the collision exactly 3 seconds before it happens - the model tries to forecast three values at
every instance (every second) but the correct prediction may be achieved earlier or later.

Table 7.6 illustrates an example (taken from real results) for a prediction that happens exactly three
seconds before the collision happens - at index t = 13330, being ¢ = 13333 the moment the collision

Ooccurs.
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Real value Predicted Value
t+1 t+2 t+3 t+1 t+2 t+3

13328 0 0 0 | 0.0000 0.0000 0.0000

Index (t)

13329 0 0 0 | 0.0000 0.0000 0.0000
13330 0 0 1 | 0.0000

13331 0 1 1 | 0.0006

13332 1 1 1

13333 1 1 1

13334 1 1 1

Table 7.6: Scenario A: Run 8, 3 MS - 3 Seconds Prediction

Table 7.7, on the other hand, presents an example (also from real results) of a later prediction,

achieved 2 seconds before the collision.

Real value Predicted Value
t+1 t+2 t+3 t+1 t+2 t+3

2496 0 0 0 | 0.0000 0.0000 0.0000

Index (t)

2497 0 0 0 | 0.0000 0.0000 0.0000
2498 0 0 1 | 0.0000 0.0009 0.3633
2499 0 1 1 | 0.0001

2500 1 1 1

2501 1 1 1

2502 1 1 1

Table 7.7: Scenario A: Run 8, 3 MIS - 2 Seconds Prediction

As it is possible to see, at index ¢ = 2498 (3 seconds before the collision), the model was not yet
able to predict correctly the collision. Although the predicted value for ¢t + 3 is already higher when in
comparison to the previous rows (0.3633), it still does not reach the threshold value for positive cases (on
this particular case, threshold = 0.5).

Similarly to the problem that existed in detection of collisions, lowering the threshold value would
result in earlier predictions, but it would also raise the number of FPs cases (which are meant to be
avoided). From that perspective, it exists a certain trade-off - one sacrifices a better APT to avoid further
FPs cases.

Hence, and since the model only correctly predicts at index ¢ = 2499, the collision is predicted

only 2 seconds before it actually happens.
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Finally, on Table 7.8, there is an example of earlier prediction (4 seconds).

Real value Predicted Value
t+1 t+2 t+3 t+1 t+2 t+3

19615 0 0 0 | 0.0000 0.0000 0.0000
19616 0.0000 0.0042
19617
19618
19619
19620
19621

Index (t)

= = = O OO
— = = = O O
_ = = = = O

Table 7.8: Scenario A: Run 8, 3 MS - 4 Seconds Prediction

In this example (also from real results), the prediction time is higher than the 3 seconds established
for the prediction. As it is possible to see on index ¢ = 19616, the model wrongly classifies the ¢ + 3
value - positive when the real value is negative. This is not considered towards the FPs case count, since
the collision happens immediately after.

Finally, the prediction time results for Run 8 (3 MS) are presented on Table 7.9.

Prediction Time (s) Number of Collisions

4 4
3 29
2 17
1 2
Not detected 5

Table 7.9: Scenario A: Run 8, 3 MS - Prediction Time Results

In summary, the Run 8 (3 MS) model was able to correctly predict 91% of the collisions (52 out
of 57), with a CDP of 54% when considering the FPs. The collisions prediction was achieved on a 2.67s
average.

Although this discussion regarding Run 8 is helpful to understand how the results were computed,

it is more interesting to debate the results organized by MS.
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Table 7.10 presents the results for two MS on Scenario A.

Collisions Correct Average
False Predicted Prediction Decision  Prediction
Run Positives Collisions Percentage Percentage Time (s)

3 51 51 89% 47% 1.76
6 43 52 91% 52% 1.81
8 31 45 79% 51% 1.84
11 45 43 75% 42% 1.98
15 39 45 79% 47% 1.82
17 49 47 82% 44% 2.00
21 38 47 82% 49% 2.00

Table 7.10: Scenario A: Two MS Results

Here, only two models had a CDP over 50% - Run 6 and Run 8. When comparing these two, it is
possible to conclude that Run 6 outperforms Run 8 - although it has more FPs (43 vs 31), it performed
much better by predicting more collisions (91% vs 79%), which eventually resulted in a marginally higher
CDP value.

Regarding the APT, they performed similarly (1.81s vs 1.84s). Thus, one can conclude that Run 6
is the best performing one when considering 2 MS forecasting.

Table 7.11 presents the results for three MIS on Scenario A.

Collisions Correct Average
False Predicted Prediction Decision  Prediction
Run Positives Collisions Percentage Percentage Time (s)

3 54 47 82% 42% 2.49
6 34 47 82% 52% 2.70
8 40 52 91% 54% 2.67
11 45 52 91% 51% 2.90
15 39 49 86% 51% 2.76
17 36 49 86% 53% 2.63
21 41 52 91% 53% 2.65

Table 7.11: Scenario A: Three MS Results

Here, the results are similar between the runs - with exception to Run 3, which did not reach a CDP
value of at least 50%. In terms of the collision prediction performance, the best runs (Run 8, 11 and 21)
performed equally well - with 91%. In that sense, they only differ in terms of FP and the APT: Run 11 had
the best APT, while Run 8 and 21 were very similar (2.67s vs 2.65s); However, in terms of FPs, Run 8
was the best - 40 vs 45 and 41.

Thus, considering all points, Run 8 was considered the best performing overall.
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The results for four MS on Scenario A are illustrated on Table 7.12.

Collisions Correct Average
False Predicted Prediction Decision  Prediction
Run Positives Collisions Percentage Percentage Time (s)

3 44 49 86% 49% 2.29
6 55 50 88% 45% 2.48
8 59 53 93% 46% 2.74
11 39 49 86% 51% 2.76
15 49 52 91% 49% 2.88
17 64 54 95% 45% 2.72
21 49 50 88% 47% 3.02

Table 7.12: Scenario A: Four MS Results

When using 4 MS for the forecasting, only Run 11 was able to achieve a CDP of at least 50%.
Although some other runs had better collision prediction capabilities (e.g. Run 17 with 95%), they also had
a larger number of FPs, which lowered the CDP value. Thus, and since Run 11 was the only run who
could at least make a correct decision in every two, it was considered the best performing run overall.

Finally, table 7.13 shows the results for five MS on Scenario A.

