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Abstract
The global trend toward aging populations has resulted in an increase in
the occurrence of Alzheimer's disease (AD) and associated socio-
economic burdens. Abnormal metabolism of amyloid‐β (Aβ) has been
proposed as a significant pathomechanism in AD, supported by results of
recent clinical trials using anti‐Aβ antibodies. Nonetheless, the cognitive
benefits of the current treatments are limited. The etiology of AD is
multifactorial, encompassing Aβ and tau accumulation, neuroinflamma-
tion, demyelination, vascular dysfunction, and comorbidities, which
collectively lead to widespread neurodegeneration in the brain and
cognitive impairment. Hence, solely removing Aβ from the brain may be
insufficient to combat neurodegeneration and preserve cognition. To attain
effective treatment for AD, it is necessary to (1) conduct extensive
research on various mechanisms that cause neurodegeneration, including
advances in neuroimaging techniques for earlier detection and a more
precise characterization of molecular events at scales ranging from
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cellular to the full system level; (2) identify neuroprotective intervention
targets against different neurodegeneration mechanisms; and (3) discover
novel and optimal combinations of neuroprotective intervention strategies
to maintain cognitive function in AD patients. The Alzheimer's Disease
Neuroprotection Research Initiative's objective is to facilitate coordinated,
multidisciplinary efforts to develop systemic neuroprotective strategies to
combat AD. The aim is to achieve mitigation of the full spectrum of
pathological processes underlying AD, with the goal of halting or even
reversing cognitive decline.
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1 | INTRODUCTION

Alzheimer's disease (AD), the most common neuro-
degenerative disorder, is currently posing a threat to
the health of approximately 35 million elderly indivi-
duals worldwide.1 It was listed as the seventh‐leading
cause of death in 2020.2 The total estimated global
socioeconomic burden of AD exceeds $1.3 trillion
annually, and it is expected to double by 2030.3 AD
places a tremendous burden on not only individuals but
also their families and the healthcare systems. This
situation has led to an urgent requirement for efficient
interventions against this devastating disease.

Accurate diagnosis and efficient treatment are two of
the key aspects for AD intervention. Over the past two
decades, several cohort studies have been launched to
identify neuroimaging measures and biomarkers for AD
diagnosis,4 such as the Alzheimer's Disease Neuro-
imaging Initiative, the Australian Imaging, Biomarker &
Lifestyle Flagship Study of Ageing, and the Dominantly
Inherited Alzheimer Network. These studies facilitated
the development of standardized methods for magnetic
resonance imaging (MRI), positron emission tomography
(PET), and cerebrospinal fluid (CSF) detection of AD
biomarkers and promoted the establishment of the A
(amyloid‐β [Aβ] deposition)—T (pathologic tau)—N (neu-
rodegeneration) framework.5 They shifted the definition
of AD from a syndromic to a biological construct and
provided a more reliable and accurate method for
monitoring disease progression. Importantly, we are
now capable of accurate and early AD diagnosis. Hence,
it is now the time to focus our attention on early treatment
strategies for patients diagnosed with AD.

2 | CURRENT STATUS AND
CHALLENGES OF AD TREATMENTS

The development of new AD therapies has always
been challenging with the success rate of new drug
development for AD being far below industry aver-
age.6 Currently, approved pharmacological AD treat-
ments are mainly divided into symptomatic drugs and
disease‐modifying treatment (DMT) interventions.
Symptomatic drugs, such as memantine, mainly
work by cognitive enhancement or by controlling

neuropsychiatric symptoms, without affecting the
underlying biological causes of AD. These medica-
tions can only temporarily improve or maintain
neuronal signaling and function, but they cannot
reverse or halt AD progression. Therefore, there is an
urgent need for DMT interventions that directly
modify the AD‐specific pathobiological changes in
the brain and exert neuroprotective effects, prevent-
ing diffuse neuronal cell loss. Recently, two DMT
interventions, aducanumab,7 and lecanemab,8 both
being monoclonal antibodies targeting brain Aβ
plaques, have achieved some clinical success and
have been approved by FDA for the treatment of mild
cognitive impairment or mild dementia due to AD.
Even though the long‐term safety and clinical efficacy
of these two DMT interventions require further
evaluation, their advent may indicate the dawn of a
new era in AD therapy.

However, we still need to recognize that the current
Aβ‐targeting approaches can only slow the progression
of AD but cannot reverse or even halt the disease
process. Therefore, additional interventions that can
rescue cellular and circuit function in both early and
advanced AD stages will be crucial for improving the
patients' quality of life, and, therefore, should be the
ultimate goal of therapeutic developments for AD. It is
hence paramount for the global research community to
focus attention on disease mechanisms and on how to
stop or even reverse cognitive decline.

