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Modeling soil moisture from in situ portable X-ray spectrometer 1 

measurements: a novel approach for correcting geochemical data across 2 

different environments and climatic conditions 3 

 4 

Abstract 5 

The portable X-ray fluorescence (pXRF) spectrometer is widely employed for in situ 6 

analysis of both contaminated and uncontaminated soils. However, the accuracy of the 7 

measurements can be significantly affected by soil moisture, resulting in unreliable soil 8 

pollution monitoring. This effect has already been studied and quantified, but this is 9 

ineffective if the soil moisture in the field is unknown. Given the considerable variability of 10 

soil moisture conditions across time and space, significant bias during in situ investigations 11 

remains a main issue. This study introduces a novel method to estimate soil moisture 12 

directly from pXRF field measurements, enabling its reliable use in almost any field 13 

condition. The study was conducted using soil samples and in situ pXRF soil surface 14 

measurements in Estarreja (Portugal) and Vicdessos (France). In the first experiment, the 15 

innovative approach involved modeling soil moisture directly from the raw XRF 16 

measurement errors obtained in moist soils, using multiple regression. In the second 17 

experiment, metal concentrations were modeled as an exponential function of the moisture 18 

content. The final model integrates both approaches to correct field data from geochemical 19 

mapping in diverse environments, including a coastal region in Portugal and a mountainous 20 

region in France. Our findings demonstrate that this simple, efficient and cost-effective 21 

method accurately predicts soil moisture (U) using pXRF, as shown by the equation Umeasured 22 

= 1.0028 x Uestimated (r2 = 0.9715). The model effectively corrected up to 70% of moisture-23 

induced errors in metal concentrations in the wettest soils and produced more reliable soil 24 

Fe, Pb, and Zn maps. Specifically, the accuracy improvement was at least 32% in drier soils 25 
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(Portugal) and at least 55% in wetter soils (France). This study offers a cost-effective, 26 

efficient solution for employing pXRF in geochemical mapping across different climatic 27 

conditions and soil environments. 28 

 29 

Keywords 30 

pXRF; soil pollution; multiple regression model; geochemical mapping 31 

 32 

1. Introduction 33 

Over the past decade, the portable X-ray fluorescence spectrometer (pXRF) has emerged as 34 

an important instrument for assessing soil contamination (Borges et al., 2020; Caporale et al., 35 

2018; Kallithrakas-Kontos et al., 2016; Parsons et al., 2013; Ravansari et al., 2020; Rouillon 36 

and Taylor, 2016). Recently, it has been integrated with other techniques such as Vis-NIR or 37 

gamma-ray spectroscopy to improve the prediction of soil attributes (Li et al., 2021; Nawar et 38 

al., 2022; Qingya et al., 2022). Some of the advantages of pXRF include its efficiency (analysis 39 

in seconds to minutes), reliability, and versatility in analyzing various materials (rocks, soils, 40 

organics, metals). Apart from evaluating soil contamination, pXRF finds application in soil 41 

geochemistry and mapping (Benedet et al., 2020; Lemière, 2018; O’Rourke et al., 2016a; 42 

Stockmann et al., 2016a; Weindorf et al., 2014, 2012; Young et al., 2016).  43 

Nevertheless, the primary challenge lies in the measurement uncertainty due to variable 44 

field conditions. Some authors have advised against underestimating metal concentrations using 45 

pXRF data and recommend additional soil sampling and geostatistical simulation (Horta et al., 46 

2021; Qu et al., 2022), or other complementary spectroscopy analyses (Li et al., 2021; Shrestha 47 

et al., 2022) for more accurate analysis. To mitigate the effects of field conditions during pXRF 48 

measurements, several precautions have been reported in the literature, including slight 49 

compaction of the soil, removal of organic matter from the surface, and control of soil moisture 50 
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(Sharma et al., 2014; Weindorf et al., 2012; Zhu et al., 2011). Compacting soil and removing 51 

coarse material is relatively straightforward, while measuring soil moisture can be time-52 

consuming, depending on the method employed. This contrasts with the fundamental principle 53 

of XRF, which is designed to quick and practical analyses. 54 

In environmental studies, the impact of soil moisture on XRF measurements is a well-55 

documented concern (Bastos et al., 2012; Kalnicky and Singhvi, 2001; Laiho and Perämäki, 56 