Collisions Correct Average
False Predicted Prediction Decision Prediction
Run Positives Collisions Percentage Percentage Time (s)

3 69 52 91% 41% 3.33
6 81 55 96% 40% 4.51
8 170 54 95% 24% 4.56
11 78 55 96% 41% 4.53
15 84 53 93% 38% 4.26
17 82 55 96% 40% 4.56
21 88 54 95% 37% 4.50

Table 7.13: Scenario A: Five MS Results

On these forecasts, none of the model’s was able to achieve a CDP over 50% - although they all
had excellent results in terms of collisions prediction percentage (all above 90%), they all also had high
FPs classifications. Run 3 possessed the least FPs but, in the other hand, it also had the worst APT. All
things considered, Run 11 was the best performing model, with the higher values for CPP and CDP.
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Table 7.14 summarizes the results for the best performing runs by multi-step. Runs 6 and Run 8
performed better for lower MS while Run 11 performed better for higher MIS. Furthermore, and in terms

of CPP, all the results can be considered good since most of the collisions were correctly predicted.

Collisions Correct Average
False Predicted Prediction Decision Prediction
MS Run Positives Collisions Percentage Percentage Time (s)

2 6 43 52 91% 52% 1.81
3 8 40 52 91% 54% 2.67
4 11 39 49 86% 51% 2.76
5 11 78 55 96% 41% 453

Table 7.14: Scenario A: MS Summary Results

One of the main difference in the results is related to the number of FPs classifications: they get
higher when using the highest value of MS (the further we try to predict into the future, the higher the
number of FPs). When comparing the three MS and four MS forecasts, there is little difference on the
APT (which is somewhat transversal to all runs). From that point of view, and as the CPP is similar, using
an additional multi-step results in an heavier computing with no performance payoff.

However, things get different when using five MIS instead of just four. In this case, the APT get
larger, although they come at the cost of more FPs and a worse CDP. There is a trade-off notion present
here: we have worse performance overall but, from the road users perspective, there is more time to make
decisions and act upon the predictions.

Thus, in summary, the results can be then evaluated from two points of view: if one considers that
the CPP and CDP are the most important metrics, using three MS is the best solution; on the other
hand, if one considers that the CPP and APT are the most important, it is better to resort to five MS

forecasting.

7.3.2 Results for Scenario B

This subsection presents the best results for scenario B. Similarly to Scenario A, one only considers
the runs where the CDP is higher than 33% (the remaining runs are disregarded). The first part of the

results show part of the output results of the Model.evaluate() function, presented on Table 7.15.
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Time Batch
Run Window Size Neurons Timesteps | Precision Recall F-Score
5 1500 128 32 10 0.9981 0.9993 0.9987
9 2000 128 32 15 0.9982 0.9994 0.9988
12 2000 128 32 20 0.9978 0.9991 0.9984
14 1500 128 64 15 0.9981 0.9992 0.9987
17 1500 256 64 20 0.9984  0.9990 0.9987
18 2000 256 64 20 0.9985  0.9990 0.9988
20 1500 256 64 10 0.9978  0.9992 0.9985

Table 7.15: Scenario B: One-step Ahead Forecasting Results - Part |

Once again, these typical metrics (Precision, Recall or F-Score) do not allow by themselves to make
decisions on the model’s performance - all values are very close to 1 (100%), so a a more in-depth analysis
is also needed, considering the CDP. The summary of the analysis of the correct decisions is presented

on Table 7.16.

Collisions Correct
Predicted Prediction False Decision
Run Threshold Collisions Percentage Positives Percentage

5 0.50 41 72% 52 38%
9 0.60 4] 72% 34 45%
12 0.60 43 75% 42 43%
14 0.65 35 61% 27 42%
17 0.75 36 63% 18 48%
18 0.74 37 65% 15 51%
20 0.50 44 77% 54 40%

Table 7.16: Scenario B: One-step Ahead Forecasting Analysis - Part ||

When looking at the results, and at this point of using only one-step ahead forecast, the best
performing run is number 18, with 51% CDP. As was done before in Scenario A, these best performing
run parameters were selected to train and test new models for the multi-step forecasting. The results are

presented on Table 7.17.
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Collisions Correct Average

Multi- False  Predicted Predictions Decision Prediction
Run steps Positives Collisions Percentage Percentage Time (s)
2 73 42 74% 32% 2.00
5 3 51 50 88% 46% 2.88
4 57 51 89% 45% 3.00
5 96 54 95% 35% 4.59
2 31 41 72% 47% 2.00
9 3 58 41 72% 36% 3.00
4 36 35 61% 38% 2.60
5 86 50 88% 35% 4.04
2 49 36 63% 34% 1.97
1 3 57 42 74% 37% 2.57
4 68 48 84% 38% 2.83
5 89 54 95% 37% 4.59
2 53 43 75% 39% 2.02
14 3 57 48 84% 42% 2.77
4 47 51 89% 49% 2.90
5 68 54 95% 43% 4.44
2 61 50 88% 42% 1.90
17 3 41 50 88% 51% 3.00
4 55 52 91% 46% 2.90
5 73 54 95% 42% 4.48
2 43 46 81% 46% 1.98
18 3 42 54 95% 55% 2.87
4 33 51 89% 57% 2.94
5 80 53 93% 39% 4.45
2 53 47 82% 43% 1.98
20 3 75 53 93% 40% 2.75
4 58 52 91% 45% 2.94
5 105 54 95% 33% 4.54

Table 7.17: Scenario B: MIS Forecasting Results

The first difference that can be found, when comparing to the results of Scenario A, is that the
models ability to take correct decisions is globally lower (only a few of the runs were able to keep a CDP
above the 50% threshold). Nonetheless, the models were still able to have high values regarding the
number of predict collisions and similar results regarding the APT.

The remaining results will be presented following the same structure as on the previous section for
Scenario A, organized by MS.

Table 7.18 presents the results for two MS on Scenario B.
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Collisions Correct Average
False Predicted Prediction Decision  Prediction
Run Positives Collisions Percentage Percentage Time (s)

5 73 42 74% 32% 2.00
9 31 41 72% 47% 2.00
12 49 36 63% 34% 1.97
14 53 43 75% 39% 2.02
17 6l 50 88% 42% 1.90
18 43 46 81% 46% 1.98
20 53 47 82% 43% 1.98

Table 7.18: Scenario B: Two MS Results

Here, none of the runs was able to achieve a CDP value above 50% (the higher values were achieved
by Run 9 and Run 18, with 47% and 46%, respectively). Although the first one achieved an higher value
for CDP, the CPP is much lower (72% vs 81%). Given that both had similar results for the APT, Run 18
can be considered the best performing one for two MS.

