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New 3D Scaffolds and Adequate Mesenchymal Stem Cells Culture 
Methodologies for Engineering an Articular Cartilage Transplant 

 
 

ABSTRACT 
 
 

 
Cartilage is a type of dense connective tissue that possesses interesting features in terms of 

organization and functionality. It has only one type of cells – the chondrocytes – which are 

embedded in an extensive network constituted mostly of collagens and proteoglycans. It is also 

avascular, exhibiting a low metabolic rate and a subsequent low regenerative potential. Articular 

cartilage is a particular type of hyaline cartilage that has an important structural function in the 

skeletal system as a weight bearing tissue, creating smooth gliding areas that can absorb both 

shocks and loads in an efficient way. Due to its nature, articular cartilage function may be 

severely affected by trauma events, aging related degeneration such as osteoarthritis, or 

developmental disorders, since no efficient regeneration of the damaged tissue is performed. A 

direct result of this is chronic pain and disability conditions that seriously limit normal everyday 

life. Different possible solutions have been experimented to solve these conditions, such as 

prosthetic joint replacement, arthroplasty, and drilling, but the outcomes are still not satisfactory 

which imposed the need for alternative approaches. Tissue engineering has been proposed as a 

new method to address these problems, being widely studied as a promising therapeutic tool. 

The tissue engineering strategy usually implies the use of a 3D structure that is able to support 

cells growth and differentiation in an adequate environment towards the development of a 

functional tissue engineered system. The support systems fabricated for these purposes can be 

of natural or synthetic origin, or either a combination of both. Different materials have been 

produced and processed in various ways with the aim of conferring specific properties that are 

expected to render the best performances.  

 

The main goal of the work described in this thesis was to develop a system that can be easily, 

efficiently, and successfully applied in the treatment of articular cartilage lesions. Due to its 

potential, the concept of tissue engineering was applied by using natural origin based structures 

combined with different cell types (cell lines, primary culture differentiated and undifferentiated 

cells) in adequate culturing environments. Among the several support structures studied, the 

emphasis of the work was put on the development and application of a minimally invasive 
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injectable hydrogel system which testing started from its ability to be used as a cell supporting 

material to in vivo  functional studies in an articular cartilage rabbit knee defect model.  

 

In the initial part of the work presented in this thesis, the first tested structures consisted of 

scaffolds of chitosan and polybutylene succinate processed by compression moulding with salt 

leaching that were used to support the growth and chondrogenic differentiation of BMC9 cells – a 

mouse bone marrow derived mesenchymal progenitor cell line. The cells were able to proliferate 

and colonize the scaffolds structure, remaining viable during the time of the experiments. 

Immunological analyses further indicated that the BMC9 cells were being differentiated towards 

the chondrogenic pathway. 

 

A different structure of the scaffolds was experimented using the same blend of chitosan and 

polybutylene succinate by processing it in the form of fibres and producing a 3D fibre scaffold that 

was at this time used to culture primary culture chondrocytes from bovine origin. The 

chondrocytes exhibited a normal and typical morphology, colonising both the surface and inner 

pores of the scaffolds. Cartilage-like extracellular matrix formation was observed by the 

deposition of collagen type II and proteoglycans, indicating that chitosan and polybutylene 

succinate fibre based scaffolds had good potential as matrices for the regeneration of cartilage. 

 

A different natural fibre based scaffold consisting of a blend of starch and polycaprolactone was 

also investigated regarding its ability to support growth and extracellular matrix formation by 

bovine articular chondrocytes seeded in vitro. The chondrocytes presented normal morphological 

features with extensive cells presence at the surface of the support structures, and penetrating 

the scaffolds pores. Qualitative and quantitative analyses showed that typical cartilage 

extracellular matrix components were being deposited during the course of the experiments 

thereby showing the potential of these systems for future applications in the field.  

 

Another type of support, and the more extensively studied within the work described in this thesis, 

was a natural origin hydrogel – gellan gum - that was firstly tested to be used as a cell 

encapsulating agent. Gellan gum was shown to be versatile in terms of applications with the 

possibility of being used as a cell/drug delivery vehicle in different situations. In terms of cartilage 

regenerative approaches, its material properties and non cytotoxic nature were shown suitable for 

the proposed application. A final stage of this part involved the encapsulation and in vitro culturing 
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of human nasal chondrocytes in gellan gum hydrogels which remained viable showing the 

potential of these new systems as cell supports for cartilage regeneration. 

 

In the following work, gellan gum hydrogels were tested for their ability to be used as injectable 

systems for delivering and maintaining human chondrocytes by in situ gelation, as well as for 

supporting cell viability and production of extracellular matrix. The characterization of some of the 

materials properties showed their injectability under physiological conditions and with the 

encapsulation and culturing of human articular chondrocytes it was possible to observe that cells 

were viable and actively depositing cartilage-like extracellular matrix. In a final stage, the in vivo 

performance of the gellan gum hydrogels, in terms of induced inflammatory reaction and 

integration into the host tissue, was performed upon subcutaneous implantation in mice. The 

results showed a residual response from the organisms and maintenance of the mechanical 

stability of the gels throughout the implantation periods.  

 

These results prompted the study of the gellan gum with human chondrocytes systems in vivo  to 

test for cartilage-like tissue formation. Gellan gum hydrogels were combined with human articular 

chondrocytes and were subcutaneously implanted in the back of nude mice. The results showed 

a homogeneous cell distribution and the typical round shape morphology of the chondrocytes 

within the matrix upon implantation. Proteoglycans synthesis was detected in the histological 

sections and a statistically significant increase of proteoglycans content in gellan gum-human 

articular chondrocytes tissue engineered constructs was measured with the GAG assay from 1 to 

4 weeks of implantation. Real-time PCR analyses showed a statistically significant upregulation of 

collagen type II and aggrecan levels in the same periods, while the immunological assays 

suggested deposition of collagen type II along with some collagen type I. The overall data 

reinforced the previously observed potential of gellan gum hydrogels in the generation of a fully 

functional cartilage tissue engineered construct. 

 

Finally, the last study performed under the scope of this thesis looked into the therapeutic effect 

of gellan gum hydrogels when combined with adipose tissue derived progenitor cells and injected 

in rabbit full-thickness articular cartilage defects in an autologous approach. Adipose tissue 

derived progenitor cells (chondrogenic pre-differentiated and non pre-differentiated) where 

compared with articular chondrocytes, gellan gum alone, and empty defects. The cell loaded 

hydrogels showed the best macroscopic appearance and integration with the native tissue. 

Histological scoring and staining, along with real-time semiquantitative PCR analyses, provided 
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results that taken together showed that gellan gum hydrogels in combination with adipose tissue 

derived progenitor cells constitute a promising approach for the treatment of articular cartilage 

defects, being a possible candidate for future clinical applications in this field. 

 

As a concluding remark, it can be stated that the work performed in this thesis tested several 

supports for application in the cartilage tissue engineering field, with the main emphasis being put 

in gellan gum hydrogels. Gellan gum was originally suggested and tested as a new support to aid 

in cartilage tissue regeneration. Gellan gum was shown to be a promising biomaterial for these 

purposes as evidenced by its materials properties, in vitro, and in vivo results. Such evidences 

suggest that the herein described gellan gum systems combined with different cells types, namely 

adipose tissue derived progenitor cells, may have potential clinical application in the treatment of 

cartilage defects.  
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Novos Suportes Poliméricos 3D e Metodologias Adequadas de Cultura de 
Células Estaminais Mesenquimais para a Engenharia de Transplantes de 

Cartilagem Articular  
 
 

RESUMO 
 
 
 

A cartilagem é um tipo de tecido conectivo denso que possui características interessantes em 

termos da sua organização e funcionalidade. Tem apenas um tipo de células - os condrócitos - 

que estão incluídos numa matriz extracelular constituída maioritariamente de colagéneo e 

proteoglicanos. É igualmente avascular, exibindo uma baixa taxa metabólica e um baixo 

potencial regenerativo. A cartilagem articular é um tipo particular de cartilagem hialina que tem 

uma função estrutural importante no sistema esquelético já que pode ser vista como um sistema 

de suporte de cargas capaz de criar áreas de deslizamento suaves que podem absorver 

choques e cargas de uma forma eficaz. Devido a sua natureza, a função articular da cartilagem 

pode ser severamente afectada por eventos traumáticos, desgaste progressivo do tecido e 

mecanismos degenerativos tal como a osteoartrite, dado que uma regeneração eficiente do 

tecido danificado não acontece na maior parte dos casos. Uma consequência directa destes 

acontecimentos são condições crónicas de dor e incapacidade que limitam seriamente a vida 

quotidiana normal. Foram testadas diferentes soluções para resolver estes problemas, tais como 

a utilização de próteses, artroplastia, entre outros procedimentos cirúrgicos, mas a falta de 

resultados satisfatórios impõe a necessidade de aproximações alternativas. A engenharia de 

tecidos é um método inovador proposto para tratar estas situações, estando a ser extensamente 

estudado como uma ferramenta terapêutica promissora. A estratégia de engenharia de tecidos 

implica geralmente o uso de uma estrutura 3D que possa suportar o crescimento e diferenciação 

de células num ambiente adequado para o desenvolvimento de um tecido funcional. As 

estruturas de suporte fabricadas para este fim podem ser de origem natural ou sintética, ou 

alternativamente uma combinação de ambos. Têm sido produzidos e processados materiais com 

diferentes características tendo em vista a obtenção de propriedades específicas que permitam 

obter melhores desempenhos. 

 

O objectivo principal do trabalho descrito nesta tese foi o desenvolvimento de um sistema que 

pudesse para ser aplicado facilmente, eficientemente, e com sucesso no tratamento de lesões 

articulares da cartilagem. Tendo em conta o seu potencial, o conceito de engenharia de tecidos 
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foi aplicado usando estruturas de origem natural combinadas com tipos diferentes de células 

(linhas celulares, culturas primárias de células diferenciadas e não diferenciadas) em ambientes 

de cultura adequados. Entre as diversas estruturas de suporte estudadas, o enfoque do trabalho 

recaiu fundamentalmente sobre o desenvolvimento e a aplicação de um sistema injectável de 

invasão reduzida. Os testes com o material, a goma gelana, e o sistema em si, foram iniciados 

com a avaliação das capacidades deste para ser utilizado nestas aplicações e desenrolaram-se 

até à realização de estudos funcionais in vivo  num modelo animal (coelho) onde foram criados 

defeitos na cartilagem articular e avaliado o potencial regenerativo dos sistemas.  articular do 

defeito do joelho do coelho da cartilagem.  

 

Na parte inicial do trabalho apresentado nesta tese, os primeiros estudos foram realizados com 

estruturas de suporte 3D à base de polibutileno sucinato e quitosano processado através de 

moldação por compressão com lixiviação de sal. Estes suportes foram usados para suportar o 

crescimento e a diferenciação condrogénica de células BMC9 – uma linha celular mesenquimal 

progenitora obtida a partir de medula de rato. As células proliferaram e colonizaram as estruturas 

de suporte, permanecendo viáveis durante a o tempo das experiências. Análises morfológicas e 

imunológicas indicaram que as células BMC9 estavam a seguir a via de diferenciação 

condrogénica. 

 

Uma outra estrutura de suporte foi criada usando a mesma mistura à base de polibutileno 

sucinato e quitosano mas processada desta vez sob a forma de fibras por microextrusão e 

formando o suporte 3D através de pontos de ligação entre as fibras. A estrutura foi utilizada 

como suporte ao cultivo de condrócitos articulares bovinos de cultura primária. Os condrócitos 

exibiram uma morfologia normal e típica, colonisando os poros de superfície e internos das 

estruturas de suporte. A formação de matriz extracellular cartilagínea foi observada pela 

deposição de colagénio tipo II e proteoglicanos, indicando que estes suportes à base de 

polibutileno sucinato e quitosano têm potencial para a regeneração de cartilagem. 

 

Um suporte natural diferente, também à base de fibras, constituiu o objecto de estudo seguinte. 

Este foi fabricado a partir da mistura de amido de milho e policaprolactona e foi investigado 

igualmente acerca da sua capacidade para suportar o crescimento e a formação de matriz 

extracellular cartilagínea por condrócitos articulares bovinos de cultura primária. Os ccondrócitos 

apresentaram características morfológicas normais com presença extensiva de células na 

superfície e aréas internas das estruturas da sustentação. As análises qualitativas e quantitativas 
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mostraram existir deposição de componentes típicos da matriz extracellular da cartilagem, 

evidenciando desse modo o potencial destes sistemas para aplicações futuras nesta área  

 

Um outro tipo de suporte, e o mais extensivamente estudado no âmbito do trabalho descrito 

nesta tese, foi um hidrogel de origem natural - a goma gelana. A capacidade da goma gelana ser 

utilizada com agente de encapsulamento de células foi inicialmente testada. Foi demonstrado 

que a goma gelana é versátil em termos de aplicações e pode ser utlizada como um veículo de 

entrega de células/fármacos em diferentes cenários. Em termos de regeneração de cartilagem, 

as suas propriedades materiais e natureza não citotóxica revelaram-se apropriadas para as 

aplicações propostas. A parte final deste primero estudo envolveu o encapsulamento e cultivo in 

vitro de condrócitos nasais humanos nos hidrogéis de goma gelana. Estes permaneceram 

viáveis confirmando novamente o potencial destes novos sistemas no suporte de células tendo 

como objectivo a regenração de cartilagem.  

 

No trabalho seguinte, os hidrogéis de goma gelana foram optimisados para poderem ser 

utilizados como sistemas injectáveis capazes de entregar e manter condrócitos humanos  no 

local do defeito através da gelificação in situ. Subsequentemente, estes deveriam manter a 

viabilidade das células encapsuladas e sustentaram a produção de matriz extracelular. A 

caracterização de algumas das propriedades destes materiais demonstrou o seu carácter 

injectável em condições fisiológicas, assim como foi possível constatar que as células 

encapsuladas e cultivadas se mantiveram viáveis sintetisando activamente matriz extracelular 

cartilagínea. Na parte final, o desempenho dos hidrogéis de goma gelana in vivo , no que se 

refere à reacção inflamatória e integração pelo tecido do anfitrião, foi testado através de 

implantação subcutânea em ratinhos. Os resultados mostraram uma resposta residual dos 

organismos e uma manutenção da estabilidade mecânica dos geis ao longo dos períodos de 

implantação.  

 

A obtenção destes resultados suscitou o interesse de estudar a formação de tecido cartilagíneo 

pela goma gelana quando utilizada com condrócitos humanos in vivo . Os hidrogeis foram então 

combinados com os condrócitos articulares humanos e implantados subcutaneamente no dorso 

de ratinhos atímicos. Os resultados mostraram uma distribuição homogénea das células que 

apresentaram a morfologia típica dos condrócitos. A síntese de proteogicanos foi detectada nas 

secções histológicas e um aumento estatisiticamente significativo das quantidades de 

proteoglicanos foi medido com o teste de quantificação de glicosaminoglicanos durante a 
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primeira e quarta semanas de implantação. As análises de PCR em tempo real revelaram um 

aumento estatisiticamente significativo do colagénio tipo II e dos níveis de agrecano nos mesmos 

períodos, enquanto que os ensaios imunológicos sugeriram o depósito de colagénio tipo II, assim 

como algum colagénio tipo I. Estes dados reforçaram o potencial previamente observado dos 

hidrogeis de goma gelana na geração de um tecido cartilagíneo funcional.  

 

Finalmente, o último estudo experimental realizado no âmbito desta tese teve como objectivo 

avaliar o efeito terapêutico dos hidrogeis de goma gelana combinados com células progenitoras 

do tecido adiposo quando injectados em defeitos totais da cartilagem articular de coelhos, num 

modelo de aproximação autólogo. Células progenitoras do tecido adiposo (sujeitas a pré-

diferenciação condrogénica e não pré-differenciadas) foram comparadas com condrócitos 

articulares, a goma gelana apenas, e com os defeitos vazios. Os hidrogeis conjugados com 

células apresentaram os melhores resultados em termos macroscópicos e de integração com o 

tecido nativo. Os resultados da avaliação histológica quantitativa e qualitativa, assim como as 

análises semiquantitativas de PCR em tempo real, demonstraram que a combinação de goma 

gelana células progenitoras do tecido adiposo constituem uma aproximação promissora no 

tratamento de defeitos da cartilagem articular, sendo estes sistemas fortes candidatos para 

aplicações clínicas futuras neste campo. 

 

De um ponto de vista geral, pode referir-se que o trabalho executado nesta tese testou diversos 

suportes com potencial aplicação no campo da engenharia de tecidos de cartilagem, tendo sido 

a ênfase principal colocada nos hidrogeis de goma gelana. Foi aqui demonstrado que a goma 

gelana é um material promissor para este tipo de aplicações, como se constatou pelas suas 

propriedades materiais, assim como resultados de ensaios in vitro e in vivo . Tais evidências 

sugerem que os sistemas de goma gelana aqui descritos combinados com diferentes tipos de 

células, nomeadamente células progenitoras do tecido adiposo, poderão ter uma potencial 

aplicação clínica no tratamento de defeitos da cartilagem. 

 

 
 
 
 
 
 
 
 



 xi

TABLE OF CONTENTS 
 
 
Acknowledgements...................................................................... ....................................................i 
Abstract.................................................................... ......................................................................iii 
Resumo....................................................................... ..................................................................vii 
Table of contents....................................................................... .....................................................xi 
List of abbreviations…………………………………………………………………………………..…xviii 
List of figures………………………………………………………………………………………………xxi 
List of tables………………………………………………………………………………………..…...xxviii 
Short Curriculum Vitae.................................................................................................................xxix 
List of publications…………………………………………………………………………………...….xxxi 
Introduction to the thesis format……………………………………………………………….……....…xl 
 
SECTION 1……………………………………………………………………………………………….…1 
 
CHAPTER I 
 
Polysaccharide Based Materials for Cartilage Tissue Engineering Applications……….……3 
 
Abstract………………………………………………………………………………………………….…..5 
1. Introduction……………………………………………………………………………...…………….....6 
2. Cartilage tissue organization…………………..……………………………………………………….7 
3. Cartilage associated diseases…………………………………………………………………………8 
4. Cartilage tissue engineering……………………………………………………………………………9 
5. Polysaccharides in cartilage tissue engineering……………………………………………………12 
5.1. Introduction …………………………………………………………………………………………...12 
5.2. Agarose………………………...…………………………………………..…………………………13 
5.3. Alginate………………………………………………………..……………………………………...15 
5.4. Cellulose………………………………………………..………..…………………………………...17 
5.5. Chitosan………………………………………………………..……………………………………..19 
5.6. Chondroitin sulphate………………………………………………………..……………………….21 
5.7. Gellan gum……………………………………………………………………………………………23 
5.8. Hyaluronic acid……………………………………………………………………………………….25 
5.9. Starch……………………………………….………………………………………………………...26 
6. Final Remarks………………………………..………………………………………………………...28 
References……………………………………………………………………………...…………………31 
 
 
SECTION 2…………………………………………………………………………………………….…49 
 
CHAPTER II 
 
Materials and Methods………………………………………………………………………....………51 
 
1. Materials………………………………………………………………………………………………...53 
 

1.1. Chitosan/polybutylene succinate (C-PBS)………………………………………………53 
1.2. Starch/polycaprolactone (SPCL) ……………………………………………........…......54 
1.3. Polyglycolic acid (PGA) ……………………………………............................…………54 



 xii

1.4. Gellan gum…………………………………………................................................……54 
1.5. Agarose……………………………………………………………………………………...55 

2. Scaffolds production…………………………………………………………………………………...55 
2.1. Chitosan/polybutylene succinate scaffolds  
(compression moulding and salt leaching) …………………………………………………..55 
2.2. Chitosan/polybutylene succinate fibre scaffolds………………………………………..55 
2.3. Starch/polycaprolactone fibre scaffolds……………………………………………....…55 
2.4. Gellan gum 
hydrogels………………………………………………………………………………………....56 

2.4.1. Gellan gum hydrogels discs………………………………………………......56 
2.4.2. Gellan gum hydrogels membranes…………………………………………...56 
2.4.3. Gellan gum hydrogels fibres……………………………………………......…57 
2.4.4. Gellan gum hydrogels particles…………………………………………….…57 
2.4.5. Gellan gum hydrogels scaffolds………………………………………………57 

2.5. Agarose hydrogels………………………………………………………………………....57 
3. Scaffolds characterization………………………………………………………………………….…57 

3.1. Scanning electron microscopy (SEM) ………………………………………………......57 
3.2. Transmission electron microscopy (TEM) ………………………………………………58 
3.3. Micro-computed tomography (µ-CT) …………………………………………………….58 
3.4. Mechanical testing…………………………………………………………………………59 

3.4.1. Static compression tests………………………………………………..........59 
3.4.2. Dynamic mechanical analysis (DMA) …………………………………….…59 

3.5. Rheological studies………………………………………………………………………..59 
3.6. In vitro cytotoxicity tests…………………………………………………………………...60 

3.6.1. MEM extraction test………………………………………………..................60 
3.6.2. MTS test…………………………………………………………………………61 

4. Cell isolation and expansion………………………………………………………………………….61  
4.1. Cells for cytotoxicity assays……………………………………………………………….61 
4.2. Expansion of BMC9 cells (mouse mesenchymal progenitor cell line)………………..62 
4.3. Isolation and expansion of bovine articular chondrocytes……………………………..62  
4.4. Isolation and expansion of human nasal chondrocytes………………………………..62 
4.5. Isolation and expansion of human articular chondrocytes…………………………….63  
4.6. Isolation and expansion of rabbit adipose tissue derived progenitor cells…………..64  
4.7. Isolation and expansion of rabbit articular chondrocytes………………………………64  

5. Cell and materials culturing…………………………………………………………………………...65 
5.1. BMC9 cells seeding and culturing on chitosan/polybutylene succinate scaffolds 
(compression moulding and salt leaching) …………………………………………………..65 
5.2. Bovine chondrocytes seeding and culturing on fibre scaffolds (C-PBS and SPCL)..66 
5.3. Human nasal chondrocytes encapsulation and culturing in gellan gum and agarose 
hydrogels…………………………………………………………………………………………66  
5.4. Human articular chondrocytes encapsulation  
and culturing in gellan gum hydrogels……………………………………………….............67 
5.5. Human articular chondrocytes encapsulation  
in gellan gum hydrogels (in vivo  tests) ………………………………………………...........68 

6. In vivo  implantation……………………………………………………………………………………68 
6.1. Subcutaneous implantation of gellan gum hydrogels in mice…………………………68  
6.2. Subcutaneous implantation of gellan gum hydrogels with encapsulated human 
articular chondrocytes in nude mice…………………………………………………………..69  
6.3. In vivo  injection in rabbit articular cartilage defects of gellan gum-cells systems….70 

7. Biological evaluation…………………………………………………………………………………..71 



 xiii

7.1. Cellular viability by MTS test……………………………………………………………71 
7.2. Cell viability by fluorescent dyes………………………………………………………..71 
7.3. Cell adhesion and morphology by scanning electron microscopy (SEM).…………72 
7.4. Histological analysis………………………………………………...............................72 
7.5. Histological scoring (Pineda scoring system) …………………………………………74 
7.6. Quantification of proteoglycan content………………………………………………....74 
7.7. Real-time PCR analyses…………………………………………………………………75 
7.8. Immunolocalisation of collagen type I and type II……………………………………..76  
7.9. Western blot for collagen type II…………………………………………………………77  

8. Statistical analysis………………………………………………...................................................78 
References……………………………………………………………………………...…………………79 
 
 
 
SECTION 3……………………………………………………………………………...………………...83 
 
CHAPTER III……………………………………………………………………………...…………….…85 
 
Assessment of the Suitability of Chitosan/PolyButylene Succinate Scaffolds Seeded with 
Mouse Mesenchymal Progenitor Cells for a Cartilage Tissue Engineering Approach……..87  
 
Abstract………………………………………………………………………...…………………………..87 
1. Introduction………………………………………………………………………...…………………...89 
2. Materials and Methods………………………………………………………………………...………90 

2.1. Scaffolds production and processing…………………………………………………….91 
2.2. Scaffolds characterization…..…………………………………………………...………..91 
2.3. In vitro cytotoxicity tests………………………………………………………………...…91 

2.3.1. Cell culture………………………………………………………………………92 
2.3.2. MEM extraction test………………………………………………………….…92 
2.3.3. MTS test…………………………………………………………………………92 

2.4. Direct contact assays………………………………………………………………………93 
2.4.1. Cell seeding and culturing……………………………………………………..93 
2.4.2. Cellular viability by MTS test…………………………………………………..93 
2.4.3. Cell adhesion and morphology by Scanning Electron Microscopy (SEM).94 
2.4.4. Western blot: collagen type II…………………………………………………94  

3. Results…………………………………………………………………………………………………..95  
3.1. Scaffolds characterization…………………………………………………………………95 
3.2. In vitro cytotoxicity tests (MEM extraction and MTS tests) ……………………………96 
3.3. Direct contact assays………………………………………………………………………97 

4. Discussion……………………………………………………………………………………………..101 
5. Conclusions…………………………………………………………………………...………………104 
References…………………………………………………………………………………………….…105 
 
CHAPTER IV……………………………………………………………………………...…………..…111 
 
Novel Melt-Processable Chitosan-Polybutylene Succinate Fibre Scaffolds for Cartilage 
Tissue 
Engineering……………………………………………………………………………...…………...…113 
 
Abstract………………………………………………………………………………….………………..113 



 xiv

1. 
Introduction……………………………………………………………………………….………………114 
2. Materials and Methods……………………………………………………………………………….115 

2.1. Scaffolds production and 
characterization………………………………………………………………………………...115 
2.2. Isolation and expansion of bovine articular chondrocytes……………………………116 
2.3. Chondrocyte culture on 3D C-PBS fibre 
scaffolds……………………………………………………………………………….………..116 
2.4. Scanning Electron Microscopy…………………………………..……………….……..117  
2.5 Histology……………………………………………………………………………….…...117  
2.6. Quantification of proteoglycan content…………………………………………………117 
2.7. Immunolocalisation of collagen type I and type II…………………………………….118  

3. Results……………………………………………………………………………….………………..118  
3.1. Scaffold 
characterisation………………………………………………………………………………...118 
3.2. Stereolight Microscopy and Scanning Electron Microscopy…………………………119  
3.3. 
Histology……………………………………………………………………………….……..…120 
3.4. Quantification of proteoglycan content…………………………………………………123 
3.5. Immunolocalisation of collagen type I and type II……………………………………..124  

4. Discussion……………………………………………………………………………….…….………125 
5. Conclusions……………………………………………………………………………….…………..129 
References……………………………………………………………………………….………………130 
 
CHAPTER V……………………………………………………………………………...…………...…137  
 
A Cartilage Tissue Engineering Approach Combining Starch-Polycaprolactone Fibre Mesh 
Scaffolds With Bovine Articular Chondrocytes…………………………………………………..139 
 
Abstract………………………………………………………..………………………………….………139 
1. Introduction……………………………………………………………………………….………...…141 
2. Materials and Methods…………………………………………………………………………….…142 

2.1. Scaffolds production……………………………………………………………………...142 
2.2. Isolation and expansion of bovine articular chondrocytes……………………………142 
2.3. Chondrocyte Culture on 3D SPCL fibre scaffolds…………………………………….143 
2.4. Scanning Electron Microscopy……………………………………………………….…144 
2.5 Histological analysis (Hematoxylin-Eosin, Toluidine blue) …………………………..144 
2.6. Immunolocalisation of collagen type I and type II………………………………….….144 
2.7. Dimethylmethylene blue (DMB) assay for glycosaminoglycans quantification…….145 

3. Results and Discussion………………………………………………………………………………145 
3.1. Scaffolds production……………………………………………………………………...145 
3.2. Scanning Electron Microscopy…………………….……………………………………146 
3.3. Hematoxylin-Eosin and Toluidine blue…………………………………………………147 
3.4. Immunolocalisation of collagen type I and type II……………………………………..149  
3.5. DMB assay for glycosaminoglycans quantification……………………………………151 

4. Conclusions…………………………………………………………………………..……….………153 
References……………………………………………………………………………….………...…….155 
 
  
CHAPTER VI……………………………………………………………………………...…………...161 



 xv

 
Gellan Gum: A New Biomaterial for Cartilage Tissue Engineering Applications…………..163 
 
Abstract…………………………………………………..………………………………………….……163 
1. Introduction……………………………………………………………………….………………...…164 
2. Materials and Methods………………………………………………………………………….……166 

2.1. Versatility of Gellan gum: processing into different structures (discs, membranes, 
fibres, particles, scaffolds) ……………………………………………………………………166 
2.2. Transmission electron microscopy……………………………………………………...167 
2.3. Dynamic mechanical analysis…………………………………………………………...167  
2.4. Rheological studies……………………………………………………………………….168 
2.5. Cytotoxicity evaluation……………………………………………………………………168 
2.6. Isolation and expansion of human nasal chondrocytes………………………………169 
2.7. Human nasal chondrocytes encapsulation in gellan gum and agarose hydrogels..170 
2.8. Human nasal chondrocytes encapsulated in gellan gum and agarose hydrogels: cell 
viability tests and histological analysis………………………………………………………171  

3. Results and Discussion………………………………………..…………………………….……...171 
3.1. Versatility of Gellan gum: processing into different structures (discs, membranes, 
fibres, particles, scaffolds) ……………………………………………………………………171 
3.2. Transmission Electron Microscopy……………………………………………………..173  
3.3. Dynamic Mechanical Analysis…………………………………………………………..174  
3.4. Rheological studies……………………………………………………………………….176  
3.5. Cytotoxicity evaluation……………………………………………………………………177  
3.6. Human nasal chondrocytes encapsulated in gellan gum and agarose hydrogels: cell 
viability tests and histological analysis………………………………………………………178 

4. Conclusions……………………………………………………………………….…………………..181 
References……………………………………………………………………….………………………183 
 
 
CHAPTER VII……………………………………………………………………...………………….…189 
 
Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: In vitro 
Studies and Preliminary In Vivo  Evaluation……………………………………………………...191 
 
Abstract…………………………………………………………………………………………………...191 
1. Introduction……………………………………………………………………………………………193 
2. Materials and Methods…………………………………………………………………………….…194 

2.1. Rheological studies…………………………………………………………………….…194  
2.2. Dynamic mechanical analysis…………………………………………………………...195  
2.3. Human articular chondrocytes isolation and expansion……………………………...195  
2.4. Encapsulation of human articular chondrocytes in Gellan gum hydrogels and in vitro 
culturing…………………………………………………………………………………………196  
2.5. Cell viability: Calcein AM staining…………………………………………………….…197  
2.6. Histology (Hematoxylin-eosin, Alcian blue, Safranin-O) ……………………………..197  
2.7. Real-time PCR (Sox9, col I, col II, aggrecan) …………………………………………198  
2.8. Subcutaneous implantation in mice – histology and dynamic  
mechanical analysis. ………………………………………………………………………….199  

3. Results…………………………………………………………………………………………………200  
3.1. Rheological studies……………………………………………………………………….200  
3.2. Dynamic mechanical analysis……………………………………………………..…….201  



 xvi

3.3. Cell viability and histological analysis………………………………………………..…202 
3.4. Real-time PCR (Sox9, collagen type I, collagen type II, aggrecan)…………………204  
3.5. In vivo  tests: histology, mechanical analysis and weight measurements………….205 

4. Discussion……………………………………………………………………………………………..208 
5. Conclusions…………………………………………………………………………………………...211 
References……………………………………………………………………………………………….212 
 
 
CHAPTER VIII…………………………………...………………………………………………………219 
 
Performance of New Gellan Gum Hydrogels Combined With Human Articular 
Chondrocytes for Cartilage Regeneration When Subcutaneously  
Implanted In Nude Mice…………………………………………………………………..…………..221 
 
Abstract………..………………………………………………………………………………………….221 
1. Introduction……………………………………………………………………………………………223 
2. Materials and Methods……………………………………………………………………………….224 

2.1. Human articular chondrocytes isolation and expansion……………………………...224  
2.2. Human articular chondrocytes encapsulation in gellan gum hydrogels…………….225  
2.3. In vivo subcutaneous implantation in nude mice……………………………………...225 
2.4. Histology…………………………………………………………………………………...226  
2.5. Quantification of proteoglycan content…………………………………………………226  
2.6. Real-time PCR (collagen type I, collagen type II, aggrecan, collagen type X)…….227  
2.7. Immunolocalisation of collagen type I and collagen type II…………………………..228 

3. Results…………………………………………………………………………………………………229  
3.1. Histology…………………………………………………………………………………...229  
3.2. Quantification of proteoglycan content…………………………………………………230  
3.3. Real-time PCR (collagen type I, collagen type II, aggrecan, collagen type X)…….231  
3.4. Immunolocalisation of collagen type I and collagen type II…………………………..232 

4. Discussion…………………………………………………………………………………………….233 
5. Conclusions…………………………………………………………………………………………...235 
References………………………………………………………………………………………………237 
 
 
 
CHAPTER IX…………………………………………………………..……………………….………..243 
 
Rabbit Articular Cartilage Full-Thickness Size Defects Treated With Novel Gellan Gum 
Injectable Hydrogels and Autologous Adipose Stem Cells……………………………………245  
 
Abstract…………………………………………………………………………………………………..245 
1. Introduction……………………………………………………………………………………………247 
2. Materials and Methods………………………………………………………………………….……248 

2.1. Rabbit adipose tissue derived progenitor cells isolation and expansion……….…..249 
2.2. Rabbit articular chondrocytes isolation and expansion…………………………….…249  
2.3. In vivo injection in rabbit articular cartilage defects of gellan gum-cells systems.…250  
2.4. Histology……………………………………………………………………………….…..252  
2.5. Histological scoring (Pineda scoring system) …………………………………………252 
2.6. Real-time PCR (Sox9, col I, col II, aggrecan) …………………………………………253  

3. Results…………………………………………………………………………………………………255 



 xvii

3.1. Histology……………………………………………………………………………...……255 
3.2. Histological scoring (Pineda scoring system) …………………………………………257 
3.3. Real-time PCR (Sox9, collagen type I, collagen type II, aggrecan)…………………258  

4. Discussion…………………………………………………………………………………….……….260 
5. Conclusions…………………………………………………………………………….……………..264 
References……………………………………………………………………………………………….265 
 
 
SECTION 4………………………………………..………………………………………………..……271 
  
 
CHAPTER X………………………………………………………………………..……………………273 
 
General Conclusions and Final Remarks………………………………..………..………………275  
 



 

LIST OF ABBREVIATIONS 
 

 
 
#      
2D               two dimensional   
               

         3D                three dimensional          
                            

Ø                 diameter  
21G             21 gauge 
-∆∆Ct             delta delta critical threshold 
                
     
A       
A/B              antibiotic     
Å                 ångström 
ASC + GF   chondrogenic pre-differentiated 

rabbit adipose tissue derived 
progenitor cells  

ASC             rabbit adipose tissue derived 
progenitor cells  

 
 
B 
BMC9          mouse bone marrow derived 
mesenchymal progenitor cell line 
Ba2+             barium 
bFGF           basic fibroblast growth factor  
BSA             bovine serum albumin  
 
 
C 
C-PBS         chitosan-polybutylene succinate  
Col I             collagen type I 
Col II            collagen type II 
CaCl2                 calcium chloride 
Ca2+             calcium 
CO2              carbon dioxide 
CA               cellulose acetate  
CDMP-2       cartilage-derived 

morphogenetic protein 2   
COOH          carboxylic groupc 
cDNA           complementary   

deoxyribonucleic acid 
Ct                 critical threshold 
cm                centimetre 
 
 
D 

DMB            1,9-dimethylmethylene blue  
DAPI            4',6-diamidino-2-phenylindole 
DMEM         Dulbecco’s modified Eagle’s   

medium 
DAB             3,3’-diaminobenzidine 
DSC             differential scanning calorimetry   
DMA            dynamic mechanical analysis   
DNA            deoxyribonucleic acid 
 
 
E 
E’                storage modulus 
E’’               loss modulus 
ECM           extracellular matrix  
ECACC      European Collection of Cell 

Cultures  
Esec           secant modulus 
EVOH         ethyl vinyl alcohol  
 
 
F 
FBS            foetal bovine serum  
 
 
G 
GAG           glycosaminoglycans 
g/L              gram per litre 
xg               centrifugal force 
GAPDH      glyceraldehyde-3-phosphate  
                   dehydrogenase 
GvHD         graft-versus-host disease 
 
H 
Hz               hertz 
hBMP-2       human bone morphogenentic 

protein-2 
H&E            hematoxylin-eosin  
HEPES       4-(2-hydroxyethyl)-1- 
                   piperazineethanesulfonic acid 
hAC            human articular chondrocytes  
 
 
 
 
 
 

xviii 



 

I 
ITS             insulin, transferrin, and selenium    

solution 
IGF-I           insulin-like growth factor type I  
i.m.              intramuscular 
 
 
K   
kDa             kilodalton 
kV               kilovolt 
K+                 potassium 
keV             kiloelectron volt  
kg               kilogram 
 
 
L  
L929           rat lung fibroblasts cell line 
 
 
M 
MEM           minimum essential medium 
MTS            3-(4,5-dimethylthiazol-2-yl)-5- 
                   (3-carboxymethoxyphenyl)-2- 
                   (4-sulfophenyl)-2H-tetrazolium  
µ-CT          micro-computed tomography  
MPa            megapascal 
ml               mililiter 
M                molar 
mM             milimolar 
mA              miliampere 
mg              miligram 
mm             milimeter 
Mg2+            magnesium 
min             minute 
ms              milisecond 
mm3           cubic milimeter 
MC615       chondrocytic cell line   
mRNA        messenger ribonucleic acid 
 
 
N 
n                 total number of data points 
ng               nanogram 
nm              nanometer 
NaCl           sodium chloride 
Na+             sodium 
NaOH         sodium hydroxide 
 
 
 

O 
OD              optical density 
OCT            optimal cutting temperature  
 
 
P 
PCR            polymerase chain reaction 
p                  probability value 
PBS             phosphate buffered saline 
PGA             polyglycolic acid  
PLGA           poly(lactic-co-glycolic)  
PHEMA        poly-2-hydroxyethyl 
                     methacrylate  
PEGT/PBT   polyethylene glycol 
                     terephthalate/polybutylene 
                     terephthalate  
P1                cell passage one 
PCL              polycaprolactone  
Pa                 pascal 
 
 
R 
RGD            arginine-glycine-aspartic acid 
rpm              revolutions per minute 
 
 
S  
Sox9           SRY (sex determining region Y)-

box 9                                                                             
SEM             scanning electron microscopy 
SPCL           starch-polycaprolactone  
s                   second 
SDS              sodium dodecyl sulfate 
saline-T         saline-Tris 
 
 
T 
TEMED         N,N,N',N' 
                     tetramethylethylenediamine 
TGF-β           transforming growth factor beta 
TGF-β1         transforming growth factor 
                      beta-1 
Tm                 melting temperature  
TBS               tris-buffered saline  
TEM              transmission electron    
                      microscopy  
TCPS            tissue culture polystyrene  
 
 
 

xix 



 

U 
µm                  micrometer 
UDP-glucose  uridine diphosphate glucose 
µA                   microampere 
 
 

 
 
 
 
 

V 
v/v                   volume per volume 
 
 
W 
wt                   weight  
wt/v                weight per volume 
 
 
 
 

 
 
 
 
 
 
 
 
                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

xx 



 

LIST OF FIGURES 
 
 

 
SECTION 1 
 
CHAPTER I 

Polysaccharide Based Materials for Cartilage Tissue Engineering Applications  
 
Figure I.1. Graphical representation of the search results performed with Web of Science® web 
platform using the keywords agarose and cartilage tissue engineering. The variation throughout 
the years of the association of these two topics is presented. The data represents a search for the 
publications on all available years of search *until 12th July 2008 with a minimum threshold of 1.  
 

Figure I.2. Graphical representation of the search results performed with Web of Science® web 
platform using the keywords alginate and cartilage tissue engineering. The variation throughout 
the years of the association of these two topics is presented. The data represents a search for the 
publications on all available years of search *until 12th July 2008 with a minimum threshold of 1. 
 

Figure I.3. Graphical representation of the search results performed with Web of Science® web 
platform using the keywords cellulose and cartilage tissue engineering. The variation throughout 
the years of the association of these two topics is presented. The data represents a search for the 
publications on all available years of search *until 12th July 2008 with a minimum threshold of 1. 
 

Figure I.4. Graphical representation of the search results performed with Web of Science® web 
platform using the keywords chitosan and cartilage tissue engineering. The variation throughout 
the years of the association of these two topics is presented. The data represents a search for the 
publications on all available years of search *until 12th July 2008 with a minimum threshold of 1. 
 

Figure I.5. Graphical representation of the search results performed with Web of Science® web 
platform using the keywords chondroitin sulphate and cartilage tissue engineering. The variation 
throughout the years of the association of these two topics is presented. The data represents a 
search for the publications on all available years of search *until 12th July 2008 with a minimum 
threshold of 1. 
 

Figure I.6. Graphical representation of the search results performed with Web of Science® web 
platform using the keywords gellan gum and cartilage tissue engineering. The variation 
throughout the years of the association of these two topics is presented. The data represents a 
search for the publications on all available years of search *until 12th July 2008 with a minimum 
threshold of 1. 
 

Figure I.7. Graphical representation of the search results performed with Web of Science® web 
platform using the keywords hyaluronic acid and cartilage tissue engineering. The variation 
throughout the years of the association of these two topics is presented. The data represents a 
search for the publications on all available years of search *until 12th July 2008 with a minimum 
threshold of 1. 

xxi 



 

 

Figure I.8. Graphical representation of the search results performed with Web of Science® web 
platform using the keywords starch and cartilage tissue engineering. The variation throughout the 
years of the association of these two topics is presented. The data represents a search for the 
publications on all available years of search *until 12th July 2008 with a minimum threshold of 1. 
 

Figure I.9. Graphical representation of the search results performed with Web of Science® web 
platform using the total record count for each search presented in figures 1-8. 
 

 
SECTION 2 
 
CHAPTER II 

Materials and Methods 
 

Figure II.1. Schematic representation of the articular cartilage defect created in the rabbits 

femoral condyles. 

 
 
SECTION 3 
 
CHAPTER III 

Assessment of the Suitability of Chitosan/PolyButylene Succinate Scaffolds Seeded with 
Mouse Mesenchymal Progenitor Cells for a Cartilage Tissue Engineering Approach  
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Most cells exhibited a round-shaped phenotype and were widely distributed throughout the 
scaffold (Fig. 7C). Structures previously described as collagen fibrils are indicated by white 
arrows. 
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Figure IV.3. Light microscopy images of histology sections obtained from C-PBS constructs 
collected after 6 weeks of culture stained with hematoxylin-eosin (A-C). Figures D-F show images 
obtained from PGA constructs after similar incubation conditions. Scale bar: 200 µm (A,D); 100 
µm (B,E); 20 µm (C,F). 
 

Figure IV.4. Light microscopy images of histology sections obtained from C-PBS constructs 
collected after 6 weeks of culture stained with toluidine blue (A-C). Figures D-F show sections 
obtained from PGA constructs after similar incubation conditions. Scale bar: 200 µm (A,D); 100 
µm (B,E); 20 µm (C,F). 
 

Figure IV.5. Light microscopy images of histology sections obtained from C-PBS constructs 
collected after 6 weeks of culture stained with alcian blue (A-C). Figures D-F show sections 
obtained from PGA constructs after similar incubation conditions. Scale bar: 200 µm (A,D); 100 
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Figure IV.6. Graphical representation of the results obtained from DMB assay for proteoglycans 
content quantification of C-PBS (top) and PGA (bottom) tissue engineered constructs after 2, 4, 
and 6 weeks of culture. 
 

Figure IV.7. Light microscopy images showing immunolocalisation of collagens type I and type II 
in histology sections of C-PBS (A-C) and PGA constructs (D-F) after 6 weeks of culture. Images 
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Figure V.1. Microcomputerized tomography image of a SPCL 30/70% (wt) fibre scaffold. 
 

Figure V.2. Scanning electron microscopy images of SPCL scaffolds seeded with bovine articular 
chondrocytes and cultured for 14 days (2.1.), 28 days (2.2.), and 42 days (2.3.). B and C 
represent higher magnifications of A, showing in detail the cells morphology and arrangement.  
 

Figure V.3. Optical microscopy images of histology sections obtained from SPCL scaffolds 
seeded with bovine articular chondrocytes and stained with hematoxylin-eosin. The images 
shown correspond to samples collected after 28 days (3.1.A), and 42 days (3.1.B-D) of culture. 
Figures 3.2.A-C show optical microscopy images of histology sections obtained from PGA 
scaffolds seeded with bovine articular chondrocytes and stained in the same way (42 days). 
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Figure V.4. Optical microscopy images of histology sections obtained from SPCL scaffolds 
seeded with bovine articular chondrocytes stained with toluidine blue. The images shown 
correspond to 28 days (4.1.A), and 42 days (4.1.B-D) of culturing. Optical microscopy images of 
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Figure V.5. Optical microscopy images presenting the results obtained from the 
immunolocalisation of collagen type I and type II in histology sections of SPCL scaffolds seeded 
with bovine articular chondrocytes. Images present results at 42 days for collagen type I, collagen 
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Figure V.6. Results obtained from DMB assay for GAGs quantification results for SPCL and PGA 
scaffolds at different time periods. 
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Figure VI.4. Dynamic mechanical analysis of gellan gum hydrogels showing the storage (E’) and 
loss (E’’) modulus upon compression solicitation using different frequencies. 
 

Figure VI.5. Rheological measurements of gellan gum solutions. The upper x axis shows the 
relation between temperature and viscosity, while the bottom x axis shows the relation between 
time-length and viscosity. 
 

Figure VI.6. MTS cytotoxicity test performed to evaluate the possible cytotoxic effects of the 
leachables released by the gellan gum hydrogels. Results show the gels are non-cytotoxic. 
 

Figure VI.7. Optical microscopy images of human nasal chondrocytes encapsulated in gellan 
gum (A) and agarose (B) at 2 weeks of culture. The formation of human chondrocytes clusters 
was observed in gellan gum hydrogels (A, arrows). 
 

Figure VI.8. Calcein AM viability test of human nasal chondrocytes encapsulated in gellan gum 
(A) and agarose (B) hydrogels at 2 weeks of culture. 
 

Figure VI.9. Hematoxylin-eosin staining of histological sections of gellan gum (A) and agarose 
(B) hydrogels at 2 weeks of culture. Human nasal chondrocytes present a typical round-shaped 
morphology and active cell division can be observed in both supports (arrows). 
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Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: In vitro 
Studies and Preliminary In vivo Evaluation 
 
Figure VII.1. Rheological measurements of gellan gum solutions showing the relation 
temperature-viscosity and time-viscosity. The sol-gel transition is noticeable by the change in 
viscosity present in the graph around 39-38ºC with an extent of time for gelation of approximately 
11 seconds. 
 

Figure VII.2. Mechanical properties evaluation of gellan gum discs using dynamic mechanical 
analysis. The tests were performed in intervals of 0.1-15 Hz in hydrated samples. 
 

Figure VII.3. Calcein AM/DAPI viability stain of human articular chondrocytes encapsulated in 
gellan gum hydrogels at 14 days of culture.  
 

Figure VII.4. Histological analysis of sections of gellan gum with human articular chondrocytes 
after culturing. Hematoxylin-eosin (A,B – after 2 and 56 days of culture, respectively) was used 
for general cell morphology and distribution while alcian blue (C), and safranin-O (D) were 
performed for proteoglycans (glycosaminoglycans) detection. 
 

Figure VII.5. Graphical representation of the real-time semiquantitative PCR analysis for collagen 
type I, collagen type II, aggrecan and Sox9 based on the mRNA produced by the encapsulated 
human articular chondrocytes after 14 days and 56 days of culture.  
 

Figure VII.6. Histological analysis showing two different magnifications of sections of gellan gum 
after 7, 14 and 21 days of implantation. The images evidenced a good integration with the 
surrounding tissue and the progressive reduction of the fibrotic capsule that was almost unnoticed 
after 21 days. 
 

Figure VII.7. Storage and loss modulus at 1 Hz obtained from compression dynamic mechanical 
tests of gellan gum discs after subcutaneous implantation in Balb/c mice. Statistical analysis 
revealed no difference through the various time points (p>0.05) and were performed using a two-
sample t-test assuming unequal variances for n=5, α=0.05.  
 

Figure VII.8. Weight measurements of gellan gum discs after subcutaneous implantation in 
Balb/c mice. Statistical analysis revealed a significant difference in gellan discs implanted for 21 
days when compared to no implant and 14 days of implantation. No statistical analysis through 
the various time points (p>0.05) was performed using a two-sample t-test assuming unequal 
variances for n=5, α=0.05. 
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Figure VIII.1. Hematoxylin-eosin (A) and alcian blue (B) staining of histological sections of the 
explanted gellan gum hydrogels with human articular chondrocytes after 4 weeks of culture. The 
cells divided in clusters of 2-3 cells and presented the typical round shape morphology of native 
articular chondrocytes. A metachromatic staining, mostly in the pericellular regions, can be 
observed indicating the deposition of extracellular matrix proteoglycans (glycosaminoglycans) (B). 
 

Figure VIII.2. Graphical representation of the results obtained from DMB assay for 
glycosaminoglycans (GAGs) quantification of the explants after 1 and 4 weeks of implantation. A 
statistically significant increase was observed from 1 to 4 weeks (p<0.05). 
 

Figure VIII.3. Real-time PCR analyses results for collagen type I, collagen type II, aggrecan, and collagen 
type X during the 4 weeks of implantation. Collagen type II and aggrecan presented statistically significant 
increases from 1 to 4 weeks, indicating the hyaline-like nature of the newly formed tissue (p<0.05).   
 

Figure VIII.4. Imunolocalisation of collagen type I and collagen type II in histology sections of the 
explanted gellan gum hydrogels-human articular chondrocytes systems after 4 weeks. Images 
show collagen type I, collagen type II, and normal horse serum (negative control) (left to right, 
respectively). 
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CHAPTER IX 

Rabbit Articular Cartilage Full-Thickness Size Defects Treated With Novel Gellan Gum 
Injectable Hydrogels and Autologous Adipose Stem Cells  
 
Figure IX.1. Schematic representation of the articular cartilage defect created in the rabbits 
femoral condyles. 
 

Figure IX.2. Hematoxylin-eosin staining of histological sections of the explanted gellan gum 
hydrogels with the different cell types after 8 weeks of culture.  
 

Figure IX.3. Alcian blue staining of histological sections of the explanted gellan gum hydrogels 
with the different cell types after 8 weeks of culture. 
 

Figure IX.4. Graphical analysis of the results obtained with the Pineda scoring system on the 
explanted gellan gum-cell systems after 1, 4, and 8 weeks of implantation.   
 

Figure IX.5. Graphical representation of the real-time semi-quantitative PCR analysis results for 
Sox9, collagen type I, collagen type II, and aggrecan performed on the explants collected after 1, 
4, and 8 weeks of implantation.   
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INTRODUCTION TO THE THESIS FORMAT 

 

 

This thesis is divided into four sections containing ten different chapters, with seven of them being 

experimental research. According to the 3B’s Research Group internal policy, the thesis format is 

based on published or submitted papers, including the introduction section that consists of a 

review paper. The contents of each chapter are summarized below. 

 

 

SECTION I (Chapter I) 

 

Chapter I presents a comprehensive overview on the polysaccharide based materials used in 

cartilage tissue engineering applications. It includes an introduction to the cartilage tissue 

organization and associated diseases, followed by a brief description of the cartilage tissue 

engineering field. An introduction is provided on the types of polysaccharides used in cartilage 

tissue engineering and a detailed description on the most relevant is provided. For each, a 

description of the materials properties and characteristics is provided, along with the applications 

with cells in in vitro and in vivo scenarios within the cartilage tissue engineering field.  

 

 

SECTION II (Chapter II) 

 

Chapter II presents the materials and experimental methods used within the scope of this thesis. 

Although each part of the work is accompanied by its specific materials and methods section, this 

chapter intends to condensate and compile the relevant information on this matter.  

 

 

SECTION III (Chapters III to IX) 

These chapters describe the experimental work performed within the scope of this thesis. 
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Chapter III describes the testing of scaffolds of chitosan and polybutylene succinate processed 

by compression moulding with salt leaching that were used to support the growth and 

chondrogenic differentiation of cells from a mouse bone marrow derived mesenchymal progenitor 

cell line.  