2005; Padilla et al., 2019; Schneider et al., 2016; Stockmann et al., 2016c). Water molecules 57 

scatter and absorb primary X-rays, which reduces the signal intensity, particularly in clayey 58 

soils with a high Fe content (Ge et al., 2005; Stockmann et al., 2016b). Although some studies 59 

have addressed the inaccuracies in data resulting from soil moisture (Akopyan et al., 2018; 60 

Argyraki et al., 1997; Bastos et al., 2012; De La Calle et al., 2013; Parsons et al., 2013), most 61 

in situ geochemical maps do not include a correction for soil moisture. The USEPA Method 62 

6200 suggests that soil moisture content should ideally be below 20% to mitigate the impact on 63 

XRF measurements (US Environmental Protection Agency, 2007). However, achieving this 64 

condition in the field can be challenging due to regional, climatic, and seasonal variations. 65 

Moreover, local variations in moisture across different soil sampling sites can result in 66 

unreliable field data. Some researchers have proposed correcting XRF geochemical data in 67 

hydromorphic wetland soils by correlating them with laboratory wavelength dispersive X-ray 68 

fluorescence (Borges et al., 2020). Alternatively, soil moisture can be measured in the 69 

laboratory for post-processing correction, although these methods are time-intensive. 70 

Instruments like neutron probes, electrical conductivity-based sensors, or specific moisture 71 

probes (Argyraki et al., 1997) are ocasionnaly employed for measuring soil moisture, but they 72 

increase study costs and complicate and slow down the in situ XRF analysis. 73 

To address these challenges, this study introduces a novel approach for modeling soil 74 

moisture directly from the raw field XRF measurement errors. The objective of this method is 75 
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to systematically correct measurements at each sampling site, regardless of soil moisture 76 

content. This correction method was applied to in situ geochemical mapping in two different 77 

environments: a mountainous region of the French Pyrenees in more humid conditions, and a 78 

coastal region of Portugal in drier conditions. 79 

 80 

2. Methodology 81 

2.1. Description of the study area, soil sampling, and mapping 82 

The methodology flow chart is depicted in Figure 1. A soil sampling campaign with in situ 83 

XRF measurements was conducted at two sites of the French Centre National de la Recherche 84 

Scientifique (CNRS), known as Observatoires Homme-Milieu (OHM).  85 

The OHM of Estarreja is situated near the city of Aveiro, Portugal. This area includes the 86 

Estarreja Eco Park, one of the Portugal´s largest industrial facilities. Given the presence of 87 

numerous plastic factories, metal equipment factories, and chemical plants, this area is 88 

significantly contaminated (Barradas et al., 1992; Costa and Jesus-Rydin, 2001; Inácio et al., 89 

2014, 1998; Marinho‐reis et al., 2020; Plumejeaud et al., 2018). Geochemical mapping of the 90 

entire municipality of Estarreja (108.17 km2) was performed with a ThermoFisher handheld 91 

field X-ray fluorescence analyzer (Niton XL3t – details provided below), on a regular 750 × 92 

750 m grid, with 140 sample sites (1.8 samples/km2). For each site, the surface soil was 93 

analyzed at three sub-sites within a 5 m radius area (each value represents an average of three 94 

values). As described in the USEPA Method 6200 (US Environmental Protection Agency, 95 

2007), coarse materials such as leaves, grass, stones, roots, etc., were removed, and the soil was 96 

slightly compacted to ensure an adequate contact between the soil and the instrument. The 97 

analyzing duration for each sample was 120 seconds. 98 

The second site is the OHM at Vicdessos, located in the French Pyrenees mountain range. 99 

The site has a history of contamination due to centuries of lead, zinc, and arsenic ores 100 
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exploration (Hansson et al., 2019, 2017; Simonneau et al., 2013). The study focused on valley 101 

soils to investigate how runoff, atmospheric deposition, and urban activities contribute to soil 102 

contamination. Soil sampling was conducted at 48 sites within this area, resulting in a density 103 

of 8 samples/km2. This higher density compared to the sampling density in the OHM in 104 