Table 7.19 presents the results for three MS.

Collisions Correct Average
False Predicted Prediction Decision  Prediction
Run Positives Collisions Percentage Percentage Time (s)

9) 51 50 88% 46% 2.88
9 58 41 72% 36% 3.00
12 57 42 74% 37% 2.57
14 57 48 84% 42% 2.77
17 41 50 88% 51% 3.00
18 42 54 95% 55% 2.87
20 75 53 93% 40% 2.75

Table 7.19: Scenario B: Three MS Results

In comparison to the two MS results, the CDP values got globally higher. Here, two runs were able
to make at least a correct decision for every two decisions: Run 17 and Run 18. The results regarding
FPs and APT were very similar - 41 vs 42 and 3s vs 2.87s. The main difference relies on the CPP where
Run 18 outperformed Run 17-95% vs 88%. For that reason, Run 18 was considered the best run overall.

The results for four MS are illustrated on Table 7.20.

When using four MS for forecasting (similarly to what happened on Scenario A), only Run 18 was
able to achieve a CDP over 50% (57% on this case). Although Run 17 and Run 20 had one more collision
detected, the number of FPs was much higher, which made them worst solutions. Hence, Run 18 was

the best performing run.
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Collisions Correct Average
False Predicted Prediction Decision  Prediction

Run Positives Collisions Percentage Percentage Time (s)
5 57 51 89% 45% 3.00
9 36 35 61% 38% 2.60
12 68 48 84% 38% 2.83
14 47 51 89% 49% 2.90
17 55 52 91% 46% 2.90
18 33 51 89% 57% 2.94
20 58 52 91% 45% 2.94

Table 7.20: Scenario B: Four MS Results
Finally, Table 7.21 presents the best results for five MS on Scenario B.
Collisions Correct Average
False Predicted Prediction Decision Prediction

Run Positives Collisions Percentage Percentage Time (s)
5 96 54 95% 35% 4.59
9 86 50 88% 35% 4.04
12 89 54 95% 37% 4.59
14 68 54 95% 43% 4.44
17 73 54 95% 42% 4.48
18 80 53 93% 39% 4.45
20 105 54 95% 33% 4,54

When using the five MIS forecasting, none of the models was able to achieve a CDP above 50%,
although they all had very good results for CPP (at least 50 collisions out of 57 predicted). The CDP is
lower because all models presented a high number of FPs classifications. Run 14 can be considered the

best, since it had the fewest FP classifications and an APT of 4.44s - most runs also performed around

Table 7.21: Scenario B: Five MS Results

4.5s, with exception to Run 9.

Table 7.22 summarizes the results for the best performing runs by multi-step.

Collisions Correct Average
False  Predicted Prediction Decision  Prediction
MS Run Positives Collisions Percentage Percentage Time (s)
2 18 43 46 81% 46% 1.98
3 18 42 54 95% 55% 2.87
4 18 33 51 89% 57% 2.94
5 14 68 54 95% 43% 4.44

Table 7.22: Scenario B: MS Summary Results
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On Scenario B, Run 18 performed better for two, three and four MS, while Run 14 outperformed
the other ones for five MS. In terms of collision prediction, only the two MS was unable to reach at least
50 collisions (still it managed to predict 81% correctly). The best results were achieved using three and
five MS - 95% of predicted collisions.

Regarding the FPs, the values were similar using two and three MS. For four MS, there are only
33 FPs (which explains the higher value for the CDP of 57%). Five MIS had the most FPs, similarly to
what happed in Scenario A, which caused a lower CDP value.

Again, when comparing the APTs for three and four MS, it is noted that there is little difference.
In that sense, the heavier computation for using additional steps also has no overall performance payoff.
On the other hand, the APT when using five MIS is much higher (4.44s), giving road users more time to
make decisions and to actuate.

As already stated before on Scenario A, the results can be then evaluated from two points of view: if
one considers that the CPP and CDP are the most important metrics, using three MS is the best solution;
on the other hand, if one considers that the CPP and APT are the most important, it is better to resort to

five MIS forecasting.

7.3.3 Summary Results and Discussion

This section presented the results for the Collision Prediction System evaluation, organized by sce-
narios. The models ability to predict collisions involving VRUs was analyzed, focusing on the metrics:
Number of False Positives, Predicted Collisions, Collisions Prediction Percentage, Correct Decision Per-
centage and Average Prediction Time.

The results from both scenarios are summarized on Table 7.23.

Globally, the proposed system achieved very good results in terms of collision prediction, as most
of the collisions were predicted correctly in every MS. The worst performance was achieved in 2 MS for
Scenario B, were 81% of the collisions were still predicted.

Despite the good performance for the prediction, the main issue of the system comes from the high
number of FPs, which results in generally low values in terms of CDP - roughly, one in every two critical
decisions made by the the system are accurate.

When comparing MS two and three, one can conclude that it is actually better to resort to the latter
- it achieved better CPP and also had an higher CDP. Additionally, it also had better values for APT.

On the other hand, when comparing MS three and four, one can conclude that the results are very

similar: similar values for CDP and APT, although the CPP are worse in the four MIS case. From that
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Collisions Correct Average
False Predicted Prediction Decision Prediction
MS Scenario Run Positives Collisions Percentage Percentage Time (s)

2 A 6 43 52 91% 52% 1.8l
B 18 43 46 81% 46% 1.98
3 A 8 40 52 91% 54% 2.67
B 18 42 54 95% 55% 2.87
4 A 11 39 49 86% 51% 2.76
B 18 33 51 89% 57% 2.94
5 A 11 78 55 96% 41% 4.53
B 14 68 54 95% 43% 4.44

Table 7.23: Collision Prediction Summary Results

point of view, no performance gain is noted when using four MS instead of three.

Finally, the results from five MS: it achieved very good CPP values but has problems regarding
the FPs, which cause low values on the CDP - below one in every two decisions is correct. On the other
hand, the APT were very high (around 4.5s).

Hence, results can be looked from two perspectives: if one considers that the prediction of the
collisions and the CDP are a priority, using three MS is the best solution; On the other hand, if higher
APT are preferred, then using the five MS is the way to good, despite having a lower CDP. This way, an
high number of notifications received by the driver's are false alarms but, on the other hand, the system
may be able to avoid at least 95% of the collisions on the proposed scenarios if the drivers are able to
safely actuate on those (more or less) 4.5 seconds, so a trade-off notion is also noted in here.

