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Geragao 6tica nao linear de plasmoes de superficie em grafeno

Resumo

Em 2015, plasmoes de superficie (SPPs) foram pela primeira vez excitados em grafeno por
um processo nao linear (NL) de diferenga de frequéncias, causado pela interacao de dois feixes
oticos [1]. Célculos tedricos, usando teoria de perturbagdes, preveem uma resposta muito mais
fraca do que a necessaria para explicar os dados experimentais. Experiéncias e resultados teoricos
recentes revelam a importancia dos SPPs na relaxacao de portadores de carga em grafeno e apontam
para a possibilidade da sua amplificacdo em condi¢Ges fora do equilibrio, por exemplo, quando
uma folha de grafeno é incidida por feixes 6ticos muito intensos. No entanto, o mecanismo por
tras da sua geracao por diferenga de frequéncias ainda nao é totalmente compreendido. Nesta
tese, calculamos as condutividades 6ticas nao lineares relevantes ao processo e mostramos que as
observagoes experimentais da Ref. [1] tém a sua origem em processos fisicos para além da geracao
coerente de SPPs por diferenca de frequéncias, descrita pela abordagem da teoria de perturbagao da
matriz de densidade. Também estudamos a dindmica dos portadores de carga no grafeno quando
estes se encontram fora do equilibrio e apresentamos o nosso modelo de eletroes quentes para explicar
a sua influéncia na geracdo de SPPs. Os resultados experimentais podem ser compreendidos se
para além do processo de diferenca de frequéncias de segunda ordem, considerarmos também a
amplificagdo do campo SPP devido ao relaxamento interbanda de eletroes quentes. Para descrever
esta amplificacdo na presenga da geragao por diferenca de frequéncias, escrevemos uma equagao de
evolugao para o nimero de ocupagao de SPPs. Os nossos célculos mostram que estes dois processos,
ocorrendo em simultaneo, podem aumentar fortemente a taxa de geracao nao-linear de plasmoes de
superficie.

Finalmente, o trabalho experimental, realizado para gerar SPPs através do mecanismo teorica-
mente considerado, também é apresentado. O principal desafio foi a contruir um esquema de detegao
sensivel o suficiente para observar a excitagdo dos SPPs. Varias técnicas, tais como detecao sensivel
de fase (lock-in amplifier) e detegao balanceada, foram exploradas. O esquema 6tico foi construido,
mas a poténcia do laser precisa ser estabilizada e consequentemente ainda nao tivemos sucesso. No
entanto, os métodos e resultados apresentados na parte experimental desta tese sao uma referéncia

importante para continuagao do trabalho no futuro.

Palavras-chave: plasmoénica em grafeno; condutividade nao linear; eletroes quentes;

“laser” de plasmoes



Excitation of plasmon-polaritons in graphene via non-linear mixing

of optical waves

Abstract

Several years have passed since surface plasmons-polaritons (SPPs) were excited for the first
time in graphene by a frequency-difference nonlinear (NL) process caused by the interaction of two
optical beams [1, 2|. Theoretical calculations, based on standard perturbation theory predict a much
weaker frequency-difference response than it is required to explain the experimental data. Recent
experimental results, along with theoretical calculations, demonstrate the importance of SPPs in the
relaxation dynamics of non-equilibrium carriers in graphene and point out the possibility of their
amplification in non-equilibrium conditions, e.g. under strong optical pumping. Nonetheless, the
complete mechanism behind their generation by frequency-difference still remains to be explained.
In this thesis, we calculate the relevant NL optical conductivities and show that, indeed, the exper-
imental observations of Ref. [1] must have originated from physical processes beyond the coherent
frequency-difference generation of SPPs described by the density-matrix perturbation theory ap-
proach. We study the dynamics of non-equilibrium carriers in graphene and present our hot electron
model to explain their influence on the SPP generation. This model is used to understand the
interplay between the SPPs and non-equilibrium carriers. We suggest that the experimental results
of Ref. [1] can be understood by considering, in addition to the second-order frequency-difference
process, the amplification of the SPP field via interband relaxation of hot electrons. We propose a
master equation to describe this amplification in the presence of the frequency-difference generation.
Our calculations show that these two processes, occurring simultaneously, can strongly enhance the
rate of resonant generation of surface plasmons by two adjusted optical beams.

Finally, experimental work was carried out to generate SPPs via the theoretically considered
mechanism. The main challenge appeared to be their detection. Several techniques, such as phase
sensitive (lock-in amplifier) and balanced detection, have been explored. The optical setup has
been built, but the laser power still needs to be stabilized, so we have not been successful yet.
Nevertheless, the methods and results presented in the experimental part of this thesis can be an

important benchmark for successes in the future.

Keywords: graphene plasmonics; nonlinear conductivity; hot electrons; plasmon lasing
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Chapter 1

Introduction

Even though scientists theoretically predicted the potential existence of an atomic-monolayer
form of carbon many decades ago 3|, graphene was rediscovered, isolated and investigated in the
beginning of this century and the seminal paper, co-authored by future Nobel Prize Laureates Andre
Geim and Konstantin Novoselov, was published in 2004 [4]. With the Nobel Prize in Physics awarded
in 2010, graphene became probably the most popular material in the world and I heard this word
many times even before starting my university studies. It took me some time to understand all
the excitement around this material and appreciate its really extraordinary properties [5]. I am
particularly interested in graphene’s capacity to support charge density oscillations coupled to an
evanescent electromagnetic field, known as surface plasmon polaritons (SPPs) [6, 7], in the THz-to-
IR spectral range. These composite excitations are interesting for a range of potential applications in
the field of photonics, optoelectronics and energy [8]. Despite the remarkable progress achieved so far,
the field of Graphene Plasmonics still has some serious obstacles to overcome, mainly because SPPs
are characterized by large in-plane wavevectors, beyond the light cone, and consequently cannot
be excited directly by propagating electromagnetic (EM) waves since the conditions for energy and
momentum conservation cannot be fulfilled. Although several methods to excite SPPs do exist,
such as the attenuated total internal reflection (ATR) configuration, for many future applications,
such as plasmonic circuits and THz sources, an all-optical generation of SPPs in graphene is highly
desirable. Theoretical analysis and exploring the experimental feasibility have been the goal of this
Master project. A good description of the fundamental electronic properties of graphene can now
be found in review article |5] and book [7], so let us dive directly into the subject of this thesis.

A part of this thesis is covered in the papers |9, 10].

1.1 Generation of graphene SPPs by two optical beams

About ten years ago [11] it was theoretically proposed to leverage graphene’s NL response and
generate SPPs via a difference-frequency (DF) nonlinear (NL) process, using only two optical beams

with slightly different frequencies. We shall call these beams b and a, with frequencies wp and wy,

10



1.1 Generation of graphene SPPs by two optical beams

-)
[ ) »
\
[SURN  C W

Figure 1.1: Schematics of all-optical generation of surface plasmons via a frequency-difference NL
process of interaction of two optical beams, a and b, represented by their electric fields E, ; and
their incident angles 6, ;. Es, represents the SPP field. q; (j = a,b) are the in-plane momentum
of the incoming beams and q = q; — q,, is the SPP momentum.

respectively. The DF process is expected to lead to the generation of SPPs of frequency w = wp —wq.

In spite of being centrosymmetric, with a second-order optical response that should vanish by
symmetry [12], graphene can still display a nonzero second order optical conductivity if one uses
oblique optical beams with nonzero and unequal in-plane components of the wavevector, thus effec-
tively breaking graphene’s symmetry. This idea was experimentally implemented by Constant et al.
[1] and investigated further in a subsequent article [13]'. These experiments used graphene on top
of SiO2 (quartz) and two 100 fs p-polarized laser pulses, a pump (pulse b), and a probe (pulse a),
to excite SPPs, as shown in Fig. 1.1. They fixed the probe wavelength at A\, = 615 nm, while the
pump wavelength, A\, was varied between 615 and 545 nm. By recording the differential reflectivity
of the probe, under the condition of energy and in-plane momentum matching for SPPs, they ob-
served a resonance associated with SPP generation (see Figs. 1.2 and 1.3) with the frequency and

momentum:
W = Wp — Wq q=q, — 49, , (11)

where w; = 2m¢/Aj and ¢; = (wj/c)sinf;e, are the in-plane momentum of the pulses.
The differential reflectivity is defined as:

AR R- Ry
_ 1.2
R®, R®, (1.2)

where R is the reflectance of the probe when the pump is present, Ry is the reflectance in the absence

! All-optical generation of SPPs was also reported in another publication [2]. However, this article does not contain
sufficient details and is not clear enough, in my view. Therefore, it will not be discussed further in this thesis.

11
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0 5 10 15 20 2 0 2
q (um1) Delay time (ps)

Figure 1.2: Experimental results from Constant et al. [1], taken from figure 2 of the article.
For this case, the incident angles were 6, = —35° and 6, = 75°. Left: SPP dispersion relation
(black lines), for a damping rate 7, ~ 27 x 1.6 ps~! and an effective Fermi level of 500 meV, and
DF scan (qp — qq,wp — wy) as performed in the experiment (blue line). Optical phonons of the
substrate are represented by the red dashed lines. Right: Measured differential reflectivity as a
function of the time delay between probe and pump. The black curve shows a typical non-resonant
measurement when the difference frequency between pump and probe (61.2 THz) does not match
with a surface plasmon state. The red curve shows an additional symmetric contribution to the
recorded reflection signal when the difference frequency matches the frequency of a SPP (23.8
THz), highlighted in the left figure by the red circle.

of the pump and ®;, is the pump’s fluence. The graphene sample used in their experiments was n-
doped, with a natural Fermi level of 300 meV. They weakly focused the beams on graphene, with a
spot size of approximately 300 pm in radius. The pump pulse fluence used was &, ~ 0.1 — 0.2 mJ
cm~? while the probe fluence was two orders of magnitude smaller, ®, ~ 1072®;. They performed

the experiment for three different geometries (different angles of incidence).

The resonance observed in the differential reflectivity was interpreted to be caused by an exchange
of energy between pump and probe due to excitation of the SPP field. In other words, pump and
probe by DF created SPPs, which in their turn, interacted with the pump, also by a DF process, and
generated photons at the frequency of the probe. Consequently, the observed resonance involves an
interaction between three fields, therefore it is a third order process, composed of two intermediate

second order processes.

To model the SPP dispersion, Constant et al. used an effective Fermi level of 500 meV, which
they justified as a consequence of photodoping, expected under illumination by ultrafast pulses [14],

and introduced an effective formula for the second order conductivity:

o (w) =i ’0(2) “ (1.3)

Waq

where ‘0(2)‘ is a fitting parameter. They accounted for the coupling between graphene SPPs and

substrate (quartz) optical phonons according to Ref. [15]. Their main results are summarized in

12
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Figure 1.3: Same as in Fig. 1.2, but with non-resonant and resonant signals plotted separately for
better visualization.

Geometry 6, 6, X\, (nm) v (THz) A& mJcem=2 ‘0(2)’ (fA m V~2)

R®,
1) 45°  35° 607 7.0 -0.0097 24
2) 40°  20° 297 12 -0.025 75
3) -35°  75° o87 23.8 0.062 180

Table 1.1: Main experimental results of Ref. [1] for the three different geometries. v is the DF frequency at
which a SPP resonance was observed. ’0(2)‘ was extracted using the model of Ref. [1]. For all geometries
Ao = 615 nm, &, ~ 0.1 — 0.2 mJ cm™2 and ®, ~ 1072®,. To calculate the SPP dispersion curve, they
assumed a damping rate of v, ~ 27 x 1.6 ps~! and a effective Fermi level of 500 meV. This table was taken
from article [16], where the authors of Ref. [1] further analyzed their results.

Table 1.1.

Even though the relation of the observed resonant peak in the differential reflectance to the
generation of graphene surface plasmons looks doubtless, as we will see in the next Sections, the
results in Table 1.1 deviate a lot from what had been predicted [9]. First, the resonant signal appears
on top of a broader asymmetric band, which is also observed outside of the plasmon resonance.
This asymmetric temporal variation of the differential reflectance was tentatively attributed to hot-
electron effects [13] and it is not well understood. Secondly, theoretical calculations of the second-
order conductivity for the scheme in Fig. 1.1, using perturbation theory [9, 16, 17|, predict a response
orders of magnitude smaller than estimated by the experiment. Thus, one specific objective of this
thesis was to understand the real reason behind the unexpectedly large signal observed by Constant

et al.

13
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1.2 Objectives and structure of the thesis

As mentioned above, the main goal of this Master project was to understand the feasibility
of generation of useful surface plasmons in graphene by combining two optical beams. The work
presented here is divided into two parts. In the first part we study and model theoretically the
experimental observations of Refs. [1, 13|, namely, the origin of both non-resonant and resonant
signals. The second part describes the experimental work done in an attempt to reproduce the
results of Refs. [1, 13| and further study the phenomenon.

The thesis consists of seven chapters and eleven appendices. In the next chapter (Chapter 2),
fundamental (linear) properties of graphene plasmons and surface plasmon-polaritons are presented.
In Chapter 3, the DF nonlinear response of graphene is calculated. The obtained formulae for the
nonlinear conductivity are used to model the differential reflectivity. The results are incompatible
with the observations in Refs. [1, 13]. In search for an answer, the dynamics of non-equilibrium
carriers in graphene is studied and a hot electron model, to describe this carriers, is presented. These
are the subjects of Chapter 4. The fifth chapter deals with SPPs in non-equilibrium graphene and
proposes a new mechanism, SPP lasing, to explain the experimental observations.

Chapter 6 presents the carried out experimental work. The use of an optical parametric amplifier
to control the frequency difference between beams is discussed as well as the best approach to detect
the generation of SPPs. The unsolved technical issues are addressed at the end. Finally, Chapter 7
sums up the study.

1.3 Units

The system of units used in this work was the Gaussian one (CGS). However, the nature of the
problem is better understood and the calculations are more easily performed in non-system units

pm / ps—! / meV. The reason is that in these units the Fermi velocity in graphene is:
vp=1pmps ', (1.4)

To make things easier for the reader, I present here the necessary fundamental constants in such

units. Namely, Plank’s constant and the velocity of light are:
h=0.658 meV ps , c¢=300pumps *. (1.5)

The fine structure constant is: )
e 1
YT e T 137

and this gives us an easy way of determining the electron’s charge e in this units. Finally, as useful

(1.6)

conversion relations, we have
1 W=6.24-10° meV ps* (1.7)

14



1.8 Unats

and:
W em™? = 62.4 meV ps ™ pum 2

As a convention, the Greek letter v is frequency and w the radial frequency:
w =21V ;

v is measured in THz, while w in ps™!.

15
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Chapter 2
Graphene plasmonics

In this chapter, we introduce basic concepts of the electronic, optical, and plasmonic properties
of graphene, which serve as background for the detailed discussions in the following chapters. Details

of the calculations can be found in the Appendix.

2.1 Fundamentals

SPPs are evanescent electromagnetic (EM) waves coupled to the free electron plasma oscillations,
that propagate along the surface of a conductor [6, 7| and decay exponentially away from it. In our
case, the conductor is a graphene sheet placed between two dielectrics, for example air and SiOs.
In graphene, we can distinguish between two types of SPPs [6, 7]: transverse magnetic (TM) SPPs
and transverse electric (TE) ones. We are only interested in the TM-SPPs and will not consider
TE-SPPs!.

To introduce the necessary concepts, consider a graphene sheet between two dielectrics, with
dielectric constants €1 and €3, referring respectively to the top and bottom dielectric, as shown in

Fig. 2.1. For simplicity, assume monochromatic solutions of Maxwell’s equations. For an SPP with

1Since, these excitations are composed of electrons coupled to a EM field, the word polariton should be used when
addressing them. However, since in this thesis, there is no room for confusion, for simplicity I might call SPPs, surface
plasmons or simply plasmons.

Graphene
Medium 2 X

Figure 2.1: Illustration of a single graphene sheet (blue line) between two insulators with dielectric
constants €1 and es.

16



2.1 Fundamentals

a frequency w and a wavevector q = ge,, propagating along the x-direction, its EM field has the

form:
(E2,4,0,E, ;) elaT gik2z g —iwt z2<0

Esp = . ) ot ’
(Er 2,0, E ;) e9%e™Ze™ ™0 2 >0

ngyeiqweimze_w z2<0
Hg, = ' A A . (2.1)
Hleyelq’”e_mlze_’m z>0

Inserting the fields (2.1) into Maxwell’s equations (see Appendix A for details) we obtain for k,, and

field components:

2
w
i = ¢* = —em (2.2)
B, =i(-1)"" LR, .. (2.3)
Rm,

From the boundary conditions including the continuity of the tangential component of the electric
field and discontinuity of the normal component, Ej;., when there is a surface charge present,

assuming linear optical response of graphene, we find the SPP dispersion equation:

D(w,q) = 28y @0(1)(% q)=0. (2.4)

K2 K1 w
Its solution yields the SPP dispersion relation w(q). Here ¢))(w,q) is graphene’s non-local linear
conductivity. The solutions to (2.4) are real or complex, depending on whether the real part of
the conductivity vanishes or not. Since we shall include losses in the conductivity, its real part will
be non-zero, so the solutions will be complex. We can either look for solutions with a complex

wavevector q:
¢(w) = Req(w) + ilmg(w) (2.5)

or with a complex frequency:
w(q) = Rew(q) + iImw(q) (2.6)

The choice depends on the physical situation. If we have a continuous excitation of SPPs, it is better
to consider ¢ complex. On the other hand, if SPPs are excited by pulsed radiation, it is better to
take w complex. We shall use both choices, so it will be specified whenever necessary. An example

of the plasmonic dispersion curve is shown in Fig. 2.2.

At the frequencies of interest (low SPP frequencies), o™ (w, ¢) is well approximated by the local
conductivity o™ (w). There are two contributions to o")(w) coming from intraband and interband
optical transitions:

oW (w) = Tintra(w) + Tinter(W) | (2.7)

where oyt is the Drude contribution, describing intraband transitions, and ojnter denotes the con-
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Figure 2.2: (right) Plasmon dispersion curve w(q) (blue line), calculated using both the Drude
and interband conductivities. In this calculation ¢ was chosen to be complex. The light line is
shown in green and the black line represents the electronic dispersion, below which we have the
Landau Damping region (shaded region). (left) Losses. The calculation parameters were: Fermi
energy Er = 300 meV, ey = 1 and €3 = 2.4, electron momentum relaxation rate v, = 27 x 2.6
ps—!, interband relaxation rate vipter = 0.1 ps™* (added to to avoid bad numerical behavior) and
a temperature T = 300 k.

tribution of interband transitions. For the Drude term (see Appendix B.2) at equilibrium:

ot = 2B (o) (o))

while for the interband term we have:

209 [T 1 1
Tinter(w) = ES /0 de (fule) = fele)) <h%nter — 1 (2e + hw) + RYinter + 1 (26 — hw)) - (29)

Here E'r is graphene’s Fermi energy with respect to the Dirac point, -, is the electron momentum

relaxation rate, Vinter is the interband scattering rate and og = me?/ (2h). For the plasmon frequen-
cies of interest, the Drude term is much bigger than the interband one. Thus unless stated otherwise,

only the Drude term will be used to describe SPPs in graphene.