Estarreja is attributed to the greater geodiversity of the region. Additionally, 47 soil samples 105 

were collected in the two adjacent Suc-et-Sentenac and Auzat valleys. The sampling and 106 

analysis procedures were similar to those used in the OHM of Estarreja. 107 

Regarding the technical characteristics of the ThermoFisher Niton XL3t, its analytical 108 

capacity encompasses elements ranging from S to U. It features a small 3 mm sample area, and 109 

is equipped with a gold (Au) x-ray tube capable of reaching 50 kV. The system incorporates 110 

advanced semiconductor detectors and weighs about 1.3 kilograms. 111 

To ensure the analytical quality of all field and laboratory measurements, nine certified 112 

reference materials (BCR141-R, BCR142R, BCR145-R, IAEA-SL1, LKSD-3, RTH912, 113 

STSD-3, SUD-1, and WQB1) were used, for obtaining precision (reproducibility of 114 

measurements), limits of detection, generating calibration curves, and correcting the dataset. 115 

The performance of the instrument is detailed in Table S1 (Supplementary material). 116 

Geochemical maps were generated from field XRF data by analyzing semivariograms for 117 

autocorrelation, spatial dependence, and isotropy. The interpolation method used was ordinary 118 

kriging, which is more suitable for environmental studies (Goovaerts, 1999). Statistical 119 

description, geostatistical analysis, data manipulation, and map production were performed 120 

using SAGA GIS 9.3 and QGIS 3.28. 121 

 122 

2.2. Correction of XRF data from the modeled soil moisture 123 
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To develop a method for estimating soil moisture directly from XRF data, two laboratory 124 

experiments were conducted. Subsequently, the method for moisture correction was applied to 125 

field data. 126 

 127 

2.2.1. Experiment 1: Modeling soil moisture from XRF measurement errors 128 

Twenty percent of the 140 sites (28 samples) were collected during the geochemical 129 

mapping survey in Estarreja. Each sample consisted of three sub-samples collected within a 130 

radius of five meters. Before sampling a different site, the equipment was thoroughly cleaned 131 

with Milli-Q water. Based on particle size analysis of the 28 soil samples in triplicates (Horiba 132 

LA950-V2 laser particle analyzer, Table S2, Supplementary material), five soils were selected, 133 

ranging from sand to silt texture: sand, sandy loam, silt loam and silt. Soil texture is an important 134 

factor influencing infiltration and moisture retention. The five soils were chosen based on their 135 

sand content: 10.6% (representing 0-20%), 33.3% (20-40%), 49.0% (40-60%), 70.6% (60-136 

80%), and 87.6% (80-100%). Meanwhile, the clay content in the studied region varied 137 

minimally. A chemical analysis of the soil samples is provided in Table S3 (Supplementary 138 

material). After air drying at 20°C to 30°C in an isolated room, the soil samples were quartered 139 

and sieved (< 2 mm). Triplicate soil samples of defined mass were prepared in vials for XRF 140 

analysis (soil height in vial = 7 mm). Milli-Q ultrapure water was meticulously added to the soil 141 

until saturation was achieved, and the samples were sealed for overnight equilibration. The 142 

following day, the process of soil drying started: after drying at 35 °C for 60 min, the samples 143 

were analyzed with the pXRF spectrometer and weighed for calculation of soil moisture. The 144 

process was repeated five times. In order to accelerate the evaporation process, the subsequent 145 

seven measurements were taken after drying at 60°C for 30 min, and the final two measurements 146 

were taken after drying at 105 °C for 10 min (see evolution of the soil moisture during the 147 

experiment in Supplementary material, Fig. S1). 148 
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The innovative approach for modeling soil moisture from XRF data involved considering 149 

that the measurement errors from the pXRF spectrometer are substantially affected by soil 150 

moisture. Soil moisture was modeled with 70 measurement errors: 5 soil samples at 14 drying 151 

stages. The chemical elements were selected based on the correlation between their 152 

concentration and soil moisture, and the mathematical model employed was a multiple linear 153 

regression (Equation 1). 154 

 155 

𝑈𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = ∑ 𝛽𝑖 . 𝑒𝑟𝑟𝑜𝑟𝑖
𝑛
𝑖= 1      Equation 1 156 

Where 157 

errori is the measurement error of the pXRF spectrometer for the chemical element i 158 

βi is the regression coefficient for element i 159 

 160 

A separated soil samples dataset was exclusively used to validate the accuracy of the model. 161 

In conjunction with the XRF field mapping directly on the soil surface, as described previously 162 

