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Abstract
The emerging field of tissue engineering and regenerative medicines utilising artificial polymers is
facing many problems. Despite having mechanical stability, non-toxicity and biodegradability,
most of them lack cytocompatibility and biocompatibility. Natural polymers (such as collagen,
hyaluronic acid, fibrin, fibroin, and others), including blends, are introduced to the field to solve
some of the relevant issues. Another natural biopolymer: silkworm silk gained special attention
primarily due to its specific biophysical, biochemical, and material properties, worldwide
availability, and cost-effectiveness. Silk proteins, namely fibroin and sericin extracted from
domesticated mulberry silkworm Bombyx mori, are studied extensively in the last few decades for
tissue engineering. Wild nonmulberry silkworm species, originated from India and other parts of
the world, also produce silk proteins with variations in their nature and properties. Among the
nonmulberry silkworm species, Antheraea mylitta (Indian Tropical Tasar), A. assamensis/A. assama
(Indian Muga), and Samia ricini/Philosamia ricini (Indian Eri), along with A. pernyi (Chinese
temperate Oak Tasar/Tussah) and A. yamamai (Japanese Oak Tasar) exhibit inherent tripeptide
motifs of arginyl glycyl aspartic acid in their fibroin amino acid sequences, which support their
candidacy as the potential biomaterials. Similarly, sericin isolated from such wild species delivers
unique properties and is used as anti-apoptotic and growth-inducing factors in regenerative
medicines. Other characteristics such as biodegradability, biocompatibility, and non-inflammatory
nature make it suitable for tissue engineering and regenerative medicine based applications. A
diverse range of matrices, including but not limited to nano-micro scale structures, nanofibres,
thin films, hydrogels, and porous scaffolds, are prepared from the silk proteins (fibroins and
sericins) for biomedical and tissue engineering research. This review aims to represent the progress
made in medical and non-medical applications in the last couple of years and depict the present
status of the investigations on Indian nonmulberry silk-based matrices as a particular reference due
to its remarkable potentiality of regeneration of different types of tissues. It also discusses the
future perspective in tissue engineering and regenerative medicines in the context of developing
cutting-edge techniques such as 3D printing/bioprinting, microfluidics, organ-on-a-chip, and
other electronics, optical and thermal property-based applications.
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Abbreviations

Am Antheraea mylitta
Aa Antheraea assamensis/assama
Sr Samia cynthia ricini/Philosamia ricini
Ap Antheraea pernyi
Ay Antheraea yamamai
3D Three dimension
RGD Arginylglycylaspartic acid
ECM Extracellular matrix
PLGA Poly(lactic-co-glycolic acid)
PLA Polylactic acid
PEG Polyethylene glycol
DTA Differential thermal analysis
TGA Thermogravimetric analysis
PCL Polycaprolactone
HUVEC Human umbilical vein endothelial

cells
α-SMA Alpha smooth muscle actin
SM-MHC Smooth muscle myosin heavy

chain
ABCG2 ATP binding cassette subfamily G

member 2
TGF-β Transforming growth factor beta
BMP-2 Bone morphogenetic protein 2
ALP Alkaline phosphatase
VDR Vitamin D receptor
RunX2 Runt-related transcription factor 2
Col1A2 Collagen, type I, alpha 2
OPN Osteopontin
GLI-1/2 Glioma-associated oncogene homolog

1 and 2
Shh Sonic hedgehog
BSA Bovine serum albumin
FITC Fluorescein isothiocyanate
DPPH Hydroxyl, superoxide, 1, 1-diphenyl-

2- picrylhydrazyl
COX-2 Cyclooxygenase-2 protein
4-HNE 4-hydroxynonenal
PCNA Proliferating cell nuclear antigen
FBS Foetal bovine serum
SDS-PAGE Sodium dodecyl sulphate–

polyacrylamide gel electrophoresis
PVA Poly(vinyl alcohol)
TNF-α Tumour necrosis factor alpha
HepR21 Liver hepatocellular carcinoma cell

line
4-MU 4-Methylumbelliferone
pAKT Phosphorylated protein kinase B
PKC Protein kinase C
MDA-MB-231 Adenocarcinoma breast epithelial cell

GAG Glycosaminoglycan

DSC Differential scanning calorimetry

TMDSC Temperature-modulated DSC

FTIR Fourier-transform infrared spectro-
scopy

PEDOT Poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate

CLUSTAL Multiple sequence alignment program

CD Circular dichroism
SEM Scanning electron microscopy
TEM Transmission electron microscopy
AFM Atomic force microscopy
µ-CT Micro computed tomography

1. Introduction

Scope and utilisation of tissue engineering and regen-
erativemedicine are exponentially increasing over the
last few decades (Shafiee and Atala 2017, Gaharwar
et al 2020). The potential of replacing or rejuvenating
the damaged tissue or organ system is realised long
back (Langer and Vacanti 1993, Mao and Mooney
2015). The primary purposes of such research are to
restore or improve the diseased/damaged tissue func-
tions throughmany diverse techniques, including dir-
ect implantation of cells or cell-seeded constructs,
controlled release of drug/growth factors, and cre-
ating an artificial niche for better understanding of
cellular/tissue function (Griffith 2002, Stoddart 2017,
Koons et al 2020).

Active research in the tissue engineering field
includes the formulation, fabrication, and evaluation
of potential scaffold (s)/construct (s), which can sup-
port cell proliferation, tissue regeneration and meet
other critical criteria such as transport of nutrients
or secretory products. In the last two decades, several
potential and clinically relevant scaffold structures
are being fabricated. They are utilised to investigate
cell-biomaterial interactions along with the in vitro
cell proliferation and differentiation and in vivo val-
idation. A few characteristics such as controllable
degradation, optimum porosity, swelling, rigidity,
compliance, and cytocompatibility are needed to
develop for tailoring an appropriate scaffold. Dif-
ferent synthetic (both nondegradable and biodegrad-
able) and natural polymers are used widely to fabric-
ate constructs of different dimensions and compos-
itions (Jagur-Grodzinski 2006). They are the most
diverse class of biomaterials, whose surface property
can be physically, chemically or biochemically mod-
ified. They are formattable in any size and in com-
plex shapes according to the application (Dhanday-
uthapani et al 2011). Due to the high mechanical
strength, semi-crystalline nondegradable polymers
such as polyethylene, polypropylene, polytetrafluoro-
ethylene and polyethylene terephthalate are used as
orthopaedic implants, suture, dressings, woven fab-
rics, vascular grafts, heart valve sewing rings and
membranes for hemodialyzers. Among amorph-
ous nondegradable soft polymers, polyvinyl chlor-
ide, rubbers, silicones, polyurethanes, polyacrylates
and poly sulfonates/carbonates are used for tubing,
blood storage bags, soft tissue implants, drug deliv-
ery system, contact lens, dental fillings, instrument
coating, membranes for extracorporeal devices and
their spare parts. Biodegradable synthetic polymers
include, poly(a-hydroxy acids), poly(e-caprolactone),
poly(orthoesters), poly(a-amino acids), poly(alkyl
2-cyanoacrylates), poly(anhydrides), polyphos-
phazanes and polyhydroxyalkanoates (Piskin 1995).
Diverse structures such as thin-films (Zelikin 2010),
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Figure 1. This schematic presentation, along with original photographs, indicates how we can use silkworm silk proteins (sericins
and fibroins) for different scaffold formats like 2D films, 3D matrices, 3D electrospun nanofibre mats, nanoparticles, and other
matrices for different types of applications, as biomedical materials for different kinds of 2D and 3D cell cultures for tissue
engineering and regenerative medicine due to their essential and crucial properties as biomaterials. Further, the graphic vividly
speculates the future trends and progress of silk-based engineered natural, biomimetic and advanced biomaterials as implantable
biopolymers, delivery platforms, electronic devices, optics, biosensors, nanotechnological platforms, in vitro disease modelling,
stem and cancer cells research. For details, please refer to this article and other reviews mentioned in this paper.

particles (Wilczewska et al 2012, Bulutoglu et al
2020), layer by layer assembly, gel formation, print-
ing and 3D scaffolds (Mouriño et al 2013, Calori
et al 2020) are successfully used to deliver thera-
peutic molecules. However, synthetic polymers face
the question of delayed biodegradability (Dhanday-
uthapani et al 2011), short term cytocompatibil-
ity (Ter Horst et al 2018), extractables leaching,
which may incite unwanted immunological/foreign
body responses in the host. Such problems can be
avoided by considering natural polymer, or ECM
based constructs (Lu et al 2011). Natural polysac-
charides based biomaterials include starch and cel-
lulose (from plant), agar and alginates (from algae),
chitin, chitosan, hyaluronic acid, glycosaminoglycans
and cellulose (from animals), dextran, polygalactosa-
mine, xanthan and cellulose (from bacteria) (Torres
et al 2019).

Regarding natural protein based biomaterials,
type I collagen (from porcine andmurine tissue), and
silk proteins (from silkworms (figure 1) and insects)
are themost popular natural biomaterials. Other than
these, fibronectin, tropoelastin, laminin, entactin,
and gelatine are also used as biomaterials either
alone or in combination with each other. These pro-
teins lack the material property for biomaterials, so
they need other structural/filler proteins to fabricate

more structurally stable biocomposite materials. Still,
they lack the in vivo like tissue complexity and spa-
tial presentation of growth factors found in vivo
(Aamodt and Grainger 2016). Williams (2019) dis-
cusses the merits and demerits of some natural
biopolymers in detail, highlighting the characterist-
ics required in a potential biomaterial, including the
availability, cost-effectiveness, scalability, mechanical
strength, degradation, minimal inflammation, and
others, along with the compatibility for bioprinting.
A more accessible way to have a native-like structure
is to isolate the ECM and decellularise it to have a
cell-free native construct that can act as a support
to modulate cell functions. However, optimal decel-
lularisation and digestion protocol need to be fol-
lowed. Otherwise, different forms and concentrations
of ECM will not serve the purpose for desired applic-
ation (Catoira et al 2019). Recent studies showed
ECM-derived materials can also trigger innate host
immune responses following implantation (Xing et al
2020).

Among the options for naturally occur-
ring polymers exhibiting such desired qualit-
ies, the silk proteins originated from silkworms
are favoured for many reasons such as cost-
effectiveness, ease of availability, biodegradabil-
ity, and minimal inflammation (Naskar et al 2014,
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Figure 2. RGD motif and its abundance in A. mylitta silk fibroin 3D predicted model. Historical timeline of the application of silk
in the field of biomedicine. (A) Schematic diagram depicting the interaction between RGD (present in or grafted on silk protein
based extracellular matrices) and integrin molecules of the mammalian cells. (B) The 3D structure model of A. mylitta fibroin is
predicted from the amino acid sequence (NCBI Accn: AAN28165, partial CDS) of N-terminal domain (1–507aa) using
TrRefineRosetta modelling method in Robetta server (https://robetta.bakerlab.org/). The best model is chosen among the five
predicted models based on the error estimate, compactness, and B-factor of the residues. The molecular graphics of the cartoon
diagram is prepared using the program Pymol (www.pymol.com). The transparency of the surface representation is kept at 80%
for clear visualisation of the cartoon diagram. The RGD motifs on the loops are labelled in magenta and are numbered
sequentially from the N-terminal domain in both 0 and 90 degree orientations. (C) Milestones in the evolution of silk from first
sericulture, to the thread for textile, for suturing patients, recent biomaterials and clinically approved products in the field of
tissue engineering and clinical biomedicine. Holland et al (2019) John Wiley & Sons.

Kundu et al 2012, Cao and Wang 2009). Silk
fibroin has travelled a long path of evolution as
a biomaterial, starting from the thread for textile
and suturing patients to recent use as scaffolding/
biomaterial in the tissue engineering field
(figure 2(C)). Medicinal use of silk fibre can be traced
long back as early as the second century CE (Muffly
et al 2011). In recent times, tremendous development
in the fabrication and utilisation of Bombyx mori
(Bm) silk-based assemblies can be observed in tis-
sue engineering and regenerative medicines. Fibroin-
based biomaterials have shown as suitable supporting
scaffold for tissue replacement, repair, and regener-
ation and for studying different in vitro and in vivo
pathophysiological, toxicological, and immunolo-
gical aspects. The readers are encouraged to explore
some seminal reviews in these fields (Vepari and
Kaplan 2007, Rockwood et al 2011, Holland et al
2019) to get a glimpse of the same.