Naturally, FPs can be in fact prejudicial, as having many FPs may cause the drivers annoyance.
This may lead them to not react as expected, ignore the warnings or even disable the safety system if the
driver does not trust its performance. In this case, an explanation to the high number of FPs may be related
to how the scenario is implemented on the simulator. Given that SUMO does not have collisions enabled
on the simulation by default, and they had to be deliberately caused using parameters, there are a lot of
near-collision incidents happening during the simulations runtime. The mobility pattern and configuration
of the vehicles on the scenarios is very similar to collisions, although the road users don't actually end up
colliding. Figure 7.17 illustrates an example of a near-collision collision taken from a simulation of Scenario
A (seed 0).

From the Collisions Prediction System point of view, the situation on the scenario is very similar to

the simulated collisions, which may result in positive predictions. Naturally, from a statistical perspective,

110



+

(a) t=7807.8 (b) t=7808.0
(c) t=7808.2 (d) t=7808.5

Figure 7.17:. Near-collision Example - Scenario A, Seed O

these cases are counted as FPs. Still, in a real-world environment, these situations should also be avoided,
as they can be considered dangerous.

For that reason, another way of reading the FP cases is that they are not necessarily all bad results.
The notification of imminent danger may also help to avoid those near-collision incidents, since the drivers
have time to adjust their behavior on the traffic and be more careful.

In summary, the proposed solution allows the usage of safety measures (such as notifying the
drivers of imminent danger and performing an emergency break) which could greatly improve the VRUs
safety on the roads.

Nonetheless, the FPs issue does not allow to implement aufonatic mechanisms regarding the
passenger vehicles, as it is not desirable to actuate on such cases. Using such a system, the most

practical way of actuating is passively, by simply notifying the drivers of the vehicles, leaving up to him to
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perform defensive actions to prevent the collision.
From that point of view, it is better to resort to the five MIS solution, since it has higher APTs (when
comparing to three MS) which results in more time for the driver to take notice of the environment and

actuate if necessary. However, one must be conscious that the CDP is slightly lower.

7.4 Evaluation in Terms of Collision Avoidance

The previous section focused on evaluating the collision prediction system using metrics such as
CPP, FP, FN, CDP and also the APT. Besides analyzing the system ability to predict collisions, it is
important to evaluate if the prediction gives enough time for the road entities to actuate in order to avoid
the collision, or at least minimize its effects.

In order to further evaluate the performance of the system, the model needs to be deployed on-line
within the VEINS simulation framework, where the use case scenarios were implemented. To achieve this,
the Python/C APIwas used to interconnect the application that is running on VEINS and the Python model
script. This library allows to call the Python functions from within the simulation environment, in order to
process the data that the RSU is collecting (aggregate and scale) and also to perform the predictions.

The simulation framework architecture is illustrated on Figure 7.18.
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Figure 7.18: Simulation Framework Architecture
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In summary, to implement the final collision prediction system, the following steps were taken:
1. Collect and preprocess the V2X communications data on the simulation framework.
2. Generate fifty datasets (one for each simulation run).
3. Divided the fifty datasets into training, validation and test datasets.
4. Train LSTM models using the training and validation data.
5. Evaluate the models performance on the test data (off-line).

6. Use the models to predict collisions in simulation runtime (on-line), on the same simulation runs

that were used to compile the test datasets.
7. Measure the system overall performance for collision avoidance.

Figure 7.19 illustrates the chronological events and the timings associated with the collisions pre-

diction system.
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Figure 7.19: The Chronological Events of a Predicted Collision
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The timing terms are further discussed next:

Prediction Time Time needed by the RSU to collect the environmental data, treat it and feed it as
input to the LSTM model. The model then outputs the probability for a collision to happen. The
time needed for the prediction process is dependent on the complexity of the model: the more
complex the model (e.g. higher number of parameters and layers), the longer it takes to perform
the prediction. On the other hand, more complex models also provide better predictions, which
improve safety overall. Still, considering that it is possible to use high-performance computing
resources (such as potent GPUs) on the RSU, the time needed for this prediction is significantly
reduced - these times typically range from microseconds to a few milliseconds.

In positive prediction cases, the RSU generates a warning message that is sent to the vicinity. Here,
the total time is impacted by the complexity of the message (in this case it is a very simple and
short message) and the dissemination protocol that is used (DSRC/WAVE protocol).

In summary, the Prediction Time includes all of the aforementioned processes and, in this case, it

is mostly dependent on the capabilities of the system in terms of computational power.

Alerting Time Time needed for the message to be propagated, plus the time needed by the vehicle to
process the received warning message and display it on an HMI. Similarly to the Prediction Time,
the processing time is mostly dependent on the computation resources that are available. On the
other hand, the propagation time is dependent on the communication characteristics (distance

between nodes and wave propagation speed).

Perception-Reaction Time This period corresponds to the sum of two different times. The first one
is often called the perception time - time needed by the driver to percept the HMI warning. The
second one is the reaction time - time needed by drivers to react to the perception of danger (e.g.
how long it takes for the driver to actually start braking).

Both perception time and reaction time can be influenced by several factors - e.g. the warning
design, the driver’s experience/skill level, the driver’s physical/ mental state and age, among others.
Naturally, the effectiveness of the system is largely dependent on the perception-reaction time and
it is important to understand how much time a driver needs to react to warning messages. This
work does not focus on the study of these two aspects, as it is not possible to analyze it using the
selected simulation framework. Instead, some reference values are used, based on related state

of the art works. Some of the most relevant recent works can be found on [122-125].

Braking Time Remaining time that is available for the drivers to perform the braking action in order
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to avoid the collision. The braking time can be computed for each collision situation within the
simulation. When a vehicle receives a warning message, it is possible to log the values related
to current speed and current position. This allows (as individual simulations are deterministic) to
compute the time (and distance) to the collision point and how long it takes to perform an emergency
brake. Naturally, the time that a vehicle needs to perform an emergency brake is also related to
their (braking) deceleration values. In real situations, this value is dependent on several factors
such as the brake state or road conditions (e.g. dry or wet asphalt, snow or ice-covered roads).
Furthermore, in motorcycles, if both wheels or only one wheel is braked, the deceleration value is
also affected.