3 | NEUROIMAGING FROM
CELLULAR TO FULL SYSTEM
LEVEL IN AD

Accurate diagnosis and efficient treatment are two key
aspects of AD intervention with the aim of neuroprotec-
tion. Several cohort studies have allowed identification
of neuroimaging measures and biomarkers for AD
diagnosis,4 demonstrating the capacity of these tech-
niques for the evaluation of anatomic and functional
changes in the brain. Moreover, advances in the field of
nanotechnology have allowed extension of the capaci-
ties of these techniques, enabling them to become truly
molecular imaging tools with which to visualize molecu-
lar events at the cellular to the full brain scale, allowing
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for a better understanding of AD pathophysiology. Thus,
neuroimaging represents an invaluable asset in the
development of novel therapies for the treatment of AD.

MRI is, possibly, the most versatile medical imaging
technique available both at clinical and preclinical
levels. Its noninvasiveness, image quality (in terms of
image resolution and contrast generation), and multi-
modality allow detailed brain imaging at structural,
vascular, metabolic, and functional levels.9 In the field
of AD, MRI is used to assess changes in brain
structure, allowing the study of brain atrophy,10 detect-
ing events that may explain nondegenerative cognitive
impairment,11 and providing information about the
integrity of white matter and neuronal circuits through
all variants of diffusion‐weighted imaging (e.g.,
diffusion‐weighted imaging, diffusion tension imaging,
diffusion kurtosis imaging, fiber tracking, neurite orien-
tation dispersion, and density imaging, soma and
neurite density imaging, etc.12). Cerebrovascular al-
terations assessed through MRI‐based cerebral
blood flow measurements (CBF‐MRI) can be used
for the definition of early diagnosis of cognitive
impairment,13 along with magnetic resonance spec-
troscopy (1H‐MRS) or even more advanced spectro-
scopic approaches such as glutamate‐weighted chem-
ical exchange saturation transfer imaging. This enables
us to study metabolic alterations associated with AD
progression.14 One of the most valuable MRI mod-
alities in AD is resting‐state functional MRI, which has
been used to show how AD impairs multiple functional
networks across the brain, including the default mode
network, the salience network, or the dorsal attention
network.11

Nuclear imaging techniques such as PET and
single photon emission computerized tomography are
methods of choice to study important hallmarks of AD
by using radioactive tracers that specifically bind to
brain metabolites, protein aggregates, or neurotrans-
mitters, or can visualize glucose metabolism, inflam-
matory events, and other processes involved in the AD
pathophysiology. Nuclear medicine imaging techniques
are extremely sensitive and can detect AD biomarkers
at very early stages. PET is the gold standard
technique for tau and Aβ‐specific imaging as well as
for visualizing glucose metabolism in the brain.11

Interestingly, PET has been used to show that tau
may propagate along functional networks, instead of
disseminating locally, but that this is not the case for
amyloid.15 Four different patterns for tau deposition
have been described, potentially indicating AD sub-
types, with different demographic and cognitive
profiles, as well as outcomes.16 However, these
techniques lack the excellent spatial resolution and
tissue contrast of MRI.

The recent introduction of powerful hybrid clinical
imaging modalities, such as PET‐MRI allows us to
capitalize on the advantages of each individual imaging
modality while at the same overcoming their respective
limitations. Using PET‐MRI, the A/T/N staging system
has been defined, in which AD biomarkers are divided
into three binary categories. In this system, A stands for
β‐amyloid (measured in the brain by PET or alternatively

using Aβ42 in CSF), T stands for tau (measured with
specific PET tracers), and N stands for neurodegenera-
tion or neuronal injury (determined by FDG‐PET and
structural MRI).

Each of these three biomarkers is defined as
positive or negative, and their combination results in
a descriptive system for the categorization of the
individual AD stage. These and other imaging‐based
tools leaning on artificial intelligence, machine learning,
deep neuronal networks, and other state‐of‐the‐art
computing tools may ultimately advance to automated
AD diagnosis and prognosis.17 Thus, medical imaging
applications in AD are a continuously evolving disci-
pline, being of paramount importance.

4 | INTERVENTIONS OF AD
FROM THE PERSPECTIVE OF
NEUROPROTECTION

Neurons in the AD brain undergo widespread
degeneration, which ultimately results in cognitive
impairment. Although Aβ deposition is the most
important pathological hallmark of AD, the removal
of Aβ from the brain through Aβ antibodies can only
delay the progression of the disease, as it cannot
reverse the neuronal loss (and related symptoms)
that has occurred widely in the brain. Various
cofactors such as genetics, inflammation, vascular
issues, metabolism, and environment can influence
neurodegeneration. We believe that only by targeting
these pathological changes through different neuro-
protective and potentially other therapeutic strategies
can the cognitive function of AD patients be truly
preserved or even restored (Table 1). Thus, holistic
perspectives for neuroprotection strategies, focusing
on the brain as well as the periphery, are discussed
herein.