Silk obtained from the domesticated silkworm,
Bombyx mori, is colloquially called ‘mulberry silk’ as
the worms are primarily fed with mulberry leaves.
Similarly, wild silkworms (Antheraea species) and
semi-domesticated silkworms (Eri, Samia species) are
polyphagous, i.e. they feed on different leaves and
are called ‘nonmulberry/wild silk’ in most of the lit-
erature. The interest in wild or nonmulberry silk is
increased in the last few years due to its untapped

potential as biomaterials for tissue engineering and
regenerative medicine (Mandal and Kundu 2008c,
Kar et al 2013, Pal et al 2013). This report is
intended to illustrate the participation of Indian ori-
gin nonmulberry wild Antheraea mylitta (Am) silk
fibroin and sericin (figure 1), along with other non-
mulberry species, in the current biomedical and tis-
sue engineering fields as a particular highlight. These
specific recent references (across the span of the last
20 years, focusing particularly 2000–2020) will move
through the ideas of how we should think and pro-
ceed in the immediate future for utilising this and
other wild species as nature-made biofunctionalised
biomaterials. We further discuss the established pro-
tocols, fabrication technologies, and applications in
these fields, along with the encouraging results, pit-
falls, and futuristic goals.

1.1. Silk proteins as biomaterials
1.1.1. Sources of silk proteins
Naturally occurring raw silk proteins, in the form of
very fine and lustrous thread, is the primary structural
component of small protective scrotiform (cocoon)
woven by the silkworm (figure 1 and 9). This cocoon,
especially the rigid, non-woven structures observed
in Antheraea species evolved to optimally protect the
pupa (plural—pupae) as they transform into a moth,
from the extreme climatic and natural conditions as
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well as from different external threats. Apart from
fibroin, which provides structural integrity to the
silk fibre in a pair of continuous threads, the other
protein is the glue-like sericin, which conglutinates
both the fibroin threads (Sehnal and Zurovec 2004).
Wild cocoons of A. mylitta exhibit ten times more
work-of-fracture indicating their robust mechanical
strength (Zhang et al 2013).

1.1.2. Nonmulberry silk sources in India
India is the second largest producer of silk in the
world and the only country producing all the five
commercial varieties of silks, including both mul-
berry (B. mori) and nonmulberry wild (Antheraea
species: Tropical Tasar, Figure 1, Oak Tasar andMuga)
and semi-domesticated (Eri) silkworms (figure 9).
Considering total raw silk production in India in
2016–17: Mulberry contributed 71.7%, Tasar 9.9%,
Eri 17.8% and Muga 0.6% of the total 30 348 met-
ric ton production (Neog 2020). For textile purposes,
silk threads are primarily isolated from the cocoons,
however, for tissue engineering and biomedical pur-
poses, fibroin and sericin are isolated from both
cocoon and larvae. Among all, A. mylitta, (Am), A.
assamensis/A. assama, (Aa), Samia ricini/Philosamia
ricini, (Sr), A. pernyi, (Ap), and A. yamamai (Ay)
are explored for engineering biomaterials in the last
few years. Silkworms feeding on nonmulberry trees
such as Castor (Ricinus communis), Shal (Shorea
robusta), Tapioca (Manihot esculenta), Arjun (Ter-
minalia arjuna), Kesseru (Heteropanax fragrans) and
others are found in central India and mainly in the
north-east region of India in dispersed clusters and
remain yet under-utilised for biomaterials (like A.
roylei. A. frithi, and A proylei).

1.1.3. Characteristics of silk proteins
The components of silk fibre (fibroin and sericin) are
identified and are evaluated as the potential biomater-
ials for regenerative tissue engineering. Silk fibroin-
based constructs hold an important place due to
their unique qualities such as biocompatibility, bio-
degradation, ease of fabrication, aqueous based pro-
cessing flexibility, non-toxicity, lower antigenic/non-
inflammatory response, tailorable degradation rate
for regulation of bioactive molecule release, oxy-
gen/water permeability, low cost compared to other
ECM proteins such as collagen, fibrin, laminin,
fibronectin, and elastin (Vepari and Kaplan 2007,
Holland et al 2019, Nguyen et al 2019, DeBari et al
2021). Similarly, silk protein sericins of silkworms
show several biochemical and biophysical proper-
ties facilitating the use of sericins based matrices in
different purposes (Kundu et al 2008b, Kunz et al
2016, Das et al 2021). Both the proteins from various
nonmulberry sources in different versatile, functional
architecture are exploited in different types of tissue
engineering applications, as discussed in the follow-
ing sections.

1.1.4. Advantages of nonmulberry silk proteins-based
biomaterials over mulberry ones
The worldwide availability of this mulberry silk pro-
tein makes it a cost-effective material for research
and medical applications. However, mulberry fibroin
lacks integrin-binding tripeptide RGDmotifs (table 2
and SI available online at stacks.iop.org/BMM/16/
062002/mmedia), which is identified as an integrin
(of cell) binding sequence present in most of the
extracellular proteins influencing cell-matrix inter-
action (figure 2(A)) (Minoura et al 1995). A recent
study (Baba et al 2019) has shown that silk fibroin
from an RGD overexpressing Bm strain has a more
profound effect on wound closure, granule forma-
tion and cell proliferation in cutaneous wound heal-
ing than the original Bm fibroin. This phenomenon
leads to additional efforts to create a recombinant
protein with RGDpeptides or chemical coupling/bio-
functionalisation of such motifs on materials (Sofia
et al 2001, Wohlrab et al 2012, Vidal et al 2013,
Saotome et al 2015). Fibroin isolated from non-
mulberry origins, such as Indian A. mylitta (Datta
et al 2001a), Indian A. assama (Gupta et al 2015),
Chinese A. pernyi (Yukuhiro et al 1997), Japanese
A. yamamai (Hwang et al 2001) are found to con-
tain such RGD motifs inherently in their amino acid
sequences (table 2 and SI). Considering Am, we have
managed to predict the ab initio 3D structure of the
fibroin as well as the presence and location of the
RGD motifs in it using TrRefineRosetta modelling
method in the Robetta server (Yang et al 2020; https://
robetta.bakerlab.org/). Due to the unavailability of
a model template for structural homology, we have
used this ab initio approach based on the available
amino acid sequence of the protein only. The par-
tial amino acid sequence (ACCN: AAN28165, par-
tial CDS of 507 amino acids) from the N-terminal
domain of Am fibroin is used for this prediction (SI).
The RGD motifs are predicted on the loop regions
that are exposed on the protein surface (figure 2(B)).
Such presence of these integrin-binding motifs on
protein surfaces directly influence improved cell
adhesion, subsequent proliferation, and differenti-
ation on the nonmulberry fibroin-based matrices,
where no additional biofunctionalisation is required
(Mandal and Kundu 2008b, 2009a, Mandal et al
2010b, Acharya et al 2009a, Patra et al 2012, Silva et al
2019). The discovery of inherent RGD sequences on
the nonmulberry silk fibroin ignites the interest in
utilising these proteins for regenerative medicine.

Other advantageous nonmulberry fibroin fea-
tures over mulberry include good yield, mechanical
strength, biomineralisation, osteoconductivity, and
osteogenic properties. Am has the largest yield of silk
proteins compared to other varieties (Naskar et al
2014). Depending upon the amino acid composition
of the fibroin, which varies from species to species, the
mechanical property also differs. The poly-alanine
sequence of nonmulberry is more hydrophobic than
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poly-glycine-alanine sequence in mulberry fibroin,
resulting in their higher binding energy and mechan-
ical strength along with long-term structural stability
in in vitro/in vivo enzymatic environment (You et al
2015). Although in terms of Young’s modulus and
breaking stress, nonmulberry is inferior, they sustain
more breaking strain thanmulberry (Fang et al 2016).
Recent studies of Am fibroin-based scaffolds for bone
tissue engineering reveal one of its crucial proper-
ties, i.e. osteogenic potential (Sahu et al 2015; Behera
et al 2017, Midha et al 2017; Naskar et al 2017b).
Nonmulberry fibroin has the potential to nucleate
hydroxyapatite on its surface in the presence of simu-
lated body fluid (SBF) and initiate mineralisation on
it. This is the critical requirement for a biomaterial to
be bioactive and can potentially support in vivo bone
bonding. The apatite crystal formation on the matrix
surface is thought to be due to the enhanced exposure
of the –COO− group of Asp and Glu amino acids of
the Am fibroin, which attracts free Ca2+, HPO2− and
OH− ions in the SBF. These advantageous properties
of the Am fibroin over other silk fibroins make it a
preferred candidate for load-bearing tissue regenera-
tion, particularly bone tissue engineering.

1.2. Nonmulberry fibroin
1.2.1. Structural properties
The silkworm spins the cocoon surrounding itself
using the thread of fibroin along with another silk
protein, sericin. Fibroin is synthesised inside the
silk glands of silkworms. While spinning, silkworms
produce very thin twin fibroin strands from their
spinneret, which are simultaneously glued together
with sericin. The thickness of fibres varies depend-
ing upon mulberry and nonmulberry species, sea-
son and conditions of the growing environment. The
fibre becomesmore robust and harder once spun out-
side the body. At the molecular level, hydrophobic
glycoprotein fibroin exists as a semi-crystalline state.
The highly ordered crystalline anti-parallel β-sheet
contributes to the tensile properties (strength and
toughness), while less ordered β-sheet amorphous
spacers contributes to the physical properties (flexib-
ility, elasticity, moisture regain, dyability and chem-
ical resistance) to the fibres (Naskar et al 2014,
Nguyen et al 2019). Depending upon the crystallin-
ity of the fibroin, silkworms are divided into three
major subfamilies i.e. Bombycidae (B. mori), Sat-
urniidae (A. mylitta) and Thaumetopoeinae (Anaphe
moloneyi). The polypeptide side chain influences the
dimensional difference among the orthorhombic unit
cells of fibroin (Warwicker 1956). The fine structure
of fibroin varies considerably from one species to
another. The stability or degradability of the fibroins
depends on the amino acid composition and access-
ibility. For example, Saturniidae’s crystalline part is
mainly composed of poly-alanine chains. The bonds
are naturally more resistant to any chemical attack
and simultaneously hydrophobic in comparison to B.

mori and A. pernyi, whose crystalline part is com-
posed of several repetition of poly-glycine-alanine-
glycine-serine/tyrosine motif (Shaw and Smith 1961,
You et al 2015). The amino acid composition of
nonmulberry fibroin mostly contains glycine, alan-
ine, serine and arginine (Kricheldorf et al 1983).
The amorphous regions contain the bulky and polar
side chain, which are more abundant in wild silk
fibroin than mulberry fibroin and are responsible for
maintaining silk properties under various external
treatments (Mori and Tsukada 2000). The proteins
are glycosylated by O-linked oligosaccharides via N-
acetylgalactosamine. Am fibroin is a homodimer pro-
tein with molecular mass ∼395 kDa, whereas Aa
fibroin has two fragments: 220 and 20 kDa, Sr has 97
and 45 kDa fragments, Ap has 26, 45 and 67 kDa frag-
ments and finally, Ay has 450 kDa fragment. These
proteins do not contain any light chain or P25 poly-
peptide homolog of Bm fibroin.