(section 2.1), soil samples were collected at over 50% of the sites in Estarreja, precisely at the 163 

location of the XRF measurement of the soil surface at sub-site R1 (0.5 cm depth, 164 

approximately 50 g, n=71). The objective of this secondary sampling was to obtain precise 165 

measurements of soil moisture and XRF values in the laboratory. Samples were sealed in Falcon 166 

tubes with Teflon tape to prevent moisture loss during storage and transport. After XRF 167 

measurements in the laboratory (3 triplicates for each soil sample), the samples were promptly 168 

dried at 105°C to measure the exact soil moisture. A theoretical estimated soil moisture was 169 

calculated based on the XRF results using Equation 1, after which the measured and the XRF-170 

based estimated moistures were compared. 171 

 172 
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2.2.2. Experiment 2: Modeling the effect of soil moisture on the metal concentration  173 

The second experiment demonstrates the influence of soil moisture on XRF measurements 174 

and its effect on attenuating metal concentration values. This effect has already been reported 175 

in several studies, but we opted to replicate it with our soils to obtain a more precise final model 176 

that incorporates data from both experiments. The metal concentration in dry soil was modeled 177 

based on soil moisture and the measured metal concentration in the moist soil (Equation 2). The 178 

concentration detection ratio (%C - Equation 3) was derived from Equation 2. 179 

[Mi]dry soil = eα.U. [Mi]moist soil   Equation 2 180 

%𝐶 =  100.
[𝑀𝑖]𝑑𝑟𝑦 𝑠𝑜𝑖𝑙

[𝑀𝑖]𝑚𝑜𝑖𝑠𝑡 𝑠𝑜𝑖𝑙
= 100. 𝑒𝛼𝑈   Equation 3 181 

Where 182 

[Mi]dry soil and [Mi]moist soil are the concentrations of the metal i in dry and moist soils, 183 

respectively (mg kg–1) 184 

U is the gravimetric soil moisture (kg kg–1) 185 

α is an estimated empirical constant 186 

 187 

The final model (Equation 4) was obtained by combining Equations 1 and 2, and used to 188 

correct the field data under moist soil conditions. 189 

[𝑀𝑖]𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 = 𝑒𝛼.∑ 𝛽𝑖.𝑒𝑟𝑟𝑜𝑟𝑖
𝑛
𝑖= 1 . [𝑀𝑖]𝑚𝑜𝑖𝑠𝑡 𝑠𝑜𝑖𝑙   Equation 4  190 
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3. Results and discussion 191 

3.1. Estimation of the soil moisture  192 

Soil moisture not only influences the X-ray measurements, as evidenced by the clear effect 193 

in the spectra (Figure 2), but also impacts the accuracy of the measurements, which is 194 

represented by the instrument´s measurement errors. The model for estimating of soil moisture 195 

from raw pXRF errors (Equation 1) is detailed in Table 1, with an analysis of variance and 196 

statistics of the multiple regression model. The coefficient of multiple determination (0.9848) 197 

indicates the high accuracy of the model. The estimated soil moisture closely aligns with the 198 

measured soil moisture (Equation 2; Umeasured = 1.0028 x Uestimated), with an r2 of 0.9715 199 

(Figure 3A). The mean difference between estimated and measured moisture was 4.69%, but a 200 

T-test showed no significant difference. 201 

To validate the accuracy of our model, we tested it on the 71 field samples (sub-sample R1) 202 

collected from different geological units (Quaternary sediments and Proterozoic shales, 203 

sandstones, and conglomerates). The model effectively fits the data for different soil moisture 204 

contents (Figure 3B). Particularly, at low soil moisture (U < 10%, Umean = 3.1 %), the mean 205 

difference between estimated and measured soil moisture was only 1.5%. For the entire dataset, 206 

the difference was 4.90%, close to that obtained in the laboratory experiment (4.69%). 207 

Based on these findings from both laboratory and field studies, modeling soil moisture with 208 

raw XRF measurements errors demonstred efficacy and precision. The subsequent step 209 

involved determining the impact of soil moisture on XRF measurements in our specific soils, 210 

and integrating those equations to correct the XRF data. 211 

 212 

3.2. Effect of soil moisture on XRF measurements 213 

According to previous studies (Padilla et al., 2019; Schneider et al., 2016; Stockmann et al., 214 