4.1 | Central neuroprotective
intervention

4.1.1 | Neurotrophic factors (NTFs)

NTFs, such as neurotrophins and brain‐derived
neurotrophic factor (BDNF), are endogenous soluble
proteins supporting neurite outgrowth, neuronal
cell differentiation, and survival. The dysregulation
of NTFs and their receptors in AD is a key
pathological process in the development of sporadic
AD.46–48 Loss in NTFs and their receptors also
occurs with normal aging and is associated with
normal cognitive decline, which seems to be accel-
erated in AD. The NTF ability to promote neuronal
survival under pathological conditions has driven the
idea that direct delivery of NTFs might be beneficial
in AD.49 Indeed, a gene therapy‐based approach for
nerve growth factor delivery has shown promise in a
clinical phase 1 trial in AD patients.18 Instead of
direct NTF delivery, the application of NTF receptor
agonists could also exert neuroprotective effects.
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TABLE 1 Targets of neuroprotective treatments for AD.

Targets Evidence References

Central neuroprotective
intervention

NTFs Gene delivery of NGF into the basal forebrain
shows promise in clinical trial in AD patients

[18]

Antineuroinflammation Pharmacological activation of microglial Piezo1
channels ameliorate brain Aβ burden and
cognitive impairment

[19]

Replacement of reactive microglia in the aged
brain reverses cognitive deficits in mice

[20]

Astrocytic protection Selective removal of astrocytic APOE4 protects
against tau‐mediated neurodegeneration in
PS19/APOE4 mice

[21]

Inhibition of the astrocytic protein S100B
protects CA1 pyramidal neurons in AD
mice model

[22]

Remyelination Genetically or pharmacologically enhancing
myelin renewal reverses cognitive
dysfunction in APP/PS1 mice

[23]

Facilitating oligodendrocytes cholesterol transport
increases myelination and improves
learning memory in APOE4/4‐TR mice

[24]

Stem cell therapy and neural
regeneration

Transplantation of NSCs increases adult
hippocampal neurogenesis, rescues cognitive
impairment in AD mice models

[25, 26]

Overexpression of NeuroD1 in reactive astrocytes
of 5xFAD mice successfully converted
the reactive astrocytes into functional neurons

[27]

Glucose metabolism regulation Administration of GLP‐1 agonist prevents
memory impairments and synapse loss in
APP/PS1 mice

[28]

Vascular system protection Blocking RAGE at the BBB effectively reduces
Aβ influx into the brain, and improves cognitive
performance in APP/PS1 mice

[29]

Meningeal lymphatic protection Augmentation of meningeal lymphatic drainage
in aged mice improves cognitive function

[30]

Targeting prion‐like proteinopathy Improving the O‐GlcNAcylation of tau prevents
the development of tau pathology and
functional deficits in PS19 mice

[31]

Peripheral
neuroprotective
intervention

Peripheral clearance of pathological
substances

Enhancing the kidney's Aβ/tau clearing capacity
either by peritoneal dialysis or pharmaceutical
treatment mitigates cognitive impairment

[32–34]

Stimulating Aβ uptake and metabolism by
blood monocytes alleviates AD‐related
pathology in APP/PS1 mice

[35]

Peripheral neuroprotective factors Exposing aged mice to blood from younger
donors enhances hippocampal neurogenesis
and boosts memory

[36, 37]

Neuroprotection by
lifestyles changes

Physical exercise Exercise plasma transfusion boosts memory
and dampens brain inflammation

[38]

Food and nutrition Mediterranean diet and ketogenic diet show
beneficial effects in AD patients

[39, 40]

Vitamin D, DHA, Ω‐3/Ω‐6, minerals, and
phytochemical antioxidants supplementation
exhibit neuroprotective effects in preclinical
AD models and in clinical trials

[41–45]

Abbreviations: Aβ, amyloid‐β; AD, Alzheimer's disease; BBB, blood–brain barrier; DHA, docosahexaenoic acid; GLP‐1, glucagon‐like peptide‐1; NGF, nerve growth
factor; NSCs, neural stem cells; NTF, neurotrophic factor; RAGE, receptor for advanced glycation end products.
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For instance, the BDNF mimetic compound 7,8‐
dihydroxyflavone, a potent small molecular TrkB
agonist, displays therapeutic efficacy against AD in
mice.50,51 Thus, the continued development of NTFs
for therapy and the determination of whether this
potent class of biologically active molecules will
maintain the functional state of neurons in the AD
brain are important lines of further investigation.