1.2.2. Fibroin solubilisation and regeneration
Natural fibroin (whether wild or domesticated) can
be extracted from two sources namely directly from
the live silkworm gland or indirectly from cocoon
fibres. Because of the structural stability of wild silk
strains, it is difficult to isolate or purify fibroin from
the cocoon. Fibroin from nonmulberry wild silk-
worm is generally isolated by dissolving the silk gland
(figure 1) in anionic surfactant (lithium dodecyl
sulphate or sodium dodecyl sulphate) and stabilising
the protein (Datta et al 2001b, Mandal and Kundu
2008a) and subsequently reformatted into various
scaffolding forms (Konwarh et al 2017). A few stud-
ies attempt to prepare hydrogels from the solution
obtained by dissolving nonmulberry cocoons in an
ionic solution called 1-butyl-3-methyl imidazolium
acetate (Goujon et al 2013, Silva et al 2013, 2020,
Srivastava et al 2019). The cocoons first need to be
devoid of sericin, which can be achieved using a
method called degumming (figure 9), which includes
boiling in water or acid/alkali treatment (Kunz et al
2016). Another recent study reported a facile method
to dissolve Am fibroin directly from the cocoon using
10%CaCl2-formic acid-based solvent (Srivastava and
Purwar 2018, Zhang et al 2019).

1.2.3. Biophysical properties
The regenerated silk fibroins can self-assemble in the
aqueous solution into the beta-sheet rich network at
room temperature. External mechanical forces such
as ultrasonication can accelerate this process by alter-
ing the hydrophobic hydration and initiating beta-
sheet formation (Liu et al 2013). Wild silk fibroins
are substantially different from mulberry fibroin in
thermal properties (such as stability, degradation,
bound water sustaining ability, and molecular mobil-
ity during the glass transition). Fibroins are differ-
ent in terms of other structural properties, such as
ratios of bulky/non-bulky, hydrophilic/hydrophobic,
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and glycine/alanine. They behave differently under
different parameters, such as moisture regain and
intrinsic viscosity (Sen and Babu 2004a). From DTA
and TGA analyses of fibroin fibres, it is observed that
nonmulberry silks are more stable in high temper-
ature than the mulberry one (Babu and Sen 2007,
Wang et al 2015). Moreover, Saturniidae fibroin with
lower tensile strength provides superior compressive
strength, toughness and elasticity required for many
specific functions (Bandyopadhyay et al 2019). How-
ever, their structure versus mechanical property cor-
relation is quite similar (Sen and Babu 2004b).

1.3. Nonmulberry sericin
The silk consists of another gel-like component
known as sericin, and the separation of sericin from
the fibroin fibre is known as degumming. Sericin yield
depends on the extraction procedure, age, and spe-
cies/races used with the wild species. Another notice-
able and vital component is the peduncle (figure 1),
a very hard or very soft incomplete structure, mainly
observed in the wild silkworms, including A. mylitta
(toughest one). This very hard peduncle of Am, a
wood-like substance, facilitating the attachment of
the cocoons with the branch of the tree forming a
very tight and robust ring-like structure, is primar-
ily composed of 200 kDa sericin (Dash et al 2006).
This peduncle supports these wild cocoons not to be
taken away by the predators, like birds while hanging
in nature. In textile industries, harsh detergents and
soaps are used for degumming purpose, which usu-
ally destroys sericin’s structural and functional prop-
erties (Yun et al 2013).

The domesticated B. mori silk contains more than
20% sericin, whereas semi-domesticated or wild silk-
worms, including A. mylitta silk, usually has less
than 10% sericin. The amount of sericin obtained
mainly depends on the extraction methods and spe-
cies of mulberry and nonmulberry silk cocoons.
Moreover, wild cocoon sericin is less stable under
high temperatures but supports betterwater exchange
than mulberry sericin (Mazzi et al 2014). Sericin
is a globular glycoprotein composed of 18 differ-
ent amino acids (primarily hydrophilic), with ser-
ine being the predominant amino acid (Dash et al
2007, Kundu et al 2014a, Silva et al 2019). The other
primary amino acids are those having polar side
chains with amino, carboxyl, or hydroxyl groups like
glutamic acid, aspartic acid, glycine, threonine, and
tyrosine, which facilitate the crosslinking, blending,
and copolymerisationwith other polymers (Dash et al
2007, Aramwit et al 2009a). The complete molecular
details of wild Am sericin are still unverified except
that sericin isolated from the cocoon of Am exhib-
its three major protein bands in SDS-PAGE (116,
97, and 66 kDa) (Dash et al 2007). However, many
studies observe the peptides of different molecular
weights ranging from <50 to >250 kDa. The genome
sequence of A. yamamai exhibits five sericin genes,

namely AySer1 (8549 bp), AySer2 (9413 bp), AySer3
(6691 bp), AySer4 (8317 bp), and AySer5 (4510 bp)
(Kim et al 2017).

The domesticated, semi-domesticated, and wild
silk sericins exhibit β-sheets, random coils, and α-
helix in some instances (Kumar and Mandal 2017).
They reveal a difference in their secondary structures
(Teramoto and Miyazawa 2005, Kunz et al 2016),
which depends on the method of sericin extraction,
moisture content, temperature, and the physical form
of sericin used (solution, gel, and others). These
chemical and structural features impart diverse bene-
ficial traits to this silk protein. The crystallinity of seri-
cin can be induced or enhanced by adding ethanol
or other crosslinking agents (Teramoto andMiyazawa
2005, Oh et al 2011, Siritientong et al 2011, Siri-
tienthong et al 2012, Nayak et al 2012).

The potential applications of nonmulberry
fibroins and sericins in tissue engineering and regen-
erative medicine are discussed in the next section.

2. Silk based structures and assembly
relationship

Whenever considering polymer-based biomateri-
als, the assembly or hierarchical organisation of
the material at different molecular scale levels and
its structure-function-property relationship must
be comprehended. The first step of assembling a
biopolymer or protein-small molecule is initiated
within a cell membrane inside an organism, which
can be engineered at the genetic level. In the next step,
outside the cell membrane, the small molecules com-
municate to form a longer length scale and eventu-
ally form macroscopic material. Understanding each
architectural layer provides an insight into designing
a polymer with targeted structural and functional
features. These assemblies translate and contribute to
their thermal, electrical, mechanical, and biochemical
properties (Johansson et al 2019).

As already mentioned, silk is a fibrous poly-
meric protein produced and used by insects and
spiders for structural support purposes for their sur-
vival. Before exploring silk protein-based matrices,
the structure-function relationship needs to be fully
understood, or the knowledge gap can limit the use of
biomaterials. Silk primary amino acids are arranged
in block copolymers. There are several intermedi-
ate stages of the transition of fibroin from the ran-
dom coil/alpha-helix in the gland to the regener-
ated assembly into beta-sheet crystallites in the scaf-
fold/matrix. These structural conformations are con-
firmed using different biophysical techniques, such
as FTIR, CD, x-ray diffraction, microscopic stud-
ies (SEM, TEM, and AFM) and mechanical testing.
The stages are from random coil/alpha-helix to beta-
sheet precursors (silk I and silk II) and finally to
a stable beta-sheet by ethanol/methanol treatment.
These stages are not controlled at the molecular level,
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and as a result, environment-dependent polymorph-
ism can be observed (Valluzzi et al 2002). On another
note, although the secondary structure of fibroin
sequences is similar across the nonmulberry strains,
the minor differences in the basic amino acid motifs
and domains give rise to the diversity of the silks
and related properties (mainly mechanical proper-
ties) of the protein-basedmatrices.More details of the
assembly function can be found in the mentioned lit-
erature in table 1.

3. Fibroin based assemblies and their
applications in tissue engineering

Although the fabrication of different types ofmatrices
or assemblies frommulberry fibroin are documented
as early as 1994, nonmulberry protein-based assem-
blies are standardised in the last ∼15 years follow-
ing mulberry protein’s path (Ap—since 2006, Am—
since 2008 and Sr/Aa—since 2009 (Source: NCBI)).
The standardisations are performed through fibroin
isolation followed by regeneration to engineer differ-
ent functional scaffolding formats by tuning the sur-
face and seeing its effect on the cell-matrix interface.
A growing interest has been observed since the late 90s
and early 2000 about howmolecular recognition, self-
assembly, and a well-defined architecture of material
ultimately imply cellular metabolism. Thus, silk pro-
teins are utilised to fabricate different dimension scaf-
folds (figure 1), such as (zero: bare or coated/tagged
nanoparticles; 2D: coating, thin-film, electrospun
mat on a surface; 3D: sponge, hydrogel). A list of all
the major assemblies is presented in table 1. Mech-
anically more robust and more elastic than mulberry
scaffolds and biocompatible thin films are fabricated
by solution casting and air-drying method (Mandal
and Kundu 2008c, Acharya et al 2009a, Kar et al 2013,
Pal et al 2013, Mai-Ngam et al 2011). Nanofibrous
fibroin-polymer (PCL) matrices (Kim et al 2003)
are fabricated using the electrospinning technique
(Schneider et al 2009). Three-dimensional scaffolds
are prepared using nano-fibres (Chen et al 2020).
Blended fibres or films of fibroin and other cyto-
compatible biopolymers (collagen, gelatin, chitosan
and others) are prepared to maximize their uses and
tune the degradability (Nguyen et al 2019). Three-
dimensional porous scaffolds of pure fibroin protein
can be prepared by freeze-drying (Lv and Feng 2006)
or salt leaching method (Yao et al 2012). Tunable
pore size and porosity of the scaffolds can alter cel-
lular functionality (Mandal and Kundu 2008b). Sim-
ilarly, customised fibroin based patterned matrices
can be fabricated using micropatterning/micromold-
ing (Mandal et al 2009b). Incorporation of other
components such as carbon nano fibre can be used
to enhance different characteristics including tensile
strength, electrical conductance and biocompatibility
(Naskar et al 2017a). Biospun Am fibroin matrices

(figure 1 and 3) are shown to be more stable and
biocompatible (Mandal and Kundu 2010a). Micro-
particles from the Am, Aa and Sr fibroins can be fab-
ricated using wet milling and spray drying techniques
(Bhardwaj et al 2015). All such investigations high-
light the potential of fibroin protein-based structures
for culturing diverse types of cells and their potential
use in different types of tissue engineering.

We discuss in the following sections the repor-
ted research works, which used nonmulberry fibroin
based assemblies in different avenues of tissue engin-
eering and regenerative medicine.

3.1. Cardiovascular tissue engineering
Cardiovascular disease is one of the leading causes
of human fatality worldwide. As cardiomyocytes can-
not regenerate by natural homeostasis, the poten-
tial of silk fibroin-based films, sponges and patches
are investigated to support the cells for proper heart
function. Am fibroin matrices are preferred over Bm
fibroin or gelatine in terms of sarcomere matur-
ation and alignment, cell–cell communication and
synchronous beating without affecting their response
to the external stimuli. The tissue on the scaffold
is found to be stable and beat synchronously for at
least 20 d. The findings, together with the known
in vivo properties of silk, particularly RGD con-
taining Am fibroin matrices (figure 4) suggest that
these 3D scaffolds may be suitable for the estab-
lishment of therapies for cardiac disease requiring
mechanical support. (Patra et al 2012). With a sim-
ilar aim, Aa fibroin-based biomaterial ink is pre-
pared to print anisotropic cardiac constructs. Using
a gel embedding-based bioprinting method, vascu-
larised myocardial tissue is fabricated. The constructs
are found to be nonimmunogenic both in vitro and
in vivo.Moreover, uponmaturation in culture, vascu-
larised myocardial tissue shows maturation depend-
ent expression of proteins for both cardiomyocytes
and HUVEC cells (Mehrotra et al 2020). Consider-
ing the vascular part, multi-layered small-diameter
vascular grafts are fabricated using Bm, Am and Sr
fibroins (Park et al 2015). Patterned silk films of Am
and Sr fibroin mimic vascular conduit. Hemocom-
patible and stronger Am and Sr fibroin films show
more significant proliferation of vascular cells. Addi-
tionally, patterns on the films favour the functional
contractility of the smooth muscle cells with elevated
markers (α-SMA and SM-MHC) (Gupta et al 2016b).

3.2. Skeletal muscle tissue engineering
Human adult skeletal muscle has limited ability to
regenerate. The suitability of different fibroin-based
scaffolds is studied for supporting the adult skeletal
muscle growth as tissue ECM (figure 5). Although
human primary skeletal muscle myoblast adheres,
proliferate and deposit ECM on all the matrices. The
analysis of gene expression shows a different variety
of myotube formation on the matrices. It is found
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Table 1. List of research articles showing a wide range of nonmulberry protein-based assemblies and their purpose and biomedical
relevance.