The SUMO tool uses values that are based on real world values, although they assume optimal
conditions by default (which is also the case on the proposed scenario, which considers a dry asphalt
road). Thus, the default values of the simulator were used to compute the braking times that each
vehicle needs to perform an emergency break - 9m/s2 for passenger vehicles and 1Om/s2 for

motorcycles.

The following subsections focus on the achieved results related to these times. The results were
gathered from the same simulation runs that were first used to compile the test datasets for both scenarios.
The simulation now included the prediction models running on-line, which means that the simulation is
now working on a hybrid mode (the simulation is discrete, but the Python calls are performed in real-time).
This way, the RSU is able to use the Python’s functions to process the collected beacons data and to
perform the predictions during the simulation runtime. This also allows for the simulation application that
is running on the RSU to gather all important results for the evaluation of the system. The models that

were deployed in the simulation correspond to the 5 MS models presented before on Table 7.23.

7.4.1 Results for Prediction Times

As stated before, the time that a model needs to achieve predictions is highly dependent on the
hardware computation resources. In this case, a desktop was used with the following characteristics: AMD
Ryzen 5 5600x CPU, 32 GB DDR4 1200 MHz RAM and a NVIDIA GeForce GTX 1060 6GB GPU.

On average, the prediction, which is performed every second, took 110 us (real-time). Hence, the

prediction time can be considered insignificant.
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7.4.2 Results for Alerting Times

In this use case, the proposed scenario is set in a rural environment with a minimum number of
vehicles traveling close to the RSU. This means that there are no cases of networking congestion. Also,
given that the beacons are very small packets (42 bytes), the communications are achieved with very
short latencies - the transmission and propagation delays of the packets throughout the simulations are
very small.

Table 7.24 presents the messages delays statistics regarding the average delay and standard devi-

ation.

Scenario A Scenario B

Average Standard Average Standard
Delay Deviation Delay Deviation

Warming 15500 003 16323 003
Messages

Regular .., .o 10.78 112.50 10.90
Beacons

Table 7.24: Messages Delays (1)

As the table shows, the average latency of the messages is really low. Hence, and similarly to the

prediction time, the alerting time is also negligible from a global point of view.

7.4.3 Results for Perception-Reaction and Braking Times

As stated before, using the selected simulation framework, it is not possible to study the perception-
reaction times of the drivers. Instead, some reference values are used, based on related works (1s, 1.5s,
2.0s and 2.5s).

For that reason, logic is somewhat inverted here. First, one calculates the braking time that a
vehicle needs to perform an emergency brake. Then, depending on the time that a driver needs to percept
and react, one computes if it is possible to avoid the collision.

As the simulation is deterministic, it is possible to compute the exact Time to Collision (TTC),
which is the amount of time between when the warning arrives and the point of collision. Once the TTC is
known, it can be compared with the sum of the Perception-Reaction and Braking times, in order to assess
the possibility of avoiding the collision.

The amount of time a vehicle needs to perform an emergency brake and stop is related to two
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values: its current speed and its deceleration capabilities. As an example, if a motorcycle is traveling at
20 m/s and has a deceleration capability of 10 m/s?, then it needs 2s to brake and avoid a collision.
Table 7.25 illustrates example calculations achieved for the first two collisions that happen on Seed

A from Scenario A.

Vehicle Timeto Current Braking Perception- Total Time
Type Collision Speed Time -Reaction Time Difference
(s) (m/s) (s) Time (s) (s) (s)
passenger 1.74 8.21 0.91 1.5 2.41 -0.67
motorcycle 1.74 16.39 1.64 1.5 3.14 -1.40
passenger 4.60 10.17 1.13 1.5 2.63 1.97
motorcycle 4.60 11.26 1.13 1.5 2.63 1.97

Table 7.25: Time Measurements - 1% and 2™ Collisions from Seed A, Scenario A (1.5s Reaction Time).

In the first collision case, the vehicles have a TTC of 1.74s - in other words, a maximum of 1.74s to
perceive- react and brake to prevent the collision. In this case, as the TTC is very short, when subtracting
the braking and perception-reaction times (total time) it results in a negative time difference for both
vehicles. Thus, one can’t assume that the collision can be avoided by either one.

In the second example, the TTC is much higher (4.60s). In this situation, the final time difference
is positive - the total amount of time is enough to perceive-react and brake in order to prevent the collision.
Hence, one can consider that the collision can be prevented by both vehicles.

Next subsection presents and discusses the summary results for both scenarios, obtained using

similar calculations.

7.4.4 Summary Results and Discussion

As discussed previously, the prediction and alerting times are in the order of p-seconds and thus
are negligible from a global standpoint. Hence, the performance of the system is more related to the
amount of time that drivers have available to percept-react and brake.

Table 7.26 presents the summary results for each scenario, regarding the preventable collisions
when drivers receive a warning.

The performance of the system was similar in both scenarios. In the best-case (1.0s reaction time),
94% of the collisions can be prevented in Scenario A and 96% in Scenario B, if any of the drivers performs
an emergency brake. Regarding the worst-case (2.5s reaction time), still 75% and 69% of the collisions

can be avoided.
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Reaction . .
Scenario A Scenario B

Time (s)
1.0 94 % 96 %
1.5 81 % 76 %
2.0 74 % 70 %
2.5 74 % 69 %

Table 7.26: Preventable Collisions - Summary Results

As discussed before on the examples from Table 7.25, one considers that the collision is avoidable
if any of the drivers has enough time to perform an emergency braking. Still, however, it may be possible
to avoid the collision if both vehicles actuate simultaneously (by braking and/or steering). Naturally, these
situations are very hard to account for (specially due to the limitations of the simulation tools). Hence,
and although they are not considered towards the preventable collisions count, one can't say for certain
that these collisions are absolutely unavoidable. For instance, in real scenarios, both vehicles may steer
in opposite directions and still avoid the collision as they are more aware of the situation (even if the times
didn't seem to be enough at first).

Results showed that the system was able to predict most collisions in a timely manner: by perform-
ing emergency brakes on either involved vehicle, the system is able to prevent at least 74% of the collisions
of Scenario A and 69% of Scenario B on the worst-case perception-reaction times (2.5s); in the best-cases
(1.0s reaction time), the system is able to prevent 94% of the collisions of Scenario A and 96% of Scenario
B.

As a drawback, using this approach, it is very hard to account for situations when both vehicles can
actuate simultaneously (particularly by steering). In that sense, this research work can be extended in the
future by performing more complex and specific calculations related to this cases (and analyze if these

situations can also be prevented).