2.1.1 Hybridization of SPPs with substrate excitations

If graphene is placed on top of a polar substrate, such as SiO», plasmons will couple to optical
phonons of the substrate, leading to new hybrid modes called surface plasmon-phonon polaritons [7]
(for simplicity we also refer to them as SPPs). The coupling between optical phonons and SPPs is
easily introduced by considering a frequency dependent dielectric function for the substrate of the
form [7]:

fngfo,j

go(w) =€ + - , 2.10
() = ex ;w%o’j_wg_wo’j (2.10)
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2.2 Electron-plasmon kinematics

where wrg ; are the phonon frequencies, 710 ; the damping rates, f; the oscillatory weights and e,
high-frequency dielectric constant. This expression works well in THz and the mid-IR regimes.
For SiOg, from Ref. [15], the high-frequency dielectric constant is e, = 2.4 while the optical

phonon frequencies and oscillatory strengths are:
wro = 2 (13.44,23.75,33.84) ps~! (2.11)

and
f=1(0.7514,0.1503,0.6011) , (2.12)

respectively. The damping rates are:

yro = 27 (0.80,1.27,1.27) ps~! . (2.13)

An example of the resulting dispersion relation is plotted in Fig. 1.2.

2.2 Electron-plasmon kinematics

2.2.1 Graphene’s electronic dispersion relation

For small energies, most electronic processes in graphene can be described by approximating the

electronic dispersion relation as linear near the Dirac point [7]:
esk = shupk , (2.14)

with s = —1(+1) for the valence (conduction) band, v = 10° m/s the Fermi velocity and k is
the electron’s wavevector. This approximation is known as the Dirac cone approximation. Equa-
tion (2.14) is symmetric with respect to zero energy and displays particle-hole symmetry. In this

approximation, electrons are well described by an effective Hamiltonian:
H() =Ur0 ‘P, (2.15)

where o = (04,0,) with o; denoting the j-th Pauli Matrix and p the momentum operator. The

eigenstates of Hamiltonian (2.15) are:

Ik, s) = xs(k)|k) , (2.16)
where: B
ctkr 1 e—i@(k’)

k) = 75 xs(k) = ﬂ[ \ ] : (2.17)

Here, S is the graphene’s area and (k) is the angle the electron momentum does with the z-axis.
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a) b) C)

Figure 2.3: Electronic transitions by emission or absorption of a plasmon (SPP), represented
by yellow arrows. The electrons are depicted by the blue circles and holes by the white ones.
a) Intraband transition with absorption of a plasmon, in equilibrium, with Fermi energy Fp.
b) Interband transition forbidden by Pauli blocking. In equilibrium, plasmons with low energy
cannot promote electrons to the conduction band, since the states are already occupied. ¢) Out
of equilibrium, with population inversion, these transitions are no longer Pauli blocked.

2.2.2 Electronic transitions via interaction with plasmons

Since SPPs possess a certain dispersion relation and their EM field can be quantified, they can be
treated as quasiparticles. In the subsequent Sections, it will be important to understand the role of

plasmons in electronic transitions, so here we study the kinematics of electron-plasmon interactions.

An electron can be scattered by a plasmon and either jump to a state in the same band (intraband
transition) or to the other band (interband transition), with creation or destruction of an electron-
hole pair. Let us consider first the case of intraband transition, shown in Fig. 2.3 a). If the electron
is scattered from a state |k;, s) to a state |k, s) by absorption of a plasmon with energy-momentum

“coordinates” (q,wq), energy and momentum conservation conditions read:

£k — €k; = hwq
k—kl‘:q

(2.18)

By choosing a reference frame such that q = ge;, we find that the possible electron momenta, which

are solutions to system (2.18), lie in the hyperbola:

(k:t — Q/2)2 - kig

_ 1.2
- =k (2.19)
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2.2 Electron-plasmon kinematics

with the parameters:

w 1 1 jw
a= d , b=— k0:2\/v: q% — w2 /vE . (2.20)

/ 2 a
vpy /@ — Wi /g

From these relations, we easily conclude that we can only have intraband transitions when vpq > wq.

This was already expected since it is at wq = vFg that the SPP dispersion intercepts the Dirac cone.
The region vpq > wq of the spectrum is known as the Landau damping region. In this region
plasmons are short lived since they can easily be absorbed or emitted by electrons and holes.
For interband transitions, the conservation laws imply that possible k vector’s ending points lie
in the ellipse: ) ,
(ks — /2 ;3/2) + lZg — K2, (2.21)

with the parameters:

1 1
a= “a b=~ k:o:\/%l W2 /vd — 2 . (2.22)

)
2 /)2 2 a 2\ vp
vE\JWA/VE — ¢

These transitions are only possible when wq < vpg. In doped graphene at equilibrium (for example,
with Fr = 300 meV), these transitions are usually ignored since they are forbidden by Pauli blocking:
only for hwgq > 2EF — hvpq can plasmons promote an electron from the valence to the conduction
band (see Fig. 2.3 b)). Since in most situations only plasmons with low energy are considered, this
kind of interaction is usually discarded. However, in graphene under non-equilibrium conditions (e.g.
under strong optical pumping), where inversion of population is possible, this is not necessarily true
(see Fig. 2.3 ¢)). In this situation, as we shall see, plasmons play an important role in electron-hole

recombination and vice-versa.
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Chapter 3

Nonlinear generation of SPPs in

graphene

Graphene was predicted and demonstrated to have a strong third-order nonlinearity (the Kerr
effect) in the THz-to-IR spectral range [18], with a number of potentially interesting effects following
from this, such as the third and also higher-order harmonics generation, saturable absorption, etc.
Moreover, as mentioned in the Introduction (Chapter 1), graphene can also have a non-zero second
order response if its inversion symmetry is broken, for example by oblique incidence of exciting
optical beams (as in Fig. 1.1) or by a deformation of the graphene sheet. Indeed, second-harmonic
generation signals were observed for suspended graphene, caused by curvature fluctuations over the
graphene sheet [19].

In this chapter, we show how SPPs can be generated by a non-linear DF-process and calculate
graphene’s second order optical conductivity. Using the derived formula, we will try explaining the

results obtained in the experiments by Constant et al. [1].

3.1 DPF-field enhancement at the plasmon resonance

We start by showing how SPPs can be generated by the non-linear DF process, at a frequency
W = wp — Wg, using two beams, b and a, under oblique incidence, as is shown in Fig. 1.1. For

simplicity, we shall consider the optical beams as monochromatic plane waves of the form:

E; (r,t) = = (Ej., 0, E; ) ei%etkizze™t 4 ¢ o (3.1)

with ¢; denoting the beams in-plane momentum, q; = (w;/c)sinf;e,, and k; . the z-component of
the wavevector.

The relation between the generated SPP field and the impinging fields is obtained from boundary

conditions. For a graphene sheet placed between two dielectrics, €1 (medium 1) and e (medium 2),
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3.1 DF-field enhancement at the plasmon resonance

as in Fig. 2.1 and for a SPP field of the form (2.1), the boundary conditions (A.5) and (A.7) dictate:

1By, —eakn, = 4mps

El,x - EQ,x =0

, (3.2)

where ps is graphene’s charge density. Using relations (2.2) and (2.3), we find that the SPP field

component Es , obeys the equation:

€ € ; , 471
(2 + 1) By ze' e = —lps . (3.3)
K2 K1 q
Since we expect the surface charge density to respond periodically (in time and space) we can expand
it in a Fourier series:
pe =Y plwy, q)etB™ it . (3.4)
J

Also, from the continuity equation we can relate its Fourier components to the Fourier components

of the surface current j,:

4 .
p(wj, q;) = wfjjx(waaqa') : (3.5)

J

Therefore, using Eq. (3.5) and the orthogonality between functions e*(%%~«t) Eq. (3.3) yields:

g9 €1 4y

—_ . 3.6
o wEng(w,Q) (3.6)

The surface current can be expanded to the second order:

ju(w,q) = oW (w) By + P (w,q) (3.7)

where (1) is the graphene’s linear conductivity in the local limit. Expression (3.6) yields:

By, i w.q)

7 " Dlwq) ’ (3.8)

with D(w, q) representing the SPP dispersion relation (2.4). At the plasmon resonance (with losses

included), ReD(w, q) = 0 and consequently an enhancement of the field is observed.
The non-linear current, jéz) (w, q) is due to the DF interaction between the two incoming optical

fields, E, and E, in Eq. (3.1). We express this current as:
(0 o) = Lo -
Jz (wa (:7) — iawzz (Qv Qba _Qa) Eb,a:E (39)

a,x

with ag(c%v)x (2, 2, Q,) denoting the second order conductivity for DF mixing. The notation Q

means Q = (W = wp — Wa, ¢ = @b — ¢a), While 2; = (wj,¢;). When (w, ¢) matches a plasmon mode,
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III Nonlinear generation of SPPs in graphene

ReD(w,q) = 0 and SPPs are generated. On the other hand, if w;, and w, and the corresponding
in-plane momentum, do not match a plasmon mode, the field is strongly suppressed and no SPP

generation takes place.

3.2 Optical response in graphene

As shown by Egs. (3.8) and (3.9), the SPP field depends on graphene’s optical conductivity.
The calculation of this response can be quite tricky [20-22]. In the long wavelength limit ¢ — 0,
in which the spatial dependence of the radiation electric field is neglected, the calculation using
the density-matrix perturbation theory can be done either in the length gauge with the interaction

described in the dipole approximation:

H(t) = Ho(r,p) +er-E(t), (3.10)
or in the velocity gauge with the interaction introduced via the so called minimal coupling;:

H(t) = Hp(r,p+eA(t)) , (3.11)

where H is the unperturbed Hamiltonian of the electronic system, —e is the electron’s charge, A(t) is
the vector potential of the EM field and E(¢) the corresponding electric field. These two descriptions,
in principle, are equivalent [21, 22|, but may have different advantages. The advantage of the
velocity gauge is that the perturbation preserves the crystal’s translational symmetry. However, the
calculation using this gauge is plagued by unphysical contributions, diverging at low frequencies.
On the other side, the length gauge is written in terms of the electric field, which is a gauge invariant
entity. Nonetheless, since it contains the position operator r, the perturbation is no longer diagonal
in Bloch momentum space and couples different k values.

There is another big difference between these two gauges. In our case, we do not want to use
the full unperturbed Hamiltonian, but rather an effective Hamiltonian that describes the electronic
dynamics near the Dirac point, the so called Dirac cone approximation. In this approximation, in
which bands are truncated, the two gauges no longer yield the same results [21|. In fact, while in
the length gauge, the calculation converges, in the velocity one, it diverges.

Hence, it seems best to calculate the optical response of graphene in the length gauge. This is
true for the linear response, as is done Appendix B.2, but for the second order response, other issues
appear. In a centrosymmetric material, such as graphene, the second-order nonlinear response in
the electric dipole approximation is suppressed. As it is written, the symmetry breaking mecha-
nism is not present in the length gauge. One could circumvent this problem by going beyond the
electric dipole approximation [17| and effectively taking into account effects of spatial dispersion.
Nevertheless, the choice made in this work was to use Eq. (3.11), i.e. the velocity gauge.

The calculation of the DF second order conductivity, ¢, in graphene, in the velocity gauge
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3.2 Optical response in graphene

was done in Refs. [9, 11, 16]. In Ref. [11] they obtained an unphysical response that diverged with
q— 0:

c@(w,q) x ! . (3.12)

q

This cannot be since graphene is centrosymmetric and one expects the second order conductivity
to go to zero, o = 0, in the local limit ¢ — 0. In Ref. [16], to avoid the divergence associated
with the velocity gauge, they went beyond the Dirac cone approximation and considered higher
order terms in the electron momentum to describe the conduction and valence bands. This way,
they avoided any divergence, since divergent terms canceled each other out, and obtained a physical
expression for the second order conductivity, ¢ o ¢, that vanished in the long wavelength limit,
as it should. However, as will be shown below, this sophisticated approach is not necessary for the
second order response, even in the velocity gauge, and one can perform the calculation in the Dirac

cone approximation, as it was done in Ref. [9].
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III Nonlinear generation of SPPs in graphene

3.3 DF second-order conductivity

In this Section, we present the calculation of the second-order nonlinear conductivity of graphene.
This calculation requires taking into account non-local effects, otherwise, the second-order response
vanishes. Once again we consider the situation shown Fig. 1.1, with two beams falling onto graphene

at different angles.

We shall work within the Dirac cone approximation and use the density matrix formalism to
calculate the second-order nonlinear conductivity. In the velocity gauge, the Hamiltonian of the

electrons coupled to the electromagnetic field is:

A

H =vpo - (p n EA(t, r)) : (3.13)

1
where A (r,t) is the vector potential (the electric field is E = —— (0A/0t)). Using density-matrix
c
perturbation theory [12] with the second term in Eq. (3.13) as perturbation (detailed calculations
in Appendix B.1), we find a general expression for the 2nd order conductivity (Appendix B.3 for
details):

3 vk

o vy Em) — J(€
O_sz (Q,QP7Q ) h2 € Z mn (q+P) lmp nlvq f( m) f( l) :
WqwpS —~ Wiy — Wp — WYim  Wam — (Wp + Wq) — 1Ynm
k
+ e? Umn,—(q+p)vnl,pvlm,q f(Em) - f(ffl)
h2wywp,S S Wim — Wy — i’ylm Wnm — (Wp + wWq) — ©Ynm
k
e’ Z Vi, —(a4+p) Unl.pVlm.q fler) — f(en)
h2wqu —~ Wy — wp il Wnm — (Wp + Wq) — 1Ynm
k i
h2wqw,S Wni — Wq — Yl Wam — (Wp + Wq) — 1Ynm

nml

where Q, = (wp, p), Q = (wq, q) and Q = (wp + wy, q + p), with w, and w, denoting the frequencies
of the fields and p and q the respective in-plane wavevectors. The sums are over different states
near the Dirac point and

vl o= (m|vie™n) (3.15)

mn,q

are the matrix elements of the spatially modulated velocity components. Here wy,, = (€1, — €1) /B
is the energy difference between states |m) and |n) and f(e,) is the occupation number of state |n),
at equilibrium described by the Fermi—Dirac function. Finally, v, are phenomenological damping

parameters for transitions between |n) and |m).

Equation (3.14) is a general expression for the second-order response and it includes DF gen-
eration and other processes such as sum frequency generation. The relevant transitions are shown

in Fig. 3.1, forming two channels for DF generation of plasmons [11]: channel 1 with transitions
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3.8 DF second-order conductivity

/13)

13"
photon b
AVAVAs

1)

1)
i

Figure 3.1: (Left) Transitions and states considered in the calculation of the conductivity for
DF generation at frequency w and w,: Channel 1 (right) and Channel 2 (left). (Right) For the
process of generation of pump photons (wp), the arrows are inverted.

m, | sp

between the states:
‘1> = ’ - 17k1> ) ‘2> = |17k2> 3 |3> = ’17k3> ) (316)

and the intraband transition in the conduction band, and channel 2 involving the states
1) =|-Lky) , [2)=]-1ky) , [3)=[Lks), (3.17)

with the intraband transition in the valence band.

For the case of DF generation of the field oscillating with the frequency w = wp — w, and
momentum q = q,—dq,, we have Q = (w,q) and Qg = (wa,bv Qa,b)~ The only relevant component of
the conductivity tensor, for the experimental arrangement of Fig. 1.1 is the one with i =j =k = x,

so the general expression (3.14) takes the form:

o2 (00— 2) — 3 Batia g, ( fe) —fles)  fled) = fle) >
R G R 5 W2 —w —i32 w3l —Wp — Y31 W12 T Wa — 1712

e3

+ h2wpweS

Uf’Q’,fqvg’l’,qbvg’?)’ﬁqa fles) — flex) - fler) — fley)
o w2 —w =iy Wz +wa — iy Wy —wp — iz )

(3.18)

where we retained only resonant terms. Evaluation of the matrix elements of the modulated velocity
operator (3.15) can be done in different ways, the most straightforward is considering the velocity
operator v = vpo (see Appendix B.3 for details). In principle, in the velocity gauge one has to
calculate them with the full Hamiltonian including the interaction [21, 22]. However, in our case,

the interaction operator commutes with ™9 and we can use the unperturbed Hamiltonian (without
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III Nonlinear generation of SPPs in graphene

A). The matrix elements contain Kronecker é-s that cancel out two summations in Eq. (3.18) and

yield the conservation of momentum q = q; — q,,.

To compute Eq. (3.18), we expand the matrix elements vi,mm the energy differences, wy,,, and
the Fermi-Dirac distributions to the first order in the wavevectors q; and q. For example, for a
state [n) = |1,k’) with k' =k + q,

f(en) = fe(ew) = fe(ex) + Oz fe (k) q; - Viék - (3.19)

We denote by f.(¢) the distribution function for the electrons in the conduction band and by
fu(€) = fe(—e¢) the distribution for electrons in the valence band. Additionally, for simplicity, we set
equal all phenomenological damping constants, ¥,,, = . With these approximations, considering
both channels, the zero-th order terms in momentum cancel out, and the lowest order term in the
conductivity is proportional to ¢, thus yielding a finite result. At zero temperature, the following

analytical expression is obtained:

302 E 2wp —w
@) (€, — Q) ~ Sq.qy—q. Lt P A 3.20
Ogaw ( y S &b, a) q,9,—4, h3wbwa7r2 (QWF _ wa)2 i ,_)/Qq (OJ, q, 7) ) ( )
where wp = Er/h is the Fermi frequency and
Alw,q,7) = mlw + i) (vrq)? + 2(w +iy)? |4 /1 — vrg )’ -1 (3.21)
o (vrg)? " w + iy '
is an auxiliary function, which is independent of ¢ in the limit ¢ — 0:
lim A(w, g,7) = — & — (3.22)
im A(w =—— . .
q—0 & 4w+ iy

Figure 3.2 shows the behavior of the real and imaginary parts of Jg@z (2, 2, —€2,) as functions
of w and ¢, for two values of the Fermi energy. The results obtained by the analytical formula (3.20)
are confirmed by direct numerical evaluation of Eq. (3.18). In the left panel, for a fixed value of
q, the real part of the conductivity peaks at w ~ vpq. An important feature of Eq. (3.20) for the
second-order conductivity aé?x (2, Qp, —Q,) is that it goes to zero as ¢ — 0, as it should for a
centrosymmetric material. This physically meaningful feature was lacking in the results of Ref. [11].
The reason for this probably is the problem with intraband matrix elements for the r operator, first
pointed out by Blount [20]. The analytical formula derived in Ref. [16], although showing the correct
limiting behavior for ¢ — 0, is somewhat different from ours and requires more work. It is important
to emphasize that the points in Fig. 3.2 represent the results of direct numerical evaluation of Eq.
(3.18), performed without approximations such as expansions in terms of wavevectors, so these

spectra must be correct within the model and approach used.