Assembly Purpose/biomedical relevance Research works

Cocoon fibre surface A biocompatible potential substratum for supporting
in vitro cell adhesion and proliferation.

Darshan et al (2017)

Biospun fibre-based matrix Human pre-osteoblast differentiation to osteocyte on
silk braids; Biocompatibility of biospun matrix.

Midha et al (2017), Mandal
and Kundu (2010a)

Membrane mimetic
environment

Biocompatibility studies for a wide range of
mammalian cells: mouse/human fibroblast, human
bone marrow derived mesenchymal stem cells, cornea
cells, muscle cells, vascular cells, and skin graft on a rat
model.

Mandal and Kundu (2008c),
Acharya et al (2009a), Kar
et al (2013), Pal et al (2013),
Hazra et al (2016), Park
et al (2015), Gupta et al
(2016b), Srivastava and
Purwar (2017), Srivastava
et al (2017), Sen et al (2020),
Luan et al (2006)

Biomimetic micron cell
fibres, nanofibrous
membranes

In vitro biocompatibility studies using fibroblast cells;
different surface modifications of the matrices and
subsequent in vitro and in vivo studies for bone
regeneration; as wound dressing for in vitro and in vivo
wound healing; promotes osteogenic differentiation of
mesenchymal stem cells; encapsulation efficiency and
release kinetics.

Bhattacharjee et al (2015a),
Bhattacharjee et al (2015b),
Bhattacharjee et al (2016a),
Bhattacharjee et al (2016b),
Bhattacharjee et al (2016c),
Bhattacharjee et al (2016e),
Srivastava et al (2019),
Srivastava and Purwar
(2018), Chouhan et al
(2019a), Chouhan et al
(2019b), Panda et al (2015b),
Li et al (2016)

Porous spongy scaffolds Substratum that supports in vitro/in vivo osteogenesis,
adipogenesis, in vitro cardiomyocyte and muscle
myofibroblast differentiation; Support for in vitro
tumor model.

Mandal and Kundu
(2008b), Mandal and Kundu
(2009a), Patra et al (2012),
Chaturvedi et al (2017),
Talukdar et al (2011b),
Singh et al (2018), Saha et al
(2013), Sahu et al (2015),
Kundu et al (2013), Talukdar
et al (2011a), Talukdar and
Kundu (2012), Talukdar and
Kundu (2013)

Hydrogel Support for hepatocarcinoma model; substratum with
chondrogenic potential.

Kundu and Kundu (2013),
Singh et al (2016)

Substrate for biomolecule
immobilisation

Metal (titanium) surface modification for faster
osseointegration.

Naskar et al (2015), Sharma
et al (2016)

Nanoparticle for
biomolecule loading and
delivery

Entrapment efficiency and release kinetics of the model
drugs, enzyme, small molecule, curcumin, and growth
factor; targeted drug delivery to the cancer cells and
sustained release.

Sundar et al (2010), Zhang
et al (2018), Panja et al
(2017), Mottaghitalab et al
(2015), Subia et al (2014),
Subia et al (2015), Kundu
et al (2010)

Blends and composite
materials

Enhanced compressive modulus for cartilage, bone
regeneration; antithrombogenic potential.

Singh et al (2017), Gupta
et al (2016a), Naskar et al
(2017a, 2017b), Behera et al
(2017), Yang et al (2014),
Bäcker et al (2017), Srivast-
ava and Purwar (2017),
Bhardwaj and Kundu (2012),
Choudhury et al (2016),
Moses et al (2018)

Microparticles Potential drug delivery vehicle/microcarrier with
enhanced encapsulation efficiency and release kinetics.

Bhardwaj et al (2015), Li et al
(2013), Wang et al (2014)

Bioprinting Cartilage and bone bioink supporting osteochondral
differentiation and angiogenesis; anisotropic cardiac
construct for vascularised myocardial tissue.

Mehrotra et al (2020), Moses
et al (2020)

(Continued.)
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Table 1. (Continued.)

Assembly Purpose/biomedical relevance Research works

Micropatterning/
micromolding

Guided cellular adhesion on the matrix for bio-device
or implant fabrication.

Mandal et al (2009b)

Assemblies explained by
Electronics and Physics

In regards of memory devices, optical wave guide
devices, bio-photonic devices, bioelectronic devices,
and sensors.

Hu et al (2020), Zhu et al
(2016), Shivananda et al
(2020), Hota et al (2012),
Wang et al (2016), Perotto
et al (2017), Gogurla et al
(2016), Pradhan et al (2020),
Guo et al (2020)

Figure 3. Biocompatibility of fibrous fibroin matrices fabricated using biospinning by A. mylitta silkworm. Step by step process of
biospinning of silk fibre from mature A. mylitta 5th instar larva into (A) linear fibre, mixed fibre and (B) random fibre containing
matrices along with respective scanning electron microscopic images of fibres with and without cells (AH927) grown on it. (C)
Confocal microscopic images of 5 d cellular growth on linear, mixed, random fibres, and single fibre. The cells are stained with
rhodamine-phalloidin (red) for actin and Hoechst 33 342 (blue) for nuclei. Reprinted fromMandal and Kundu (2010a),
Copyright (2010), with permission from Elsevier.

that the length, orientation, alignment and matura-
tion of the cells are directly related to the mechanical
property of the matrices and not to the composition
of the matrices (Chaturvedi et al 2017).

3.3. Skin tissue engineering
Another major silk fibroin-based application is
focused on skin tissue engineering. Purwar group
has published some work on this topic using non-
mulberry cocoon fibroin. The source of regenerated
fibroin formost of their work is ionic solution solubil-
ised cocoon fibres. In one study, they have fabricated
nonwoven composite wound dressing film by solu-
tion casting method followed by finishing with dif-
ferent concentrations of chitosan solution. Chitosan
(2%) modified films show sufficient porosity, per-
meability, and suitable mechanical and thermal
property, with potent antimicrobial activity. Also,
chitosan finishing further improves cellular growth
and favourable morphological features of fibroblast
cells (Srivastava and Purwar 2017).

Similarly, upon incorporating 5%–15% dextrose
as plasticiser on the Am and Aa films, the mech-
anical property of the films are enhanced signific-
antly. Other surface biophysical properties are also
improved, including sustained antibiotic release, and
as a result, skin fibroblast attachment and prolifer-
ation are also improved (Srivastava et al 2017). In
another study, the regenerated fibroin is used to fab-
ricate nanofibrous matrices. To enhance the thera-
peutic efficacy, upon coating of silver nanoparticles
(from dandelion: Tridax procumbens leaf extract),
the matrices show good mechanical strength, water
absorption with adequate porosity, excellent anti-
microbial activity and biocompatibility for dermal
fibroblast cells (Srivastava et al 2019). Following
a similar experimental approach, they have also
explored the self-assembled nanofibrous nonwoven
mats for their biocompatibility for dermal fibroblast
cells and wound dressing applications (Srivastava
and Purwar 2018). Cocoons themselves can be used
as biomaterial exhibited in this study (Darshan
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Figure 4. RGD dependency of cardiomyocyte attachment, cellular interaction and differentiation on A. mylitta fibroin matrix.
The presence of RGD in Am fibroin assist cardiomyocyte attachment, cell–cell communication and contractility. Attachment of
preincubated cardiomyocytes (for 30 min in control peptide RGES or RGDS) on gelatine, Am, and fibronectin surfaces for (A)
24 h and (B) 48 h are monitored in terms of metabolic activity, (C) number of cells attached using fluorescent labelling of green
troponin I vs blue DAPI (Scale bars: 50 µm) and (D) its subsequent quantitation. Comparatively smaller number of cells are
observed on Am and fibronectin surface due to free RGD blocking on cell surface. (E) Presence of well-established and aligned
sarcomere (yellow arrow) on Am and fibronectin in comparison to gelatine and Bm. (F) Enhanced expression of cell–cell
connection marker connexin 43 on Am in comparison to rest. (G) Quantitative beating frequency per minute shows more beating
on Am and fibronectin than rest. Reprinted from Patra et al (2012), Copyright (2012), with permission from Elsevier.

Table 2. Availability and number of RGDs in different mulberry and non-mulberry species fibroin amino acid sequences (source: NCBI
database and SI). The bold column indicates the number of RGD motifs in non-mulberry/wild Indian tropical Tasar silkworm,
Antheraea mylitta silk fibroin after partial sequencing. This provides us an additional information that if full sequence of this fibroin is
carried out, a greater number of RGD motifs are expected.

Species name Accession no.
Amino

acid length
Group (Refer-
ence) Year Journal

No. of RGD
present

B. mori CAA35180
(light chain)

262 Mizuno, S.
(Yamaguchi et
al, 1989)

1989 J. Mol. Biol. 210 (1),
127–139

0

B. mori NP_001106733
(heavy chain)

5263 Xia, Q.Y.
(Zhao et al,
2015)

2015 J. Biol. Chem. 290
(2), 972–986

0

A. mylitta AAN28165
(partial CDS)

507 Kundu, S. C.
(Datta et al,
2001a)

2001 Comp. Biochem.
Physiol., B 129 (1),
197–204

7

A. assama AIN40502 2809 Nagaraju, J.
(Gupta et al,
2015)

2015 Sci Rep 5, 12706
(2015)

3

S. ricini BAQ55621 2880 Sezutsu, H. 2015 Unpublished 1
A. pernyi AAC32606 2639 Yukuhiro, K.

(Hideki and
Yukuhiro,
2000)

2000 J. Mol. Evol. 51 (4),
329–338

10

A. yamamai BAJ11925 2856 Yukuhiro, K.
(Sezutsu et al,
2010)

2010 Int. J. Wild Silkmoth
& Silk

12

et al 2017) where cocoon mats, both pristine and
degummed ones, from Am and Bm are used for
culturing epidermal cells. Am mats without degum-
ming or collagen coating promote the adhesion of
keratinocytes in contrast to Bm mats. In another
study, polyurethane—Am fibroin scaffolds are fabric-
ated using blending and immobilisation techniques.
Epidermal growth factor treated immobilised scaf-
folds show better healing prospects than blend ones.
The former offers complete healing in either type of
burn wound (hyperglycaemic burn vs typical burn)

in the rat model (Sen et al 2020). In another study Aa
fibroin is used to fabricate nanofibrous mat followed
by coating with two recombinant spider silk (contain-
ing fibronectin and lactoferricin) to createmultifunc-
tional wound dressing. Combined layer of two spider
silks shows better wound healing efficiency compared
to the single separate coatings or noncoated coun-
terparts both in vitro and in vivo (Chouhan et al
2019a). In in vivo rat model of 3rd-degree burn,
fibronectin coated Aa scaffolds demonstrate acceler-
atedwoundhealing in comparison to the uncoatedAa
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Figure 5. Differentiation of human muscle myofibroblasts on different fibroin 2D/3D matrices. Confocal microscopic images of
(I) formation of muscle like tissue by human skeletal muscle myoblasts (HSMMs) after culturing for 4 d in proliferation medium
followed by 4 d in differentiation medium on different 3D silk fibroin scaffolds. The cells are stained with anti-myosin
monoclonal (mAb) antibody (NOQ7.5.4D)/goat anti-mouse IgG-AF-488. Fluorescence microscopic images of (II)
Differentiation of HSMMs to form myotube on different fibroins coated etched glass surfaces. Cells are cultured for 4 d in growth
media, 2 d in proliferation media and finally 7/10 d in differentiation media. (a)–(d) Expression of slow muscle myosin, which is
stained with MyHCB (anti-myosin heavy chain mAb) and (e)–(h) differentiation to myotube, which is stained by MyHCB and
anti-glucose transporter 4 (GLUT4)/goat anti-rabbit IgG-AF546. Scale bar: 50 µm (a)–(d) and 25 µm (e)–(h). All nuclei (I & II)
are stained with DAPI. (III) Expression analysis of five different muscle markers (MYF5, MYOD1, MYH1, MYH7, and ACTA1)
on Bm and Am 3D scaffolds using qRT-PCR. The expression levels are normalised to TBP as a reference gene, and also day 4 and
day 10 expression levels are normalised to day 0 and day 2, respectively. For a level of significance analysis, Mann-Whitney U-test
is performed. Data represented as mean± SE for 4 biological replicates. Chaturvedi et al (2017) John Wiley & Sons.

matrix and commercially used DuoDERM dressing
patch during 14 d treatment course (Chouhan et al
2019b).