4.1.2 | Antineuroinflammation

Large‐scale genome‐wide association studies (GWAS)
indicate that about half of the AD risk genes are
involved in immune processes.52 This emphasizes the
importance of immune dysfunction for AD develop-
ment. Under physiological conditions, the immune
function in the CNS is maintained in a dedicated
balance to help the brain to detect and eliminate
pathogens and cell debris without causing neuronal
death. However, in the context of AD, neuroinflamma-
tion tends to be a chronic process that fails to resolve
and is thought to accelerate disease progression.53

Neuroinflammation is generally characterized by the
production of proinflammatory cytokines by immune cells
in the brain. The persistent or excessive release of
proinflammatory molecules can lead to synaptic dys-
function, neuronal death, and finally cognitive impair-
ment.54 Therefore, being able to preserve cognitive
function in AD will not be possible without controlling
neuroinflammation. Currently, the number of clinical trials
targeting neuroinflammation exceeds trials focusing on
other mechanisms such as targeting Aβ, tau, and
neurodegeneration.55 Most of these trials applied broad‐
spectrum anti‐inflammatory drugs to reduce inflamma-
tion, or antibodies to eliminate proinflammatory cytokines.
However, none of these approaches targeted key
regulators of neuroinflammation, that is, activated or
dysregulated immune cells, and so they cannot funda-
mentally prevent neuroinflammation from occurring. This
may be one of the reasons why current trials targeting
neuroinflammation have not achieved clinical success.

Immune cells involved in neuroinflammation are
mainly microglia and infiltrating monocytes/macrophages.
There are also astrocytic contributions to neuroinflamma-
tion. In the process of AD, both microglia and astrocytes
transit from a neurotrophic state to neurotoxic state,56 but
the underlying mechanism remains to be elucidated.57

Recently, it was shown that a mechanotransduction ion
channel, Piezo1, expressed in microglia orchestrates Aβ
clearance by enhancing microglial survival, phagocytosis,
and lysosomal activity.58 Pharmacological activation of
microglial Piezo1 ameliorated cerebral Aβ burden and
cognitive impairment.19 Replacement of reactive micro-
glia also exhibited great potential in preserving cognitive
function in aged mice.20

Future investigations focusing on sensory mecha-
nisms, downstream signaling pathways, and regulatory
checkpoints of different immune cells in the brain will
greatly advance our understanding of the contribution
of neuroinflammation in AD pathogenesis and possibly
help in identifying novel therapeutic targets.

4.1.3 | Astrocytic protection

Astrocytes, which are the most abundant cell type in
the CNS, play a crucial role in maintaining CNS
homeostasis in terms of ion concentration balance,
neurotransmitter buffering, synaptogenesis, stabilizing
blood–brain barrier (BBB) function, and the secretion of
neuroactive agents. In AD, however, astrocytes not
only cease neurotrophic support but also secrete
neurotoxic factors, which can accelerate disease
progression.56,59 Thus, enhancing the beneficial effects
of astrocytes while dampening their negative properties
shows great potential for disease modification in AD.

APOE4 is the strongest genetic risk factor for
sporadic AD and is mainly expressed by astrocytes.60

A recent study demonstrated that selective removal of
astrocytic APOE4 strongly protects against tau‐
mediated neurodegeneration.21 Additionally, pentami-
dine, an inhibitor of the astrocytic protein S100B, has
been shown to protect CA1 pyramidal neurons in a
mouse model of AD by reducing expression of GFAP,
S100B, and the receptor for advanced glycation end
products (RAGE).22 Other signaling cascades associ-
ated with astrocytes, such as signal transducer and
activator of transcription 3, nuclear factor‐kappa B, and
transforming growth factor beta, have also been
implicated in AD pathology56,61 and should be con-
sidered as putative targets for neuroprotection in future
studies.

4.1.4 | Remyelination

AD has been mainly considered a gray matter disorder;
nevertheless, accumulating evidence emerging from
imaging, postmortem, and genetic association studies
suggests myelin impairment in AD.62,63 The myelin
sheath is a lipid‐rich multilamellar membrane that
wraps around neuronal axons and thereby increases
the conduction velocity of action potentials. In addition,
it offers the necessary trophic support to the wrapped
axons. Even though it is not clear whether alterations in
myelination are directly involved in AD pathogenesis or
just the secondary effect of neurodegeneration, enhan-
cing myelin renewal was able to reverse cognitive
dysfunction in AD mouse models.23 Altered cholesterol
localization coincides with reduced myelination in AD
brains. Pharmacologically facilitating cholesterol trans-
port has been shown to increase myelination and
improve learning and memory in AD mice.24 Therefore,
future efforts to unveil the contribution of myelin
dysfunction to AD and developing efficient myelination
enhancement strategies require a greater effort in AD
research.