 

Chapter IV explains the work using the chitosan and polybutylene succinate blended material but 

processed in the form of a fibre scaffold that was at this time used to culture primary culture 

chondrocytes from bovine origin.  

 

Chapter V describes the experiments conducted with a different natural fibre based scaffold 

consisting of a blend of starch and polycaprolactone. This 3D support was also investigated 

regarding its ability to support growth and extracellular matrix formation by bovine articular 

chondrocytes seeded in vitro.  

 

Chapter VI presents the main material studied within the work described in this thesis. Gellan 

gum was initially tested in this part as a cell encapsulating agent, being characterised in terms of 

materials properties and combined with human nasal chondrocytes in preliminary in vitro studies.  

 

Chapter VII describes the testing of gellan gum to be used as injectable systems for delivering 

and maintaining human chondrocytes by in situ gelation, as well as for supporting cell viability 

and production of extracellular matrix. The in vivo performance of the systems upon 

subcutaneous implantation in mice is also presented.   

 

Chapter IX presents the final experimental study performed within the work of this thesis. This 

last study analysed the therapeutic effect of gellan gum hydrogels when combined with adipose 

tissue derived progenitor cells and injected in rabbit full-thickness articular cartilage defects in an 

autologous approach. A comparative analysis was conducted with articular chondrocytes, gellan 

gum alone, and empty defects.  

 

 

SECTION IV (Chapter X) 

 

Chapter X contains the general conclusions of the works carried out under the scope of this 

thesis. Some specific remarks and future prospects are also provided. 
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As a final note, it should be mentioned that the present thesis was also developed under the 

scope of the European Project HIPPOCRATES (NMP3-CT-2003-505758) and the European 

Network of Excellence EXPERTISSUES (NMP3-CT-2004-500283). 
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CHAPTER I. 
 
Polysaccharide Based Materials for Cartilage Tissue Engineering Applications* 
 
 
 
ABSTRACT 
 
Tissue engineering was proposed approximately 15 years ago as an alternative and innovative 

way to address tissue regeneration problems. During the development of this field, researchers 

have proposed a variety of ways of looking into the regeneration and engineering of tissues, 

using different types of materials coupled with a wide range of cells and bioactive agents. This 

trilogy is commonly considered the basis of a tissue engineering strategy, meaning by this the 

use of a support material, cells, and bioactive agents. Different researchers have been adding to 

these basic approaches other parameters able to improve the functionality of the tissue 

engineered construct, such as specific mechanical environments, conditioned gaseous 

atmospheres, among others. Nowadays, tissue engineering principles have been applied with 

different degrees of success to almost every tissue lacking efficient regeneration ability and the 

knowledge and intellectual property produced since then has experienced an immense growth. 

Materials for regenerating tissues, namely cartilage, have also been continuously increasing and 

most of the theoretical requirements for a tissue engineering support have been addressed by a 

single or a mixture of materials.  

Due to their intrinsic features, polysaccharides are interesting for cartilage tissue engineering 

approaches and as a result their exploitation for this purpose has been increasing. The present 

paper intends to provide an overview of some of the most relevant polysaccharides used in 

cartilage tissue engineering research based on their proven claimed potential. Insights on basic 

aspects of their nature and structure, as well as their research status will be given.  In addition, 

the evolution of the use of the selected materials in the cartilage tissue engineering field until the 

present time will be discussed. The gathered information is expected to provide the reader with a 

wider knowledge on polysaccharide based matrices with potential use in cartilage regeneration, 

as well as to increase awareness of these materials and maybe contribute for further applications 

of such systems.   

_____________________________________________________________________________ 
 
* This chapter is based on the following publication: 
JT Oliveira, RL Reis. Polysaccharide Based Materials for Cartilage Tissue Engineering 
Applications (submitted).  
_____________________________________________________________________________ 
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1. INTRODUCTION 
 
The progressive increase of life expectancy within the last century gave rise to new health 

problems, within which musculoskeletal conditions represent a considerable share. Examples of 

this are osteoarthritis, and rheumatoid arthritis that directly affect cartilage posing serious barriers 

to normal life quality and wellbeing.1-3 Still within the musculoskeletal area, additional trauma 

injuries to the chondral and osteochondral regions turned the field into an increasing subject of 

attention among clinicians and scientists worldwide. Current therapies applied to treat cartilage 

related pathologies have relied mostly on the use of pharmaceutics, auto/allotransplant and 

prosthetic procedures.4-7 Although beneficial in some cases, these solutions present 

disadvantages and are unable to assure a functional improvement and long-lasting recovery of 

the affected area to the patients, which demands for a constant search of new therapeutic 

solutions.8,9 The concept of Tissue Engineering was proposed as a novel therapy able to provide 

the patients with renewed health and quality of life.10 The common tissue engineering strategy 

makes use of a biomaterial support structure combined with a relevant cell population in specific 

culturing conditions in order to regenerate a functional tissue able to replace the affected one in 

vivo. Divergent opinions exist on various topics of the tissue engineering process such as 

whether the construct should be used in the early beginning of its development, or only after a 

certain degree of tissue formation is obtained. Nonetheless, it is consensual that several factors 

like the integration into the surrounding surface, biomechanical properties, and biocompatibility 

are key factors in the clinical success of the repaired tissue11-13 For this, the support material, the 

cells, and culturing components should possess several features that assure their future clinical 

potential. The material should serve as a mechanical support for cell growth and allow cells 

differentiation into specific cell types. It should also be non cytotoxic in functional conditions, 

provide a non harsh environment to cells and adjacent tissues, and exhibit degradation profiles 

that can cope with the tissue formation extent. The cells should be functionally active, non 

immunogenic, easy to achieve and highly responsive to differentiation environmental cues. 

Tissue engineering approaches have been applied to cartilage using various materials and 

cells14-17 in combination with culturing parameters (e.g. mechanical, chemical)18,19 with the final 

goal of obtaining a cartilage tissue engineered construct with high performance in vivo. 

Polysaccharide based materials are among the class of natural materials and their potential role 

in future clinical applications of tissue engineered medical products has been increasing. 

Polysaccharides are widely distributed in nature being mainly regarded as sources of energy.20,21 

Their chemical behaviour and interesting structural similarities with biological molecules has grant 
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them great potential for future applications in the biomedical field, specially in cartilage 

regeneration.  

  

 

2. CARTILAGE TISSUE ORGANIZATION  
 
The human species is included in the vertebrates’ branch of the phylogenetic tree, since it 

possesses a backbone or spinal column along with an internal skeletal structure that supports the 

organs and allows for their proper functioning. This evolutionary derivation that apparently started 

530 million years ago provided a different way of exploring the Earth’s resources, giving rise to 

the Amphibia, Reptilia, Aves and latest Mammalia classes.22 The progressive development of a 

support structure – the skeleton – allowed for a new order of body organization to be settled and 

so bone and cartilage became an integral part of the skeleton providing mobility protection of vital 

organs, and housing of the bone marrow, reasons important enough to consider it vital for 

development and good quality of life.23 Cartilage is a supporting connective tissue that comprises 

most of the temporary embryonic skeleton and is made of proteins, polyssacharides and a 

specific cell type, the chondrocyte. It consists of a matrix that is able to withstand physical 

deformation and facilitate tissue functionality with many spaces often termed lacunae which are 

occupied by the chondrocytes. The chondrocytes have the prime function of synthesizing and 

maintaining this extracellular matrix (ECM), and also of giving rise to cells mostly until adulthood, 

time after which these rates decrease.12,24 Cartilage has an important role in embryonic 

development where it provides a model within which most bones develop. Its presence is 

decreased in adulthood persisting in a different number of areas, such as the joints, nose, and 

trachea, for example.12 Three types of cartilage have been distinguished based on their 

histological and biomechanical properties: hyaline, elastic, and fibrous cartilage. Elastic and 

fibrous cartilages are less widely distributed and will not be further considered in this article. The 

most prevalent type is hyaline cartilage which is found in the skeleton of all vertebrates and 

possesses characteristic physical properties that are closely linked to the composition and 

organization of its extracellular matrix.12,25,26 Articular cartilage, the most familiar hyaline cartilage, 

forms the smooth gliding surface of joints, such as knee and hip, as well as the nucleus pulposus 

of the invertebral discs, allowing these parts to articulate correctly and efficiently. The primary 

function of articular cartilage is physical, with water, ions, and aggrecan molecules within the 

collagenous meshwork playing key roles in the tissue load-bearing properties. The collagenous 

meshwork rich in type II collagen molecules gives the tissue tensile strength and hinders the 
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expansion of the aggrecan molecules that provide compressive stiffness. The highly sulfated 

aggrecan molecules interact noncovalently with a single strand of hyaluronan and link protein 

molecules to form aggregates of large size that become entrapped within the collagenous 

meshwork. Aggrecan molecules strongly oppose to fluid loss and water dispersion, thereby 

conferring cartilage a high compliance upon loading with the tissue rapidly recovering its elasticity 

when the load is removed.27,28 Unlike most hyaline cartilage, the articular does not possess a 

superficial layer, called perichondrium that is a source for cell renewal. The extracellular matrix is 

differently distributed and organised in the cell surroundings and 3 zones can be identified: 

pericellular, territorial and interterritorial zones, going from near to further away from the cells, 

respectively. The pericellular matrix, has very little collagen but abundant proteoglycans; the 

territorial matrix, exhibits a high concentration of sulphated proteoglycans and a web of thin 

collagen fibrils that protect the cells; the interterritorial matrix constitutes the largest portion of 

articular cartilage.29 Also when going from the surface to the subchondral bone, stratification 

occurs and the superficial, middle, deep, and calcified cartilage zones can be observed with 

chondrocytes from each part differing in size, shape and metabolic activity. The superficial zone 

is the thinnest, and forms the gliding surface of the joint being composed of collagen fibrils 

aligned parallel to the joint surface, with spindle shaped inactive chondrocytes. The middle zone 

is thicker and exhibits more spherical cells with larger collagen fibrils that are not oriented in a 

parallel fashion. In the deep zone, the cells are spheroidal, arranged in a columnar orientation 

and the collagen fibres are also oriented in a parallel fashion, but vertical to the joint surface. In 

the calcified cartilage part, collagen fibrils insert into the calcified cartilage, providing both a 

mechanical transition from the cartilage to bone, as well as fixation between these two 

tissues.27,29 Cartilage is not a very dynamic tissue, exhibiting a low metabolic rate. It is 

characterized by low turnover and subsequent long half-lives of the constituent structural 

proteins. It is also avascular and therefore chondrocyte viability is dependent upon diffusion of 

nutrients, wastes, ions, and gases through the intercellular substance from adjacent capillaries. 

29-31 

 

 

3. CARTILAGE ASSOCIATED DISEASES 
 
Cartilage intrinsic features make the occurrence of a single cartilage lesion to have significant 

negative effects on normal mobility and movement. In fact, trauma and disease of bone and 

joints, frequently damaging both the articular cartilage and the subchondral bone, result in severe 
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pain and disability for millions of people worldwide posing a major health problem.32,33 In 2003, 

the bulletin of the World Health Organization informed that self-reported persistent pain related to 

the musculoskeletal system is thought to affect up to 20% of adults.1 In surveys carried out in 

Canada, the USA, and Western Europe, the prevalence of physical disabilities caused by a 

musculoskeletal condition repeatedly has been estimated at 4–5% of the adult population.34 The 

major degenerative pathology associated with cartilage, mainly with articular cartilage, is arthritis 

that can be either inflammatory (rheumatoid arthritis) or non-inflammatory (osteoarthritis).14,32,35,36 

In both pathologies the erosion of the cartilage matrix through various actions on different 

extracellular matrix (ECM) components is present.24 A joint replacement prosthesis is a widely 

accepted solution for these cases, but its limited lifespan makes critical the reconstruction of 

damaged cartilage to restore joint function.11 Other approaches have been employed with some 

success, although their outcomes are dependent on several factors that can limit their widen 

application.37,38 One example is the autologous chondrocyte implantation that has shown 

interesting results,38 but limitations still exist, opening therefore the way for innovative 

technologies and alternative approaches to these conditions. 

 

 

4. CARTILAGE TISSUE ENGINEERING 
 
A good alternative to conventional treatments for damaged cartilage seems to be the combination 

of cells (such as chondrocytes or chondrogenic induced cells) with a biocompatible matrix that 

can be supplemented with bioactive agents of interest in order to promote the formation of a 

functional tissue engineered construct.39 The field of Tissue Engineering has therefore emerged 

as a promising approach to treat cartilage loss or malfunction without the limitations of current 

therapies.40-42 It can for example provide a valid alternative to organ and tissue transplantation, 

both of which are affected from a limitation of supply. Also, cells transplantation cultured in a 

biodegradable matrix that provides a temporary scaffolding to guide new tissue growth and 

organization, along with specific signals intended to retain tissue-specific gene expression offers 

the possibility of creating a completely natural tissue that will replace the damaged one. These 

support structures should fulfil some requirements in order to comply with a potential clinical 

application. They should be biocompatible, be able to aid in cell development and differentiation, 

allow for efficient nutrition and gas exchange, and have a degradation rate able to cope with the 

formation of the new tissue in order to maintain the mechanical stability of the system. The size 

and shape of the tissue to be regenerated, the nature and type of the cartilage defect, and the 
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conditions of the host should also be considered in the material selection.42-45 Different types of 

natural and synthetic materials have been used to fabricate supports for cartilage tissue 

engineering.16,46-53 Examples of the first type are fibrin,48,54 collagen,16 alginate,42,49 chitosan,50,55 

and of the latter polyglycolic acid,51,56 polylactic acid,52 and polyethylene glycol.53 Natural and 

synthetic materials present both advantages and disadvantages indeed. Natural materials may 

potentially interact with cell-surface receptors and most of them are biocompatible in various 

situations. Possible disadvantages may relate to difficult processing, concerns of disease 

transfer, and varied degradation rate from host to host. Synthetic materials can be manufactured 

reproducibly on a large scale, and exhibit tailored mechanical properties and degradation times. 

However, most of them lack cell-recognition signals, which is of extreme importance for 

integration with the surrounding tissues.11,40 Several processing technologies can be applied with 

the expectation of improved performance of the systems in their final application. Depending on 

their role, they can be processed in ways that range from melt-based technologies, such as fibres 

extrusion coupled with fibre bonding to generate 3D scaffolds, to solvent based technologies.46,57-

59 These are expected to create a particular advantage, being it a better fitting ability, or a higher 

porosity for cells to penetrate and generate a functional engineered tissue. The processing of a 

material in a hydrogel is also quite appealing and interesting in cartilage tissue engineering 

approaches.60-63  

An hydrogel may be defined as a network of polymer chains with great water absorbance ability. 

This implies that once put in an aqueous medium it is able absorb water and swell retaining the 

volume of water absorbed entrapped in the polymeric network.64 Hydrogels may somehow mimic 

the hydrated environment of the cartilaginous tissue while also complying with mechanical 

properties suitable for the progressive generation of an adequate tissue engineered construct. 

They can be engineered for selective permeability, and exhibit dynamic molecular interactions by 

altering chemical signals, such as pH and ionic factors, and physical stimuli, such as 

temperature.65 The associated biocompatibility, often a result of their hydrophilicity, is also a 

commonly referred advantage for their use in biomedical and pharmaceutical applications.60,64,66 

To this adds the good transport of nutrient to cells and products from cells that is normally 

assured, as well as the ability to be used as minimally invasive injectable systems. Commonly 

referred disadvantages are associated with difficult handling and inadequate mechanical 

properties.67  

It is widely accepted by most authors that cells along with the support structure are key elements 

in the success of a tissue engineering product. Although some strategies involve the use of 

biomaterials, cells, and bioactive agents alone, most of the works reported make use of these 
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three agents in the pursuit of the best tissue substitute. In cartilage tissue engineering, most of 

the published studies refer the use of primary culture chondrocytes and bone marrow or adipose 

tissue derived cells. Primary culture chondrocytes can be collected from a relevant cartilage area, 

isolated by enzymatic digestion, and expanded in vitro for further use. Primary culture 

chondrocytes, and specially those in early passages, are considered good candidate cells to be 

applied in cartilage regeneration approaches since they maintain the phenotypic profile of 

differentiated chondrocytes.12,68 Nonetheless, obtaining primary culture chondrocytes is frequently 

an added problem to the already existing pathological condition. When in fact a healthy cartilage 

part is located, the biopsy from the joint to obtain differentiated chondrocytes poses an additional 

injury to the cartilage surface, with possible harmful consequences to the surrounding articular 

cartilage. Such interventions frequently leave another regenerative problem at the donor site even 

when it is not located in a load bearing area.69 Moreover, when chondrocytes are cultured on a 

tissue culture treated surface, they de-differentiate.12,70 The process of de-differentiation involves 

a change in morphology and production of cartilage specific molecules. Cells loose their round 

shape and adopt a more fibroblastic like morphology, while decreasing also the production of 

collagen type II and aggrecan and increasing the production of type I collagen. When returned to 

a 3D environment, de-differentiated cells re-acquire the chondrocyte phenotype, re-expressing 

collagen type II and chondroitin sulphate proteoglycans.12,71 This ability is however conditioned by 

the expansion and in vitro passaging of chondrocytes, since that they exhibit a finite capacity to 

form stable cartilage afterwards.72 Due to these constraints, wide attention has also been given to 

alternative cells sources, such as stem cells, which can create functional cartilaginous tissues 

without having the limitations of primary culture chondrocytes isolation and culturing 

procedures.73 A stem cell is a cell from the embryo, fetus or adult that, under certain conditions, 

can reproduce for long periods, and give rise to specialized cells of body tissues and organs.69 

The essential characteristics of all stem cells are prolonged self-renewal and the long term 

potential to form one or more differentiated cell types.74-76 Adult stem cells from bone marrow and 

adipose tissue are frequently considered top candidates for tissue engineering and their 

application is widely described in the literature in combination with several supports and bioactive 

agents.77,78 Adult mesenchymal stem cells (MSCs) are present in the bone marrow in which they 

reside as supportive cells for haematopoiesis and appear to function as a reservoir for various 

mesenchymal tissues. Bone marrow MSCs exist in a quantity of about 1 out of every 105 cells, 

and are able to differentiate into multiple mesenchymal lineages under defined culture 

conditions.79 They can be distinguished through the screening of several surface markers and 

can be used as chondrocyte precursors in the development of differentiated chondrocytes when 
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supplied with the correct differentiation signals from the surrounding matrix and soluble 

mediators.80-84 Adult mesenchymal stem cells can also be isolated from adipose tissue which is 

abundant and easily accessible after surgical procedures such as liposuction.79,85 Adipose tissue 

MSCs acquire a fibroblast like morphology in vitro expansion, similar to the one observed for 

bone marrow MSCs and also express a serious of cell-specific proteins and CD markers that 

enable their isolation.79,86 When comparing both stem cell sources with primary culture 

chondrocytes, some advantages may be clearly identified. A marrow aspirate and liposuction are 

easier to obtain than a cartilage biopsy. The collection procedures can be performed in parallel to 

another surgery, as in the case of liposuction. In bone marrow isolation, although the surgical 

procedure is more invasive, painful, and not frequently a parallel result of another intervention, 

the collection may also be achieved safely and easily under local anaesthesia. Moreover, these 

types of stem cells are quickly amplified in monolayers and de-differentiation is not an issue. Also, 

while chondrocytes proliferate slowly and tend to de-differentiate, stem cells mitotic potential 

remains high enabling an increased cell yield for cellular interventions that have such 

requisites.69,87   

 

 

5. POLYSACCHARIDES IN CARTILAGE TISSUE ENGINEERING 
 
5.1. INTRODUCTION 
 
Polysaccharides are among the various types of natural biomaterials used in tissue engineering 

applications. Examples of these are alginate,42,49  chitosan,50,55 chondroitin sulphate,88,89 

hyaluronic acid,90,91 starch,46,92 and cellulose.93,94  

Polysaccharides are widely distributed in nature in various forms and their typical application is 

normally associated with industrial processes in food, and cosmetic areas. Starch is widely used 

in the human diet, and alginate and xanthan gum are used as a cosmetic for skin treatments.95-98 

Polysaccharides can be described as polymers built of monosaccharides joined together by 

glycosidic bonds. They are frequently large and often branched macromolecules, being 

commonly amorphous, and insoluble in water.99,100 Polysaccharides are usually regarded as 

sources of energy, starch being an example, but their molecular and physicochemical properties 

variety has recruited the interest of the scientific community for uses on different research areas. 

In fact, most polysaccharides can form hydrogels due to their physicochemical behaviour, while 

also presenting interesting structural similarities with biological molecules that are expected to 

place them in the frontline of future biomedical technology. In the regenerative medicine and 
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tissue engineering field, polysaccharides potential has been exploited for a wide range of tissues 

besides cartilage. Biodegradable porous scaffolds made of starch and polycaprolactone were 

able to maintain a normal expression of endothelial cells specific genes and proteins, indicating a 

potential application of these scaffolds in vascularization processes associated with bone tissue 

engineering.101 For cardiac muscle tissue regeneration, cardiomyocytes were seeded within 

porous alginate scaffolds to achieve 3D functional cardiac constructs.102 As a final example, 

alginate sponges were investigated for spinal cord tissue engineering applications, serving as 

adequate scaffolds for the outgrowth of regenerating axons and elongation of astrocytic 

processes.103 

In the following parts of the manuscript, some insights on basic aspects of nature and structure of 

polysaccharides commonly used in cartilage tissue engineering will be given. Polysaccharides 

are known for their hydrogel forming ability and most are applied in such way, as in the case of 

minimally invasive injectable systems. Moreover, ongoing applications with relevant clinical 

potential in the cartilage tissue engineering area will be described. The gathered information is 

expected to provide a wider knowledge on polysaccharide based matrices used in cartilage 

regeneration and increase the interest of applying these materials to other fields. 

 

5.2. AGAROSE  
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Figure I.1. Graphical representation of the search results performed with Web of Science® web 

platform using the keywords agarose and cartilage tissue engineering. The variation throughout 

the years of the association of these two topics is presented. The data represents a search for the 

publications on all available years of search *until 12th July 2008 with a minimum threshold of 1.  

 

 

Agarose is a linear polymer extracted from marine red algae constituted by (1→3)-β-D-

galactopyranose-(1→4)-3,6-anhydro-α-L-galactopyranose units, being one of the two 

components that form agar.104 Agarose forms a gel upon cooling of an agarose homogeneous 

solution below the coil-helix transition temperature when a 3D network of agarose fibers formed 

by helices develop.105 This mechanism was previously suggested by different authors,106,107 

which suggested that the occurrence of double helices during cooling were responsible for the 

aggregation that produces the 3D hydrogel network due to hydrogen bonding and hydrophobic 

interactions. Nevertheless, other works have suggested that single chain formation would enable 

gel formation,108,109 or the assembly of ternary complexes consisting of agarose-water-co solvent 

would lead to the same structure110 The melting of agarose gels can occur at higher 

temperatures, normally around 85ºC.105 Agarose can be processed without the use of harsh 

reagents in a relatively clean and simple process, and is non-toxic.111 It is a neutral 
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polysaccharide which may bring some advantages in terms of non prejudicial interference with 

other materials or living tissues with which it may have contact.104 Its gelling kinetics allow 

homogeneous distribution patterns in cell/drug encapsulation technologies112 Some drawbacks 

include its lack of shapable stability, and poorly investigated biodegradability. Some concerns 

also relate with infectious security and lack of biocompatibility112 Common uses of agarose are in 

biochemistry and molecular biology techniques, such as gel electrophoresis or chemotaxis 

studies.113 The application of this material in cartilage regeneration is widely present in the 

literature. For instances, in vitro studies by Benya et al114 showed that rabbit articular 

chondrocytes cultured in agarose gels were able to re-express the differentiated phenotype lost 

due to de-differentiation in monolayer culture. Agarose gels have also been used in vivo with 

allograft chondrocytes for repairing articular cartilage defects in rabbit knees. Control implants 

consisting of either empty defects or agarose with no cells produced fibrous tissue, insufficient 

healing and incomplete filling of the cartilage defects, while allograft chondrocytes in agarose 

formed superior repair cartilage in terms of type II collagen and proteoglycan content.115  Agarose 

initial application in cartilage tissue engineering reports to 1994116 and its use has slowly 

increased until 2002, time after which this tendency was much more pronounced, stabilising after 

2004 until the present time (Figure 1). 

 

5.3. ALGINATE  
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Figure I.2. Graphical representation of the search results performed with Web of Science® web 

platform using the keywords alginate and cartilage tissue engineering. The variation throughout 

the years of the association of these two topics is presented. The data represents a search for the 

publications on all available years of search *until 12th July 2008 with a minimum threshold of 1. 

 

 

Alginate is a natural anionic polysaccharide found in seaweed, which is composed of (1-4)-linked 

β-D-mannuronic acid and α-L-guluronic acid units. The alginate molecule is constituted by 

regions of sequential mannuronic acid units, guluronic acid units, or by a combination of both. 

The nature of the alginate dictates the amount and distribution profile of these units.117,118 This 

material can forms gels in the presence of a small quantity of divalent cations (like Ca2+ or Ba2+) 

that interact with the carboxylic groups present in the alginate backbone. These groups are 

present in the guluronic acid residues that when in contact with those ions form an “egg-box”-

shaped structure giving rise to the hydrogel.118 The formed hydrogel can be easily disrupted using 

a chelating agent (e.g. sodium citrate) which captures the cations that maintain the structural 

integrity of the network.119 Alginate has a well characterized structure which allows for a range of 

comparative studies to be performed, and allows chemical modification through the carboxylic 

groups in its guluronic acid residues.117 This last feature enabled that its lack of cell recognition 
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signals be overcome by chemically binding RGD peptides, which are extremely important 

regarding cell-material interactions.117 On the other hand, associated disadvantages to the use of 

this material include the manufacturing process for the extraction of this polysaccharide from 

contaminated seaweed which leads to the presence of mitogenic, cytotoxic, and apoptosis 

inducing impurities in the final processed material. Even though such molecules can be removed 

by further purification steps, it is a time and money consuming process.120 Moreover, variations in 

the mannuronic and guluronic acid composition in each individual sample confer variability to the 

processed samples.121,122 This is an important issue since it has been shown that alginates with a 

high guluronic acid content develop a great inflammatory response.123 Other drawbacks are 

common to other polysaccharide hydrogels and are related with inadequate mechanical 

properties and uncontrollable degradation profile.118 General applications of alginate include its 

use as a mold-making material in dentistry, prosthetics, textiles, and in the food industry, for 

thickening soups and jellies.124 In the tissue engineering field, the use of alginate for cartilage 

regeneration is well known. It has been used in vitro to encapsulate human articular chondrocytes 

and cultured in  the presence of recombinant human BMP-2, which revealed to have positive 

effects on collagen type II expression.125 In vivo tests have been conducted using alginate as a 

support for different relevant cell types that include primary culture chondrocytes and stem cells 

implanted in various animal models.126-128 Bovine chondrocytes were mixed with a sodium 

alginate solution to create disks that were afterwards subcutaneously implanted in nude mice. 

Cartilage formation was observed and the histoarchitecture of the new cartilage resembled that of 

native cartilage.126 Erickson et al127 evaluated the chondrogenic potential of human adipose 

tissue-derived stromal cells when cultured in alginate gels and implanted subcutaneously in nude 

mice. Immunohistochemical analyses showed significant production of cartilage matrix molecules 

suggesting the potential of these systems in cartilage tissue engineering. Using the rabbit model, 

full-thickness defects were created and filled with alginate beads seeded with rabbit stromal cells. 

Histologic analysis showed viable, phenotypically chondrogenic cells in the defects embedded in 

a positively stained matrix for proteoglycans.128 The application of alginate in cartilage tissue 

engineering dates back to 1997129 and has since then revealed a constant increasing tendency 

until the present time (Figure 2). 

 

 

5.4. CELLULOSE 
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Figure I.3. Graphical representation of the search results performed with Web of Science® web 

platform using the keywords cellulose and cartilage tissue engineering. The variation throughout 

the years of the association of these two topics is presented. The data represents a search for the 

publications on all available years of search *until 12th July 2008 with a minimum threshold of 1. 

 

 

Cellulose is the most widespread polymeric material in nature. The most common is a fibrous, 

tough, water-insoluble material that can be found in cell walls of plants, mainly in stalks, stems, or 

trunks. Cellulose is composed of β-D-glucan units linked by (1→4) glycosidic bonds that are 

formed by a simple polymerization of glucose residues from a substrate such as UDP-

glucose.130,131 The stereochemistry conferred by the glycosidic linkage creates a linear extended 

glucan chain that enables a precise and ordered interaction between different chains. This 

material exists as a combination of various chains strongly linked by hydrogen bonding, named 

microfibrils, instead of a single chain, which contributes to its rigid structure.131 The hydroxyl 

groups that hold the cellulose chains together account for the high degree of crystallinity, low 

solubility, and poor degradation in vivo. Cellulose possesses high strength in the wet state, and 

has been shown to be biocompatible.132 In addition, it is not biodegradable due to lack of 

digestive enzymes in the human organism.133,134  
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Cellulose can also be found in microorganisms and the gram-negative bacterium Acetobacter 

xylinum has been used for this purpose.135-137 This cellulose is structurally similar to the cellulose 

produced by plants and can be highly purified resembling in cristallinity and average microfibrillar 

width that from many plants and algae.138 It constitutes a good alternative to plant and algae 

cellulose being also applied in different fields.94,139,140 Bacterial cellulose contains approximately 

90% water as prepared, but although this water can be easily squeezed out, the recovery in the 

swelling property is complicated by the hydrogen bonds.141 Bacterial cellulose exhibits a rapid 

growth and the ability to be maintained under controlled conditions, which is another 

advantage.138 On the other hand, the inherent low water solubility may compromise its 

degradation profiles both in vitro and in vivo.138  

Cellulose has its major applications in the paper and textile industries.142 Concerning the 

biomedical field, frequently cellulose derivatives, such as methylcellulose, hydroxypropylcellulose, 

and carboxymethylcellulose, are used as starting materials due to the new functionalities gained 

upon these modifications.143,144 Applications of cellulose based materials in cartilage tissue 

engineering have been reported.94,145 In vitro experiments performed by Svensson et al94 

revealed that bacterial cellulose supported bovine chondrocytes proliferation to some extent, 

while providing significant advantages in terms of mechanical properties. Most of the tests 

described using cellulose based supports for cartilage regeneration are performed in vitro and no 

significant in vivo data exist on this matter. In vivo studies have been however performed to 

assess the biocompatibility of a bacterial cellulose scaffold by subcutaneously implanting them in 

rats. There were no macroscopic or microscopic signs of inflammation around the implants, and 

no fibrotic capsule or giant cells were observed, being this a potential scaffold candidate for 

further in vivo screenings.145 

Cellulose, independently of the source of origin, has a recent history in the cartilage regeneration 

field, starting in 2001146 and exhibiting a mild increase until the present time (Figure 3). 

 

5.5. CHITOSAN 
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Figure I.4. Graphical representation of the search results performed with Web of Science® web 

platform using the keywords chitosan and cartilage tissue engineering. The variation throughout 

the years of the association of these two topics is presented. The data represents a search for the 

publications on all available years of search *until 12th July 2008 with a minimum threshold of 1. 

  

 

Chitosan is a semi-crystalline cationic polysaccharide that results from the partial alkaline 

deacetylation of chitin. It is constituted by β-1,4-linked 2-amino-2-deoxy-D-glucose and is 

normally insoluble in aqueous solutions above pH 7.147 However, in dilute acids (pH 6), the free 

amine groups are protonated and the molecule becomes soluble. This pH-dependent solubility 

provides a convenient mechanism for processing under mild conditions.148 Chitosan is widely 

suggested for biomedical applications149-151 due to its intrinsic features such as hydrophilicity, or 

ready solubility in dilute acids which renders it more accessible for chemical reactions. This 

polymer can be easily produced due to the high annual production and great accessibility of 

chitin. It has been described to be non-toxic, biodegradable and have antibacterial activity.152 It is 

also biocompatible, while possessing structural similarities to glycosaminoglycans, which are 

structural components of the cartilage extracellular matrix.153-155 Associated disadvantages 

include the inadequate mechanical properties often exhibited by chitosan, as well as neutrophiles 
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recruitment ability, a feature normally linked with acute inflammation.156 Even so, this appears not 

to influence its biocompatibility.157 Chitosan serves different applications and its use ranges from 

the food industry158 to the biomedical159 and pharmaceutical fields.160,161 It has been specially 

used for cartilage regeneration and the reported studies with this material have been increasing in 

the last years. In vitro studies performed by Malafaya et al162 seeded human adipose derived 

mesenchymal stem cells onto chitosan particles agglomerated scaffolds, where these were 

shown to differentiate towards the chondrogenic lineage. Chenite et al163 evaluated the in vivo 

performance of chitosan-glycerophosphate gels by mixing them with primary culture bovine 

chondrocytes and implanting subcutaneously in athymic mice. The implant area revealed several 

areas of remodeling chondrocytes secreting a matrix characteristic of normal cartilage. Other in 

vivo studies performed in nude mice and rabbits have employed chitosan developed in the form 

of an arthroscopically injectable vehicle for cell-assisted cartilage repair. The chitosan self-gelling 

solution was able to preserve chondrocyte viability and phenotype after injection, and to reside in 

the created articular defects in vivo.55 Chitosan initial reports for use in cartilage tissue 

engineering precede cellulose.89 Nonetheless, its increase has revealed substantial after 2004, a 

tendency that is still observed nowadays (Figure 4). 
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Figure I.5. Graphical representation of the search results performed with Web of Science® web 

platform using the keywords chondroitin sulphate and cartilage tissue engineering. The variation 

throughout the years of the association of these two topics is presented. The data represents a 

search for the publications on all available years of search *until 12th July 2008 with a minimum 

threshold of 1. 

 

 

Chondroitin sulfate is a sulfated glycosaminoglycan (GAG) composed of repeating dissacharide 

units of D-glucuronic acid and N-acetylgalactosamine.20,164 These sugars can exist in wide 

extensions in a chondroitin chain and be sulfated in different positions. This molecule is an 

important structural component of the extracellular matrix of cartilaginous tissues, and by binding 

core protein gives rise to aggrecan, the most important proteoglycan in cartilage. The tightly 

packed and highly charged sulfate groups of chondroitin sulfate generate electrostatic repulsion 

that provides much of the resistance of cartilage to compression.165 This cooperates in the 

functioning of aggrecan as a shock absorbing molecule.20 Sources for chondroitin sulphate 

include extracts of cow trachea and pig ear and nose cartilage, although shark cartilage may also 

be used.166 

Chondroitin sulphate is quite water soluble, which limits its use alone in the solid state for 

biomedical applications, being frequently combined with other polymers.167-169 In fact, its anionic 

nature enables efficient interaction with cationic molecules to form interesting structures.170 Its 

overall ability to function as a cell interacting molecule has widespread its use in a variety of 

biomedical applications. Chondroitin sulphate is currently used as an ingredient in dietary 

supplements,171,172 with the ultimate goal of relieving some of the pain and disability of patients 

with musculoskeletal pathologies, namely osteoarthritis. Even so, none of its benefitial effect 

when compared to control groups has been proved, according to Clegg et al173 Due to its nature, 

chondroitin sulfate has been used in the development of supports for cartilage tissue engineering 

applications. Sechriest et al170 fabricated a chondroitin sulfate-chitosan support for 

chondrogenesis onto which bovine articular chondrocytes were seeded and were shown to form 

focal adhesions while maintaining a phenotype of differentiated chondrocytes with collagen type II 

and proteoglycan production. Although this is material is a component of natural hyaline cartilage, 

not so many works are found beyond the in vitro testing and even this is normally accompanied 

by coupling chondroitin sulphate with other materials.169 The reasons for such occurrences 

probably lie in the high water solubility degree of chondroitin sulphate, which may pose important 
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hurdles to its use alone. In fact, the use of chondroitin sulphate is somehow recent with the first 

reports starting in 2003174 and keeping a stable pattern until the present years (Figure 5). 

 

5.7. GELLAN GUM  
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Figure I.6. Graphical representation of the search results performed with Web of Science® web 

platform using the keywords gellan gum and cartilage tissue engineering. The variation 

throughout the years of the association of these two topics is presented. The data represents a 

search for the publications on all available years of search *until 12th July 2008 with a minimum 

threshold of 1. 

 

 

Gellan gum is a linear anionic polysaccharide composed of tetrasaccharide repeating units of 1,3-

β-D-glucose, 1,4-β–D-glucuronic acid, 1,4-β-D-glucose, 1,4-α-L-rhamnose, containing one 

carboxyl side group, and was initially described by Moorhouse et al175,176 Gellan gum exists in two 

forms, acetylated - which is the initial product produced by Sphingomonas paucimobilis, and 

deacetylated - the processed and most common form. They form thermoreversible gels with 

differences in mechanical properties from soft and elastic for the acetylated form, to hard and 

brittle for the fully deacetylated polysaccharide.177,178 Gellan gum has an ionotropic gelation, 
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similar to other polysaccharides, like alginate or carrageenan.179,180 At high temperatures gellan 

gum is in the coil form, but upon temperature decrease transits to a double-helix. These helices 

self assemble to form oriented bundles, called junction zones. Afterwards, untwined regions of 

polysaccharide chains link the junction zones leading to the formation of a stable gel.181 The 

gelation of gellan gum solutions is strongly influenced by the chemical nature and quantity of 

cations present in the solution. Divalent cations promote the gelation much more strongly than 

monovalent cations. In monovalent cations, the gelation is mainly a result of the screening of the 

electrostatic repulsion between the ionized carboxylate groups on the gellan gum chains. In the 

case of divalent cations, the gelation and aggregation of gellan occurs via a chemical bonding 

between divalent cations and two carboxylate groups belonging to glucuronic acid molecules in 

the Gellan chains, in adittion to the screening effect.182 Gellan gum can be easily processed into 

transparent gels that are resistant to heat and acid stress without the use of harsh reagents.183 It 

has been shown to be not cytotoxic184 and can be used as an injectable system.185 It has been 

previously used in vivo in human patients as an ocular drug delivery vehicle.186,187 One major 

drawback includes its inadequate mechanical properties. Gellan gum gels are commonly used in 

the food industry as thickening agents or stabilizers188 and in the biomedical field most 

applications are suggested for drug delivery approaches.189,190 In tissue engineering, these 

materials have been suggested mostly for cartilage regeneration. Smith et al191 performed an 

initial evaluation of gellan gum as a material for tissue engineering. Studies performed by Oliveira 

et al,185,192  involved the encapsulation and in vitro culturing of human nasal chondrocytes and 

human articular chondrocytes in gellan gum hydrogels. In the first, gellan gum hydrogels were 

able to support nasal chondrocytes development; in the second, injectable gellan gum hydrogels 

were efficient in the encapsulation and support of human articular chondrocytes, while also 

enabling active extracellular matrix components synthesis as determined by realtime PCR and 

histological analysis. In vivo evaluation of gellan gum systems has been performed in nude mice 

and rabbit models. In the first, human adipose tissue derived cells subjected to different culturing 

conditions were encapsulated and subcutaneously implanted in the back of nude mice. Results 

evidenced the cells were viable and depositing extracellular matrix components when using 

human articular chondrocytes as a standard control, although a better performance was obtained 

with encapsulated human chondrocytes.193 In the latter, adipose tissue derived cells were also 

applied mixed with gellan gum and injected in critical size defects using an autologous approach. 

Results were promising in terms of formation of a functional cartilage tissue engineered substitute 

when using specific combinations of adipose tissue derived cells and injectable gellan gum 

hydrogels.194 Gellan gum is a new material in cartilage tissue engineering, and also in other 
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tissue engineering areas. So far, only one report is found in 2008195 on its use as an injectable 

system for cartilage regeneration (Figure 6), but there is a probable tendency for increase due to 

other works in tissue engineering or related fields.191,196 

 

5.8. HYALURONIC ACID  
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Figure I.7. Graphical representation of the search results performed with Web of Science® web 

platform using the keywords hyaluronic acid and cartilage tissue engineering. The variation 

throughout the years of the association of these two topics is presented. The data represents a 

search for the publications on all available years of search *until 12th July 2008 with a minimum 

threshold of 1. 

 

 

Hyaluronan is a non-sulfated glycosaminoglycan distributed widely throughout connective, 

epithelial, and neural tissues. Hyaluronic acid is a linear, negatively charged polysaccharide 

constituted by a mixture of two sugars, glucuronic acid and N-acetyl glucosamine. It is linked 

together via alternating β-1,4 and β-1,3 glycosidic bonds constituting large molecules. Bulky 

groups on each sugar molecule are in sterically favored positions while the smaller hydrogens 

assume the less favorable axial positions, which confers them energetic stability.197 Hyaluronic 
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acid may derive from different sources, being the most prevalent rooster combs198 and by 

bacterial recombinant production.199 They possess different qualities such as variations in 

rheological properties.200 Hyaluronic acid is highly viscous in solution, but its shear dependent 

viscosity degree allows them to be injected through a small gauge needle.201 This molecule is one 

of the chief components of the extracellular matrix, contributing significantly to cell proliferation 

and migration. Hyaluronic acid is soluble in water and is not resistant to enzymatic degradation. 

The modification of its chemical structure has granted specific attention to this material, mainly 

the formation of esters of hyaluronic acid through the esterification of its carboxylic groups.202-204 

This change enhances their processability and resistance to a range of conditions, enabling their 

processing into membranes, spheres, and different porous structures.203-205 Hyaluronic acid has 

the possibility of being administered as an injectable system and is typically biocompatible in 

vivo.206 As with other systems, inadequate mechanical properties are associated, and connection 

with malignant tumours progression and use as a tumour marker as been described.207,208 

Although hyaluronic acid has been used in the cosmetic industry, it is most widely applied for 

tissue engineering and related approaches, namely cartilage.203,209 One example is the culturing 

of human nasoseptal chondrocytes on hyaluronic acid benzyl ester derived scaffolds (HYAFF®11) 

which evidenced the expression of collagen type II and indicated the ability of these cells to 

maintain a chondrocytic phenotype210 In an in vivo scenario, benzyl ester hyaluronic acid 

derivatives (HYAFF® 11) were seeded with human cells and subcutaneously implanted in vivo in 

athymic nude mice. The results after 1 month revealed the development of tissue similar to 

hyaline cartilage.210 In another study, autologous chondrocytes seeded on a hyaluronan 

derivative (Hyaff-11) were applied in the repair of full thickness defects created in rabbits, with the 

results evidencing efficacy on the repair of these lesions.210 Hyaluronic acid is part of the pioneer 

group of polysaccharides proposed for cartilage tissue engineering applications. It is currently the 

most advanced polysaccharide in terms of clinical application studies.211,212 It has been initially 

reported in 1996213 and has since then revealed a constant increasing tendency until the present 

time (Figure 7). 

 

5.9. STARCH 
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Figure I.8. Graphical representation of the search results performed with Web of Science® web 

platform using the keywords starch and cartilage tissue engineering. The variation throughout the 

years of the association of these two topics is presented. The data represents a search for the 

publications on all available years of search *until 12th July 2008 with a minimum threshold of 1. 

 

 

Starch is a natural polymer made of a combination of two polymeric carbohydrates, amylose and 

amylopectin.214,215 In terms of relative weight percentages, the amount of amylopectin is higher 

than amylose in common types of cereal endosperm starches.216 Amylopectin is the highly 

branched component of starch, being formed of chains of α-D-glucopyranosyl units linked mainly 

by (1→ 4) linkages but with 5-6% of (1→ 6) bonds at the branch points. The overall composition 

has hundreds of short (1→ 4)-α-glucan chains interlinked by (1→ 6)-α-linkages.216,217 Amylose is 

a linear molecule of (1→ 4) linked α-D-glucopyranosyl units, even though some molecules are 

slightly branched by (1→ 6)-α-linkages. Evidences suggest that the branched linkages are 

frequently located rather near the reducing terminal end and/or they have multiple branched 

chains.218 Water soluble starches can be dispersed in water and upon heating form a paste. 

When a cooling regime is imposed, the starch paste increases in viscosity giving rise to a 

hydrogel caused by the physical crosslinking of hydrogen bonds.219 Starch-based polymers are 
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degradable and biocompatible.220 They exhibit distinct structural forms and properties that can be 

tailored by the other component of the starch-based blend. Moreover, they are an abundant and 

low cost product.221 Some drawbacks associated with this material include its processability 

(namely by melt-based routes) that often implies the use of a synthetic polymer.46,92,222 Starch is 

commonly used as a food thickening agent,223,224 being also applied in the manufacturing of 

adhesives, paper, and textiles.225 Cartilage regeneration approaches have been conducted using 

starch-based polymers.226,227 Oliveira and Reis et al226 seeded bovine articular chondrocytes onto 

starch-polycaprolactone fiber mesh scaffolds under dynamic conditions and observed active cells 

proliferation, as well as deposition of specific extracellular matrix components, such as collagen 

type II. Their use in vivo is not so widespread but some studies have been put forward for 

studying starch based blends in vivo behaviour.228,229 One example is the work by Salgado et 

al229 that implanted starch based blends in rats in order to evaluate the in vivo endosseous 

response of three different structures. Starch has a recent history in the cartilage regeneration 

field, starting in 2002230 during the same period of cellulose and chitosan, exhibiting a consistent 

increase until the present time (Figure 8). 

 

 

6. FINAL REMARKS 
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Figure I.9. Graphical representation of the search results performed with Web of Science® web 

platform using the total record count for each search presented in figures 1-8. 

 

 

Materials used in tissue engineering approaches should allow proper conditions for cells viability 

and function, and once implanted in a living organism must not elicit a severe inflammatory and 

immune response from the host contributing to the formation of a well integrated functional 

tissue.231,232 The use of polysaccharides has been increasing in the biomedical field, mainly in 

cartilage tissue engineering. The analyses performed using Web of Science® web platform reveal 

an increasing tendency for the application of these materials in cartilage regeneration as 

presented on Figures 1-9. Two subsets can be clearly identified regard their prevalence in the 

cartilage tissue engineering field, being the first led by alginate and followed by agarose, 

chitosan, and hyaluronic acid, and the second gathering the other polysaccharides referred, 

namely cellulose, starch, chondroitin sulphate, and gellan gum. Some of the latter have only 

recently been proposed which reflects the few records present in the literature. According to the 

data collected from the literature, the reasons for using polysaccharides in cartilage regeneration 

applications lie in their intrinsic features such as chemical similarity with native tissue 

components, non harsh processing, variable hydrophilic degrees, and biocompatibility, for 
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example. Hyaluronic acid and chondroitin sulphate exist naturally in cartilage extracellular matrix, 

and chitosan and gellan gum possess glucosamine and glucuronic acid, respectively, which are 

present in the extracellular matrix glycosaminoglycans structure. The extended variety of existing 

polysaccharides and their inherent features opens a wide range of opportunities for synergistic 

fabrications of new and multifunctional materials. Combinations of anionic and cationic polymers 

may form an interesting new structure, confer a determined function through the binding of 

bioactive agents of interest, or generate support systems with enhanced abilities in the 

regeneration of a chosen tissue. Not every characteristic comes as an advantage though and 

some problems still exist in some polysaccharides, as for example easy solubility in water that 

may jeopardise the formation of a stable hydrogel, or in some cases the low mechanical stiffness, 

which are common trends among these materials. Nonetheless, research on polysaccharide 

based materials for cartilage tissue engineering applications is continuously increasing and 

improving and alternative strategies for some of these problems encompass the fabrication of 

multimaterial systems or modification of the original structures. Chitosan has been combined with 

chondroitin sulphate in order to promote an improved support for chondrogenesis.89 Another 

example is alginate that was coupled with PLGA and tested in vitro and in vivo with human 

adipose derived stem cells for cartilage regeneration.233 The addition of bioactive agents of 

interest is another way to confer a better outcome performance to the overall tissue engineered 

constructs.206,233  

This paper has described a range of polysaccharides used in cartilage tissue engineering 

research using relevant cells types in in vitro and in vivo scenarios and showed their evolution in 

the field throughout the years. Studies performed so far have ultimately been taken through in 

vivo testing of polysaccharide based materials in simulated clinical scenarios. Some of the herein 

described polysaccharides have been extensively evaluated in different research units worldwide 

and should be put forward to clinical trials in order to maximise the generated knowledge and 

reach the fabrication of medical products and technologies that make use of the developed 

systems and concepts.  
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CHAPTER II. 
 
Materials and Methods 
 
 
This chapter describes the materials and experimental methods used within the scope of this 

thesis. Although each part of the work is accompanied by its specific materials and methods 

section, this chapter intends to condensate and compile the relevant information on this matter. 

This exercise is expected to provide the reader with a more comprehensive view of the 

experimental and analytical tools used, as well as to facilitate their use by others.  

  

 

1. MATERIALS 

 

1.1. CHITOSAN/POLYBUTYLENE SUCCINATE (C-PBS) 

A new material consisting of a 50/50 (%wt) blend of chitosan, a natural polymer derived from the 

deacetylation of chitin, and polybutylene succinate, a synthetic polymer, was produced (C-PBS). 

The rationale was to combine the biological properties of chitosan with the mechanical support 

conferred by polybutylene succinate in an attempt to confer a better performance to the tissue 

engineered construct. Chitosan is a partially deacetylated derivative of chitin, which is the primary 

structural polymer in arthropod exoskeletons, shells of crustaceans, and the cuticles of insects.1 

Chitosan is a semi-crystalline polysaccharide that is normally insoluble in aqueous solutions 

above pH 7. However, in dilute acids (pH 6), the free amine groups are protonated and the 

molecule becomes soluble. This pH-dependent solubility provides a convenient mechanism for 

processing under mild conditions.2 Chitosan is reported to be non-toxic, biodegradable and 

biocompatible3, and has structural similarities to glycosaminoglycans, which are structural 

components of the cartilage extracellular matrix.4 It serves different applications and its use 

ranges from the food industry to the biomedical and pharmaceutical fields.5,6 Polybutylene 

succinate (PBS) is one of the most accessible biodegradable polymers, and has been extensively 

studied for its potential use as a future conventional plastic, serving also as a support for different 

approaches in the medical field.7,8 It is an aliphatic polyester presenting good processability and 

flexibility, and having degradation products that are non-toxic and can enter the metabolic cycles 

of bioorganisms. Chitosan was obtained from France Chitine, France, and polybutylene succinate 

was obtained from Showa Highpolymer Co. Ltd., Tokyo, Japan.  
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1.2. STARCH/POLYCAPROLACTONE (SPCL) 

A blended material consisting of 30/70% (wt) corn starch and polycaprolactone was produced 

(SPCL). Following the strategy of the chitosan and polybutylene succinate blends, the objective of 

combining these materials is the improved performance they might confer ultimately to the tissue 

engineered construct in an in vivo scenario. Starch is a natural polymer made of a combination of 

two polymeric carbohydrates, amylose and amylopectin.9,10 It has been put forward as a cell 

support material in combination with synthetic polymers such as polycaprolactone (PCL), 

polylactic acid (PLA), ethyl vinyl alcohol (EVOH), and cellulose acetate (CA). Several studies 

have been conducted with these materials, mainly in bone tissue engineering.11-14 

Polycaprolactone (PCL) is a synthetic semicrystalline biodegrabable polymer belonging to the 

family of poly-α-hydroxyl polyesters that has also been used for such approaches.15,16 The SPCL 

blend used was purchased from Novamont S.p.A. Italy. 

 

1.3. POLYGLYCOLIC ACID (PGA) 

Polyglycolic acid, also known as polyglycolide, is a biodegradable, thermoplastic synthetic 

polymer. It can be prepared from glycolic acid by polycondensation or ring-opening 

polymerization and it has been one of the first materials used for tissue engineering 

applications.17 The processing of polyglycolic acid was not performed in the scope of this thesis, 

and they were purchased in the form of non-woven fibre scaffolds from Albany international, Bury, 

Lancashire, UK and used as comparator in Chapter IV and V. 

 

1.4. GELLAN GUM 

Gellan gum is a linear anionic polysaccharide composed of tetrasaccharide (1,3-β-D-glucose, 1,4-

β–D-glucuronic acid, 1,4-β-D-glucose, 1,4-α-L-rhamnose) repeating units, containing one 

carboxyl side group, and was initially described by Moorhouse et al.18,19 This material has a broad 

use in the food industry and biomedical fields, mostly due to its processing into transparent gels 

that are resistant to heat and acid stress. Two Gellan gum forms exist, acetylated and 

deacetylated, being the latter the most common and commercially available form. Both form 

thermoreversible gels, varying in their mechanical properties from soft and elastic for the 

acetylated form to hard and brittle for the fully deacetylated polysaccharide.20,21 Gellan gum was 

purchased from Sigma, St. Louis, MO, USA, Cat nº G1910. 