According to Eq. (3.8), it is the imaginary part of the conductivity that is important to describe
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3.8 DF second-order conductivity
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Figure 3.2: Real and imaginary parts of o2, (2, Qyp, —,) plotted vs w (left) and ¢ (right). The
solid and dashed lines were calculated using expression (3.20) with Fermi levels Er = 300 and 500
meV, respectively. The triangles and squares are numerical calculations of expression (3.18). In
the right panel, 9; was fixed at 40°, while in the left plot, w was fixed at 94ps—!. In both cases

wa = 3065ps~!, v = 10.6 meV and 6! = 20°.

Imo'2, (Q,ﬂb,—na)‘ ~ 3esu ~ 0.1 fAm V2

the SPP generation process, so from Fig. 3.2,

for w = 50 ps~!. Even though it is larger than the value calculated in Ref. [16], it is below the

experimentally estimated value in Table 1.1 by some 3 orders of magnitude.

Similar calculations can be carried out for the conductivities oscillating with the frequencies
w, and wyp, representing the DF generation of photons a and sum frequency generation of photons
b, respectively. Diagrammatically, the generation of photons b is the same as for SPP generation,

but with the arrows inverted, Fig. 3.1 (right). Analytical expressions, obtained with the same

approximations as Eq. (3.20), are:

3 2E
et a Alw,q.7) , (3.23)

(2) (€. 9Q,. Q) ~ —6
Oain (S, Ra, ) WU~ 13, o2 Yo — wy — i

Txrxr

eSv2Ep q
U:m:x (Qa; va _Q) ~ 5q,qb7qa hgwfw,nQ 2WF — W, — Z’}/A(w’ Q7 _7) . (324)
a

We notice that in limit v — 0,

1 1 1
7|0'a:a:a: (Qaa va _Q) ’ = ;‘U;Sgi)m (Qba Qaa Q) ’ = a|0'a:a::r: (97 va _Qa) ’ s (325)
a b
that is our expressions exhibit the symmetry expected in lossless media.
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III Nonlinear generation of SPPs in graphene

3.4 Reflection coefficients of the optical beams

The reflection coeflicients of the optical beams are affected by the the SPP generation and this is
how the latter was detected in Ref. [1|. Here we present the reflection and transmission coefficients
and calculate them using the results of the previous Section. The model presented in this Section is

similar to the one used by Constant et al. [1]. There are two differences:

1. We will not take into account the coupling between SPPs and optical phonons. This only
affects the position of the resonance, not its order of magnitude. So, for the time being, we

confine ourselves by this simpler approach;

2. We shall use expressions (3.20), (3.23) and (3.24) for the nonlinear conductivity, not the model
(1.3), introduced by Constant et al. [1];

We consider a situation similar to the experiment, with graphene cladded by two dielectrics with
dielectric constants €1 = 1 and €3 = 2.4 and two p-polarized optical waves impinging on it (see Fig.

3.3). The reflection and transmission coefficients, r; and t;, respectively, are defined as usual:
Rl T /I

with j = a,b. EJI is the incident field and EJR(T) is the reflected (transmitted) field. The calculation
is carried out in a standard way [23|. Graphene’s current must include a NL term, such as in Eq.

(3.7), so, for fields a and b, the nonlinear currents are:

. 1 .
.7532) (ww Qa) = 2 :S:x)x (Qa, O, Q) Eb,ﬂc(z = O)ESP,ZL‘(Z - 0) (3'27)
and: .
32 (wpy q) = 5 o2, (%, Do, Q) Eqr(z = 0)Espo(z =0) , (3.28)

respectively, with Egp the SPP field generated by DF mixing, as given in Eq. (3.8) and described
in Section 3.1. To put it in another way, we are describing the differential reflectivity, recorded in
the experiment, as as a measure of exchange of energy between beams b and a, that is mediated by

the plasmon field.

From the boundary conditions, the transmission coefficients are (see Appendix C for details):

2 (R, Dy, — Q) 057 (2,2, —Q,) | EY|? cos? 67
ta = () 1 —2t |tb |2 % 722 ({la, ) Ozzs (€1, £, a) |Ep[” cos” 6, cosag , (3.29)
VErewD*(w, q)
(2) (2) 112 o2 9T
22z (25, Qq, Q, 0, —Q,) | B, b
th =t () 1—1—2t |t(0)|2 2; o :cac( b )U:c;rz( b )’ ‘ cos” ¢ COS@Z? ’ (3'30)
VerewD(w, q)
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Figure 3.3: Scheme of p-polarized waves propagating from medium 1 to medium 2, with graphene
at the interface z = 0. The incident angle for wave j is 9]1 , while the transmitted is HjT. ij- and
ij are the incident and transmitted wavevectors.

(0)

where t; denotes the transmission coefficient in the absence of the second pulse,
L0) _ 2(51//€le)sec OJT cos HJI» (3.31)
J 4 ’ ’
(€1/KL) + (e2/KE) + T ot(y)
J
k:jIéT) is the z-component of the incident (transmitted) wave and D(w,q) is the SPP dispersion

relation (2.4). The corresponding reflection coefficients are given by:
- I Ty -
rj =1 —sect; cos0;t; (j =a,b), (3.32)

with GJI- and QJ-T the incidence and transmission angles.

Notice that at the SPP resonance condition ReD(w, ¢) = 0, and the reflection is enhanced. From
Egs. (3.29) and (3.30), we see that the transfer of energy between the two optical fields is resonant
under the condition of DF phase matching between the incident beams and the SPP frequency and
momentum. This process, in spite of being due to the second-order response of graphene, is in fact
of the third order in optical fields.

Figure 3.4 presents the spectral variation of the differences in the reflectance, AR = R — Ry,
transmittance, AT = T — Tj, and absorbance, AA = A — Ay (the quantities with the subscript
0 correspond to the absence of beam b), for the situation presented in Supplementary Material of
Ref. [1] where 8 = 20° and 6] = 40°. All these spectra show the SPP resonance at wsp = 80 ps~ 1.
The reflectance of the probe beam in Fig. 3.4 shows a dip at resonance, but it could be a peak
if 8 were larger than the Brewster angle (situation corresponding to Fig. 2 of Ref. [1]) because

AR, ~ (réO)ArZ + r((LO)*Ara), rgo) is nearly real and changes its sign at the Brewster angle, while
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—— Probe
—— Pump

50 100 150 50 100 150
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Figure 3.4: Differential reflectance (left, solid lines), transmittance (left, dashed lines) and ab-
sorbance (right) of the pump (blue curves) and probe (green curves) beams as functions of w.
Here the Fermi energy Er = 500 meV, 61 = 20° and 0] = 40°, while other parameters are the

same as in Fig. 3.2. The plasmon resonance is observed at approximately wsp = 80ps~—!. We

assumed the same intensities for both optical beams, I, = I = 10'%erg cm™2s!, in order to

facilitate the comparison.

its variation owing to the NL effect, Ar,, does not. The chosen value of the intensity of the pump,
I, = 100 erg cm 257!, approximately corresponds to the fluence of 0.1 mJ/cm? and pulse duration
of 0.1 ps, mentioned in Ref. [1]. From figures S1 of Supplementary Material of Ref. [1| we can find
the depth of the resonant minimum of AR/Ry ~ 1.6 - 1073, while our calculations predict a value of
the order of 10710 at the SP resonance. Since AR is quadratic in the second-order conductivity, our
calculated result for it is lower than the value extracted from the experiment in Ref. [1| by roughly

3 orders of magnitude, as already mentioned before in Section 3.3.

3.4.1 How to detect the optically generated SPPs?

As pointed out in the previous Section, the differential reflectance method [1, 13| relies on a
process that is of the third order with respect to the optical fields. Considering the optical beams
as plane waves, it seems that the variation of the reflection coefficients of these beams is small and
consequently hard to detect, unless very high intensities of the pump beam are used. Then other
(non-electronic) types of nonlinearity can arise, for instance, due to photothermal effects [16], which
is less interesting from the point of view of applications. Thus, it might be preferable to try to detect
the optically generated surface plasmons using another route. Time-resolved THz spectroscopy is a
powerful technique in the spectral range relevant to graphene SPPs [24] and it could help detecting
the flux of plasmons escaping from the optical spots where they were generated. Below we shall
evaluate this flux.

Let us assume for simplicity that the optical beams are focused by cylindrical lenses, so that the

system is uniform along the y-direction. As a first approximation, we neglect the uncertainty of the
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in-plane components of the wave vectors q, and q, as if they were plane waves. In this situation,
the energy flux in the z-direction associated with the generated SPPs, per unit length along v, is

(see Appendix D for details):

. w Em 2 _9
J=a75= D 5 1Bmalw,q)l’ <[Dw,q)[ 7. (3.33)

m=1,2 M
At the plasmon resonance, the evanescent field is strongly enhanced and the energy flux increases.
Since SPPs are dissipative because of the Ohmic losses, we can neglect the inverse process of
optical photon generation with the propagation of SPPs. Thus, the flux, Eq. (3.33), is responsible

T, 7 (per

unit length along y) and if both reflected and transmitted beams a and b are measured, it should

for the removal of energy from the optical beams. If the incident energy fluxes are

be possible to detect a variation of the total energy of both optical beams since, at the plasmon

resonance, it should be diminished by J because of the energy conservation,
IO 4 gt = (J(ER) + I+ T g L, ¢ £b> 7, (3.34)

where L stands for losses associated with the transmission and reflection of the optical beams
at graphene-covered surface, which are related to Re 0(1)(wa,b) and, therefore, can be evaluated.
Detection of a positive difference between the left-hand side and the parenthesis in the right-hand
side of Eq. (3.34) will indicate the SPP generation, J > 0. Another possibility is to try to detect the
SPP flux by converting it into propagating THz light, as it was done in the first demonstrations of
graphene surface plasmons [25, 26]. The advantage in this approach, is that the variation is a second-
order process with respect to the optical fields, consequently, it should require lower intensities of

the optical beams.

3.5 Concluding remarks

It is clear that the calculated value of the second-order conductivity of optically pumped graphene
is too low (by approximately 3 orders of magnitude) to explain the experimental results of Ref. [1].
This should be expected since, in the spectral range of interest, the electronic transition for SPP
emission, shown in Fig. 3.1, has a very low probability to happen, because intraband transitions
via SPP emission/absorption are only phase matched for plasmons with large momenta (see Section
2.2). Thus, there must be an important effect we did not include in the model or the perturbative
approach is not valid because of the high intensity of the pump pulse.

The answer seems to lie in the incoherent part of measured differential reflectance, non-resonant
curve in Fig. 1.2. This signal is probably due to out-of-equilibrium electrons. In a recent work
[27], it was observed that this hot electrons play a crucial role in the efficiency of terahertz high-
harmonic generations. Therefore, it may be that the presence of the incoherent part in the measured

differential reflectance signal cannot be ignored. In fact, theoretical works [28, 29] suggest that out-of-
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III Nonlinear generation of SPPs in graphene

equilibrium graphene has the necessary conditions for plasmon amplification and this could account
for the huge signal experimentally observed.

So, we have to find out how these hot electrons behave and how they can participate in the
generation of SPPs. Unfortunately, in the presence of hot electrons, the use of a perturbative
approach to describe the electronic nonlinearities and the nonlinear optical coupling to plasmons is
no longer valid in graphene [30]. An alternative could be the use of a hot-electron model to describe
the non-equilibrium electrons generated with strong, ultrafast light pulses. In the next two chapters,

we explore these ideas.
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Chapter 4
Hot carriers in graphene

As discussed in the previous Section, the signal observed by Constant et al. [1| cannot be
explained in terms of the standard perturbation theory. Although the idea that the observed signal
was due to generation of SPPs by the DF process is not ruled out, the observed resonance is too strong
to be attributed to a non-linear process alone. A clue to this enigma, I believe, lies in the asymmetric
line shape of the background signal in Fig. 1.2, measured when pump and probe are out of resonance.
This signal probably comes from the relaxation dynamics of the out-of-equilibrium electrons |31, 32]
excited by pump. At high pump intensity, the shape of the Dirac cone promotes the formation of
an inverted population state [33] between holes and electrons. It has been proposed [29, 34| and
experimentally shown [35] that graphene SPPs play a role in the dynamics of these hot carriers and
vice-versa. In particular, theoretical calculations suggest that the SPP field can experience gain
via stimulated plasmon emission in photoinverted graphene via electron-hole recombination [29, 36].
In order to understand how plasmons can experience gain, we must first understand the dynamics
of hot carriers in graphene. Thus, the subject of this chapter is the study of the dynamics of hot
carriers in graphene.

We organize the chapter as follows: in Section 4.1 the dynamics of hot carriers in graphene is
discussed, with its several stages and relaxation channels that have been observed. In Section 4.2,
we introduce a model based on microscopic rate equations that describes this dynamics. Finally,

our calculated results are compared with experiment, in Section 4.3.

4.1 Carrier dynamics in graphene upon ultrafast optical excitation

We start by discussing the ultrafast dynamics of non-equilibrium electrons in graphene [37],
when hot carriers are excited optically with an ultrafast laser pulse, usually a femtosecond pulse.
We focus on interband excitation, when the incident pump photon energy hAwy is high enough to
promote electrons to the conduction band, that is, when Aw, > 2EF, with Er being the Fermi level.

When an ultrafast laser pulse impinges on graphene, electrons from the valence band are excited

to the conduction band. Two populations of non-thermalized particles are created: the excited
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1V Hot carriers in graphene

electrons in the conduction band and the respective holes in the valence band. These non-thermalized
carriers may block the promotion of new electrons to the conduction band. Also, they evolve to
different thermal distributions, with their own temperature. Such electrons and holes, which are
in equilibrium between themselves but not with the crystal lattice are called "hot". The true
equilibrium of such hot carriers is eventually achieved.

The dynamics of these hot carriers in graphene is nowadays understood to occur via several
stages and decay channels [37] (see Fig. 4.1). In the first stage, the promptly excited carriers
with a non-Fermi-like distribution primarily undergo carrier-carrier scattering on a 10-fs time scale
[38, 39] and two population of hot carriers, one of electrons and another of holes, are formed. These
populations can be described as Fermi-like distributions, with different chemical potentials but an
equal temperature, different from that of the lattice [30]. For longer timescales, the relaxation of
hot carriers towards their equilibrium state is accomplished via several stages and decay channels,
such as optical phonon emission [31], Auger recombination and hot plasmon emission [34, 35, 40],
on a timescale of hundreds of femtoseconds, as well as direct and disorder-assisted acoustic phonon
emission on picoseconds scale. Thermalization with the lattice is achieved before the electrons and
holes have reached equilibrium between themselves (i.e, the electrons and holes quasi-Fermi levels
become equal, F, = Fj, = EFr). Re-establishing the equilibrium concentrations of electrons and holes

is the slowest process in graphene.
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4.1 Carrier dynamics in graphene upon ultrafast optical excitation

a) b) c)

_——?
_——?

Figure 4.1: Carrier relaxation processes in graphene under ultrafast optical excitation. a) Initially
graphene is in equilibrium. When the pump arrives (blue arrow) two populations of electrons and
holes are created. These electrons and holes have non-Fermi-like distributions. b) Electrons and
holes undergo carrier-carrier scattering on the 10-fs scale. Through this channel two Fermi-like
distributions are formed, one for electrons and another for holes, with different chemical potentials
but equal temperatures. c), d) and e) show the different channels in 100-fs time scale through
which electrons and holes recombine and thermalize. ¢) Auger recombination. d) Electron-hole
recombination and carrier relaxation via optical phonon emission. e) Electron-hole recombination
via plasmon emission. f) Further cooling is assisted by acoustic phonon emission.
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1V Hot carriers in graphene

4.2 Hot electron model

In this Section, we present our hot carriers model in order to explain the dynamics of the elec-
tronic response of optically excited graphene. The goal is, given some parameters to phenomeno-
logically account for the decay channels, to determine the transient temperature and quasi Fermi
levels of the hot carriers as well as the time evolution of the distribution functions and graphene’s
conductivity.

Consider a pump beam, with photons of the energy fwy, that creates a non-thermalized popula-
tion of electrons (holes) in the conduction (valence) band. We divide the dynamics of the hot carriers
into two stages. The first one encompasses the first few tens of fs with carrier-carrier collisions, which
is faster than the pump duration (7, ~ 100 fs) and drives the system towards a quasi-equilibrium
distribution, where the charge carriers will have a very high temperature compared to that of the
lattice. The second stage is of the 100-fs scale and occurs when the relaxation of carrier energy
and electron-hole recombination take place. To model these processes we introduce 4 adjustable

parameters:
1. electron-electron (as well as hole-hole and electron-hole) scattering time Tee;

2. energy intraband relaxation time 7. due to the electron scattering by lattice imperfections

(phonons, impurities, etc.);
3. momentum relaxation rate ,, also due to the electron scattering by lattice imperfections;

4. interband recombination time 7, determined by Auger recombination or by phonon or plasmon

emission.

This parameters should satisfy the relation [30]:
Tee L Tp L Te L Tp (4.1)

- -1
where 7, = 277y, .

4.2.1 Non-thermalized carriers

We start by writing down equations that describe the populations of non-thermalized electrons
nyt and holes ppe. Upon excitation, given the symmetry of their spectra (within the Dirac cone
approximation) and the assumption that nne,pne > no,po (which are the equilibrium concentra-
tions), both electrons and holes evolve in the same way, so the non-thermalized populations should

be equal:
Pt (t) = nng(t) - (4.2)

Due to the carrier-carrier scattering, two populations of thermalized (i.e. having reached equilibrium

among them but not with the rest of the world) carriers are created. We denote the 2D concentration
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4.2 Hot electron model

of the thermalized electrons by ng(t) and the thermalized holes by p¢(t). The total concentrations
of electrons and holes are:
n(t) = nu(t) + ne(t) (4.3)

p(t) = pui(t) + pi(t) - (4.4)

The balance equations that govern the depletion of carriers from the non-thermalized to the ther-

malized population are:

. . Aabs(t) nnt(t)
nt = nt — I t — y 45
Pnt = Tint heoy b( ) Too ( )
where
max 2t2
Ib(t) = 1y exp ——3 (46)
Ty

is the pump intensity and A,ps(t) is the absorbance of graphene. The first term in Eq. (4.5) corre-

sponds to the generation of non-thermalized carriers and the second term to their thermalization.
We determine A,ps(t) using the Fermi’s Golden rule. The transition rate is [7]:
~ 2w (ev r)? E?