7.5 Summary

This chapter discussed a Collision Prediction System, tailored to anticipate collisions involving VRUs
at intersections. The development of the system was meticulously considered and discussed, emphasizing
possible multi-step forecasting strategies and the application of data processing techniques, with particular
focus on feature selection and data imbalance issues.

A comprehensive evaluation of the prediction system was then conducted to assess its performance

and effectiveness. Several key metrics were analyzed to validate the system’s performance: Number of
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False Positives, Predicted Collisions, Collisions Prediction Percentage, Correct Decision Percentage and
Average Prediction Time. Globally, the system performed well, as most of the collisions were predicted
correctly. The false positives issue was also investigated, and it was found to be related to near-collision
incidents.

Furthermore, the timeliness of the predictions was also evaluated, to determine if measures could
be taken with sufficient lead time to prevent the collisions. This assessment showed that the system’s pre-
dictions allowed for timely actuation of safety measures by the drivers (by performing emergency braking),

thereby enhancing overall intersection safety for VRUs.
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Chapter 8

Conclusions and Future Work

This final chapter presents a critical analysis of the obtained results and the conclusions taken from
the overall research work. Additionally, some drawbacks and limitations presented by this research’s work
are also discussed. Finally, some future steps are proposed, indicating subsequent research work that

may complement the work presented in this thesis.

8.1 Conclusions

This thesis investigates the feasibility of leveraging the data that is exchanged by road agents by
means of V2X communications, in order to improve VRUs safety. This document discusses the proposal,
implementation, test and evaluation of a system’s architecture that aims to improve VRUs safety, by
predicting potential collisions at an intersection.

The first part of this research work focused on presenting and analyzing different ITS contexts and
corresponding scientific background. Some of the most important ITS communications standards were
identified, for both American and European standards; the main vehicular communication modes and
technologies are also explored and discussed.

Given the fact that V2X communications generate huge amounts of useful road data, ML tech-
niques have the potential to leverage it and solve many problems in ITS. ML systems can build knowledge
extracting patterns and time dependency relations from historical V2X data collections, combining it with
real-time information in order to implement and establish useful ITS systems.

In that sense, it is pertinent to evaluate the usefulness of ML in this context. Hence, existing ML
solutions for ITS were surveyed - both for generic ITS solutions, but also related to the detection/prediction
of incidents (and in particular those related to VRUs). A very large part of the surveyed solutions are related
to the managing and optimizing, although some also focus on improving communication issues. Regarding

the use of ML in the prediction of incidents, works tend to focus on data that is collected via in-vehicle
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sensors, such as cameras or similar in-vehicle devices (even for VRUs incidents prediction). Furthermore,
VRUs related works tend to focus on pedestrians and bicycles and not so much on other vulnerable users
such as reduced mobility persons or motorcycles.

During the related work survey, no datasets related to VRUs collisions that contains ITS standard
messages exchanges were found - most of the identified works don’t have the datasets publicly available,
or even present details about them. For that reason, there was a need to construct new datasets in order to
gather V2X data, to classify this data and make it publicly available, so that MIL models can be extensively
trained and tested. Two possible solutions were identified to generate the datasets: using real world testing
or simulation.

Performing ITS field tests on real prototypes is a very expensive task, both in terms of money
and time. Alternatively, simulators are a very popular choice for evaluating ITS solutions within the re-
search community, since they bring many advantages in terms of cost, repeatability, scale and practical
requirements. Hence, several simulation tools and frameworks were identified and compared - both for
communications and mobility simulation. Most of the surveyed tools were not open source or in active de-
velopment, which made them unsuitable solutions. Additionally, coupled frameworks are more interesting
solutions than using individual tools. From the available coupled tools, Artery, VEINS and Eclipse Mosaic
are the most interesting solutions. Finally, considering the Artery’s lack of documentation and that both
VEINS and Eclipse Mosaic have similar characteristics and features, the VEINS tool was selected to be
used (ultimately, it was a matter of personal preference).

As stated above, the main goal of this thesis is to evaluate the feasibility of using V2X data as input
for ML models to predict collisions involving VRUs. Naturally, such a prediction system requires large
amounts of storage and computation resources for training and testing ML models. Also, considering that
it is a safety system, the usage of the model for predictions also requires very low latencies, so that users
have enough time to safely actuate when a warning message is disseminated.

This thesis proposes a system’s architecture, based on Fog Computing, that organizes the differ-
ent road entities and functionalities of the system in hierarchical layers according to their characteristics
(mainly in terms of computation requirements, storage, timeliness and utility). The proposed architecture
is divided in three levels: Cloud Layer, Fog Layer and Edge Layer. In this design, the heaviest computa-
tional and less time-critical functions are placed at the upper layer (Cloud Layer), and the lighter operations
at the lower Edge Layer (while the middle Fog Layer is a middle ground). At the Edge Layer, the end users
(vehicles/drivers) collect ego information from sensors and share it with other users using vehicular com-

munications. The Fog Layer is the ideal place to deploy the ML models for prediction of collisions - they
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receive the data that is disseminated from the surrounding road users, treat and use it for the prediction.
Also, it connects with the top layer (Cloud Layer) to obtain more powerful computing and storage capabil-
ities. This top layer, being the most powerful in terms of capabilities, is the most adequate place to train
(and retrain) the ML models.

In order to synthesize the datasets that are to be fed as input for the ML models, a simulation
scenario was designed and implemented on the VEINS framework. The established scenario was based
on use cases from ETSI standards and consists on a critical traffic situation where a passenger vehicle
makes a turn on an intersection and oversees an approaching motorcycle that intends to go straight,
resulting in a possible collision. In terms of communications, both passenger vehicles and motorcycles
possess an OBU equipped with IEEE 802.11p and are able to exchange periodical beacons (BSMs) with
ego-vehicle information. These beacons are filled with the following information: Station ID, Longitude,
Latitude, Elevation/Altitude, Heading, Speed, Acceleration, Vehicle Length, Vehicle Width and Vehicle Type.
Additionally, a RSU is placed next to the intersection, which also possesses IEEE 802.11p (enabling it to
also received the beacons) and is able to run a ML mechanism to treat the V2X data for the prediction
of collisions. If the RSU predicts a potential collision, it is able to trigger and broadcast collision warning
messages to vehicles in the area. Furthermore, the RSU is responsible for compiling the datasets - in
this case, they consist of the collection of beacons (BSM) that both passenger and motorcycle vehicles
are exchanging during the simulation run. Each simulation run is executed for 24h of simulation time
with a different simulation seed. This assures that each run results in different mobility behaviors and,
consequently different simulation results and datasets. By the end, a total of fifty simulation runs were
used to compiled the three final datasets which have been used to train (80% of the data), validate (10%)
and test (10%) the ML collision prediction system. These final synthesized datasets were made publicly
available and can be accessed in https://zenodo.org/record/ 7376770 [108].