2016b), average metal concentrations typically decline with soil moisture. Our current results 215 
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align with this trend, showing a significant decrease in the concentration of Fe, Ca, K, Ti, 216 

between 0% and 80% gravimetric moisture (Figure 4). Notably, the moisture effect is more 217 

pronounced in soils with higher metals concentrations, as evidenced by the data for sample S5 218 

in Figure 4. Conversely, soils with lower metal concentrations (for example Fe, Ca, Zn in 219 

sample S2) is less influenced by moisture. Other factors such as organic matter (Ravansari and 220 

Lemke, 2018; Shand and Wendler, 2014; Weindorf et al., 2012), soil fertility (O’Rourke et al., 221 

2016b; Sharma et al., 2015), texture, and density (Zhu et al., 2011) can also affect the XRF 222 

measurement. 223 

Simple linear regression equations are adequate for fitting the data (|r2| > 0.8) for certain 224 

elements (Fe, Zn, Zr, Rb, and Pb). However, these equations are not suitable for predicting 225 

concentrations in unknown soil samples because each chemical element in each soil exhibits a 226 

a unique evolution, with different equation, making it impossible to generalize the results. 227 

To overcome this limitation, we calculated the relative decrease in concentrations (%) 228 

attributable to increasing soil moisture (Figure 5) and observed consistent decreases across five 229 

soil types. This consistency enables the modeling the entire data using a single exponential 230 

equation (Equation 1). The model accurately represents the trends for K, Fe, Zn, Rb, and Sr (r2 231 

> 0.900), and provided satisfactory results for the other elements (Figure 5). We categorized the 232 

elements into three groups based on their sensitivity to moisture: (i) low moisture-impacted 233 

concentrations (K, Ti, and Ca) - 70% of the concentration detected at 80% moisture, (ii) 234 

intermediate moisture-impacted concentrations (Fe, Pb, Zn, Zr, Rb, and Sr) - 50% of the 235 

concentration detected at 80% moisture, and (iii) high moisture-impacted concentrations (Mn) 236 

- only 25% of the concentration detected at 80% moisture. The results align with previous 237 

studies, albeit with minor variations (Padilla et al., 2019; Stockmann et al., 2016c). This effect 238 

of moisture on elementar concentration appears to be a reproducible and widely accepted 239 

phenomenon. For instance, Schneider et al. (2016) also employed exponential equations in their 240 
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modeling, and the coefficients of their equations were similar to those obtained in our study 241 

(0.85 vs. 1.00, 0.90 vs. 0.87, and 0.93 vs. 0.95 for Fe, Pb, and Zn, respectively). 242 

The measurement of XRF is influenced by the incoherent backscattering of the soil matrix 243 

and composition, resulting in a Compton peak that affects XRF measurement accuracy (EPA 244 

6200). Matrices containing lighter elements tend to produce higher Compton peaks. Instrument 245 

calibration helps mitigate the effects of Compton scattering and minimize matrix effects, but 246 

high soil moisture remains a challenge for accurate measurement. One of the primary effects of 247 

mass in soils is the weight and dilution of the soil when water occupies the pore space (Mejía-248 

Piña et al., 2016). Hence, metal concentrations in moist soil should be expressed in mg kgmoist
-249 

1 and the real concentration can be calculated using the following equation: 250 

[M] dry soil = [M] moist soil. (1+U)   Equation 5 251 

Where 252 

[M] dry soil is expressed in mg kgdry
–1 253 

[M] dry soil is expressed in mg kgmoist
–1 254 

U is expressed in kgwater kgdry soil 
–1 255 

 256 

This correction proves effective for certain elements. For Pb, Zn, Rb, and Sr (Supplementary 257 

material, Figure S2), the concentrations only exhibit a slight decrease of 5.7% for Sr and 12.4% 258 

for Zn at 80% soil moisture. However, for elements with lower atomic numbers like Fe, Mn, or 259 

Cu, soil moisture continues to significantly impact the concentrations even after correction. 260 

These elements have low electron binding energies, causing the emitted X-rays to be absorbed 261 

and attenuated by water molecules. The mass attenuation coefficients for water and air are 262 

higher for low-energy X-rays (Hubbell and Seltzer, 2009; Parsons et al., 2013). 263 