 

1.5. AGAROSE 
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Agarose is a constituent of agar, which in turn consists of a heterogeneous mixture of agaropectin 

and agarose. Agarose has a neutral charge and lower degree of chemical complexity when 

compared to agaropectin which makes it less likely to interact with biomolecules, such as 

proteins. Agarose type VII was purchased from Sigma, St. Louis, MO, USA, Cat nº A6560 and 

was used as comparator in Chapter VI. 

 

 

2. SCAFFOLDS PRODUCTION 

 

2.1. CHITOSAN/POLYBUTYLENE SUCCINATE SCAFFOLDS (COMPRESSION MOULDING 

AND SALT LEACHING) 

The chitosan/polybutylene succinate 50/50 (%wt) blend was compounded in a twin screw 

extruder. The details of the processing conditions are summarized elsewhere.3 The methodology 

used for the scaffolds production was based on compression moulding followed by salt leaching. 

Before using it in the scaffolds processing, the salt was grinded and sieved to obtain particles with 

size between 63 µm<d<125 µm. The compounded polymeric blend was ground, mixed with salt 

and compression molded into discs. The salt content was 80% by weight. The discs were cut into 

5x5x5 mm cubes. These cubes were then immersed in distilled water to leach out the salt, dried, 

and used for cell culture and proliferation studies after sterilization by ethylene oxide. 

 

2.2. CHITOSAN/POLYBUTYLENE SUCCINATE FIBRE SCAFFOLDS  

For the production of the chitosan/polybutylene succinate fibre scaffolds the raw materials 

(chitosan and PBS) were compounded on a twin screw extruder in a ratio of 50/50 wt%. The 

polymeric fibres were obtained by further re-extruding the C-PBS blend using a microextruder. 

Afterwards, the processed fibres were packed in an appropriate mould, compressed, and heated 

above the melting temperature (Tm) of the thermoplastic for a determined residence period, 

thereby allowing the fibres to bond and consequently to obtain a mechanically stable 

macroporous fibre mesh structure. The scaffolds were further cut in a cylindrical shape (Ø 7 mm x 

thickness 1.5 mm).  

 

2.3. STARCH/POLYCAPROLACTONE FIBRE SCAFFOLDS 

The methodology used to produce the scaffolds was melt spinning (to obtain the polymeric fibres) 

followed by fibre bonding.22 This processing technique involves fibre packing in an appropriate 
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mould, with posterior heating below the melting temperature (Tm) for a determined residence 

period that will allow the fibres to form a stable fibre mesh structure. The material used was a 

30/70% (wt) blend of corn starch with polycaprolactone (SPCL). These scaffolds have already 

been shown previously to be suitable for conducting a bone tissue engineering approach12,23. The 

scaffolds produced were cut in a cylindrical shape, with dimensions of 7mm diameter x 3mm 

thickness.  

 

2.4. GELLAN GUM HYDROGELS 

Gellan gum was processed in different ways giving rise to various structures, therefore 

evidencing the versatility of this natural biomaterial. The processing involved temperature-

dependent and pH-dependent reactions. 

 

2.4.1. GELLAN GUM HYDROGELS DISCS 

Gellan gum discs were produced in the following way. Gellan gum powder was mixed with 

distilled water under constant stirring at room temperature to obtain a final concentration of 0.7% 

(w/v). The solution was progressively heated to 90ºC, under which complete and homogeneous 

dispersion of the material was obtained. The solution was kept at this temperature during 20-30 

minutes. Afterwards, CaCl2 (Merck, DE) was added to obtain a final concentration of 0.03% (w/v) 

in the gellan gum solution and the temperature was progressively decreased to 50ºC. Gellan 

discs were produced by casting the solution into cylindrical moulds and allowing it to rest at room 

temperature for 2-5 minutes and form a solid gel. The discs were then cut using a borer for final 

discs dimensions of Ø 6±0.01 mm x 5.5±0.46 mm height.  

 

2.4.2. GELLAN GUM HYDROGELS MEMBRANES 

Gellan gum membranes were produced using the same starting process applied to the discs. 

Gellan gum powder was mixed with distilled water under constant stirring at room temperature to 

obtain a final concentration of 0.7% (w/v). The solution was progressively heated to 90ºC, under 

which complete and homogeneous dispersion of the material was obtained. The solution was 

kept at this temperature during 20-30 minutes. Afterwards, CaCl2 (Merck, DE) was added to 

obtain a final concentration of 0.03% (w/v) in the gellan gum solution and the temperature was 

progressively decreased to 50ºC. Gellan gum membranes were produced by casting the solution 

into Petri dishes and allowing it to stand at room temperature for 2-5 minutes and form a solid gel. 

The Petri dishes were kept in an oven at 37ºC for 90 minutes.  
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2.4.3. GELLAN GUM HYDROGELS FIBRES 

For the production of gellan gum fibres the methodology was as follows. Gellan gum powder was 

mixed with a NaOH 0.10 M solution and stirred at room temperature with a final concentration of 

4% (w/v). Gellan gum fibres were produced by extruding the gellan gum solution into a L-ascorbic 

acid 20% (v/v) solution under a constant flow rate of 0.2 ml/min, using a 21G needle. The gellan 

gum fibres formed were then washed in distilled water, pressed into cylindrical moulds, and dried 

overnight at 37ºC.  

 

2.4.4. GELLAN GUM HYDROGELS PARTICLES 

The production of gellan gum particles followed the same starting process applied to the fibres. 

Gellan gum powder was mixed with a NaOH 0.10 M solution and stirred at room temperature with 

a final concentration of 4% (w/v). Gellan gum particles were produced by extruding the Gellan 

gum 4% (w/v) solution dropwise to an L-ascorbic acid 20% (v/v) solution under a constant flow 

rate of 0.8 ml/min, using a 21G needle. 

 

2.4.5. GELLAN GUM HYDROGELS SCAFFOLDS 

Gellan gum scaffolds were produced by immersing gellan gum 0.7% (w/v) (Ø 6±0.01 mm x 

5.5±0.46 mm height) discs in liquid nitrogen for 1-2 minutes and quickly transferring them to a 

lyophilizator (Telstar Cryodos-80, Telstar, Spain) where they were lyophilized during 2 days.  

 

2.5. AGAROSE HYDROGELS 

Agarose hydrogels were produced following standard procedures detailed elsewhere.24 Briefly, a 

sterile agarose type VII low Tm 4% (w/v) solution prepared in sterile PBS was heated to 70ºC for 

30 seconds, until complete dissolution. The solution was then allowed to rest room temperature, 

thereby decreasing the temperature and promoting gelation.  

 

 

3. SCAFFOLDS CHARACTERIZATION 

 

3.1. SCANNING ELECTRON MICROSCOPY (SEM) 

Scanning electron microscopy analyses provide images of the surface of a given sample by 

scanning it with a high-energy beam of electrons. In chapters III and IV, SEM analyses of the 

scaffolds were performed using a Leica Cambridge S360 (Leica Cambridge, Cambridge, UK). 
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Prior to SEM analysis, sample surfaces were gold sputtered (Fisons Instruments, Sputter Coater 

SC502, UK).  

 

3.2. TRANSMISSION ELECTRON MICROSCOPY (TEM) 

Transmission electron microscopy is a technique that provides information on the ultrastructural 

aspects of a given sample through the use of a beam of electrons that interacts with the 

specimen as it passes through it. In chapter VI, gellan gum discs were characterised and 

prepared for transmission microscopy analysis in the following way. Briefly, sections of 1mm3 

were fixed in formalin-glutaraldehyde-osmium tetroxide for 2 h at room temperature and then 

washed three times in PBS. Semithin sections (1µm) were cut from epon-embedded blocks and 

stained with toluidine blue. Ultrathin sections (600 Å) were cut in a ultratome (Reichert Ultranova 

Leica), mounted onto copper grids, stained with uranyl acetate (7min) and lead citrate (5 min) and 

observed on a Zeiss 902A (50 Kv) electron microscope.  

 

3.3. MICRO-COMPUTED TOMOGRAPHY (µ-CT) 

Micro-computed tomography provides valuable information on the 3d morphology of a chosen 

sample. Some of its advantages include its non destructive character and the possibility to assess 

several parameters in a quantitative way. Micro-computed tomography equipment (SkyScan, 

Belgium) was used in chapters III and IV for a more detailed analysis of the morphology of the 

developed scaffolds and CT Analyser and CT Vol Realistic 3D Visualization were used as image 

processing softwares, both from SkyScan (Belgium). In Chapter V, the porosity of the scaffolds 

was determined by microcomputerized tomography (µCT) (ScanCo Medical µCT 80, 

Bassersdorf, Switzerland) at a resolution of 10 mm, and using at least 3 samples. In chapter VI, 

lyophilized gellan gum 0.7% discs were analysed under micro-computed tomography (µ-CT) 

using a high-resolution µ-CT Skyscan 1072 scanner (Skyscan, Kontich, Belgium) using a 

resolution of 6.76 µm pixel size and integration time of 1.7 ms. The x-ray source was set at 70keV 

of energy and 142 µA of current. Approximately 500 projections were acquired over a rotation 

range of 180° and a rotation step of 0.45°. Data sets were reconstructed using standardized 

cone-beam reconstruction software (NRecon v1.4.3, SkyScan). The output format for each 

sample was a 500 serial of 1024x1024 bitmap images. Representative data sets of 150 slices 

were segmented into binary images (CT Analyser, v1.5.1.5, SkyScan) with a dynamic threshold 

of 70-255 (grey values) that was applied to build the 3D models. 3D virtual models (height 1mm x 

Ø 3mm) of representative regions in the bulk of the hydrogels were created, visualized and 
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registered using image processing software (CT Analyser, v1.5.1.5 and ANT 3D creator, v2.4, 

both from SkyScan). 

 

3.4. MECHANICAL TESTING 

 

3.4.1. STATIC COMPRESSION TESTS 

In Chapters III and IV, uniaxial compression tests were performed to assess the mechanical 

properties of the produced scaffolds in the dry state using a Universal tensile testing machine 

(Instron 4505 Universal Machine). Mechanical testing was performed under compression using a 

crosshead speed of 5mm/min and the results averaged from tests conducted in at least five 

specimens. The details regarding these methods are presented elsewhere.25  

 

3.4.2. DYNAMIC MECHANICAL ANALYSIS (DMA) 

Dynamic mechanical analysis is a technique used to study and characterize materials that is 

useful for observing the viscoelastic nature of polymers. In chapter VI and VII, dynamic 

mechanical analysis (DMA) was conducted to characterize the mechanical behaviour of Gellan 

gum hydrogel discs. Gellan gum discs were subjected to compression cycles of increasing 

frequencies ranging from 0.1-10 Hz with constant amplitude displacements of 0.1 mm using a 

Tritec 2000 DMA (Triton Technology, UK). Storage and loss modulus were measured and 

experiments were conducted at room temperature. The described values for the compression 

modulus were collected at a frequency of 1 Hz. Statistical analysis was performed using 

confidence intervals based on the experimental results, with a confidence level of 99%. In the 

work described on each chapter, the gellan gum concentrations and the number of samples had 

specific values.  

 

3.5. RHEOLOGICAL STUDIES 

Rheology, sometimes also synonymously referred to as rheometry, provides information on the 

relation of the flow/deformation behaviour of materials. In chapters VI and VII, cone-plate 

rheometry was conducted for gellan gum hydrogels in order to assess their rheological behaviour 

dependence of temperature and time. For this purpose, gellan gum powder was mixed at room 

temperature with distilled water under constant stirring. The solution was heated to 90ºC and kept 

at this temperature for 30 minutes. Afterwards, CaCl2 was added to the Gellan gum solution and 

rheological measurements were performed using a controlled stress cone-plate rheometer 

(Reometer Reologica, StressTech, Sweden). For each measurement, a volume of 2 ml of the 
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Gellan gum solution was placed in the bottom plate of the rheometer and held at a constant 

temperature of 70ºC. The polymer solution was allowed to rest for 1 minute before starting the 

experiments. Measurements were performed by cooling each sample from 70ºC to 25ºC (at a 

cooling rate of -6ºC/min) applying a constant shear stress of 0.1 Pa. Temperature, time, shear 

rate and viscosity were constantly measured. The confidence intervals were estimated with a 

confidence level of 99%. In the work described on each chapter, the gellan gum concentrations 

and the number of samples had specific values. 

 

3.6. IN VITRO CYTOTOXICITY TESTS 

Cytotoxicity tests are usually quick and standardized methods to determine if a given material 

contains significant quantities of harmful leachables and their effect on cellular components. To 

assess the short-term cytotoxicity of the developed scaffolds, minimum essential medium (MEM) 

extraction (chapter III) and 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2(4-

sulfofenyl)-2H-tetrazolium (MTS) tests (chapter III and VI), both within a 24 h extraction period, 

according to ISO/EN 10993 part 5 guidelines26 were used, in order to establish the possible toxic 

effects of leachables released from the scaffolds during extraction. Latex rubber was used as 

positive control for cell death due to its high cytotoxicity to cells, and culture medium was used as 

a negative control representing the ideal situation for cell proliferation. The results are presented 

after normalisation with the negative control. The objectives of the MEM extraction test are to 

evaluate changes in cell morphology and growth inhibition, whereas the MTS test determines 

whether cells are metabolically active.  

 

3.6.1. MEM EXTRACTION TEST 

The ratio of material weight to extract fluid was constant and equal to 0.2g/ml for porous samples. 

For the positive control the ratio of material outer surface to extraction fluid was 2.5 cm2/ml. Test 

material (n=6) and positive control were extracted for 24h at 37ºC, using complete culture 

medium as extraction fluid. Before the tests, culture medium was removed from the wells and an 

identical volume (2 ml) of extraction fluid was added. For the MEM extraction test, the cells were 

seeded in 24 well plates (n=3) at a density of 1.25x105 cells/well. They were incubated for 24h at 

37ºC, in a humidified atmosphere with 5% CO2 after this. Cell response was evaluated after 24, 

48, and 72h of incubation. Confluence of the monolayer, degree of floating cells, and changes in 

morphology were analyzed by visual observation. After 72h, the percentage of growth inhibition 

was determined by cell counting with a haemocytometer and trypan blue exclusion method. Final 

measurements were corrected for the negative control. 
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3.6.2. MTS TEST 

To assess the possible cytotoxicity of the processed gellan gum hydrogels, MTS (3-(4,5-

dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2(4-sulfofenyl)-2H-tetrazolium) test was used 

according to ISO/EN 10993 part 5 guidelines, which determines whether cells are metabolically 

active.26 This cytotoxicity test is based on the bioreduction of the substrate, 3-(4,5-

dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2(4-sulfofenyl)-2H-tetrazolium (MTS) (Cell Titer 

96® Aqueous Solution Cell Proliferation Assay, Promega, USA), into a brown formazan product by 

dehydrogenase enzymes in metabolically active cells, and is commonly used for cell viability 

evaluation. Latex rubber was used as positive control for cell death, due to its high cytotoxicity to 

cells, and culture medium was used as a negative control. A rat lung fibroblasts cell line – L929, 

acquired from the European Collection of Cell Cultures (ECACC), was used for the studies. The 

cells were grown as monolayers in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 

with 10% foetal bovine serum (Biochrom, Berlin, Germany; Heat Inactivated) and 1% of antibiotic-

antimycotic mixture. The samples were incubated in culture medium for 24h at 37ºC with constant 

shaking, as well as latex. Cultured L929 cells were trypsinised using trypsin-EDTA (Gibco, 

Invitrogen Corporation) and plated at a density of 6.6x104 cells/well into 96-well micrometer plates 

(200 µl/well). The plates were incubated for 24 hours at 37ºC in a humidified atmosphere of 5% 

CO2 in air. Afterwards, the medium was replaced by the extracts previously obtained, using 

culture medium as a negative control. After 72 hours, the cell culture was incubated with MTS 

(using culturing medium without phenol red) for further 3 hours at 37ºC in a humidified 

atmosphere of 5% CO2 in air. Culture medium with MTS was then transferred to new wells. The 

optical density (OD) which is directly proportional to the cellular activity, being a measure of 

mitochondrial acitivity, was read on a multiwell microplate reader (Synergy HT, Bio-TeK 

Instruments, US) at 490 nm. Statistical analyses were conducted using a two-sample t-test 

assuming unequal variances for n=3. 

 

 

4. CELL ISOLATION AND EXPANSION  

 

4.1. CELLS FOR CYTOTOXICTY ASSAYS 

A rat lung fibroblasts cell line – L929-, acquired from the European Collection of Cell Cultures 

(ECACC), was used for the cytotoxicity tests in chapters III and VI. The cells were grown as 

monolayers in Dulbecco’s modified Eagle’s medium (DMEM; Sigma, St. Louis, MO) 
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supplemented with 10% foetal bovine serum (FBS; Biochrom, Berlin, Germany) and 1% of an 

antibiotic-antimycotic mixture (Sigma, St. Louis, MO). Trypsin (Sigma, St. Louis, MO) was used to 

detach the cells from the culture flasks before the experiments were conducted. 

 

4.2. EXPANSION OF BMC9 CELLS (MOUSE MESENCHYMAL PROGENITOR CELL LINE) 

The BMC9 cell line has been shown to exhibit four mesenchymal cell phenotypes: chondrocytic, 

adipocytic, stromal (supports osteoclasts formation), and osteoblastic.27 The cells were grown as 

monolayer cultures in a culture medium consisting of α-MEM medium (Sigma, St. Louis, MO), 

10% Foetal Bovine Serum (FBS), and 1% A/B (penicillin G sodium 10000 U/ml, amphotericine B 

(Fungizone) 25 µg/ml, streptomycin sulfate 10000 µg/ml, in 0.85% saline). 

 

4.3. ISOLATION AND EXPANSION OF BOVINE ARTICULAR CHONDROCYTES  

Full thickness hyaline cartilage was harvested from bovine metacarpophalangeal joint of adult 

animals (18-24 months) within 4 hours of slaughter. Chondrocytes were isolated by sequential 

enzymatic digestion and their numbers expanded in monolayer culture as described previously.28 

Chondrocytes were seeded at 50,000-100,000 cells/cm2 and cultured in basic medium 

[Dulbecco’s Modified Eagle’s Medium, containing 10 mM HEPES buffer pH 7.4, 10000 units/ml 

penicillin/10000 µg/ml streptomycin, 20 mM L-alanyl glutamine, MEM non-essential amino acids, 

and 10% (v/v) foetal calf serum (Biosera S1800; NWPLS; Heat Inactivated)], supplemented with 

10 ng/ml basic fibroblast growth factor (bFGF) (PeproTech, UK). The expanded chondrocytes 

were used in the works described on chapters IV and V. 

 

4.4. ISOLATION AND EXPANSION OF HUMAN NASAL CHONDROCYTES 

Nasal cartilage was harvested from the nasal septum of adult patients (40-65 years) undergoing 

reconstructive surgery. This was performed within the scope of a protocol established with the 

Hospital de S. Marcos, Braga, Portugal, approved by its Ethical Committee and always sampled 

upon patient informed consent. Chondrocytes were isolated by enzymatic digestion with posterior 

collection. The human nasal septum cartilage free from all surrounding tissue was placed in a 

Petri dish containing sterile phosphate buffered saline (PBS) and cut into square slices of 5 mm 

and thickness between 2-3 mm. The pieces were washed in sterile PBS solution, immersed in 20 

ml of trypsin-EDTA solution, and incubated for 30 min at 37ºC on a rotator. Trypsin was removed 

and the pieces washed with basic DMEM. Then, 20 ml of filter sterilised collagenase type II 

solution (2mg/ml) in basic medium was added, and the mixture incubated for approximately 12 

hours at 37ºC on a rotator. The digested tissue and cell suspension solution was centrifuged at 
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200xg for 7 min and the supernatant removed. The cell pellet was washed with PBS and the cells 

centrifuged as before. The procedure was repeated and the cells were ressuspended in PBS and 

counted using a hemocytometer. They were again centrifuged, the supernatant removed, and 

ressuspended in expansion medium consisting of Dulbecco’s Modified Eagle’s Medium, 

containing 10 mM HEPES buffer pH 7.4, 10000 units/ml penicillin/10000 µg/ml streptomycin, 20 

mM L-alanyl glutamine, 1x MEM non-essential amino acids and 10% (v/v) foetal bovine serum 

(FBS; Biochrom, Berlin, Germany; Heat Inactivated), supplemented with 10 ng/ml basic fibroblast 

growth factor (bFGF) (PeproTech, UK). Human nasal chondrocytes were plated into tissue 

culture flasks and incubated at 37ºC in a humidified atmosphere of 5% CO2 in air for expansion.28 

The expanded chondrocytes were used in the work described on chapter VI. 

 

4.5. ISOLATION AND EXPANSION OF HUMAN ARTICULAR CHONDROCYTES  

Human articular cartilage was harvested from the femoral head and condyles of adult patients 

(40-65 years) undergoing knee arthroplasty surgery. This was performed within the scope of a 

protocol established with the Hospital de S. Marcos, Braga, Portugal, approved by its Ethical 

Committee and upon patient informed consent. Chondrocytes were isolated by enzymatic 

digestion; In detail, the human articular cartilage, free from all surrounding tissue, was placed in a 

Petri dish containing sterile phosphate buffered saline (PBS) and cut into square slices of 5 mm 

and thickness between 2-3 mm. The pieces were washed in sterile PBS solution, immersed in 20 

ml of trypsin-EDTA solution, and incubated for 30 min at 37ºC under agitation. Trypsin was 

removed and the tissue pieces washed with basic Dulbeco’s Modified Eagle Medium (DMEM). 

Then, 20 ml of sterile collagenase type II solution (2mg/ml) in basic medium was added, and the 

mixture incubated for approximately 12 hours at 37ºC under agitation. The digested tissue and 

cell suspension solution was centrifuged at 200g for 7 min and the supernatant discarded. The 

cell pellet was washed with PBS and centrifuged again under the same conditions. Cells were 

again centrifuged, the supernatant removed, and ressuspended in expansion medium consisting 

of Dulbecco’s Modified Eagle’s Medium, containing 10 mM HEPES buffer pH 7.4, 10000 units/ml 

penicillin/10000 µg/ml streptomycin, 20 mM L-alanyl glutamine, 1x MEM non-essential amino 

acids and 10% (v/v) foetal bovine serum (FBS; Biochrom, Berlin, Germany; Heat Inactivated), 

supplemented with 10 ng/ml basic fibroblast growth factor (bFGF) (PeproTech, UK). Human nasal 

chondrocytes were plated into tissue culture flasks and incubated at 37ºC in a humidified 

atmosphere of 5% CO2 in air for expansion.28 The expanded chondrocytes were used in the work 

described on chapter VII and VIII. 
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4.6. ISOLATION AND EXPANSION OF RABBIT ADIPOSE TISSUE DERIVED PROGENITOR 

CELLS  

Rabbit adipose tissue was obtained from the intrascapular region of 10-11 weeks old /2.4-2.6 Kg 

female New Zealand White rabbits. Briefly, the rabbits were pre-anaesthetized with ketamine (25 

mg/kg i.m., Imalgene® 1000, Merial, Lyon, France) and medetomidine (0.15 ml/kg i.m., 

Domitor®, Orion Corp., Finland). After the confirmation of analgesia/anaesthesia the rabbits were 

subjected to tricotomy in the intrascapular region and disinfected with chlorhexidine (Lifo-Scrub®, 

B. Braun Melsungen AG, Germany). An incision was performed (reaching a maximum of 2 cm) in 

the intrascapular region and adipose tissue from this region was collected to a falcon tube 

containing sterile phosphate-buffered saline solution (PBS) with 10% antibiotic (antibiotic-

antimycotic Gibco 15240). The incision sites were sutured and the rabbits transferred to heating 

recovery compartments and when the recovery from analgesia/anaesthesia was confirmed they 

were returned to their respective compartments and kept under food and drink ad libitum. The 

collected tissue was washed in sterile PBS to remove contaminating debris and red blood cells. 

The adipose samples were then incubated in a 1 mg/ml collagenase type II solution prepared in 

PBS for 60-90 minutes at 37°C with constant agitation. The processed adipose tissue was 

afterwards filtered and the released cells collected in a falcon tube and centrifuged at 1200 rpm 

for 10 minutes. The formed cell pellet was washed in culture medium (Dulbecco’s Modified 

Eagle’s Medium (DMEM), 10% (v/v) foetal bovine serum (FBS, Biochrom, Berlin, Germany; Heat 

Inactivated), 1% antibiotic (antibiotic-antimycotic Gibco 15240), and centrifuged as before. The 

obtained cell pellet was again ressuspended in culture medium, and seeded in tissue culture 

polystyrene flasks. Rabbit adipose tissue derived progenitor cells (ASC) were incubated at 37ºC 

in a humidified atmosphere of 5% CO2 in air for expansion. Once the adequate cell number was 

reached, the cells were divided in two groups: one group subjected to a chondrogenic 

predifferentiation period consisting of DMEM, sodium pyruvate 1.0x10-3 M, ascorbate-2-

phosphate 0.17 mM, proline 0.35 mM, ITS 1X, and supplemented with 10 ng/ml TGF-β1for 2 

days followed by 100 ng/ml BMP-2 (R&D BioSystems, USA) for 3 days prior to in vivo 

implantation (ASC + GF); another group cultured with the same medium but without TGF-β1 and 

BMP-2 (ASC). The expanded cells were used in the work described on chapter IX. 

 

4.7. ISOLATION AND EXPANSION OF RABBIT ARTICULAR CHONDROCYTES  

Rabbits were pre-anaesthetized with ketamine (25 mg/kg i.m., Imalgene® 1000, Merial, Lyon, 

France) and medetomidine (0.15 ml/kg i.m., Domitor®, Orion Corp., Finland). After the 

confirmation of analgesia/anaesthesia the rabbits were subjected to tricotomy in the joint area of 
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the left posterior leg and disinfected with chlorhexidine (Lifo-Scrub®, B. Braun Melsungen AG, 

Germany). Incisions were performed through the skin and muscle to access the articular capsule. 

Articular cartilage was harvested from the femoral condyles of the rabbits and washed in sterile 

phosphate buffered saline (PBS) with 1% antibiotic (antibiotic-antimycotic Gibco 15240). The 

incision sites were sutured and the rabbits transferred to heating recovery compartments and 

when the recovery from analgesia/anaesthesia was confirmed they were returned to their 

respective compartments and kept under food and drink ad libitum. The cartilage pieces were 

immersed in trypsin-EDTA solution for 15-20 min at 37ºC under constant agitation. Trypsin was 

removed, the pieces were washed with DMEM and sterile collagenase type II solution (2mg/ml) 

prepared in basic medium was added. The mixture was kept for 8-10 hours at 37ºC under 

constant agitation. The digested mixture was filtered using a 100 µm filter and centrifuged at 1200 

rpm for 8 min. The supernatant was removed and the cell pellet washed with PBS and the cells 

counted using a hemocytometer. Cells were then collected by centrifugation and ressuspended in 

expansion medium consisting of DMEM, containing 10 mM HEPES buffer pH 7.4, 1% antibiotic 

(antibiotic-antimycotic Gibco 15240), 20 mM L-alanyl glutamine, 1x MEM non-essential amino 

acids and 10% (v/v) foetal bovine serum (FBS; Biochrom, Berlin, Germany; Heat Inactivated), 

supplemented with 10 ng/ml basic fibroblast growth factor (bFGF) (PeproTech, UK). Human 

articular chondrocytes were plated into tissue culture flasks and incubated at 37ºC in a humidified 

atmosphere of 5% CO2 in air for expansion.28 The expanded chondrocytes were used in the work 

described on chapter IX. 

 

 

5. CELL AND MATERIALS CULTURING 

 

5.1. BMC9 CELLS SEEDING AND CULTURING ON CHITOSAN/POLYBUTYLENE SUCCINATE 

SCAFFOLDS (COMPRESSION MOULDING AND SALT LEACHING) 

In Chapter III, direct contact assays were performed with a mouse mesenchymal progenitor cell 

line (BMC9). When the adequate cell number was obtained, cells at passage 9 (P9) were 

trypsinized, centrifuged, and ressuspended in cell culture medium. Cells were seeded at a density 

of 5x105cells/scaffold (5x5x5mm3) under static conditions, using for this purpose aliquots of 15 µl 

loaded on top of the scaffolds that had been previously placed in 24 well culture plates. Two 

hours after seeding, 1 ml of culture medium was added to each well and the cell seeded scaffolds 

were allowed to develop for periods up to 3 weeks, in a humidified atmosphere at 37ºC, 

containing 5% CO2, under chondrogenic differentiation inducing medium. This culturing medium 
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consisted of DMEM (Sigma, St. Louis, MO), dexamethasone (Sigma, St. Louis, MO) 1.0x10-4 M, 

sodium pyruvate (Sigma, St. Louis, MO) 1.0x10-3 M, ascorbate-2-phosphate (Sigma, St. Louis, 

MO) 0.17 mM, proline (Sigma, St. Louis, MO) 0.35 mM, ITS 1X (Sigma, St. Louis, MO), and 

hBMP-2 (R&D BioSystems, CA) 100ng/ml. The culture medium was changed every 3 to 4 days 

until the end of the experiment. 

 

5.2. BOVINE CHONDROCYTES SEEDING AND CULTURING ON FIBRE SCAFFOLDS (C-PBS 

AND SPCL) 

Scaffolds used in the works described in chapters IV and V were seeded with chondrocytes at 

passage P1 as described previously.28 In brief, confluent cultures of chondrocyte cultures were 

harvested by trypsinisation. Scaffolds were threaded onto stainless steel wires and suspended in 

spinner flasks containing a stirred suspension of chondrocytes (0.5x106 cells/ml; 4 scaffolds per 

spinner flask) for 72 h to allow the chondrocytes to penetrate the scaffolds. The resultant 

cell/scaffold constructs were transferred to sterile, non-tissue culture treated Petri dishes and 

incubated for 4 days in basic medium supplemented with 10ng/ml bFGF to allow expansion of cell 

numbers on the scaffolds. The constructs were then cultured with basic medium supplemented 

with 1µg/ml insulin and 50µg/ml L-ascorbic acid to stimulate chondrogenesis. Throughout the 

culture period the constructs were gently shaken using an orbital shaker. The constructs were 

incubated until 42 days of culture (6 weeks), replacing the medium every 2-3 days. Polyglycolic 

acid (PGA) non-woven scaffolds (Albany international, Bury, Lancashire, UK) were used as a 

comparator.  

 

5.3. HUMAN NASAL CHONDROCYTES ENCAPSULATION AND CULTURING IN GELLAN 

GUM AND AGAROSE HYDROGELS  

Human nasal chondrocytes were expanded until an adequate cell number was obtained for cells 

encapsulation. In the work described in chapter VII, the cells were encapsulated at passage 1 in 

gellan gum hydrogels and in agarose type VII (A6560; Sigma, St. Louis, MO) hydrogels, the latter 

being used as controls. Regarding gellan gum the procedure was the following. Gellan gum 

powder was mixed with sterile distilled water under constant stirring at room temperature to 

obtain a final concentration of 0.7% (w/v). The solution was progressively heated to 90ºC and 

kept at this temperature for 20-30 minutes. A sterile CaCl2 solution was added to obtain a final 

concentration of 0.03% (w/v). The temperature was progressively decreased to 40ºC and 

stabilised at this stage always under constant stirring. Human nasal chondrocytes were detached 

by trypsinisation, mixed with expansion medium, and centrifuged at 200xg for 7 min. The 
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supernatant was removed and the cells were ressuspended in warm sterile PBS solution, 

counted using and hemocytometer, and finally centrifuged at 200xg for 7 min. The supernatant 

was discarded and the cells pellet kept at the bottom of the falcon tube. The gellan gum 0.7% 

(w/v) with CaCl2 0.03% (w/v) solution was added to the cells pellet and the mixture ressuspended 

for complete homogenization of cells within the matrix with a final concentration of 1 x106 cells/ml. 

Gellan discs with encapsulated human nasal chondrocytes were produced by casting this mixture 

into sterile cylindrical polystyrene moulds, allowing it to rest at room temperature for 1-2 minutes 

to form a solid gel, and then discs of Ø 6±0.01 mm x 5.5±0.46 mm height were cut using a borer. 

Regarding the agarose hydrogels, the procedure is detailed elsewhere.24 Briefly, a sterile agarose 

type VII low Tm 4% (w/v) solution prepared in sterile PBS was heated to 70ºC for 30 seconds, 

until complete dissolution. The solution was added to a human nasal chondrocytes pellet 

prepared as described for the gellan gum encapsulation and the mixture ressuspended for 

complete homogenization of cells within the matrix with a final concentration of 1x106 cells/ml. 

Agarose discs with encapsulated human nasal chondrocytes were produced by casting this 

mixture into sterile cylindrical polystyrene moulds, allowing it to rest at room temperature for 20 

minutes to form a solid gel, and then discs were cut using a borer. The experiments were 

repeated 3 times independently. 

 

5.4. HUMAN ARTICULAR CHONDROCYTES ENCAPSULATION AND CULTURING IN GELLAN 

GUM HYDROGELS  

In the work described in chapter VII, human articular chondrocytes were expanded and 

encapsulated at passage 1 in gellan gum hydrogels using the following procedure. Gellan gum 

powder was mixed with sterile distilled water under constant stirring at room temperature to 

obtain a final concentration of 1% (w/v). The solution was progressively heated to 90ºC and kept 

at this temperature for 20-30 minutes. A sterile CaCl2 solution was added to obtain a final 

concentration of 0.03% (w/v). The temperature was progressively decreased to 42ºC and 

stabilised at this value for posterior use always under constant stirring. Human articular 

chondrocytes were detached by trypsinisation, mixed with expansion medium, and centrifuged at 

200g for 7 min. The supernatant was removed and the cells were ressuspended in warm sterile 

PBS solution, counted using an hemocytometer, and finally centrifuged at 200g for 7 min. The 

supernatant was discarded and the cells pellet kept at the bottom of the falcon tube. The gellan 

gum 1% (w/v) with CaCl2 0.03% (w/v) solution was added to the pellet of cells and the mixture 

ressuspended for complete homogenization of the cells within the matrix. Gellan gum discs 

containing 8x106 cells/ml human articular chondrocytes were produced by casting this mixture 
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into sterile cylindrical polystyrene moulds, allowing it to rest at room temperature for 1-2 minutes 

to form a solid gel. Discs of Ø 6±0.01 mm x 5.5±0.46 mm height were cut using a borer. The 

discs were cultured in expansion medium for 7 days which was afterwards replaced by 

differentiation medium for 49 days. The differentiation medium was prepared by replacing the 

bFGF in the expansion medium with insulin (1µg/ml) and ascorbic acid (50 µg/ml). The culture 

medium was changed every 3-4 days.  

 

5.5. HUMAN ARTICULAR CHONDROCYTES ENCAPSULATION IN GELLAN GUM 

HYDROGELS (IN VIVO TESTS) 

Human articular chondrocytes were expanded and encapsulated at passage 2 in gellan gum 

hydrogels (Chapter VIII) using the following procedure. Briefly, gellan gum powder was mixed 

with sterile distilled water under constant stirring at room temperature to obtain a final 

concentration of 1.25% (w/v). The solution was progressively heated to 90ºC and kept at this 

temperature for 20-30 minutes. The temperature was progressively decreased to 42ºC and 

stabilised always under constant stirring. Human articular chondrocytes were detached by 

trypsinisation, mixed with culture medium, and centrifuged at 1200 rpm for 8 min. The 

supernatant was removed and the cells were ressuspended in sterile PBS solution, counted using 

and hemocytometer, and finally centrifuged as before. The cell number was calculated so that the 

final concentration after encapsulation was of 5x106 cells/ml. The supernatant was discarded and 

the cells pellet kept at the bottom of the tube were ressuspended in PBS. The gellan gum 1.25% 

(w/v) solution was extensively mixed with the chondrocytes suspension for complete 

homogeneous dispersion within the gel. Gellan gum with the encapsulated cells was allowed to 

gel in a cylindrical mould for 2-3 minutes. Discs of Ø 3 mm x 3 mm height were cut using a sterile 

blade and kept in sterile PBS before the implantation procedure. Gellan gum discs with no cells 

encapsulated were also prepared using the same procedure and used as controls. 

 

 

6. IN VIVO IMPLANTATION 

 

6.1. SUBCUTANEOUS IMPLANTATION OF GELLAN GUM HYDROGELS IN MICE  

As part of the work described in chapter VII, gellan gum discs were prepared under sterile 

conditions following a methodology described.29 Gellan gum 1% (w/v) (Ø 6±0.01 mm x 5.5±0.46 

mm height) discs were subcutaneously implanted in the dorsal part of Balb/c mice (2-3 months 
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with an average weight of 20 g) during periods of up to 21 days. Six female mice were used (2 for 

each period of implantation). Each animal was anaesthetized with a mixture of 5:1 Imalgene® 

1000 (Merial Toulouse, France) and Domitor® (1.25 mg/mouse, and 25 µg/mouse, respectively) 

prepared in physiological serum. Under surgical sterile conditions, 2 medial and ventral incisions 

(approximately 0.7 cm) containing the subcutis and the Panniculus Carnosus (skin smooth 

muscle) were performed in the dorsum of the mice. Craniolateral oriented pockets (2 per incision) 

were subcutaneously created by blunt dissection. Into these pockets, the Gellan gum discs were 

inserted (4 discs per animal) and the Panniculus carnosus and the skin were carefully sutured. 

The animals were kept with food and water ad libitum during all time of implantation.  

 

6.2. SUBCUTANEOUS IMPLANTATION OF GELLAN GUM HYDROGELS WITH 

ENCAPSULATED HUMAN ARTICULAR CHONDROCYTES IN NUDE MICE  

Gellan gum hydrogels discs with encapsulated human articular chondrocytes were 

subcutaneously implanted in the back of nude mice, wihtin the work described in chapter VIII. Six 

4-week-old female Balb/C nude mice female with an average weight of 20 g (Charles River 

Laboratories Inc. USA) were anaesthetized with a mixture of ketamine (1.2 mg/mouse s.c., 

Imalgene® 1000, Merial, Lyon, France) and medetomidine (20 µg/mouse s.c., Domitor®, Orion 

Corp., Finland) prepared in physiological serum. After the confirmation of analgesia/anaesthesia 

two incisions were performed (reaching a maximum of 1.5 cm each) being one in the 

intrascapular region and another in the lumbar region. With the help of a forceps two side pockets 

were created through each of the incisions and gellan gum discs with encapsulated chondrocytes 

and with no encapsulated cells (control) were subcutaneously implanted. Four discs were 

implanted per animal, being two on the anterior region and other two on the posterior region. The 

incision sites were sutured and the mice transferred to heating recovery compartments and when 

the recovery from analgesia/anaesthesia was confirmed they were returned to their respective 

compartments and kept under food and drink ad libitum. After 1 week and 4 weeks post 

implantation, mice were euthanized (n=3 for each time point) by exposure to a saturated carbon 

dioxide environment and the gellan gum discs were surgically recovered and processed for 

histological analysis, biochemical, and molecular analyses.  

 

6.3. IN VIVO INJECTION IN RABBIT ARTICULAR CARTILAGE DEFECTS OF GELLAN GUM-

CELLS SYSTEMS  
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Chondrogenic pre-differentiated rabbit adipose tissue derived progenitor cells (ASC + GF), non 

chondrogenic pre-differentiated rabbit adipose tissue derived progenitor cells (ASC) and rabbit 

articular chondrocytes (AC) were expanded until an adequate cell number was obtained for cells 

encapsulation and used at passage 2 under the following procedure (chapter IX). Gellan gum 

powder was mixed with sterile distilled water under constant stirring at room temperature to 

obtain a final concentration of 1.25% (w/v). The solution was progressively heated to 90ºC and 

kept at this temperature for 20-30 minutes. The temperature was progressively decreased to 

42ºC and stabilised always under constant stirring. Articular cartilage full-thickness defects with a 

diameter of 4 mm were created in the medial septum of rabbit femur condyles. A 1 mm diameter 

hole was drilled to the subchondral bone in order to establish a link between the implant site and 

the subchondral bone marrow (Figure 1). Briefly, the rabbits were pre-anaesthetized with 

ketamine (25 mg/kg i.m., Imalgene® 1000, Merial, Lyon, France) and medetomidine (0.15 ml/kg 

i.m., Domitor®, Orion Corp., Finland). After the confirmation of analgesia/anaesthesia the rabbits 

were subjected to tricotomy in the joint area of the right posterior leg and disinfected with 

chlorhexidine (Lifo-Scrub®, B. Braun Melsungen AG, Germany). Incisions were performed 

through the skin and muscle to access the articular capsule. The defects were created as detailed 

in Figure 1. The isolated cells were detached by trypsinisation, mixed with culture medium, and 

centrifuged at 1200 rpm for 8 min. The supernatant was removed and the cells were 

ressuspended in sterile PBS solution, counted using and hemocytometer, and finally centrifuged 

as before. The cell number was calculated so that the final concentration after encapsulation was 

10x106 cells/ml. The supernatant was discarded and the cells pellet kept at the bottom of the tube 

were ressuspended in a small amount of PBS. The gellan gum 1.25% (w/v) solution was mixed 

with the cell suspension for complete homogeneous dispersion within the gel and the mixture 

injected into the defect. A waiting time of 2-3 minutes was given for the gels to form in situ. 

Defects were also filled with gellan gum with no encapsulated cells and other defects were left 

empty. The experiments were conducted for periods of up to 8 weeks with data collection points 

at 1 week, 4 weeks, and 8 weeks. All test groups were performed in triplicates, except for rabbit 

articular chondrocytes which were performed in duplicates for each time point. The incision sites 

were sutured and the rabbits transferred to heating recovery compartments and when the 

recovery from analgesia/anaesthesia was confirmed they were returned to their respective 

compartments and kept under food and drink ad libitum without movement restrictions. At the 

established time points, the animals were euthanized by endovenous injection of an overdose of 

pentobarbital sodium (Eutasil® Ceva Sante Animale, France) and the defect sites were surgically 
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exposed. These were subjected to macroscopic observation and afterwards processed for 

histological and molecular analyses.  

 

Articular cartilage 
full-thickness defect

Subchondral drill

Implantation site Rabbit articular cartilage 

Articular cartilage 
full-thickness defect

Subchondral drill

Implantation site Rabbit articular cartilage 

 

 

Figure II.1. Schematic representation of the articular cartilage defect created in the rabbits 

femoral condyles. 

 

 

7. BIOLOGICAL EVALUATION 

 

7.1. CELLULAR VIABILITY BY MTS TEST 

The MTS test was performed in Chapter III to evaluate the viability of the cells seeded on the 

scaffolds at the different time periods, specifically 1, 2 and 3 weeks. Briefly, the procedure is as 

follows: the cell seeded C-PBS scaffolds (n=3) were rinsed in 0.15M phosphate-buffered saline 

(Sigma, St. Louis, MO) and immersed in a mixture consisting of serum-free cell culture medium 

and MTS reagent at 5:1 ratio. Incubation for 3h at 37ºC in a humidified atmosphere containing 5% 

CO2 followed. After this, 100 µl were transferred to 96 well plates and the optical density (OD) 

determined at 490 nm. Controls consisting of scaffolds without any cells seeded were also used. 

Statistical analyses were conducted using a two-sample t-test assuming unequal variances for 

n=3; α=0.05. 

 

7.2. CELL VIABILITY BY FLUORESCENT DYES 

Cells viability during culturing was assessed using calcein AM staining in chapters VI and VII. 

Calcein AM (C3099, Invitrogen Corp.) is a fluorescence-based method for assaying cell viability 

and cytotoxicity in which the reagent is retained in cells that have intact membrane. Briefly, a 

calcein AM solution of 1/1000 was prepared in culture medium. One disc of each type of hydrogel 

with encapsulated chondrocytes was collected from the culturing plates and incubated in the 
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calcein AM solution for 15-30 min at 37ºC and afterwards washed in sterile PBS. For the samples 

of the work described in chapter VII, DAPI (4',6-diamidino-2-phenylindole), a fluorescent stain that 

binds strongly to DNA was used for counterstaining. The samples were observed under 

fluorescent microscopy (Zeiss HAL 100/HBO 100; Axiocam MRc5 (Zeiss).  

 

7.3. CELL ADHESION AND MORPHOLOGY BY SCANNING ELECTRON MICROSCOPY (SEM) 

Cell adhesion, morphology and average distribution were observed by SEM analysis in chapter 

III. The cell-scaffold constructs were washed in 0.15M phosphate-buffered saline and fixed in 

2.5% glutaraldehyde (in phosphate-buffered saline). The constructs were then rinsed three times 

in phosphate-buffered saline, and subjected to a series of ethanol increasing conditions (30, 50, 

70, 90, 100% ethanol), 10-15 minutes each, to allow dehydration of the samples. The samples 

were let to air dry afterwards, and then sputter coated with gold (JEOL JFC-1100) and analyzed 

with a Leica Cambridge S360 scanning electron microscope.  

Scanning electron microscopy analysis was also applied in the works described in chapters IV 

and V in the following way. The tissue engineered constructs were washed in sterile PBS and 

immersed in 3% glutaraldehyde with 0.1 M cacodylate buffer pH 7.4) (AGAR) at room 

temperature for one hour. They were further washed three times in 0.1 M cacodylate buffer pH 

7.4, and post fixed in 1% aqueous solution of osmium tetroxide for one hour. Finally, they were 

dehydrated in alcohols and let to dry. The samples were sputter coated with gold and observed 

using a Phillips XL-20 scanning electron microscope.  

 

7.4. HISTOLOGICAL ANALYSIS 

Several histological techniques were applied within the course of the works described in this 

thesis. As part of the work performed within chapters IV and V, the constructs were included in 

Optimal Cutting Temperature gel (OCT) (OCT compound BDH, Gurr®), frozen using liquid 

nitrogen and isopentane, stored at -20ºC for posterior cryosectioning. Tissue sections of 8 µm 

were taken and fixed using fresh 4% paraformaldehyde (Sigma, Co.). The slides were then 

washed in distilled water, let to dry and stored at 4ºC until the staining was performed. 

Hematoxylin-eosin stain was conducted in an automatic machine (Fume Cupboard; 

X219/E11/LEV1). In this procedure, the slides are stained in hematoxylin for a suitable time, 

optimised according to in-house procedures. The sections are washed in running tap water for 5 

minutes or less, and afterwards differentiated in 1% acid alcohol, for 5-10 seconds. The slides are 

washed again in tap water for 5 minutes or less, and stained in 1% eosin for 10 minutes. They are 

again washed in tap water for 5 minutes, and dehydrated through alcohols and mounted in DPX 
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(Fluka/Sigma Co.). Toluidine blue staining was performed using standard histological methods in 

the following way. One drop of 1% toluidine blue was placed on each section for 2-3 seconds. 

Alcian blue staining was performed by rinsing the sections in 3% acetic acid and staining withy 

1% alcian blue for 18 hours. Counterstaining was conducted with neutral red for 1 min. The 

sections were rinsed with distilled water. Dehydration through alcohols followed and the sections 

were then left to dry overnight, and mounted in DPX. 

Within the works described in chapters VI and VII, samples were included in a methacrylate 

based compound for histological analysis. Hematoxylin-eosin (H&E), alcian blue and safranin-O 

staining on 4 µm thickness sections of the cell-scaffold constructs collected at different periods of 

culture. The samples were fixed in glutaraldehyde 2.5% (v/v), for 30-40 minutes at 4ºC and 

washed in PBS. Histological processing was performed using Tecnhovit 7100® (Heraeus Kulzer 

GmbH, DE) following the commercial procedure. Sections were cut using a microtome Leica 

RM2155 (Leica Microsystems, Nusslock GmbH). H&E staining was performed using automatic 

processor (Leica Auto Stainer XL) according to in-house methodology (Leica TP1020-1, Leica 

MicroSystems GmbH). Histological staining with alcian blue and safranin-O was performed using 

standard histological methods. The slides were afterwards washed 3 times in distilled water, 

quickly dehydrated through 95% and 100% ethanol and then cleared in Histoclear® (National 

Diagnostics) and mounted using Microscopy Entellan® (Merck) for observation.  

In chapters VII, VIII and IX, paraffin embedding of the samples was applied for histological 

analysis. Common histological analysis was performed on 4 µm thickness sections of the 

explants collected at different periods of culture. Hematoxylin-eosin (H&E) was conducted to 

observe general cell morphology and overall distribution, and alcian blue was performed to 

evaluate extracellular matrix components deposition, namely proteoglycans 

(glycosaminoglycans). Briefly, the constructs were carefully dissected from the subcutaneous 

tissue of nude mice and collected in eppendorf tubes. They were immediately fixated in formalin 

for 30-40 minutes and washed in PBS. Histological processing was conducted by dehydrating the 

samples in increasing ethanol concentrations, embedding them in paraffin and cutting sections for 

posterior analysis using a microtome Leica RM2155 (Leica Microsystems, Nusslock GmbH). H&E 

staining was performed using an automatic processor according to in-house methodology (Leica 

TP1020-1, Leica MicroSystems GmbH) and alcian blue staining was performed using standard 

histological methods. The slides were washed afterwards in distilled water, dehydrated through 

increasing ethanol concentrations, and finally cleared in xylene substitute and mounted using 

Microscopy Entellan® (Merck & Co., Inc., USA) for observation.   
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7.5. HISTOLOGICAL SCORING (PINEDA SCORING SYSTEM) 

The Pineda scoring system was used for histological evaluation of the explants collected after 

determined implantation periods in the work described in chapter IX.30 The degree and the quality 

of healing in all defects was assessed and scored blindly by 3 independent researchers. The 

graded parameters included filling of defect, reconstruction of osteochondral junction, matrix 

staining, and cell morphology. The maximum possible score in the Pineda scoring system is 0 

points with a minimum of 14 points. Detailed information can be found in Table 1.  

 

Table II.1. Cartilage repair score by Pineda and co-workers.30 

Characteristics score

Filling of defect

125% 1

100% 0

75% 1

50% 2

25% 3

0% 4

Reconstruction of osteochondral junction

Yes 0

Almost 1

Not close 2

Matrix staining

Normal 0

Reduced staining 1

Significantly reduced staining 2

Faint staining 3

No stain 4

Cell morphology

Normal 0

Most hyaline and fibrocartilage 1

Mostly fibrocartilage 2

Some fibrocartilage, but mostly nonchondrocytic cells 3

Nonchondrocytic cells only 4
 

 

7.6. QUANTIFICATION OF PROTEOGLYCAN CONTENT 

Proteoglycans are key components of the cartilage extracellular matrix being crucial for the 

mechanical functionality of the tissue. The 1,9-dimethylmethylene blue (DMB) metachromatic 
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assay is a standard procedure to quantitatively assess the production of these molecules and 

was performed based on previous descriptions on the works presented in chapters IV, V, and 

VIII.31 Proteoglycans were determined by measuring the level of sulfated glycosaminoglycans 

(GAGs). GAG levels can be quantified in solution using DMB since the mechanical entanglement 

of this reagent with GAGs generates a peak shift at A525-530 that can be measured 

spectrophotometrically. Briefly, the constructs were carefully collected in eppendorf tubes. The 

samples were grinded with a mortar and pestle and immersed in a digestion solution with papain 

and N-acetyl cysteine at 60ºC for approximately 3 hours. The tubes were centrifuged at 13,000 

rpm for 10 minutes and the supernatant was collected for biochemical analysis. A chondroitin 

sulfate standard solution was prepared in water and kept at 4ºC. The samples and the chondroitin 

sulfate standards were placed in a 96 well round-bottomed plate, DMB solution was added to 

each well, and the optical density was measured using a microplate reader at 530 nm. Statistical 

analyses were conducted using a two-sample t-test assuming unequal variances for n=3. Small 

variations were performed on the incubation times depending on the type of sample analysed. 