3 1 F Sin2 09 (2hvpk‘ - hwb) {[1 - gh(—gk)] [1 - ge(Ek)] - gh(—ek)ge(sk)} , (4.7)
b

I'(k)

where g. and gj, are the non-thermalized distribution functions for electrons and holes, respectively.

Then, the transition rate per unit area is:

3| [ SN RN S B

Therefore, the power per unit area absorbed by the material reads:

= o ()] oo ()] () (2) o

On the other hand, the incident power flux per unit area is given by:

c

Win
¢ 87

E?. (4.10)

The absorbance is given by the ratio between the absorbed and incident fluxes:

=55 {1 (2.0)| - (220 () ()

(4.11)
with ar denoting the fine structure constant and:
4
Tap = 100 . (4.12)
c

This result only holds for suspended graphene at normal incidence. For graphene on top of a
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1V Hot carriers in graphene

dielectric with refractive index n, for an arbitrary incident angle o, we can determine A,ps(t) from

the expression for the linear reflection and transmission coefficients (see Eq. (C.17)):

4

ncosa — cost + —zj - Epcosf cosa
£(0) ckyp
P (hwp, t) = e : (4.13)
ncosa + cost + —5j - Eycosf cos a
cky
N 2
O (hup, t) = e . (4.14)
ncosa + cost + —zj - Eypcosf cosa
ckyp

The Joule heating term containing j - Ej is the power absorbed by graphene (j is the current and E;,
the pump electric field) and 6 is the angle of refraction. The absorbance is related to the reflectivity

R and transmittance T by:
AabS(t) =1- R(t) - T(t) ) (415)

which can be expanded to the first order in j - Ey:

4cosacos?f  Ar .
2J - Eb .
cky

Agps(t) = (4.16)

(ncos o + cos §)?

We consider the situation where absorption by the substrate is negligible. This is a good approx-
imation for the pump energies we are interested in and a substrate such as SiOs. Then, we have
from Eq. (4.11):

gt e {1 ()] oo (50 o () (50 - o

Finally, the general expression for the absorbance is:

4 cos o cos® 6 heoy, )] [ (hwb )] < heoy, > (hwb )}
Agpe(t) & mard 1 —gn [ =2 e 11— g (222 6 ) | —gn (=22 ) g0 (22, 4) L
bs(?) (ncosa—l—cos@)2 F{[ gh< 2 9 2 Ih 2 9 2

(4.18)

Introducing,

4
Ao, 0) = Tar 5 COs Qv cos? @, (4.19)
(ncosa+ cos b

we may write:

Aunlt) = Aol 0) {1 g0 (<220) . (B2.0) ] (120)

We still need an expression for the non-thermalized distributions g. and g, in Eq. (4.20). Since
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4.2 Hot electron model

we have assumed Eq. (4.2) to be valid, by consistency, these distributions should also be the same:

gh(_gat) = ge(5>t) = g(é‘,t) : (4'21)

Since the pump pulse is well described by a Gaussian wavepacket, we model g(e,t) as
_ A (—00) (e — hwy/2)?
t)=g(t)—————= —_ 4.22

with g(¢) denoting a function to be determined. For simplicity, we consider the following points:

1. Since the pulse is much longer in time than 7., during pumping a stationary situation is

rapidly achieved for ¢g’s width A.(t), so we take its asymptotic limit: A.(t) = Az (—o0);

2. For 100 fs pulses, their spectral width (~ 18 meV) should be much smaller than the thermalized
distribution energy spread, so we take A.(—o0) to be the pulse’s spectral width:

A(—o0) ~ 2rn XM (4.23)

Ty

3. As the thermalized carriers relax towards lower energies, we assume that the thermalized
distributions f. and f; at near half of the pump energy (¢ = fuw,/2) are much smaller than g,
and gp:

fe(e,t) < gele,t) (4.24)

In(e,t) < gnle,t), (4.25)

so that we may write the full distribution function for electrons as f. (¢,t) 4+ ge(e, t) and similar
for holes, fr, (£,t) + gn(e,t).

To determine g(t), we notice that the transient evolution of the non-thermalized population of

charge carriers dictated by Eq. (4.5), may be also calculated using graphene’s density of states
p(e) = 2lel/ [r(hwr)?]:

o0

dep(e)g(e,t)

g(t / dep(e exp< (8_;2)3/2) > . (4.26)

The integral can be approximated and yields:

put(t) = nne(t) =

S~

pc(t) = () = Va3 )0 () (4.27)

and, consequently, the time dependent amplitude can be written as a function of the non-thermalized
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density:
~ N (¢
gt) = il )hw . (4.28)
V21 Acp <2b)
Using these definitions, the balance Eq. (4.5) is written as:
) ) Ao(a, 6 2npe (t Nt (t
Put = Ting = O;M)Ib(t) 1- il )m - Tt( ). (4.29)
b \/%Aep <2b> ee

Notice that the maximum possible number of states that can be occupied by the non-thermalized

carriers is:

+o0 — Ty /2)? hw
pnmtax _ nnmtax — / d€p(€) exp (_(62&/)) — \/QTAEP <2b> , (430)
0 €

so we may rewrite Eq. (4.29) as:

g = D00 {1 - 2”‘“(”} _ () (4.31)

max
huwy, nnt Tee

max

Equation (4.31) accounts for Pauli blocking: if ny(t) = ni**/2, then ny < 0, that is, no more

electrons can be pumped to the conduction band, thus predicting saturable absorption.

4.2.2 Thermalized carriers

After the non-thermalized population, ny + pnt, has been created, the electrons will go under
electron-electron scattering processes leading to a thermalization of the electron gas. We describe
this thermalized gas as being in quasi-equilibrium: the electron and hole distributions will be ap-
proximated by quasi Fermi-Dirac distributions with chemical potentials F,. and F},, respectively, but

with equal temperature T

fe(E,Fe,T) = fc(g) = ! e>0, (432)

e—F, ’
1
—I—exp( KT )

1

Fh—E ’
1
+exp< knT >

This description is justified if the electron-electron, electron-hole, and hole-hole scattering processes

fu(e, Fp, T) =1— fo(e) = e<0. (4.33)

(characterized by the typical scattering time 7..) are more probable than the electron-phonon and
electron-impurities ones [30]. Experimental results [33, 38| show that in typical graphene samples

this situation usually is the case.
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To describe the evolution of thermalized carriers, we write the balance equations for n; and p;:

Nint ngy —no

py— Tmb _ M M0 (4.34)
Tee Ty

po=Dot BP0 (4.35)
Tee Ty

where ng and pgy are the equilibrium electron and hole concentrations’. On the other hand, the
instantaneous thermalized electron concentration can be related to a quasi Fermi level F,(t) and

electronic temperature T'(t):

_ GsGv _ 2 kBT(t) ? Fe(t)
mt) = %8 gfe@k,Fe(t),T(t»—w( T ron (40) . )

where g5 and g, are the spin and valley degeneracies for graphene and F,,(z) is the Fermi integral:

1 oo "
Fn(2) = =——= dr————— 4.37
n(2) F(n+1)/0 l+exp(x—2)’ (4.37)
with I'(n) being the Euler gamma function. Equations (4.34) and (4.36) establish a relation between
F.(t) and T'(t). To completely determine these two functions we need a second equation. At the
smaller timescale ~ 7., the thermalized electrons, having been scattered by phonons, impurities, and
other lattice imperfections, give in their energy, ¢, to the lattice. We write the energy relaxation
for electrons also in the form of a balance equation:
/
_Em & =&

g = L0 (4.38)

Tee Te

where ey is the energy of the non-thermalized electrons. This energy is:

+oo
Ent = / d€€p<6)g(6vt)
0

thg ﬁwb 2~ hwb hwb QAE -
= exp (— 8A%> p (2> AZg(t) + V2rAcp <2> {2 + mb] g(t) . (4.39)

Since 2A, < hwyp, using Eq. (4.28), ey approximates to:

hw
nt & o T (1) (4.40)

!The second term in Egs. (4.34) and (4.35) represents e-h recombination. This recombination is a nonlinear
two-particle process [30] that is proportional to the product of the electron and hole densities. This recombination
rate should be written as Qrec (ntp:r — Mopo) with arec called the recombination coefficient. However, at relatively
low excitation levels (which may be the case in our situation, at the latest stage of the relaxation process when the
interband recombination becomes important) we may introduce a recombination time by writing the recombination
coefficient as arec = ﬁ In this approximation, we can decouple the balance equations for electrons and

Tr (T0 T PO
holes and write them as Eq. (4.34) and (4.35).
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and Eq. (4.38) may be simplified:

_ /
‘s @nnt(t) &t eo(t) ’ (4.41)
2 7-66 TE

where £((t) is the energy of the electron distribution when thermalized with the lattice at temperature
To:

sYv 2 (kBTO)3 Fe(t)
() = BN o (e, Fu(8), To) = = r'(3)F . 442
0() S zk: kf ( k () 0) T (h’UF)2 ( ) 2 kBTO ( )
Equation (4.41) can be solved using Green’s function method:
t / ! (4
ey = ot / gt et/ {hwb”nt(t) N 50(”} . (4.43)
o0 2 Tee Te
We define: y ,
A(t) = %e / dt'e! e () (4.44)
Tee —00

and since F,(t) is a slowly varying function compared to 1/7., we approximate:

t , (4 t t'/7e
e—t/Te/ dt'et /TEM ~ e—t/Tegg(t)/ dat' =gy(t) . (4.45)

Te —00 Te

Equation (4.43) assumes the form:
e(t) = E(t) +&p(t) - (4.46)

On the other hand, the energy of the thermalized electrons is:

2 (keT(1)° 0
Et = . (hUF)Q T (3) F2 <k‘BT(t)> N (447)

so equating Eqs. (4.46) and (4.47), the second relation for F,(t) and T'(¢) is:

2 (kgT(t))’ Fe(t) \ _ - /
E(BfwiF)?F (3) Fy ( T (t)) = &(t) + ) (t) . (4.48)

It remains to determine the chemical potential for the hole distribution. We could write similar
balance equations for holes as we did for electrons. However, since charge must be conserved, we
have:

po + n(t) = p(t) + no . (4.49)

This allows us to determine the hole concentration at any given time. Separating contributions from

44



4.2 Hot electron model

thermalized and non-thermalized carriers, we have:
pe(t) = po + Nt (t) + ne(t) — put(t) — no - (4.50)
Remembering that py, = nyt, Eq. (4.50) becomes:
pe(t) = po + nu(t) —no - (4.51)

Knowing p;(t), we can calculate the hole’s chemical potential F},(t) using the relation:

2
pe(t) = % (ﬁfﬁ) I (2)Fy (— ,f; ’;EZ)) . (4.52)

4.2.3 Non-equilibrium conductivity due to hot carriers

Now that we know how the quasi-Fermi levels and the electronic temperature evolve with time,
we can study the non-equilibrium transient conductivity. We assume that, to first order, the optical

non-equilibrium interband conductivity of graphene can be described by the usual formula (see Eq.

(B.33)):

4.0'() . too - f(e) (57 t) — f(h) (57 t)
n y = inter — ; ) ’ =
Oneq (W, t) - B (Vinte zw)/o de mer &7 (22 — h)] Pvimmer — 7 (22 + )] (4.53)

with 7Yinter meaning the interband scattering rate. Here f (©) and f (") are the full distribution functions

for the electrons and holes with contributions from thermalized and non-thermalized carriers:

f(e’h) (6, t) = ge7h(€, t) + fe,h (57 Fe,h(t)) ’ (454)

with g given in Eq. (4.21).

The extension of the usual formula for the interband conductivity (B.33) to a time dependent
version (4.53) is valid as long as, at the frequency of observation w, the field oscillates several times
before the physical conditions change. In other words, this approach works if the two time scales, 1/w

and the time it takes for chemical potentials and temperature to change, are sufficiently different:
WTee > 1. (4.55)

Here, we take 7. as the time of change of the system, since it is the smallest characteristic time
parameter. Because it is expected that 7., lies in the time range 10 — 30 fs [38], at the optical

frequencies of interest (A, < 615 nm) this condition is satisfied.

As shown in Appendix E, to the first order, the differential reflectivity only depends in the real
part of the transient conductivity. Also, it is expected that Ayinter < kT [30] so the real part of
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expression (4.53) may be written as:
Reointer(w, t) = Reoyt(w, t) + Reor(w, t) , (4.56)

with o4(w,t) coming from the thermalized carriers:

[ﬁw — (Fe(t) - Fh(t))]

inh
sin SkpT

Reoy(w,t) = o 4.57
= TRO T RO, [k (ED) — F) 437
2kpT 2kpT
and oyt (w,t) from the non-thermalized carriers?:
hw
Reont(w,t) = —opg <2,t> ) (4.58)

4.2.4 Differential reflectivity

The experimental results we are interested in understanding were obtained by means of pump-
probe spectroscopy and measure the changes in the reflectance of graphene. Let us call §; the time

delay between the pulses b and a. The differential reflectivity is given by (see Appendix E for

derivation):
A(O) 2
AR cos” § (ta ) am o N2 fuw fuw
a _ a =N . (e) [ "™a (h) a .
R, cosag 70 CJO/_md’f |4: (t')] {f < 5ot +6t>+f ( 5 ,t+5t>} :

(4.59)
Here A; (t') is the incident pulse’s amplitude:

£2
Ai(t) = a;exp <—> , (4.60)
where a; is a constant and 7, is the pulse time width. ®, is the probe’s fluence:
B, — / dt | 4; (1) (4.61)

and f((lo) and 7*((10) are the usual linear transmission and reflection coefficients. Finally, o, and 6, are

the incident and refracted angles, respectively.

2We notice that the "slowly varying amplitude" approximation is still valid here because the relevant frequency in
Eq. (4.58) is wp and also satisfies wree > 1.
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Figure 4.2: Left: Quasi-Fermi levels and temperature as functions of the time delay between
pump and probe, ¢, as determined by the model. F,, F}, and T are represented by the blue, green
and red curves, respectively. Right: Differential reflectivity normalized to the pump fluence.
The black line with dots are the experimental results taken from Ref. [1]. The blue line is the
calculated result from our model with 7., = 10 fs, 7. = 0.4 ps and 7. = 1 ps. The red dashed line
shows the calculation (blue line) but with a correction factor f = 0.45 for the amplitude and a
shift in time of ty = 0.1 ps.

4.3 Numerical results and concluding remarks

We can use our model to simulate the non-resonant signal measured by Constant et al. [1], as
shown in Figs. 4.2 and 4.3 (see Appendix F for numerical implementation). The time parameters,

Tee, Te and 7, used were:
Tee =10fs , 7.=04ps , 7=1ps. (4.62)

These are not the parameters that best fit our model to the experimental results. Taking 7., = 1 fs,
leads to a better agreement with the experimental results. However, since it is generally accepted
that 7. ~ 10 — 30 fs [38], this value looks unrealistic. The rest of the parameters are the same as in
the experiment: the pump and probe incident angles are a, = 40° and «, = 20°, respectively; pump
and probe have equal frequencies, wy = w, = 3064.97 ps~! (A, = 615 nm); the substrate is SiO with
a refractive index ng = /g2 = 1.4601 at frequency w, and the pump fluence is &, = 0.26 mJ cm™ 2.

The calculated dependence deviates from the observations in two ways: it yields a signal bigger
by approximately a factor of two and the peak of the calculation appears approximately 0.1 ps earlier

than the measurement. The reasons for these differences could be:

1. Information concerning experimental details that we have from Ref. [1] may be incomplete,
for instance, we assume that both pulses are Gaussian and have the same duration. However,
if it is not so, the spectral distribution of non-thermalized carriers will be different. We also

checked that assuming a non-Gaussian pump would change the temporal distribution of hot
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1V Hot carriers in graphene

carriers. Both effects would affect the differential reflectance dependence on the probe pulse

delay.

. In the work [1], the beams were focused using a single lens. This technical choice implies that
in order to have an angle of incidence different from zero, the beams cannot be centered in the
lens, and this introduces spatial and temporal chirp in the pulses [41] that perhaps cannot be

ignored.

. The data of Ref. [1] is noisy, which makes the fit difficult to perform. In fact, the data shows
a weird feature: when w, = wy, it is expected that the peak of the signal to be positioned at
~ 0 ps, since it is when most electrons are pumped to the conduction band thus blocking the
probe more intensively. This is not the case in the data of Ref. [1] (see black curve in Fig.
4.2). For the peak of the signal to appear later, the non-thermalized electrons must thermalize
so that the population of thermalized electrons grows enough to block the probe at frequency
wq = wp. This is possible if the non-thermalized electrons thermalize over the timescale of 1
fs.

To conclude this chapter, the hot electron model yields a good understanding of the processes taking

place in graphene under fast optical pumping. They have to be taken into account when considering

all-optical generation of surface plasmons.
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Figure 4.3: Left: Hot carrier distribution for different delay times, determined using the the Fermi
levels and temperature in Fig. 4.2. The inset shows the equilibrium Fermi-Dirac distribution.
Right: Transient conductivity (4.56).
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Chapter 5

Plasmon lasing

5.1 Plasmon emission as a new electronic relaxation channel

As discussed in Chapter 2, SPPs are collective charge oscillations, mediated by long-range
Coulomb interactions. But, in a situation out of equilibrium, is this possible? The answer is yes
and experimental evidence for optically generated non-equilibrium plasmons was given by Ni et al.
[42]. In their work, using infrared pump—probe nano-spectroscopy, SPPs were activated and detected
using femtosecond optical pulses in a specimen of intrinsic graphene that otherwise lacked infrared
plasmonic response at equilibrium. To excite SPPs; a focused IR probe beam was used to illuminate
a metalized tip of an atomic force microscope and generate a strong evanescent electric field [6]. At
equilibrium, no response was observed. However, upon ultrafast optical excitation using a fs pump
pulse, Ni et al. observed charge oscillations, consistent with graphene SPPs. The amplitude of this
oscillations depended on the delay between pulses: at observation times bigger than 2 ps, when the
amount of charge carriers started to be small, the features of the oscillations disappeared. Thus, we
may conclude that the out-of equilibrium carriers can hold SPPs or, more correctly, hot SPPs.