3.4. Cornea and liver tissue regeneration
Am transparent thin films are developed to replace
the use of traditional amniotic membrane for the
treatment of damaged corneal surfaces (figure 6). The
thin films support sprouting, migration, attachment
and growth of epithelial cells and keratocytes from rat
corneal explants, and supported limbal stem cells as
evidenced by enhanced expression of ABCG2. After
implantation, the rabbit cornea remains transparent
with normal tear formation and intraocular pressure
without any inflammatory response or neovascular-
isation (Hazra et al 2016).

To prepare a matrix, which can support a liver
tissue, Aa fibroin is used to fabricate cryogel. The
cryogels can absorb a large amount of media and
are mechanically stable. The matrices can also sup-
port the viability, proliferation and healthy metabolic
activity of human hepatocarcinoma cells (Kundu and
Kundu 2013).

3.5. Cartilage tissue engineering
Am fibroin-based sponge matrices being mechan-
ically robust and porous, naturally becomes a bet-
ter candidate for osteo- or chondrogenesis based
applications. Evaluation of the osteogenic and

adipogenic potential of the scaffolds exhibit that Bm
scaffolds act as a better substratum for adipogen-
esis. In contrast, Am scaffolds favour better osteo-
genesis due to its mechanical strength (Mandal and
Kundu 2009a). To establish a successful functional
cartilaginous model construct, the biomechanical
property of the Am sponge scaffold is correlated with
cell (immature bovine chondrocytes) seeding density
and matrix accumulation followed by assessment of
the cartilaginous differentiation of the cells (Taluk-
dar et al 2011b). Fibre reinforced fibroin composite
matrices from Aa are investigated for their tissue
engineering potential for cartilage regeneration. The
matrix with increased compressivemodulus and stiff-
ness stimulate the cells to deposit enhanced sGAG,
collagen type II and up regulated the expression of
the cartilage-specific gene markers (collagen type II,
aggrecan, and sox-9) (Singh et al 2017).

3.6. Osteochondral tissue engineering
To explore the osteochondral potential of silk fibroin,
a hierarchically biphasic scaffold is fabricated using
Aa and Bm fibroin along with fibre reinforced phase.
With its promising compressive modulus, the scaf-
fold supports the growth and proliferation of chon-
drocytes and osteoblasts, as evident from in vitro and
in vivo studies (Singh et al 2018). Further, the feasibil-
ity of developing amultifunctional similar silk fibroin
(Aa and Bm fibroin together) based cartilage and
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Figure 6. Transparent A. mylitta fibroin thin films for corneal regeneration. (A) As fabricated transparent thin film from Am
regenerated fibroin solution and (B) same film after ethanol treatment to induce crystallinity and insolubility. The films are
94.4% transparent and thickness is 30± 9.7µm. Cellular outgrowth from corneal explants on (C) Am film and (D) amniotic
membrane after 8 d of culture. (E) Gross examination of the cornea after 2 months of implantation of Am film, and (F) slit lamp
biomicroscopy shows that films remain stable, transparent and well tolerated by the animal model. (G) Absence of fluorescein in
the cornea implies no sign of ulceration and erosion in the eye. Reprinted by permission from Springer Nature Customer Service
Centre GmbH: Springer Nature, Scientific Reports Hazra et al (2016) (c) 2016.

Figure 7. Layered A. mylitta vs B. mori fibroin sponge scaffolds for in vivo osteochondral regeneration. (I) (A) Osteochondral
defect (1.8 mm× 1 mm) is created in rat patella-femoral groove (Scale bar—2 mm). (B) The implant is prepared as a layered
construct with a different layer being loaded with different bone-related growth factors (e.g. TGF-β and BMP-2) (inset: A
scanning electron microscopic images of both Bm and Am fibroin sponges) and (C) implanted in the osteochondral defect. (D)
The appearance of repair site 8 weeks post-implant, where normal cartilage formation can be seen on the implantation site
(arrowhead). (II and III) Histological and immunohistochemical analysis of the growth factor loaded Bm and Am fibroin
explants: (A) AB/SR staining (B) Birefringence of AB/SR section (C) Type I collagen and (D) Type II collagen immunostaining.
Black stars: scaffold and yellow arrow: formation of the blood vessel within the explants. Scale bars−50µm. These analyses
indicate, Am scaffolds support cells towards chondrogenic lineage, while Bm scaffolds support towards osteogenic lineage in
similar conditions. Reproduced from Saha et al (2013). CC BY 4.0.

bone bioinks are studied by analysing their in vitro
and in vivo capacity of osteochondral differentiation
and angiogenesis (Moses et al 2020). With the sim-
ilar aim, Aa fibroin-based sol derived 70S bioactive
glass (a biphasic composite) is fabricated to study
its coherent interface for osteochondral regeneration.
Aa composite mats were found to perform better

than their Bm counterpart mats, as evidenced by the
enhanced expression of crucial cartilage and bone
markers (Joseph et al 2017). The potential of Bm
and Am silk fibroin scaffolds for in vitro and in vivo
osteochondral regeneration is investigated (figure 7).
It is observed that the cell free multi-layered Am/Bm
fibroin scaffolds loaded with TGFb3 or recombinant
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Figure 8. In vivo osteoconductivity of A. mylitta fibroin porous scaffold in bone regeneration. In vivo bone regeneration assessment of
Am 3D porous, spongy scaffolds using rat calvarial and rabbit distal femoral defect models. (A) X-ray radiography of normal
calvaria (left), 5 mm bilateral defects (right), and surgical site with implanted scaffold vs empty defect (center). (B) Comparative
radiographical images after one (a), three (b), and six (c) months of surgery showing gradual progression of defect healing for Am
and same time points (d)–(f) for Bm. After 6 months, the defect was covered entirely with neo-bone formation on Am scaffold,
while no bone formation is observed on Bm scaffold. (C) Further histological examination of von Kossa (a) and (b) for Am and
(e) and (f) for Bm for 1 and 3 month post-surgery each) and Alizarin Red S (c) and (d) for Am and (g) and (h) for Bm for 1 and
3 month post-surgery each) staining show enhanced matrix deposition on Am after 3 months as shown by arrowhead, while some
deposition is observed after 1 month, which disappeared after 3 months on Bm. (D) Comparative micro-CT 2D projection
images of the distal femoral defect sites at two day points (45 and 90 d) for Am (AmF), carbon nano fibre reinforced Am
(Am_1.0CNF) and TGF-β and BMP-2 growth factors loaded AM/CNF (AmF_1.0CNF_GF) scaffolds show that osseointegration
process starts from the scaffolds by using its porous microarchitecture as a mould. Growth factor loaded scaffold mainly promote
complete osteogenesis in comparison to the other two groups in terms of periosteum formation by mimicking the trabecular
network of the bone during 90 d study. Upper and lower panel: side and top tomographic slice views of the bone at the same
defect point, yellow dotted border: area of an implanted scaffold. (E) Further fluorochrome (oxytetracycline) labelling images of
the same study at 45 and 90 d post-surgery show increased area of new bone formation, which indicates that the GF loaded matrix
induces higher mineral apposition than the rest two groups (AmF and AmF_1.0CNF). (A) bright yellow region is representing the
new bone formed, and (B) green region representing the local bone. Scale bar: 500 µm. Inset: % area of new bone formation.
Sahu et al (2015) John Wiley & Sons. Reprinted from Naskar et al (2017b), Copyright (2017), with permission from Elsevier.

human BMP-2 support in vivo neo-osteochondral
tissue formation on them. A good biointegration is
observed between native and neo tissue within the
osteochondral defect in patellar grooves ofWistar rats
(Saha et al 2013).

3.7. Bone tissue engineering
For their enhancedmechanical strength, different Am
fibroin based pure and composite matrices are engin-
eered and studied extensively for their bone regener-
ation potential. Am scaffold’s potential for bone tis-
sue engineering is investigated through its efficiency
at repairing rat calvarial bone defect (figure 8(B) and
8(C)). After 3 months of implantation, a complete
ossified regeneration with increased mineralisation is
observed in case of implant site of Am scaffold while
no bone formation is observed on Bm scaffold for the
same period (Sahu et al 2015).With the aimof enhan-
cing mechanical strength further, different strategy
based composite matrices are engineered and studied
extensively for their bone regeneration potential.

For example, hydroxyapatite and Aa fibroin fibre
reinforced Aa fibroin tricomposite matrix (Gupta
et al 2016a), dual growth factor loaded carbon nano
fibre reinforced Am fibroin composite (figure 8(D)
and 8(E)) (Naskar et al 2017b), bioactive glass-
reinforced Aa silk fibroin composite (Moses et al
2018), hydroxyapatite reinforcedAm fibroin compos-
ite (Behera et al 2017) scaffolds are studied focus-
ing to in vitro as well as in vivo osseointegration,
osteoinduction and osseogenesis investigations. Dif-
ferent nanofibrous matrices fabricated using electro-
spinning process are also studied for a similar aim.
For example, mesenchymal stem cells from human
cord blood are better differentiated towards osteo-
genic lineage on Sr and Am fibroin blended fibrous
scaffolds in comparison to Bm fibroin or gelatine
scaffolds (Panda et al 2015b). With the similar aim,
Am fibroin blended or grafted poly (ϵ-caprolactone)
or polyvinyl alcohol-based nanofibrousmatrices with
or without hydroxyapatite and/or osteogenic growth
factors are experimented in detail, focusing both
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in vitro and in vivo (Bhattacharjee et al 2015a, 2015b,
2016a, 2016b, 2016c, 2016e). The osseointegration
and osteogenesis potential of Am fibroin immob-
ilised or antibiotic-loaded Am fibroin nanoparticle
immobilised implant metal titanium are investigated
for faster bone-implant integration (without implant
loosening), immune response or nosocomial infec-
tions (Naskar et al 2014, Sharma et al 2016).

3.8. Differential molecular mechanism and disease
modelling
In order to test the hypothesis, that Am native braids
with mechanical stiffness in the range of trabecular
bone can regulate osteocyte differentiation, human
pre-osteoblast differentiation to osteocyte is inspec-
ted on the braids. Interestingly, Wnt signalling pro-
moted osteocyte differentiation in terms of upreg-
ulated β-catenin expression in the presence of pro-
osteogenic supplements and TGF-β (Midha et al
2017). Further insights into the direct regulatory role
of the Am fibroin braids on the hedgehog and para-
thyroid signalling pathways in controlling osteogenic
differentiation of human foetal osteoblasts show
enhanced expression of osteogenic markers (ALP,
VDR, RunX2), matrix proteins (Col1A2, OPN), and
signalling molecules (GLI1, GLI2, Shh) along with
terminal osteocytic phenotype (Midha et al 2018).

Being a very conducive environment for adhe-
sion, growth and proliferation of diverse cell types,
fibroin and sericin based matrices are also utilised
to harbour disease related cells such as cancerous
cells to mimic the tumour microenvironment. Am
fibroin based 3D effective hepatocarcinoma niche
model is established to study tumour microenviron-
ment. This in vitro 3D model is examined for mul-
ticellular (HepR21) aggregation resulting in tumour
formation followed by treatment with 4-MU (hyalur-
onan synthase inhibitor), which reduces HA level and
downregulates the tumour growth promoting factors
(pAKT and PKC) while upregulating the tumour
suppressing p53 gene (Kundu et al 2013). Another
breast cancer (MDA-MB-231 cells) model is con-
structed using Am fibroin scaffold to mimic in vivo
tumour microenvironment. The cytotoxicity of three
different drugs (Paclitaxel, Celecoxib, and ZD6474)
are studied in this model and a combinatorial treat-
ment strategy of these drugs at IC50 resulted up to
84% death of cancer cells (Talukdar and Kundu 2012,
2013). It was also observed that Am fibroin scaffold is
advantageous over Bm fibroin scaffold in terms of cell
viability and proliferation and glucose consumption
and lactate production by the breast cancer/prostate
cancer cells (Talukdar et al 2011a).