 

7.7. REALTIME PCR ANALYSES 

The experimentakl work within chapters VII, VIII, IX, involved the use of molecular approaches to 

study the transduction of cartilage specific markers during the time of the studies. Realtime PCR 

is semiquantitative/quantitative method that measures in real time the quantity of a given 

codifying molecule in a sample, enabling to determine their regulatory profile, that can be up or 

downregulated, or alternatively exhibit no significant variation. Within the works shown in chapters 

VII to IX, samples were collected at defined time periods, quickly frozen in liquid nitrogen, and 

stored at −80°C until the analysis was performed. RNA was extracted using TRIzol® (Invitrogen) 

according to the provided technical datasheet. Briefly, 3 samples of each condition were grinded 

and mechanically homogenized with a mortar and pestle in TRIzol reagent, being each condition 

performed in duplicate. Afterwards, chloroform was added and the samples centrifuged to 

establish a three-phase composition in the tube. The aqueous phase was collected and put in a 

new tube where isopropanol was added. The samples were centrifuged, the supernatant 

discarded and the pellet washed with 75% ethanol. After a final centrifugation the samples were 

allowed to air-dry, and suspended in ultrapure water for posterior analysis. The amount of 

isolated RNA and A260/280 ratio was determined using Nanodrop ND-1000 Spectrophotometer 

(NanoDrop Technologies). After these determinations, 1µg of RNA of each sample was reverse 

transcribed into cDNA using the IScriptTM cDNA synthesis kit (Biorad) in a MJ MiniTM Personal 

Thermal Cycler (Biorad). Cartilage related markers were chosen to evaluate the chondrogenic 
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phenotype of the cultured systems. These included Sox9, collagen type I, collagen type II, 

collagen type X, and aggrecan, using GAPDH as the housekeeping gene for normalization. The 

expression of each gene was normalized to the GAPDH value in that sample. The relative gene 

expression quantification was performed using the 2-∆∆Ct (Livak) method,32 considering that: 

 

2-∆∆Ct = Normalized expression ratio 

 

All the primer sequences were generated using Primer3™ software33 and acquired from MWG 

Biotech™. More details can be found in Table 1. Real-time PCR was performed using an MJ 

MiniTM Personal Thermal Cycler (Biorad) machine and SYBR Green IQTM Supermix (Biorad) to 

detect amplification variations. The analysis of the results was performed with MJ Opticon Monitor 

3.1 software (Biorad). Some changes were performed in independent works in relation to the 

analytical apparatus.  

 

7.8. IMMUNOLOCALISATION OF COLLAGEN TYPE I AND TYPE II  

Collagen types I and II were detected immunohistochemically (chapters IV and V) using 

monoclonal antibodies against collagen types I and II (Southern Biotechnology, UK), as 

previously described31. Briefly, fixed sections were washed with PBS and pre-treated with 

hyaluronidase (10 mg/ml), followed by pronase (2 mg/ml). The slides were washed thoroughly in 

PBS and treated with 3% hydrogen peroxide in 50% methanol, followed by washing in Tris-

buffered saline (TBS) and blocking with 3% bovine serum albumin (BSA). Incubation with the 

primary antibody (collagen type I and collagen type II) (UNLB) followed. The remaining protocol is 

as described in the Vectastain Elite ABC Kit PK-6105 (Vector Laboratories Ltd, UK) and in the 

Vector DAB Kit (Vector Laboratories Ltd, UK). The slides were washed in water for 5 minutes, 

counterstained with Mayer’s haematoxylin, and mounted with DPX mounting medium. Controls 

were performed using normal goat serum instead of the primary antibodies, which was included 

in the kit. Polyglycolic acid (PGA) non-woven scaffolds (Albany international, Bury, Lancashire, 

UK) were used as controls. 

The work presented in chapter VIII exhibited slight variations when compared with this procedure 

as described above. Collagen types I and II were detected immunohistochemically with 

monoclonal antibodies against collagen types I and II (Southern Biotechnology, UK) using the 

Vectastain® Universal Elite ABC Kit PK-7200 (Vector Laboratories Ltd, UK) and DAB Substrate 

Kit for Peroxidase SK-4100 (Vector Laboratories Ltd, UK) according to the suppliers indications. 

Briefly, paraffin sections on the collected explants were deparaffinised and hydrated through 
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decreasing ethanol concentrations. The sections were treated with 3% hydrogen peroxide in 50% 

methanol for 5 minutes, washed in PBS buffer, and incubated in pre-diluted blocking serum. The 

incubation with the primary antibodies and negative control followed (collagen type I 1:100; 

collagen type II 1:20, normal horse serum 1:100). The remaining protocol is as described in the 

Vectastain® Elite ABC Kit. The sections were further incubated with the DAB substrate at room 

temperature until suitable staining develops according the suppliers indications. The sections 

were counterstained with neutral red, dehydrated through increasing ethanol concentrations, and 

finally cleared in Xylene substitute ® (National Diagnostics) and mounted using Microscopy 

Entellan® (Merck) for observation.  

 

7.9. WESTERN BLOT FOR COLLAGEN TYPE II  

Production of collagen type II by the cell-scaffold systems described in the work presented in 

chapter III was analysed by western blotting. For the protein extraction, the cell-scaffold 

constructs (n=3) were washed in 0.15 M phosphate-buffered saline, lysed in 750 µl of lysis buffer 

(20 mM Tris, 1 mM EDTA, 150 mM NaCl, and Triton X-100), and sonicated three times at 40 kV 

(15 s). After sonication the C-PBS scaffolds were removed and the resulting suspension was 

centrifuged for 10 min at 13000 rpm, 4ºC at the end of which the formed pellet was discarded. 

The supernatants containing the protein fraction were stored for quantification. Western blot was 

performed using the protein extracts collected at 3 weeks. A 5% stacking polyacrylamide gel 

(30% acrylamide mix; 1.0 MTris (pH 6.8); 10% SDS; 10% ammonium persulfate; TEMED) and a 

8% resolving gel (30% acrylamide mix; 1.5 M Tris (pH 8.8); 10% SDS; 10% ammonium 

persulfate; TEMED) were prepared. The collected supernatant was heated at 100ºC for 5 minutes 

in the water bath and then an aliquot (15.64 µl) was loaded in the gels and subjected to 

electrophoresis (30 mA, 3 hours), and electrotransferred to a Hybond P membrane (Amersham 

Biosciences, Piscataway, NJ). Afterwards, the membrane was washed in phosphate-buffered 

saline-T, submerged in Coomassie blue (isopropyl alcohol 0.25% (v/v); acetic acid 0.1% (v/v); 

Coomassie Brilliant Blue R250 (CBB) 2 g/L, and left overnight. The membrane was washed in 

Ponceau solution and the transfer from the gel to the membrane was visually confirmed. 

Membranes were then incubated with a blocking solution of 5% (wt/v) powdered milk in TBS (Tris 

base 2.42 g/L; NaCl 8 g/L; HCl 3.8 g/L) with Triton X-100 0.002% (v/v), for 1 hour under constant 

stirring, at room temperature. Incubation with an equal solution followed, but altering the 

powdered milk concentration to 2.5% (wt/v). This solution also included the primary antibody 

against collagen type II (University of Iowa, Iowa City, IA) at a 1:500 dilution. The membrane was 

left overnight with constant stirring, at 4ºC. The membrane was then washed three times in 
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phosphate-buffered saline-T under stirring, and incubated with the secondary antibody (1/1000) 

for 1 hour at room temperature, under stirring. The secondary antibody was diluted in the same 

solution as the one described above for the primary antibody. The membranes were washed 

three times in phosphate-buffered saline-T and passed to a phosphate-buffered saline solution. 

The immune complex was detected by incubation of the membrane as described in SuperSignal® 

Pico Chemiluminescent Substrate kit (Pierce, Rockford, USA). 

 

8. STATISTICAL ANALYSIS 
 
Statistical analyses were conducted using Student’s two tailed t-test assuming unequal variances 

and ρ-values below 0.05 were considered statistically significant. Regarding specific dynamic 

mechanical analyses and rheological measurements, statistical analysis were performed using 

confidence intervals based on the experimental results, with a confidence level of 99%. 
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CHAPTER III. 
 
Assessment of the Suitability of Chitosan/PolyButylene Succinate Scaffolds Seeded with Mouse 

Mesenchymal Progenitor Cells for a Cartilage Tissue Engineering Approach* 

 
 
 
ABSTRACT 
 
In this work, scaffolds derived from a new biomaterial originated by the combination of a natural 

and a synthetic material, were tested for assessing their suitability for cartilage tissue engineering 

applications. In order to obtain a better outcome result in terms of scaffolds overall properties, 

different blends of natural and synthetic materials were created and details regarding this may be 

found elsewhere.1 Chitosan and polybutylene succinate 50/50 (wt%) were melt blended using a 

twin screw extruder and processed into 5x5x5mm scaffolds (C-PBS) by compression moulding 

with salt leaching. Micro-computed tomography (µ-CT) analysis estimated an average of 66.29% 

porosity and 92.78 % interconnectivity degree for the presented scaffolds. The salt particles used 

ranged in size between 63-125 µm, retrieving an average pore size of 251.28 µm. Regarding the 

mechanical properties, the compressive modulus was of 1.73±0.4 MPa (Esec 1%). Cytotoxicity 

evaluation revealed that the leachables released by the developed porous structures were not 

harmful to the cells and hence were non cytotoxic. Direct contact assays were carried using a 

mouse bone marrow derived mesenchymal progenitor cell line (BMC9). Cells were seeded at a 

density of 5x105cells/scaffold and allowed to grow for periods up to 3 weeks, under chondrogenic 

differentiating conditions. Scanning electron microscopy (SEM) analysis revealed the cells were 

able to proliferate and colonize the scaffolds structure, and MTS test demonstrated cell viability 

during the time of the experiment. Finally, western blot performed for collagen type II, a natural 

cartilage extracellular matrix component, showed that this protein was being expressed by the 

end of 3 weeks, which seems to indicate that the BMC9 cells were being differentiated towards 

the chondrogenic pathway. These results indicate the adequacy of these newly developed C-PBS 

scaffolds for supporting cells growth and differentiation towards the chondrogenic pathway, 

suggesting they should be considered for further studies in the cartilage tissue engineering field.  
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_____________________________________________________________________________ 
 
* This chapter is based on the following publication: 

JT Oliveira, VM Correlo, PC Sol, AR Costa-Pinto, PB Malafaya, AJ Salgado, M Bhattacharya, P 

Charbord, NM Neves, RL Reis. Assessment of the Suitability of Chitosan/PolyButylene Succinate 

Scaffolds Seeded with Mouse Mesenchymal Progenitor Cells for a Cartilage Tissue Engineering 

Approach. Tissue Engineering Part A. October 1, 2008, 14(10): 1651-1661. 

_____________________________________________________________________________ 
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1. INTRODUCTION 
 
Trauma and disease of bone and joints, frequently involving structural damage to both the 

articular cartilage surface and the subchondral bone, result in severe pain and disability for 

millions of people worldwide. Such problems were initially addressed by performing different 

surgical procedures, which included debridement, drilling, abrasion arthroplasty, and 

microfracture.2,3 Some of these clinical experiments turned out to be successful in some cases, 

and are still being performed in hospitals and clinics throughout the world, but most of their 

outcomes are variable and dependent on a wide range of factors that can limit its widen 

application.4,5  

Tissue engineering was brought up as a new way to address these problems and grew as a new 

field of knowledge not only in cartilage regeneration but also in several other types of tissue.6-8 

The fundamental goal of tissue engineering is to develop biological substitutes that restore, 

maintain or improve tissue function and to apply these to clinical scenarios where tissue is lost 

through trauma or disease.9 The cells support structure – a scaffold, should serve as a three-

dimensional template for initial cell attachment and subsequent tissue formation, both in vitro and 

in vivo. It must not trigger strong immunological responses nor cause severe cytotoxicity effects, 

and should present mechanical properties similar to the tissue of interest.6  

Scaffolds are made of materials that can be broadly divided into synthetic and natural.10,11 

Synthetic polymers include the polylactides, such as polylactic acid (PLA)10 and polyglycolic acid 

(PGA),12 although a wide range of others such as polyethylene oxide (PEO),13 poly(lactic-co-

glycolic) PLGA,14 and poly-2-hydroxyethyl methacrylate (PHEMA)15 exist. Even though they 

possess some controllable and advantageous features, such as reproducible manufacturing at a 

large scale and controlled degradation time, they also have several disadvantages, like the lack 

of cell-recognition signals. Furthermore, specific features of some polymers, like the acidic by-

products release by PLA for example, pose additional difficulties to their use.16  

Natural origin materials seem to overcome some of those limitations.17,18 Most of them are normal 

components of the tissue to be regenerated, possess specific sites for cell recognition, and share 

some similarities with the native tissue components.19-21 Collagen,20 hyaluronic acid,19 

chitosan,11,21 and starch,22 are examples of those materials. The conjugation of natural and 

synthetic materials in the fabrication of a scaffold taking advantage of the individual features of 

each one is a strategy that has been tried by different research groups. Chen et al. produced a 

hybrid mesh of PLGA and collagen that enabled the aggregation of mesenchymal stem cells and 

provided them with a microenvironment that allowed chondrogenic differentiation to occur.23  In 
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another study, Wang et al fabricated a hybrid matrix based on polyglycolide and chitosan that 

allowed fibroblast proliferation and revealed promising for further tissue engineering 

applications.24 

In this work, scaffolds of a blend of chitosan, a natural polymer derived from the deacetylation of 

chitin, and polybutylene succinate, a synthetic polymer, were produced and put through 

preliminary in vitro tests. The rationale is to combine the biological properties of chitosan with the 

mechanical support conferred by polybutylene succinate expecting this will render a better 

performance to the tissue engineered construct once implanted. Chitosan is a partially 

deacetylated derivative of chitin, which is the primary structural polymer in arthropod 

exoskeletons, shells of crustaceans, and the cuticles of insects.25 Chitosan is a semi-crystalline 

polysaccharide that is normally insoluble in aqueous solutions above pH 7. However, in dilute 

acids (pH 6), the free amine groups are protonated and the molecule becomes soluble. This pH-

dependent solubility provides a convenient mechanism for processing under mild conditions.26 

Chitosan is reported to be non-toxic, biodegradable and biocompatible27, and has structural 

similarities to glycosaminoglycans, which are structural components of the cartilage extracellular 

matrix.28 It serves different applications and its use ranges from the food industry to the 

biomedical and pharmaceutical fields.29,30 Polybutylene succinate (PBS) is one of the most 

accessible biodegradable polymers, and has been extensively studied for its potential use as a 

future conventional plastic, serving also as a support for different approaches in the medical 

field.31,32 It is an aliphatic polyester presenting good processability and flexibility, and having 

degradation products that are non-toxic and can enter the metabolic cycles of bioorganisms. Its 

conjugation with chitosan aims at providing mechanical support to the scaffold, which should be 

advantageous considering the clinical scenario of constant load-bearing efforts in articular 

cartilage. Little research has been conducted in the melt blending of synthetic polyesters and 

chitosan,27 and the preliminary results described herein for their use as potential scaffolds for 

cartilage regeneration are important. The herein developed C-PBS scaffolds were seeded with 

cells originated from a mouse mesenchymal stem cell line (BMC9)33 and cultured under 

chondrogenic inductive conditions, in order to assess their suitability for cartilage tissue 

engineering approaches. 

 

 

2. MATERIALS AND METHODS 
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2.1. SCAFFOLDS PRODUCTION AND PROCESSING 

 

The chitosan/polybutylene succinate 50/50 (%wt) blend was compounded in a twin screw 

extruder. The details of the processing conditions are summarized elsewhere.27 The methodology 

used for the scaffolds production was based on compression moulding followed by salt leaching. 

Before using it in the scaffolds processing, the salt was grinded and sieved to obtain particles with 

size between 63 µm<d<125 µm. The compounded polymeric blend was ground, mixed with salt 

and compression molded into discs. The salt content was 80% by weight. The discs were cut into 

5x5x5 mm cubes. These cubes were then immersed in distilled water to leach out the salt, dried, 

and used for cell culture and proliferation studies after sterilization by ethylene oxide. 

 

 

2.2. SCAFFOLDS CHARACTERIZATION 

 

The C-PBS scaffolds structure was analysed by scanning electron microscopy (SEM) using a 

Leica Cambridge S360 (Leica Cambridge, Cambridge, UK). Micro-computed tomography 

equipment (SkyScan, Belgium) was used for more detailed analysis of the morphology of the 

developed scaffolds and CT Analyser and CT Vol Realistic 3D Visualization were used as image 

processing softwares, both from SkyScan (Belgium), were used as image processing tools. 

Uniaxial compression tests were performed to assess the mechanical properties of the scaffolds 

(dry state) using a Universal tensile testing machine (Instron 4505 Universal Machine). The 

details regarding these methods are presented elsewhere.1  

 

 

2.3. IN VITRO CYTOTOXICITY TESTS 

 

To assess the short-term cytotoxicity of the developed C-PBS scaffolds, minimum essential 

medium (MEM) extraction and 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2(4-

sulfofenyl)-2H-tetrazolium (MTS) tests, both within a 24 h extraction period, according to ISO/EN 

10993 part 5 guidelines34 were used, in order to establish the possible toxic effects of leachables 

released from the scaffolds during extraction. Latex rubber was used as positive control for cell 

death due to its high cytotoxicity to cells, and culture medium was used as a negative control 

representing the ideal situation for cell proliferation. The results are presented after normalisation 

wuth the negative control. The objectives of the MEM extraction test are to evaluate changes in 
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cell morphology and growth inhibition, whereas the MTS test determines whether cells are 

metabolically active.  

 

2.3.1. CELL CULTURE 

A rat lung fibroblasts cell line – L929-, acquired from the European Collection of Cell Cultures 

(ECACC), was used. The cells were grown as monolayers in Dulbecco’s modified Eagle’s 

medium (DMEM; Sigma, St. Louis, MO) supplemented with 10% foetal bovine serum (FBS; 

Biochrom, Berlin, Germany) and 1% of an antibiotic-antimycotic mixture (Sigma, St. Louis, MO). 

Trypsin (Sigma, St. Louis, MO) was used to detach the cells from the culture flasks before the 

experiments were conducted. 

 

2.3.2. MEM EXTRACTION TEST 

The ratio of material weight to extract fluid was constant and equal to 0.2g/ml for porous samples. 

For the positive control the ratio of material outer surface to extraction fluid was 2.5 cm2/ml. Test 

material (n=6) and positive control were extracted for 24h at 37ºC, using complete culture 

medium as extraction fluid. Before the tests, culture medium was removed from the wells and an 

identical volume (2 ml) of extraction fluid was added. For the MEM extraction test, the cells were 

seeded in 24 well plates (n=3) at a density of 1.25x105 cells/well. They were incubated for 24h at 

37ºC, in a humidified atmosphere with 5% CO2 after this. Cell response was evaluated after 24, 

48, and 72h of incubation. Confluence of the monolayer, degree of floating cells, and changes in 

morphology were analyzed by visual observation. After 72h, the percentage of growth inhibition 

was determined by cell counting with a haemocytometer and trypan blue exclusion method. Final 

measurements were corrected for the negative control. 

 

2.3.3. MTS TEST 

For the MTS test, cells were seeded in 96 well plates (n=6) at a density of 1.8x104cells/well. They 

were incubated for 24h at 37ºC, in a humidified atmosphere with 5% CO2 after this. As referred, 

the MTS was performed to evaluate the cytotoxic effects of the developed scaffolds. A kit 

CellTiter 96 One solution Cell Proliferation Assay kit (Promega, Madison, WI) was used. It is 

based on the bioreduction of the substrate, 3-(4,5-dimethylthiazol-2-yl)-5(3-

carboxymethoxyphenyl)-2(4-sulfofenyl)-2H-tetrazolium (MTS), into a brown formazan product by 

dehydrogenase enzymes in metabolically active cells, and is commonly used for cell viability 

evaluation. Briefly, the procedure was conducted as follows: the extraction procedure was the 

same described previously for the MEM extraction test, using 200 µl of extraction fluid per well. 
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After 72 h, the extraction fluid was removed and 200 µl of a mixture containing serum-free culture 

medium without phenol red, and MTS was added to each well. Cells were then incubated for 3h 

at 37ºC in a humidified atmosphere containing 5% CO2. After this time, optical density (OD) was 

measured with a plate reader (Molecular Devices, SunnyVale, CA) at 490 nm. The mean OD 

value obtained was standardized taking into account the values for the negative control. 

Statistical analyses were conducted using a two-sample t-test assuming unequal variances for 

n=3; α=0.05. 

 

 

2.4. DIRECT CONTACT ASSAYS 

 

2.4.1. CELL SEEDING AND CULTURING 

For the direct contact assays, a mouse mesenchymal progenitor cell line (BMC9) was used. The 

BMC9 cell line has been shown to exhibit four mesenchymal cell phenotypes: chondrocytic, 

adipocytic, stromal (supports osteoclasts formation), and osteoblastic.33 The cells were grown as 

monolayer cultures in a culture medium consisting of α-MEM medium (Sigma, St. Louis, MO), 

10% Foetal Bovine Serum (FBS), and 1% A/B (penicillin G sodium 10000 U/ml, amphotericine B 

(Fungizone) 25 µg/ml, streptomycin sulfate 10000 µg/ml, in 0.85% saline). When the adequate 

cell number was obtained, cells at passage 9 (P9) were trypsinized, centrifuged, and 

ressuspended in cell culture medium. Cells were seeded at a density of 5x105cells/scaffold 

(5x5x5mm3) under static conditions, using for this purpose aliquots of 15 µl loaded on top of the 

scaffolds that had been previously placed in 24 well culture plates. Two hours after seeding, 1 ml 

of culture medium was added to each well and the cell seeded scaffolds were allowed to develop 

for periods up to 3 weeks, in a humidified atmosphere at 37ºC, containing 5% CO2, under 

chondrogenic differentiation inducing medium. This culturing medium consisted of DMEM (Sigma, 

St. Louis, MO), dexamethasone (Sigma, St. Louis, MO) 1.0x10-4 M, sodium pyruvate (Sigma, St. 

Louis, MO) 1.0x10-3 M, ascorbate-2-phosphate (Sigma, St. Louis, MO) 0.17 mM, proline (Sigma, 

St. Louis, MO) 0.35 mM, ITS 1X (Sigma, St. Louis, MO), and hBMP-2 (R&D BioSystems, CA) 

100ng/ml. The culture medium was changed every 3 to 4 days until the end of the experiment. 

 

2.4.2. CELLULAR VIABILITY BY MTS TEST 

The principle of the MTS test has been already previously described in the Materials and 

Methods part, for the in vitro cytotoxicity tests. The MTS test was performed for the cell seeded 

scaffolds for different time periods, specifically 1, 2 and 3 weeks. Briefly, the procedure is as 



CHAPTER III. Assessment of the Suitability of Chitosan/PolyButylene Succinate Scaffolds Seeded with Mouse 
Mesenchymal Progenitor Cells for a Cartilage Tissue Engineering Approach 

 

 94 

follows: the cell seeded C-PBS scaffolds (n=3) were rinsed in 0.15M phosphate-buffered saline 

(Sigma, St. Louis, MO) and immersed in a mixture consisting of serum-free cell culture medium 

and MTS reagent at 5:1 ratio. Incubation for 3h at 37ºC in a humidified atmosphere containing 5% 

CO2 followed. After this, 100 µl were transferred to 96 well plates and the optical density (OD) 

determined at 490 nm. Controls consisting of scaffolds without any cells seeded were also used. 

Statistical analyses were conducted using a two-sample t-test assuming unequal variances for 

n=3; α=0.05. 

 

 

2.4.3. CELL ADHESION AND MORPHOLOGY BY SCANNING ELECTRON MICROSCOPY 

(SEM) 

Cell adhesion, morphology and average distribution were observed by SEM analysis. The cell-

scaffold constructs were washed in 0.15M phosphate-buffered saline and fixed in 2.5% 

glutaraldehyde (in phosphate-buffered saline). The constructs were then rinsed three times in 

phosphate-buffered saline, and subjected to a series of ethanol increasing conditions (30, 50, 70, 

90, 100% ethanol), 10-15 minutes each, to allow dehydration of the samples. The samples were 

let to air dry afterwards, and then sputter coated with gold (JEOL JFC-1100) and analyzed with a 

Leica Cambridge S360 scanning electron microscope. 

 

 

2.4.4. WESTERN BLOT: COLLAGEN TYPE II  

For the protein extraction, the cell-scaffold constructs (n=3) were washed in 0.15 M phosphate-

buffered saline, lysed in 750 µl of lysis buffer (20 mM Tris, 1 mM EDTA, 150 mM NaCl, and Triton 

X-100), and sonicated three times at 40 kV (15 s). After sonication the C-PBS scaffolds were 

removed and the resulting suspension was centrifuged for 10 min at 13000 rpm, 4ºC at the end of 

which the formed pellet was discarded. The supernatants containing the protein fraction were 

stored for quantification. Western blot was performed using the protein extracts collected at 3 

weeks. A 5% stacking polyacrylamide gel (30% acrylamide mix; 1.0 MTris (pH 6.8); 10% SDS; 

10% ammonium persulfate; TEMED) and a 8% resolving gel (30% acrylamide mix; 1.5 M Tris (pH 

8.8); 10% SDS; 10% ammonium persulfate; TEMED) were prepared. The collected supernatant 

was heated at 100ºC for 5 minutes in the water bath and then an aliquot (15.64 µl) was loaded in 

the gels and subjected to electrophoresis (30 mA, 3 hours), and electrotransferred to a Hybond P 

membrane (Amersham Biosciences, Piscataway, NJ). Afterwards, the membrane was washed in 

phosphate-buffered saline-T, submerged in Coomassie blue (isopropyl alcohol 0.25% (v/v); acetic 
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acid 0.1% (v/v); Coomassie Brilliant Blue R250 (CBB) 2 g/L, and left overnight. The membrane 

was washed in Ponceau solution and the transfer from the gel to the membrane was visually 

confirmed. Membranes were then incubated with a blocking solution of 5% (wt/v) powdered milk 

in TBS (Tris base 2.42 g/L; NaCl 8 g/L; HCl 3.8 g/L) with Triton X-100 0.002% (v/v), for 1 hour 

under constant stirring, at room temperature. Incubation with an equal solution followed, but 

altering the powdered milk concentration to 2.5% (wt/v). This solution also included the primary 

antibody against collagen type II (University of Iowa, Iowa City, IA) at a 1:500 dilution. The 

membrane was left overnight with constant stirring, at 4ºC. The membrane was then washed 

three times in phosphate-buffered saline-T under stirring, and incubated with the secondary 

antibody (1/1000) for 1 hour at room temperature, under stirring. The secondary antibody was 

diluted in the same solution as the one described above for the primary antibody. The 

membranes were washed three times in phosphate-buffered saline-T and passed to a phosphate-

buffered saline solution. The immune complex was detected by incubation of the membrane as 

described in SuperSignal® Pico Chemiluminescent Substrate kit (Pierce, Rockford, USA). 

 

3. RESULTS  

 

3.1. SCAFFOLDS CHARACTERIZATION 

 

As seen in the SEM and µ-CT images (Figs. 1 and 2, respectively), the structure of the 

processed C-PBS scaffolds appear to be quite interconnected (Fig. 2) and with suitable pore size 

to provide support for cell growth and development. Micro-computed tomography analysis 

estimated an average of 66.29% (+2.55%) porosity and 92.78% (+1.69%) interconnectivity 

degree for these C-PBS scaffolds. The salt particles used ranged in size between 63-125 µm, 

retrieving an average pore size of 251.28 µm (+61. 9 µm). In terms of mechanical properties, the 

scaffolds exhibited a compressive modulus of 1.73±0.4 MPa (Esec 1%).  
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Figure III.1. SEM micrograph showing the surface of a chitosan-polybutylene succinate scaffold 

50:50 (wt%), with 80% porosity.  

 

 

Figure III.2. µ-CT image evidencing the structure and interconnectivity of the processed 

chitosan-polybutylene succinate scaffold 50:50 (wt%), with 80% porosity scaffolds.  

 

 

3.2. IN VITRO CYTOTOXICITY TESTS (MEM EXTRACTION AND MTS TESTS) 

 

Regarding the MEM extraction test, the results showed that the materials did not cause any 

morphological changes or induce any deleterious alteration to the metabolic activity of L929 cells 

and thus, can be considered non cytotoxic. There was no growth inhibition detected after the 72h 

time period (0.0±0.0%), when using the trypan blue exclusion method. The negative control did 

not affect cell proliferation and morphology and a monolayer of spread cells was observed. The 
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toxic effect of the positive control (latex) was evident, given the severe changes on morphology 

and the inability of cells to proliferate. The extracts from the C-PBS scaffolds did not exert any 

deleterious effect on L929 cells morphology, presenting morphological and proliferative features 

similar to those encountered for the negative controls (data not shown). Concerning the MTS test, 

L929 cells were able to metabolize the MTS into a brown formazan product after a 72 h 

incubation period with the collected extracts and the values obtained were similar to the negative 

control (Fig. 3).  
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Figure III.3. Graphical representation of the results obtained after cytotoxicity evaluation of the 

processed scaffolds (MTS test) using L929 cells, derived from a rat lung fibroblast cell line. 

Statistical analyses were conducted using a two-sample t-test assuming unequal variances for 

n=3; α=0.05. 

 

 

3.3. DIRECT CONTACT ASSAYS 

 

Direct contact assays were performed to evaluate BMC9 cells response to the C-PBS scaffolds. 

MTS was performed to assess cells viability at defined time periods, specifically 1, 2 and 3 

weeks. Figure 4 represents the obtained results where it can be observed that the cells were able 

to remain viable within the C-PBS scaffolds during the whole time of the experiments. The values 

were higher than the control for all time points and had a significant increase (p < 0.05) from 1 

week to 2 weeks, which is a good indicator of cell viability. At 3 weeks, a significant decrease (p < 

0.05) is observed in the OD values.  
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Figure III.4. Graphical representation of the results obtained after performing MTS test with 

samples taken at 1, 2, and 3 weeks of culturing. Statistical analyses were conducted using a two-

sample t-test assuming unequal variances for n=3; α=0.05. 

 

 

SEM analysis evidenced that BMC9 cells were well adhered onto the C-PBS scaffolds surface, 

and appeared to be morphologically normal throughout the whole time of the experiments. 

Furthermore, a morphological transition in these cells was observed from an initial fibroblastic-like 

shape, to a round-shaped phenotype, which is a feature present in articular cartilage 

chondrocytes that underwent culturing under 2D conditions.35 From the SEM picture at 1 week, it 

is clear that cells adhered to the scaffolds and spread along its structure (Fig. 5A) forming 

multilayers (Fig. 5B). Cell morphology is clearly fibroblastic-like, with extensive cell-to-cell 

interactions. 
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Figure III.5. SEM micrographs for 1 week of culturing, showing that BMC9 cells were able to 

adhere and appear to remain viable within the scaffolds structure.  

 

 

After 2 weeks of culture, cell morphology passed from the initial fibroblastic-like shape with some 

evident cytoplasmic membrane extensions, to a round-shaped phenotype, as evidenced on Fig. 

6A, 6B. SEM analysis also revealed that the chondrocyte-like cells were widely present in the 

pores of the scaffolds, as shown by a representative example in Fig. 6E.  

 

 

Figure III.6. SEM micrographs for 2 weeks of culturing. We can observe the cell morphological 

transition, passing from the initial fibroblastic-like shape with some evident cytoplasmic 

membrane extensions, to a round-shaped phenotype, as evidenced in (Fig. 6A, 6B).  
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After 3 weeks, almost all the cells exhibited a round-shaped phenotype and were widely 

distributed throughout the scaffold (Fig. 7). Furthermore, on the cells surface, some structures 

previously described as collagen fibrils36 were observed (Fig. 7D, arrows). Even though 

speculative, one may correlate this observation with the results shown afterwards for collagen 

type II expression, performed by western blot immunological analysis. 

 

 

Figure III.7. SEM micrographs showing BMC9 cells onto the developed scaffolds at 3 weeks. 

Most cells exhibited a round-shaped phenotype and were widely distributed throughout the 

scaffold (Fig. 7C). Structures previously described as collagen fibrils are indicated by white 

arrows. 

 

 

Western blot analysis at 3 weeks (Fig. 8) demonstrated that collagen II was being expressed, 

which is a good indicator for the successful differentiation of the BMC9 cells towards the 

chondrogenic pathway, and suggests at the same time, that cartilage-like extracellular matrix 

(ECM) was being produced as suggested from the SEM micrographs observations (Fig. 7). The 

band obtained correlates with data presented in the literature for collagen type II protein37,38.  
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Figure III.8. Western blot analysis performed for collagen type II. The band obtained correlates 

with data presented in the literature for collagen type II protein (approximately 100 kDa). Collagen 

type II expression is a good indicator for the successful differentiation of the BMC9 cells towards 

the chondrogenic lineage. 

 

 

4. DISCUSSION 

In this work, scaffolds produced from a blend of chitosan and polybutylene succinate were tested 

for assessing their suitability for cartilage tissue engineering applications. The scaffolds were 

characterized to evaluate their potential for future uses in the cartilage regeneration field by 

employing techniques such as µ-CT and performing their mechanical behaviour evaluation. Its 

cytotoxicity was determined and in a final stage the direct contact with BMC9 cells under 

chondrogenic differentiating conditions was conducted as well as analysis of their differentiation 

status. Considering the salt particles sizes used (63-125 µm), one would expect that the created 

pores after the salt leaching step will be within this range. Nevertheless, some disperse particle 

agglomerations take place during processing, creating therefore bigger pore sizes, which may 

arise as an advantage regarding interconnectivity. In fact, results show the scaffolds present a 

high range of pore sizes exhibiting a 251.28 µm average pore size with a +61.9 µm standard 

deviation. These measurements show that pores of less than 100 µm and more than 300 µm are 

also present in the scaffolds granting them greater versatility in terms of pore size profiles for cells 

to distribute. The average porosity of 66.29% (+2.55%) is also adequate and quite interesting 
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considering the processing technology used, while the 92.78% (+1.69%) interconnectivity degree 

renders these scaffolds with a quite interconnected structure, thereby enabling seeded cells to 

proliferate and establish communication paths throughout the 3D support, as well as allowing 

nutrients and metabolic waste flow to be conducted. Such data prompts these C-PBS scaffolds to 

go through further screenings in order to evaluate their potential in the generation of a functional 

cartilage tissue engineered construct. The mechanical properties of the scaffolds disclosed 

values that are in the range of those shown in the literature for human articular cartilage39 which 

is an indication of the suitability of the C-PBS scaffolds in terms of mechanical performance for 

cartilage regeneration strategies. In an in vivo scenario, the authors expect a balance between 

chitosan absorption by the organism, and cells proliferation and tissue ingrowth, in such a way 

that the mechanical support and biological role of the structures is constantly maintained. 

Cytotoxicity evaluation performed using MEM and MTS tests showed that the C-PBS were non 

cytotoxic. The leachables released from the scaffolds did not cause any severe alteration to the 

L929 cells metabolism thereby reinforcing their adequacy for moving through further studies in 

the regeneration of cartilaginous tissues. The following step involved the direct contact of cells 

with the fabricated C-PBS scaffolds. The cells used were derived from a mouse mesenchymal 

stem cell line (BMC9) and these were cultured under chondrogenic inductive conditions onto the 

C-PBS scaffolds, assessing in this way the suitability of these systems in future cartilage 

regeneration studies. Bone morphogentic protein type 2 (BMP-2) was used as the promoting 

agent for chondrogenic differentiation. BMP-2 is a protein belonging to the TGF-β superfamily that 

can stimulate the chondrogenic lineage development of cells from mesenchymal origin and its 

inclusion was a key factor in cells differentiation. The cell seeding was performed using the cell 

drop seeding method, which is currently used for seeding cells into scaffolds. Although it is 

disadvantageous in terms of cells seeding homogeneity throughout the support structures, it is a 

good way to perform a first evaluation of how the cells react once in contact with the proposed 

scaffolds. In the case of the C-PBS, although this method gives rise to an inhomogeneous cells 

distribution, it was observed that the scaffolds surface were highly colonised throughout the time 

of the experiments. When analysing the MTS results, it is possible to observe that the values 

were higher than the control for all time points and had a significant increase (p < 0.05) from 1 

week to 2 weeks, which is a good indicator of cell viability. This may be the consequence of two 

factors: either the cells are proliferating and thereby more MTS is metabolized, justifying therefore 

the higher OD values; or the proliferation rates are not that high, but on the other hand the 

mitochondrial machinery is highly active, converting therefore higher amounts of MTS. Any 

combination of these two situations is possible, but either mechanism is indicative of cell viability 
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within the scaffolds structure. This fact is highly relevant for the following steps because although 

the leachables released from the scaffolds did not present any in vitro cytotoxicity, the direct cell 

contact with the structures could be affected by factors such as surface chemistry, topography, 

wetabillity, which was shown not to occur. At 3 weeks, a significant decrease (p < 0.05) is 

observed in the OD values, which may be directly related to normal changes in cells metabolism, 

given that the active protein synthesis normally associated with this stage usually implies a 

decrease in cellular proliferation. As the mitochondria have a prominent role in cell growth, the 

reduction in their activity leads to a diminished metabolization of the MTS. The C-PBS scaffolds 

appear to be able to support BMC9 cells proliferation and differentiation towards the 

chondrogenic lineage, once subjected to the specific medium used which contained BMP-2. This 

occurrence was observed by SEM after 2 weeks of culture, since the cells passed from an initial 

fibroblast to a more round chondrocytes-like morphology. In fact, this situation is similar to the 

one obtained when growing primary culture chondrocytes under a 2D environment for extended 

periods of time. Initially, the chondrocytes dedifferentiate and adopt a more fibroblastic-like 

phenotype, with alteration in protein expression, decreasing for example collagen type II 

expression, and increasing collagen type I.35,40 Nevertheless, once confluence is reached under a 

2D environment, cells start to pack themselves into multilayers, reflecting a consequence of high 

cell density culturing, and start to regain their globular morphology. In fact, this multilayered 

arrangement somehow mimics a 3D environment such as the one created under pellet or 3D 

support cultures. Once this change takes place, protein expression patterns also modify, and for 

example, collagen type II levels increase again. In this work, this change in morphology is an 

indication for a possible BMC9 cells chondrogenic lineage differentiation. This was an expected 

result due to the culturing of the cells in a 3D environment supplied with BMP-2. Furthermore, on 

the cells surface, some structures previously described as collagen fibrils36 were observed (Fig. 

7D, arrows). Even though speculative, one may correlate this observation with the results shown 

afterwards for collagen type II expression, performed by western blot immunological analysis. 

Finally, western blot analysis after 3 weeks (Fig. 8) demonstrated that collagen II was being 

expressed, which is a good indicator for the successful differentiation of the BMC9 cells towards 

the chondrogenic pathway, and suggests at the same time, that cartilage-like extracellular matrix 

(ECM) was being produced as suggested from the SEM micrographs observations (Fig. 7). The 

band obtained correlates with data presented in the literature for collagen type II protein37,38. 

Given the mesenchymal progenitor origin of BMC9 cells, which have not been shown to normally 

express collagen type II, this result leads to believe that the cells were actually being directed 

towards the chondrogenic lineage. As a preliminary screening, such suggestions are indeed 



CHAPTER III. Assessment of the Suitability of Chitosan/PolyButylene Succinate Scaffolds Seeded with Mouse 
Mesenchymal Progenitor Cells for a Cartilage Tissue Engineering Approach 

 

 104 

important for the future application of these systems in cartilage regeneration approaches. The 

results obtained so far show these C-PBS scaffolds have fulfilled the basic requirements to be put 

through sequential testing. This work revealed that they can support the growth and differentiation 

of undifferentiated cells and create an environment suitable for their chondrogenic differentiation. 

These results can be considered as a base for following experiments that can combine 

undifferentiated cells from other sources, direct them towards the chondrogenic lineage, and 

culture them in vitro for adequate periods so that a functional tissue engineered construct is 

formed. This possesses the mechanical stability provided by polybutylene succinate and the 

biological similarity properties conferred by chitosan. 

 

 

5. CONCLUSIONS 

In the present work, it was observed that scaffolds made of a blend of chitosan-polybutylene 

succinate 50:50 (%wt) are adequate to be used in cartilage tissue engineering approaches. 

These scaffolds were shown to present mechanical properties and morphological features 

suitable for cell development and to be non-cytotoxic and cytocompatible. Direct contact assays 

evidenced that cells from a mouse mesenchymal progenitor cell line (BMC9) were able to adhere 

to the scaffolds surface and penetrate its pores, as well as remaining viable for at least 3 weeks 

of culturing. SEM analysis indicated the cells were directed towards the chondrogenic lineage due 

to observed morphological transitions occurring around 2 weeks of culture. This was one of the 

expected outcomes, due to the 3D environment onto which the cells were cultured, as well as the 

specific medium used which contained BMP-2. BMC9 cells chondrogenic differentiation was 

further corroborated by the collagen type II expression obtained after 3 weeks of culturing. The 

obtained data so far presents good perspectives for the use of chitosan and polybutylene 

succinate scaffolds in cartilage regeneration approaches. 
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CHAPTER IV. 
 
Novel Melt-Processable Chitosan-Polybutylene Succinate Fibre Scaffolds for Cartilage Tissue 

Engineering* 

 
 
 
ABSTRACT 

Novel chitosan/polybutylene succinate fibre-based scaffolds (C-PBS) were seeded with bovine 

articular chondrocytes in order to assess the suitability of these materials for cartilage tissue 

engineering. These are new melt-processable materials that are able to combine both chitosan 

and polybutylene succinate in a 3D scaffold which is expected to perform better as a tissue 

engineered construct. Chondrocytes were seeded onto C-PBS scaffolds using spinner flasks 

under dynamic conditions, and cultured under orbital rotation for a total of 6 weeks.  Non-woven 

polyglycolic acid (PGA) felts were used as reference materials. Tissue engineered constructs 

were characterized by scanning electron microscopy (SEM), hematoxylin-eosin (H&E), toluidine 

blue and alcian blue staining, immunolocalisation of collagen types I and II, and 

dimethylmethylene blue (DMB) assay for glycosaminoglycans (GAG) quantification at different 

time points.  SEM showed that the chondrocytes had typical morphology, with colonisation at the 

surface and within the pores of the C-PBS scaffolds. These observations were supported by 

routine histology. Toluidine blue and alcian blue stains as well as immunohistochemistry for 

collagen types I & II, provided qualitative information on the composition of the engineered 

extracellular matrix. More pronounced staining was observed for collagen type II than collagen 

type I. Similar results were observed with constructs engineered on PGA scaffolds. These also 

exhibited higher amounts of matrix glycosaminoglycans, as determined from the GAG assay. The 

central region of PGA constructs contained fewer cells and little matrix, most likely as a result of 

necrosis due to limited mass-transfer and/or acidic products of degradation of PGA.  This feature 

was not detected with C-PBS constructs, suggesting improved biocompatibility or improved 

mass-transfer due to pore size or more limited growth of tissues. 

_____________________________________________________________________________ 
 
* This chapter is based on the following publication: 

JT Oliveira, A Crawford, JM Mundy, PC Sol, VM Correlo, M Bhattacharya, NM Neves, PV Hatton, 
RL Reis. Novel Melt-Processable Chitosan-Polybutylene Succinate Fibre Scaffolds for Cartilage 
Tissue Engineering (2008) (submitted). 
 
_____________________________________________________________________________ 
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1. INTRODUCTION 

Articular cartilage is a tissue with unique features in terms of biological structure and functionality. 

It has a structural function in the skeletal system as a weight bearing tissue present at the 

proximal and distal epiphyses of bones which creates smooth gliding areas that can both absorb 

shocks and loads in an efficient way. Articular cartilage is avascular and possesses a low ratio of 

cells to extracellular matrix (ECM), being the cells embedded in an extensive network constituted 

mostly of collagen and proteoglycans. Collagen type II and proteoglycans (aggrecan) are the 

main contributors to cartilage mechanical function.1-3 Collagen II is responsible for the tensile 

properties and the proteoglycans for resistance to compression.4,5 Articular cartilage has a low 

metabolic turnover and poor regenerative potential and so trauma or degeneration of the tissue 

may cause restriction of normal locomotion, pain and reduction of quality of life.2,6-9  

Different approaches have been developed to treat these conditions, but the most commonly 

used therapies frequently result in limited success.10-13 The use of tissue engineering 

technologies to generate a functional tissue graft which can be used to repair the damaged 

cartilage is a very active field of research.14-17 Ideally, scaffold materials should have adequate 

mechanical properties and degradation kinetics, be biocompatible and have a controlled 

geometry and 3D structure.8,18,19 

Fibre based scaffolds are very attractive due to their highly interconnected structure, allowing 

cells to infiltrate throughout the network and potentially enhancing formation of extracellular 

matrix throughout the scaffold.19,20 Many different materials have been proposed for producing 

fibre based scaffolds.21,22 Woodfield et al studied PEGT/PBT scaffolds produced by a fibre 

deposition technique and seeded with bovine articular chondrocytes.21 In another study, a benzyl 

ester derivative of hyaluronic acid (HYAFF®11) was combined with human nasoseptal 

chondrocytes in tissue engineering procedures of cartilage reconstruction.20 Gomes et al. have 

also proposed the use of different starch-based blends for bone tissue engineering applications.23 

Scaffolds for tissue engineering can be synthetic, or natural materials, or a blend of both 

types.20,21,24,25 These last might arguably combine the best properties of both types of materials in 

a single structure, therefore increasing the probability of a better regenerative performance.   

In the present study, some of the above concepts were combined by culturing bovine articular 

chondrocytes with novel chitosan/polybutylene succinate (C-PBS) fibre-based scaffolds. These 

materials have been previously used by our group by combining mouse mesenchymal progenitor 

cells with C-PBS compression moulded scaffolds for cartilage regeneration.26 
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Chitosan is a natural material produced by a partial alkaline deacetylation of chitin, the main 

structural polymer in arthropods exoskeletons and shells of crustaceans27. It is a semi-crystalline 

polysaccharide that is normally insoluble in aqueous solutions above pH 7. In dilute acids, the 

free amine groups are protonated and the molecule becomes soluble, enabling it to be processed 

under mild acetic acid conditions.28 Chitosan is reported to be non-toxic, biodegradable and 

biocompatible29, and has structural similarities to glycosaminoglycans, which are structural 

components of the cartilage extracellular matrix.30 It is currently used in diverse applications in 

the food industry and biomedical field.31-33 Polybutylene succinate (PBS) is a synthetic 

biodegradable polymer that has been studied for a range of applications extending from its use as 

a future conventional biodegradable plastic, to components in medical devices.34,35 PBS presents 

good processing and mechanical properties flexibility, having degradation products that are non-

toxic and can be metabolised by living organisms.29 The evaluation of PBS in vitro with rat 

osteoblasts showed that  it had good cytocompatibility and sustained both osteoblast proliferation 

and differentiation.36 

This study is the first report on the suitability of new chitosan/polybutylene succinate fibre 

scaffolds for cartilage tissue engineering by culturing bovine articular chondrocytes on the 

scaffolds for up to 6 weeks. In brief, the scaffold fibre structure allowed the cells to efficiently 

colonise both the outer periphery and central regions of the scaffolds. Analysis of the cell 

morphology and extracellular matrix suggested good potential for C-PBS scaffolds application in 

cartilage tissue engineering.  

 

 

2. MATERIALS AND METHODS 

 

2.1. SCAFFOLDS PRODUCTION AND CHARACTERIZATION 

 

The scaffolds were prepared from fibres of a chitosan/polybutylene succinate (C-PBS) blend. The 

processing details are described elsewhere.37 Briefly, the raw materials (chitosan and PBS) were 

compounded on a twin screw extruder in a ratio of 50/50 wt%. The polymeric fibres were obtained 

by further re-extruding the C-PBS blend using a microextruder. Afterwards, the processed fibres 

were packed in an appropriate mould, compressed, and heated above the melting temperature 

(Tm) of the thermoplastic for a determined residence period, thereby allowing the fibres to bond 

and consequently to obtain a mechanically stable macroporous fibre mesh structure. The 
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scaffolds were further cut in a cylindrical shape (Ø 7 mm x thickness 1.5 mm). The scaffold 

morphology was assessed by scanning electron microscopy (Leica-Cambridge S-360, Germany) 

and micro-computed tomography (SkyScan, Belgium). The mechanical properties were 

determined using a Universal mechanical testing machine (Instron 4505, UK). Mechanical testing 

was performed under compression using a crosshead speed of 5mm/min and the results 

averaged from tests conducted in at least five specimens.  

 

2.2. ISOLATION AND EXPANSION OF BOVINE ARTICULAR CHONDROCYTES 

 

Full thickness hyaline cartilage was harvested from bovine metacarpophalangeal joint of adult 

animals (18-24 months) within 4 hours of slaughter. Chondrocytes were isolated by sequential 

enzymatic digestion and their numbers expanded in monolayer culture as described previously.38 

Chondrocytes were seeded at 50,000-100,000 cells/cm2 and cultured in basic medium 

[Dulbecco’s Modified Eagle’s Medium (Sigma-Aldrich Co, USA) containing 10 mM HEPES buffer 

pH 7.4, 10000 units/ml penicillin/10000 µg/ml streptomycin, 20 mM L-alanyl glutamine, MEM non-

essential amino acids, and 10% (v/v) foetal calf serum (Biosera S1800; NWPLS; Heat 

Inactivated)], supplemented with 10 ng/ml basic fibroblast growth factor (bFGF) (PeproTech, UK). 

 

2.3. CHONDROCYTE CULTURE ON 3D C-PBS FIBRE SCAFFOLDS 

 

Chondrocytes, at passage P1, were used for all experiments. Scaffolds were seeded with cells as 

described previously.38 In brief, confluent cultures of chondrocyte cultures were harvested by 

trypsinisation. Scaffolds were threaded onto stainless steel wires and suspended in spinner flasks 

containing a stirred suspension of chondrocytes (0.5x106 cells/ml; 4 scaffolds per spinner flask) 

for 72 h to allow the chondrocytes to penetrate the scaffolds. The resultant cell/scaffold constructs 

were transferred to sterile, non-tissue culture treated Petri dishes and incubated for 4 days in 

basic medium supplemented with 10ng/ml bFGF to allow expansion of cell numbers on the 

scaffolds. The constructs were then cultured with basic medium supplemented with 1g/ml insulin 

and 50g/ml L-ascorbic acid (Sigma-Aldrich Co, USA) to stimulate chondrogenesis. Throughout 

the culture period the constructs were gently shaken using an orbital shaker. The constructs were 

incubated until 42 days of culture (6 weeks), replacing the medium every 2-3 days. Polyglycolic 

acid (PGA) non-woven scaffolds (Albany International Ltd, UK) were used as a comparator. 

These presented the same dimensions and followed the same procedures as those of C-PBS. 



CHAPTER IV. Novel Melt-Processable Chitosan-Polybutylene Succinate Fibre Scaffolds for Cartilage Tissue 
Engineering. 

 

 

 117 

 

 

2.4. SCANNING ELECTRON MICROSCOPY  

 

The C-PBS constructs were washed in sterile PBS and immersed in 3% glutaraldehyde with 0.1 

M cacodylate buffer pH 7.4) at room temperature for one hour. They were further washed three 

times in 0.1 M cacodylate buffer pH 7.4, and post fixed in 1% aqueous solution of osmium 

tetroxide for one hour. Finally, they were dehydrated in alcohols and let to dry. The samples were 

sputter coated with gold and observed using a Phillips XL-20 scanning electron microscope. 

Complementarily, some stereolight microscopy images were collected from samples in culture to 

obtain a macroscopic view of the cultured constructs after 42 days of culture.  

 

2.5 HISTOLOGY  

 

Constructs were harvested at pre-defined culturing periods, until up to 6 weeks of total culturing 

time. The constructs were bisected and one half mounted in the cryoprotectant Optimal Cutting 

Temperature (OCT, BDH, Gurr®), and frozen using liquid nitrogen and isopentane. The remaining 

construct half was stored at -20oC for quantitative determination of glycosaminoglycan content. 

Tissue sections of 8 µm were taken and fixed using fresh 4% paraformaldehyde. Hematoxylin-

eosin stain was conducted in an automatic machine (Fume Cupboard; X219/E11/LEV1). 

Histological staining with toluidine blue and alcian blue staining was performed using standard 

histological methods. Polyglycolic acid (PGA) non-woven scaffolds were used as controls. 