Nevertheless, this does not reveal how important are SPPs as a relaxation channel and if they
strongly couple to electron-hole pairs. The strong interplay of plasmons and eletron/hole excitations
in graphene was revealed by Aaron et al. [43, 44|. Using angle-resolved photoemission spectroscopy,
they observed a renormalization of the Dirac cone due to coupling of SPPs with holes. Later, Kim et
al. [35, 45] experimentally showed that hot SPPs participate in the relaxation dynamics as a decay
channel for the excited carriers. By impinging a graphene device with a 100 fs pulse at 850 nm and
collecting the resulting emission spectra using a Fourier-transform infrared microscope, they found
that the higher the Fermi level® of graphene, the stronger the infrared emission is. This behavior
is the opposite of thermal emission, which should reduce for increasing Fermi energy. The observed
response is consistent with plasmon emission, as the phase space for plasmonic emission increases
with Fermi energy [45]. Some of the plasmons, emitted by the hot electrons, scatter into photons,

leading to the observed infrared emission. To enhance conversion of SPPs into thermal radiation,

'They controlled the Fermi energy by electrostatic gating.
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Figure 5.1: Schematics of the plasmon lasing in photoinverted graphene. A particular SPP mode
is generated by the DF process (yellow arrow). This mode lives in the SPP reservoir and will
stimulate electrons and holes to recombine with emission of a plasmon of the same mode. As a
consequence the SPP population grows and the field is amplified.

gold nanodisks were added to the sample. The role of this nanodisks was to scatter the SPP field into
photons that could be measured and effectively enhance their presence. Detailed analysis showed a
plasmon emission rate of a stunning five orders of magnitude higher than the thermal emission [45].

These results clearly show that we cannot ignore the hot carriers created by the pump. Further-
more, in photoinverted graphene, SPPs may experience gain, through electron-hole recombination
[10, 29|, thus suggesting that the reason behind the signal observed in Ref. [1] was SPP lasing: a
particular SPP mode is selected by the DF process and, due to the non-equilibrium electron-hole
population, this mode is amplified, giving rise to a signal several orders of magnitude higher than
the predicted by the perturbation theory (see Fig. 5.1).

In this chapter we introduce a model, based on the master equation formalism, to describe this
process. In Section 5.2, we explain how the SPP dispersion curve is calculated in non-equilibrium
graphene. In Section 5.3, we write the master equation to describe the evolution of the SPP popu-
lation. Section 5.4 deals with the problem of including DF generation in the master equation. The
change in the differential reflectivity, due to the generation of plasmons, is estimated in Section 5.5.

Finally, we make some concluding remarks in Section 5.6.

5.2 Non-equilibrium plasmon dispersion relation and gain

Previous theoretical works |29, 36] showed that photoinverted graphene has the right conditions
for SPP gain, e.g an increase of their non-equilibrium population. In this Section we explore this
effect.

Consider a graphene sheet in a photoinverted state, with electron and hole distributions charac-
terized by the chemical potentials F, and Fj,, respectively, at a temperature T'. Interband transitions,
with the energies below ~ (F, 4+ F}), have low probability of being blocked and, as discussed in Sec-

tion 2.2, such electron-hole pairs can recombine via plasmon emission. In this regime, the interband
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5.2 Non-equilibrium plasmon dispersion relation and gain
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Figure 5.2: Plasmon dispersion, wsp(q) + i7sp(q), calculated at zero temperature with both in-
traband and interband conductivities. The parameters of the calculation were F, = —F} = 300
meV, Yinter = 0.01 ps~! to avoid bad numerical behavior, £; = 1 and €5 = 2.4 as usual. The blue
curve shows the solutions of the Eq. (5.4) for a momentum relaxation rate v, = 0.01 ps™!, while
the orange curve shows the dispersion for a much more realistic value of y, = 2w x 2.6 ps~'. The
~sp(q) plot clearly shows that for certain frequencies it is expected plasmonic gain, even for finite

Vp-

conductivity, for a sufficiently low frequency w, is negative (see Fig. 4.3) and the optical gain is

possible. Consequently, the SPP field instead of being damped, is amplified (and off damped).

This idea is easily understood if we consider a particular case of intrinsic photoinverted graphene,
F, = —F, > 0, at zero temperature. In these conditions, expressions (B.26) for the intraband

conductivity and (B.33) for the interband conductivity yield the following analytical expressions:

4oy Fe + | Fp|
. =_——-¢ h 5.1
Tintra () T hyp, —ihw (5-1)
and
1 hw — 2| F] 1 hw — 2F, 1 hw + 2| F) 1 hw + 2F,
Tinter (W) = 00 (1 + — arctan M + — arctan ————= — — arctan ﬂ — — arctan +e>
U 7Yinter ™ “Yinter ™ 7Yinter 7T “Yinter
o @ In (h')’inter)2 + (2|Fh| + hw)Q - @ In (h')’inter)2 + (2Fe + hw)2 (5 2)
2 (h’)’inter)2 + (2|Fh‘ - hw)2 2m (h’)’inter)2 + (2Fe - hw)Q ’

respectively. Here 7, is the momentum relaxation rate introduced in Section 4.2 and 7ipter is the

interband scattering rate. Notice that the interband conductivity is negative for small w and ~ipter:

lim lim ojpter(w) = —0p - (5.3)
w—0 Yinter—0
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Figure 5.3: Plasmon dispersion, wsp(q) + iysp(¢), for the same conditions as in Fig. 5.2, but
calculated at finite temperature T' = 2000 k, also with both intraband and interband conductivities.
Even at finite temperatures, plasmon gain is possible.

As before, the plasmon dispersion relation is determined by the poles, w(q), of Eq. (2.4):

fL %2, @0(1)(@ —0. (5.4)
K1 K2 w

However, o(1)(w) now is the transient conductivity with both contributions (5.1) and (5.2). For

Yp = Yinter = 0 (no losses) and small w, in the equilibrium regime, the conductivity is purely

imaginary and the solutions of the dispersion equation, w(q), are real. However, in photoinverted

graphene the real part of the interband conductivity is non-zero for small w and the solutions to

Eq. (5.4) become complex, wsp(q) + iysp(q). For Recinter < 0, Ysp(q) is positive and the SPP field

instead of being damped, is amplified with time.

Figure 5.2 shows the plasmon dispersion curve obtained using ¢(!) modeled with Eqs. (5.1) and
(5.2) for different ~,. Figure 5.3 shows calculated results for temperature 7" # 0, obtained using
Egs. (B.28) and (4.57) for the intraband and interband conductivity, respectively. Even at high
temperatures, plasmon gain seems possible. These results are in good agreement with what was
expected, the plasmon channel of the electronic relaxation is likely in the 100-fs time scale. Figures
5.2 and 5.3 show a damping rate of the order ~ 10 ps~' that corresponds to a time scale of ~ 100
fs.

Using the hot electron model from Section 4.2 we can predict the SPP dispersion for different

time delay t. For the same conditions as in Fig. 4.2, we plot the SPP dispersion in Fig. 5.4.
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Figure 5.4: Plasmon dispersion, wsp(q) +47ysp(¢), predicted by the hot electron model, for different
time delay ¢ (given in ps on the plot) . Calculation parameters same as in Figs. 4.2 with ~, =
27 x 2.6 ps~!. The black dashed line shows the DF scanning as performed by Constant et.al [1].
(Top) Calculation of the SPP dispersion with both intraband and interband conductivities taken
into account. (Bottom) Calculation with the intraband conductivity only.
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5.3 Master equation

The question now is, how can the SPP gain coexist with their generation by the DF process? The
most straightforward way to incorporate SPP amplification is to treat SPPs as quasiparticles and
write a master equation for the SPP population [10], nq, with ngq the population with momentum

q. The processes we want to take into account are:

1. plasmon emission via interband recombination and plasmon absorption with creation of an

electron-hole pair;
2. generation of plasmons by the DF process;
3. plasmon losses, other than point 1.

We leave out plasmon emission and absorption due to intraband electronic processes, since these are
only relevant for plasmons with big momentum ¢ and frequency w, and we are concerned with low
frequency-momentum plasmons. With this in mind, we write the following master equation for the

plasmon population ng:

dnq _ (dng
dt— \ dt

). + Tp(a) — oss(@) (g — n<9) (5.5)

The first term in Eq. (5.5) accounts for the interband processes, I'pr is the SPP rate emission due
to the DF interaction between the pump and probe, 710s5(q) is a damping parameter that accounts
for losses, and ngq! is the Bose-Einstein distribution:

1
s P S (5.6)

a9 T Jhwa/ksT _ |
To determine the interband term we quantify the SPP field (see Appendix G for details) and use the
Fermi’s Golden rule. Finding I'pp(q) requires a bit more work, since, as we will see in Section 5.4,

the DF emission rate is due to a third order interaction between the pump, probe and SPP fields

dn
- accounts for the interband
dt inter

interaction, the SPP dispersion curve is determined by the intraband conductivity only.

mediated by the electrons in graphene. Finally, because

5.3.1 Interband interaction

We must know the form of the plasmon-electron interaction to calculate the interband term in

Eq. (5.5). In the second quantization formalism the full Hamiltonian (electronplasmons) is?:
N 1 ot o A
H= Z 5k,scLsck,S t3 Z Twq <a:flaq + aqa@ + Hine (5.7)
k,s q

2See Appendix G for quantization of the SPP field.
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5.8 Master equation

with ﬁint representing the interaction between electrons and plasmons. In the Schrodinger repre-
sentation this term reads:

e
Hine = JUFO - A(t,z,y,2=0) . (5.8)
So, in the second quantization form, we have,

A~

e »
Hiyy = 'UFZZ I «q SCLJrqS/Cksaq s’ s(k+qak) A (0)6 “wat

k,q s,s’
+oord 0/ T 2 SO qulicsihFu ok = q.k) - Af(0)e e’ (5.9)
k,q s,s’ qwq
where
Fy ok +a,k) = (FZ,(k+q.k), FY (K + a.K)) (5.10)
and

seif(k+a) 4 o1 p—if(k)
2 )
i0(k —i0(k
FY (k+q,k) = (k+q,s|e9 0, |k, s) = —isez D~ slen (5.12)
s’ ) ’ y |8 . .

F (k+q,k) = (k+q,5 e o, [k, s) = (5.11)

To determine the transition rate via plasmon emission, we need the probability of decay of an
electron in the conduction band to the valence band, with the emission of a plasmon with momentum

q. The transition matrix element for this process is:

M 11 (k —q,k) = (—1,k — q|{ng + 1| Hint|1, k) |nq)

_ / Fons \/TTFllk q, k) - AZF(0)e™at | (5.13)

For the inverse process, with plasmon absorption the transition matrix element is just the hermitian

conjugate:

Ml,*l (k7 k — q) = Mil,l (k - q, k) . (514)

Taking into account all interband transitions, the variation of the plasmon population with a

momentum q is obtained using the Fermi’s Golden rule:
dnq 27T 2
)= D M (e @ ) [ o] 6k i — ) (a4
inter

- g Z M1 (kX = a)f fulek—q) [1 = fe(ew)] 8 (ex + ekgq — hwg) ng - (5.15)
k
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Using Eqgs. (G.23) to (G.27), the transitions matrix elements are?:

2 7hc?
LqwqS

e
Mot (k= k) = (M (k= q. 1) = (Sor)

[1—cos(f(k —q) + 0(k))]

and the interband part of the master equation becomes:

n e*v?
<ddtq>inter = 2qu§ /d2k [1—1cos(0(k —q)+0(k))] fe(ek) [1 — fo(ex—q)] 0 (ek + ex—q — hiwg)

2e2v%n
it / @k [1 — Leos (0(k — q) + (k)] { feleic) — foler—q)} 8 (ek + g — Picq) -

(5.16)

Lqwq

To solve the integrals, we introduce « as the angle between k and q and use the Dirac d-function to
remove the integration over k. The d-function tells us that the integral is meaningful when energy

is conserved,
hwg — ek — €k—q =0 (5.17)

and the k vectors that obey this condition lie in a ellipse (see Section 2.2). Thus, the integral is

solved in elliptic coordinates:
kx:akcosa—l—g .k, =bksina . (5.18)

According to this definition, k is a quantity with the dimensions [distance]fl. The d-function fixes

k:\/WJrkZ:ko. (5.19)

a? b2

the radius of the ellipse to:

The volume element is d?k = kdadk and the integration over k in Eq. (5.16) yields:

dng 2a phevs, /2“ 1 —cos (0(ko — q) + 8(ko))
ang _ Lephevp 3 1— foler,—
< o >inter Lo ko ; dafe(ey) [1 = folexo-a)]l =75

ok (ex + €k—q) .
20 phcv? 2 1 —cos (0(ko — q) + 0(k
12y [ da (o) — ulerg-a)} g DA a0
quq 0 ‘ak (€k + Equ)
k=Ko
We introduce the decay rates:
200 phcv? 2 1 —cos (ko — q) + 0(k
quq 0 - (5k + 5k—q)
ok k—ko

3We fix the reference frame such that q is parallel to the z-axis.
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5.4 DF-generation of plasmons
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Figure 5.5: (left) Evolution of the SPP frequency, wsp(q), as a function of the time delay ¢, for the
particular mode ¢ = ¢, — ¢, = 3.1 um~!. (right) Evolution of the SPP interband recombination
rates (5.21) and (5.22), also for ¢ = ¢ — ¢o = 3.1 um~!. The dynamical evolution of the hot
carriers is described using the hot electron model from Section 4.2. The calculation was performed
for the same conditions and parameters as in Fig. 4.2. The SPP frequencies ws;, are determined by
the poles, wsp + i7Ysp, of Eq. (5.4), with 1 = 1 and €3 = 2.4. The conductivity oM (w) is modeled
by the Drude term (B.28) only, with a momentum relaxation rate vy, = 27 x 2.6 ps~—'.

1 —cos (6(ko —q) + (ko))

20 phev? 2
afa) = PPy [ da{fulere) = flera-a)) L 62
q*q 0 ‘(5k+5kq)
ok k=ko
and write the dynamical Eq. (5.20) for interband processes as:
dn
() =Tila)+ Tafayng (5.23)
inter

In Fig. 5.5, for fixed DF momentum ¢ = ¢, — ¢, = 3.1 um ™!, the decay rates (5.21) and (5.22)
are plotted as functions of the time delay ¢ between pump and probe. The dynamics of the hot

carriers is simulated according to the model in Section 4.2.

5.4 DF-generation of plasmons

Two processes schematically shown in Fig. 3.1 (left), are analogous to the well-known phe-
nomenon of inelastic (Raman) scattering of light in solids [46]. Typically, an incident photon loses a
part of its energy by emitting an optical phonon, while here we have emission of a surface plasmon.
Also, in our case, the interaction between the incident (pump) photon and the plasmon is stimulated
by the presence of the probe beam (if the resonance conditions are satisfied), which does not take
place in typical Raman scattering experiments.

The third-order processes, so far designated as Channels I and II, can be represented by Feynman
diagrams shown in Fig. 5.6 [47]. In these, a photon (wp,k;) with p-polarization is absorbed by
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Figure 5.6: Two Feynman diagrams for absorption of a photon b and creation of a photon a and
a SPP in graphene. The process is mediated by the electrons. The left diagram corresponds to
Channel I, while the right is Channel II. The states |n) are the same as in Fig. 3.1. There are
four more diagrams that represent the remaining terms in Eq. (5.45).

graphene and a photon (wg,k,), also with p-polarization, is created. The process is accompanied
by the creation of a SPP (wq,q), such that the in-plane momentum and energy are conserved. The
inverse can also occur: a SPP and a photon a are absorbed and a photon b is emitted. These

interactions are described by an effective Hamiltonian [47]:

Hiny = Z ZZM (9,91, 9) <d11 + CAlfol) lA’qul;kz ’ (5.24)

a ki ko

where l;kj are the destruction operators for the EM radiation field (wj, k;) and dq is the destruction
operator for the plasmon (wq,q). As usual, those with dagger are the corresponding creation oper-
ators. q; is the in-plane wavevector of k; and M (q,41,9,) is the interaction matrix element. The
initial and final states of the system, that belong to the Fock space for photons + SPP + graphene,
are denoted by |I) and |F):

1) = [n)na)Ing)li) —» [F) = [np F 1)lng + 1)[ng £ 1)) , (5.25)

where |n;) are the photon states, with n; denoting the occupation number for a photon (wj,k;),
|ng) are the SPP states and [i) is an electronic state of graphene. The initial and final electronic
states should be the same. The minus or plus sign depends on whether we have plasmon emission

or absorption.

The probability per unit time (the transition rate) for scattering from the initial state to the

final state is given by the Fermi’s Golden Rule:
2T \ 2
L —F)= ’(F]Hmtm‘ §(Ep — Ey) (5.26)

where Er and Ej are the energies of the initial and final states:

Bp — By = F (hwy — hw, — hwg) - (5.27)
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5.4 DF-generation of plasmons

The matrix element in (5.26) for the process in Fig. 5.6 is:

(F|Hne|T) = \/rpv/ng + 1\/ng + 1M (q,d,, q3) (5.28)

and the emission rate of plasmons is:

_27T

TCsp .

(nq + 1) (na + 1) ny |M (qa s qb)‘2 5 (hLUb - hwa - hwq) ; (529)

where M (q,q,,q;) will be specified below.

The photon modes in Eq. (5.29) are not specified. At the surface, for a particular frequency,
three type of modes are present, corresponding to incident, reflected and transmitted photons. These
modes have equal in-plane momentum q; but the z-component of the wavevector and the polarization
vector are different. One could say that the optical field at the interface z = 0 is in a superposition
of incident, reflected and transmitted states. The interaction, which causes reflection /refraction of
photons on the surface and leads to the three kind of photons, is not included in the Hamiltonian
(5.24) and diagrams of Fig. 5.6. We include this interaction phenomenologically. For example, in
the emission rate of plasmons (5.29) both reflected and transmitted photons contribute. In fact,
the full field at the interface contributes and stimulates the emission of plasmons. Thus, ignoring
absorption in graphene, the photon occupation numbers n, and n; in Eq. (5.29) should be equal to
the number of incident photons. For the emission rate of photons a the situation is different. Here,
one has to distinguish between emission in reflection or emission in transmission, since the emission
in a particular direction will be stimulated differently by the presence of the beam. The same will
be true for the inverse process, where a plasmon and a photon a are absorbed and a photon b is

emitted.