4.1.5 | Stem cell therapy and in vivo neural
regeneration

Cognitive impairment in AD is due to neuronal degener-
ation and loss, leading to dysfunction and damage of
neural circuits. Therefore, to improve cognitive function,
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it is necessary to replace lost neurons and repair
damaged neural circuits. Hippocampal neurogenesis
persists in the adult brain to maintain learning and
memory, but is significantly reduced in AD.64 Replenish-
ing the exhausted pool of neural stem cells (NSCs) in
the brain may help to rebuilt neural circuits and preserve
cognitive function. Both in situ and noninvasive trans-
plantation (like intranasal transplantation) of NSCs can
increase adult hippocampal neurogenesis and mitigates
cognitive impairment in AD mice.25,26 However, repair-
ing neuronal circuits in the mammalian brain can be
challenging due to the absence of anatomical cues that
guide brain development during embryogenesis and
fetal development. One promising approach is the co‐
transplantation of NSCs with bioengineered support
cells that express target proteins. These support cells
have the potential to produce growth factors that
enhance the survival and migration of NSCs, eliminating
the need for genetical engineering.65 Several cell
populations used in the treatment of neurodegenerative
diseases have demonstrated neuroprotective benefits,66

often referred to as “bystander effects”. These cells may
also contribute to the prevention of neurodegeneration in
AD. Another significant challenge in stem cell‐based
therapy for AD is the difficulty of delivering stem cells in
such a way that they can target all affected brain areas.
Direct injection into the brain tissue provides limited
coverage,67 while intravenous administration is not
effective with cells lost to filtering organs such as the
lungs or liver,68 and also the likelihood that only a few
cells cross the BBB. A promising approach is to use the
intra‐arterial route, which allows for more widespread
and uniform distribution of cells to the targeted brain
region. Imaging techniques that enable real‐time mon-
itoring of cell distribution are of great interest, as they
can increase precision and safety.69 An alternative
approach that is being investigated in preclinical studies
is the use of stem cell‐derived extracellular vesicles
(EVs). Several studies reported that the intranasal
administration of mesenchymal stem cells‐derived EVs
leads to improvements in mouse models of AD.70,71

Instead of direct cell transplantation, a new
technology has emerged for the regeneration of
neurons through in vivo conversion of glial cells.72,73

Specifically, the overexpression of the neural tran-
scription factor NeuroD1 in reactive astrocytes of
5xFAD mice has successfully converted these astro-
cytes into functional neurons.27 In addition to Neu-
roD1 and the AD mouse model, other transcription
factors such as Ngn2, Ascl1, and Sox2 have been
reported to convert astrocytes into neurons in various
animal models,74–76 including the first nonhuman
primate stroke model.77 Considering that human
brain has 86 billion neurons, the loss of just 1% of
neurons in the brain of an AD patient would amount
to a loss of 860 million neurons. This extensive
neuronal loss may explain why numerous drugs have
failed to restore cognitive function in AD patients.
Therefore, it may be crucial to combine neuroprotec-
tive strategies with in vivo neural regeneration to
maximize the benefits for AD patients, particularly
those in mid‐stage or even late‐stage AD.

4.1.6 | Cerebral glucose metabolism
regulation

The brain is the most energy‐demanding organ in the
human body. Even though it constitutes only 2% of the
total body weight, it accounts for 20% of an individual's
energy expenditure.78 Insufficient energy supply to the
brain swiftly results in irreversible impairment of brain
function.79 The major energy source for the human brain is
glucose; unlike in peripheral organs, the brain has a very
limited availability of other sources of energy (such as fatty
acids). Glucose hypometabolism is one of the earliest
pathologic events in AD.80 Reduced glucose metabolism
in the brain may be caused by the decreased expression
of glucose transporters,81 decreased activities of enzymes
involved in glucose metabolism,82 and disrupted insulin/
insulin‐like growth factor (IGF) signaling pathway.83 Among
them, the insulin/IGF signaling pathway is currently most
intensively studied. In addition to participating in cerebral
bioenergetics regulation, the insulin/IGF signaling pathway
also contributes to Aβ metabolism, tau phosphorylation,
and neuroinflammation.84 Thus, AD is proposed to be type
III diabetes, and this concept has emerged as a very
promising area of AD research.

An intriguing therapeutic target is the glucagon‐like
peptide‐1 receptor (GLP‐1R). Glucagon is an endogen-
ous insulinotropic hormone that participates in the
homeostatic regulation of insulin and glucose. The
activation of the GLP‐1Rs affects neuronal excitability,
synaptic plasticity, and memory processes, and GLP‐1
analogs have been successfully tested in both preclinical
models of neurodegeneration and clinical trials.28,85

Future efforts should be made to develop more effective
approaches to restore cerebral glucose metabolism,
thereby offering a therapeutic benefit to AD patients.