This first developed model’s goal was to classify the vehicle’s type based on the messages content
- in other words, if the message was originated by a passenger vehicle or a motorcycle. Several common
ML prediction models were chosen for initial testing: LR, KNN, GNB, SVM and ANN. Naturally, being
such a simple problem, all models achieved an accuracy of 100%.

In a first step towards the collision prediction, a new feature was added at this point - inCollision. This
feature stated if a record was related to a collision (or not). Then, those aforementioned models were used
to classify if the message belonged to a collision and they all achieving accuracy values above 80%. The
high accuracy values sound promising but, in fact, this simple solution is a very poor one. This is related

to the fact that the dataset is highly imbalanced. Only a few collisions happen during the simulation
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runs, for they are rare events. This results in only a few messages being marked as frue. Naturally, this
explains the high accuracy values on the models results: even if every single record is labeled as false,
the final metric value is very high, since only a few records are being wrongly labeled. Each of the tested
models performed very poorly and were not able to classify the collisions properly. Naturally, given that
the traditional models performance was poor, the problem needed to be approach in a different way.

Considering the use case of predicting collisions at intersections, a key aspect is that there are very
strong temporal issues and that there is a need to carry out a continuous temporal analysis of the collected
V2X messages data. A suitable model for solving such type of problems is LSTM, for its ability to hold
information for long periods of time (early learned information can still be useful later on the model’s
decision). Besides LSTMs, MLPs were also identified as being a suitable solution, since they work well
on tabular datasets and in binary classification prediction problems. Both types of NN models were used
for the collision detection and prediction systems.

A collision detection system was first developed, in order to have a starting point towards the more
complex issue of prediction. In summary, the detection system aims to detect if a collision has occurred
between passenger vehicles and motorcycles on an intersection. Most of the tested models performed
relatively well, although they presented some limitations regarding the high number of FPs. Even so,
this problem was mitigated through the use of a specific collision detection logic after the classification
itself. As a drawback, using such a logic slightly delays the collision detection itself, so there is a certain
trade-of notion present. The best performing model consisted on a MILP model with two hidden layers (64
neurons) which used all features on the input layer. This model was able to detect every single collision
in 1s or less, taking 0.62s on average.

After developing, testing and evaluating the collision detection system, a similar process was achieved
for a more complex system for their prediction. Firstly, different possible strategies for multi-step forecast-
ing have been identified and analyzed. When weighting the pros and cons of the proposed solutions, the
Multiple Output Forecasting strategy was selected to predict the collisions, as it requires a single prediction
model and relies only on real observed values to predict future ones (despite requiring heavier computa-
tion). The scripts for collision detection were then reworked and adapted to the established forecasting
strategy.

In order to tune the prediction model to be able to predict the collisions in a satisfactory way,
several optimization techniques have been performed: several model’s variations (in terms of number
of layers, batch size, number of neurons, among others); testing different feature selection methods;

exploring alternative data preprocessing methods (standardization vs normalization); exploring automatic
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hyper-parameterization optimization techniques (e.g. grid search); tweaking some data preprocessing
techniques (e.g. using sum vs average values when performing the data aggregation).

This process of exploring these different methods and techniques in order to improve the model’s
performance was arduous and took several months of work, without producing adequate results. Despite
the great effort, the tested models (both MLPs and LSTMSs variants) were only able to predict roughly
one third of the collisions accurately in the best cases. Moreover, they still had problems regarding having
a high number of FPs classifications. As the models were not able to properly converge, unlike in the
collision detection system case, it raised questions regarding the datasets quality. Despite the initial set
of data (taken from ten simulation runs) having hundreds of thousands of messages records, collisions
are rare occasions on the simulation runs. In that sense, despite having large amounts of raw data, the
available amount of information on collisions could not be sufficient for the model’s to converge and learn.
As the amount of collisions data was scarce, more simulation runs were executed and new and bigger
datasets were synthesized, in order to overcome the initial poor performance - first using twenty runs, then
thirty, fifty and finally one hundred (always using 80% for training, 10% for validation and 10% for testing).

In fact, using larger datasets greatly improved the performance of the model’s forecasts, which
proved that there wasn't sufficient collision data for the model’s to properly converge. The results from
the evaluation achieved next relied on the usage of data from fifty simulation runs, as no improvement
was noted when using one hundred (and the computation cost was much higher). Naturally, using greater
amounts of data turned the learning process much slower (heavier in terms of computation), and even
caused issues in terms of memory. To solve that issue, the training data was truncated on those large
periods of time where there are no relevant information on collisions - which also helped in dealing with
the data imbalance issue.

The final results from the evaluation were achieved in an iterative fashion - performing runs on
all possible combinations would be highly consuming, both in terms of time and computation, making it
impractical.

Naturally, such an approach may end up not presenting the optimal results, as some other param-
eters that were not tested could eventually perform better.

The Collision Prediction System models were analyzed, with particular focus on the following met-
rics: Number of False Positives, Predicted Collisions, Collisions Prediction Percentage, Correct Decision
Percentage and Average Prediction Time.

The best performing models were grouped by multi-steps (how many seconds in the future one is

forecasting) and, globally, they all achieved good results. Even the worst model (the model for 2MS on
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Scenario B) predicted 81% of the collisions on the test dataset. On the other hand, the main issue of the
prediction systems were associated with high number of FPs - which was transversal to all models.

Still, when considering the MS alternatives, the results can be looked from two perspectives: if
one considers that the prediction of the collisions and the CDP are a priority, using three MS is the best
solution; On the other hand, if higher APT are preferred, then using the five MS is better (despite lower
CDP values due to higher FPs).

Having too many FPs can be severely prejudicial, as it may annoy the drivers - leading them to
not react, ignore the warnings or even disable the safety system. Being a crucial point, this issue was
investigated on the mobility simulations. In fact, this FPs issue was related to near-collision situations that
happen frequently on the simulation. As the mobility pattern of the vehicles is very similar to collisions,
this causes the system to raise false alarms (although the vehicles don't actually collide). Despite being
FPs from a statistical point of view, they are traffic situations that one wishes to avoid nonetheless. Hence,
this FPs shouldn't be seen as necessarily bad results - a warning notification may also help to avoid those
near-collisions, improving traffic in a broader manner.