Interestingly, K, Ca, and Ti, which are low atomic number elements belonging to period 4 264 

and have lower energies of the characteristic Kα X-rays, showed an opposite trend (Figure S2). 265 
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Specifically, their corrected concentrations increased with higher moisture instead of 266 

decreasing. These elements are likely influenced by the intensity of the primary X-rays from 267 

the source enhanced by water (Ge et al., 2005). Padilla et al. (2019) found that the Compton 268 

Normalization method, suggested by some manufacturers to mitigate the adverse effect of 269 

moisture, was ineffective. Our findings underscore the necessity of a moisture correction 270 

independent of the instrument's internal correction and highlight the efficacy of the developed 271 

model (equation 4) over mass water corrections (equation 5). 272 

Some authors in previous studies have suggested that soil moisture content should not 273 

exceed 20% when conducting soil parameters measurements (Kalnicky and Singhvi, 2001; 274 

Laiho and Perämäki, 2005; US Environmental Protection Agency, 2007). However, even at 275 

lower moisture levels, such as 10%, XRF concentration measurements are still significantly 276 

affected by moisture. Therefore, soil samples containing any moisture should be handled with 277 

caution. Some authors have noted that previous studies severely underestimated soil moisture 278 

(Mejía-Piña et al., 2016; Parsons et al., 2013; Stockmann et al., 2016b) and recommended 279 

minimal moisture when conducting soil investigation. Soil moisture has such a severe effect on 280 

analysis that Mejia-Pia et al. (2016) mentioned a maximum threshold of 5% and even advised 281 

measuring moisture in dry soil after a long storage period (Mejía-Piña et al., 2016). With the 282 

model developed in this study, the systematic moisture correction from XRF measurement 283 

errors eliminates this limitation and provides much more precise results in any circumstance. 284 

 285 

3.3. Correction of geochemical field maps using the model 286 

Geochemical field mapping was carried out over several days in varying weather conditions 287 

in Portugal and France. As the mapping during the missions had to continue even after rain 288 

events or during light rain, the soil was sometimes drier and sometimes wetter during the pXRF 289 

measurements. Therefore, soil moisture was estimated using the general final model (Equation 290 

4), and the geochemical soil maps were generated with and without moisture correction (Figure 291 
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6, S3 and S7). As expected, a disparity between the two maps emerged in Estarreja (Portugal), 292 

particularly in the lowlands southwestern region near the coast where the soils were more humid 293 

(Figure 6C). Despite the sunny conditions, with soil moisture generally below 30%, the 294 

geochemical investigation by pXRF measurements underestimated the concentrations of Fe, 295 

Zn, and Pb by 32.1%, 29.5%, and 21.4%, respectively (Table 2). 296 

During field mapping in the Pyrenean OHM (Vicdessos), the conditions were more humid, 297 

with the average soil moisture at 53%, twice the mean value observed in the Portuguese soils 298 

(Supplementary material, Figures S6 and S7). This results in greater differences between 299 

corrected and uncorrected geochemical maps. In such humid mountainous conditions, the 300 

moisture effect considerably biased the XRF measurements, leading to an error of more than 301 

50% fro Fe and Zn (Table 2). 302 

Stockmann et al. (2016) also produced maps of Fe before and after correction for soil 303 

moisture, using a linear equation between Fe (air-dried) and Fe (field-wet) to create a model for 304 

estimating soil content, assuming homogeneous soil moisture. However, this assumption is not 305 

applicable in some situations, particularly in scenarios where XRF data are collected at different 306 

sampling dates, over several days, under different moisture conditions, or across different 307 

landscape units such as well-drained plateaus, hill slopes, flood plains, etc. 308 

Soil moisture poses a primary challenge for accurate geochemical field mapping. Its 309 

influence is significant enough that certain researchers have explored the possibility of 310 

integrating a soil moisture sensor into the pXRF analyzer (Potts and West, 2008; Ravansari and 311 

Lemke, 2018). The method proposed in our study represents a novel approach capable of 312 

effectively eliminating the moisture effect in geochemical field mapping without incurring 313 

additional costs.  314 
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4. Conclusion 315 