 

2.6. QUANTIFICATION OF PROTEOGLYCAN CONTENT 

 

Proteoglycans were determined by measuring the level of sulfated glycosaminoglycans (GAGs) 

using 1,9-dimethylmethylene blue (Sigma-Aldrich Co, USA) metachromatic assay as previously 

described39. GAG levels in solution can be quantified using the basic dye, 1,9- dimethylmethylene 

blue (DMB) which binds to glycosaminoglycans generating a metachromatic shift that peaks at 

A525-530 and can be measured spectrophotometrically. Briefly, the constructs were immersed in a 

digestion solution with papain and N-acetyl cysteine, and incubated at 60ºC overnight. After the 

digestion was completed, the tubes were centrifuged at 13,000 rpm for 10 minutes. The 

supernatant was collected and stored at 4ºC until the GAG assay was performed. A chondroitin 
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sulfate standard solution was prepared in water and kept refrigerated. The samples and 

chondroitin sulfate standards were placed in a 96 well round-bottomed plate, DMB solution was 

added to each well, and the optical density measured using a microplate reader, at 530 nm. 

Polyglycolic acid (PGA) non-woven scaffolds were used as controls. 

 

2.7. IMMUNOLOCALISATION OF COLLAGEN TYPE I AND TYPE II  

 

Collagen types I and II were detected immunohistochemically using monoclonal antibodies 

against collagen types I and II (Southern Biotechnology, UK), as previously described39. Briefly, 

fixed sections were washed with PBS and pre-treated with hyaluronidase (10 mg/ml), followed by 

pronase (2 mg/ml) (Sigma-Aldrich Co, USA). The slides were washed thoroughly in PBS and 

treated with 3% hydrogen peroxide in 50% methanol, followed by washing in Tris-buffered saline 

(TBS) and blocking with 3% bovine serum albumin (BSA). Incubation with the primary antibody 

(collagen type I and collagen type II) (UNLB) followed. The remaining protocol is as described in 

the Vectastain Elite ABC Kit PK-6105 (Vector Laboratories Ltd, UK) and in the Vector DAB Kit 

(Vector Laboratories Ltd, UK). The slides were washed in water for 5 minutes, counterstained 

with Mayer’s haematoxylin, and mounted with DPX mounting medium. Controls were performed 

using normal goat serum instead of the primary antibodies, which was included in the kit. 

Polyglycolic acid (PGA) non-woven scaffolds were used as controls. 

 

 

3. RESULTS  

 

3.1. SCAFFOLDS CHARACTERIZATION 

 

The morphology and internal structure of the novel C-PBS fibre mesh scaffolds used in this study 

was investigated using SEM (Figure. 1a.). Micro-computed tomography (µCT) was also 

performed and representative 2D and 3D µCT images of a C-PBS fibre mesh scaffold are shown 

in Figures 1b-c., respectively.  

Morphological analysis of the C-PBS structures shows that the fibre mesh scaffolds exhibit good 

interconnectivity and possess an adequate 3D structure for cells to be seeded and cultured 

towards the generation of a functional tissue engineered construct. The porosity (46,1 ± 1,8 % 

estimated by µCT) should enable cells to penetrate into the bulk of the scaffold, while also 
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enhancing nutrient diffusion and removal of metabolic waste products. Morphological studies also 

revealed a characteristic surface roughness (see Fig. 1.a) and microporosity (Fig. 1.c) of the C-

PBS fibres. Mechanical testing has shown that the scaffolds possess a compression modulus of 

32.6±12.8 MPa, which is higher than the values described for human articular cartilage.40  

Further details may be found elsewhere.41  

 

2 mm2 mm

A

2 mm2 mm

A

        

 

Figure IV.1. a) SEM micrograph of the upper surface of a representative C-PBS (50/50 wt%) fibre 

mesh scaffold; b) and c) 2D and 3D µCT images, respectively.  

 

 

3.2. STEREOLIGHT MICROSCOPY AND SCANNING ELECTRON MICROSCOPY  

 

In Figure 2a) a macroscopic view of one construct after 6 weeks of culture is shown. It can be 

observed that a considerable amount of new cartilage-like tissue has been formed during culture. 

The opaque matrix that can be visualised in the figure is macroscopically very similar to the one 

encountered in native bovine articular cartilage at the time of cell isolation. A good adhesion and 

integration of the newly formed tissue with the scaffold structure was noticed upon handling and 

macroscopical observation. 
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SEM observations of the C-PBS tissue engineered constructs after 6 weeks of culture were 

performed. The micrographs on Figure 2b) show that the bovine articular chondrocytes had 

completely penetrated the scaffolds being present in both the surface and inner regions. Also the 

cellular morphology is the typical of healthy cultured chondrocytes with the cells being widely and 

homogeneously dispersed throughout the structures.   

 

5 mm5 mm

 

 

 

Figure IV.2. a) Stereolight microscopy of a tissue engineered C-PBS construct after 6 weeks of 

culture. b) Scanning electron microscopy images showing C-PBS constructs at 6 weeks of 

culture. The cells were homogeneously distributed with typical morphology of healthy cultured 

chondrocytes.  

 

 

3.3. HISTOLOGY 
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Figure 3 shows different histological sections taken after 6 weeks of culture for both C-PBS (A-C) 

and PGA (D-F) constructs stained with H&E. It is possible to observe once more the 

chondrocytes homogeneous distribution throughout the scaffolds being widely present in both 

inner and outer regions. Cells and ECM were observed between the C-PBS fibres (3.A-C) and an 

apparent integration of cell mass, ECM and the scaffold structure was also seen (Figure 3.A). 

These results corroborate those presented previously for SEM analyses.  

A similar chondrocyte and extracellular matrix distribution were observed in the PGA constructs. 

However, a central area of extensive necrosis was detected for the different analysed tissue 

engineered constructs (Figure 3.D) which is in agreement with previous data present in the 

literature that correlates the accumulation of degradation products with toxic effects to cells.42 

C-PBS and PGA tissue engineered constructs were stained with toluidine blue and alcian blue 

(Figures 4 and 5, respectively). These stains were used to show the distribution of proteoglycans 

in the constructs. The proteoglycan content of the constructs was also measured quantitatively by 

determining the glycosaminoglycan content with 1,9-dimethylmethylene blue. Figures 4 and 5 

show the staining profiles for the histological sections of the C-PBS (A-C) and PGA (D-F) tissue 

engineered constructs after 6 weeks of culture using toluidine blue and alcian blue, respectively.  

From the histological analysis, it is possible to observe a positive staining in the pericellular areas 

indicating that the chondrocytes produced an extracellular matrix containing proteoglycans. Both 

C-PBS and PGA tissue engineered constructs showed sulfated glycosaminoglycans in the newly 

synthesized ECM. In addition, the histology of C-PBS shown by H&E, toluidine blue, and alcian 

blue staining (Figures 3a-c, 4a-c, and 5 a-c, respectively) more closely resembled the 

morphological structure observed for native articular cartilage than that found in the  for PGA 

constructs (Figures 3d-f, 4 d-f, and 5 d-f, respectively).  
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Figure IV.3. Light microscopy images of histology sections obtained from C-PBS constructs 

collected after 6 weeks of culture stained with hematoxylin-eosin (A-C). Figures D-F show images 

obtained from PGA constructs after similar incubation conditions. Scale bar: 200 µm (A,D); 100 

µm (B,E); 20 µm (C,F). 

CC

 

Figure IV.4. Light microscopy images of histology sections obtained from C-PBS constructs 

collected after 6 weeks of culture stained with toluidine blue (A-C). Figures D-F show sections 

obtained from PGA constructs after similar incubation conditions. Scale bar: 200 µm (A,D); 100 

µm (B,E); 20 µm (C,F). 
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Figure IV.5. Light microscopy images of histology sections obtained from C-PBS constructs 

collected after 6 weeks of culture stained with alcian blue (A-C). Figures D-F show sections 

obtained from PGA constructs after similar incubation conditions. Scale bar: 200 µm (A,D); 100 

µm (B,E); 20 µm (C,F). 

 

 

3.4. QUANTIFICATION OF PROTEOGLYCAN CONTENT  

 

The proteoglycan content of the constructs was measured quantitatively by determining the 

glycosaminoglycan content with 1,9-dimethylmethylene blue. Glycosaminoglycan content was 

found to increase steadily during the 6 weeks of culture for both C-PBS and PGA-based 

constructs (Figure 6).  When analysing the patterns of GAGs variation in the C-PBS systems, a 

continuous increase was detected which is a positive result in terms of the formation of a 

cartilage-like engineered tissue. The same pattern of GAG increase was observed for the PGA 

controls but these exhibited higher levels of glycosaminoglycan deposition when compared to C-

PBS.  
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Figure IV.6. Graphical representation of the results obtained from DMB assay for proteoglycans 

content quantification of C-PBS (top) and PGA (bottom) tissue engineered constructs after 2, 4, 

and 6 weeks of culture. 

 

 

3.5. IMMUNOLOCALISATION OF COLLAGEN TYPE I AND TYPE II  

 

Immunolocalisation of collagen type II was conducted in order to assess its expression patterns in 

both C-PBS and PGA constructs, being an indication of their suitability and future performance for 

cartilage regeneration. Also to confirm that in fact a cartilage-like tissue engineered construct of 

hyaline nature was being formed, collagen type I expression was verified. 
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Figure 7.a-c shows the immunolocalisation of collagens type I and II in C-PBS constructs. Dense 

staining for collagen type II was observed with some less dense staining for collagen type I also 

present which is a good indication for a hyaline cartilage ECM formation. The PGA constructs 

also gave a similar pattern of collagen type I and II distribution. Again, comparison of the 

morphologies of the C-PBS and PGA constructs with the native tissue showed that C-PBS 

constructs more closely resembled the cellular morphology observed in native cartilage. The 

presence of structures similar to lacunae and isogenous groups that can be found in native 

cartilage are seen (Figure 7.b). Such structures were not observed in the PGA constructs (Figure 

7.E).  

 

 

Figure IV.7. Light microscopy images showing immunolocalisation of collagens type I and type II 

in histology sections of C-PBS (A-C) and PGA constructs (D-F) after 6 weeks of culture. Images 

show collagen type I, collagen type II, and normal goat serum negative control (left, middle, and 

right column, respectively). 

 

 

4. DISCUSSION 

 

In this study, novel melt-processable fibre scaffolds of chitosan and polybutylene succinate (C-

PBS) were combined with primary cultures of bovine articular chondrocytes and originally tested 

for cartilage tissue engineering applications. This is the first time that these types of structures 

were investigated in a detailed systematic study focusing on cartilage tissue engineering. The 
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combination of chitosan and polybutylene succinate is expected to render some advantages by 

the making use of the individual advantages of each type of material. Chitosan is non-toxic, 

biodegradable and biocompatible29, and has structural similarities to components of the cartilage 

extracellular matrix. Polybutylene succinate presents good processing characteristics and 

mechanical properties flexibility and thereby is expected to develop an important role in 

mechanical sustainability of the tissue engineered structure once put in an in vivo scenario. Fibre 

based scaffolds are generally considered adequate for cells seeding and culturing in vitro since 

they usually enable a good cellular dispersion and colonisation while allowing renewal of nutrients 

and release of toxic metabolites. C-PBS scaffolds appear to contain these features. The scaffolds 

were quite interconnected and mechanically stable in solution which allows long term culturing 

and thereby creates the possibility for a tissue engineered cartilage construct to be formed. This 

is supported by the compression modulus determined that may offer an advantage in terms of 

enhanced mechanical stability after the onset of scaffold biodegradation. The morphological 

studies conducted using SEM and µCT also revealed a characteristic surface roughness (see 

Fig. 1.a) and microporosity (Fig. 1.c) of the C-PBS fibres which might have a positive effect in cell 

adhesion.43 The SEM observations of the C-PBS tissue engineered constructs after 6 weeks of 

culture showed that the chondrocytes efficiently attached and penetrated the scaffolds being 

present in both the surface and inner regions. Such results suggest that the C-PBS scaffolds, in 

combination with the dynamic seeding conditions, enabled a homogeneous cell distribution. Also, 

macroscopic observation revealed that a considerable amount of new cartilage-like tissue had 

formed, clearly demonstrating the adequacy of C-PBS scaffolds in the support of bovine articular 

chondrocytes development and ECM synthesis. These were further corroborated by histological 

observations which granted a wider insight on the tissue engineered constructs phenotype. Cells 

and ECM were observed between the fibres of the C-PBS scaffolds (Fig. 3.A-C) being a good 

indication of cytocompatibility and efficiency of the structures. An apparent integration of cell 

mass, ECM and the scaffold structure was seen. This observation suggests that these tissue 

engineered constructs may preserve integrity in vivo, thereby allowing them to withstand the 

mechanical stresses which occur in native articular cartilage in vivo. The mechanical properties 

previously determined resulted in a compression modulus of 32.6±12.8 MPa (see Results 3.1) 

which should theoretically be sufficient for supporting the mechanical stresses acting on the 

native articular tissue in vivo. A similar chondrocyte and extracellular matrix distribution were 

observed in the PGA constructs. However, a central area of extensive necrosis was detected for 

the different analysed tissue engineered constructs (Figure 3.D). The necrotic tissue may have 
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been a result of high cell density and poor nutrient exchange, or necrosis related to acidic by-

products produced in the degradation of PGA. These observations correlate well with data 

previously reported in the literature.42,44 PGA releases acidic by-products in culture after defined 

immersion periods in aqueous solutions, as a result of hydrolytic chemical scission of the ester 

backbone. Its biodegradation occurs by non-specific hydrolytic chain scission at the ester bonds, 

resulting into glycolic acid residues that may substantially decrease locally the solution pH and 

affect cell development in active degradation sites. Moreover, it is well known that such materials 

instead of surface erosion show a bulk erosion degradation process which can produce an 

autocatalytic effect.44,45 The nature of the newly formed cartilage is another key point when 

pursuing articular cartilage tissue engineering strategies. Hyaline cartilage is present in the 

articular cartilaginous parts developing important roles in both physiological and functional terms. 

The hyaline-like nature of the formed ECM was evaluated by assessing proteoglycan deposition 

using toluidine blue and alcian blue stain, as well as quantification of proteoglycan contents using 

DMB assay, and by comparing collagen type I and II expression. Proteoglycans are important 

ECM molecules since they enable cartilage to bind water and account for the necessary 

compressive stiffness and elasticity that are critical for the correct functioning of articular joints.39 

Figures 4 and 5 show the staining profiles for the histological sections of the C-PBS (a-c) and 

PGA (d-f) tissue engineered constructs after 6 weeks of culture using toluidine blue and alcian 

blue, respectively. It is possible to observe a positive staining in the pericellular areas indicating 

that the chondrocytes produced an extracellular matrix containing proteoglycans. The presence of 

these molecules is crucial since they can bind to various extracellular  matrix  molecules, cell-cell 

adhesion molecules, and growth  factors.46 Moreover, they have an important role in terms of 

water retention which is paramount for cartilage mechanical performance.47 Both C-PBS and 

PGA tissue engineered constructs showed sulfated glycosaminoglycans presence in the newly 

synthesized ECM and this identification is a good indicator towards the formation of a cartilage-

like tissue. In addition, the histology of C-PBS shown by H&E, toluidine blue, and alcian blue 

staining (Figures 3a-c, 4a-c, and 5a-c, respectively) more closely resembled the morphological 

structure observed for native articular cartilage than that found for PGA constructs (Figures 3d-f, 

4d-f, and 5d-f, respectively). When analysing the patterns of GAGs variation in the C-PBS 

systems using the DMB assay, a continuous increase was detected (Figure 6a). This is another 

positive result towards the formation of a cartilage-like engineered tissue and is in agreement with 

the previous data obtained for toluidine blue and alcian blue histological analysis (see Results 

3.3). The same pattern of GAG increase was observed for the PGA controls (Figure 6b). 
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However, higher levels of glycosaminoglycan deposition were observed for these when compared 

to C-PBS. Nonetheless, the histological analysis mainly focused on glycosaminoglycans 

(toluidine blue and alcian blue staining) did not reveal any clear qualitative difference between 

both structures. In fact, both cells morphological features and staining pattern of C-PBS tissue 

engineered constructs more closely resemble the one found in the native tissue when compared 

to the PGA. Although the chondrocytes within the PGA matrices may be synthesizing GAG in 

larger amounts, the variation encountered between the two systems does not correlate well with 

the histological findings. This difference may relate to a less efficient extraction process for 

glycosaminoglycans or to lower rates of glycosaminoglycans synthesis in the C-PBS scaffolds, 

although these hypotheses should be confirmed in future studies. Immunological methods were 

finally employed to detect the presence of collagen type II and compare it with collagen type I. 

Collagen type II is the most important major protein produced by chondrocytes and a good 

marker of tissue engineered hyaline-like cartilage. It is important for the weight bearing function of 

cartilage,48,49 as it provides the tensile strength of the tissue,39 forming a dense network of fibres 

responsible for retaining the aggrecan during compressive loading. Collagen type II expression 

patterns in both C-PBS and PGA constructs were analysed, being an indication of their suitability 

and future performance for cartilage regeneration. Also to confirm that in fact a cartilage-like 

tissue engineered construct of hyaline nature was being formed, collagen type I expression was 

verified. Figure 7.a-c shows the immunolocalisation of collagens type I and II in C-PBS 

constructs. Dense staining for collagen type II was observed with some less dense staining for 

collagen type I also present. These results suggest that the re-differentiation process was 

occurring although a complete mature chondrocyte phenotype has not yet settled. The PGA 

constructs also gave a similar pattern of collagen type I and II distribution. Again, qualitative 

comparison of the morphologies of the C-PBS and PGA constructs with the native tissue showed 

that C-PBS constructs more closely resembled the cellular morphology observed in native 

cartilage. The presence of structures similar to lacunae-like structures that can be found in native 

cartilage are seen (Figure 7.b). Such structures were not observed in the PGA constructs (Figure 

7e). The overall analyses performed suggest that chondrocytes efficiently adhered and 

proliferated in the C-PBS scaffolds presenting a homogeneous distribution and extracellular 

matrix formation. The C-PBS scaffolds enabled the formation of a hyaline-like cartilaginous tissue 

(collagen type II and proteoglycans) indicating good potential for its use as a scaffold material for 

cartilage regenerative strategies. Nonetheless, the potential application of these scaffolds is not 

limited to the used processing and manufacturing methodologies. Complimentary approaches to 
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their use may involve the production of fibres with smaller diameter and the incorporation of 

bioactive agents of interest seeking in this way to develop structures with higher potential for 

future cartilage tissue engineering applications. 

 

 

5. CONCLUSIONS 

This study showed that new chitosan/polybutylene succinate (C-PBS) fibre scaffolds can support 

bovine articular chondrocyte adhesion, proliferation and differentiation, for up to 6 weeks in vitro. 

The cells adhered and proliferated within the 3D supports while expressing common cartilage 

differentiation markers, such as proteoglycans (glycosaminoglycans) and collagen type II. These 

C-PBS scaffolds were compared with non-woven polyglycolic acid (PGA) scaffolds cultured using 

the same parameters. Although the overall cell-materials interactions were similar between the 

two scaffold types, the PGA constructs presented a central area depleted of cells, which may 

either be a result of acidic by-products release from their hydrolytic degradation, or necrosis 

induced by high cellular densities which could compromise their clinical application. Instead, C-

PBS tissue engineered constructs did not show any regions poorly colonised by cells, and in 

contrast, showed homogeneous cell colonization throughout the scaffold structure. Moreover, 

when compared to PGA, the histomorphology of the C-PBS constructs more closely resembled 

that of the native cartilage. Both C-PBS and PGA enabled the formation of an extracellular matrix 

by the chondrocytes as shown from the qualitative and quantitative determination of 

proteoglycans and immunolocalisation of collagens. Concerning the quantification of 

proteoglycans content, although a trend of increasing GAGs deposition along the periods of 

culture was observed in both C-PBS and PGA scaffolds, the latter exhibited higher amounts of 

synthesized glycosaminoglycans for the various analysed time-points. In summary, this work 

clearly demonstrates that new C-PBS fibre based scaffolds have good potential to be useful as 

matrices for cartilage tissue engineering approaches.  
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CHAPTER V. 
 
A Cartilage Tissue Engineering Approach Combining Starch-Polycaprolactone Fibre Mesh 

Scaffolds With Bovine Articular Chondrocytes* 

 
 
 
ABSTRACT 

In the present work we originally tested the suitability of corn starch-polycaprolactone (SPCL) 

scaffolds for pursuing a cartilage tissue engineering approach. Bovine articular chondrocytes 

were seeded on SPCL scaffolds under dynamic conditions using spinner flasks (total of 4 

scaffolds per spinner flask using cell suspensions of 0.5x106 cells/ml) and cultured under orbital 

agitation for a total of 6 weeks. Poly(glycolic acid) (PGA) non-woven scaffolds and bovine native 

articular cartilage were used as standard controls for the conducted experiments. PGA is a kind 

of standard in tissue engineering approaches and it was used as a control in that sense. The 

tissue engineered constructs were characterized at different time periods by scanning electron 

microscopy (SEM), hematoxylin-eosin (H&E) and toluidine blue stainings, immunolocalisation of 

collagen types I and II, and dimethylmethylene blue (DMB) assay for glycosaminoglycans (GAG) 

quantification assay. SEM results for SPCL constructs showed that the chondrocytes presented 

normal morphological features, with extensive cells presence at the surface of the support 

structures, and penetrating the scaffolds pores. These observations were further corroborated by 

H&E staining. Toluidine blue and immunohistochemistry exhibited extracellular matrix deposition 

throughout the 3D structure. Glycosaminoglycans, and collagen type I and II were detected. 

However, stronger staining for collagen type II was observed when compared to collagen type I. 

The PGA constructs presented similar features to SPCL at the end of the 6 weeks. PGA 

constructs exhibited higher amounts of matrix glycosaminoglycans when compared to the SPCL 

scaffolds. However, we also observed a lack of tissue in the central area of the PGA scaffolds. 

Reasons for these occurrences may include inefficient cells penetration, necrosis due to high cell 

densities, or necrosis related with acidic by-products degradation. Such situation was not 

detected in the SPCL scaffolds, indicating the much better biocompatibility of the starch based 

scaffolds. 
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_____________________________________________________________________________ 
 
* This chapter is based on the following publication: 

A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds 

with bovine articular chondrocytes. JT Oliveira, A Crawford, JM Mundy, AR Moreira, ME Gomes, 

PV Hatton, RL Reis. Journal of Materials Science: Materials in Medicine (2007) 18:295–302. 

_____________________________________________________________________________ 
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1. INTRODUCTION 

Articular cartilage is an avascular supporting connective tissue, exhibiting a low metabolic rate 

and a low regenerative potential1-3. The ability of articular cartilage to function as a weight bearing 

tissue is dependent on the appropriate structural organisation and biochemical composition of the 

extracellular matrix, the two major components of which are collagen type II and proteoglycan.3-5 

The collagen is responsible for the tensile properties and the proteoglycans for compression 

resistance.6,7 Articular cartilage is responsible for the correct functioning of the articulating 

skeleton, creating smooth gliding areas in the terminal parts of bones responsible for shock 

absorbance, load bearing and reduction of surface friction.8 Trauma, aging related degeneration 

such as osteoarthritis, or developmental disorders, can result in pain and disability. Adult cartilage 

has limited self repair capacity and even when some regeneration exists, fibrocartilage-like tissue 

is frequently formed in the defect.5,9,10 This type of cartilage possesses lower mechanical 

properties when compared to articular cartilage, compromising its functional role in weight 

bearing. Different strategies have been put forward to treat articular cartilage lesions. One 

common treatment in elderly patients is prosthetic joint replacement. Although successful, this 

invasive approach does not always provide long-term joint functionality due to loosening or limited 

life span of the prostheses11. Surgical procedures like osteotomy, perichondral grafting, 

interposition arthroplasty, and drilling, have been performed though the outcomes may be 

limited.8,12 Several and different tissue engineering approaches are being conducted to 

regenerate cartilage, most of them based on seeding cells in a polymeric matrix. The materials 

used to serve as cells supports can be processed in various ways, including extrusion and 

moulding, among others. These procedures can generate porous structures (scaffolds) of 

different shapes and sizes, e.g. fibres with more regular or irregular surfaces with varying 

diameters, membranes, and others.13 The materials used for tissue engineering may be broadly 

divided into synthetic and natural materials. Starch is a natural polymer made of a combination of 

two polymeric carbohydrates, amylose and amylopectin.14,15 It has been put forward as a cell 

support material in combination with synthetic polymers such as polycaprolactone (PCL), 

polylactic acid (PLA), ethyl vinyl alcohol (EVOH), cellulose acetate (CA) giving rise to a blend that 

is expected to deliver better results. Several studies have been conducted with these materials, 

mainly in bone tissue engineering.16-19 Polycaprolactone (PCL) is a synthetic semicrystalline 

biodegrabable polymer belonging to the family of poly-α-hydroxyl polyesters, that has also been 

used for such approaches.20,21 

In this study, we have shown for the first time, the suitability of starch-polycaprolactone (SPCL) 

scaffolds for pursuing a cartilage tissue engineering approach. Bovine articular chondrocytes 
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were cultured on starch-polycaprolactone fibre scaffolds for periods of up to 6 weeks. Cells were 

initially seeded using spinner flask bioreactors and then cultured in an orbital shaker for the 

remaining time periods. The scaffold fibre structure allowed the cells to efficiently penetrate the 

bulk besides the colonization of the most outer parts. We have analysed cell distribution, 

morphology and extracellular matrix components deposition during the course of the experiments, 

and the results obtained are encouraging in indicating a utility of SPCL scaffolds for a tissue 

engineering cartilage regeneration strategy. 

 

 

2. MATERIALS AND METHODS 

 

2.1. SCAFFOLDS PRODUCTION 

 

The methodology used to produce the scaffolds was melt spinning (to obtain the polymeric fibres) 

followed by fibre bonding.22 This processing technique involves fibre packing in an appropriate 

mould, with posterior heating below the melting temperature (Tm) for a determined residence 

period that will allow the fibres to form a stable fibre mesh structure. The material used was a 

30/70% (wt) blend of corn starch with polycaprolactone (SPCL). These scaffolds have already 

been shown previously to be suitable for conducting a bone tissue engineering approach17,23. The 

scaffolds produced were cut in a cylindrical shape, with dimensions of 7mm diameter x 3mm 

thickness. The porosity of the scaffolds was determined by microcomputerized tomography (µCT) 

(ScanCo Medical µCT 80, Bassersdorf, Switzerland) at a resolution of 10 mm, and using at least 

3 samples. For comparison purposes, it should be stated that the PGA scaffolds dimensions were 

the same as those of SPCL. Both types of scaffolds were cut using a borer. 

 

 

2.2. ISOLATION AND EXPANSION OF BOVINE ARTICULAR CHONDROCYTES 

 

Full thickness hyaline cartilage was harvested from bovine metacarpophalangeal joint of adult 

animals (18-24 months) within 4 hours of slaughter. Chondrocytes were isolated by sequential 

enzymatic digestion as described previously.24 The isolated cells were ressuspended in 

expansion medium (Dulbecco’s Modified Eagle’s Medium (Sigma Co.), containing 10 mM HEPES 

buffer pH 7.4 (Sigma Co.), 10000 units/ml penicillin/10000 µg/ml streptomycin (Sigma Co.), 20 
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mM L-alanyl glutamine (Sigma Co.), 1x MEM non-essential amino acids (Sigma Co.) and 10% 

(v/v) foetal calf serum (Biosera S1800; NWPLS; Heat Inactivated), supplemented with 10 ng/ml 

basic fibroblast growth factor (bFGF) (PeproTech, UK), and seeded on tissue culture treated Petri 

dishes at a density of 50,000-100,000 cells/cm2. The dishes were incubated at 37ºC in a 

humidified atmosphere of 5% CO2/95% air. The chondrocytes were allowed to expand until 

almost confluent, and then trypsinized and divide to other tissue culture treated Petri dishes using 

the same proportional relations. 

 

 

2.3. CHONDROCYTE CULTURE ON 3D SPCL FIBRE SCAFFOLDS 

 

Once the required cell number was achieved, confluent chondrocyte monolayers were harvested 

for seeding onto the polymeric scaffolds, as follows. The SPCL fibre scaffolds were allowed to 

equilibrate at room temperature in 10 ml of expansion medium. The chondrocytes were removed 

from the culture dishes by trypsinisation. The chondrocytes were pelleted by centrifuging at 200g 

for 7 min and the cell pellet ressuspended in expansion medium. The SPCL fibre scaffolds were 

placed on stainless steel wires in spinner flasks containing a suspension of chondrocytes with a 

concentration of 0.5x106 cells/ml (4 scaffolds per spinner flask). The stirrer was set at a slow 

stirring of 75 rpm and the spinner flasks left for 72h to allow the cells to enter the scaffold 

material. After the seeding was completed, the chondrocytes/scaffold constructs were transferred 

to non-tissue culture treated sterile Petri dishes and 20 ml of fresh expansion medium added to 

each Petri dish. The Petri dishes were placed on the orbital shaker, and set at a gentle shaking 

speed of 50 rpm. The constructs were left for 72-96 h to allow further expansion of the cells on 

the scaffolds. The expansion culture medium was then removed and replaced with 20 ml of 

differentiation medium (Dulbecco’s Modified Eagle’s Medium (Sigma Co.), containing 10 mM 

HEPES buffer pH 7.4 (Sigma Co.), 10000 units/ml penicillin/10000 µg/ml streptomycin(Sigma 

Co.), 20 mM L-alanyl glutamine (Sigma Co.), MEM non-essential amino acids (Sigma Co.), and 

10% (v/v) foetal calf serum (Biosera S1800; NWPLS; Heat Inactivated), supplemented with 1 

µg/ml of insulin (Sigma Co.) and 50 µg/ml of L-ascorbic acid (Sigma Co.) to promote formation of 

a chondrogenic phenotype in the chondrocytes. The construct cultures were returned to the 

orbital shaker in the incubator and maintained at a speed of 50 rpm. The constructs were 

incubated until 42 days of culture, replacing the differentiation medium every 2-3 days. 
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2.4. SCANNING ELECTRON MICROSCOPY  

 

The constructs were washed in sterile PBS and immersed in 3% glutaraldehyde (Sigma Co.) with 

0.1 M cacodylate buffer pH 7.4) (AGAR) at room temperature for one hour. They were then 

washed three times in 0.1 M cacodylate buffer pH 7.4, and afterwards post fixed in 1% aqueous 

solution of osmium tetroxide (Fluka/Sigma Co.) for one hour. Finally, they were dehydrated in 

alcohols and let to dry. The samples were sputter coated with gold and observed using a Phillips 

XL-20 scanning electron microscope. 

 

 

2.5 HISTOLOGICAL ANALYSIS (HEMATOXYLIN-EOSIN, TOLUIDINE BLUE) 

 

Constructs were taken at specific culturing periods, until up to six weeks of total culturing time. 

The constructs were included in Optimal Cutting Temperature gel (OCT) (OCT compound BDH, 

Gurr®), frozen using liquid nitrogen and isopentane, stored at -20ºC for posterior cryosectioning. 

Tissue sections of 8 µm were taken and fixed using fresh 4% paraformaldehyde (Sigma, Co.). 

The slides were then washed in distilled water, let to dry and stored at 4ºC until the staining was 

performed. Hematoxylin-eosin stain was conducted in an automatic machine (Fume Cupboard; 

X219/E11/LEV1). In this procedure, the slides are stained in hematoxylin for a suitable time, 

optimised according to in-house procedures. The sections are washed in running tap water for 5 

minutes or less, and afterwards differentiated in 1% acid alcohol, for 5-10 seconds. The slides are 

washed again in tap water for 5 minutes or less, and stained in 1% eosin for 10 minutes. They are 

again washed in tap water for 5 minutes, and dehydrated through alcohols and mounted in DPX 

(Fluka/Sigma Co.). Toluidine blue staining was performed using standard histological methods in 

the following way. One drop of 1% toluidine blue was placed on each section for 2-3 seconds. 

The sections were rinsed with distilled water. Dehydration through alcohols followed and the 

sections were then left to dry overnight, and mounted in DPX. 

 

 

2.6. IMMUNOLOCALISATION OF COLLAGEN TYPE I AND TYPE II  

 

Collagen types I and II were detected immunohistochemically using monoclonal antibodies 

against collagen types I and II (Southern Biotechnology, UK), as previously described25. Briefly, 

fixed sections were washed with PBS and pre-treated with hyaluronidase (10 mg/ml) (Sigma Co.), 
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followed by pronase (2 mg/ml) (Fluka/Sigma Co.). The slides were then washed thoroughly in 

PBS and treated with 3% hydrogen peroxide (Sigma Co.) in 50% methanol (Aldrich), followed by 

washing in Tris-buffered saline (TBS) and blocking with 3% bovine serum albumin (BSA) (Sigma 

Co.) Incubation with the primary antibody (collagen type I and collagen type II) (UNLB) followed. 

The remaining protocol is as described in the Vectastain Elite ABC Kit PK-6105 (Vector 

Laboratories Ltd, UK) and in the Vector DAB Kit (Vector Laboratories Ltd, UK). The slides were 

afterwards washed in water for 5 minutes, counterstained with haematoxylin, and mounted with 

DPX mounting medium. Controls were performed using normal goat serum instead of the primary 

antibodies, which was included in the kit. 

 

 

2.7. DIMETHYLMETHYLENE BLUE (DMB) ASSAY FOR GLYCOSAMINOGLYCANS 

QUANTIFICATION 

 

Proteoglycans were determined by measuring the level of sulphated glcosaminoglycans (GAGs) 

using the dimethylmethylene blue metachromatic assay as described previously25. GAG levels in 

solution can be quantified by binding of the acidic polymer to the basic dye, 1,9- 

dimethylmethylene blue (DMB). The resulting metachromatic shift peaks at A525-530 which can 

therefore be adapted for a spectrophotometric assay. Briefly, the constructs were immersed in a 

digestion solution with papain (Sigma Co.) and N-acetyl cysteine (Sigma Co.), and incubated at 

60ºC overnight. After the digestion was completed, the tubes were centrifuged at 13,000 rpm for 

10 minutes. The supernatant was collected and stored at 4ºC until the GAG assay was 

performed. A chondroitin sulphate standard solution (Sigma Co.) was prepared in water and kept 

refrigerated. The samples and chondroitin sulphate standards were placed in a 96 well round-

bottomed plate, DMB solution was added to each well, and the optical density measured using a 

microplate reader, at 530 nm. Poly(glycolic acid) (PGA) non-woven scaffolds (Albany 

international, Bury, Lancashire, UK) were used as controls. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1. SCAFFOLDS PRODUCTION 
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A microcomputerized tomography (µCT) image of a SPCL scaffold is shown in figure 1. It was 

observed that the fibre mesh network for support of cell growth and development presents good 

interconnectivity. The fibre network structure was advantageous for the dynamic seeding using 

spinner flasks. An extensive porous area (approximately 75% as estimated by µCT) is an 

advantage towards cells penetration into the bulk of the scaffold, while also enhancing nutrients 

diffusion and removal of metabolic wastes. The scaffolds thickness (3mm) is within the range of 

the values encountered for normal human articular cartilage.26  

 

Figure V.1. Microcomputerized tomography image of a SPCL 30/70% (wt) fibre scaffold. 

 

 

3.2. SCANNING ELECTRON MICROSCOPY  

 

Scanning electron micrographs showed that the bovine articular chondrocytes extensively 

colonised the scaffold structure, being widely present at the surface and penetrating the various 

pores. We believe this is a consequence not only of the materials used, to which the cells adhere, 

but also to the scaffolds 3D arrangement, that in combination with the dynamic cells seeding 

using the spinner flasks, allowed the cells to spread and proliferate homogeneously throughout 

the entire construct. In fact, SPCL scaffolds have already been shown to be successful in bone 

tissue engineering approaches, in studies conducted with bone marrow stromal cells cultured in 

SPCL fibre based scaffolds, under dynamic conditions using bioreactors.27 The results presented 

here for the first time using SPCL scaffolds in a cartilage tissue engineering approach constitute 

another evidence for the application of these supports in tissue engineering approaches. 



CHAPTER V. A Cartilage Tissue Engineering Approach Combining Starch-Polycaprolactone Fibre Mesh Scaffolds 
With Bovine Articular Chondrocytes 

 

 147 

Figures 2.1.A-C show at increasing magnifications, constructs collected after 2 weeks of 

culturing. Figure 2.1.A exhibits a global view over the cells-scaffold construct, showing that the 

cells were homogeneously distributed and had adhered uniformly, showing no difference between 

a fibre surface and the contact junction between two fibres. The morphology of the chondrocytes 

is the one of normal and healthy cells,28,29 and these were forming multilayer as observed in 

figure 2.1.C. These observations indicate that with such an arrangement, the cells create a 3D 

environment which favours extracellular matrix formation. Figures 2.2.A-C shows the cultured 

scaffolds at week 4. Comparison of figures 2.1.A and 2.2.A, corresponding to weeks 2 and 4 of 

culturing, respectively, showed higher cell coverage in the latter, indicating that the cells have 

proliferated during these periods. Comparing the results at week 4 (Figures 2.2.A-C) with those 

from week 6 (2.3.A-C), no difference is observed. However, it can be observed that the cell 

coverage was extensive in both time periods. These observations might be explained by the 

exchange in culture medium supply that was performed. The supply of expansion medium 

containing bFGF during the initial periods, induces cell proliferation which enables obtaining a full 

cell coverage on the scaffolds30. The change to a differentiation medium containing insulin and L-

ascorbic acid (after 7 days of culture) would induce a decrease in the proliferation rates and 

trigger the onset of redifferentiation, with consequent expression of extracellular matrix.31  

 

 

Figure V.2. Scanning electron microscopy images of SPCL scaffolds seeded with bovine articular 

chondrocytes and cultured for 14 days (2.1.), 28 days (2.2.), and 42 days (2.3.). B and C 

represent higher magnifications of A, showing in detail the cells morphology and arrangement.  
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3.3. HEMATOXYLIN-EOSIN AND TOLUIDINE BLUE 

  

Figure 3 shows different histological sections of scaffolds taken at week 4 (3.1.A.) and week 6 

(3.1.B-D). As shown previously in the SEM analysis, it can be observed an increase in cell mass 

from week 4 to week 6, when comparing figures 3.1.A and 3.1.B. Cells have also created a 

consistent adhesion interface with the SPCL fibres, as can be observed in figure 3.1.D (arrows). 

The histology processing usually leads the structures to contract, and the detachment of cell 

mass observed in some of the fibres is a result of that. The fact that continuity is observed at the 

cells-fibres interface allows us to predict the tissue engineered constructs may preserve its 

integrity in vivo, acting as one functional unit. It is also evident the cells presence in both bulk and 

more external areas of the scaffolds (figure 3B). Regarding the PGA scaffolds, the observations 

indicate that these exhibited higher cell proliferation when compared to SPCL in the initial 

periods. We also detected a central area within the scaffolds were cells were lacking. Reasons for 

these occurrences may be related with inefficient cells penetration, necrosis due to high cell 

densities, or necrosis related with acidic by-products degradation, as shown in figures 3E and 3F. 

This was observed by week 4 of culture and correlates with data reported in the literature. PGA, 

as well as other polyesters, release acidic by-products in culture after a determined time period, 

as a result of hydrolytic chemical scission of the ester backbone.32 PGA biodegradation occurs by 

non-specific hydrolytic scission of their ester bonds, resulting into glycolic acid residues that may 

substantially decrease the solution pH and indirectly affect cell development.33 Figures 4.1.A-D 

show toluidine blue stained histology sections of SPCL scaffolds seeded with bovine articular 

chondrocytes. Toluidine blue is a metachromatic stain that identifies glycosaminoglycans present 

in the extracellular matrix of hyaline cartilage. It is possible to observe a light purple staining at 

both time periods presented (Figures 4.1.A-D), which indicates that the chondrocytes had 

produced an extracellular matrix containing proteoglycans. Proteoglycans enable cartilage to bind 

water molecules and account for the property of compressive stiffness important for the correct 

functioning of articular joints.25 Therefore, the identification of glycosaminoglycans in the cell 

extracellular matrix is a positive indicator towards the formation of a cartilage-like tissue. 

Concerning the PGA scaffolds, the results obtained from the staining with toluidine blue are very 

similar to those obtained for SPCL scaffolds. However, in PGA scaffolds no glycosaminoglycans 

presence was detected in the bulk area due to lack of cellular material (4.2.A-B), as previously 
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mentioned in H&E stained sections. Both tissue engineered constructs presented a staining 

profile very similar to the one encountered for native articular cartilage extracellular matrix (4.2.D).  

 

 

Figure V.3. Optical microscopy images of histology sections obtained from SPCL scaffolds 

seeded with bovine articular chondrocytes and stained with hematoxylin-eosin. The images 

shown correspond to samples collected after 28 days (3.1.A), and 42 days (3.1.B-D) of culture. 

Figures 3.2.A-C show optical microscopy images of histology sections obtained from PGA 

scaffolds seeded with bovine articular chondrocytes and stained in the same way (42 days). 

Figure 3.2.D represents native bovine articular cartilage control stained using the same 

technique. 

 

 

Figure V.4. Optical microscopy images of histology sections obtained from SPCL scaffolds 

seeded with bovine articular chondrocytes stained with toluidine blue. The images shown 

correspond to 28 days (4.1.A), and 42 days (4.1.B-D) of culturing. Optical microscopy images of 

histology sections of PGA scaffolds seeded with bovine articular chondrocytes and stained with 

toluidine blue are presented at 42 days (4.2.A-C). Figure 4.2.D shows native bovine articular 

cartilage stained with toluidine blue dye. 
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3.4. IMMUNOLOCALISATION OF COLLAGEN TYPE I AND TYPE II  

 

Four collagen types, namely, type II, IX, X, and XI, are traditionally considered specific for 

cartilage.34 Collagen type II is the major protein produced by chondrocytes in articular cartilage, 

being involved in its weight bearing and adsorbing functions.35 It was performed 

immunolocalisation of both collagen type I and collagen type II proteins in sections obtained from 

SPCL seeded scaffolds (Figure 5.1.). The results correspond to samples collected at week 6 of 

culture. A difference in the expression pattern can be noted, when comparing collagen type I and 

type II, with type II collagen displaying stronger antibody staining. When articular chondrocytes 

are isolated and expanded in 2D culture conditions, the cells expression profiles change. 

Collagen type II production is reduced and collagen type I is expressed. This process is described 

as dedifferentiation and it is a characteristic feature of chondrocytes grown in two dimensional 

cultures34,36. Once the cells reach confluence and begin to pack in multilayered 3D structures, 

they begin to re-differentiate. Re-differentiation is the process of regaining normal articular 

cartilage molecules synthesis, such as collagen type II, aggregan, and Sox-9, for example.37,38 

When in vitro differentiation is induced, type I collagen rapidly decreases during culture, and the 

levels of collagen type II and IX experience an increase.34,35,39 Cell constructs studied herein 

presented stronger staining of collagen type II by week 4 (data not shown), which was maintained 

throughout the rest of the culture period. Collagen type II is the major structural macromolecule of 

hyaline cartilage, conferring tensile strength to the cartilage matrix and is thus a good marker of 

tissue engineered hyaline-like cartilage.25 Considering this, the expression of these proteins, 

detected in the constructs cultured for 6 weeks, is another indication of the hyaline-like nature of 

these tissue engineered constructs. Regarding the PGA scaffolds, it was observed a higher 

intensity staining with collagen type II antibodies than with collagen type I. Predominance of 

collagen type II staining over collagen type I in both types of scaffolds inferred that bovine 

articular chondrocytes regained a chondrogenic phenotype on the SPCL and PGA scaffolds. 

These results correlated with the toluidine blue staining, which reveal that glycosaminoglycans 

were present in the newly elaborated extracellular matrix.  

 



CHAPTER V. A Cartilage Tissue Engineering Approach Combining Starch-Polycaprolactone Fibre Mesh Scaffolds 
With Bovine Articular Chondrocytes 

 

 151 

 

Figure V.5. Optical microscopy images presenting the results obtained from the 

immunolocalisation of collagen type I and type II in histology sections of SPCL scaffolds seeded 

with bovine articular chondrocytes. Images present results at 42 days for collagen type I, collagen 

type II, and normal goat serum-control (left to right, respectively) (5.1.A-C;D-F). The images are 

shown at different magnifications. Below, comparative results are shown for PGA scaffolds at 42 

days for collagen type I, collagen type II and normal goat serum-control (left to right, respectively) 

(5.2.A-C). Figure 5.3.A-C represents native bovine articular cartilage stained using the same 

method (collagen type I, collagen type II, and normal goat serum-control, from left to right, 

respectively). 

 

 

3.5. DMB ASSAY FOR GLYCOSAMINOGLYCANS QUANTIFICATION 

 

The glycosaminoglycans (GAG) were quantified using the dimethylmethylene blue (DMB) assay. 

Comparing the results obtained with SPCL constructs with the ones generated for PGA, it can be 

observed a wide difference in glycosaminoglycans quantification. Given the similar results 

obtained with the toluidine blue staining for both types of scaffolds, the higher values for GAGs 
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concentration in PGA scaffolds may be a result of the apparently higher initial cell proliferation 

rates observed for the PGA scaffolds, when compared to SPCL. A higher cell number would 

result in an increase in the exrtracellular matrix components, as it is known that intercellular 

contacts exert extreme importance for chondrocytes to begin extracellular matrix deposition.34,40 

The fact that the cells were able to proliferate at higher rates in the PGA scaffolds may justify the 

higher glycosaminoglycans synthesis that was observed. However, this may be jeopardised by 

the tissue depletion observed in the central area of the PGA scaffolds, which can be a result of 

acidic by-products release, inefficient cells penetration or necrosis induced by high cellular 

densities that may lead to loss in mass transfer throughout the constructs. Furthermore, GAG 

deposition in SPCL may be achieved with some complementary strategies, such as the addition 

of certain growth factors. For example, it is described in the literature that bone morphogenetic 

protein 2 (BMP-2) and cartilage-derived morphogenetic protein 2 (CDMP-2) significantly enhance 

proteoglycans production on a chondrocytic cell line (MC615).41 Also, it has been shown that 

insulin-like growth factor type I (IGF-I) increases the synthesis of proteoglycans in bovine articular 

chondrocytes.31 Some of these molecules can be added to the culture medium or even included 

in the scaffolds.  
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Figure V.6. Results obtained from DMB assay for GAGs quantification results for SPCL and PGA 

scaffolds at different time periods. 

 

 

 

4. CONCLUSIONS 

There is a great need for the development of clinically useful cartilage tissue engineering 

strategies. In this work, we have showed that SPCL scaffolds can support bovine articular 

chondrocytes adhesion, proliferation and differentiation, for up to 6 weeks of culturing. These 

scaffolds were compared with non-woven polyglycolic acid (PGA) scaffolds cultured using the 

same parameters. The PGA scaffolds presented a central area of cells depletion, which can be a 

result of acidic by-products release from their hydrolytic degradation, inefficient cells penetration 

or necrosis induced by high cellular densities. This can compromise the clinical application of 

these standard scaffolds. This situation was not observed in the SPCL scaffolds, which presented 

homogeneous cell colonization throughout the scaffold structure. The results obtained for 

toluidine blue staining and immunolocalisation of collagens type I and type II were very similar for 

both types of scaffold materials. Nevertheless, quantitatively, PGA scaffolds exhibited higher 

amounts of glycosaminoglycans, when compared to the SPCL scaffolds. In summary, the results 

obtained from this work, demonstrate that the SPCL fibre based scaffolds may constitute a valid 



CHAPTER V. A Cartilage Tissue Engineering Approach Combining Starch-Polycaprolactone Fibre Mesh Scaffolds 
With Bovine Articular Chondrocytes 

 

 154 

alternative and should be considered for further studies in the cartilage tissue engineering field, in 

addition to their already promising performance in the bone tissue engineering area. 
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CHAPTER VI. 
 
Gellan Gum: A New Biomaterial for Cartilage Tissue Engineering Applications* 

 
 
 
ABSTRACT 
 
Gellan gum is a polysaccharide manufactured by microbial fermentation of the Sphingomonas 

paucimobilis microorganism, being commonly used in the food and pharmaceutical industry. It 

can be dissolved in water, and when heated and mixed with mono or divalent cations, forms a gel 

upon lowering the temperature under mild conditions.  

In this work, gellan gum hydrogels were analysed as cells supports in the context of cartilage 

regeneration. Gellan gum hydrogel discs were characterised in terms of mechanical and 

structural properties. Transmission electron microscopy (TEM) revealed a quite homogeneous 

chain arrangement within the hydrogels matrix, and dynamic mechanical analysis (DMA) allowed 

to characterize the hydrogels discs viscoelastic properties upon compression solicitation, being 

the compressive storage and loss modulus of approximately 40 kPa and 3 kPa, respectively, at a 

frequency of 1 Hz. Rheological measurements determined the sol-gel transition started to occur 

at approximately 36 ºC, exhibiting a gelation time of approximately 11 seconds. Evaluation of the 

gellan gum hydrogels biological performance was performed using a standard MTS cytotoxicity 

test, which showed that the leachables released are not deleterious to the cells and hence were 

non cytotoxic. Gellan gum hydrogels were afterwards used to encapsulate human nasal 

chondrocytes (1x106cells/ml) and culture them for total periods of 2 weeks. Cells viability was 

confirmed using confocal calcein AM staining. Histological observations revealed normal 

chondrocytes morphology and the obtained data supports the claim that this new biomaterial has 

the potential to serve as a cell support in the field of cartilage regeneration.  

 

 

_____________________________________________________________________________ 
 
* This chapter is based on the following publication: 

JT Oliveira, L Martins, R Picciochi, PB Malafaya, RA Sousa, NM Neves, JF Mano, RL Reis. 

Gellan Gum: A New Biomaterial for Cartilage Tissue Engineering Applications (2008) (submitted). 

_____________________________________________________________________________ 
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1. INTRODUCTION 
 
Tissue engineering has been proposed as a new method to address problems such as organ 

failure and tissue regeneration, being widely studied nowadays as a tool to tackle problems in a 

diverse range of tissues.1-4 Such conditions pose serious health problems, being responsible for a 

decrease in people quality of life. Cartilage is one of the most studied tissues in this field giving 

the importance it has on mobility and locomotion. Due to its limited capacity for self repair, 

cartilage becomes an enormous constraint to normal everyday life once degenerated or 

traumatised. Structures that can provide support for specific cells to develop and generate a 

functional cartilaginous tissue are an important subject of study. Different types of natural and 

synthetic biomaterials have been processed using different techniques for this purpose. We are 

proposing in this work a new biomaterial - Gellan gum - to be used in the engineering of 

cartilaginous tissues, even though its application may not be restricted to this tissue only, as it will 

be shown by the different 3D structures that can be obtained. Recent work performed by Smith 

AM et al has also suggested the use of this biomaterial for tissue engineering applications.5 

Gellan gum is a linear anionic polysaccharide composed of tetrasaccharide (1,3-β-D-glucose, 1,4-

β–D-glucuronic acid, 1,4-β-D-glucose, 1,4-α-L-rhamnose) repeating units, containing one 

carboxyl side group, and was initially described by Moorhouse et al.6,7 This material has a broad 

use in the food industry and biomedical fields, mostly due to its processing into transparent gels 

that are resistant to heat and acid stress. Two Gellan gum forms exist, acetylated and 

deacetylated, being the latter the most common and commercially available form. Both form 

thermoreversible gels, varying in their mechanical properties from soft and elastic for the 

acetylated form to hard and brittle for the fully deacetylated polysaccharide.8,9 Gellan gum can 

form gels in the following way: at high temperatures, Gellan gum is in the coil form; upon 

temperature decrease, a thermally-reversible coil to double-helix transition occurs, which is a 

prerequisite for gel formation. Afterwards, a structure composed of anti-parallel double helices 

self assembled to form oriented bundles, called junction zones, is formed. Untwined regions of 

polysaccharide chains, in the form of extended helical chains, link the junction zones, leading to 

the formation of a three dimensional network, that creates the gel.10 These structural changes 

occurring to gellan gum molecules have been shown by different techniques. During the cooling 

process, for example, rheological and differential scanning calorimetry (DSC) studies revealed a 

first step increase of loss modulus that corresponds to the coil-helix transition, and a second step 

increase of loss modulus due to sol-gel transition.11 The gelation of gellan gum solutions is 

strongly influenced by the chemical nature and quantity of cations present in the solution. The 
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presence of cations is critical when a structurally stable gel is to be prepared.10,12,13 In fact, at low 

Gellan gum concentrations, the helix formation and its partial aggregation may form an ordered 

structure, but this does not lead to gel formation because the number of helical aggregates does 

not give rise to a continuous network in the whole volume.11 The main barrier are the carboxyl 

side groups that repulse each other by electrostatic interaction, therefore hindering the tight 

binding of helices and their cohesive aggregation.9,14-16 The introduction of cations shields the 

electrostatic repulsion and thereby allows the tight binding and aggregation of helices.11,17,18  

The gelation properties of Gellan gum are also influenced by the nature of the cations employed, 

in which divalent cations promote the gelation much more strongly than monovalent cations.11,12 

In monovalent cations, the gelation is mainly a result of the screening of the electrostatic 

repulsion between the ionized carboxylate groups on the Gellan gum chains. In the case of 

divalent cations, the gelation and aggregation of Gellan occurs via a chemical bonding between 

divalent cations and two carboxylate groups belonging to glucuronic acid molecules in the Gellan 

chains, in adittion to the screening effect.19 It was also suggested that different types of mono or 

divalent cations also influenced the viscoelastic behaviour of Gellan gum solutions. K+ was more 

remarkable than Na+, and Ca2+ more than Mg2+.11 Gellan gum structures have excellent heat 

resistance properties since the formed junctions upon gelation can be only be unzipped on 

heating at 120ºC.11 In the initial state, a junction zone in Gellan gum is estimated to be four 

double helices wide and five repeat units long, its length being increased to seven repeat units 

upon annealing.10 In the solid state, the double helix structure adopted by Gellan gum has a 

similar arrangement to the double helix structure of iota carragenan.20 Previous studies indicate 

that solutions of deacetylated gellan gum behave as a pseudoplastic liquids, as evidenced by 

creep testing, and have little thixotropy.13 Gellan gum advantageous use in the context of 

biomedical applications includes its lack of toxicity, processing under mild conditions, the ability to 

used as an injectable system in a minimally invasive manner, and also the structural similarity it 

presents with native cartilage glycosaminoglycans by the presence of glucuronic acid residues in 

their repeating unit.21,22 The presence of this carbohydrate residue, which contains carboxylic 

groups, may confer added functions to this material. Some intellectual property associated with 

the application of this material in the medical field has already been disclosed, as its use for 

ophthalmologic purposes.23,24 

This work tested for the first time gellan gum as a new biomaterial to be used in cartilage 

regeneration approaches. As shown here, gellan gum hydrogels are quite versatile in terms of 

processing and its materials properties reveal good prospects for their use as a cell encapsulating 

agents. Biological evaluation of their cytotoxicity and in vitro culturing of human nasal 
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chondrocytes generated interesting results indicating that this new biomaterial may play a 

potential role in cartilage regeneration approaches.  