5.4.1 Electron-photon and electron-plasmon interaction

The SPP generation is mediated by electrons that are hidden in the matrix element M (q,q,,q;)

in Hamiltonian (5.24). The full Hamiltonian describes graphene’s electrons, the radiation fields a
and b, and the plasmon field:

H=Hy+ Hopy + Ho 1 , (5.30)

where Hy is graphene’s + fields’s + plasmons’s bare Hamiltonian that is diagonal, in the appropriate
basis. ﬁe—pl is the interaction between electron and plasmon as determined in Eq. (5.9) and ﬁe-ph

is the electron-photon interaction. We write this term as in Section (3.3):

He—ph = %'UF ZUmA;C(t7X72 = 0) ; (531)
J
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so in the second quantization?:

Hepn = vaZZZZAkJCS, kta, Cs, kbk F3 (k—l—qj,k)efiwkjt

jSS

+ ”FZZEZAk el s, Csxbig F (k= qj, k)" (5.32)

jSS

| 2mwhe?
Aij = mekj ey . (533)

Here, 7 is the index of refraction. For the incident and reflected fields n = 1, while for the transmitted

where:

field 7 is the index of refraction of the substrate. For future calculations it is better to distinguish

between a and b fields, so we rewrite this term as:

A~ A~ A~

Heph=Va+Vp, (5.34)

with:

— vaZZZAk €Y rq, s kb, F3 (k + qj, k)e %"

]SS

+ ”FZZZAk Cs/ k—q,Cs whi, F3  (k — g, k)e™si" (5.35)

k; s';s

The sum over k; runs over incident, reflected and transmitted fields.

The process of interest involves the annihilation of a photon, the creation of another photon
and the creation of a plasmon. This is a third-order process in which ﬁe_ph acts twice and I:Ie_pl
acts once. The Hamiltonian needs to be transformed into a form that contains an effective photon—
plasmon interaction [47|. As given above, the Hamiltonian is written in terms of a basis set that
spans the Hilbert space of the system (electrons, plasmons, and photons), that diagonalizes Hy. The

basis consists of states:
Im) = [rw)|na) ng)|..., Niss ) (5.36)

where Ny ¢ is the occupation number for the electron state |k,s). We can change to a new basis
set of states |m) = U|m) via unitary transformation U. In this new basis, the Hamiltonian matrix
elements are:

(Al H|im) = (n|H]|m) , (5.37)

where H = UTHU. Hence, consider the canonical transformation U = e~ where S is an operator

such that St = —S. H has the same eigenvalues as H and its eigenstates are obtained by the

4See Appendix (G.1) for quantization of the optical field.
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5.4 DF-generation of plasmons

operator e acting on the corresponding eigenstates of H. Expanding e, H reads:

H = Hy+ Hyy + [S, lﬁfo] + [S, ﬁint} +% [S, [S, ffo” +% [S, [5, ﬁint”

+$ {S [S {S Hom ;; [S’ [Sv [Sﬁintm +o (5.38)

where ﬁint = Va + f/}, + ﬁe_pl. The operator S is chosen such that:
[S, ﬁo} = —Hin . (5.39)
This choice simplifies Eq. (5.38) to

H=Hy+ - [S Hmt} +% [S, [S, f[int” ;..

:H0+H2+I:13+... (5.40)
Consider two eigenstates |I) and |F) of Hy. The choice given by Eq. (5.39) establishes:

(F|Hiwe| 1)

(F|[S. o) |1) = —~(F|Hiw|1) = (FIS|T) =~

(5.41)

This shows that S is proportional to Hiy. Since our interest is in third-order interaction, we consider
the third term Hs in Eq. (5.40):

ﬁgzé[s, [, ] | = (52 i~ 25 Hi S + Hiwi5?) (5.42)

that using identity (5.41) gives the transition element Mpy:

1.
Mpr = *(F\HSW

Z F|Hmt|m m|Hmt|n><n|Hmt\I>
EF— (E —E[)(Em En)

{3E, — 3En, + Ep — E;} . (5.43)

In the Fermi’s golden rule, energy is conserved, so the initial and final states have the same energy,

Er = E7, and we obtain:

Mpr =Y (F | Hig ) (m| By |12) (1| i | 1)

(Er — Ep) (B, — Er) (5.44)

m,n

We now substitute the expression for Hipe while keeping only the terms that correspond to ph — pl

61



V' Plasmon lasing

— ph processes with different photons:

(F|Valm) (| Vi) (n| Ho_i| ) (F|Valm) (m] Ho ) (n| Vi 1)
Mer= ) e B (B Br) T2 (Br— B (Ba— By)

m,n

CFIVhlm) ol Valn) (n He 1) (FIVhlm)m] B o) (] Vol )
*Z (Br —Bn) (Bn—Fp) T2~ (Br—Ey) (B Er)

T (F|He—pi|m) (m|Va|n) {n|Vy|I) Y (F|He—pi[m)(m|Vy|n) (n|Va|I)

(Ep — E,) (E, — Ef) (Ep — En) (En — Ey) (5.45)

m,n m,n

We can look at the terms in Eq. (5.45) as diagrams of the form shown in Fig. 5.6 and use Feynman

rules to calculate the matrix element®. The rules are:
1. With each internal fermion line, associate a wavevector k;
2. Conserve wavevector at each vertex;

3. Assign at each vertex the respective interaction matrix element:

e 2me
—vp AT (0 1,/ ——— 5.46
oA O) /g T 1= (5.46)

e 2me

EUFAq(O),/nq TqaS | (5.47)

(a) plasmon vertex

for plasmon emission and

for plasmon absorption;

(b) photon vertex

qu\/n] ZZZA”*F’” (k —a;,k) , (5.48)

. /
k; k s,

for photon emission and

qu\ﬁZZZAx J(k+a;,k) | (5.49)

k; k s,¢
for photon absorption;

4. Multiply by the factor (71)F+n, where F is the number of closed fermion loops and n the

number of vertices®;

5. To each vertex assign the respective fermion occupation number;

50nly the first two are shown, the others are obtained by permutations of the vertices.
5This can be seen explicitly if we say that the initial state is:

|, N1, .o, Not, .. Na, ..., N3) = (—1)”| Ny, Nov, Na, N3, ...) (5.50)
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5.4 DF-generation of plasmons

6. Choose an initial state. Assign the propagator to the first fermion line:

1

7 5.55
E B (5.55)
where E, is the energy of the intermediate state and E; the energy of the initial state;
7. Choose an initial state. Assign the propagator to the second fermion line:
1
5.56
oyl (5.56)

where FE,, is the energy of the intermediate state and Er is the energy of the final state.

5.4.2 Plasmon emission/absorption

In a non-equilibrium situation, we have electrons in the conduction band and holes in the valence
band, so the initial state for the process can be any state filled with an electron. For example, in

the diagram in Fig. 5.6 we could have:
1-3—-2—>1 or 2—51—-3—>2 or 3—-1—-52—3. (5.57)

All these permutations and different channels are encoded in the sums in Eq. (5.45).
Consider Channel I from Fig. 5.6, with plasmon emission by the electronic transition in the

conduction band. This process is composed of interactions with permutation:
BN b(absorption) 2, pl(emission) 2, a(emission) L (5.58)
We discard terms that do not respect this permutation. The initial electronic state is:
|i) = |N1, Nor, No, N3, ...) . (5.59)

As discussed above, the photon a can be emitted in reflection or in transmission. For SPP emission,
both cases contribute, so one should consider the total field. If absorption by graphene is ignored,

the photon modes relevant for the emission of SPPs are the incident modes. Using the Feynman

Thus, the matrix elements introduce for example:

(3|Vo|I,1) = (=1)*" (N1 — 1, Nar, Na, N3 + 1|chei| N1, Nor, Na, N3) = (—=1)% (1 — N3) Ny (1)1 NtV (5 57

5.52)

(

(2| He—p13) — (=1)*" (N1—1, Nor, No+2, N3|ches|Ni—1, Nor, Nz, Na4-1) = (=1)%P (1 — Ng) (—1)N 71N FN2 () Nim1N
(
(5.53)

(F,1|Va|2) = (—=1)*" (N1, Nos, Na, Ncle2| Ny — 1, Nyr, Na + 2, Ng) = (—1)* (1) =1+

so when multiplied the sign is positive:

(F,1|Va|2)(2|He—1|3)(3|V|T,1) — (1 — N2) (1 — N3) Ny (5.54)
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rules, the contributions from Channel I to the matrix element Mg are:

e 3 i 2mc
Cr = (Sor) Al AZ )AL i /g T 1/, + 1) | <dqa,a,
c LqwqS

XD Ster+ay i +a, ke F-11 (K1, Ka) Fip (Ko, ks) Fy 1 (ks k1)
ks ks

X( N (1= N3) (1= Na) Ns (1= No) (1= N1)

(hwa — €Ky = €ky) (Eks + €1y — Bwp) — (Eky + €y — Pwy) (Awg + €1y — €xs)
Nz (1 —Nyp)(1—Ns) >

(hwq t ek, — Eks) (hwa — €k — Ekz) .

_l’_

(5.60)

The sums over k; are dropped because only the incident fields contribute to generation of SPPs.

For Channel II, the process is of the form:
SN b(absorption) N a(emission) 25l (emission) N (5.61)
so the contribution from this channel is:

e 3 i 2mc
Cy = (7UF> 1 Aq (0)AL, /i, /g + L/, + 1y | 7———<0q.a,-a,
- LqwqS

XD Ska—ayder Oy ka—a, Fo1,-1 (K1, ko) Fo1 (Ko, Ka) Fi 1 (ks, ki)

ko ky/
Nj (1= N3)(1— No) N3 (1— No)(1—DNyq)
X +
(hwq + ek, — 5k1> (€ks + €K, — Awp)  (Exg + €k — Tuwp) (hwa —EK, — 5k3)
n Ny (1 = Nip) (1 — N3) (5.62)

(hwa — €k, — Ekg) (hwq + €k, — 5k1)
Finally, we average over quasi-equilibrium electrons to yield the quasi-FD functions. For example:

Ni(1—N3)(1—N2) = fo (ki) (1= fe(ks)) (1= fe(ka)) , (5.63)

The elements Aj - in Eqs. (5.60) and (5.62) are given in Eq. (5.33). As explained in the Appendix
(G.1), the normalization factor:
2rhe? 1/2
<WC> (5.64)

w;n?V

corresponds to one photon in a volume V. If we have a beam of cross section & and the laser is

placed at a distance R from the sample, then V is the volume of the beam:

V=8xR. (5.65)
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5.4 DF-generation of plasmons

If the laser power is P and it generates photons with wavevector k =

this volume is:

where:

k;, the number of photons in

(5.66)

(5.67)

is the time that it takes a photon to reach the surface where it is removed from the beam (either

reflected or absorbed). Using expressions (G.35) and (G.37), for the electric and magnetic fields,

the space average of the Poynting vector operator,

~ c ~ ~
P ,t:—(E H) 5.68
(r.0) = 1 (B x (5.69)
is:
~ C 27'('}7,(,{)1{ 213 PPN N
p { blb }k
=3 () (e
The expectation value for the state |ny)
5\ _ J
(P) - ave (2 + 13K (5.69)
As g, > 1
N hew N N
(P)~ ks = Lk (5.70)
Here I; is the intensity:
hcwj
Ij = V77 ’n,k]. (571)
Therefore, the final expression for the matrix element Mg in the case of emission is:
Méﬂ—; =C1+ 0y
2mhe? /2 he? /
The The COS (p COS Qg /N, nkb\/nq+1\/nk +1 qu —q, Mk
Vwb
c hecwpny, |hcwgnk, ke
~ wawa\/ 7 b\/ ‘C} “ /Mg + 1 cos oy cos g | S5qu a, Mx
27e he
= V Iplgr\/Mq + 1 cos oy cos g S —<0q,q,—a, Mk » (5.72)
WpWg

where «; is the angle of incidence of field j, I, and Ij are the intensities of the incident optical fields
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a and b and:

e 3 2mc
My = <*UF> E E Oks kt+q,Oktaq, ke Fo1,1 (K, ko) F1 1 (ko, k3) F1 1 (k3, k)
c Lqwq

k3 ko

( fulex) (1 — feley)) (1 — felex,)) n felexs) (1 = felexy)) (1 = folex))
(hwa — €k — €ky) (Eky + ek — Iwp) — (€ky + Kk — wp) (g + €k, — Eky)

N felexy) (1 = fulex)) (1 = fe(exs)) )
(eky — Eks + fwq) (Awa — ek — €x,)

D Oy Oy —q, Fo1,-1 (K ko) Foy (ko k) Fr g (K, ky)
ko ky/

f'l)(gkl/) (1 - fc(ek)) (1 - fv(5k2/)) + fc(gk) (1 - fv(5k2/)) (1 - fU(ekll))
<hwq + ey, — €k1,> (€k + €k, — ﬁwb) (Ek +ek, — hwb) <7§wa — &), — gk)

n fv(gkzl) (1 - fU(Ekll)) (1 - fC(gk))
(hwa — €y, — 5k> (hwq + €k, — Ekll)

(5.73)

For the situation where a plasmon and a photon a are absorbed and a photon b is emitted,
the result is similar to Eq. (5.72) as expected, since the electronic transitions are the same (only
the direction of the arrows is different, but since this is third order process, the minus sign cancels
out). The only true difference is the occupation number for the fields a and b and the plasmon field:
in this case, plasmons are absorbed and photons of frequency wj are emitted to the reflected field
and transmitted fields, so the final occupation number of plasmons is nq instead of ng + 1. For
the photons, if absorption is ignored the total field at the interface should, again, be equal to the
incident field so the the occupation numbers to be consider are again n, and n; and the matrix Mpg;

in the case of absorption is

_ 2me he
M}I) = \/E\/@cos ay €os g\ [ = 0q,q,—q, Mk - (5.74)

WpWa S

If the reader is not convinced that indeed this is the case, consider the sum of both reflected and

transmitted photons of frequency wy:

A" Jragn T AP fny i 41

where Al((‘?’x is the field amplitude in Eq. (5.33) with j = R, T and ny (1) and n, (r) are the occupation
b b

2
: (5.75)
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numbers for transmitted and reflected photons. Using Eq. (5.71), this sum can be written:

/ 2 2
(1), (R),x | 27mhe 2mhe
Ay, \/W + Ay, \/W ~“\ Ve \/Wcos Oy + \/TL%COS ab\/W
(T)
2 I;
~ izc \/Tcoseb‘i'\/FCOSOéb
wp n

2 /T 0
= —W;Ibcosab < - o8 —l—\/]i:{) )
wj 7) COS

Ignoring absorption in graphene, the reflection and transmission coefficients satisfy Eq.(C.15):

rj =1 — secay cos Opt; | (5.76)

so that the sum becomes:

(). (R).x _ [2mc
Ay, /nkgT) + 1+ 4y, /nkéR) +1= w—gIb cos oy (5.77)

that is the sum of transmitted and reflected photons, in zero-th order, equals the incident photons.

5.4.3 DF plasmon emission rate

We now have all the necessary tools to calculate the frequency difference emission rate of a SPP

with energy-momentum coordinates (wq,q). Using Eq. (5.72), the emission rate of plasmons, I‘g ),

becomes:
F(H—Mfl(n + 1) cos? ay, cos® ag Mpp ( )0 (hwp — hw, — hwg) (5.78)
sp wgwg bla q b aMIDF \4, g, Ap b a a) > .
where:

1
Mpr (q,44, q) = 5q,qb—qa§ Z ’Mk|2 . (5.79)
k

In Eq. (5.79), the summation is over the electronic sates. The rate for plasmon absorption is
obtained using Eq. (5.74):

_ omc)?
ng) = (walIbIanq cos? o cos? ag Mpr (q, 4y, Q) 6 (hwp — fiws — Tiwg) - (5.80)
b™a

The DF-generation rate in the master equation is:

_ omc)?
I'pr (q) = Fg;) - ng) = (wgw)Q Iy I, cos? ay, cos® ay Mpr (Q, Qg ) 8 (Fiwy — hwa — hwg) - (5.81)
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Figure 5.7: TI'pr (ps™!) as a function of time delay ¢ between the pump and probe and the
frequency difference w. The dynamical evolution of hot carriers is described using the hot electron
model from Section 4.2. The calculation was performed for the same conditions and parameters as
in Figs. 4.2 and 5.5. The red dashed line is the time-dependent SPP dispersion curve calculated
using only the intraband conductivity (B.28).

To introduce losses and the corresponding broadening we replace the Dirac §-function by a

Lorentzian: .
(5 (hOJb - hwlz - hﬁdq) — 7h 71058((3) 2 ) (582)
n (wb - wa - wq) + f)/]oss(q)
where 7joss = —7sp(q), and write:
2mc)?
I'pr(q) = (71w2)2lb1“ cos® ay, cos® a, Mpr (q, q,, q) fﬂozs(q) 5 . (5.83)
Ty Wy (w - Wq) —+ Wloss(q)

Ysp(Q) is obtained by considering complex solutions, ws, = wq + i7sp, for the dispersion equation
and w = wp — w,. In Fig. 5.7 we plot I'pr as a function of w and time. To obtain Fig. 5.7, the
integral in Eq. (5.79) was calculated numerically. The calculation is quite time-consuming and was
performed in the following way: the electron dynamics was determined using the hot electron model
for w = 0 and it was used to calculate I'pg for all other frequencies. To put it in another way, the
situation simulated was the one with a pre-pump at w = 0 and then the frequency of field b was
varied, wp = wg + w. This is a somewhat different from the Constant et al. experiment, where the
field b and the pump are the same. The latter would require the simulation of the electron dynamics

for each w.

The final form of the Eq. (5.5) for the SPP population is:

dng

dt =14 (q) + F2(Q)nq + 11DF(CI) - ’Yloss(q) (nq - ngq) . (584)
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Figure 5.8: Evolution of ng. Left: solution of the master equation (5.84) without the DF
generation term. Right: evolution with DF term. The calculation was performed for the same
conditions and parameters as in Figs. 4.2, 5.5 and 5.7. The red dashed line is the time-dependent
SPP dispersion curve.

Its numerical solution was performed as above: the electron dynamics was determined using the hot
electron model for w = 0 and was used to solve the master equation (5.84) for other frequencies.
Only the intraband conductivity is used to model the SPPs since the interband contributions are
contained in I'y and I's. Figure 5.8 shows how the SPP population evolves with and without the
DF generation term. Clearly, the presence of the beams b and a with the right frequency difference

contributes to the steeper growth of the resonant SPP mode.

5.5 SPP assisted light scattering

The emission of photons a into the reflected beam is stimulated by the presence of the reflected
beam. Thus, in the calculation of the emission rate of photons a for reflection, we consider the field
at z = 07 and the relevant mode is the reflected mode, (wa, k((lR)>. Obviously, the full electric field
b contributes, so the incident mode for field b is considered. Hence, for this case, the matrix element
Mpy is:

2 h
Mp; = e Iﬂémmcos ay, COS aa\/géq’qbank (5.85)
bWa

W,

and the rate of emission of reflected photons a is given by:

Voss (Q)

3
& — m[ (R . )
(w - w‘l) + 712()ss(q)

a 2 9 blqg
mhwjwg

(nq + 1) cos? ay, cos® ay Mpr (q, q,, ) (5.86)
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Here, LSR) is the reflected intensity, related to the incident intensity by:

1B = RO, (5.87)
2
where RSP) = r((lo) , with r((lo) denoting the linear reflection coefficient defined in Eq. (E.31).