Naturally, the system is not suited (but was never aimed) for automatic actuation mechanisms,
such as automatic emergency braking. The most practical way of actuating is in a passive way: it is better
to warn the drivers of imminent danger, leaving up to them to access the situation and perform defensive
actions to prevent the collisions. In real-world situations, the warnings may consist on: visual alerts (visual
warnings displayed on an HMI); auditory warnings (in the form of beeps or spoken messages); haptic
feedback (tactile sensations, such as vibrations on the steering wheel); augmented reality (highlighting
potential collision areas using virtual objects); among others.

Finally, considering that discussion, it makes more sense to resort to the five MS solution, since it
has higher APTs. In other words, it provides more time for the drivers to acknowledge the warning and
actuate if necessary. The best performing model for Scenario A was able to predict 96% of the collisions
(with an APT of 4.53), while the best model for Scenario B predicted 95% of the collisions (with an APT
of 4.44s).

More than analyzing the system’s ability to predict collisions, it is also crucial to evaluate if the APT
gives enough time for the vehicles to actuate in order to avoid the collisions. Hence, these two final models
were evaluated regarding the timeliness of the collision: in terms of prediction time (time for the model’s
prediction), alerting time (time needed to send a warning message to the drivers), perception-reaction
time (time that the drivers need to percept the warning and to react - e.g. start braking) and braking time

(remaining time available for actuation).
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In particular, one wishes to verify if the drivers have enough time to avoid the collision after receiving
the warning message (which is sent after the model computes a positive prediction). As it is not possible to
study the perception-reaction times in the selected simulation framework (VEINS), some reference values
were identified from related works - 1s, 1.5s, 2.0s and 2.5s.

To compute if the drivers are able to avoid the collision, one first computes the exact TTC (amount
of time between when the warning arrives and the collision time). Then, using logged values at the
moment of the reception of the warning, one calculates the braking time that a vehicle needs to perform
an emergency brake. Then, depending on the time that a driver needs to percept and react, one finally
checks if the collision can be avoided or not.

On the performed tests, the prediction and alerting times are in the order of p-seconds and thus are
negligible from a global standpoint. Hence, the system’s performance is more related to the perception-
reaction time and braking time.

The performance of the system was similar in both scenarios: in scenario A, 74% of the collisions
can be avoided in the worst perception-reaction case (2.5s) and 94% on the best case (1.0s); in scenario
B, 69% of the collisions can be avoided in the worst case and 96% on the best case.

This study considers that the collision is avoidable if at least one of the drivers (passenger vehicle
or motorcycle) has enough time to perform an emergency brake. It does not consider the possibility of
both vehicles actuating at the same time (either by braking and or steering), since these situations are
hard to account for.

Hence, one can't say for certain that these collisions are absolutely unavoidable - still, they are not
considered towards the preventable collisions count. Naturally, in real situations, both vehicle's may steer
in completely opposite directions and still avoid the collision, even if the computed timings didn’t seem to
be enough at first.

In conclusion, this PhD thesis has successfully defined a system architecture and a ML system
to predict collisions for VRUs, which is an important step forward in increasing safety measures for ITS.
As a consequence of extensive data collection and analysis, this research has shown the potential of ML
techniques for an accurate forecast of potential collisions involving VRUs (in this case, motorcycles on an
intersection). By leveraging this predictive capabilities, one is able to take proactive measures to prevent
collisions (or at least minimize its effects) and protect lives, thus improving traffic safety in general. The

most relevant publications that present results directly related to this thesis work can be found in [12-15].
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8.2 Limitations and Future Work

This thesis presents a ML-based safety systems for VRUs, which relied on the usage of datasets
that were synthesized resorting to a simulation framework (VEINS). Naturally, together with the fact that
the datasets are also self-produced, this could introduce involuntary biasin the results. Ideally, the datasets
should have used data collected from real world environments. Or, as an alternative, these systems could
have relied on third-party datasets. Unfortunately, no datasets were found when surveying the state of the
art works. Still, as a positive aspect, the synthesized datasets that result from this thesis work are available
publicly - which allows third parties to evaluate and scrutinize the results.

As for the datasets synthesis process, it relied on two different mobility patterns on a similar scenario
on SUMO. Although the scenario is based on ETSI's technical reports on typical use cases relevant to
traffic safety that involve VRUSs, the resulting system still has some limitations. In particular, considering
that the models were trained using simple mobility patterns, it may limit the prediction capabilities of
the system in more complex traffic environments. In that sense, it is unclear how the models would
behave in more complex situations, in terms of traffic density and/or road configuration. Nevertheless,
the implemented system can still be easily extended to consider new traffic situations using the same
methodology on new scenarios (with different geographical areas or mobility patterns).

At this point, when a potential collision is predicted, the warning messages that are triggered by the
system are being simply broadcast, which means that all the vehicles within range are able to receive and
process the warning. On more advanced systems, it is also important to determine which vehicles should
in fact be warned or, in a different approach, which vehicles should take an action upon receiving a warning
message - the system should aim to alert vehicles that are in immediate danger or have a high probability
of colliding. Hence, on future works, the system should take into consideration factors such as: its vicinity
to the intersection (consider only vehicles that are close enough to the intersection); direction of travel
(vehicles that are approaching the intersection, and not vehicles that are moving away); traffic light current
status (e.g. prioritize vehicles who are approaching a green or yellow light); lane configuration (e.g. not
sending warnings to vehicles that are circulating on a lane that will not cross the intersection); etc. Such a
targeted approach ensures that the warning messages are either only sent to the relevant parties or only
reacted upon by specific vehicles, avoiding unnecessary distractions for other users, further optimizing the
overall road safety.

Finally, the proposed system is built upon a hierarchical architecture that is inspired on Fog Comput-

ing. However, this thesis does not explore or analyze the architecture from a global standpoint. As future
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work, one considers that it could be interesting to study the architecture as a whole (as in a city-wide view)
- in terms of resources allocation, communications efficiency, data aggregation, scalability, adaptability
and any other kind of integration with other smart city systems and applications. Also, specific security

measures should be taken into the system, in order to avoid security attacks and preserve data privacy.
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