 

2. MATERIALS AND METHODS 

 

2.1. VERSATILITY OF GELLAN GUM: PROCESSING INTO DIFFERENT STRUCTURES 

(DISCS, MEMBRANES, FIBRES, PARTICLES, SCAFFOLDS) 

 

Note: Unless otherwise stated the reagents were purchased from Sigma-Aldrich Co. 

Gellan gum (G1910, Sigma, St. Louis, MO, USA) was processed in different ways giving rise to 

various structures, therefore evidencing the versatility of this natural biomaterial. The processing 

involved temperature-dependent and pH-dependent reactions. Regarding gellan gum discs and 

membranes production the following methodology was used. Gellan gum powder was mixed with 

distilled water under constant stirring at room temperature to obtain a final concentration of 0.7% 

(w/v). The solution was progressively heated to 90ºC, under which complete and homogeneous 

dispersion of the material was obtained. The solution was kept at this temperature during 20-30 

minutes. Afterwards, CaCl2 (Merck, DE) was added to obtain a final concentration of 0.03% (w/v) 

in the gellan gum solution and the temperature was progressively decreased to 50ºC. Gellan 

discs were produced by casting the solution into cylindrical moulds and allowing it to rest at room 

temperature for 2-5 minutes and form a solid gel. The discs were then cut using a borer for final 

discs dimensions of Ø 6±0.01 mm x 5.5±0.46 mm height. Gellan gum membranes were 

produced by casting the solution into Petri dishes and allowing it to stand at room temperature for 

2-5 minutes and form a solid gel. The Petri dishes were kept in an oven at 37ºC for 90 minutes. 

Concerning the production of Gellan gum fibres and particles the methodology was as follows. 

Gellan gum powder was mixed with a NaOH 0.10 M solution and stirred at room temperature with 

a final concentration of 4% (w/v). Gellan gum fibres were produced by extruding the gellan gum 

solution into a L-ascorbic acid 20% (v/v) solution under a constant flow rate of 0.2 ml/min, using a 

21G needle. The gellan gum fibres formed were then washed in distilled water, pressed into 

cylindrical moulds, and dried overnight at 37ºC. Gellan gum particles were produced by extruding 

the Gellan gum 4% (w/v) solution dropwise to an L-ascorbic acid 20% (v/v) solution under a 

constant flow rate of 0.8 ml/min, using a 21G needle. Gellan gum scaffolds were produced by 

immersing gellan gum 0.7% (w/v) (Ø 6±0.01 mm x 5.5±0.46 mm height) discs in liquid nitrogen 

for 1-2 minutes and quickly transferring them to a lyophilizator (Telstar Cryodos-80, Telstar, 
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Spain) where they were lyophilized during 2 days. Lyophilized gellan gum 0.7% discs were further 

analysed under micro-computed tomography (µ-CT) using a high-resolution µ-CT Skyscan 1072 

scanner (Skyscan, Kontich, Belgium) using a resolution of 6.76 µm pixel size and integration time 

of 1.7 ms. The x-ray source was set at 70keV of energy and 142 µA of current. Approximately 

500 projections were acquired over a rotation range of 180° and a rotation step of 0.45°. Data 

sets were reconstructed using standardized cone-beam reconstruction software (NRecon v1.4.3, 

SkyScan). The output format for each sample was a 500 serial of 1024x1024 bitmap images. 

Representative data sets of 150 slices were segmented into binary images (CT Analyser, 

v1.5.1.5, SkyScan) with a dynamic threshold of 70-255 (grey values) that was applied to build the 

3D models. 3D virtual models (height 1mm x  3mm) of representative regions in the bulk of the 

hydrogels were created, visualized and registered using image processing software (CT 

Analyser, v1.5.1.5 and ANT 3D creator, v2.4, both from SkyScan). 

 

 

2.2. TRANSMISSION ELECTRON MICROSCOPY 

 

Gellan gum discs were prepared for transmission microscopy analysis in the following way. 

Briefly, sections of 1mm3 were fixed in formalin-glutaraldehyde-osmium tetroxide for 2 h at room 

temperature and then washed three times in PBS. Semithin sections (1µm) were cut from epon-

embedded blocks and stained with toluidine blue. Ultrathin sections (600 Å) were cut in a 

ultratome (Reichert Ultranova Leica), mounted onto copper grids, stained with uranyl acetate 

(7min) and lead citrate (5 min) and observed on a Zeiss 902A (50 Kv) electron microscope.  

 

 

2.3. DYNAMIC MECHANICAL ANALYSIS  

 

Dynamic mechanical analysis (DMA) was conducted to characterize the mechanical behaviour of 

Gellan gum hydrogel discs. Gellan gum 0.7% (w/v) discs (Ø 6±0.01 mm x 5.5±0.46 mm height) 

discs were subjected to compression cycles of increasing frequencies ranging from 0.1-10 Hz 

with constant amplitude displacements of 0.1 mm using a Tritec 2000 DMA (Triton Technology, 

UK). Storage and loss modulus were measured and experiments were conducted at room 

temperature. The total number of discs per assay were n=3. The described values for the 

compression modulus were collected at a frequency of 1 Hz. Statistical analysis was performed 

using confidence intervals based on the experimental results, with a confidence level of 99%. 
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2.4. RHEOLOGICAL STUDIES 

 

Cone-Plate rheometry was conducted for gellan gum hydrogels in order to assess their 

rheological behaviour dependence of temperature and time. For this purpose, gellan gum powder 

was mixed at room temperature with distilled water at a concentration of 0.7% (w/v) under 

constant stirring. The solution was heated to 90ºC and kept at this temperature for 30 minutes. 

Afterwards, CaCl2 was added to the Gellan gum solution at concentration of 0.03% (w/v) and 

rheological measurements were performed using a controlled stress cone-plate rheometer 

(Reometer Reologica, StressTech, Sweden). For each measurement, a volume of 2 ml of the 

Gellan gum solution was placed in the bottom plate of the rheometer and held at a constant 

temperature of 70ºC. The polymer solution was allowed to rest for 1 minute before starting the 

experiments. Measurements were performed by cooling each sample from 70ºC to 25ºC (at a 

cooling rate of -6ºC/min) applying a constant shear stress of 0.1 Pa. Temperature, time, shear 

rate and viscosity were constantly measured. The total number of repeats was n=3 and 

confidence intervals were estimated, with a confidence level of 99%. 

 

 

2.5. CYTOTOXICITY EVALUATION 

 

To assess the possible cytotoxicity of the processed gellan gum hydrogels, MTS (3-(4,5-

dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2(4-sulfofenyl)-2H-tetrazolium) test was used 

according to ISO/EN 10993 part 5 guidelines, which determines whether cells are metabolically 

active.25 This cytotoxicity test is based on the bioreduction of the substrate, 3-(4,5-

dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2(4-sulfofenyl)-2H-tetrazolium (MTS) (Cell Titer 

96® Aqueous Solution Cell Proliferation Assay, Promega, USA), into a brown formazan product by 

dehydrogenase enzymes in metabolically active cells, and is commonly used for cell viability 

evaluation. Latex rubber was used as positive control for cell death, due to its high cytotoxicity to 

cells, and culture medium was used as a negative control. A rat lung fibroblasts cell line – L929, 

acquired from the European Collection of Cell Cultures (ECACC), was used for the studies. The 

cells were grown as monolayers in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 

with 10% foetal bovine serum (Biochrom, Berlin, Germany; Heat Inactivated) and 1% of antibiotic-

antimycotic mixture. 
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The gellan gum hydrogel discs were incubated in culture medium for 24h at 37ºC with constant 

shaking, as well as latex. Cultured L929 cells were trypsinised using trypsin-EDTA (Gibco, 

Invitrogen Corporation) and plated at a density of 6.6x104 cells/well into 96-well micrometer plates 

(200 µl/well). The plates were incubated for 24 hours at 37ºC in a humidified atmosphere of 5% 

CO2 in air. Afterwards, the medium was replaced by the extracts previously obtained, using 

culture medium as a negative control. After 72 hours, the cell culture was incubated with MTS 

(using culturing medium without phenol red) for further 3 hours at 37ºC in a humidified 

atmosphere of 5% CO2 in air. Culture medium with MTS was then transferred to new wells. The 

optical density (OD) which is directly proportional to the cellular activity, being a measure of 

mitochondrial acitivity, was read on a multiwell microplate reader (Synergy HT, Bio-TeK 

Instruments, US) at 490 nm. Statistical analyses were conducted using a two-sample t-test 

assuming unequal variances for n=3. 

 

 

2.6. ISOLATION AND EXPANSION OF HUMAN NASAL CHONDROCYTES 

 

Nasal cartilage was harvested from the nasal septum of adult patients (40-65 years) undergoing 

reconstructive surgery. This was performed within the scope of a protocol established with the 

Hospital de S. Marcos, Braga, Portugal, approved by its Ethical Committee and always sampled 

upon patient informed consent. The human nasal septum cartilage free from all surrounding 

tissue was placed in a Petri dish containing sterile phosphate buffered saline (PBS) and cut into 

square slices of 5 mm and thickness between 2-3 mm. The pieces were washed in sterile PBS 

solution, immersed in 20 ml of trypsin-EDTA solution, and incubated for 30 min at 37ºC on a 

rotator. Trypsin was removed and the pieces washed with basic DMEM. Then, 20 ml of filter 

sterilised collagenase type II solution (2mg/ml) in basic medium was added, and the mixture 

incubated for approximately 12 hours at 37ºC on a rotator. The digested tissue and cell 

suspension solution was centrifuged at 200xg for 7 min and the supernatant removed. The cell 

pellet was washed with PBS and the cells centrifuged as before. The procedure was repeated 

and the cells were ressuspended in PBS and counted using a hemocytometer. They were again 

centrifuged, the supernatant removed, and ressuspended in expansion medium consisting of 

Dulbecco’s Modified Eagle’s Medium, containing 10 mM HEPES buffer pH 7.4, 10000 units/ml 

penicillin/10000 µg/ml streptomycin, 20 mM L-alanyl glutamine, 1x MEM non-essential amino 

acids and 10% (v/v) foetal bovine serum (FBS; Biochrom, Berlin, Germany; Heat Inactivated), 

supplemented with 10 ng/ml basic fibroblast growth factor (bFGF) (PeproTech, UK). Human nasal 



CHAPTER VI. Gellan Gum: A New Biomaterial for Cartilage Tissue Engineering Applications 
 

 170 

chondrocytes were plated into tissue culture flasks and incubated at 37ºC in a humidified 

atmosphere of 5% CO2 in air for expansion.26 

 

 

2.7. HUMAN NASAL CHONDROCYTES ENCAPSULATION IN GELLAN GUM AND AGAROSE 

HYDROGELS 

 

Human nasal chondrocytes were expanded until an adequate cell number was obtained for cells 

encapsulation. Cells were encapsulated at passage 1 in gellan gum hydrogels and in agarose 

type VII (A6560; Sigma, St. Louis, MO) hydrogels, the latter being used as controls. 

Regarding gellan gum the procedure was the following. Gellan gum powder was mixed with 

sterile distilled water under constant stirring at room temperature to obtain a final concentration of 

0.7% (w/v). The solution was progressively heated to 90ºC and kept at this temperature for 20-30 

minutes. A sterile CaCl2 solution was added to obtain a final concentration of 0.03% (w/v). The 

temperature was progressively decreased to 40ºC and stabilised at this stage always under 

constant stirring. Human nasal chondrocytes were detached by trypsinisation, mixed with 

expansion medium, and centrifuged at 200xg for 7 min. The supernatant was removed and the 

cells were ressuspended in warm sterile PBS solution, counted using and hemocytometer, and 

finally centrifuged at 200xg for 7 min. The supernatant was discarded and the cells pellet kept at 

the bottom of the falcon tube. The gellan gum 0.7% (w/v) with CaCl2 0.03% (w/v) solution was 

added to the cells pellet and the mixture ressuspended for complete homogenization of cells 

within the matrix with a final concentration of 1 x106 cells/ml. Gellan discs with encapsulated 

human nasal chondrocytes were produced by casting this mixture into sterile cylindrical 

polystyrene moulds, allowing it to rest at room temperature for 1-2 minutes to form a solid gel, 

and then discs of Ø 6±0.01 mm x 5.5±0.46 mm height were cut using a borer. 

Regarding the agarose hydrogels, the procedure is detailed elsewhere.27 Briefly, a sterile agarose 

type VII low Tm 4% (w/v) solution prepared in sterile PBS was heated to 70ºC for 30 seconds, 

until complete dissolution. The solution was added to a human nasal chondrocytes pellet 

prepared as described for the gellan gum encapsulation and the mixture ressuspended for 

complete homogenization of cells within the matrix with a final concentration of 1x106 cells/ml. 

Agarose discs with encapsulated human nasal chondrocytes were produced by casting this 

mixture into sterile cylindrical polystyrene moulds, allowing it to rest at room temperature for 20 

minutes to form a solid gel, and then discs were cut using a borer. Both gellan gum and agarose 

hydrogels with encapsulated cells were cultured for two weeks with expansion medium under 
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orbital rotation (50 rpm).  Afterwards, expansion medium was replaced for six weeks by 

differentiation medium to promote the formation of a chondrogenic phenotype. This medium 

presents the same composition as the expansion medium except for the bFGF which is replaced 

with 1 µg/ml of insulin and 50 µg/ml of L-ascorbic acid. The cells-hydrogel systems were returned 

to the orbital shaker and the culture medium was replaced every 2-3 days. The experiments were 

repeated 3 times independently. 

 

 

2.8. HUMAN NASAL CHONDROCYTES ENCAPSULATED IN GELLAN GUM AND AGAROSE 

HYDROGELS: CELL VIABILITY TESTS AND HISTOLOGICAL ANALYSIS  

 

Human nasal chondrocytes morphology in the two hydrogels used, gellan gum and agarose, was 

observed at 2 weeks of culture under optical microscopy. One representative sample of each type 

of support was observed at different magnifications using an optical microscope (Axiovert 40 

CFL, Zeiss). 

Cells viability at 2 weeks of culturing was assessed using calcein AM staining. Calcein AM 

(C3099, Invitrogen Corp.) is a fluorescence-based method for assaying cell viability and 

cytotoxicity in which the reagent is retained in cells that have intact membrane. Briefly, a calcein 

AM solution of 1/1000 was prepared in culture medium. One disc of each type of hydrogel with 

encapsulated human nasal chondrocytes was collected from the culturing plates and incubated in 

the calcein AM solution for 15-30 min at 37ºC and afterwards washed in sterile PBS. The 

samples were observed under fluorescent microscopy (Zeiss HAL 100/HBO 100; Axiocam MRc5 

(Zeiss). 

Concerning the histological analysis, hematoxylin-eosin staining was performed on 8 µm 

thickness sections of gellan gum and agarose discs collected at 2 weeks of culture. The discs 

were fixated by immersion for 30-40 minutes in glutaraldehyde 2.5% (v/v) at 4ºC, and washed in 

PBS. Histological processing was performed using Tecnhovit 7100® (Heraeus Kulzer GmbH, DE) 

and the technical details and procedure can be found in the commercial package. Sections were 

cut using a microtome Leica RM2155 (Leica Microsystems, Nusslock GmbH).  

 

 

3. RESULTS AND DISCUSSION 
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3.1. VERSATILITY OF GELLAN GUM: PROCESSING INTO DIFFERENT STRUCTURES 

(DISCS, MEMBRANES, FIBRES, PARTICLES, SCAFFOLDS) 

 

Gellan gum was processed into different shapes as shown in Figure 1. By using simple 

processing methodologies, involving temperature-dependent gelation (discs, membranes, 

scaffolds) and pH-dependent gelation (fibres and particles), all those structures were produced. 

This shows the versatility of this material to obtain different geometrical forms that can be used in 

a broad range of tissue engineering and drug delivery applications. Gellan gum hydrogels can be 

used to encapsulate cells and serve as supports for their development. Gellan gum can also be 

processed into fibres and generate a 3D structure onto which cells can be seeded and stimulated 

to proliferate, an approach that may also be explored by using membranes. A gellan gum 

solution, in which a specific drug is dispersed, can be processed into particles such as those 

shown in Figure 1.D and employed as a carrier for drug delivery applications. In fact, gellan gum 

has been used previously as an ocular drug delivery system.28-30 Different parameters such as 

temperature, pH, polymer concentration, and ions nature can be adjusted to possibly improve the 

biological performance or confer certain functionality. The control of the sol-gel transition at 

physiological temperature and pH31-33 renders this material the possibility to be used as an 

injectable system, which is a highly recommended approach in several situations.34 The most 

relevant factor in the hydrogel forming ability of gellan gum is the presence of D-glucuronic acid 

molecules in the tetrasaccharide repeating unit of the polysaccharide. These monosaccharides 

possess carboxylic groups in their structure that form internal hydrogen bonds and stabilise the 

double helices. Nevertheless, carboxyl side groups that repulse each other by electrostatic 

interaction, hinder the tight binding of helices and their cohesive aggregation, affecting the 

formation of stable gels. The mono or divalent ions present in the solution play a key role in this 

matter. Their presence diminishes the repulsive energy between the carboxylic groups allowing 

the hydrogels to be formed. The variation in pH also affects the solubility of the material being this 

the main factor in the processing of gellan gum fibres and particles (Fig. 1.C and 1.D). At a basic 

pH, such as the NaOH solution used in the experiments, the carboxylic groups present in each D-

glucuronic acid residue should be in the anionic form, COO-, and therefore soluble in solution. 

Once the pH is lowered, as upon extrusion into an L-ascorbic acid solution, the carboxylic groups 

become protonated, COOH, and the material turns insoluble.  
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Figure VI.1. Sol-gel transition occurring in a Gellan gum solution containing CaCl2. 

 

 

Figure VI.2. The versatility of Gellan gum structures that can be formed using simple polymer 

processing technologies: (A) discs; (B) membranes; (C) fibres; (D) particles; (E) and (F) 3D 

lyophilised scaffolds. 

 

 

3.2. TRANSMISSION ELECTRON MICROSCOPY  
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Transmission electron microscopy (TEM) was performed to have an insight on the ultrastructural 

morphology of the gellan gum hydrogels (Figure 2). As described before for the gel state, gellan 

gum hydrogels constitute a matrix where double helices that originated from the coil form 

rearrangement in solution are widely present and distributed in a rather homogeneous fashion.35 

These give rise to junction zones by linking to a neighbour double helical molecule. The overall 

stability of the hydrogel network derives from the loose ends within the double helical molecules. 

These, together with the cationic anti repulsive effect allow obtaining a stable hydrogel when the 

temperature is decreased below the setting point. Previous work has already used TEM as a tool 

to characterize the ultrastructural properties of gellan-based hydrogels.36 The authors showed 

that gellan gum forms strong gels at low ionic concentrations, being these highly homogeneous 

and constituted by a dense fibrous network structure. The work presented here confirmed this, 

being observed that gellan gum hydrogels provide a uniform matrix at a nanoscale throughout 

which cells could be encapsulated in a rather homogeneous way.  

 

Figure VI.3. Transmission electron microscopy micrograph of a gellan gum hydrogel showing a 

dense and homogeneous network structure at the ultrastructural level.   

 

 

3.3. DYNAMIC MECHANICAL ANALYSIS  

 

Living tissues exhibit clear viscolelastic properties and therefore it is important to characterize the 

solid-state rheological features of materials that are meant to be in contact with them. Dynamic 

mechanical analysis (DMA) has been used in our group to assess the viscoelastic properties of 

biomaterials, including natural-based hydrogels or highly hydrated systems.37-40 In this work, 
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gellan gum hydrogels were analysed in the wet state throughout a physiological relevant 

frequency range. Both the storage (elastic) and loss (viscous) components of the complex 

modulus are shown in Figure 4. The storage modulus (E’) is about one order of magnitude higher 

than the loss modulus (E’’) indicating a clear elastic nature of the gel. However, it possesses 

some damping capability that may be useful to dissipate some cyclic mechanical energy that is 

imposed in an implantation scenario. Although some increase in E’ is observed for increasing 

frequencies, the elastic properties of the biomaterial are quite stable, as compared to the viscous 

component. In fact, a clear increase in E’’ is observed between 0.4 and 10 Hz, which suggests 

that the material exhibits higher dissipation capability for high frequencies. At a frequency of 1 Hz, 

the compression modulus of the gels was estimated to be of 38.3±6.3 kPa [38.2, 38.4 t(0.01,2)] at 

room temperature. Even though this value is not optimal in terms of mimicking human articular 

cartilage mechanical properties41, it is higher or within the range of values found for hydrogels 

used in similar cartilage regenerative approaches.42,43 The gellan gum support is conceived in this 

initial work to serve as a cell support due to its features, even though it may be optimized for 

being applied as an injectable system.31-33 Cells encapsulation and extracellular matrix deposition 

may result in progressive increase of the mechanical properties of the 3D structures, as shown 

before for other systems.42 
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Figure VI.4. Dynamic mechanical analysis of gellan gum hydrogels showing the storage (E’) and 

loss (E’’) modulus upon compression solicitation using different frequencies. 

 

 

3.4. RHEOLOGICAL STUDIES  

 

Rheological measurements were performed to determine the temperature range at which the sol-

gel transition occurred and the time-scale for gelling. Regarding gelation temperature, it is 

possible to state from the rheological measurements that it happens around 37ºC (36.6±0.05ºC) 

[36.586, 36.588 t(0.01,2)] (Figure 5). 
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Figure VI.5. Rheological measurements of gellan gum solutions. The upper x axis shows the 

relation between temperature and viscosity, while the bottom x axis shows the relation between 

time-length and viscosity. 

 

 

Concerning the time-scale for gelling, it is possible to observe from the graph on Figure 5 that it is 

of approximately 11 seconds (11.27±0.40 sec) [11.258, 11.275 t(0.01,2)]. The results obtained for 

both temperature and time of gelation provide important information concerning subsequent 

experiments for cells encapsulation. The temperature at which the sol-gel transition occurs, and 

the overall residence time, is similar to other hydrogels used for the same purpose.27,44 Gellan 

gum hydrogels allowed for a homogeneous cell suspension to be prepared at a temperature 

above the setting temperature of the gels. At such temperatures, the viscosity of the solution 

presents values near to zero, which enable it to be mixed with the cells, ressuspended to 

generate a uniform cells distribution, and then lower the temperature to allow gel formation and 

cells entrapment within the newly formed matrix. The quick gelling time may be useful in the use 

of Gellan gum as an injectable system that could deliver cells through a minimally invasive 

procedure, although these kinetics can be modified. 

 

 

3.5. CYTOTOXICITY EVALUATION  
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The MTS cytotoxicity test results showed that the gellan gum hydrogels did not cause any 

deleterious alteration to the metabolic activity of L929 cells and thus, were considered as non 

cytotoxic (Figure 6). The results were comparable to those obtained with tissue culture 

polystyrene (TCPS), which was used as the negative control for cell death (differences are not 

statistically significant). The toxic effect of the positive control for cell death (latex) was clear, 

given the severe decrease on cell viability shown on the graph (Figure 6). 

 

 

Figure VI.6. MTS cytotoxicity test performed to evaluate the possible cytotoxic effects of the 

leachables released by the gellan gum hydrogels. Results show the gels are non-cytotoxic. 

 

 

3.6. HUMAN NASAL CHONDROCYTES ENCAPSULATED IN GELLAN GUM AND AGAROSE 

HYDROGELS: CELL VIABILITY TESTS AND HISTOLOGICAL ANALYSIS 

 

Figures 7A and 7B show the human nasal chondrocytes efficiently encapsulated in the gels. This 

result is extremely important if the aim of the gellan gum supports is their use as cells 

encapsulating agents to be employed in cartilage regeneration approaches. In fact, it is known 

that anchorage independent cells like chondrocytes exhibit good cell viability within hydrophilic 

scaffolds like hydrogels, and studies using human nasal chondrocytes revealed that this 

hydrophilicity facilitated the re-differentiation of de-differentiated chondrocytes.34 This evidence 

opens interesting prospects for the performance of these new supports in cartilage regeneration 
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along with the rather homogeneous distribution of the chondrocytes throughout the gellan gum 

hydrogels matrix (Figure 7), which showed a round-shaped morphology typically present in the 

native human cartilaginous tissue. An interesting result was observed in gellan gum but not in 

agarose. In the first the formation of chondrocytes clusters was frequently observed near 2 weeks 

of culture (Figure 7A), a feature that was not noticed on the early periods of culture. Such 

structures may be indicative of cell proliferation in these clusters which may give a positive 

contribution towards the production of a hyaline-like cartilage matrix45-47 The cells may use the 

gellan gum as a source of carbohydrates due to its polysaccharidic nature, a fact that may be 

even more interesting to study in an in vivo scenario. The scenario of cells using the matrix as a 

source of energy is possible although such hypothesis demand proper validation testing.  Also, 

the formation of the chondrocytes clusters has been previously described in the literature as 

osteoarthritis related events.47,48 This seems not to be the case in these experiments since any 

hypertrophic cells, pre-osteoarthritic cells were observed.  

 

 

Figure VI.7. Optical microscopy images of human nasal chondrocytes encapsulated in gellan 

gum (A) and agarose (B) at 2 weeks of culture. The formation of human chondrocytes clusters 

was observed in gellan gum hydrogels (A, arrows). 

 

 

Calcein AM fluorescence-based method was conducted to confirm chondrocytes viability. Results 

from samples collected after 2 weeks of culture are presented on Figure 8 showing the cells were 

viable in both hydrogels. These are also indicative of the adequacy of gellan gum for cartilage 

regeneration, since no apparent difference is noticeable when compared to agarose hydrogels.  
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Figure VI.8. Calcein AM viability test of human nasal chondrocytes encapsulated in gellan gum 

(A) and agarose (B) hydrogels at 2 weeks of culture. 

 

     

Concerning the histological analysis, it is clear from the images that cells distribution within the 

two supports are similar, presenting uniform distribution and active states of division (arrows). 

This indicates that gellan gum allowed adequate chondrocytes encapsulation while its network 

matrix permits cells to encompass active division. The data collected so far with gellan gum 

hydrogels showed that they possess suitable materials properties to be used as supports for 

chondrocytes development, such as the gelling at physiological conditions and their tested non 

cytotoxicity. Furthermore, they were able to efficiently encapsulate human nasal chondrocytes 

with a homogeneous distribution and maintain their viability for at least 2 weeks of culture. The 

overall data analysis suggests that this new biomaterial can have a high potential application in 

cartilage regeneration approaches and work is ongoing to further corroborate this hypothesis. 

Another aspect to look into is their potential use for other types of tissues or strategies, given its 

versatility in terms of processing and materials properties.  
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Figure VI.9. Hematoxylin-eosin staining of histological sections of gellan gum (A) and agarose 

(B) hydrogels at 2 weeks of culture. Human nasal chondrocytes present a typical round-shaped 

morphology and active cell division can be observed in both supports (arrows). 

 

 

4. CONCLUSIONS 

 

In the present work, gellan gum has been presented as a new biomaterial for cartilage tissue 

engineering approaches. Gellan gum was shown to be very versatile in terms of processing, 

which can be controlled by both temperature and pH, forming structures with different shapes 

using simple polymer processing technologies. Discs, membranes, fibres, particles, and 

scaffolds, were produced demonstrating the range of possible applications for this biomaterial. 

These may range from cell encapsulation technologies to drug delivery strategies, for example. 

Gellan gum has been used previously as an ocular drug delivery system28-30, but to our 

knowledge this is the first time that it is proposed and tested for cartilage tissue engineering 

applications. 

An extensive characterization of Gellan gum discs to be used as cell supports indicated that they 

are suitable for fulfilling such functions, since a solution combining non harsh reagents (gellan 

gum, calcium chloride and water) can be prepared, mixed uniformly with human nasal 

chondrocytes, and gelled near the body temperature in few seconds, enabling a high cell 

entrapment yield and homogeneous distribution. Gellan gum hydrogels presented viscoelastic 

properties within the range of other hydrogels used for cells encapsulation42,43 and were shown to 

be non-cytotoxic. Calcein AM staining showed cells were viable during the time of the 

experiments and hematoxylin-eosin revealed that active cells division was occurring. Moreover, 

chondrocytes clusters were detected that may increase the potential of gellan gum hydrogels in 
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the generation of a hyaline-like cartilaginous matrix. Another advantage of this new biomaterial is 

its chemical composition that may be used to confer improved functionalities to it and thereby 

enhance its biological potential. 
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CHAPTER VII. 
 
Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: In vitro Studies 

and Preliminary In vivo Evaluation* 

 
 
 
ABSTRACT 
 

Gellan gum is a polysaccharide manufactured by microbial fermentation of the Sphingomonas 

paucimobilis microorganism, being commonly used in the food and pharmaceutical industry. We 

have previously proposed it for tissue engineering applications due to its intrinsic features that 

include its ability to form a stable gel when heated and mixed with mono or divalent cations. 

Gelation can be tailored to occur at different temperatures and kinetics, enabling the use of gellan 

gum as an injectable system in minimally invasive surgical procedures. Moreover, it has been 

shown to be quite versatile in terms of processing and is generally quite biocompatible.  

In this work, gellan gum hydrogels were tested for their ability to be used as injectable systems 

for delivering and maintaining chondrocytes by in situ gelation, as well as for supporting cell 

viability and production of extracellular matrix. Rheological measurements were performed to 

determine the temperature and time of gelation, and furthermore to evaluate the suitability of 

these systems for cell delivery in situ and their potential for being used in injectable applications. 

The sol-gel transition occurred near the normal body temperature at 39ºC, upon temperature 

decrease, and the time length for gelation was determined to occur in approximately 20 seconds. 

Discs of gellan gum 1% (w/v) were also characterised by dynamic mechanical analysis in order to 

assess their mechanical properties, showing a storage compression modulus of around 80 kPa at 

a frequency of 1 Hz. Human articular chondrocytes were encapsulated in the gels, cultured in 

vitro for total periods of 56 days, and analysed regarding cells viability and extracellular matrix 

(ECM) production. Calcein AM staining showed that cells kept viable after 14 days of culture and 

the histological analysis (hematoxylin-eosin, alcian blue, and safranin-O) and real-time 

quantitative PCR for Sox9, collagen I, collagen II, and aggrecan revealed that typical cartilage 

ECM was synthesised and deposited. In a final stage of the present study, the in vivo 

performance of the novel gellan gum hydrogels, in terms of induced inflammatory reaction and 

integration into the host tissue, was evaluated based on subcutaneous implantation in Balb/c 

mice up to 21 days. Histological analysis showed only a thin and residual fibrotic capsule at the 

end of the experiments. Additionally, the dynamic mechanical analysis showed that the gels were 
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stable throughout the time course of the experiment while evidencing a tendency for decreasing 

mechanical properties. This result is consistent with weight measurements that were also 

performed and with results from histology that showed gellan gum resorption by phagocytic cells. 

Altogether, the results show the adequacy of gellan gum hydrogels for non-invasive injectable 

applications and in situ cell delivery for cartilage regeneration, supporting human articular 

chondrocytes viability and ECM production in long term cultures in vitro. The in vivo evaluation 

reinforced these assumptions and corroborated the hypothesis that gellan gum can be used as a 

well adequate support for cell delivery and extensive culture towards the formation of a functional 

tissue engineered construct for cartilage tissue engineering applications. 

 

 
 
 
_____________________________________________________________________________ 
 
* This chapter is based on the following publication: 

JT Oliveira, TC Santos, L Martins, R Picciochi, AP Marques, AG Castro, NM Neves, JF Mano, RL 

Reis. Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: In vitro 

Studies and Preliminary In vivo Evaluation (2008) (submitted). 
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1. INTRODUCTION 
 
Cartilage is a tissue with relatively low or no turnover, both at cellular and molecular level, which 

leads to difficulties in its repair and regeneration once traumatised. The extracellular matrix that is 

responsible for the functionality of the tissue has to be maintained by scarcely distributed 

chondrocytes, demanding a great anabolic capacity of these cells. Various therapeutic 

approaches that have no active biologics involved such as arthroscopy, debridement, laser 

abrasion, drilling, and microfracture.(1-3) They involve mostly mechanical techniques that remove 

the affected tissue and seek to stimulate the formation of healthy tissue. Since the outcomes of 

these interventions are frequently not satisfactory, namely in terms of functional tissue recovery, 

alternative solutions for these problems are being explored.(1, 4, 5) Brittberg et al.(6) performed 

autologous chondrocyte transplantation in 1994 by injecting expanded chondrocytes into cartilage 

defects subsequently covered with a sutured periosteal flap. Although the results were successful 

in some cases, the percentage of failure led the researchers to pursue other lines of study, 

including the use of biomaterials and cells combined with bioactive agents in tissue engineering 

strategies. Several biomaterials, from either natural or synthetic origin, or combinations of both 

types, have been proposed as supports for cell development and tissue formation in cartilage 

tissue engineering.(7-10) These include alginate, hyaluronic acid, collagen, fibrin, chitosan, 

polyglycolic acid, or polyethylene oxide.(11-14)  Not only the type of material is important for the 

overall performance of the constructs but also its processing methodologies and the application 

routes employed. Hydrogels, and especially in situ injectable systems, have been gaining a wider 

interest for cartilage regeneration applications. They can be used in a minimally invasive manner 

by injection into the defect area, normally involve non harsh methods and reagents, possess the 

ability to adopt the shape of the defect thereby facilitating integration, and may be optimised for 

sol-gel transition to occur near body temperature while encapsulating cells and/or bioactive 

agents of interest.(15)  

Gellan gum is a new biomaterial that we have recently proposed(16, 17) for cartilage tissue 

engineering applications; in addition to the above mentioned advantages of other injectable 

systems, it possess other features that may place it as a potential candidate for the clinical 

regeneration of cartilaginous tissues. Gellan gum is a linear anionic polysaccharide composed of 

repeating units of glucose, glucuronic acid, and rhamnose.(18, 19) It exists in the acetylated form, 

which is the initial raw material, and the deacetylated form, which is the most commonly used.(20, 

21) Both form thermoreversible gels with differences in mechanical properties from soft and 

elastic for the acetylated form, to hard and brittle for the fully deacetylated polysaccharide which 
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opens interesting prospects for the generation of multifunctional structures.(21, 22) Gellan gum is 

non cytotoxic and can be easily processed without the use of harsh reagents into transparent gels 

that are resistant to heat and acid stress.(16, 23) Its gelation is ionotropic as in other 

polysaccharides, like alginate or carrageenan, and therefore the presence of cations is necessary 

for the formation of a stable hydrogel structure. Upon temperature decrease of a gellan gum 

solution, the transition of a thermally-reversible coil to a double-helix chain occurs and is followed 

by a self assembling mechanism that forms oriented bundles. These link themselves through 

untwined polysaccharide chain regions culminating in the formation of a stable gel.(24) The 

quantity and chemical nature of cations present in solution greatly affects gellan gum gelation; 

divalent cations promote a more efficient gelation than monovalent cations.(24-26) Gellan gum 

gels are commonly used in the food industry as thickening agents or stabilizers.(27) In the 

biomedical field, most applications are suggested for drug delivery approaches.(28-30) Its use in 

cartilage tissue engineering was pioneered by our group and the application for other soft tissues 

is currently under study. 

In this work, gellan gum hydrogels were used as encapsulation agents and tissue engineering 

supports for human articular chondrocytes. Gellan gum properties were optimised and 

characterised so that they could be used as injectable systems in minimally invasive procedures. 

Gellan gum with encapsulated human articular chondrocytes systems were tested in vitro for 

periods of up to 56 days of culture. Cell viability and extracellular matrix formation and deposition 

were evaluated by molecular and histological techniques. A preliminary in vivo evaluation of the 

gellan gum hydrogels was also performed upon subcutaneous implantation in Balb/c mice for 

total periods of up to 21 days. The obtained results showed the suitability of gellan gum hydrogels 

for injectable applications and in situ cell delivery towards the formation of functional tissue 

engineered cartilage.  

 

 

2. MATERIALS AND METHODS 

 

 

2.1. RHEOLOGICAL STUDIES  

 

Cone-Plate rheometry was conducted for gellan gum hydrogels in order to assess their 

rheological behaviour as function of temperature and time. For this purpose, gellan gum (G1910, 
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Sigma-Aldrich Co, USA) powder was mixed at room temperature with distilled water at a 

concentration of 1% (w/v) under constant stirring. The solution was heated to 90ºC and kept at 

this temperature for 30 minutes. Afterwards, calcium chloride (CaCl2) was added to the gellan 

gum solution at a concentration of 0.03% (w/v) and rheological measurements were performed 

using a controlled stress cone-plate rheometer (Reometer Reologica, StressTech, Sweden). For 

each measurement, a volume of 2 ml of the Gellan gum solution was placed in the bottom plate 

of the rheometer and kept at a constant temperature of 70ºC. The polymer solution was allowed 

to stabilise during 1 minute before starting the experiments. Measurements were performed by 

decreasing the temperature from 70ºC to 25ºC (at a cooling rate of -6ºC/min) and applying a 

constant shear stress of 0.1 Pa. Temperature, time, shear rate and viscosity were constantly 

measured. The total number of repeats was five (n=5) and confidence intervals were estimated 

with a confidence level of 99%. 

 

 

2.2. DYNAMIC MECHANICAL ANALYSIS  

 

Dynamic mechanical analysis (DMA) was conducted to characterize the mechanical behaviour of 

gellan gum hydrogel discs. The samples were prepared using a methodology previously 

described elsewhere.(16) Gellan gum 1% (w/v) discs (Ø 6±0.01 mm x 5.5±0.46 mm height) were 

subjected to compression cycles of increasing frequencies ranging from 0.1 to 10 Hz with 

constant amplitude displacements of 0.1 mm using a Tritec 2000 DMA (Triton Technology, UK). 

Storage and loss modulus were measured and experiments were conducted at room 

temperature. The total number of discs per assay were five (n=5). The described values for the 

compression modulus were collected at a frequency of 1 Hz. Statistical analysis was performed 

using confidence intervals based on the experimental results, with a confidence level of 99%. 

 

 

2.3. HUMAN ARTICULAR CHONDROCYTES ISOLATION AND EXPANSION  

 

Human articular cartilage was harvested from the femoral head and condyles of adult patients 

(40-65 years) undergoing knee arthroplasty surgery. This was performed within the scope of a 

protocol established with the Hospital de S. Marcos, Braga, Portugal, approved by its Ethical 

Committee and upon patient informed consent. Chondrocytes were isolated by enzymatic 

digestion; in detail, the human articular cartilage, free from all surrounding tissue, was placed in a 
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Petri dish containing sterile phosphate buffered saline (PBS) and cut into square slices of 5 mm 

and thickness between 2-3 mm. The pieces were washed in sterile PBS solution, immersed in 20 

ml of trypsin-EDTA solution, and incubated for 30 min at 37ºC under agitation. Trypsin was 

removed and the tissue pieces washed with basic Dulbecco’s Modified Eagle Medium (DMEM) 

(Sigma-Aldrich Co, USA). Then, 20 ml of sterile collagenase type II solution (2mg/ml) (Sigma-

Aldrich Co, USA) in basic medium was added, and the mixture incubated for approximately 12 

hours at 37ºC under agitation. The digested tissue and cell suspension solution was centrifuged 

at 200g for 7 min and the supernatant discarded. The cell pellet was washed with PBS and 

centrifuged again under the same conditions. Cells were again centrifuged, the supernatant 

removed, and ressuspended in expansion medium consisting of Dulbecco’s Modified Eagle’s 

Medium (Sigma-Aldrich Co, USA), containing 10 mM HEPES buffer pH 7.4, 10000 units/ml 

penicillin/10000 µg/ml streptomycin, 20 mM L-alanyl glutamine, 1x MEM non-essential amino 

acids and 10% (v/v) foetal bovine serum (FBS; Biochrom, Berlin, Germany; Heat Inactivated), 

supplemented with 10 ng/ml basic fibroblast growth factor (bFGF) (PeproTech, UK). Human nasal 

chondrocytes were plated into tissue culture flasks and incubated at 37ºC in a humidified 

atmosphere of 5% CO2 in air for expansion.(31) 

 

 

2.4. ENCAPSULATION OF HUMAN ARTICULAR CHONDROCYTES IN GELLAN GUM 

HYDROGELS AND IN VITRO CULTURING  

 

Human articular chondrocytes were expanded and encapsulated at passage 1 in gellan gum 

hydrogels using the following procedure. Gellan gum powder was mixed with sterile distilled water 

under constant stirring at room temperature to obtain a final concentration of 1% (w/v). The 

solution was progressively heated to 90ºC and kept at this temperature for 20-30 minutes. A 

sterile CaCl2 solution was added to obtain a final concentration of 0.03% (w/v). The temperature 

was progressively decreased to 42ºC and stabilised at this value for posterior use always under 

constant stirring. Human articular chondrocytes were detached by trypsinisation, mixed with 

expansion medium, and centrifuged at 200g for 7 min. The supernatant was removed and the 

cells were ressuspended in warm sterile PBS solution, counted using an hemocytometer, and 

finally centrifuged at 200g for 7 min. The supernatant was discarded and the cells pellet kept at 

the bottom of the falcon tube. The gellan gum 1% (w/v) with CaCl2 0.03% (w/v) solution was 

added to the pellet of cells and the mixture ressuspended for complete homogenization of the 

cells within the matrix. Gellan gum discs containing 8x106 cells/ml human articular chondrocytes 
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were produced by casting this mixture into sterile cylindrical polystyrene moulds, allowing it to rest 

at room temperature for 1-2 minutes to form a solid gel. Discs of Ø 6±0.01 mm x 5.5±0.46 mm 

height were cut using a borer. The discs were cultured in expansion medium for 7 days which 

was afterwards replaced by differentiation medium for 49 days. The differentiation medium was 

prepared by replacing the bFGF in the expansion medium with insulin (1µg/ml) and ascorbic acid 

(50 µg/ml) (Sigma-Aldrich Co, USA). The culture medium was changed every 3-4 days.  

 

 

2.5. CELL VIABILITY: CALCEIN AM STAINING  

 

Chondrocytes viability after 14 days of culture was assessed using calcein AM staining. Calcein 

AM (C3099, Invitrogen Corporation, USA) assay is a fluorescence-based method for assessing 

cell viability and cytotoxicity in which the reagent is retained in cells that have an intact cell 

membrane. Briefly, a calcein AM solution of 1/1000 was prepared in culture medium. After the 

end of each time point, one disc of gellan gum with encapsulated human articular chondrocytes 

was collected from the culturing plates and incubated in the calcein AM solution for 15-30 min at 

37ºC and afterwards washed in sterile PBS. DAPI (4',6-diamidino-2-phenylindole) (Sigma-Aldrich 

Co, USA), a fluorescent stain that binds strongly to DNA was used for counterstaining. The 

samples were observed under fluorescent microscopy (Zeiss HAL 100/HBO 100; Axiocam 

MRc5). 

 

 

2.6. HISTOLOGY (HEMATOXYLIN-EOSIN, ALCIAN BLUE, SAFRANIN-O)  

 

Histological analysis was performed with hematoxylin-eosin (H&E), alcian blue and safranin-O 

staining on 4 µm thickness sections of the cell-scaffold constructs collected at different periods of 

culture. The samples were fixed in glutaraldehyde 2.5% (v/v), for 30-40 minutes at 4ºC and 

washed in PBS. Histological processing was performed using Tecnhovit 7100® (Heraeus Kulzer 

GmbH, Germany) following the commercial procedure. Sections were cut using a microtome 

Leica RM2155 (Leica Microsystems, Nusslock GmbH, Germany). H&E staining was performed 

using automatic processor (Leica Auto Stainer XL) according to in-house methodology (Leica 

TP1020-1, Leica MicroSystems GmbH, Germany). Histological staining with alcian blue and 

safranin-O was performed using standard histological methods. The slides were afterwards 

washed 3 times in distilled water, quickly dehydrated through 95% and 100% ethanol and then 
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cleared in Histoclear® (National Diagnostics) and mounted using Microscopy Entellan® (Merck) 

for observation.  

 

 

2.7. REALTIME PCR (SOX9, COL I, COL II, AGGRECAN)  

 

Samples were collected at defined time periods, quickly frozen in liquid nitrogen, and stored at 

−80°C until the analysis was performed. RNA was extracted using TRIzol® (Invitrogen 

Corporation, USA) according to the provided technical datasheet. Briefly, 3 samples of each 

condition were grinded and mechanically homogenized with a mortar and pestle in TRIzol 

reagent, being each condition performed in duplicate. Afterwards, chloroform was added and the 

samples centrifuged to establish a three-phase composition in the tube. The aqueous phase was 

collected and put in a new tube where isopropanol was added. The samples were centrifuged, 

the supernatant discarded and the pellet washed with 75% ethanol. After a final centrifugation the 

samples were allowed to air-dry, and suspended in ultrapure water for posterior analysis. The 

amount of isolated RNA and A260/280 ratio was determined using Nanodrop ND-1000 

Spectrophotometer (NanoDrop Technologies). After these determinations, 1µg of RNA of each 

sample was reverse transcribed into cDNA using the IScriptTM cDNA synthesis kit (Biorad) in a 

MJ MiniTM Personal Thermal Cycler (Biorad). Cartilage related markers were chosen to evaluate 

the chondrogenic phenotype of the cultured systems. These included Sox9, collagen type I, 

collagen type II, and aggrecan, using GAPDH as the housekeeping gene for normalization. The 

expression of each gene was normalized to the GAPDH value in that sample. The relative gene 

expression quantification was performed using the 2-∆∆Ct (Livak) method,(32) considering that: 

 

2-∆∆Ct = Normalized expression ratio 

 

All the primer sequences were generated using Primer3™ software(33) and acquired from MWG 

Biotech™, Germany. More details can be found in Table 1. Real-time PCR was performed using 

an MJ MiniTM Personal Thermal Cycler (Biorad Laboratories, USA) machine and SYBR Green 

IQTM Supermix (Biorad Laboratories, USA) to detect amplification variations. The analysis of the 

results was performed with MJ Opticon Monitor 3.1 software (Biorad Laboratories, USA).  
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Table VII.1. Primers used for realtime PCR evaluation of human articular chondrocytes gene 

expression.  

 

Gene Accession number Left primer Right primer 

Sox9 NM_000346 
TTGAGCCTTAAAACGGTGCT 

 

CTGGTGTTCTGAGAGGCACA 

 

Collagen type I NM_000089 
CTGCAAGAACAGCATTGCAT 

 
GGCGTGATGGCTTATTTGTT 

Collagen type II NM_001844 
TCACGTACACTGCCCTGAAG 

 

TGCAACGGATTGTGTTGTTT 

 

Aggrecan NM_001135 
ACAGCTGGGGACATTAGTGG 

 

GTGGAATGCAGAGGTGGTTT 

 

GAPDH NM_002046 
GAGTCAACGGATTTGGTCGT 

 

TTGATTTTGGAGGGATCTCG 

 

 

 

2.8. SUBCUTANEOUS IMPLANTATION IN MICE – HISTOLOGY AND DYNAMIC 

MECHANICAL ANALYSIS  

 

Gellan gum discs were prepared under sterile conditions following a methodology previously 

described.(16) Gellan gum 1% (w/v) (Ø 6±0.01 mm x 5.5±0.46 mm height) discs were 

subcutaneously implanted in the dorsal part of Balb/c mice (2-3 months with an average weight of 

20 g) during periods of up to 21 days. Six female mice were used (2 for each period of 

implantation). Each animal was anaesthetized with a mixture of 5:1 Imalgene® 1000 (Merial 

Toulouse, France) and Domitor® (Orion Corporation, Finland) (1.25 mg/mouse, and 25 

µg/mouse, respectively) prepared in physiological serum. Under surgical sterile conditions, 2 

medial and ventral incisions (approximately 0.7 cm) containing the subcutis and the Panniculus 

Carnosus (skin smooth muscle) were performed in the dorsum of the mice. Craniolateral oriented 

pockets (2 per incision) were subcutaneously created by blunt dissection. Into these pockets, the 

Gellan gum discs were inserted (4 discs per animal) and the Panniculus carnosus and the skin 

were carefully sutured. The animals were kept with food and water ad libitum during all time of 

implantation. After predetermined time periods, each test animal was sacrificed and the implanted 
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scaffolds and respective surrounding tissue were explanted from each animal. These were 

subjected to macroscopic observation and processed for histological analysis to evaluate the 

induced inflammatory response and integration into the host tissue. Briefly, the explanted 

samples were fixed with formalin solution, dehydrated through ethanol solutions and embedded in 

paraffin. Sections with 4 µm thickness of the gellan gum structure and surrounding tissue 

interface were stained with haematoxylin-eosin using automatic colouring equipment, as 

previously described in part 6 of Materials & Methods. Dynamic mechanical analysis was also 

performed using the procedure previously described in part 2 of the present Materials & Methods 

section. 

 

 

3. RESULTS  

 

3.1. RHEOLOGICAL STUDIES  

 

Rheological measurements were performed mainly to determine the temperature range at which 

the sol-gel transition occurred and the time-scale for gelling as these are important parameters to 

look into when the material is expected to be applied as an injectable system and as a cell 

encapsulating agent. The sol-gel transition temperature was observed around 39ºC 

(39.4±0.16ºC) (Figure 1). This enables the solution to be injected into the organism and gelate at 

the defect site once it stabilises at the body temperature. Moreover, the low viscosity of the 

solution before gelation allows cells to be efficiently mixed and homogeneously dispersed within 

the carrier before the application. Regarding the time-scale for gelling, it is possible to observe 

from the graph on Figure 2 that it is approximately 20 seconds. The results obtained for both 

temperature and time of gelation are critical to demonstrate the concept of using gellan gum 

hydrogels as injectable systems for minimally invasive surgical procedures in vivo. A gellan gum 

solution can be kept above the sol-gel transition maintaining a low viscosity that enables cells or 

bioactive agents of interest to be homogeneously dispersed. Upon lowering the temperature, the 

gel forms entrapping the cells in its matrix in a rather efficient way.  
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Figure VII.1. Rheological measurements of gellan gum solutions showing the relation 

temperature-viscosity and time-viscosity. The sol-gel transition is noticeable by the change in 

viscosity present in the graph around 39-38ºC with an extent of time for gelation of approximately 

11 seconds. 