The limitations imposed by soil moisture on in situ XRF analysis can be overcome through 316 

the utilization of a predictive model constructed in two steps, enabling the estimation of of soil 317 

moisture directly from XRF measurements with a high accuracy of 98%. This innovative 318 

method offers a reliable solution for successful in situ XRF analysis and represents a significant 319 

advancement in environmental research. The two-step process involves first estimating soil 320 

moisture from in situ XRF measurement errors, followed by the correction of XRF 321 

measurements for moisture. Through this post-processing method, the accuracy of geochemical 322 

field maps is considerably enhanced, with differences in metal concentration before and after 323 

correction exceeding 50%. It facilitates the extensive utilization of portable XRF instruments 324 

in various environments, delivering precise and comparable results across different ecosystems, 325 

climatic conditions and collection times. In summary, our approach offers a cost-effective and 326 

efficient solution to mitigate the impact of soil moisture on in situ XRF analysis, thereby holding 327 

consirable potential for advancing environmental soil research. 328 
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Table 1 

Statistical summary of the multiple regression model for estimating soil moisture 

from measurement errors obtained during X-ray fluorescence (XRF) 

spectrometry analysis. 

Analysis of variance 
Degree of  

freedom 

Sum 

Squares 

Mean 

Squares F 

Critical 

value F 

Regression 15 3.3317 0.2220 159.37 5.94E-50 

Residus 74 0.1034 0.0013   

Total 89 3.4342       

Regression statistics 
     

Multiple coefficient of determination 0.9848    

Coefficient of determination 0.9699    

Error 0.0373    

Observations 75    

Coefficient of the regression 

Constant 0.0939     

Cr Error 0.0935     

As Error 0.1291     

Zn Error 0.0392     

V Error 0.0439     

S Error 0.0005     

Ti Error -0.0002     

K Error -0.0055     

Co Error -0.0294     

Fe Error 0.0099     

Sc Error 0.0084     

Ca Error -0.0053     

Pb Error -0.1392     

Rb Error 0.1435     

Zr Error 0.0780     

Sr Error -0.3694     

 

Table 2 

Mean concentrations of Fe, Zn and Pb in soil samples before and after soil 

moisture correction, in the in situ entire XRF datasets at the OHM in Estarreja 

(Portugal) and the OHM in Vicdessos (France). 

 OHM Estarreja OHM Vicdessos 

Number of samples  140 95 

Mean moisture (± SD) 27 % (± 20%) 53 % (± 18%) 

Mean [Fe] before correction (mg kg-1) 11,200 20,600 

Mean [Fe] after correction  (mg kg-1) 14,800 32,100 

Difference due to moisture effect (%) 32.1         55.8 

Mean [Zn] before correction (mg kg-1) 61 92 

Mean [Zn] after correction  (mg kg-1) 79 142 

Difference due to moisture effect (%) 29.5 54.3 

Mean [Pb] before correction (mg kg-1) 28 18 

Mean [Pb] after correction  (mg kg-1) 34 26 

Difference due to moisture effect (%) 21.4 44.4 
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Fig. 1. Methodology flow chart for correcting geochemical XRF field data using soil moisture 

modeling. 
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Fig. 2. Evolution of XRF spectra during the drying of soil sample S2 from 84% to 0% gravimetric moisture in Experiment 1. 

 
 

Jo
urn

al 
Pre-

pro
of



A 

 

 

B 

 

 
Fig. 3. Comparison of measured moisture values with moisture values estimated from modeling based on XRF errors (A) in laboratory 

conditions and (B) in 71 different soil samples from Portugal. 
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Fig. 4. Mean total concentrations of Fe, Ca, K, Ti, Pb and Zn in five soils with different moisture 

conditions during the Experiment 1. 
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Fig. 5. Proportion of detection of K, Ti, Fe, Pb, Zn and Mn (%) in the five soil samples according to soil 

moisture, using X-ray fluorescence spectrometry. 
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Fig. 6. Maps of concentration of Fe and Pb before moisture correction (first map), after moisture correction 

(second map) and difference (%) between concentrations according to soil moisture (third map) in 

superficial soils obtained from in situ XRF data, at OHM Estarreja, Portugal. 
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Highlights 

 

• The soil moisture was modeled directly from field pXRF data. 

• The accuracy of the predictive model exceeded 98%. 

• Correction of Fe, Pb or Zn maps prevented mean errors of up to 50%. 

• The estimation of moisture requires no additional data acquisition. 

• The method allows geochemical mapping under variable climatic conditions. 
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