4.1.7 | Cerebral blood vessel protection

Cerebral blood vessels and the BBB function as the
gatekeepers for the shuttling of ions, molecules, and cells
between the blood and the brain, protecting the brain
from peripheral toxins and pathogens.86 They also
mediate the clearance of brain‐derived neurotoxins such
as Aβ and pTau, as well as metabolic waste, into
circulation. A recent single‐nuclear transcriptome profiling
study in human brain vascular and perivascular cells
revealed that 30 of the top 45 AD risk genes identified by
GWAS analysis are expressed in the cerebral vascula-
ture,87 which further supports the link between the
vascular system and AD. Neuroimaging studies indicate
that loss of BBB integrity is an early sign of AD and may
contribute to cognitive dysfunction in AD.88,89 Postmor-
tem studies show that the vast majority of patients
diagnosed with AD invariably bear some degree of
cerebral vascular pathology, such as cerebral small
vessel disease (cSVD).90 Conditions typically associated
with cSVD such as hypertension may increase RAGE
expression at the BBB, fostering Aβ influx to the brain,
and accelerating cerebral Aβ deposition.91 Blocking
RAGE can effectively reduce Aβ influx and improve
cognitive performance in APP/PS1 mice.29 Altogether,
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these pieces of evidence indicate that there is potential in
targeting the vascular system for AD treatment. However,
even though existing studies in both animal models and
patients have confirmed that the BBB plays a key role in
AD etiology, it is yet to be explored as a therapeutic
target.92 Thus, future studies focusing on restoring the
impaired BBB, targeting the BBB clearance machinery, or
eliminating the consequences of BBB breakdown93 might
promote drug research and discovery for AD.

4.1.8 | Meningeal lymphatic protection

The brain has traditionally been regarded as an
immune‐privileged organ94 due to the limited entry of
immune cells into the healthy brain parenchyma.
However, several groups have recently discovered
and characterized lymphatic vessels within the menin-
ges.95,96 It is now widely recognized that meningeal
lymphatic vessels play an essential role in maintaining
brain homeostasis by draining neurotoxic substances
(such as Aβ) from the brain into the cervical lymph
nodes,97 and lymphatic vessel dysfunction may be one
of the underlying factors for worsened Aβ pathology
and cognitive deficits in AD.98 Moreover, impaired
meningeal lymphatic drainage could exacerbate the
microglial inflammatory response in AD.99,100 In addi-
tion, abnormal lymphatic function can affect the effec-
tiveness of immunotherapy targeting Aβ. The ablation of
meningeal lymphatic vessels in 5xFAD mice worsened
the outcome after treatment with mouse chimeric
analogs of aducanumab.99 The above evidence sug-
gests that lymphatic vessels play an important role in
both the pathogenesis and prognosis of AD and
represent an important target for AD treatment. Indeed,
augmentation of meningeal lymphatic drainage in
5xFAD mice can facilitate the clearance of macromole-
cules from the brain, resulting in improved cognitive
function.30 Future studies should investigate the mecha-
nisms that drive lymphatic vessel dysfunction, and
develop feasible interventions to improve brain lym-
phatic drainage and ameliorate the progression of AD.

4.1.9 | Targeting prion‐like proteinopathy

Tau pathology has been strongly correlated with ante
mortem cognitive decline in AD patients.101–103

α‐Synuclein (α‐syn) pathology is present in 30%–50% of
AD patients, and is associated with a more rapid
cognitive decline and more severe neuropsychiatric
dysfunction.104,105 Heiko Braak and his colleagues
discovered tau and α‐syn pathology exhibiting clear
progressive and hierarchical spreading patterns in post-
mortem brains.106–109 Both clinical and experimental
observations support that inoculation with pathologic tau
and α‐syn can induce substantial prion‐like protein
aggregation110–112 resulting in neurodegeneration and
cognitive impairment.113,114 This indicates that prion‐like
tau and α‐syn spreading are both major triggers and
drivers. Multiple pathways/mechanisms are involved in
the cell‐to‐cell transmission of pathogenic prion‐like

seeds, including receptors,115,116 cell death,117 inflamma-
tion,118 oxidative stress,119 aggregation clearance,120 and
strain mediation.121,122 All of those are potential thera-
peutic targets.