 

 

3.2. DYNAMIC MECHANICAL ANALYSIS  

 

The viscoelastic characterization of the gellan gum hydrogels was performed using dynamic 

mechanical analysis (DMA). This technique also gives important information regarding the 

mechanical performance that these hydrogels may have once implanted in vivo. Gellan gum 

hydrogels were analysed in the wet state throughout a physiological relevant frequency range. 

Storage (elastic) and loss (viscous) components of the complex modulus were determined and 

are shown in Figure 2. The storage modulus (E’) is about one order of magnitude higher than the 

loss modulus (E’’) which clearly reveals the elastic nature of these gels. It also possesses some 

damping capability that may be useful to dissipate cyclic mechanical energy that is imposed in an 

implantation scenario. Although some increase in E’ is observed for increasing frequencies, the 

elastic properties of the hydrogel biomaterial, as compared to the viscous component, are quite 

stable. An increase in E’’ is observed from 0.6 Hz to 10 Hz, suggesting a higher dissipation 



CHAPTER VII. Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: In vitro Studies and 
Preliminary In vivo Evaluation 

 

 202 

capability of gellan gum hydrogels at higher frequencies. At a frequency of 1 Hz, the compression 

modulus of the gels was estimated to be of 78.6±2.3 kPa. In fact, although this value does not 

mimic the mechanical properties found in human articular cartilage,(34) it is higher or within the 

range of values found for other hydrogels used in similar cartilage regenerative approaches.(8, 

35)  
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Figure VII.2. Mechanical properties evaluation of gellan gum discs using dynamic mechanical 

analysis. The tests were performed in intervals of 0.1-15 Hz in hydrated samples. 

 

 

3.3. CELL VIABILITY AND HISTOLOGICAL ANALYSIS 

 

Calcein AM coupled with DAPI fluorescence staining was conducted to confirm the chondrocytes 

viability. Calcein AM penetrates the cell membrane of living cells, being subsequently hydrolyzed 

to a cell membrane-impermeable green-fluorescent calcein by esterases present in viable cells. 

DAPI (4',6-diamidino-2-phenylindole) is a fluorescent stain that binds strongly to DNA. By 

coupling these two agents, viable cells are presented with green cytoplasm and blue nuclei. 

Results from samples collected after 14 days of culture are presented on Figure 3 showing viable 

human chondrocytes inside the hydrogels. The majority of the cells were positive for calcein and 

DAPI which indicates a dominance of viable cells. These results show that both the gellan gum 
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hydrogel is not cytotoxic and that the temperature cycle used to promote the sol-gel transition 

does not affect cell viability. 

 

 

Figure VII.3. Calcein AM/DAPI viability staining of human articular chondrocytes encapsulated in 

gellan gum hydrogels at 14 days of culture.  

 

 

Histological analysis of samples taken after 56 days of culture was performed using hematoxylin-

eosin for regular morphological cellular analysis, alcian blue and safranin-O which are commonly 

used for staining extracellular matrix proteoglycans (glycosaminoglycans). Hematoxylin-eosin 

stained slides (Figure 4.A-B) show an homogeneous chondrocyte distribution throughout the 

gellan gum hydrogel matrix. Representative images of the deposition of proteoglycans 

(glycosaminoglycans) within the gellan gum matrix, commonly found in native articular cartilage 

extracellular matrix, can be found in Figure 4.C-D. A positive staining in some pericellular areas of 

newly formed cell clusters was observed. An improvement in the nature of the staining that 

evolved from a more orthochromatic in the initial periods of culture (data not shown) to a more 

pronounced metachromatic staining in the latter periods was also noticed. This effect was more 

evident in the regions where cell clusters formed in comparison to individual chondrocytes.  
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Figure VII.4. Histological analysis of sections of gellan gum with human articular chondrocytes 

after culturing. Hematoxylin-eosin (A,B – after 2 and 56 days of culture, respectively) was used 

for general cell morphology and distribution while alcian blue (C), and safranin-O (D) were 

performed for proteoglycans (glycosaminoglycans) detection. 

 

 

3.4. REALTIME PCR (SOX9, COLLAGEN TYPE I, COLLAGEN TYPE II, AGGRECAN)  

 

Real-time PCR is frequently used to amplify and simultaneously quantify a specific sequence in a 

DNA sample. This technique was used to assess the expression profile of different molecules 

associated with hyaline cartilage ECM and thereby evaluate the nature and type of matrix that is 

being formed. Quantitative data may be obtained on gene expression and variations that are 

occurring (upregulation or downregulation) in comparison to a housekeeping gene. Sox9, 

collagens type I and II, and aggrecan are common ECM constituents and their expression pattern 

from 14 to 56 days of culture was assessed. GAPDH was chosen as the reference housekeeping 

gene since most of the studies presented on chondrocytes gene expression use this standard 

and therefore the results can be analysed in a comparative way. The Ct (cycle threshold) value 

for each sample was determined only when the exponential phase of amplification was reached. 

In each sample, the Ct value was normalised to the Ct value of the reference gene (GAPDH). 

Collagen type II and aggrecan are considered to be the two major and most important 

constituents of hyaline cartilage ECM since the functionality of this tissue relies mostly on the 

presence of these components. Both collagen type II and aggrecan experienced a significant 
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increase of approximately 400-fold and 35-fold, respectively, from 14 to 56 days of culture in the 

gellan gum with encapsulated human chondrocytes hybrid systems. Collagen type I was not 

detected after 56 days and Sox9 was downregulated to values close to zero from 14 to 56 days.  
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Figure VII.5. Graphical representation of the realtime semiquantitative PCR analysis for collagen 

type I, collagen type II, aggrecan and Sox9 based on the mRNA produced by the encapsulated 

human articular chondrocytes after 14 days and 56 days of culture.  

 

 

3.5. IN VIVO TESTS: HISTOLOGY, MECHANICAL ANALYSIS AND WEIGHT 

MEASUREMENTS 

 

The initial response of a living organism to any kind of implanted biomaterial is absolutely 

necessary before proceeding to further tissue engineering studies. For this, the subcutaneous 

implantation of a biomaterial and the subsequent evaluation of the extent of the provoked 

inflammatory response is a common first screening methodology. As a way to confirm the 

adequacy of the developed hydrogels to be put through further screening, gellan gum discs were 

subcutaneously implanted in the back of Balb/c mice for periods of up to 21 days. Upon 
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explantation, no evident macroscopic changes of the discs and surrounding tissues were 

observed after this period and the discs maintained its structural integrity. Histological analysis of 

the explanted samples, stained with hematoxylin-eosin showed good integration within the 

surrounding host tissue. In terms of inflammatory response associated cells, the normal presence 

of neutrophils was observed at 7 days of implantation (Figure 6A, 6B). This cell population 

revealed a progressive decrease along the implantation time, almost inexistent at 14 days (Figure 

6C, 6D). Additionally, a thin and residual fibrotic capsule (Figure 6E, 6F) and the infiltration of 

some phagocytic cells (Figure 6F, arrow) were evident by the end of 21 days. Dynamic 

mechanical analysis performed on the hydrogel samples at different periods of explantation 

revealed no statistically significant differences between the samples, although a slight decrease 

tendency in the compressive modulus was noticed (Figure 7). In terms of weight measurements, 

which can be an indicator of biodegradation of gellan gum hydrogels, a statistical difference was 

observed after 21 days of implantation. Although the weights of the samples at different time 

points did not present relevant alterations, a statistically significant decrease was noticed after 21 

days when compared to non implanted gellan gum gel discs and gel discs with 14 days of 

implantation (Figure 8).  

 

 

Figure VII.6. Histological analysis showing two different magnifications of sections of gellan gum 

after 7, 14 and 21 days of implantation. The images evidenced a good integration with the 

surrounding tissue and the progressive reduction of the fibrotic capsule that was almost unnoticed 

after 21 days. 
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Figure VII.7. Storage and loss modulus at 1 Hz obtained from compression dynamic mechanical 

tests of gellan gum discs after subcutaneous implantation in Balb/c mice. Statistical analysis 

revealed no difference through the various time points (p>0.05) and were performed using a two-

sample t-test assuming unequal variances for n=5, α=0.05.  
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Figure VII.8. Weight measurements of gellan gum discs after subcutaneous implantation in 

Balb/c mice. Statistical analysis revealed a significant difference in gellan discs implanted for 21 

days when compared to no implant and 14 days of implantation. No Statistical analysis through 

the various time points (p>0.05) was performed using a two-sample t-test assuming unequal 

variances for n=5, α=0.05. 
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4. DISCUSSION 

 

The use of hydrogels in cartilage regeneration is considered to be a promising strategy due to 

some intrinsic features that they frequently exhibit. Most of them can be applied as minimally 

invasive systems that are able to deliver cells and/or bioactive agents of interest in situ and to 

keep them at the implantation site. The processing under mild conditions coupled to the use of 

non harsh reagents is another positive aspect. In addition, the gelation in situ enables the formed 

hydrogel to quickly set its volume and easily adapt to the shape of the defect site, establishing an 

efficient integration with the host tissue.(36) Gellan gum is a new biomaterial proposed for 

cartilage regeneration that exhibits those features. It can be prepared by simple methods using 

non aggressive reagents and can be combined with cells or bioactive agents of interest at the 

body temperature and physiological pH. It can be injected under a minimally invasive surgical 

intervention and gelate upon temperature stabilization at body temperature giving rise to an 

efficient defect filling and cell entrapment system. Another potentially interesting aspect is the 

structural unit of gellan gum that includes glucuronic acid in its composition.(18) This 

monosaccharide residue possesses a functional carboxylic group that may be modified to confer 

improved functionalities to this biomaterial. One final aspect is the fact that this biomaterial is 

already used in humans in ophthalmic applications(37) which may clearly enable a fast approval 

by the regulatory bodies. In this work, gellan gum hydrogels were tested for their ability to be 

used as injectable systems in cartilage repair applications. The injectability of this biomaterial was 

analysed and confirmed by rheological measurements. Cone-plate rheology was used to 

determine the temperature range and time duration of the sol-gel transition in gellan gum 

hydrogels. The gellan gum solution revealed a consistent increase in viscosity around 40ºC that 

stabilised at approximately 39ºC, being the temperature at which the gelation process is finalised. 

This analysis also provided data on the time during which this process occurred which was shown 

to be of approximately 20 seconds. The interpretation of both these parameters demonstrates the 

potential of these hydrogels to be used as minimally invasive injectable systems that are able to 

deliver and encapsulate cells and/or bioactive agents to a defect site in the human body. In 

addition, the injectability of gellan gum hydrogels is good since their viscosity before the onset of 

gelation is low, enabling the overall mixing and application of the gel to be easily conducted. 

Mechanical properties tested using DMA retrieved a wet state compression modulus of 

approximately 80 kPa at a frequency of 1 Hz analysed in the wet state using a physiologically 

relevant frequency range. The storage modulus (E’) is about one order of magnitude higher than 

the loss modulus (E’’) which indicates an elastic nature of gellan gum. Some damping capability 
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was noticed when analysing tan δ results, which may be considered an advantage for dissipating 

some cyclic mechanical energy that is generated in vivo. This value is fairly good when compared 

to other hydrogels frequently described in the literature for cartilage regenerative approaches.(8, 

35) Nonetheless, human cartilage exhibits higher compressive modulus of approximately one 

order of magnitude.(34) This difference is expected to be compensated by ECM deposition during 

the formation of a cartilaginous structure.(8) In vitro tests showed that chondrocytes were viable 

and homogeneously distributed inside the hydrogels as observed under fluorescence microscopy 

using calcein AM combined with DAPI staining, and hematoxylin-eosin staining. The 

chondrocytes typical round shaped morphology was confirmed at both initial and long-term 

culture periods. Cell dispersion throughout the gellan gum matrix was quite homogeneous and 

the cells maintained normal morphological features and active division to some extent. Using the 

calcein AM-DAPI staining it was possible to observe that the chondrocytes are viable inside the 

matrix, although cell division state may somehow be limited due to physical restrictions of the 

hydrogel network which is a typical feature in similar systems.(38) Nonetheless, it may be that the 

carbohydrate nature of gellan gum, which contains high glucose content, can be used as a 

source of energy by the cells, thereby progressively giving rise to spaces within the hydrogel 

matrix and the consequent chondrocytes proliferation. Ongoing work performed by our group on 

the subcutaneous implantation of gellan gum discs through extensive periods has gathered 

consistent information that corroborates this hypothesis. Other mechanical events associated with 

cells proliferation may include the formation of microcracks and the propagation of fracture 

creating additional spaces for cell growth. Besides cells viability and distribution, the formation of 

an adequate extracellular matrix is of utmost importance to the performance of the tissue 

engineered construct. Active collagen type II and aggrecan deposition contributes to the 

formation of a functional hyaline-like cartilage engineered tissue. These are in fact the two major 

ECM molecules responsible for the articular cartilage mechanical properties; collagen type II 

confers tensile strength and aggrecan is responsible for the compressive resistance.(39) Alcian 

blue and safranin-O performed after 56 days of culturing on sections of gellan gum with 

encapsulated human articular chondrocytes evidenced glycosaminoglycans deposition in the 

pericellular regions of most cell clusters. Real-time PCR analysis for Sox9, collagen I, collagen II, 

and aggrecan strengthened these findings confirming the increased levels of expression of 

transcripts from collagen type II and aggrecan from 14 to 56 days. Collagen type II was 

upregulated approximately 400 fold and aggrecan approximately 35 fold; no statistically 

significant variation in Sox9 was encountered and no collagen type I was detected. Such results 

clearly show that human articular chondrocytes encapsulated in gellan gum hydrogels were able 
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to deposit a hyaline-like extracellular matrix therefore contributing to the formation of a functional 

tissue engineered construct. However, the low expression of Sox9 seems to diverge from this 

pattern since this factor is apparently associated with the chondrocyte phenotype maintenance 

and collagen type II expression, although this is not consensual.(40, 41) Chondrocytes from 

osteoarthritis cartilage present low levels of Sox9(41) and the cell source may be a possible 

explanation for this occurrence. Also, the de-differentiation process occurring during in vitro 

expansion(42) or the existence of some associated hypertrophy of the chondrocytic cells may be 

occurring.(43)   

The following step in this study was to evaluate the response of a host to a first contact with this 

biomaterial. Gellan gum discs were subcutaneously implanted in the back of Balb/c mice and 

histological analysis was conducted to assess the inflammatory processes associated to the 

implantation, as well as the integration into the host tissue. A negligent, thin and residual fibrotic 

capsule was observed with no evident polymorphonuclear and mononuclear cells present, as well 

as a good integration with the involving tissues. It should be mentioned that some phagocytic cell 

infiltration (Figure 6.F, arrow) into the hydrogel matrix was observed after 21 days indicating that 

this might be a probable scenario in further in vivo studies. One might speculate that such an 

event will enable gellan gum with encapsulated cell systems to efficiently integrate with the host 

tissues and establish a functional transition zone at the interface area, although this must be 

shown in further studies. 

Dynamic mechanical analysis performed on the explants after the defined time periods revealed 

no statistically significant differences among the various samples. Weight measurements showed 

that although no relevant alterations were detected, a significant decrease was noticed after 21 

days. This may correlate with some cell infiltration into the gellan gum hydrogel matrix and 

possible resorption, as observed in the histological analysis. In an in vivo scenario where the 

gellan gum carries encapsulated cells intended to form a tissue, the tendency may be the 

deposition of a cartilage-like ECM along with the possible degradation of the hydrogel. Further 

studies on this respect will be conducted to understand how gellan gum will degrade or will be 

replaced at the implantation site by the newly formed tissue. As a summary, this work 

demonstrates the potential of gellan gum hydrogels to be used as injectable systems in minimally 

invasive surgical procedures for cartilage regeneration. The properties of this biomaterial were 

characterised and shown to be compatible with the application envisaged. The in vitro studies 

with clinically relevant cells showed successful human articular chondrocytes viability and ECM 

formation, culminating with the in vivo reaction evaluation upon implantation of the gels in an 

ectopic site. The overall data analysis shows that this system has all the requirements to be used 
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for cartilage tissue engineering and its potential should continue to be assessed by further in vivo 

studies.  

 

 

 

5. CONCLUSIONS 

 

Gellan gum hydrogels were proposed and used in the herein presented studies as injectable 

systems for cell delivery and support, aimed at cartilage regeneration. Gellan gum ability to be 

applied as a minimally invasive system upon injection and in situ gelation was supported by 

rheological measurements. The gels exhibit a low viscosity in the range of 42-41ºC enabling an 

efficient and homogeneous mixing of the cells, and can afterwards by injected forming a stable 

gel with entrapped cells when reaching the body temperature. Gelation occurs around 39ºC in 

about 20 seconds. The evaluation of the mechanical properties of the hydrogels showed that 

these are within the normal range of other hydrogels used in these applications and are should be 

able to adapt to the cartilage environment. In vitro tests performed with human articular 

chondrocytes encapsulated in gellan gum hydrogels revealed that the cells remained viable and 

produced hyaline-like extracellular matrix as observed by the significant increase of collagen type 

II and aggrecan after 56 days of culture. Subcutaneous implantation of these materials in the 

back of mice revealed highly satisfactory results since the histology evidenced integration of the 

gels within the host tissue with no persistent inflammatory response. The dynamic mechanical 

analysis showed that the gels maintained their mechanical stability and weight measurements by 

the end of the experiments reinforced these observations. Taking together all this data, it can be 

concluded that gellan gum hydrogels are adequate for injectable applications and in situ cell 

delivery in cartilage regeneration approaches. This new biomaterial has generated interesting and 

promising results that justify its use in further in vivo studies highly benefiting from their ease of 

processing performed under non harmful conditions to the cells.  

 

 

 

 

 

 



CHAPTER VII. Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: In vitro Studies and 
Preliminary In vivo Evaluation 

 

 212 

REFERENCES 

 

1. Hunt SA, Jazrawi LM, Sherman OH. Arthroscopic management of osteoarthritis of the knee. 

The Journal of the American Academy of Orthopaedic Surgeons. 2002 Sep-Oct;10(5):356-63. 

2. Caplan AI, Elyaderani M, Mochizuki Y, Wakitani S, Goldberg VM. Principles of cartilage repair 

and regeneration. Clin Orthop. 1997 Sep(342):254-69. 

3. Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage 

and bone. Matrix Biol. 2003 Mar;22(1):81-91. 

4. Ge Z, Hu Y, Heng BC, Yang Z, Ouyang H, Lee EH, et al. Osteoarthritis and therapy. Arthritis 

and rheumatism. 2006 Jun 15;55(3):493-500. 

5. J. F. Mano RLR. Osteochondral defects: present situation and tissue engineering approaches. 

Journal of Tissue Engineering and Regenerative Medicine. 2007;1(4):261-73. 

6. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep 

cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994 

Oct 6;331(14):889-95. 

7. Malafaya PB, Santos TC, van Griensven M, Reis RL. Morphology, mechanical characterization 

and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures. 

Biomaterials. 2008;29(29):3914-26. 

8. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, et al. Self-assembling peptide hydrogel 

fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage 

tissue repair. PNAS. 2002 July 23, 2002;99(15):9996-10001. 

9. Wan-Ju Li HC, Tzong-Fu Kuo, Hsuan-Shu Lee, Ching-Chuan Jiang, Rocky S. Tuan. Evaluation 

of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot 

study. Journal of Tissue Engineering and Regenerative Medicine. 2009;3(1):1-10. 

10. Richardson SM, Curran JM, Chen R, Vaughan-Thomas A, Hunt JA, Freemont AJ, et al. The 

differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-l-lactic 

acid (PLLA) scaffolds. Biomaterials. 2006;27(22):4069-78. 

11. Risbud MV, Sittinger M. Tissue engineering: advances in in vitro cartilage generation. Trends 

Biotechnol. 2002 Aug;20(8):351-6. 

12. Tuzlakoglu K, Alves CM, Mano JF, Reis RL. Production and characterization of chitosan 

fibers and 3-D fiber mesh scaffolds for tissue engineering applications. Macromolecular 

Bioscience. 2004 AUG 9;4(8):811-9. 



CHAPTER VII. Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: In vitro Studies and 
Preliminary In vivo Evaluation 

 

 213 

13. Lee CR, Breinan HA, Nehrer S, Spector M. Articular cartilage chondrocytes in type I and type 

II collagen-GAG matrices exhibit contractile behavior in vitro. Tissue Eng. 2000 Oct;6(5):555-65. 

14. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000 

2000/12/15;21(24):2529-43. 

15. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and 

applications. Biomaterials. 2003 2003/11;24(24):4337-51. 

16. JT Oliveira LM, R Picciochi, PB Malafaya, RA Sousa, NM Neves, JF Mano, RL Reis. Gellan 

gum: A new biomaterial for cartilage tissue engineering applications submitted. 2008. 

17. JT Oliveira RS, RL Reis, inventor Gellan gum based hydrogels for use in regenerative 

medicine and tissue engineering, its system, and processing devices (patent pending). 2008. 

18. Jansson P-E, Lindberg B, Sandford PA. Structural studies of gellan gum, an extracellular 

polysaccharide elaborated by Pseudomonas elodea. Carbohydrate Research. 1983;124(1):135-9. 

19. Moorhouse R. CGT, Sandford P.A., Baird J.K. and Kang K.S. PS-60: a new gel-forming 

polysaccharide. Washington DC: D.A. Brandt; 1981. 

20. Rozier A, Mazuel C, Grove J, Plazonnet B. Gelrite(R): A novel, ion-activated, in-situ gelling 

polymer for ophthalmic vehicles. Effect on bioavailability of timolol. International Journal of 

Pharmaceutics. 1989;57(2):163-8. 

21. Grasdalen H, Smidsrod O. Gelation of gellan gum. Carbohydrate Polymers. 1987;7(5):371-

93. 

22. Kang KS, Colegrove T. & Veeder, G.T., inventor. USA. 1982. 

23. Ogawa E, Takahashi R, Yajima H, Nishinari K. Effects of molar mass on the coil to helix 

transition of sodium-type gellan gums in aqueous solutions. Food Hydrocolloids. 2006;20(2-

3):378-85. 

24. Quinn FX, Hatakeyama T, Yoshida H, Takahashi M, Hatakeyama H. The conformational 

properties of gellan gum hydrogels. Polymer Gels and Networks. 1993;1(2):93-114. 

25. Ogawa E, Matsuzawa H, Iwahashi M. Conformational transition of gellan gum of sodium, 

lithium, and potassium types in aqueous solutions. Food Hydrocolloids. 2002;16(1):1-9. 

26. Miyoshi E, Takaya T, Nishinari K. Rheological and thermal studies of gel-sol transition in 

gellan gum aqueous solutions. Carbohydrate Polymers. 1996;30(2-3):109-19. 

27. Mao R, Tang J, Swanson BG. Texture properties of high and low acyl mixed gellan gels. 

Carbohydrate Polymers. 2000;41(4):331-8. 

28. Coviello T, Dentini M, Rambone G, Desideri P, Carafa M, Murtas E, et al. A novel co-

crosslinked polysaccharide: studies for a controlled delivery matrix. Journal of Controlled 

Release. 1998;55(1):57-66. 



CHAPTER VII. Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: In vitro Studies and 
Preliminary In vivo Evaluation 

 

 214 

29. Kubo W, Miyazaki S, Attwood D. Oral sustained delivery of paracetamol from in situ-gelling 

gellan and sodium alginate formulations. International Journal of Pharmaceutics. 2003;258(1-

2):55-64. 

30. Sanzgiri YD, Maschi S, Crescenzi V, Callegaro L, Topp EM, Stella VJ. Gellan-based systems 

for ophthalmic sustained delivery of methylprednisolone. Journal of Controlled Release. 

1993;26(3):195-201. 

31. Crawford A, Dickinson, S.C. Methods in Molecular Biology: Biopolymer Methods in Tissue 

Engineering. Hollander AP, Hatton, P.V., editor. Totowa, NJ: Humana Press Inc., US; 2004. 

32. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time 

Quantitative PCR and the 2-[Delta][Delta]CT Method. Methods. 2001;25(4):402-8. 

33. http://frodo.wi.mit.edu/.  [cited]; Available from. 

34. Froimson MI, Ratcliffe A, Gardner TR, Mow VC. Differences in patellofemoral joint cartilage 

material properties and their significance to the etiology of cartilage surface fibrillation. 

Osteoarthritis and Cartilage. 1997;5(6):377-86. 

35. Nettles DL, Vail TP, Morgan MT, Grinstaff MW, Setton LA. Photocrosslinkable hyaluronan as 

a scaffold for articular cartilage repair. Ann Biomed Eng. 2004 Mar;32(3):391-7. 

36. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002 Jan 

17;54(1):3-12. 

37. Dickstein K, Hapnes R, Aarsland T. Comparison of aqueous and gellan ophthalmic timolol 

with placebo on the 24-hour heart rate response in patients on treatment for glaucoma. Am J 

Ophthalmol. 2001 Nov;132(5):626-32. 

38. Weber M, Steinert A, Jork A, Dimmler A, Thürmer F, Schütze N, et al. Formation of cartilage 

matrix proteins by BMP-transfected murine mesenchymal stem cells encapsulated in a novel 

class of alginates. Biomaterials. 2002;23(9):2003-13. 

39. Knudson CB, Knudson W. Cartilage proteoglycans. Seminars in Cell & Developmental 

Biology. 2001;12(2):69-78. 

40. Aigner T, Gebhard PM, Schmid E, Bau B, Harley V, Pöschl E. SOX9 expression does not 

correlate with type II collagen expression in adult articular chondrocytes. Matrix Biology. 

2003;22(4):363-72. 

41. Tew SR, Clegg PD, Brew CJ, Redmond CM, Hardingham TE. SOX9 transduction of a human 

chondrocytic cell line identifies novel genes regulated in primary human chondrocytes and in 

osteoarthritis. Arthritis Res Ther. 2007;9(5):R107. 



CHAPTER VII. Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: In vitro Studies and 
Preliminary In vivo Evaluation 

 

 215 

42. Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are 

coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. Embo J. 

1998 Oct 1;17(19):5718-33. 

43. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription 

factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway 

and is required for expression of Sox5 and Sox6. Genes Dev. 2002 Nov 1;16(21):2813-28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER VII. Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: In vitro Studies and 
Preliminary In vivo Evaluation 

 

 216 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

SECTION 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

CHAPTER VIII. 

 
 

Performance Of New Gellan Gum Hydrogels Combined With Human Articular 
Chondrocytes For Cartilage Regeneration When Subcutaneously Implanted In 

Nude Mice 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 



CHAPTER VIII. Performance Of New Gellan Gum Hydrogels Combined With Human Articular Chondrocytes For 
Cartilage Regeneration When Subcutaneously Implanted In Nude Mice 

 

 221 

CHAPTER VIII. 
 
Performance of New Gellan Gum Hydrogels Combined With Human Articular Chondrocytes for 

Cartilage Regeneration When Subcutaneously Implanted In Nude Mice* 

 
 
 
ABSTRACT 
 

Gellan gum is a natural biomaterial that has been recently proposed by our group for cartilage 

tissue engineering applications. It is a polysaccharide produced by microbial fermentation and it is 

commonly used in the food and pharmaceutical industry. Gellan gum exhibits rather promising 

properties that make it a strong candidate for cartilage regeneration in a clinical scenario. Gellan 

gum has the ability to easily form stable gels under extremely mild processing and without 

requiring the use of harsh reagents that sometimes compromise the application of other systems. 

One of its most relevant characteristics is that it can function as an injectable system in minimally 

invasive procedures, being applied as a liquid but gelling within body in situ under physiological 

conditions and efficiently adapting to the defect site. A previous work performed by our group has 

shown that gellan gum hydrogels were able to support the growth of human articular 

chondrocytes and enable the deposition of a hyaline-like extracellular matrix.  

In this work, gellan gum hydrogels were combined with human articular chondrocytes (hAC) and 

were subcutaneously implanted in the back of nude mice for total periods of up to 4 weeks. The 

implants were recovered at defined time points for histological, biochemical, molecular, and 

immunological analyses. The morphology and distribution of human articular chondrocytes within 

the gellan matrix was then observed by hematoxylin-eosin staining of histological sections. 

Proteoglycans synthesis and quantification was performed using alcian blue staining of 

histological sections and the dimethylmethylene blue (GAG) assay for the tissue engineered 

constructs, respectively. Real-time PCR analyses were conducted to quantify collagen type I, 

collagen type II, aggrecan, and collagen type X levels during the course of the experiments. 

Immunolocalisation of collagen type I and collagen type II was performed on histology sections of 

the constructs. Results showed a homogeneous cell distribution and the typical round shape 

morphology of the chondrocytes within the matrix upon implantation. Proteoglycans synthesis 

was detected in the histological sections by the presence of a metachromatic alcian blue staining 

and a statistically significant increase of proteoglycans content in gellan gum-human articular 

chondrocytes tissue engineered constructs was measured with the GAG assay quantified from 1 
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to 4 weeks of implantation. Real-time PCR analyses showed a statistically significant upregulation 

of collagen type II and aggrecan levels in the same periods. The immunological assays suggest 

deposition of collagen type II along with some collagen type I. The overall data shows that gellan 

gum hydrogels adequately support the growth and ECM deposition of human articular 

chondrocytes when implanted subcutaneously in nude mice. Taking into consideration the in vivo 

performance of these systems, further studies should be performed towards the development of a 

fully functional cartilage tissue engineered construct. 

 
 
 
 
 
 
_____________________________________________________________________________ 
 
* This chapter is based on the following publication: 

JT Oliveira, TC Santos, L Martins, MA Silva, AP Marques, AG Castro, NM Neves, RL Reis. 

Performance Of New Gellan Gum Hydrogels Combined With Human Articular Chondrocytes For 

Cartilage Regeneration When Subcutaneously Implanted In Nude Mice. (2008) (submitted). 

_____________________________________________________________________________ 
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1. INTRODUCTION 
 
Cartilage is a supporting connective tissue made broadly of proteins, polysaccharides and 

chondrocytes that develops an important role in maintaining mobility and a smooth gliding surface 

of joints in the skeleton. This function is mainly assured by the extracellular matrix that surrounds 

the chondrocytes which is able to withstand physical deformation and facilitate tissue function. 

Chondrocytes synthesize and maintain this extracellular matrix, producing especially collagen 

type II and agggrecan that confer articular cartilage its tensile and compressive resistance, 

respectively. Cartilage has a low metabolism that may constitute a serious barrier to normal 

locomotion when the tissue is traumatised or degenerated. As healthy cartilage is only 

synthesized to a short extent, and frequently this neocartilage presents a much more pronounced 

fibrocartilaginous nature than hyaline, pathological scenarios are triggered and life quality is 

highly diminished.1-3 Various ways to address these problems have been suggested such as 

debridement or drilling but the outcome is still not satisfactory.4,5 Mosaicplasty,6,7 although being 

a widely widespread surgical technique to treat a cartilage lesion, creates a problem of 

reconstruction of the cartilage collection site, while repairing the original defect. Among the 

different alternatives proposed, the tissue engineering of cartilage tissues was proposed8-12 using 

biomaterials, cells and/or bioactive agents. One of the first definitions of tissue engineering was 

proposed by Langer and Vacanti in Science in 1993.13 Since then, tissue engineering concepts 

have evolved and progressed through several lines of study that range from nanotechnology 

inspired systems to rapid prototyping methods aimed to produce hybrid structures.14-18 Also the 

types of biodegradable materials chosen passed from those already employed in clinical 

procedures (in applications such as sutures, stents, etc) to others used in environmental 

applications,19 and food industry.20 Biomaterials used in regenerative medicine are frequently 

divided in terms of their natural or synthetic origin. Examples of the first include alginate,21 

hyaluronic acid,22 chitosan,23 and starch,24 and of the second, polyglycolic acid,25 polylactic 

acid,26 and polyethylene oxide.27 Gellan gum is a biomaterial of natural origin recently proposed 

for applications in the cartilage regeneration field.28,29 It is a polysaccharide produced by bacterial 

fermentation and its basic structural unit is composed of glucose, rhamnose and glucuronic acid 

residues. Gellan gum is able to form gels with differences in mechanical properties from soft and 

elastic, to hard and brittle through an ionotropic gelation mechanism.30,31 Other interesting 

characteristics of the material include its heat and acid resistance, gel formation under mild 

conditions without using harsh reagents and its non cytotoxic behaviour.32 Our group has 

suggested29,32 the use of gellan gum as an encapsulating and support agent of different cells 
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towards the formation of a functional cartilaginous tissue. Human articular cartilage chondrocytes 

were encapsulated and cultured in vitro in optimised injectable gellan gum systems for total 

periods of 8 weeks, maintaining their viability and synthesising hyaline-like extracellular matrix 

components, mainly collagen type II and aggrecan. 

In this work, gellan gum hydrogels were combined with human articular chondrocytes acting as 

encapsulating agents and supports for their development. Gellan gum discs were formed and 

subcutaneously implanted in the back of nude mice for 4 weeks periods. The in vivo results 

showing the formation of a cartilage tissue of hyaline nature suggest that these systems may be 

potentially used in the repair of cartilage lesions.   

 

 

2. MATERIALS AND METHODS 

 

2.1. HUMAN ARTICULAR CHONDROCYTES ISOLATION AND EXPANSION 

 

Articular cartilage was harvested from the femoral head and condyles macroscopically healthy 

parts of adult patients (40-65 years) undergoing replacement surgery based on a protocol 

previously described by Crawford et al.33 This was performed within the scope of a protocol 

established with the Hospital de S. Marcos, Braga, Portugal, approved by its Ethical Committee 

and always sampled upon patient informed consent. Human chondrocytes were isolated by 

enzymatic digestion with posterior collection. The human articular cartilage free from all 

surrounding tissue was placed in a Petri dish containing sterile phosphate buffered saline (PBS) 

and cut into square slices of 5 mm and thickness between 2-3 mm. The pieces were washed in 

sterile PBS solution, immersed in 20 ml of trypsin-EDTA solution, and incubated for 30 min at 

37ºC on a rotator. Trypsin was removed and the pieces washed with basic DMEM (Sigma-Aldrich 

Co. USA). Then, 20 ml of filter sterilised collagenase type II (Sigma-Aldrich Co. USA) solution 

(2mg/ml) in basic medium was added, and the mixture incubated for approximately 10 hours at 

37ºC on a rotator. The digested tissue and cell suspension solution was centrifuged at 1200 rpm 

for 8 min and the supernatant removed. The cell pellet was washed and centrifuged twice with 

PBS and the cells counted using a hemocytometer. Chondrocytes were then collected by 

centrifugation and ressuspended in expansion medium consisting of Dulbecco’s Modified Eagle’s 

Medium (Sigma-Aldrich Co. USA), containing 10 mM HEPES buffer pH 7.4, 1% antibiotic 

(antibiotic-antimycotic Gibco 15240), 20 mM L-alanyl glutamine, 1x MEM non-essential amino 



CHAPTER VIII. Performance Of New Gellan Gum Hydrogels Combined With Human Articular Chondrocytes For 
Cartilage Regeneration When Subcutaneously Implanted In Nude Mice 

 

 225 

acids and 10% (v/v) foetal bovine serum (FBS; Biochrom, Berlin, Germany; Heat Inactivated), 

supplemented with 10 ng/ml basic fibroblast growth factor (bFGF) (PeproTech, UK). Human 

articular chondrocytes were plated into tissue culture flasks and incubated at 37ºC in a humidified 

atmosphere of 5% CO2 in air for expansion.  

 

 

2.2. HUMAN ARTICULAR CHONDROCYTES ENCAPSULATION IN GELLAN GUM 

HYDROGELS  

 

Human articular chondrocytes were expanded and encapsulated at passage 2 in gellan gum 

hydrogels using the following procedure. Briefly, gellan gum powder (G1910, Sigma-Aldrich Co. 

USA) was mixed with sterile distilled water under constant stirring at room temperature to obtain a 

final concentration of 1.25% (w/v). The solution was progressively heated to 90ºC and kept at this 

temperature for 20-30 minutes. The temperature was progressively decreased to 42ºC and 

stabilised always under constant stirring. Human articular chondrocytes were detached by 

trypsinisation, mixed with culture medium, and centrifuged at 1200 rpm for 8 min. The 

supernatant was removed and the cells were ressuspended in sterile PBS solution, counted using 

and hemocytometer, and finally centrifuged as before. The cell number was calculated so that the 

final concentration after encapsulation was of 5x106 cells/ml. The supernatant was discarded and 

the cells pellet kept at the bottom of the tube were ressuspended in PBS. The gellan gum 1.25% 

(w/v) solution was extensively mixed with the chondrocytes suspension for complete 

homogeneous dispersion within the gel. Gellan gum with the encapsulated cells was allowed to 

gel in a cylindrical mould for 2-3 minutes. Discs of Ø 3 mm x 3 mm height were cut using a sterile 

blade and kept in sterile PBS before the implantation procedure. Gellan gum discs with no cells 

encapsulated were also prepared using the same procedure and used as controls. 

 

 

2.3. IN VIVO SUBCUTANEOUS IMPLANTATION IN NUDE MICE 

 

Six 4-week-old female Balb/C nude mice (Charles River Laboratories Inc. USA) female with an 

average weight of 20 g were anaesthetized with a mixture of ketamine (1.2 mg/mouse s.c., 

Imalgene® 1000, Merial, Lyon, France) and medetomidine (20 µg/mouse s.c., Domitor®, Orion 

Corporation, Finland) prepared in physiological serum. After the confirmation of 

analgesia/anaesthesia two incisions were performed (reaching a maximum of 1.5 cm each) being 
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one in the intrascapular region and another in the lumbar region. With the help of a forceps two 

side pockets were created through each of the incisions and gellan gum discs with encapsulated 

chondrocytes and with no encapsulated cells (control) were subcutaneously implanted. Four 

discs were implanted per animal, being two on the anterior region and other two on the posterior 

region. The incision sites were sutured and the mice transferred to heating recovery 

compartments and when the recovery from analgesia/anaesthesia was confirmed they were 

returned to their respective compartments and kept under food and drink ad libitum. After 1 week 

and 4 weeks post implantation, mice were euthanized (n=3 for each time point) by exposure to a 

saturated carbon dioxide environment and the gellan gum discs were surgically recovered and 

processed for histological analysis, biochemical, and molecular analyses.  

 

 

2.4. HISTOLOGY  

 

Common histological analysis was performed on 4 µm thickness sections of the explants 

collected at different periods of culture. Hematoxylin-eosin (H&E) was conducted to observe 

general cell morphology and overall distribution, and alcian blue was performed to evaluate 

extracellular matrix components deposition, namely proteoglycans (glycosaminoglycans). Briefly, 

the constructs were carefully dissected from the subcutaneous tissue of nude mice and collected 

in eppendorf tubes. They were immediately fixated in formalin for 30-40 minutes and washed in 

PBS. Histological processing was conducted by dehydrating the samples in increasing ethanol 

concentrations, embedding them in paraffin and cutting sections for posterior analysis using a 

microtome Leica RM2155 (Leica Microsystems, Nusslock GmbH, Germany). H&E staining was 

performed using an automatic processor according to in-house methodology (Leica TP1020-1, 

Leica MicroSystems GmbH, Germany) and alcian blue staining was performed using standard 

histological methods. The slides were washed afterwards in distilled water, dehydrated through 

increasing ethanol concentrations, and finally cleared in xylene substitute and mounted using 

Microscopy Entellan® (Merck & Co., Inc., USA) for observation.   

 

 

2.5. QUANTIFICATION OF PROTEOGLYCAN CONTENT  

 

Proteoglycans were determined by measuring the level of sulfated glycosaminoglycans (GAGs) 

using 1,9-dimethylmethylene blue (DMB) metachromatic assay as previously described by 
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Kafienah et al.34 GAG levels can be quantified in solution using DMB since the mechanical 

entanglement of this reagent with GAGs generates a peak shift at A525-530 that can be measured 

spectrophotometrically. Briefly, the constructs were carefully dissected from the subcutaneous 

tissue of nude mice and collected in eppendorf tubes. The samples were grinded with a mortar 

and pestle and immersed in a digestion solution with papain and N-acetyl cysteine at 60ºC for 

approximately 3 hours. The tubes were centrifuged at 13,000 rpm for 10 minutes and the 

supernatant was collected for biochemical analysis. A chondroitin sulfate standard solution was 

prepared in water and kept at 4ºC. The samples and the chondroitin sulfate standards were 

placed in a 96 well round-bottomed plate, DMB solution was added to each well, and the optical 

density was measured using a microplate reader at 530 nm. Statistical analyses were conducted 

using a two-sample t-test assuming unequal variances for n=3. 

 

 

2.6. REAL-TIME PCR (COLLAGEN TYPE I, COLLAGEN TYPE II, AGGRECAN, COLLAGEN 

TYPE X)  

 

The constructs were carefully collected upon dissection of the subcutaneous tissue of nude mice, 

immersed in TRIzol® (Invitrogen, USA), and quickly and stored at −80°C until the analysis was 

performed. RNA was extracted using TRIzol® and more details can be found in the technical 

datasheet provided. Briefly, triplicates of each condition were grinded and mechanically 

homogenized with a mortar and pestle in TRIzol® reagent. Chloroform was then added and the 

samples centrifuged to establish a three-phase composition in the tube and the aqueous phase 

was collected to a new tube and mixed with isopropanol. The samples were once again 

centrifuged, the supernatant discarded and the pellet washed with 75% ethanol. The samples 

were again centrifuged, let to air-dry, and suspended in ultrapure water for posterior analysis. The 

amounts of isolated RNA and A260/280 ratio were determined using Nanodrop ND-1000 

Spectrophotometer (NanoDrop Technologies Inc, USA). After these determinations, RNA from 

each sample was reverse transcribed into cDNA using the IScriptTM cDNA synthesis kit (Bio-rad 

Laboratories, USA) in a BioRad CFX96 real-time PCR detection system (Bio-rad Laboratories, 

USA). Cartilage related markers were chosen to evaluate the chondrogenic phenotype of the 

cultured systems. These included collagen type I, collagen type II, aggrecan, and collagen type X 

using GAPDH as the housekeeping gene for normalization. The expression of each gene was 

normalized to the GAPDH value in that sample. The relative gene expression quantification was 

performed using the 2-∆∆Ct (Livak) method, considering that: 
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2-∆∆Ct = Normalized expression ratio 

 

All the primer sequences were generated using Primer3 software35 and acquired from MWG 

Biotech™, Germany. More details can be found in Table 1. Real-time PCR was performed using 

a BioRad CFX96 real-time PCR detection system (Bio-rad Laboratories, USA) and SYBR Green 

IQTM Supermix (Bio-rad Laboratories, USA) to detect amplification variations. The analyses of the 

results were performed with CFX Manager Software - version 1.0 (Bio-rad Laboratories, USA). 

Statistical analyses were conducted using a two-sample t-test assuming unequal variances for 

n=3. 

 

Table 1. Primers used for real-time PCR evaluation of human articular chondrocytes gene 

expression. 

Gene Accession number Left primer Right primer 

Collagen type I NM_000089 CTGCAAGAACAGCATTGCAT 
 

GGCGTGATGGCTTATTTGTT 

Collagen type II NM_001844 TCACGTACACTGCCCTGAAG 
 

TGCAACGGATTGTGTTGTTT 
 

Aggrecan NM_001135 ACAGCTGGGGACATTAGTGG 
 

GTGGAATGCAGAGGTGGTTT 
 

Collagen type X NM_000493 AATCCCACAGGCATAAAAG 
AGGACTTCCGTAGCCTGGTT 

GAPDH NM_002046 GAGTCAACGGATTTGGTCGT 
 

TTGATTTTGGAGGGATCTCG 
 

 

 

2.7. IMMUNOLOCALISATION OF COLLAGEN TYPE I AND COLLAGEN TYPE II 

 

Collagen types I and II were detected immunohistochemically with monoclonal antibodies against 

collagen types I and II (Southern Biotechnology, UK) using the Vectastain® Universal Elite ABC 

Kit PK-7200 (Vector Laboratories Ltd, UK) and DAB Substrate Kit for Peroxidase SK-4100 

(Vector Laboratories Ltd, UK) according to the suppliers indications. Briefly, paraffin sections on 

the collected explants were deparafinized and hydrated through decreasing ethanol 

concentrations. The sections were treated with 3% hydrogen peroxide in 50% methanol for 5 

minutes, washed in PBS buffer, and incubated in pre-diluted blocking serum. The incubation with 

the primary antibodies and negative control followed (collagen type I 1:100; collagen type II 1:20, 
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normal horse serum 1:100). The remaining protocol is as described in the Vectastain® Elite ABC 

Kit. The sections were further incubated with the DAB substrate at room temperature until 

suitable staining develops according the suppliers indications. The sections were counterstained 

with neutral red, dehydrated through increasing ethanol concentrations, and finally cleared in 

Xylene substitute ® (National Diagnostics, USA) and mounted using Microscopy Entellan® (Merck, 

USA) for observation.  

 

 

3. RESULTS  

 

3.1. HISTOLOGY  

 

The explants collected after 1 and 4 weeks of implantation were analysed using histological 

methods. Hematoxylin-eosin staining was performed on the sections of the explants since it can 

provide relevant information on cell morphology and distribution within the gel matrix. It was 

observed that the cells had been homogeneously distributed throughout the whole hydrogel, 

while also exhibiting the typical round shape morphology of native articular chondrocytes. An 

increase in cell mass was noticed after 4 weeks of culture (Figure 1.A) with individual 

chondrocytes giving rise to clusters of 2-3 cells. Sulfated glycosaminoglycans are important 

components of the native articular cartilage extracellular matrix due to their water retention ability 

that highly contributes to the mechanical functionality of the tissue. Sulfated glycosaminoglycans 

were detected in histological sections of the explants of the implanted gellan gum systems using 

alcian blue staining, mostly after 4 weeks of implantation (Figure 1.B). The staining evolved from 

a more orthochromatic nature in the early periods to a pronounced metachromatic staining after 4 

weeks of implantation (Figure 1.B). The positive staining was localised in the pericellular regions 

of chondrocyte clusters, being its presence and intensity quite regular throughout the gellan gum 

matrix. It should also be mentioned that the discs maintained their structural integrity upon 

microscopical observation and were well integrated with the surrounding tissues.  
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Figure VIII.1. Hematoxylin-eosin (A) and alcian blue (B) staining of histological sections of the 

explanted gellan gum hydrogels with human articular chondrocytes after 4 weeks of culture. The 

cells divided in clusters of 2-3 cells and presented the typical round shape morphology of native 

articular chondrocytes. A metachromatic staining, mostly in the pericellular regions, can be 

observed indicating the deposition of extracellular matrix proteoglycans (glycosaminoglycans) (B). 

 

 

3.2. QUANTIFICATION OF PROTEOGLYCAN CONTENT  

 

Following the qualitative analysis performed with alcian blue staining on histological sections of 

the gellan gum hydrogels-human articular chondrocytes tissue explants, the proteoglycan content 

of the constructs was quantitatively evaluated using the GAG assay. The glycosaminoglycan 

content was found to increase steadily from 1 to 4 weeks of implantation, being this variation 

statistically significant (Figure 2). An increase of approximately 2.4 fold amount was measured in 

gellan gum tissue engineered constructs collected after 4 weeks in comparison to 1 week of 

implantation. These results are in accordance and reinforce the positive identification of sulfated 

glycosaminoglycans with the histological analysis.  
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Figure VIII.2. Graphical representation of the results obtained from DMB assay for 

glycosaminoglycans (GAGs) quantification of the explants after 1 and 4 weeks of implantation. A 

statistically significant increase was observed from 1 to 4 weeks (p<0.05). 

  

 

3.3. REAL-TIME PCR (COLLAGEN TYPE I, COLLAGEN TYPE II, AGGRECAN, COLLAGEN 

TYPE X)  

 

Real-time PCR was used to quantitatively assess the upregulation and downregulation of genes 

typically associated with chondrocytes and cartilage tissue formation. Collagens type I, II, X, and 

aggrecan are common ECM constituents present at different stages of the chondrogenic process 

and the transcription of their genes was evaluated after 1 and 4 weeks of implantation. Among 

those, collagen type II and aggrecan are considered to be the two major and most important 

constituents of hyaline cartilage ECM since they are responsible for the mechanical functionality 

of the tissue. Collagen type I is associated with the dedifferentiation period that frequently occurs 

in 2D culturing and is a reflection of poor hyaline-nature of the formed tissue.36,37 Collagen type X 

is a marker associated to hypertrophic chondrocytes and matrix mineralization, and its presence 

is a poor indicator towards the formation of a stable hyaline-like ECM.38 The graphical 

representation of the molecular analyses data shows a statistically significant increase of both 

collagen type II and aggrecan of approximately 230-fold and 6-fold, respectively, from 1 to 4 

weeks of implantation. Collagen type I and collagen type X were not detected until the end of the 

experiments. 
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Figure VIII.3. Real-time PCR analyses results for collagen type I, collagen type II, aggrecan, and 

collagen type X during the 4 weeks of implantation. Collagen type II and aggrecan presented 

statistically significant increases from 1 to 4 weeks, indicating the hyaline-like nature of the newly 

formed tissue (p<0.05).   

 

 

3.4. IMUNOLOCALISATION OF COLLAGEN TYPE I AND COLLAGEN TYPE II 

As previously mentioned, collagen type II is the most important major protein produced by 

chondrocytes in articular cartilage, with key functions in the weight bearing ability and shock 

adsorbing properties of the tissue. The analysis of the immunostaining profiles indicates that both 

collagen type I and collagen type II are present in the explants when compared with the negative 

control (normal horse serum). No striking difference is encountered between collagen type I and 

II, although some stronger staining may be noticed for collagen type II. However, the qualitative 

evaluation is not simple mostly due to the background staining of the hydrogel that is also present 

in the negative control. The identification of collagen type I and II, with a suggested prevalence of 

the latter, is another evidence of the hyaline nature ECM of the tissue engineered constructs and 

is in agreement with previously molecular data obtained from Real-time PCR analyses that 

showed an upregulation of collagen type II mRNA. 
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Figure VIII.4. Imunolocalisation of collagen type I and collagen type II in histology sections of the 

explanted gellan gum hydrogels-human articular chondrocytes systems after 4 weeks. Images 

show collagen type I, collagen type II, and normal horse serum (negative control) (left to right, 

respectively). 

 

 

4. DISCUSSION 

 

Gellan gum hydrogels have been previously suggested by our group28,29,32 for applications in 

cartilage regeneration since it possesses adequate materials properties for these purposes. It can 

be efficiently used as a minimally invasive injectable system able to deliver and encapsulate cells, 

and to support their development in vitro. In those works, human articular chondrocytes have 

been encapsulated in injectable gellan gum hydrogels and cultured in vitro for extensive periods. 

The chondrocytes were viable and formed a hyaline-like ECM composed of collagen type II and 

aggrecan. The evaluation of the in vivo response upon subcutaneous implantation of these 

biomaterials was conducted in mice, revealing a good integration with the surrounding tissues 

and the presence of a residual fibrotic capsule. The preliminary data collected with these 

hydrogels was quite promising regarding their potential use in the treatment of cartilage 

pathologies and further in vivo studies were set up to validate this hypothesis which are 

presented in this work.32  

In this work, gellan gum hydrogels were used to encapsulate human articular chondrocytes and 

were processed in the form of discs to be subcutaneously implanted in the back of nude mice. 

The main objective was to assess the formation of a hyaline-like cartilage tissue and to conclude 

on the adequacy of these systems to generate a functional tissue engineered construct with in 

vivo relevance in the future using histological, biochemical, and molecular characterisation 

techniques. Hematoxylin-eosin staining of histological sections revealed a homogeneous 

distribution of the chondrocytes within the gellan gum matrix with the cells exhibiting the common 
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round shape phenotype characteristic of native chondrocytes. During the implantation time, the 

chondrocytes exhibited active division (Figure 1.B) which is a good indication of their viability and 

growth supported by the gellan gum hydrogels. Although these are important aspects to take into 

account when following cartilage tissue engineering approaches, the essential feature is the 

formation of a stable and functional tissue, more precisely an ECM that should be similar to the 

native one. When referring to the biomimetization of the native articular cartilage ECM, efforts are 

frequently put on the creation of a matrix composed mostly of collagen type II and aggrecan. In 

fact, these two molecules are responsible for the important functions that cartilage has in normal 

mobility and joint movement. Articular cartilage has a physical role in the tissue load-bearing 

properties, mainly due to the interactions of water, ions, and aggrecan molecules within the 

collagenous meshwork. The collagen type II confers tensile strength and the aggrecan molecules 

provide compressive stiffness to the tissue.2,39 The study of the deposition and quantification of 

proteoglycans, where aggrecan is the most abundant, was performed with alcian blue staining 

and the GAG assay. The staining profile improved from 1 to 4 weeks of implantation mostly 

located in the pericellular regions (Figure 1). The metachromatic staining was more pronounced 

in the last time point, indicating a higher deposition of proteoglycans at this stage, thereby 

implying that the production of these molecules increased during the course of the experiments. 