To estimate the change in differential reflectivity due to this generated photons, we shall assume
coherence of the generated and reflected photons (having the same frequency and 3D wavevector), i.e.
the absence of any phase shift between the electric fields associated with them. In this approximation,

the correction to the reflected field due to the generation of SPPs is approximately:

T b,

E®) ~
a S I

(5.88)

that according to our assumption, is in phase with the reflected field (photons that only interact

with the substrate):
Pl
EB) — p0), [ a 5.89
a ra S ) ( )

where P! is the incident power. Consequently, the reflectance is:

2
B8 + B

"+ 2 Re {EgR>E<3>}

EIi

~(0)

a

~

=T

2(0)  [(R)
_ R(o) 49 Ta Iy hw,
a ‘Eé‘r) ‘ S 9

is the incident field amplitude:

where )EC(LI)

a

P
_ \/: , (5.90)

The contribution to the differential reflectivity is then:

‘ j50)

(5.91)

According to this expression, using the results from Figs. (5.7) and (5.8), the generation of plasmons

should give a contribution of the order of:

AR,
Raq)b

~ 1072 mJ tem? | (5.92)
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as measured by Constant et al. In calculating (5.92) we used PaI = I, Agpot, where Agpop is the

effective spot size area of the beam in the sample (see Section 1.1).

5.6 Concluding remarks

With our model combining two mechanisms of generation of graphene plasmons, we have been
able to explain, for the first time the high values of differential reflectance observed in Ref. [1]. The
key point is that plasmons of different momenta and energies, which are generated by hot carriers’
relaxation, facilitate the resonant difference-frequency process that leads to the enhanced generation
of a particular type of SPPs and also affects the probe beam. The former is the goal of this work,
while the latter is just the means of its registration. As discussed in Chapter 3, there can be other
possibilities for (more direct) detection of the generated plasmons. However, the understanding of
the high differential reflectance of the probe beam validates the idea of simultaneous action of two
mechanisms of the SPP generation.

The theory presented in this chapter can be developed further by using a density matrix formalism
instead of the master equation with the DF rate calculated by Fermi’s Golden Rule. Such an
approach was proposed in the past to describe the dynamic absorption spectra in femtosecond

pump-probe experiments [48] and stimulated Raman scattering [49].
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Chapter 6
Experimental generation of SPPs

Generation of SPPs using an all-optical setup proved to be a much bigger challenge than we
had anticipated. The major difficulty was setting a detection scheme sensitive enough to reveal the
presence of the excited SPPs. The best approach to study the DF-generation of SPPs in graphene
is to record the changes in reflectivity, as was done in Refs. [1, 13]. Why measure the changes
in the reflectivity and not in the transmission? The reason is that the probe may suffer changes
as it propagates through the substrate, thus contaminating the transmission signal with substrate
effects. On the other hand, the reflection travels through air and no extra effects are introduced in
the probe.

In this chapter, we present the experimental work done and discuss the techniques used. Two
approaches to generate the SPPs via frequency difference process were explored: DF-generation
using chirped pulses and tuning of the pump frequency using optical parametric amplification.
Also, two detection methods were tested: a lock-in amplifier and a boxcar averager with balanced
photodetection. Unfortunately, because of several unexpected problems that appeared along the

way, we have not yet successfully generated SPPs in graphene.

6.1 DF using chirped pulses

The initial proposal to generate SPPs in graphene involved the use of chirped pulses. A chirped
pulse’s electric field, E(t), has a phase term ¢2 quadratic in time [50]:

E(t) = Eog(t)e™0te=i021" (6.1)

where ¢(t) is a wavepacket function, Ej is the field’s amplitude and wy the pulse’s central frequency.
For a Ti:sapphire LASER, this quadratic phase term represents a time delay between the frequencies
of the pulse, in other words, different frequencies arrive at different times. The pulse instantaneous

frequency as a function of time ¢ is:
v(t) =1y — —t, (6.2)



6.1 DF using chirped pulses

Figure 6.1: DF-generation using two chirped pulses, with equal quadratic phase term ¢5. By
changing the delay time between them, the instantaneous DF (Aw = 27vpr) changes.

Delay Line
—J
Graphene@
Ti-Sa Laser >tretcher |:| A

Figure 6.2:  Optical setup for generation of SPPs in Graphene using chirped pulses. The

Ti:sapphire LASER emits a pulse with a zero quadratic phase term ¢ = 0. A stretcher is
used to introduce a nonzero ¢o, chirping the pulse.

where v, = wp/(27). Two chirped pulses, b and a, with equal phase term ¢2, can interact at a fixed

frequency difference,
VDF (A) =1 (t + A) ez (A) = —%A R (63)

by changing the time delay A between them, as shown in Fig. 6.1. With this approach, SPPs could

be excited at controlled frequency vpg.

The thought optical setup to implement this idea is shown in Fig. 6.2. The pulse is emitted by
a Ti:sapphire laser with negligible chirp,

E(t) = Eog(t)e™ ™0t (6.4)

Using a stretcher [51, 52|, a phase term ¢ is introduced, stretching the pulse in time, as represented
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in Fig. 6.2. The stretched pulse is then split into two that impinge on the graphene sample at
fixed angles. By changing the delay line and the phase term ¢2, one can leverage the instantaneous
difference frequency (6.3) to match the SPP resonance. This is a compact and simple method to
excite SPPs in graphene that does not require tunable pulsed lasers, which are expensive, large and
rather hard to operate, with the SPP frequency tuning done just by changing a delay line.
Nonetheless, this approach has one drawback: for a Ti:sapphire LASER, the pulse spectral width
is approximately 5 THz, giving a 10 THz narrow window for SPP excitation. Besides, for such small
frequencies, the SPP momentum is also small, which requires small incident angles. Measuring the
reflectivity in an optical system with small angles is a challenge. Moreover, at the time, it was
unclear if we could detect the presence of SPPs. As a consequence, this idea to use chirped pulses

was abandoned and we decided to follow a similar approach to Ref. [1].

6.2 DF using an optical parametric amplifier

As discussed in Section 5.2, the SPP dispersion will change over time and, as a consequence,
it is not easy to correctly predict at which DF is the SPP resonance. To find a resonance, it is
important to have a tunable way of scanning the frequency space. This can be done with an optical
parametric amplifier (OPA), that can change the output frequency of an otherwise fixed femtosecond
laser system. The OPA we used in the lab was the TOPAS-C (see Appendix J).

The setup in mind to reproduce the experiment is shown in Fig. 6.3. A Ti:sapphire LASER,
at wavelength \g = 794 nm and 80 MHz repetition rate, seeds the amplifier, which outputs 100 fs
pulses at wavelength A\, = 800 nm, at a one KHz rate. This output is split into two beams b and a.
Beam a goes directly into the sample while b is used for TOPAS-C. The latter changes the output
frequency to Ay and is used to scan the DF and find the SPP resonance. The presence of SPPs is
found by detecting changes in the reflectivity.

The open question is, can we set up a detection scheme sensitive enough to detect the optically
excited SPPs, through changes in the reflectivity? From Constant et al. results [1], this seems a

difficult task, so it is important to understand if we can do it, before proceeding any further.

6.3 Testing sensitivity

Since the reflectivity of graphene on glass, Ry, is of the order of 0.03, from Fig. 1.2 we may

estimate the variation of the reflectivity, AR, to be of the order of:

AR
AR = ( —— | Ry® ~ 0.06 x 0.03 x 0.1 ~ 107% . (6.5)
Ry®

Thus, to detect the generation of SPPs, through changes in the differential reflectivity, we must at
least have the ability to detect signal variations of 10~ in magnitude, relative to the background.

This requires a sensitive experimental apparatus. Therefore, it was decided to perform an interme-
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Figure 6.3: Optical setup for generation of SPPs in Graphene using the amplifier and TOPAS-C.
The Ti:sapphire laser seeds the amplifier and the output pulse is used to excite SPPs and seed the
TOPAS-C.

diate experiment to determine how sensitive the set up mounted in the Femtosecond Laboratory of
the CF-UM-UP could be.

The designed experiment is a simple sum frequency (SF) experiment [12] (see Fig. 6.4). Two 84
fs Ti:sapphire laser pulses, a and b, at wavelength A\g = 794 nm are focused on a BBO crystal, using
a spherical lens with 2.5 cm of focal length. The beams are focused at equal angles 6, = 0, = 20°. A
SF-signal is generated at wavelength, A\; = 397 nm, and propagates at angle & = 0°. To control the
phase matching between fields, the BBO crystal was mounted on a rotating stage to allow control
of the angle WU. The crystal used was bought from Eksma Optics [53|. The goal of the experiment
was to measure the power depletion of beam a. This measurement was carried out using a fast
photodetector and a lock-in amplifier, whose principle is explained in Appendix I.

Although BBO is a very efficient medium for SF-generation, the power depletion, AP,, should
be small compared to the incident power, P!. For the geometry shown in Fig. 6.4, we may estimate
this power depletion. For P! ~ PbI ~ 10 mW, the measured power of the SF-signal was Ps = 60 xW.
From the Manley—Rowe relations (see Appendix H for details), the power depletion should then be
of the order:

AP, ~ % — 304V . (6.6)

This corresponds to a power variation AP, /P! ~ 1073, This experiment has two main advantages:
1. The SF-signal is visible by eye, making the alignment of the setup easy.

2. The SF-signal is proportional to the product of the powers of the incident pulses (see Appendix
H):
Py x Po by . (6.7)

This means that if both P, and P, are lowered by a factor of 10, the SF-power and the
power depletion will drop by 100, thus allowing us to easily test the sensitivity of the fast
photodetector + lock-in amplifier system.
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>
Lens BBO

Figure 6.4: Sum frequency generation in BBO crystal. The Ti:sapphire laser pulses are the
red arrows and the SF signal is the blue arrow. 6, and 6, are the incident angles and ¥ is the
crystal’s rotation angle. (Top) Geometry of the problem, side and top view of the crystal. (Bot)
Experimental setup.

A detailed description of the BBO as well as a semi-qualitative calculation of the SF-generation rate

in the context of this experiment are given in Appendix (H).

The photodetector used has a fast response, with a rise time of 1 ns [54|. To estimate the
intrinsic noise of the photodiode, we used a tektronix oscilloscope with a 500 MHz bandwidth to
acquire the data fastly. Since the pulses had a time width of approximately 100 fs, what we saw
in the oscilloscope was the photodiode’s RC' response convoluted with that of the oscilloscope. We
acquired in total 32967 pulses, at sampling rate of 20 GHz, and integrated the signal of each pulse.
The obtained average value was:

A=1.49+40.02mV . (6.8)

Using this value, we estimate the noise of the measurement using the photodetector to be around
1%. For a small signal with a magnitude of 107>, this corresponds to a signal to noise ratio (SNR)
of 1:

1075
Hence, in order to measure such small signals, the lock-in must be of capable of removing at least
60 dB of noise. This is possible, if in the lock-in amplifier we set a time constant of 1 second and a

60 dB/decade filter.

!The definition of the dB unit is given in Appendix (I.1).
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Figure 6.5: Measured pump depletion signal. These results were obtained in the early runs. At
each run, the power is cut down. The legends in the images are the incident power of beams a
and b, (P!, P/). The last image is a combination of the 3 runs, for comparison. As it can be seen,
the oscillations appear on top of the pump depletion and seem to be random. Furthermore, they
do not go down with P! Pf.

6.3.1 Results

The first results obtained are shown in Fig. 6.5. On top of the pump depletion signal, we observe
oscillations that do not decrease with the incident power, PL{ Pbl , contrary to what was expected.
These oscillations seem to be linear and to some degree random in nature since they do not match
for different runs. Although we do not know exactly the cause, these oscillations might be modulated
scattered light that somehow finds its way to the photodetector and interferes with the main beam.
The scattering mechanism must have its origin in an interaction between the beams, because if the
beam a is blocked, these oscillations disappear, so it cannot just be the light scattered from the

surface (see Fig. 6.6).

To make sure that the oscillations were not caused by bad alignment, the optical setup was

realigned. The oscillations disappeared and the results obtained are shown in Fig. 6.7. The observed

7



VI Experimental generation of SPPs

1.75
1.501
~ 1.251
31.001
©0.751
(@)}
& 0.501
0.251
0 . 0 0 ‘w-...-u..'-.'“.'...

}

(12.8,10.22) mW

b,
e

fits CNO|

—150 =100 -50

t (fs)

50 100 150

1.75
1.50 iy
= 1.254

2 1.00

©0.751

k=)

»n 0.501
0.25

0.001

~150-100 =50 O
t (fs)

50

100 150

Figure 6.6: (Left) Pump depletion. (Right) Pump depletion (same as in the left) (blue) plus the
result when beam «a is blocked (red). This result shows that the oscillations cannot be attributed
only to simple scatter of light from beam b.

behavior is as expected. The results were taken during the same day. For the second situation, the

total power was reduced approximately by a factor of 10. We were able to detect signal variations

down to:

1073

AP, 0.08-
pPI =

1.85

~107°,

(6.10)

as desired. Nonetheless, it is clear that there are considerable fluctuations. In principle, the results

can be improved by a more careful alignment and by increasing the time constant and filter roll-off

in the lock-in, so the sensitivity of the measurement can be improved if needed.
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Figure 6.7: Measured pump depletion signal. The legend shows the incident power of each beam (P!, PbI ).
The situation on the right has the total power reduced by a factor of 8.369 relatively to the situation on the

left.
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Figure 6.8: Expected signal fluctuations in the differential reflectivity. (Left) Differential reflectivities
calculated using the hot electron model of Sec. 4.2. The parameters are the same as in Fig. 4.2. The curves
were calculated for different fluence f®,. The blue line was calculated with a correction factor f = 1, while
the red and green lines for f = 1.1 and f = 1.4, corresponding to fluctuations of 10 and 40%, respectively.
(Right) Same as in the left plot but the differential reflectivity is normalized by the pump fluence.

6.4 Aligning TOPAS-C

After concluding that the lock-in amplifier could be used to detect small changes in the reflectivity
due to the presence of SPPs, we went on to aligning the setup in Fig. 6.3, including the TOPAS-C?2.
The main difficulties encountered in setting the TOPAS-C were finding the correct position of the
lenses to focus on the nonlinear crystals as well as the right crystal and beam angles for phase
matching. Since TOPAS-C is built in a very compact way, these tasks are challenging. The easiest
way to perform the alignment is to remove most optical components and then reinstall them, one
by one to ensure that the beam goes in a straight line and is centered in the lenses. Even with this
approach, problems appear because the lenses are not normal ones: depending on the lens rotational
angle, the focal point changes. Moreover, the input pump must have a good spatial and temporal
profile to ensure maximum efficiency and stability. Therefore, the optics before the TOPAS-C,
especially the amplifier, must also be correctly aligned.

In the end, the TOPAS-C was not properly working. The output pulses had a nice spectral
shape, but the output power was very unstable; power fluctuations up to 40% in the course of one
second were observed. We looked for the problem but have not found it. Additional alignment of
the TOPAS-C did not lead to any considerable improvement. The problem must come from the
amplifier.

The power fluctuations of the pump are a serious problem because the hot electron signal is
nonlinear and consequently it also fluctuates. This fluctuations are not removed by the lock-in,

since they are intrinsic to the signal. The solution is monitoring the output power of TOPAS-C,

2 Aligning the TOPAS-C alone took us a month.
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VI Experimental generation of SPPs

pulse by pulse, and normalize the signal to the pump fluence, pulse by pulse (see Fig. 6.8). This
is not possible with the lock-in. Moreover, the lock-in was tested in an experiment using a laser at
80 MHz rate. Will it work as well at a 1 KHz rate? In principle, the lock-in should still be capable
of removing the same amount of noise as determined before, but it will take more time to stabilize

since the sampling rate is much lower. Consequently, the detection scheme needs to be changed.

6.5 Balanced detection

In spite of knowing that the problem was in the amplifier, it was unclear where it came from and
fixing it could take months. As a consequence, we decided that normalizing the signal to the pump
(TOPAS-C) fluence was the best approach. For this, we needed a way of both measuring the probe
and monitor the pump power, pulse by pulse. This can be done using two photodetectors, one for
the probe and another for the pump. The signals from the photodetectors are integrated separately
using two boxcars and are divided, pulse by pulse, posteriorly in the computer. The used setup is
shown in Fig. 6.9. The operation principle and functioning of the boxcar is explained in Appendix
K.

Since the experiment required increased SNR, the probe was measured using a balanced photode-
tector, which has the ability to cancel common noise and detect small signal fluctuations in a large
DC signal. This detector uses a reference and a beam with the signal to be measured, in our case
the reflection from the graphene sample. The two photodiodes in the balanced photodetector are
identical and connected in such a way that their photocurrents cancel. The output of the balanced
pair is zero until there is some difference in the intensity of one of the beams, causing the pair to
become unbalanced and a net signal to appear in the output. Consequently, common-mode noise
that is present in both the reference and signal beams is cancelled out and does not appear as part of
the signal. On the other hand, any imbalance between the photocurrents generated by the reference

and signal detectors is amplified and is seen as the received signal.

6.5.1 Use of the boxcar SR250

To integrate the pulses, the boxcar used was the SR250 [55], which is an analog model, with
associated limitations [56]. This model does not have graphical user interface, so the SR245 is used
to communicate via PC. The SR245 can communicate simultaneously with two SR250, and can
store in its memory 3711 integrals (1855 from each boxcar). If one wants to acquire more data, the
information in the SR245 needs to be exported to the computer and its memory emptied.

To communicate with the SR245, a communication interface with computer is needed. The
easiest to use is the GPIB, but for an unknown reason, when data is scanned, the return values
between channels (fast photodiode and balanced photodetector) are not synchronized. In other
words, the two boxcars are not interrogated at the same time, so while one boxcar sends a value

only after a pulse was integrated, the other would answer earlier or later, and return a value for
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Figure 6.9: Second approach to detect generation of SPPs. The changes in the probe are measured
using a balanced photodetector. The pump power is monitored by a fast photodetector. Two
boxcar averagers SR250 integrate the signals and send them to the SR245 computer interface
module. This module sends the data to the computed where the integrated signals are divided.

the moment when no pulse was present. As a consequence, the channels are not correlated and the
signal cannot be normalized.

In the end, we had to use the RS232 interface, which is older and less friendly than the GPIB.
For a baud rate of 9600, this interface worked fine when the data was downloaded value by value.
This takes a long time; for example, for a scan of 1800 pulses in each boxcar, which corresponds
to 1.8 seconds, it takes approximately 1 min to fully download the data to the computer. A much
faster option is to download the full data from the SR245 in a 2 byte binary format. However, a
timeout error appeared and the download always failed. We do not know the origin of this error,

but it is something to be fixed to optimize data acquisition.