Uptake of prion‐like seeds via receptors is required to
initiate subsequent prion propagation and neurotoxicity.
Genetic depletion and inhibition of these receptors
effectively block cell uptake, prion propagation, neuro-
degeneration, and behavioral deficits.115,116,123,124 After
uptake, prion‐like seeds can induce reactive oxygen
species (ROS), activate poly (adenosine 5′‐diphosphate‐
ribose) polymerase‐1 (PARP‐1), and cause DNA dam-
age. Inhibition of PARP and depletion of PARP‐1 can
significantly alleviate prion propagation and associated
neurodegeneration.117 Not only neuronal cells but also
glial cells play critical roles in these pathological
processes. Inhibiting microglial activation induced by
seeds can substantially reduce the activation of astro-
cytes and associated neurotoxicity.118 Prion‐like seeds
can induce oxidative stress, which in turn induces further
protein aggregation. This vicious circle drives disease
progression. Nanozymes can strongly scavenge ROS
induced by prion‐like seeds, inhibit a feed‐forward loop,
and block prion‐like seed propagation in vivo.119 Tau and
α‐syn pathology are observed intracellularly; however, it
is challenging to develop agents that can target
intracellular pathogenic seeds. Nanobodies capable of
specifically recognizing and clearing the fibrillar form of
prion‐like seeds were developed, and adeno‐associated
virus‐based gene delivery methods provide an attractive
approach to inhibit the propagation of prion‐like seeds in
preclinical models.31,120 Diverse misfolded aggregates
with distinct molecular conformations (strains) are a prion
feature that causes a different disease phenotype. The
strategies targeting strain mediation, such as inhibiting
the strain inducer (i.e., poly adenosine 5′‐diphosphate‐
ribose117) or adding strain modulator (i.e., glucocerebro-
sidase120), may provide an effective impact against
prion‐like propagation and neurotoxicity.

4.2 | Peripheral neuroprotective
intervention

As outlined above, the development of AD is not caused
by a single factor but involves multisystem and multilevel
changes.125 Many peripheral factors are involved in AD
development, such as immune senescence,126 meta-
bolic127 and cardiovascular128 disorders, liver and kidney
dysfunction,32 gut microbiota disturbance,129 or respiratory
and sleep disorders.130 Therefore, controlling system
comorbidity and improving whole‐body health will positively
impact brain structure and function.

4.2.1 | Peripheral clearance of neurotoxic
substances

Aβ and pathological tau have long been considered to
be cleared by central metabolic pathways. But in fact,
both brain‐derived Aβ and tau can be cleared after
being transported to peripheral organs and cells,33,131
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such as the liver,131 kidney,32 spleen,132 and blood
monocytes.133 This suggests that improving peripheral
Aβ/tau clearance capacity could be a desirable
therapeutic strategy for AD. For instance, enhancing
the kidney's Aβ/tau clearing capacity through peritoneal
dialysis33,34 or pharmaceutical treatment32 has been
shown to mitigate cognitive impairment in AD mice.
Stimulating monocytic Aβ uptake and metabolism
through polysaccharide krestin, a modulator of innate
immune signaling, could also alleviate AD‐related
pathology in AD mouse models.35 Plasma exchange
has shown potential in slowing the rate of cognitive
decline in AD patients in clinical trials as well.134

However, these concepts are still being explored in
fundamental research, and future translational and
clinical studies are necessary to evaluate the effective-
ness and safety of this strategy in AD treatment.

4.2.2 | Systemic neuroprotective factors

Peripheral organs secrete NTFs to boost neurogen-
esis and reduce neuronal apoptosis, as indicated in
heterochronic parabiosis models.135 The circulatory
system integrates signals from all organs and provides
a route for crosstalk between peripheral organs/
tissues and the brain. For example, exposing aged
mice to blood from younger donors enhances hippo-
campal neurogenesis, induces immediate to early
gene activation, increases dendritic spine density, and
promotes vascular remodeling.36,37

However, due to the potential risks, it is unrealistic
to directly apply young plasma transfusion for AD
treatment. Hence, the identification of substances in
young plasma such as peripheral NTFs that can exert
neuroprotective effects is a subject worth further
studying. Current research is mainly focused on
plasma proteomics and several proteins that promote
neurogenesis have been identified, including growth
differentiation factor 11, metalloproteinase 2, colony‐
stimulating factor 2, and osteocalcin.136,137

Apart from the identification of neurotrophic proteins,
the identification of potential neuroprotective metabolites
in youthful plasma is equally important. Moreover, the
investigation of exosomes in the plasma is also very
promising. Exosomes are membrane‐bound, secreted
organelles, and are enriched in proteins, metabolites,
and nucleic acids, which can reflect their cells of origin.
Due to its single‐membrane structure, the substances in
the exosome are more stable than in plasma. Thus,
proteomics, metabolomics, and miRNAomics studies on
young plasma exosomes are promising approaches for
the identification of new neuroprotective substances.