These results are in accordance with the quantitative analysis that showed a statistically 

significant increase from 1 to 4 weeks of implantation and reinforce the fact that proteoglycans 

are being synthesised by the encapsulated human articular chondrocytes. Real-time PCR 

analyses were performed to quantify collagen type I, collagen type II, aggrecan, and collagen 

type X mRNA levels throughout the time course of the experiments. It was observed a statistically 

significant upregulation of both collagen type II and aggrecan mRNA levels from 1 to 4 weeks of 

implantation. As previously referred, these are the most important components of the articular 

cartilage ECM and the transcription of both genes emphasises the fact that a hyaline cartilage 

ECM is being deposited, opening interesting prospects regarding future applications of this 

biomaterial. To this adds the fact that collagen type I and collagen type X are downregulated from 

1 to 4 weeks. When in a 2D environment, chondrocytes dedifferentiate loosing their round shape 

phenotype and decreasing the production of collagen type II and aggrecan, while increasing the 

production of type I collagen.37,40 The presence of collagen type I is therefore a negative indicator 

for hyaline like cartilage ECM formation. Collagen type X is frequently expressed by hypertrophic 

chondrocytes and is associated with matrix mineralization. For instances, Kirsch et al.41 observed 

that collagen type X synthesis is normally linked to an increase of intracellular calcium and 

deposition of calcium mineral, ultimately leading to matrix calcification. Chondrocytes expressing 
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this marker are usually part of the deep zone of articular cartilage and its presence indicates an 

hyperthrophic state of the chondrocytes which is not favourable when attempting to obtain an 

articular cartilage like ECM.42 The absence of both collagen type I and collagen type X suggests 

that chondrocytes were able to redifferentiate after the previous 2D expansion period in vitro, but 

were kept in that stage since no collagen type X typical of hyperthrophic chondrocytes could be 

detected. Finally, to complement the analyses, immunological localisation of collagen type I and 

collagen type II was performed on histological sections of the explants. The analysis of the 

immunostained sections appears to indicate the presence of a stronger staining with the collagen 

type II antibody when compared to collagen type I, which is in agreement with the real-time PCR 

analyses, although the concluding evidence of this is complicated by the background staining of 

the hydrogel. Collagen type I expression is linked to the dedifferentiation process that occurs in 

2D culturing and the balance between collagen type I and collagen type II is frequently used as 

an indicator of the cartilage type formed. The presence of some collagen type I may relate to the 

redifferentiation process, where collagen type I expression starts to decrease and in turn collagen 

type II and aggrecan are produced. The noticed stronger staining for collagen type II suggest the 

deposition of a hyaline-like ECM by the human articular chondrocytes encapsulated in gellan gum 

hydrogels after implantation in the back of nude mice.  

Taken together, the results from this work have shown that gellan gum hydrogels are adequate 

supports for the growth and differentiation of human articular chondrocytes when implanted 

subcutaneously in nude mice giving rise to the formation of a hyaline like extracellular matrix. 

Some aspects should however be considered when optimising this system for further in vivo 

applications. It is likely that the new cartilage tissue formed would benefit from higher cell 

concentrations and higher implantation periods in order to achieve the formation of a tissue with 

improved potential. The mechanical properties of these systems should also be more thoroughly 

considered when approaching a load bearing in vivo scenario. However, the synthesis profiles of 

collagen type II and aggrecan indicate that the mechanical support that is lacking at an initial 

stage may be in part assured by the newly formed ECM. Finally, it can be referred that tests with 

alternative cell sources such as stem cells should also be pursued. Given the scarcity of cartilage 

samples with potential use in patients and the immunological adversities that may arise from the 

use of allogenous material, such type of improvement might increase the potential of gellan gum 

hydrogels as compared to other systems proposed for these applications. 

 

 

5. CONCLUSIONS 
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In this work, gellan gum hydrogels were used to encapsulate and support human chondrocytes 

development upon in vivo subcutaneous implantation in nude mice. The results were quite 

promising in terms of the generation of a functional cartilage tissue engineered construct. The 

human chondrocytes proliferated during the 4 weeks of the experiments and deposited a hyaline 

like extracellular matrix, typical of native articular cartilage. Collagen type II and aggrecan showed 

increasing profiles being the results coherent in the analyses performed. The maintenance of the 

hyaline cartilage phenotype was suggested by the absence or decrease of collagen type I and 

collagen type X. The in vivo performance of these systems so far, along with previous data, 

suggests their further study in larger animals and the testing of different parameters towards the 

development of a fully functional cartilage tissue engineered construct to be applied clinically.  
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CHAPTER IX. 
 
Rabbit Articular Cartilage Full-Thickness Size Defects Treated With Novel Gellan Gum Injectable 

Hydrogels and Autologous Adipose Stem Cells* 

 
 
 
ABSTRACT 
 
Gellan gum is a natural origin biomaterial, originally produced by Sphingomonas paucimobilis that 

can easily form gels in the presence of cations enabling the entrapment of cells inside its matrix. 

Furthermore, its sol-gel transition can be tailored to occur within physiological values of 

temperature and pH enabling gellan gum to be applied as a minimally invasive injectable system. 

Due to these interesting properties, gellan gum may have potential application in the field of 

tissue engineering, particularly in the regeneration of cartilage defects.  

In this work, gellan gum hydrogels were combined with adipose stem cells (ASC) and injected in 

rabbit full-thickness articular cartilage defects in order to evaluate their regenerative potential. 

Five study groups were defined for this work: a) gellan gum with encapsulated chondrogenic pre-

differentiated [transforming growth factor beta1 (TGF-β1) and bone morphogenetic protein 2 

(BMP-2)] rabbit adipose stem cells (ASC + GF); b) gellan gum with encapsulated non 

chondrogenic pre-differentiated rabbit adipose stem cells (ASC); c) gellan gum with encapsulated 

rabbit articular chondrocytes (AC) (standard control); d) gellan gum alone (control); e) empty 

defect (control). Twelve New Zealand white rabbits were used in these experiments under an 

autologous approach, meaning that both adipose stem cells and articular chondrocytes were 

isolated from the same animals where they were later on implanted. Full-thickness articular 

cartilage defects were created in the medial septum of rabbit femoral condyles where the various 

gellan gum systems were injected. The implants were left for total periods of up to 8 weeks and 

the explants were collected at defined time points for analysis. The macroscopic aspect of the 

explants showed a progressive increase of similarity with the lateral native cartilage, changing 

from an initial semi-transparent to a white opaque structure at the end of the experiments. The 

implants were well integrated and stable at the defect site, exhibiting a smooth transition zone 

with the lateral cartilage. This feature was much more pronounced in the cell loaded system in 

comparison to gellan gum alone and empty defects. Cell morphology and organization presented 

similar results for ASC + GF and ASC, with the systems containing AC having a slightly different 

phenotype. Histological scoring provided semi-quantitative information on the tissue quality and 

showed that ASC + GF exhibited the best results in terms of tissue quality progression. Finally, 
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ECM formation analyses were assessed by alcian blue histological staining and real-time 

semiquantitative PCR analyses. Alcian blue retrieved similar results in staining profiles with a 

better outcome for the cell loaded systems. Regarding real-time PCR analyses, ASC + GF had 

the best progression of markers production with collagen type II and aggrecan steadily 

increasing, accompanied by a downregulation of collagen type I. In ASC systems, the profile was 

the same with the exception of aggrecan which showed no variation from 4 to 8 weeks of 

implantation. Articular chondrocytes had the highest values after 4 weeks for collagen type II and 

aggrecan, which decreased in both situations after 8 weeks of implantation. Gellan gum alone 

and the empty defects showed the worst performances regarding the formation of a hyaline 

nature ECM. The overall data shows that gellan gum hydrogels in combination with adipose stem 

cells constitute a promising approach for articular cartilage defects treatment, being a possible 

candidate for future clinical applications in an autologous context.  

 
_____________________________________________________________________________ 
 
* This chapter is based on the following publication: 

JT Oliveira, L Gardel, T Rada, L Martins, ME Gomes, RL Reis. Rabbit Articular Cartilage Full-

Thickness Size Defects Treated With Novel Gellan Gum Injectable Hydrogels And Autologous 

Adipose Stem Cells (2008) (submitted). 

_____________________________________________________________________________ 
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1. INTRODUCTION 
 
Cartilage is a connective tissue that supports the embryonic skeletal development and redefines 

its location in the adult organism to specific areas. In terms of structure and organization, 

cartilage consists of an extracellular matrix in which chondrocytes are dispersed. Unlike in the 

early embryonic development, in adulthood cartilage is avascular and presents a low metabolic 

rate. The nutrient supply to assure chondrocytes viability is dependent upon diffusion of nutrients, 

wastes, ions, and gases through the intercellular substance from adjacent capillaries. Due to its 

function in mobility and locomotion, articular cartilage, a subtype of hyaline cartilage, is 

considered to be the most important type. Articular cartilage forms smooth gliding surfaces in the 

joints areas (e.g. knee, hip), thereby enabling normal movement and limb articulation. Due to the 

tissues’ intrinsic features such as low metabolic turnover and absence of vascularisation, trauma 

and degenerative conditions (e.g. osteoarthritis, rheumatoid arthritis) associated to it frequently 

create severe disability states leading to pain and decreased life quality.1-3 Several therapeutic 

approaches have been attempted but its outcomes are not fully satisfactory, which set the basis 

for other lines of research to be put forward.4-6 The use of biomaterials, cells and bioactive 

agents, either alone or combined, has been proposed7-10 as an alternative way to solve the 

problem of overall tissue regeneration and this new field of research was defined as Tissue 

Engineering.11,12 Biomaterials from both natural and synthetic origin have been studied as 

supports for cells to develop and form a functional cartilaginous tissue.13-16 The use of hydrogels 

in the form of injectable systems that can be applied in a minimally invasive manner gelling in situ 

under physiological conditions has gathered considerable attention in cartilage tissue engineering 

approaches.17-19 Avoiding open surgeries and methods that are not harmful to the surrounding 

tissue counterparts is a desirable clinical scenario. In addition, injectable hydrogels can easily 

adapt to the defect site contributing to integration, and efficiently delivering and retaining 

encapsulated cells within the cartilage defect. Gellan gum is a polysaccharide that forms 

thermoreversible gels with different mechanical and rheological characteristics, being in different 

tested situations non cytotoxic and resistant to heat and acid stress.20-23 It is commonly applied in 

the food industry as a thickening agent or stabilizer,24 and it has been previously used in the 

biomedical field for drug delivery approaches.25-27 Gellan gum has been originally proposed by 

our group28-30 as a new biomaterial for cartilage tissue engineering applications and by another 

group for general tissue engineering uses.31 This new biomaterial has been used as an 

encapsulation and support agent for human nasal chondrocytes and as a minimally invasive 

injectable system with human articular chondrocytes in vitro. Moreover, it has been tested in vivo 
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subcutaneously implanted in nude mice with human articular chondrocytes for cartilage tissue 

engineering applications.28-30 The results obtained so far are promising and prompted the study of 

this biomaterial to move forward and closer to a real clinical scenario.  

The common stages in the study of a biomaterial for medical applications frequently make use of 

animal models in clinical like conditions before moving onto clinical trials. Evaluating the clinical 

potential of a determined biomaterial should then encompass experimental work with a relevant 

cell type in a simulated clinical scenario. Adipose stem cells (ASCs) are a feasible and valid cell 

source that can be applied in these situations. Adipose tissue is routinely available in high 

quantities from liposuction surgeries, yielding a considerable number of cells after expansion. 

ASCs are multipotent cells with the ability to express diverse phenotypes under the adequate 

conditions, among which of chondrocytes. Their shown potential in previous works32-34 makes 

these cells good candidates to be coupled with gellan gum hydrogels for the treatment of 

cartilage defects.  

In this work, adipose stem cells were mixed with gellan gum and injected in rabbit knee full 

thickness size defects under an autologous approach, using articular chondrocytes as a standard 

control. The results show that gellan gum systems are able to efficiently regenerate cartilage 

tissue in the created defects, having the most promising results been obtained with the 

combination of adipose stem cells subjected to prior chondrogenic differentiation. 

 

 

2. MATERIALS AND METHODS 

 

Five groups were defined for this work: a) gellan gum with encapsulated chondrogenic pre-

differentiated [transforming growth factor beta1 (TGF-β1) and bone morphogenetic protein 2 

(BMP-2)] rabbit adipose stem cells (ASC + GF); b) gellan gum with encapsulated non 

chondrogenic pre-differentiated rabbit adipose stem cells (ASC); c) gellan gum with encapsulated 

rabbit articular chondrocytes (AC) (standard control); d) gellan gum alone (GELLAN) (control); e) 

empty defect (EMPTY) (control). The experiments with the New Zealand White rabbit model 

(n=12) involved an autologous approach, meaning that the cells extracted from a specific rabbit 

were implanted in the same rabbit. 
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2.1. RABBIT ADIPOSE STEM CELLS ISOLATION AND EXPANSION 

Rabbit adipose tissue was obtained from the intrascapular region of 10-11 weeks old /2.4-2.6 Kg 

female New Zealand White rabbits. Briefly, the rabbits were pre-anaesthetized with ketamine (25 

mg/kg i.m., Imalgene® 1000, Merial, Lyon, France) and medetomidine (0.15 ml/kg i.m., 

Domitor®, Orion Corporation, Finland). After the confirmation of analgesia/anaesthesia the 

rabbits were subjected to tricotomy in the intrascapular region and disinfected with povidone 

iodide. An incision was performed (reaching a maximum of 2 cm) in the intrascapular region and 

adipose tissue from this region was collected to a falcon tube containing sterile phosphate-

buffered saline solution (PBS) with 10% antibiotic (antibiotic-antimycotic 15240, Initrogen 

Corporation, USA). The incision sites were sutured and the rabbits transferred to heating 

recovery compartments and when the recovery from analgesia/anaesthesia was confirmed they 

were returned to their respective compartments and kept under food and drink ad libitum. The 

collected tissue was washed in sterile PBS in order to remove contaminating debris and red blood 

cells. The adipose samples were then incubated in a 1 mg/ml collagenase type II (Sigma-Aldrich 

Co. USA) solution prepared in PBS for 60-90 minutes at 37°C with constant agitation. The 

processed adipose tissue was afterwards filtered and the released cells collected in a falcon tube 

and centrifuged at 1200 rpm for 10 minutes. The formed cell pellet was washed in culture medium 

(Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich Co. USA), 10% (v/v) foetal bovine 

serum (FBS, Biochrom, Berlin, Germany; Heat Inactivated), 1% antibiotic, and centrifuged as 

before. The obtained cell pellet was again ressuspended in culture medium, and seeded in tissue 

culture polystyrene flasks. Rabbit adipose stem cells (ASC) were incubated at 37ºC in a 

humidified atmosphere of 5% CO2 in air for expansion. Once the adequate cell number was 

reached, the cells were divided in two groups: one group subjected to a chondrogenic 

predifferentiation period consisting of DMEM, sodium pyruvate 1.0x10-3 M, ascorbate-2-

phosphate 0.17 mM, proline 0.35 mM, ITS 1X, and supplemented with 10 ng/ml TGF-β1 (Sigma-

Aldrich Co. USA) for 2 days followed by 100 ng/ml BMP-2 (R&D BioSystems, USA) for 3 days 

prior to in vivo implantation (ASC + GF); another group cultured with the same medium but 

without TGF-β1 and BMP-2 (ASC). 

 

 

2.2. RABBIT ARTICULAR CHONDROCYTES ISOLATION AND EXPANSION  

The chondrocytes isolation and expansion protocol was based on previous reports from Crawford 

et al35 Rabbits were pre-anaesthetized with ketamine (25 mg/kg i.m., Imalgene® 1000, Merial, 

Lyon, France) and medetomidine (0.15 ml/kg i.m., Domitor®, Orion Corporation, Finland). After 
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the confirmation of analgesia/anaesthesia the rabbits were subjected to tricotomy in the joint area 

of the left posterior leg and disinfected with povidone iodide. Incisions were performed through 

the skin and muscle to access the articular capsule. Articular cartilage was harvested from the 

femoral condyles of the rabbits and washed in sterile phosphate buffered saline (PBS) with 1% 

antibiotic (antibiotic-antimycotic 15240, Initrogen Corporation, USA). The incision sites were 

sutured and the rabbits transferred to heating recovery compartments and when the recovery 

from analgesia/anaesthesia was confirmed they were returned to their respective compartments 

and kept under food and drink ad libitum. The cartilage pieces were immersed in trypsin-EDTA 

solution for 15-20 min at 37ºC under constant agitation. Trypsin was removed, the pieces were 

washed with DMEM and sterile collagenase type II solution (2mg/ml) prepared in basic medium 

was added. The mixture was kept for 8-10 hours at 37ºC under constant agitation. The digested 

mixture was filtered using a 100 µm filter and centrifuged at 1200 rpm for 8 min. The supernatant 

was removed and the cell pellet washed with PBS and the cells counted using a hemocytometer. 

Cells were then collected by centrifugation and ressuspended in expansion medium consisting of 

DMEM, containing 10 mM HEPES buffer pH 7.4, 1% antibiotic, 20 mM L-alanyl glutamine, 1x 

MEM non-essential amino acids and 10% (v/v) foetal bovine serum (FBS; Biochrom, Berlin, 

Germany; Heat Inactivated), supplemented with 10 ng/ml basic fibroblast growth factor (bFGF) 

(PeproTech, UK). Human articular chondrocytes were plated into tissue culture flasks and 

incubated at 37ºC in a humidified atmosphere of 5% CO2 in air for expansion.  

 

 

2.3. IN VIVO INJECTION IN RABBIT ARTICULAR CARTILAGE DEFECTS OF GELLAN GUM-

CELLS SYSTEMS  

 

Chondrogenic pre-differentiated rabbit adipose stem cells (ASC + GF), non chondrogenic pre-

differentiated rabbit adipose stem cells (ASC) and rabbit articular chondrocytes (AC) were 

expanded until an adequate cell number was obtained for cells encapsulation and used at 

passage 2 under the following procedure. Gellan gum powder (G1910, Sigma-Aldrich Co. USA) 

was mixed with sterile distilled water under constant stirring at room temperature to obtain a final 

concentration of 1.25% (w/v). The solution was progressively heated to 90ºC and kept at this 

temperature for 20-30 minutes. The temperature was progressively decreased to 42ºC and 

stabilised always under constant stirring. Articular cartilage full-thickness defects with a diameter 

of 4 mm were created in the medial septum of rabbit femur condyles. A 1 mm diameter hole was 

drilled to the subchondral bone in order to establish a link between the implant site and the 
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subchondral bone marrow (Figure 1). Briefly, the rabbits were pre-anaesthetized with ketamine 

(25 mg/kg i.m., Imalgene® 1000, Merial, Lyon, France) and medetomidine (0.15 ml/kg i.m., 

Domitor®, Orion Corporation, Finland). After the confirmation of analgesia/anaesthesia the 

rabbits were subjected to tricotomy in the joint area of the right posterior leg and disinfected with 

povidone iodide. Incisions were performed through the skin and muscle to access the articular 

capsule. The defects were created as schematically detailed in Figure 1. The isolated cells were 

detached by trypsinisation, mixed with culture medium, and centrifuged at 1200 rpm for 8 min. 

The supernatant was removed and the cells were ressuspended in sterile PBS solution, counted 

using and hemocytometer, and finally centrifuged as before. The cell number was calculated so 

that the final concentration after encapsulation was 10x106 cells/ml. The supernatant was 

discarded and the cells pellet kept at the bottom of the tube were ressuspended in a small 

amount of PBS. The gellan gum 1.25% (w/v) solution was mixed at a temperature of 40-41ºC with 

the cell suspension for complete homogeneous dispersion within the gel and the mixture was 

then injected into the defect. A waiting time of 2-3 minutes was given for the gels to form in situ. 

Defects were also filled with gellan gum without cells and other defects were left empty. The 

experiments were conducted for periods of up to 8 weeks with data collection points at 1 week, 4 

weeks, and 8 weeks. The incision sites were sutured and the rabbits transferred to heating 

recovery compartments and when the recovery from analgesia/anaesthesia was confirmed they 

were returned to their respective compartments and kept under food and drink ad libitum without 

movement restrictions. At the established time points, the animals were euthanized by injection of 

an overdose of pentobarbital sodium (Eutasil® Ceva Sante Animale, France) and the defect sites 

were surgically exposed. These were subjected to macroscopic observation and afterwards 

processed for histological and molecular analyses.  

 

 

Articular cartilage 
full-thickness defect

Subchondral drill

Implantation site Rabbit articular cartilage 

Articular cartilage 
full-thickness defect

Subchondral drill

Implantation site Rabbit articular cartilage 

 

 

Figure IX.1. Schematic representation of the articular cartilage defect created in the rabbits 

femoral condyles. 
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2.4. HISTOLOGY  

 

Common histological analysis was performed on 4 µm thickness sections of the samples 

collected after 1 week, 4 weeks, and 8 weeks of implantation. Hematoxylin-eosin (H&E) was 

conducted to observe general cell morphology and overall distribution, and alcian blue staining 

was performed to evaluate extracellular matrix components deposition, namely proteoglycans 

(glycosaminoglycans). The femoral condyles with the implanted systems were carefully dissected 

and samples for molecular analysis were collected. The femur condyles were then fixed in 

formalin for 30-40 minutes at room temperature, and kept in PBS at 4ºC. Histological processing 

was performed by dehydrating the samples in increasing ethanol concentrations, embedding 

them in paraffin and cutting sections for posterior analysis using a microtome Leica RM2155 

(Leica Microsystems, Nusslock GmbH). H&E staining was performed using an automatic 

processor according to in-house methodology (Leica TP1020-1, Leica MicroSystems GmbH) and 

alcian blue staining followed standard histological methods.  

 

 

2.5. HISTOLOGICAL SCORING (PINEDA SCORING SYSTEM) 

 

The Pineda scoring system36 was used for histological evaluation of the explants collected after 

determined implantation periods. The degree and the quality of healing in all defects was 

assessed and scored blindly by 3 independent researchers. The graded parameters included 

filling of defect, reconstruction of osteochondral junction, matrix staining, and cell morphology. 

The maximum possible score in the Pineda scoring system is 0 points (increased regenerative 

potential) with a minimum of 14 points (decreased regenerative potential). More detailed 

information can be found in Table 1.  
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Table IX.1. Cartilage repair score by Pineda and co-workers.30 

Characteristics score

Filling of defect

125% 1

100% 0

75% 1

50% 2

25% 3

0% 4

Reconstruction of osteochondral junction

Yes 0

Almost 1

Not close 2

Matrix staining

Normal 0

Reduced staining 1

Significantly reduced staining 2

Faint staining 3

No stain 4

Cell morphology

Normal 0

Most hyaline and fibrocartilage 1

Mostly fibrocartilage 2

Some fibrocartilage, but mostly nonchondrocytic cells 3

Nonchondrocytic cells only 4
 

 

 

2.6. REAL-TIME PCR (SOX9, COL I, COL II, AGGRECAN)  

 

Samples were collected after 1 week, 4 weeks, and 8 weeks of implantation upon exposure of the 

defect site area. The samples were obtained by collecting half of the implant from the implant site 

with the help of a scalpel. The results of this procedure can be seen on the histological analysis 

(Figure 2), being the reason for the observation of only one half of the implant. The collected 

samples were immersed in TRIzol® (Invitrogen, USA), and quickly stored at −80°C for posterior 

analysis. RNA was extracted using TRIzol® and more details can be found in the technical 

datasheet provided. Briefly, samples were grinded and mechanically homogenized with a mortar 

and pestle in TRIzol® reagent. Chloroform was then added and the samples centrifuged to 
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establish a three-phase composition in the tube and the aqueous phase was collected to a new 

tube and mixed with isopropanol. The samples were once again centrifuged, the supernatant 

discarded and the pellet washed with 75% ethanol. The samples were again centrifuged, let to 

air-dry, and suspended in ultrapure water for posterior analysis. The amounts of isolated RNA 

and A260/280 ratio were determined using Nanodrop ND-1000 Spectrophotometer (NanoDrop 

Technologies Inc, USA). After these determinations, a pre-determined amount of RNA from each 

sample was reverse transcribed into cDNA using the IScriptTM cDNA synthesis kit (Bio-rad 

Laboratories, USA) in a BioRad CFX96 real-time PCR detection system (Bio-rad Laboratories, 

USA). Cartilage related markers were chosen to evaluate the chondrogenic phenotype of the 

cultured systems. These included Sox9, collagen type I, collagen type II, and aggrecan, using 

GAPDH as the housekeeping gene for normalization. The expression of each gene was 

normalized to the GAPDH value in that sample. The relative gene expression quantification was 

performed using the 2-∆∆Ct (Livak) method, considering that: 

 

2-∆∆Ct = Normalized expression ratio 

 

All the primer sequences were generated using Primer3 software37 and acquired from MWG 

Biotech AG, Germany. More details can be found in Table 2. Real-time PCR was performed 

using a BioRad CFX96 real-time PCR detection system (Bio-rad Laboratories, USA) and SYBR 

Green IQTM Supermix (Bio-rad Laboratories, USA) to detect amplification variations. The analyses 

of the results were performed with CFX Manager Software - version 1.0 (Bio-rad Laboratories, 

USA). 

 

Table IX.2. Primers used for real-time PCR analysis of rabbit gene expression associated with 

cartilage extracellular matrix formation. 

Gene Accession number Left primer Right primer 

Sox9 
AY598935 TTCATGAAGATGACCGACGA GTCCAGTCGTAGCCCTTGAG 

Collagen type I D49399 
TAAGAGCTCCAAGGCCAAGA  TGTTCTGAGAGGCGTGATTG 

Collagen type II D83228 
CAACAACCAGATCGAGAGCA GCTCCACCAGTTCTTCTTGG 

Aggrecan L38480 
GAGGTCGTGGTGAAAGGTGT GTGTGGATGGGGTACCTGAC 

GAPDH NM_001082253 
AGGTCATCCACGACCACTTC GTGAGTTTCCCGTTCAGCTC 
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3. RESULTS  

 

3.1. HISTOLOGY 

 

The explants collected after 1, 4, and 8 weeks of implantation were analysed using hematoxylin-

eosin and alcian blue staining. As previously referred in the Materials and Methods section 6., 

only half of the implants can be observed on the histological sections since the samples for RNA 

isolation and real-time PCR analysis were performed using the other half of the implant. 

Hematoxylin-eosin is a general staining for the majority of the cells that provides important 

information regarding their morphology, distribution and integrity. The results presented in Figure 

2 show that the injected gellan gum hydrogels containing the different cell types studied kept in 

the defect after injection and unrestricted movement of the animals. The implants appear to be 

well integrated in the defect, both in the osteochondral junction and with the lateral native articular 

cartilage. This observation is evident in all the systems with the exception of gellan gum alone 

where the inclusion and integration is apparently weaker. Regarding cell morphology, similar 

results were found for ASC + GF and ASC, with the systems containing AC presenting a slightly 

different phenotype when compared to the native cartilage. Gellan gum alone and the empty 

defect presented the less similar morphologies, exhibiting only some focal spots of hyaline like 

chondrocytes, which were detected more frequently in gellan gum hydrogels alone. In terms of 

overall cartilage tissue structure, the newly formed tissues that mostly resembled the articular 

cartilage phenotype seem to be ASC + GF and ASC. Although these were quite similar with AC, 

the latter presents more frequently some fibrocartilage regions dispersed within the implant area. 

These fibrocartilage areas were detected to a greater extent in gellan gum alone, and represent 

the majority of the new tissue formed in the empty defects. Alcian blue staining identifies 

sulphated glycosaminoglycans in a histological section of a construct being a standard procedure 

for these purposes in cartilage tissue engineering analysis. Sulphated glycosaminoglycans are 

important for their water retention ability that contributes to the mechanical performance of the 

tissue. Sulfated glycosaminoglycans were detected in histological sections of all the explants, 

although with different extents (Figure 3). The staining was pronouncedly metachromatic in all the 

study samples and was present mostly in the areas not in close contact with the synovial capsule 
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where a different mechanical environment is present. Regarding the regularity of the staining 

profiles, gellan gum with ASC + GF and ASC were found to be the most uniform extending from 

the centre of the defect site to the contact with the lateral cartilage present on each side.  

 

 

Figure IX.2. Hematoxylin-eosin staining of histological sections of the explanted gellan gum 

hydrogels with the different cell types after 8 weeks of culture.  

 

 

 

Figure IX.3. Alcian blue staining of histological sections of the explanted gellan gum hydrogels 

with the different cell types after 8 weeks of culture. 
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3.2. HISTOLOGICAL SCORING (PINEDA SCORING SYSTEM) 

 

Histological score systems are frequently used to grade the healing process and tissue quality of 

cartilage defects. These semi-quantitative systems provide reliable information on the 

pathophysiological condition of the tissue being investigated and have good reproducibility. 

Among the various scoring systems proposed, the Pineda score is considered to be one of the 

most reliable.38,39 The results previously presented in the histological analysis find some reflection 

on this semi-quantitative analysis. Among the various systems studied, ASC + GF exhibited the 

best results in terms of quality of the newly formed tissue. When looking to the scores for 1, 4, 

and 8 weeks of implantation, ASC + GF systems show a continuous increase in performance 

culminating at the final time point where they were ranked the best within the five groups. Gellan 

gum hydrogels with encapsulated ASC have demonstrated some variability throughout the 

implantation stages, but considerably improved after 8 weeks being ranked after ASC + GF. The 

variations within AC systems occurred in a smoother way presenting increasing performances 

from 1 to 4 weeks, and stabilising afterwards. These systems were positioned after ASC + GF 

and ASC in terms of cartilage tissue quality. The gellan gum hydrogels alone showed slightly 

decreasing qualities of the newly formed tissue, maintaining nevertheless some stability in terms 

of the scoring. Finally, the empty defects exhibited an improvement tendency with time more 

noticeable at 4 weeks of implantation. From 4 to 8 weeks, no relevant variations are encountered 

and this system was ranked the worse regarding the quality and performance of the newly formed 

tissue.  
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Figure IX.4. Graphical analysis of the results obtained with the Pineda scoring system on the 

explanted gellan gum-cell systems after 1, 4, and 8 weeks of implantation.   

 

 

3.3. REAL-TIME PCR (SOX9, COLLAGEN TYPE I, COLLAGEN TYPE II, AGGRECAN)  

 

Real-time PCR analysis is commonly applied to assess the upregulation and downregulation of 

specific genes related to the tissue being studied. In articular cartilage regeneration, several 

marker molecules are usually tested for variations through time, in order to provide a wider insight 

on the dynamics and nature of the tissue being formed. Sox9, collagens type I and II, and 

aggrecan are among those and their patterns of expression were analysed with this technique. 

GAPDH was chosen as the reference housekeeping gene. In each sample, the cycle threshold 

(Ct) value was normalised to the Ct value of the reference gene (GAPDH). In the gellan gum 

hydrogels with encapsulated ASC + GF, no Sox9 expression was detected. Collagen type I levels 

were residual at 4 weeks and were not observed after 8 weeks of implantation. Regarding 

collagen type II, an upregulation of approximately 30-fold was noticed from 4 to 8 weeks, and the 

same upregulation profile was identified for aggrecan, in this case with a 9-fold increase. ASC 

revealed no Sox9 expression at all time points, and collagen type I was also maintained at 

residual levels. Collagen type II experienced a 58-fold upregulation, and aggrecan evidenced only 

a slight increase from 4 to 8 weeks of implantation. Regarding the systems with articular 

chondrocytes, no Sox9 was again detected, and collagen type I was noticed after 4 weeks but 
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was downregulated approximately 4-fold after 8 weeks. The same pattern of variation was 

observed with collagen type II and aggrecan, which exhibited a downregulation of 2-fold and 3-

fold from 4 to 8 weeks of implantation. Gellan gum alone did not present Sox9 transcripts and 

collagen type I levels were also residual. Collagen type II and aggrecan showed an upregulation 

of 13-fold and 2-fold, respectively. Finally, the empty defect showed no existence of Sox9, and 

evidenced a slight upregulation of collagen type I levels from 4 to 8 weeks. Collagen type II was 

upregulated 1.6-fold and aggrecan was also upregulated 1.8-fold. In terms of higher gene 

transcription levels after 8 weeks, the empty defect group showed the highest values for collagen 

type I; AC, followed by ASC + GF and ASC presented the highest collagen type II expression 

profiles, and ASC + GF followed by AC had the best results regarding aggrecan levels. 
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Figure IX.5. Graphical representation of the real-time semi-quantitative PCR analysis results for 

Sox9, collagen type I, collagen type II, and aggrecan performed on the explants collected after 1, 

4, and 8 weeks of implantation.   

 

 

4. DISCUSSION 

 

The regeneration of cartilage tissues, mainly articular cartilage, is still a difficult task to achieve. 

The research strategies on this matter have been numerous,4-10 and the search for an efficient 

alternative to the drawbacks of current therapies is still ongoing. Tissue engineering concepts are 

frequently suggested to address these conditions by making use of support structures, cells and 

cocktails of bioactive agents in controlled environments7-10,40. The importance of the cells used in 

such approaches is crucial since they are expected to form and maintain a newly formed tissue 

able to replace the damaged one, particularly due to the low regeneration ability of cartilage. In 

cartilage tissue engineering, most options rely on the use of either primary culture 

chondrocytes41,42 or stem/progenitor cells.43-45 The use of chondrocytes is limited by problems 

such as the scarcity of the tissue, rejection by the host, and graft-versus-host disease.46 

Stem/progenitor cells brought new possibilities to the cartilage tissue engineering field due to their 

potential to form different tissues, low immunogenicity, and higher cell division potential.34,47,48 

Adipose stem cells (ASCs) are considered a promising alternative to fulfil the role of chondrocytes 

in these applications and their potential has been previously evaluated.49-51 Erickson et al32 

observed significant production of cartilage matrix molecules when examining the chondrogenic 

potential of human adipose tissue derived stromal cells cultured in alginate and implanted in vivo 

in nude mice. 

Based on the previous considerations, this work tried to mimic a close to real clinical scenario 

where adipose stem cells are isolated, expanded in vitro, and administered with an adequate 

support in vivo in an autologous way. In this sense, the patients’ own adipose stem cells are used 

in the treatment of the cartilage defect, surpassing the problems of cell scarcity and 

immunological rejection. Gellan gum is a recently proposed biomaterial that has proven adequate 

for these applications.28,31 It can be prepared in a non harmful environment to cells, efficiently 

mixed with them, and finally injected in vivo in a minimally invasive manner gelating at the defect 

site under physiological conditions and serving as a support for cartilage tissue formation. 

Considering the potential of this biomaterial and the possibilities granted by adipose stem cells, 

five study groups were defined in order to evaluate the cartilage regeneration potential of gellan 
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gum combined with ASCs in the treatment of New Zealand White rabbits articular cartilage 

defects: a) chondrogenic pre-differentiated rabbit adipose stem cells (ASC + GF); b) rabbit 

adipose stem cells (ASC); c) rabbit articular chondrocytes (AC) (standard control); d) gellan gum 

alone (control); e) empty defect (control). The chondrogenic pre-differentiation of rabbit ASCs was 

performed to confer an improved performance to these cells and to compare them with non 

chondrogenic pre-differentiated ASCs. TGF-β1 and BMP-2 are common growth factors used in 

cartilage repair strategies and their use has been found to be beneficial for cartilage tissue 

formation in adipose and other progenitor cells.52-57 Hanada et al58 observed that combined 

treatment with TGF-β1 and BMP-2 induced time-dependent mRNA expression of aggrecan 

protein and type II collagen in rat periosteum-derived cells. Unlike with the use of BMP-2 alone, 

cell aggregates incubated with both TGF-β1 and BMP-2 showed no expression of type X collagen 

at later times in culture. In the present work, the animals were sacrificed after defined time 

periods and the defect sites were observed macroscopically as a preliminary assessment of the 

regenerative potential of the gellan gum systems. After 1 week, the implants were similar in 

appearance, exhibiting a faint opaque white colour. This occurrence was more pronounced and 

homogeneous in gellan gum discs with encapsulated cells (ASC + GF, ASC, AC). Even so, the 

gel transparency was still noticeable in all systems. After 4 weeks, the white opaque nature of the 

defects was even more pronounced in the cell loaded systems when compared to gellan alone 

and empty defects, being this pattern also observed after 8 weeks. The defects were 

homogeneously filled and well integrated with the surrounding cartilage presenting smooth 

transition zones between the implant and the native tissue in ASC + GF, ASC, AC. The results for 

gellan gum alone and the empty defects were more heterogeneous. The morphological 

appearance was much similar to the lateral native cartilage in those groups than in gellan gum 

alone and empty defects, particularly after 8 weeks of implantation. These results clearly 

demonstrate a difference between the systems with cells and the systems without cells which 

were also confirmed by histological analyses. Histological sections of the collected explants were 

stained with hematoxylin-eosin providing data on cell distribution, morphology and integration of 

the implants in the defect site. The implants were all kept at the implantation site, even though 

unrestricted movement of the animals was permitted right after the surgeries. This fact 

demonstrates that these gellan gum systems are able to be injected, remain, and adapt to 

articular cartilage defects under normal load bearing conditions. A progression of tissue formation 

and integration was observed in all the systems throughout the implantation periods. Both the 

osteochondral junction and the lateral native cartilage presented a continuous tissue bridging with 

the implants. The best results were observed for the cell containing gels mostly in prolonged 
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stages of implantation. These results were somehow predictable since the cells incorporated are 

expected to confer an improved advantage in tissue formation and integration due to their 

autologous nature and the role they can develop in tissue rebuilding. Another evidence of the 

advantages of cell delivery is the result obtained for cell morphology and overall cartilage tissue 

structure, where ASC + GF and ASC clearly presented the best results. This suggests that not 

only the use of a cellular counterpart improves the performance of the forming tissue engineered 

constructs, but also the types of cells used can dictate this outcome. A constant observation in all 

the implants was the formation of fibrocartilage-like tissue in the top part of the implant. Such an 

event is probably due to the shear stress events that are constantly occurring in the gliding 

surface of cartilage parts. Hu et al59 found evidences that the regional distribution fibrocartilage in 

rabbit jaw joint condyles was apparently optimized for withstanding tissue-borne shear stresses, 

which implicates the location of this tissue in specific shear stress spots. In other studies,60,61 

fibrocartilage was reported to be the main functional adaptation in resisting shear and 

compressive mechanical stress in a pathological inflammatory condition. It was observed that 

when stress levels were elevated, the quantity of fibrocartilage increased. These occurrences 

may be prevented in a clinical scenario through short-term immobilization of the injured limb post-

surgery, thereby reducing the aggressive shear stress effects. The semi-quantitative histological 

scoring system initially proposed by Pineda et al36 reinforced some of the conclusions obtained 

with macroscopic and histological analysis. The ASC + GF system had the best scores calculated 

from the average of the individual scores of 3 independent researchers. The quality of the tissue 

formed throughout time had borderline statistically significant improvements (p=0.05) from 1 to 8 

weeks, a result that was also observed in ASC from 4 to 8 weeks (p<0.05), and in the empty 

defects from 1 to 8 weeks (p<0.05). Gellan gum on the other hand exhibited a statistically 

significant deterioration of tissue quality from 1 to 4 weeks of implantation (p<0.05). After 8 weeks 

of implantation, the best score is evident for ASC + GF being statistically different from ASC and 

the empty defect. The comparison of both subsets of ASC studied shows in fact the importance 

that the chondrogenic pre-differentiation environment has in the final performance of the 

constructs. Indeed, although ASC + GF and ASC ranked 1st and 2nd place, respectively, the effect 

of the culturing methodologies prior to culturing exerted its effect on the chondrogenic potential of 

the newly formed tissue. When compared to AC, although without a statistically significant 

difference, both systems with adipose stem cells have shown to perform better in terms of the 

progression of the quality and integrity of the newly formed tissue. A wider insight on the 

molecular events taking place inside each system was made available by alcian blue staining and 

real-time PCR semi-quantitative analyses that provided valuable information on the nature of the 
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ECM produced. The first showed that, although the presence of a metachromatic staining was 

present in all the explants, the most similar to the native tissue were gellan gum with ASC + GF 

and ASC. The staining profiles were the most uniform extending from the centre of the defect site 

to the contact with the lateral cartilage present on each side. Real-time PCR analyses did not 

detect Sox9 transcripts in any of the samples during the course of the experiments.  

Sox9 develops an important role in cartilage formation being involved both at the early stage of 

mesenchymal condensations during embryogenesis and in the regulation of chondrocyte 

maturation towards hypertrophy.62,63 Previous studies have suggested its association with the 

chondrocyte phenotype maintenance and collagen type II expression, although this is not 

completely consensual.64,65 The confirmation of the hyaline nature of the newly formed tissue 

does not correlate well with the absence of Sox9 in the samples and the authors couldn’t agree 

on a justification for these observations. Further studies should be conducted for a full gene 

transcription profiling of the implants, influence of in vitro expansion on markers expression, and 

tracking of other markers of the chondrocytes cell cycle.   

Collagen type I presence only in the initial periods in AC and residual for ASC + GF, ASC, and 

gellan is in agreement with the formation of a cartilage tissue of hyaline nature. The detection and 

maintenance of collagen type I levels in the empty defects indicates otherwise. In fact, the 

creation of this defect is similar to both drilling and microfracture surgical techniques applied to 

the treatment of cartilage pathologies.66-68 The outcome of this and similar surgical procedures is 

frequently the formation of a fibrocartilage tissue with inferior mechanical properties, and 

therefore the upregulation of collagen type I levels typical of fibrocartilage was expected.67,69 

Collagen type II and aggrecan presented the highest levels in gellan gum-AC systems although 

exhibiting a decrease from 4 to 8 weeks of implantation. This could be associated to an eventual 

hypertrophy of chondrocytes, which carries a decrease in collagen type II values.70 Nonetheless, 

collagen type levels are still significantly higher than for all the other systems. The same is not 

true for aggrecan. ASC + GF presented the best results in aggrecan expression with a steadily 

upregulation until the final implantation period. The same pattern of variation was observed for 

collagen type II which opens good prospects for the generation of a fully functional tissue 

engineered construct since these two molecules are the agents that confer cartilage with its load 

bearing functions. ASC showed the same upregulation pattern in collagen type II but not in 

aggrecan which may be related with the prior chondrogenic stimulation given to ASC + GF. 

Hanada et al58 observed that combined treatment with TGF-β1 and BMP-2 induced time-

dependent mRNA expression of aggrecan core protein and type II collagen. Altogether, these 

results clearly show the success of gellan gum systems combined with different cell types in the 
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treatment of articular cartilage defects. The results indicate that the most promising outcomes can 

be obtained with adipose stem cells pre conditioned to chondrogenic differentiation in vitro. Their 

performance should be further optimised by varying the culture cocktails, exploiting other cells 

parameters (number, stage, subpopulation), and analysing their effectiveness in real clinical 

conditions.   

 

 

5. CONCLUSIONS 

 

Although recent, the field of cartilage tissue engineering has gone through constant 

developments and the research performed nowadays is taking this area one step further close to 

new clinical applications. In this work, we have shown that gellan gum hydrogels are promising 

candidates for these applications. This newly proposed natural biomaterial possesses interesting 

features that prompted its study for the regeneration of cartilage tissues. It was shown here that 

the combination of gellan gum hydrogels with different cell types produced articular cartilage-like 

tissue and was highly beneficial in the treatment of rabbit full thickness articular cartilage defects. 

The group of gellan gum with adipose stem cells subjected to a chondrogenic pre-differentiation 

period originated the most promising results when compared to the other groups. The potential 

revealed by this system imposes further tests on its performance and may clearly place them as 

possible future biomedical products to be applied clinically in human patients. 
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CHAPTER X. 

 

 
 
GENERAL CONCLUSIONS AND FINAL REMARKS 

 
 
The main objective of the work conducted in the scope of this thesis was the production and 

delivery of potential therapeutic systems for cartilage regeneration having as basis the concept of 

tissue engineering. The problem of cartilage regeneration affects millions of people worldwide 

and the need for efficient solutions is constant. Due to its nature, cartilage may be severely 

affected by trauma events, aging related degeneration, or developmental disorders, since the 

effective tissue regeneration is not always accomplished. As a direct result, severe restrictions 

are imposed to the patients regarding normal life and wellbeing. The search for these solutions 

was the main drive behind this thesis. Based on the tissue engineering concept, the generation of 

potential tools and solutions to help in the resolution of cartilage associated pathologies was 

pursued. Although several surgical procedures have been applied for the same purposes, the 

idea of engineering tissues through the use of a biomaterial support combined with cells in 

specific culturing environments is challenging and has gained recognised potential among the 

research community. Following this line of study, different supports with potential to be applied 

clinically have been investigated and tested with the ultimate goal of delivering therapeutic 

solutions for cartilage problems, and placing the knowledge as close as possible to the fabrication 

of a medical product to be applied. The experimental work present in this thesis can be broadly 

divided into 2 parts: 1) the testing of several natural based supports for cartilage tissue 

engineering; 2) the choice of one among those, which was put through an extensive analytical 

screening in terms of materials properties, in vitro studies, and finally in vivo functional studies. 

This last stage involved the implementation of an autologous approach in a relevant animal model 

in order to sustainably prompt its application forward into clinical trials and clinical application. 

 

In the first part, we have tested several types of natural-based support structures. The choice for 

these types of materials lies in the advantages they may ultimately confer to the performance of 

the tissue engineered construct, since natural materials frequently exhibit better integration, less 

cytotoxicity, and most are present or display structural affinity with the native tissue. Along with 

the choice of testing different biomaterials initially, the decision on the types of cells to be used 

followed a line of increasing relevance in our opinion. These included cell lines and primary 

cultures of differentiated and undifferentiated cells, namely mesenchymal progenitor cells from a 



CHAPTER X. General Conclusions and Final Remarks 

 276 

mouse progenitor cell line, primary culture chondrocytes of bovine and human origin, and primary 

culture adipose tissue derived progenitor cells and chondrocytes from rabbits (autologous model). 

The first material was constituted by a blend of chitosan and polybutylene succinate (C-PBS) and 

was described in chapters III and IV. In chapter III, C-PBS scaffolds processed by compression 

moulding and salt leaching were seeded with BMC9 cells and cultured in an environment that 

stimulated their chondrogenic differentiation. The cells proliferated and actively colonised the 3D 

structure, while showing evidences of commitment towards the chondrogenic pathway. The 

overall results were considered fairly positive and the work was continued with this material in 

chapter IV, but using different processing technologies for the scaffolds fabrication.  

 

The new structures were formed from fibres produced by microextrusion. This 3D organization 

was expected to perform better due to enhanced cell penetration and colonization, and also 

improved mass transfer and metabolic waste removal. A different cell source was chosen in order 

to obtain more relevant data for the possible applications of these systems, and therefore primary 

culture bovine chondrocytes were used. Following the same rationale, the posterior studies within 

this thesis were also conducted with primary culture isolated cells. The analysis of the 

performance of C-PBS fibre scaffolds showed they performed, enabling cell proliferation with 

extensive ECM deposition that presented typical features of a cartilage-like tissue.  

 

As a way to increase the knowledge and know-how on other possible structures and associated 

analytical techniques, we also looked into the use of starch and polycaprolactone (SPCL) 

scaffolds. These have been previously used in bone tissue engineering studies by our group 

retrieving promising results, which made them a potential candidate for applications also in the 

cartilage tissue engineering area. In a similar way as the C-PBS fibre scaffolds, the SPCL 

structures also exhibited good performances regarding cell proliferation, colonisation and 

cartilage-like ECM. In fact, both C-PBS and SPCL fibre systems were compared with polyglycolic 

acid (PGA) scaffolds which are frequent standards in these studies. The results have been 

promising for both types of natural-based scaffolds, positioning them as valid alternatives to 

commonly used standards.  

 

Even though the support structures studied so far performed well and revealed good potential, it 

was our intention to obtain a material that could be mixed with cells and injected into the body 

without any need of in vitro culturing, a step that was frequent with the previous studied systems. 

This system should also be minimally invasive and gel at physiological conditions, thereby not 
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being harmful to cells and surrounding tissues. The achievement of such characteristics with the 

previously studied materials would be compromised by their intrinsic features and therefore the 

decision to choose another material was taken.  

 

In the second part, gellan gum was originally proposed and tested by us for these purposes. It 

possesses all of the abovementioned features, and in addition presents other points of interest. 

Gellan gum can be prepared and mixed with cells/drugs using very simple techniques and using 

as reagents only water and PBS. Moreover, it possesses carboxylic groups in the glucuronic acid 

residues that may be modified to confer improved functions. A final advantage to mention is its 

prior use in vivo in humans for other applications which may place it closer to a medical 

application in this field.  

 

Given this, we tested its materials properties including ultrastructural analysis, mechanical 

properties and rheological behaviour, and cytotoxicity. In vitro experiments with human cells using 

agarose as a standard for comparative analysis, and preliminary in vivo evaluation of the reaction 

of a host organism followed.  

 

Afterwards, the work proceeded to the in vivo evaluation of cartilage tissue formation using 

human articular chondrocytes encapsulated in gellan gum hydrogels and subcutaneously 

implanted in the back of nude mice, being the results promising in terms of the formation of a 

functional cartilage tissue engineered construct.  

 

The final stage of the study with this biomaterial involved the mimicking as far as possible of a 

real clinical scenario. The New Zealand white rabbit model was used due to its consensual 

feasibility and previous existing studies for other materials on cartilage tissue engineering. 

Cartilage full-thickness knee defects were created on the rabbits being these considered 

representatives of a patient condition. Cells for the own rabbit were isolated, cultured, and finally 

implanted in the defect site in order to observe the regenerative potential of the developed 

systems. Such an experimental setup provided valuable information on the systems behaviour 

and performance in a close to real clinical scenario. The interpretation of the collected data 

enabled to confirm the effective therapeutic potential of gellan gum systems and conclude on 

their possible application as medical products in the future.  
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One of the components of the gellan gum systems, and those that granted it its potential in these 

experiments, were the cells used. We investigated the potential of adipose tissue derived 

progenitor cells as an alternative to primary cultured chondrocytes. As it is known, obtaining 

chondrocytes from a patient is not always simple, and the possibility of a donor supply carries 

rejection episodes, graft-versus-host disease (GVhD), and is not always available due to scarcity 

of biological samples. The accessibility of adipose tissue and its proven added value in the 

formation of differentiated cells and tissues, such as cartilage, led us to study it as part of the 

system to be implemented in the treatment of cartilage defects. The results were good with the 

ASC showing high-quality performances, even when compared to healthy chondrocytes from the 

control groups which again reinforced the previous data on the potential of the gellan gum 

systems. 

 

As final remarks, it can be stated that the work performed and included in this thesis provided 

interesting studies on different types of natural based supports for cartilage TE, all having shown 

potential for further uses in the area. In fact, standard materials such as PGA and agarose were 

used in different studies for comparison purposes. The herein proposed and studied systems 

revealed highly suitable and constitute valid alternatives to them. Even so, the data on those is 

extensive when compared to those proposed. More research must be performed by other 

research units to strengthen and validate this data. From the initial screening of materials, we 

have delivered one that was fully characterised and was studied through in vivo functional tests 

where its therapeutic ability was verified. Gellan gum was originally proposed in this thesis for 

cartilage TE and the research work conducted has put it close to the clinical trials stage. Our 

filling of a patent on the applications of this material, also under the scope of this thesis, indicates 

that this should be the consequent step to take. In parallel, a thorough characterization of 

materials properties, reaction from the organism, and other related events should be taken in 

order to assure the safety of this material to patients and cope with the industrial requirements in 

which it may be included. The main objective of delivering therapeutic tools to solve cartilage 

regeneration problems in patients can then be finally reached. This path of discovery, 

experimental study, and generation of a potential solution was the main accomplishment of the 

work performed in this thesis.  
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