3.9. Drug and nanoparticle deliveries
Silk matrices of different dimensions embedded
with the drug are fabricated to evaluate the release
kinetics of embedded model drugs (BSA and FITC-
inulin). This single model can be tuned for controlled

and sustained release of a wide range of bioactive
molecules and enzymes with different release kinet-
ics (Sundar et al 2010). Nanoparticles from Bm and
Am silk fibroin are utilised as drug delivery (Zhang
et al 2018), anticancer agent curcumin delivery (Panja
et al 2017), and growth factor delivery system (Mot-
taghitalab et al 2015) considering the ease of fabrica-
tion and biodegradation. The efficiency of folate con-
jugated Am fibroin nanoparticles loaded with antic-
ancer drug doxorubicin is investigated for cell viabil-
ity, proliferation and endocytosis. The nanoparticles
are found to be nontoxic, targeted to cancer cells, eas-
ily endocytosed, and capable of sustained drug release
(Subia et al 2014, 2015). Silk fibroin nanoparticles are
formulated using Bm and Am fibroin and standard-
ised for their size to be 150–170 nm, surface charge
to be negative, with stable and spherical morpho-
logy along with its cellular uptake as confirmed by
FITC accumulation inside cells and release of growth
factors for over 3 weeks (Kundu et al 2010).

3.10. Other applications
Presence of inherent RGD sequences on fibroin pro-
tein makes it an important tool to study directional
cell adhesion and controlled cell proliferation. Upon
revelations of its intriguing biological, mechanical,
and physical properties in recent years, fibroin has
attracted interest from other multidisciplinary areas.
In a pioneer study, nonmulberry fibroin protein is
used as a lithographic ink to create micro patterns
(Mandal et al 2009b). Directional adhesion of fibro-
blasts is promoted on such patterns, which can be
utilised for bio-device or implant fabrication. Recent
reports show other optical (Hu et al 2020) and elec-
trical (Zhu et al 2016, Shivananda et al 2020) proper-
ties of fibroins, which may help to fabricate memory
devices (Hota et al 2012, Wang et al 2016, Zhang et al
2021). They also have different optical properties (i.e.
refractive index), which may enable the fibroins to
be used for optical wave guide devices (Perotto et al
2017), bio-photonic devices (Gogurla et al 2016), bio-
electronic devices, sensors, and different new nature-
inspired functional materials (Pradhan et al 2020)
using new silk processing methods such as bio-
inspired spinning and additional advanced biopoly-
mer processing (Guo et al 2020).

4. Sericin: a bio-medically relevant
molecule and its role in tissue engineering

A. mylitta silkworms are grown wild and hence,
are required to be protected from different biotic
and abiotic stress (protection from temperature fluc-
tuations, water, fungi, bacteria and other predat-
ors) (Halder et al 2015) (movie 1). The constitu-
ents of such stronger cocoons possess many valuable
traits, making them a potential candidate for bio-
medical engineering (figure 9 and 10). Antibacterial
properties of extracted sericin are demonstrated
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Figure 9. Different species of silkworms and the methods of extractions of sericin from their cocoons. The primary two kinds, i.e.
mulberry (Bombyx mori) and the major nonmulberry (Antheraea mylitta, Antheraea assama, Samia ricini) silk cocoons are cut
into small pieces. These cut pieces are then subjected to different isolating procedures to obtain either the aqueous sericin
solutions or dried sericin powders.

against gram-positive bacteria and gram-negative
bacteria in different studies (Senakoon et al 2009),
highlighting its promising role in wound dressing,
antibacterial soaps, and mouthwash and others. The
mechanism of action of sericin on the morphology,
cellular integrity, and growth of gram-negative bac-
teria (E. coli) are analysed in detail (Xue et al 2016).
Antioxidant properties of A. mylitta sericin are eval-
uated in detail by Dash et al (2008a). The protective
nature of sericin against oxidative stress are also ana-
lysed (Dash et al 2008a), which encourages the use of
natural sericin protein as a non-enzymatic antioxid-
ant. The antioxidant activity is also observed in the
sericin of wild African species of silk moths (Manesa
et al 2020). The inclusion of sericin as a dietary sup-
plement exhibits the decreased activity of intestinal
proteases and suppression of colon cancer (Kato and
Iwami 2002) and improves the effects of hypercho-
lesterolemia (Deori et al 2016). Diverse methods of
sericin extraction were also observed to influence
its beneficial properties. Alkali-treated sericin of Am
silkworms demonstrates the maximum reduction in
the lipid peroxidation and antioxidant activity than
other methods of sericin extraction (such as urea,

autoclave, and boiling methods) (Kumar and Man-
dal 2017). Wild A. mylitta has different eco races
depending on their geographical locations within
Indian Central states. A comparative study conduc-
ted with other such eco races, namely Daba, Modal
and Raily, shows that all these eco races exhibit the
beneficial properties of sericin, including the free-
radical scavenging activity and inhibition of lipid per-
oxidation (Jena et al 2018). The anti-apoptotic and
photo-protective effects of sericin against ultraviolet
B (UVB) through reduced expression of COX-2, 4-
HNE and PCNA are established (Zhaorigetu et al
2003). These experiments emphasize the protective
effect of sericin against UV irradiated damage of the
skin. Sericin also inhibits UVB mediated apoptosis
by activating the anti-apoptotic machinery in human
keratinocytes (Dash et al 2008b). Based on the natural
defensive properties of sericin, its role as a cell culture
additive (Sahu et al 2016) is also examined. Am seri-
cin (0.05% w/v) supplemented media exhibits com-
parable growth of fibroblasts as observed in media
supplemented with 10% FBS marking its promising
nature as serum substitute for growth supplement
(Sahu et al 2016).
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Figure 10. Beneficial properties of the sericins are directly applicable to human welfare. Silk protein sericin has numerous
essential features that are valuable in diversified areas, including cosmetics, food supplements, industrial waste remediation, cell
culture additives, pharmaceuticals, tissue engineering, and regenerative medicine. Each application is attributed to the specific
property of sericins, which augments their efficacy.

4.1. Sericin based assemblies
Silk industries are focused on obtaining silk threads
(fibroin), and sericin is considered a waste by-
product. Along with the cocoon, sericin can also be
isolated directly from the silk glands of the mature
silkworms (Dash et al 2009) and the peduncle of the
cocoons (Dash et al 2006). There are variousmethods
of extraction (figure 9) (Kundu et al 2008b, Kundu
et al 2014b) and fabrication of sericin based structures
(figure 10). Some of these methods are summarised
below in brief as general extraction procedures for any
species of silks. Sericin can be isolated directly from
the middle silk gland of the mature A. mylitta (Dash
et al 2009). Sericin from Am cocoons can be separ-
ated as described before (Dash et al 2006, Sahu et al
2016) through high temperature and high-pressure
treatment. The time required for wild cocoons is
higher than domesticated or semi-domesticated (20–
30 min) as wild cocoons are comparatively more
rigid and thus require more time for degumming.
Many prefer this procedure as this does not involve
the use of any chemical and its subsequent removal
(Aramwit et al 2010). The isolation of sericin can
also be performed by boiling the silk cocoons pieces
in robust acidic or alkaline solutions (1.25% citric
acid or 0.02 M sodium carbonate) for 30–60 min
depending on the type of silkworm species (Kurioka
et al 2004, Dash et al 2007, Aramwit et al 2010, Yun
et al 2013). Another method involving 8 M urea, 1%
SDS, and 2% β-mercaptoethanol works quite well
with the Am peduncles (cut into small pieces) and
yields a good amount of sericin with the appearance
of distinct protein bands in SDS-PAGE (Dash et al
2007). Several enzymes such as trypsin, papain, and

alkalis are also used to degum cocoons (Freddi et al
2003).

Attributing to the valuable properties of seri-
cin mentioned in the previous section, this pro-
tein is being explored as a biomaterial to address
various tissue engineering and biomedical applica-
tions (figure 11). Sericin in the different formula-
tions is fabricated and is examined for the potential in
tissue repair. Aqueous silk sericin solution promotes
cellular growth and viability with increased colla-
gen production without any toxicity up to the seri-
cin concentration of 40 µg ml−1 when incubated for
24 h (Aramwit et al 2010). Various types of matrices
are fabricated using sericin. Being extremely hydro-
philic, sericin is often combined with other polymers
to achieve the desired mechanical stability as per
the need of the application. One of the significant
applications of this protein is skin tissue engineer-
ing. For this, variousmatrices are used, including thin
films or membranes (Akturk et al 2011, Nayak et al
2012), sponges/scaffolds (Napavichayanun et al 2016,
Ampawong and Aramwit 2017), hydrogels (Jiao et al
2017, Qi et al 2018, Sapru et al 2019), microcapsules/
microspheres (Nayak et al 2014, Aramwit et al 2016),
nanoparticles (Khampieng et al 2015), electrospun
mats (Bhowmick et al 2018, Gilotra et al 2018, Sapru
et al 2018) and cream-based formulations (Aramwit
et al 2013a, 2013b). Hydrogels are primarily pre-
pared as 3D matrices of sericin, as this protein is
highly hydrophilic and can absorb moisture. There-
fore, this can be exploited as dermal filler or seal-
ant. In addition, such materials are more suitable
for skin tissue application considering the properties
of sericin, which are more beneficial for skin as
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Figure 11. Various formulations and applications of sericin matrices. Sericin microcapsules: (a) scanning electron microscopic
images of the sericin based microcapsules, (b) upper view, (c) lateral view and (d) confocal images of the microcapsules
crosslinked with genipin. Assessments of the cell proliferation by live staining and confocal microscopy for days 1, 3 and 7. The
cells are stained before encapsulations. Alginate–chitosan microcapsules (a)–(c), and 0.125% sericin containing alginate–chitosan
microcapsules (d)–(f) at days 1, 3 and 7 with corresponding differential interference contrast images. Magnification
bar= 100 µm. Reprinted from Nayak and Kundu (2014), Copyright (2014), with permission from Elsevier. Sericin bio coating:
optical microscopy images of Alizarin Red stained osteoblasts after culturing for 7 and 14 d on (a), (d) Ti, (b), (e) Ti-SS and (c),
(f) TieSSeRGD, respectively. Scale bar ¼ 100 mm. (A) Expression of bone-related genes in osteoblastic cultures on different Ti
surfaces. Representative electrophoretic images from the reverse transcriptase-polymerase chain reaction (RT-PCR) showed for
bone sialoprotein (BSP), osteocalcin (OC), alkaline phosphatase (ALP) and GAPDH. (B) GAPDH normalised densitometric
quantification of PCR product using Image j software. Reprinted from Nayak et al (2013), Copyright (2013), with permission
from Elsevier.Sericin nanoparticles: Morphological characterisation of different sericin nanoparticles (SNPs). (i) Negative surface
potential nanoparticles (n-SNPs), (ii) positive surface potential nanoparticles (p-SNPs) and (iii) individual p-SNP measured by
HRTEM. SNPs prepared with A. mylitta crude sericin (CRSNPs) and individual sericin fraction-1 (50–300 kDa), SNP1; fraction-2
(30–50 kDa), SNP2; and fraction-3 (10–30 kDa) SNP3 with negative (n-SNP) or positive (p-SNP) surface potential evaluated for
anti-bacterial potential against (A) S. aureus and (B) E. coli cells treated with n-SNPs and p-SNPs at 50 µg ml−1. Green and red in
the confocal images represent viable and dead cells, respectively. Scale bars are 10 µm. Reprinted from Dutta et al (2020),
Copyright (2020), with permission from Elsevier.
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hydrogels are considered the appropriate matrices.
Hence, apart from the use of fibroin in skin repair
(Gholipourmalekabadi et al 2020), sericin is gain-
ing importance in this field (Das et al 2021). Sericin,
alginate and chitosan-based microcapsules prepared
by ionotropic gelation and high voltage for cellu-
lar encapsulation offers great potential in cell-based
therapeutics (Nayak et al 2014). Bio-coating helps in
functionalising the surface with valuable features of
sericin (Nayak et al 2014).Microcapsules ormicroen-
capsulation facilitates the entrapment of cells, growth
factors, antibodies or other necessities as needed for
the regeneration process (figure 11). This formulation
can deliver cells in an injectable manner and makes it
possible to reach farther sites as well without the need
for any implantation.