4.3 | Neuroprotection by lifestyle
changes

4.3.1 | Physical exercise

It is now widely accepted that physical exercise can
combat neurodegeneration and provide neuroprotection

in elderly individuals. Both animal and clinical experi-
ments have demonstrated that physical exercise en-
hances the proliferation and differentiation of NSCs,
promoting NTFs secretion, and finally improving cogni-
tive performance.138

However, little is known about the molecular mecha-
nisms of how exercise affects brain health. It has been
proposed that “exercise factors,” secreted from muscle
and other tissues into the blood, mediate this beneficial
effect. A recent study found that transfusions of plasma
obtained after exercise boosts memory and dampens
brain inflammation.38 Further studies showed that
exercise can promote the secretion of myokines from
muscles.139 These myokines were then released into
blood and cross the BBB to promote the expression of
NTFs in the brain.140 Animal experiments indicate that
peripheral overexpression of myokines is sufficient to
promote cognitive function.141 Furthermore, liver metab-
olism also changes drastically during exercise. A recent
study found that β‐hydroxybutyrate produced by the liver
during exercise promotes BDNF expression.142 There is
also evidence that exercise can improve cognitive
function by promoting cerebral angiogenesis.143 How-
ever, many growth factors need to reach a threshold
level of expression to exert beneficial effects. This
indicates that conventional behavioral/exercise interven-
tions may not be of benefit as they are too short to trigger
a significant increase in growth factors.144

In general, research in this area is still in its infancy.
Future studies should focus on identifying new “exercise
factors” that may improve physical exercise regimens (or
exert effects similar to it) for elderly patients with AD and
disabilities who cannot perform strenuous exercise.

4.3.2 | Food and nutrition

Nutrition is important for the health and well‐being of
people living with AD, as weight loss and malnutrition are
important complications in AD patients.145 Thus, main-
taining and improving nutritional status in AD patients
may help to delay AD development by promoting brain
health. Some dietary patterns have been shown to be
beneficial in AD, such as the Mediterranean diet39 and
the ketogenic diet.40 In addition, certain active substances
in the diet (for instance, vitamin D,41 docosahexaenoic
acid,42 omega‐3 and omega‐6,43 minerals,44 and phyto-
chemical antioxidants45) were identified as neuroprotec-
tive factors. As nutrition‐related conditions can occur in all
stages of AD, further basic and clinical studies are
recommended to elucidate the exact mechanism of
malnutrition and weight loss in AD patients and whether
nutritional intervention can improve cognitive symptoms.

5 | SUMMARY

Over the last years, several clinical trials were launched
trying to overcome AD, and three antibody‐based DMT
interventions targeting Aβ have achieved limited clinical
success by slowing down the pace of AD in early
stages. However, merely slowing down the decline of
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cognitive function is not sufficient to achieve the clinical
goal of AD treatment, which is to preserve the patient's
cognitive function. As widespread neurodegeneration
in the brain forms the biological basis of the patient's
cognitive impairment, developing neuroprotective strat-
egies should become the next important direction of AD
treatment after Aβ clearance (Figure 1). However, this
field has not garnered sufficient attention thus far, and
the progress made has been limited. Furthermore, AD

encompasses pathological alterations in numerous
facets. Consequently, the objectives of future research
lie in the precise classification of AD patients and the
application of distinct combinations of intervention
strategies tailored to individual patients.

Therefore, we convened a group of experts to jointly
issue this initiative to emphasize the importance of
neuroprotection research. ADNRI mainly focuses on
the prevention of AD, which aims to prevent the loss of

F IGURE 1 Neuroprotective interventions for AD. Main neuroprotective intervention targets for AD, including NTFs, antineuroinflammation,
astrocytic protection, remyelination, stem‐cell therapy and in vivo neural regeneration, glucose metabolism regulation, vascular
system protection, lymphatic protection, prion‐like proteinopathy regulation, peripheral neurotoxic substances clearance, systemic NTFs, and
physical exercise, as well as food and nutrition. Investigations into advanced neuroimaging techniques for earlier and more precise
characterization of molecular events at scales ranging from cellular to full system level are equally important as it is necessary for the evaluation
of the beneficial effects of different neuroprotective intervention approaches. AD, Alzheimer's disease; CNTF, ciliary neurotrophic factor; DHA,
docosahexaenoic acid; GDF11, growth differentiation factor 11; GDNF, glial cell‐derived neurotrophic factor; IFN‐γ, interferon‐γ; NTFs,
neurotrophic factors; ROS, reactive oxygen species; TNF‐α, tumor necrosis factor‐α.
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neurons and the destruction of neural networks in the
early stage of the disease through various neuropro-
tective strategies. We call on our colleagues around the
globe to cooperate to reveal the mechanisms of
neurological deficits in AD and identify effective
neuroprotective targets, to carry out translational
research, and to jointly achieve the goal of preserving
the cognitive function of AD patients.
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