In the following sections, we summarise the
research investigations conducted in vitro and in vivo
with a specific focus on the sericin of nonmulberry
silkworm, A. mylitta. This narrates other than B. mori
sericins, the importance of wild sericins as biomedical
materials due to their specific biochemical character-
istic being grown as wild in nature.

4.2. Skin tissue engineering
Am sericin is explored in different formulations for
different applications including membranes/electro-
spun matrices as dressing, hydrogels as fillers or seal-
ers, microcapsules for cellular encapsulation, and dir-
ect coating as bioactive additive.

Membranes formed with native sericin isolated
from the middle silk gland of Am and without the
use of any crosslinker are cytocompatible with min-
imal immunogenicity (Dash et al 2009). For most of
the research works, Am sericin is isolated from silk
cocoons. Glutaraldehyde crosslinked sericin mem-
branes, and sericin/gelatine membranes are found to
be non-toxic and support cell growth (Mandal et al
2009c, Nayak et al 2012). Sericin and gelatine porous
scaffolds (optimum pore size of 170± 20 µm) pre-
pared using Am silk cocoon sericin protein are also
cytocompatible and robust to handle (Mandal et al
2009c). Nanofibrous sericin based matrices support
the growth of human keratinocytes and, when loaded
with antibiotics are potential candidates as a wound
dressing (Sapru et al 2018).

Hydrogel matrix of sericin and poly (vinyl
alcohol) with glutaraldehyde as crosslinker exhibit
improved adhesion and proliferation of fibro-
blasts (Mandal et al 2011). Hydrogels of Am seri-
cin peptides and chemically modified PVA with
methacrylate groups also exhibit better cellu-
lar adhesion than those prepared with Bm (Lim
et al 2012). Semi-interpenetrating Am sericin and
polyacrylamide-based hydrogels (pore size 23–
52 µm) offer rapid gelation (∼5 min at 37 ◦C), high
absorbance ability (∼112% uptake potential) and
good mechanical strength (61 kPa). The growth of

fibroblasts indicating their potential as dermal seal-
ants with enhanced ability to absorb exudates (Kundu
et al 2012). Porous hydrogel matrices of Am seri-
cin and carboxymethyl cellulose with glutaraldehyde
and aluminium chloride as crosslinkers support the
growth of human keratinocytes with low inflamma-
tion as indicated by the levels of TNF-α produced
(Nayak et al 2014). Sericin based porous (57.23–
75.22 µm, pore size) hydrogels with chitosan as a
support polymer and genipin as crosslinker retain
the inherent features i.e. antioxidant (196.1± 17.7 M
Fe (II) mg−1) and anti-bacterial (8–15 mm zone of
inhibition) attributing to its components (sericin and
chitosan) (Sapru et al 2017). The sericin-based hydro-
gels are non-immunogenic and support the growth
of human fibroblasts, indicating their potential as an
affordable dermal substitute (Sapru et al 2017). Anti-
biotic loaded Am sericin based nanofibrous matrices
(80–400 nm fibre thickness) support the prolifer-
ation of human keratinocytes in vitro and acceler-
ates the full-thickness wound healing in vivo with
minimal inflammation, restoration of epithelial tis-
sue, generation of blood vessels and dense collagen-
rich ECM (Sapru et al 2018). Bi-layered skin con-
structs fabricated with Am silk sericin and chitosan
hydrogels by co-culture of human dermal fibroblasts
and keratinocytes exhibit improved cellular attach-
ment, growth and migration with the generation of
ECM components, including metalloproteinases and
collagen in vitro (Sapru et al 2019). These hydro-
gels when implanted subcutaneously in rats leads
to dense collagen and matured blood vessels form-
ation, minimal immune response and infiltration
of host cells into the implanted hydrogels indicat-
ing their non-inflammatory nature and potential
to support the repair of skin tissue (Sapru et al
2019). Sericin based hydrogels incorporated with
glycosaminoglycans further enhance the efficacy
of such hydrogels in skin repair (figure 12) (Sapru
et al 2021).

4.3. Liver tissue engineering
Encapsulation of hepatocytes in sericin, alginate and
chitosan-based microcapsules exhibits enhanced cell
viability and distribution while maintaining their
metabolic activities as indicated by intracellular albu-
min content, glucose consumption rate and urea
secretion rate (Nayak et al 2014).

4.4. Drug delivery
Am sericin has the potential to form self-assembled
micro and nano structures (Khire et al 2010). One
such example is the self-assembled nanostructures
(100–110 nm diameter) of Am sericin with pluronic
F-127 and F-87 exhibiting the potential to success-
fully deliver both hydrophilic and hydrophobic drugs
to the target sites in vitro (Mandal and Kundu 2009).
In a recent study, sericin nanoparticles fabricated
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Figure 12. Prospects of Antheraea mylitta sericin in skin repair evaluated in vivo.Hydrogel and nanofibrous matrix fabricated with
A. mylitta sericin exhibit potential as skin repair and wound healing. Minimal inflammation observed with these matrices support
their biocompatibility and non-immunogenic nature. Reprinted from Sapru et al (2021), Copyright (2021), with permission from
Elsevier.

with three different fractions of sericin protein, i.e.
50–300 kDa, 30–50 kDa and 10–30 kDa, resulting
in varied sized nanoparticles exhibits other reactive
oxygen species generation and antibacterial activ-
ity depending on their molecular size and surface
charge potential (Dutta et al 2020a) (figure 11). Poly-
l-lysine coated sericin nanoparticles with positive
surface potential and size 33–49 nm showsmaximum
antibacterial effects against Staphylococcus aureus and
Escherichia coli amongst all sized and charged nan-
oparticles made in the study (Dutta et al 2020)
(figure 11).

4.5. Hard tissue engineering
Sericin use is not limited to soft tissue engineering,
but it offers applications in hard tissue engineering
as well such as in bone tissue engineering. How-
ever, sericin does not offer the mechanical strength
required by such application, but a coating of seri-
cin of orthopaedic implants enhances their prospects
for osseointegration. Such biological coatings influ-
ence cellular behaviour, including differentiation and
matrix remodelling, which in turn controls the fate
of the implant. Am sericin, when immobilised on
the titanium using glutaraldehyde as crosslinker,
upregulates the expression of bone-specific proteins,
including bone sialoprotein, osteocalcin and alkaline
phosphatase with no inflammatory response (Nayak
et al 2013). Additionally, integrin-binding peptide
sequence Arg-Gly-Asp (RGD) when conjugated to
sericin-coated titanium also exhibits similar results
with enhanced potential of implant for bone tissue
engineering (Nayak et al 2013)

5. Different other indigenous
nonmulberry silks in the biomedicine field

5.1. Other indigenous silk
Research interest in not-so-common strains of silk-
worm and their potential in the biomedical field
piqued in the last few years primarily due to the
encouraging results obtained from A. mylitta, as dis-
cussed in this review. Other nonmulberry silks such
as A. pernyi are different in structure and property
compared to Bm silk. Ap silk has higher toughness
as a strain-stiffening material due to the abundance
of beta-sheets in the amorphous domain like Am
silk. (Guo et al 2017). Regenerated Bm scaffolds show
significantly higher mass loss and free amino acid
content release than nonmulberry (Ap and Ay) scaf-
folds in vitro and in vivo conditions (You et al 2015).
Like Am cocoon, Ap cocoon still lacks exploitation
for a probable bulk source of fibroin due to its poor
solubility in common aqueous-based solvents. How-
ever, these cocoons can be dissolved using ionic liquid
(1-butyl-imidazolium acetate).

The sponges made from this solution blended
with chitin are found to be stable. The biophysical and
biochemical properties exhibited by these matrices
imply their promising potential as a support for car-
tilage regeneration (Silva et al 2019, 2020). Another
method for dissolving degummed cocoon fibre is
using molten Ca(NO3)2 solution (You et al 2015, Li
et al 2016). After successfully regenerating fibroin,
similar biomaterials are fabricated from the men-
tioned nonmulberry silk proteins, such as thin fibroin
films, to study the attachment and growth of human
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bone marrow-derived mesenchymal stem cells (Luan
et al 2006). Fibroin nanofibrous matrices are made
using aqueous-based electrospinning technique and
the encapsulation efficiency and the release kinetics
of the matrices are carried out (Li et al 2016). Simil-
arly, the encapsulation efficiency and the release kin-
etics of lysozyme or rhodamine loaded Ap fibroin
microspheres are also studied (Li et al 2013, Wang
et al 2014). Ap sericin-based mineralised compos-
ite material is investigated to observe biomineralisa-
tion property and cell viability and osteogenic dif-
ferentiation of human bone marrow stem cells (Yang
et al 2014). Ap silk fibroin fibres are found to be
superior in assisting calcium deficient hydroxyapat-
ite formation in the presence of SBF (Zhang et al
2020). Ap fibroin-based composite scaffolds are also
explored for their potential to serve as 3D support
for the spheroid model. For example, these compos-
ite scaffolds of Ap fibroin enhance the growth of pro-
state epithelial cancer cells and aid the formation of
stronger glandular-like prostate spheroids compared
to the synthetic polymer scaffolds (Bäcker et al 2017).
Hence, further probing of such untapped poten-
tial biomaterials is required, providing us with some
unique abilities and drawing financial empowerment
to the cottage industry.

5.2. Transgenic silkworm producing spider fibroin
The spider dragline silk gene is cloned in B. mori
silkworm using different gene replacement strategies
to enhance the mechanical property of silk fibroin.
For example, a transcription activator-like effector
nuclease-mediated homology-directed repair mech-
anism is adopted to express major ampullate
spidroin-1 gene from Nephila clavipes (Xu et al
2018). In another study, a partial sequence of spider
(Araneus ventricosus) dragline silk gene (SpA) is
cloned under B. mori fibroin heavy chain promoter
for expression of both the protein in fused form
in cocoon silk (Kuwana et al 2014). A piggyBac
vector-based cloning of 2.4 kbp A2S814 synthetic
spider silk sequence encoding repetitive flagelliform-
like (GPGGA)8 elastic and prominent ampullate
spidroin-2 (linker-alanine8) crystalline motifs in
B. mori fibroin is achieved with the same purpose
(Teule et al 2012). As a result of these strategies, the
toughness of the transgenic silkworm’s chimeric silk
improved significantly depending on the quantity of
spider dragline protein expressed in fibroin. Thus,
this transgenic silk offers a wide possibility to be
explored as a new high-performance biopolymer for
biomedical applications and can be used directly in
the textile industry.

5.3. RGD containing polymer as a functional
biomaterial
A wide variety of non-toxic polymeric materials
are constantly investigated for their potential

of mechanical stability, elasticity, and stability
towards degradation. Most of these polymers
lack biocompatibility. One of the most popular
approaches for material modification is incorpor-
ating the cell recognition motif (RGD: R: arginine;
G: glycine; D: aspartic acid) to obtain controlled cell-
material interaction. A very detailed discussion on
different RGD functionalisation methods of various
polymers and in vitro evaluation is documented by
Hersel et al (2003).

6. Silk based hybrid/blended assembly for
tissue engineering

Silk proteins are compatible for hybrid or blend for-
mulation. Such hybrid compositions can comple-
ment the functionality of each of the components
and add diverse physical attributes to the structures,
which may not be achieved otherwise.

6.1. Fibroin-polymer blends
When fibroin supply is limited, or a particular tissue
type needs to be mimicked, different polymers can be
used to complement such functionality. The potential
of such structures for tissue engineering are investig-
ated in detail. A blending of PEG 4000 with Bm or
Am fibroins alter the mechanical and thermal prop-
erties as compared to the pure matrices. Blended Am
matrices show better in vitro activity of HOS osteo-
sarcoma cells than Bm blend matrix (Acharya et al
2009b). Hydrogels of Aa and Bm fibroin with agarose
are fabricated separately and evaluated for their chon-
drogenic potential. Biochemical studies reveal signi-
ficantly higher levels of sulphated GAGs, collagen,
aggrecan, and sox-9 expression in blended hydrogels,
which indicates their promising role in chondrogen-
esis (Singh et al 2016).

A blend of Am fibroin and chitosan is explored
for its in vitro chondrogenesis potential. In vitro
differentiation study with rat bone marrow stem
cell for 3 weeks exhibited the proper chondro-
genic phenotype of the cells in high expression of
GAG, collagen, and cartilage-specific gene markers
expressions (Bhardwaj and Kundu 2012). In another
study chitosan-Am fibroin, nonwoven composite
films are investigated for their potential for wound
dressing. The blended matrices indicate higher as
well as dynamic mechanical properties along with
good hemocompatibility, cytocompatibility and bio-
degradation compared to the pure matrices (Srivast-
ava and Purwar 2017). Another blend with sim-
ilar components (surface functionalisation of plasma
induced chitosan grafted Aa fibroin yarn) exhibit
enhanced antithrombogenic property and antimicro-
bial activity compared to Aa yarn, which is further
improvedupon impregnation of antibiotic drug peni-
cillin G sodium salt (Choudhury et al 2016).
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6.2. Inter-species fibroin blends
Inter-species fibroins are blended particularly
between mulberry and nonmulberry types (for
example, Bm with Am or Bm with Aa or Bm with
Sr) to fine-tune their performances such as gelation
rate, mechanical performance and degradation rate
according to the application required (Li et al 2018).
An elaborative study of thermal analysis (DSC and
TMDSC) and FTIR of these blends is conducted. It is
observed that Bm fibroin is fully miscible with Am,
Aa, Sr and Thai silk fibroins. The contents of α-helix
and random coil are tuneable. Also, the glass trans-
ition and degradation temperature are customisable
by tuning the blending ratio as per requirement (Xue
et al 2017). A nanofibrous scaffold containing 70:30
blend of Sr and Am fibroin is fabricated using electro-
spinning, and its physiochemical properties and sup-
portive cell potential are assessed. The scaffolds show
superior hydrophilicity and mechanical strength as
well as enhanced human cord blood mesenchymal
stem cell adhesion, proliferation and metabolic activ-
ity as compared to Bm (Panda et al 2015a).

7. Limitations of current platform

In the last few decades, an enormous number of stud-
ies are reported on bio-medical and tissue engineer-
ing related to the prospect of silk-based biomater-
ials and different types of scaffold matrices. How-
ever, the practice involved in the protocols observed
to vary worldwide. The absence of a standard operat-
ing protocol for either fibroin and sericin extraction
from nonmulberry sources and fabrication of differ-
ent matrix types makes it difficult to establish an uni-
form platform for a true comparison. Secondly, most
of the reports relied heavily on in vitro experiment-
ation. Hence further understanding of such matrices
under in vivo conditions is warranted. A few evalu-
ations reported contradictory data betweenmulberry
and nonmulberrymatrices, which need further prob-
ing. A few limitations are discussed in this section
as this may generate strategies for designing further
experiments.

7.1. Absence of standardised operating protocol for
nonmulberry sericin
A.mylitta, being grownwild, are hypothesised to have
more protective nature than the domesticatedB.mori.
This is noted in the in vitro and in vivo experimenta-
tions conducted with this silk protein. Batch to batch
variations is commonly observed in many natural
substances, including the widely used foetal bovine
serum in cell maintenance and culture. Such vari-
ations are also observed in the silk proteins isolated
from domesticated silkworm B. mori. Growing them
under varied environmental conditions can influence
their properties (Offord et al 2016). As grown in wild
conditions, A. mylitta also exhibits batch to batch
variation, reflecting in the silk proteins isolated. It is

crucial to maintain consistency in the extraction of
proteins and sources of materials. Sericin, in general,
has lessmechanical strength as opposed to silk protein
fibroin. It should be noted that sericin isolated using
the previously described procedures varies in terms of
their chemical and physical properties, including the
composition of amino acids, zeta potential and size
of molecules (Aramwit et al 2010). Their biological
effects on fibroblasts, such as viability and the produc-
tion of collagen, also differ. Sericin isolated from any
of themethods (heat, alkali, acid or urea) is non-toxic
to cells if used within a concentration of 40 µg ml−1.
Heat degraded sericin leads to maximum production
of collagen and more viability of the cells compared
to othermethods (Aramwit et al 2009a, 2010). On the
other hand, sericin isolated by the urea method is rel-
atively more toxic to the cell, influencing less collagen
production (Aramwit et al 2010). Amino acids con-
tent in the sericin influences its behaviour in cell cul-
ture. The higher amounts of methionine and cysteine
promote the proliferation of cells and the production
of type I collagen and protein synthesis (Aramwit et al
2009a). It also leads to the synthesis of a relatively
higher amount of nitric oxide. However, the level pro-
duced is non-toxic to cells. This indicates that this
silk protein is safe for biological use (Aramwit et al
2009a). For extracting Am sericin, the highest yield
is noted with the alkali method (0.02 M sodium car-
bonate, 60 min) or conventional industrial methods
of combining soap and alkali (Yun et al 2013). Hence,
a set of the standardised protocol is required to repro-
duce the results and carry forward the investigation.

7.2. Contradictory reports of in vitro and in vivo
inflammatory responses of sericins
Earlier, sericin is considered an inflammatory agent.
Recent several studies supported by in vivo investig-
ations and clinical trials indicate that sericin is safe
to use and only cause inflammation when present
in combination with fibroin (Aramwit et al 2009b,
2013a, 2013b, Thurber et al 2015). Although Bm
sericin is explored in most in vivo experiment-
ations, including sericin-based cream formulation
tested clinically, there are limited in vivo reports with
A. mylitta (figure 12). However, the investigations
show the promising nature of Am sericin as a use-
ful biomaterial. Still, more in-depth in vivo inspec-
tions need to be carried out to understand the further
potential of different sericin matrices for biomedical
applications.

8. Future outlook

Several research groups have spent a couple of dec-
ades of research and developments on nonmulberry
fibroins and sericins; still, certain avenues are left to
discover. In the future, the researchers are expected
to explore the following topics.
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8.1. Opportunity for A. mylitta fibroin-based
microfluidics and bioprinting
Bm fibroin is accepted for diverse applications
ranging from fabrication of matrices for growing
primary cells or cell lines to deliver cells or therapeutic
molecules to the diseased tissue. Successful utilisation
of silk fibroin for microfluidics device fabrication is
reported almost a decade ago (Bettinger et al 2007,
Kinahan et al 2011), which is continued to date (Zhao
et al 2016, Li et al 2020, 2021, Lu et al 2019). After
that, others also reported the potential of silk fibroin
to fabricate micro-architectural structures through
protein-based photoresist (Kurland et al 2013) inkjet
printing (Tao et al 2015), hydrogel elastomers (Yuk
et al 2016) and soft-lithography (Kumar et al 2018).
Recent development includes the development of silk
fibroin based bioink for memory implants (Costa
et al 2017), 3D bioprinting to achieve tissue engin-
eering applications (Kim et al 2018) and Silk/PEDOT
sensors (Pradhan and Yadavalli 2021). In future, all
such developments could pave the way for Am fibroin
too for microfluidics and bioprinting applications.

8.2. A. mylitta sericin for hard tissue engineering
Sericin from different silkworms has variations in
terms of amino acid compositions and degree of
bioactivities. For this reason, it is mainly required to
be combined with other polymers or use crosslinker
to achieve the desired strength. This low mechanical
stability can be a limitation to use sericin for hard tis-
sue engineering such as bone. However, as mentioned
earlier, sericin coating has shown promising titanium
implants (Nayak et al 2013). More studies with Am
sericin matrices for such application need to be con-
ducted.

8.3. Immediate attention needed for A. mylitta
fibroin sequencing
Another important task is left out for molecular bio-
logist for unveiling the complete gene sequence of
Am silk fibroin. This will reveal the length of fibroin,
which is expected to have around 3555 amino acids or
so and the number of RGD motifs present in it. Cur-
rently, a partial sequence of Am fibroin (507 amino
acids from N-terminal domain) is available with
seven RGDs in it (Datta et al 2001a). We have pre-
dicted the 3D appearance of the protein structurally
using TrRefineRosetta modelling method in Robetta
server (https://robetta.bakerlab.org/) without using
any homology template (figure 2(B)). From the ab
initio predicted structure, the RGD motifs can be
observed to be present on the loop regions, which is
exposed on the protein’s surface (figure 2(B)). This
phenomenon might have influenced the cells (both
in vitro and in vivo) to attach their integrins on
Am fibroin-based matrices, resulting in their super-
ior cytocompatibility and preference over other syn-
thetic/natural polymeric matrices. Multiple sequence
alignment in CLUSTAL 2.1 unveils that Am (partial

sequence) has 82% amino acid sequence similarity
with Ap (10 RGDs) and Ay (12 RGDs), 75% with Aa
(3 RGDs), and 61% with Sr (1 RGD). So, there is a
possibility to reveal more RGDs in the new complete
sequence of Am fibroin. The analysis of RGD peptide
density, spacing, availability on the protein surface,
and subsequent impact on cell spreading, migration,
and other cellular parameters will open new avenues
of cell biology research.

9. Conclusion

Silk-based materials have been used for medical pur-
poses from time immemorial. Extensive scientific
studies related to the evaluation and validation of silk-
based assemblies have been initiated in the early 1900s
to develop silk-based sutures and scaffolds. With the
development of tissue engineering techniques and
advancement of cell culture protocols, the involve-
ment of silk protein-based hydrogels, thin films, and
other structures has become an inseparable part of
recent tissue engineering and regenerative medicine
labs. In the past, silk protein-related works mainly
involved mulberry silks (Bombyx mori) due to their
worldwide availability. However, in the early 2000s,
many other potential silk candidates have been intro-
duced to scientists. The discovery of ‘inherent ‘RGD’
or ’integrin-binding motifs’ present in the protein
sequence of nonmulberry silks created an invigorat-
ing interest in the silk protein based research. This
unique feature of the nonmulberry fibroin isolated
from A. mylitta offers considerable potential to sup-
port the researchers to accelerate/enhance their 2/3D
cell culture for studying growths, proliferation, and
differentiation of all most any kind of cells (viz; any
types of stem cells, fibroblasts, and cancer cells). Fur-
thermore, these materials do not need to be bio-
functionalised with RGD peptides with an additional
tedious procedure of conjugation, which is an essen-
tial ingredient for extracellular matrices. Addition-
ally, the 3Dmatrices provide in vitro 3D cancermodel
platforms for screening the therapeutics for in vitro
efficacy and toxicity without using in vivo animal
models.

Decade-long research with such assemblies has
given the scientists an insight into the untapped
potential of these materials. Therefore, suchmaterials
are predicted to be a part of the biomedical engineer-
ing field without significant and costly post-isolation
modifications in the future. It is expected that their
functional superioritywould be reflected in the in vivo
platform. This developmentmight provide the neces-
sary support for regenerative medicine and tissue
engineering research. Investigation for other poten-
tial candidates originating from the Indian sub-
continent, namely Eri (Samia cynthia ricini) and
Muga (A. assamensis), along with their international
counterparts from China (A. pernyi) and Japan (A.
yamamai) should be continued in the future. With
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such success of A. mylitta silk protein-based struc-
tures, other neglected ecoraces from the Indian sub-
continent stood a chance to be recognised in the
international scientific community and embraced for
further evaluation.

Data availability statement
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