6.5.2 Testing the balanced photodetector

We used the Nirvana auto-balanced photoreceivers, Model 2007 [57]. According to the detector’s
data sheet, this model is capable of reducing common noise in 50 dB at frequencies from DC to 125

kHz. The device measures the difference in power between the reference and signal photodiodes:
Sig = Psig — Dret » (6.11)

where Py, and Pt are the incident powers on the signal and reference photodiodes, respectively.

The device has shown some problems in the past and we were not confident if it would perform
well. To test the device, we set up the experiment in Fig. 6.10. The goal was to verify Malus’s law,
using the unstable TOPAS-C, and measure the balanced photodiode output, Sig(#), where 6 is the
polarizer’s angle. At each 6, 500 pulses were integrated. The polarizer was mounted in the signal
beam’s path.

Figure 6.11 a) shows how the measured voltage fluctuates with each pulse, for a fast photodiode
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Figure 6.10: Balanced Photodetection Setup.

and for the balanced photodetector. At a first look, it seams that the balanced photodetection
yields a much more stable measurement, effectively removing common noise. The noise in the fast
photodetector is given by the standard deviation of the measurement. With this detector, the

measured mean, p1, and the standard deviation, o, were:

H1 =~ 390 ILLW y
o1 ~ 40 W . (6.12)
The ratio between the signal and full background is:

01

— ~01=10% . (6.13)
251

This means that the fast photodiode can detect signal variations down to 10% in the TOPAS-C.

Smaller changes are completely washed out by the noise.

To estimate the rejection in common noise by the balanced photodetector, we used the results
in Fig. 6.11 b). The plot shows Sig(#) (blue dots with error bars) and the fit function (black line):

Sig(0) = Prer {rcos®0 —1} , (6.14)
where P,r and r are fitting parameters. r is the ratio between the incident powers,
Py (6 =0)
r=—" 6.15
Pref ( )
The fitted values are:

r=104 , P=187.4uW

with negligible uncertainty. Close to the balanced state (6 = 10.5°), the standard deviation of the
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Figure 6.11: (Left) Measured pulse power from TOPAS-C. In total, 500 pulses were acquired. The orange
dots are the power measured with the fast photodiode and the blue dots, with the balanced photoreceivers.
(Right) Signal measured using the balanced photodetector for different angles 6 of the polarizer. At each
0, 500 pulses were acquired. The blue dots with error bars are experimental data while the black line is
resulting fit. The horizontal dashed red line shows the perfect balanced region.

measurement is oo = 0.5 pW. Thus, the ratio between the signal and full background is:

72 ~3-107% = 0.3% . (6.16)
Vo
The balanced photodetectors improved the noise-background ratio from 10% of the full scale down

to 0.3%. We estimate the rejected common noise (RCN) to be:

RCN = 20logy, ( ]‘;2

ref

> — 201logy, (‘”) ~32dB . (6.17)
M1

This is lower than what is expected to be the full capacity of the Nirvana auto-balanced photoreceiver.
In principle, the rejection of noise could be improved by injecting the beams using optical fibers,
instead of free space incidence. There is a chance that the detector is broken. In fact, the device shows
a weird behavior: when more light goes to the signal photodiode than to the reference photodiode,
the signal blows up and goes to a DC value. To get it working again, the power ratio needs to be
readjusted and the beams have to be blocked, so that the detector has time to completely discharge.

Only then it responds again. This behavior is unexpected and its origin is unknown to us.

Is the balanced detector + boxcar averager system sensitive enough to detect SPPs? It is difficult
to answer this question, but it is possible to estimate the sensitivity of the measurement in a best
case scenario. To detect SPPs with a SNR = 10, the detection must be sensitive to changes of the

order of:
P, sig — P, ref

~107° 6.18
Pref ( )
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in magnitude. For this to be possible, noise must be lowered to:

201og;, (107%) — 20log ( =

ref

) ~ —50 dB . (6.19)

Considering laser noise only and assuming that it behaves as a white noise, to remove 50 dB of noise,

the number of acquired pulses N must be at least (see Appendix K):

2
UQ/Pref 4
( e ) 0 (6.20)

6.6 Problems to be solved

A lot of work still needs to be done in order to be capable of generating and detecting SPPs.
According to the estimates from the previous section, to detect changes of the order of 1072, we
need to acquire about 10* pulses. We have performed performed the experiment in these conditions,
but never saw a signal that corresponded to either SPP generation or hot electrons. Clearly, more
pulses need to be integrated to improve the statistics. The problem is that it takes approximately
6 minutes to acquire 10* pulses, so, if for example we want to increase the acquisition number by
a factor of 5, the acquisition time would increase to 30 minutes and the experiment would take too
much time. Thus, data acquisition must be improved and to do this, the timeout error mentioned
in Subsection 6.5.1 must be fixed.

Moreover, the amplifier needs to be fixed: the origin of the instability must be found and cor-
rected. This will change the conditions and will require a fine tune of TOPAS-C, which will have to
be calibrated again. Finally, we must find an easy way of knowing if the pulses arrive at the sample
at the same time. Using a NL crystal, such as BBO, this is easily done by finding the SF-signal,
generated when the pulses are superimposed in time. However, this approach only works for small

incident angles. For larger angles, the phase match condition is never satisfied.
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Chapter 7

Conclusions and outlook

This master thesis focused on understanding the nonlinear generation of SPPs in graphene, using
high intensity 100 fs pulses. A theoretical model was proposed to explain the observations in Ref.
[1] and experimental work was also carried out in an attempt to study the process in more detail.

In the first part, we attempted to understand the second-order NL response of graphene and
how one could leverage this response to excite SPPs. In particular, the DF conductivity was calcu-
lated using perturbation theory. The obtained formulae, derived in Chapter 3, predict a response
three orders of magnitude weaker than the experimentally estimated value, thus suggesting that a
perturbative treatment of the problem is not quite correct. In search for an answer, we studied the
dynamics of non-equilibrium carriers in graphene and employed a hot electron model to describe this
dynamics using few adjustable parameters, presented in Chapter 4. The model correctly predicts
the change in reflectivity of the probe beam in agreement with experiment. The best fitted value of
the carrier-carrier scattering time is somewhat shorter than usually reported in the literature, how-
ever, our fitting could be affected by deviations of the experimental pulse shape from the assumed
Gaussian one.

The transient conductivity with a negative real part, resulting from the population inversion
described by the hot electron model, opens the possibility for optical gain and plasmonic amplifica-
tion. With this in mind, in Chapter 5, we studied the dynamical dispersion relation of the SPPs and
proposed plasmon lasing to explain experimental results [1]. The evolution of the SPP population
was described by a master equation which included stimulated emission, decay of plasmons and their
generation by the difference-frequency process. The latter was described as an effective third-order
interaction between fields, mediated by the electrons in graphene, similar to Raman scattering, with
the rate calculated using the Fermi’s Golden Rule. This process, beyond plasmons, produces photons
of frequency w, and is stimulated by those of the probe beam, reflected by the substrate. Assuming
coherence of the generated and reflected photons, we have been able to explain, for the first time,
the strong differential reflectance signal observed in Ref. [1]. The key point is that plasmons of dif-
ferent momenta and energies, which are generated by hot carriers’ relaxation, facilitate the resonant

difference-frequency process that leads to the enhanced generation of a particular type of SPPs [10]
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and also results in the strongly altered variation of the intensity of the probe beam.

In the second part, we explored several methods for SPP generation and detection, using 100
fs pulses. Given the characteristics of our lab, the best approach to generate SPPs by the DF
process was to use the TOPAS-C device to control the frequency difference between pump and
probe. We determined that the lock-in amplifier was sensitive enough to detect the changes in
the order of 1075, but it is not the best method to detect SPPs if the TOPAS-C is unstable,
since the lock-in can not remove the TOPAS-C signal fluctuations. We then proceeded to use a
balanced photodetection scheme in combination with a fast photodiode and two boxcar avargers to
normalize the measurement. This approach has not fully succeeded yet, but the performed tests
yielded positive results. If we are capable of stabilizing TOPAS-C output and improving the speed
of data acquisition, we should be able to see changes in the reflectivity of magnitude 1075, enough
to see SPPs. Another possibility of detection of the generated surface plasmons is converting them
into propagating far-IR photons using e.g. an Atomic Force Microscope tip placed outside of the
generation spot, as it was done in the first works where graphene SPPs were observed [25, 26].
Unfortunately, this is beyond our experimental capacities, but we suggested it to other experimental

groups in our publication [9].
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Appendix A

SPP basics

A.1 DMaxwell’s equations and boundary conditions

In Gaussian units, Maxwell’s equations are:
V- -D=Adnp; ,

V-B=0,
1 4
VxH=-8D+2J, .
C C

VXE:—E(%B,
C

(A1)

(A.2)

(A.3)

(A.4)

where E and H are the electric and magnetic fields, respectively, while D is the electric displacement

field and B is the magnetic induction. Furthermore, ps; and Jg are the free charge and current

densities, in our case the surface charge and current from graphene. Boundary conditions at an

interface between two media are:
nX(Eg—El):O,

4
nx (Hy — Hy) = —~J,
C
n'(DZ_Dl):47TPS7
n-(Bg—Bl):07

with n denoting the normal to the interface.

(A.5)
(A.6)
(A7)

(A.8)

The relations between the fields, polarization P and magnetization M are given by the consti-

tutive relations,

D=E+4nP ,

H=B-4tM .
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I SPP basics

A.2 SPP field relations

In this Section, using Maxwell’s equations, we derive the relation between field components for
the SPP field in Eq. (2.1). Consider a graphene sheet between two dielectric, medium 2 (z < 0) and
medium 1 (z > 0). From Maxwell’s Eq. (A.3) we find:

iqEm 2+ (1) i By = —i%Hm,y : (A.11)

while from (A.4), setting Jy = 0,

WEm,

(_1)m+1HmHm,y - _7'7Em,z ; (A12)

WEm

iqHp, y = —i——FEp, - . (A.13)

)

Combining (A.11), (A.12) and (A.13), the relations between field components are:

Hm,?! - _(_1)m+1iw<€m Em,ac ) (A.14)
Chm
qc . q
Em.=———Hpy =i(—1)"" —E,., (A.15)
WEm Km
and the wave number is,
2
K2 =q° — w—sm . (A.16)
c

The SPP dispersion equation can be determined from the boundary conditions (A.5) and (A.7).

In terms of the electric field, these conditions are:

e1Ey e e ™ — g9 By et = dmp,

, (A.17)
El,a} - EQ,x =0
or using the relation (A.15) between field components:
€9 &1 ior  —iwt 47
— 4+ — | By e =——0ps . (A.18)
K2 K1 q

Since it is expected that the surface charge density responds periodically, one can expand it in a

Fourier series:

s = Zp(wj’ qj)ei(qj:v*wj't) . (A.19)
J

From the continuity equation, its Fourier components are related to the Fourier components of the

surface current:

4
p(wj, q;) = ijw(Wjaqj) : (A.20)
J
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Therefore, as a consequence of the orthogonality between (%%« Eq. (A.18) yields:

g9 € 47

= ——Jz(w,q) .
o WEMJI( )

For a linear response, the current relates to the electric field according to:

jz(wa Q) = U(l) (w7q)E2,z )

so the above equation gives the SPP dispersion equation:

-
242 To(w,q) =0,

D(w,q) = e
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Appendix B

Optical response of graphene

B.1 Density matrix perturbation theory formalism
Consider the system’s Hamiltonian (electron+light) to be of the form:
-H:-FIO+‘71nt ) (B]‘)

where ﬁo = vpo - p is the single electron Hamiltonian and Vint is the interaction term between the
electromagnetic field and the electrons in graphene. If p is the density matrix of the system, its time

evolution is given by:

i

atpnm = _h

[]fL Plnm — Ynm (an - Pq(f%)> ) (B.2)

where p,(f%) is the density matrix at equilibrium. Here 7,,, are phenomenological decay rates and

we assume Vpm;m = Ymn. In addition, we make the physical assumption:

pgze%) = nmf(en) ) (B3)

where f(e) is the Fermi-Dirac distribution or possibly a quasi-equilibrium distribution that is a
slowly varying function of time.

We now follow a perturbative approach and write the full Hamiltonian as:

H = Hy+ AV , (B.4)

where the second term is treated as a perturbation with A appearing as a perturbation parameter

that is set equal to one at the end. We expand the density matrix in powers of A:

prm = P + Aol + A2p0) + .. (B.5)

Substituting expansion (B.5) and the expression (B.4) for the Hamiltonian into Eq. (B.2) and
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B.2 Linear optical response of graphene

grouping terms of the same order in A, we find for zeroth order:

Ui A e
Ol = =3 [Ho, 9 hum — Y (o2 — o) (B.6)
and for N-th order:
8tp’£Lj7\Q = _%[ﬁmﬁ(]\[)]nm - %[ Ainta ﬁ(Nil)]nm - ’Ynmpgr\;) ,N >0. (B7)

The commutator [ro, p )]nm is easy to calculate since we know unperturbed eigenfunction and

eigenvalues:

[ﬁOaﬁ(N)]nm = (€n — €m) pgzjq\vfm) .

Equation (B.6) becomes:

i
Ouplih = == (en = &m) Pl — Yo (P — P52 (B.8)

This equation describes the time evolution of the system in the absence of any external field, so it

has as solution the system in equilibrium:

PO, = Pt = G f(en) - (B.9)
Equation (B.7) becomes:
8tp£LN) = - (iwnm + ﬁ)/nm) quxl) - %[ Aintv pA(Nil)]nm ; (BlO)

with wpm = (64, — ) /B and has the solution:

. t
Pl (1) = plmi (—o00) — % / At/ [Ving, pON D] e Bmmtmm) (1) (B.11)

—0o0

B.2 Linear optical response of graphene

Here we shall derive graphene’s linear optical conductivity in the long-wavelength limit. To avoid
any divergence, the calculation is done in the length gauge! [21, 22]. Consider a graphene sheet that
is being impinged by an electric field of the form:

_ @ —iwt

E.(t) = 5 ¢ +c.c. (B.12)

! Actually, the calculation can also be done in the velocity gauge, but it requires considering electronic states that
depend on the effective momentum (7ik + eA/c) and is less straightforward.
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1T Optical response of graphene

In the length gauge, the interaction term is written:
‘A/int = €$Ex(t) . (B13)
To determine the linear response, Eq. (B.11) must be solved for N = 1:
t A )
pg’blrzl(t) h (f(gm) o f(gn))/ dt/Vnm(t/)e(lwnm+"/nm)(t —t) . (B14)
— 0o

The evaluation of V,,,, is a bit tricky because the operator x is not well defined in momentum space.
From Refs. |7, 20, 21]:

_(2m)? 0 (27)? sin 6,
<k1, 81|(E’k2, 82> = iA 551732 akzﬂ;(g (kl kg) A 2k‘1 (1 (531752) 1) (kl kg)
= Fyy 0y (k1, ko) . (B.15)

Consequently, the matrix elements V,,,,, are:

Vam (t) = eFy, s, (Kn, km, )20 Wi Fs, s, (kn, ki, )28 wt (B.16)
and Eq. (B.14) gives:
PAE) =~ (o) = Fen)) Pl (2 B2 )
(B.17)
The z-component of the current operator is:
Jo = —€vpoy (B.18)

so the averaging yields:
j:c =Tr (A' A(1)>

26 UF EO e—iwt EVO eiwt )
E : § F k., k — - + W g
= n)) S”’s”( " V) < 2 Yo+ (wnu - w) 2 Yoy (Wm’ )

suky sn.Kn

1 } 1 )
= ij(w)e_“"t + ij*(w)e’m ) (B.19)

By definition the conductivity is:
Jz(w) = o(w)Ep(w) (B.20)
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B.2 Linear optical response of graphene

SO:
T

We now consider separately, interband and intraband contributions.

B.2.1 Intraband conductivity

The intraband contributions correspond to terms with s, = s, = £1. Equation (B.21) yields:

ie2 UF 0% (K, k)
Ointra(w) = Z Z (s, (kv)) — f(es,(kn))) anjsn(kn’ky)’y - (Z)S (vk g
sn kyknp nv Sn,Sn ny v

(B.22)
We simplify the problem and write the same damping parameter 7, (electron momentum relaxation

rate) for all states. Furthermore, the matrix element Fj_ , (k;,,k,) for intraband transitions is

simply:
(27)? 0
Sn,S knvk .753 S o kn*ku Y B.2
Fopon i) = =500, (0 — o) 5 (8.2
so Eq. (B.22) becomes:
e*vp 0 of1(k, k) 0 o2y _1(k,k)
Replacing the sum by integration, Eq. (B.24) simplifies to :
e? 4 o 0 0
intra = T4 11 £ d a_Jc - 5_Jv .
intra () 2h by —ihw J = <85f (€) Oef (€)>
Introducing:
2
e
= B.25
0o 2% ’ ( )

allows us to write oipgra(w) as:

mn() = =2 [ (L) - 000 (8.26)

The integral has analytical solution, if f. and f, are Fermi like distributions. Consider the more

general situation of quasi-equilibrium:

1 1

) fU: )
_F F
1+ exp <6k T€> 1+ exp (_6k+Th>
B B

fo= (B27)
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1T Optical response of graphene

where F, and Fj, the electron and hole chemical potentials, respectively and 7' the temperature. In

this regime the integral in (B.26) yields the analytical expression:

o) = 2 BT (1) ()}

The equilibrium regime is easily obtained by setting F, = Fy, = EF.

B.2.2 Interband conductivity

The interband contributions correspond to the terms with s, = —s,, = 1. For this case we set

Ynm = Yinter- Bquation (B.21) yields:

ie*vp of _1(kv, kn)
inter - c - Jv o knakl/ —
Tinter (W) = — kzl; (felex,) = folex,)) Fra( >7inter+2(w—1,1(kn,ku) —
ietvp 0% 1(ky, kn)
+ v - Jc F - knaku B ’ . B29
p 2 Ul ~ fel@)) Ao ko) e - (B29)
Since: 2 in g
2 in 6,,
il k) = Fr (ko k) = — C 500500y (B.30)
' k A 2k,
and:
Wl,fl(knaky) = _Wfl,l(kna kl/) = UF(k:n + ku) s (B31)
Eq. (B.29) simplifies to:
evp ~sin*f [ fiu(ew) = fe(ew) fu(ex) — fe(ex)
inter - X . . B.32
Tinter () h zk: 2k (’yinter — i (2upk + w) * Yinter + @ (2vpk — w)) ( )

Replacing the sum by integration:

200 [*° 1 1
Tinter(W) = 7r/0 de (fv(e) — fe(e)) (h%nter et ) + Y hw)) . (B.33)

In equilibrium, at zero temperature Eq. (B.33) yields:

hw—2Ep 1 heo + 2EF> oo ((hmerf + (2B + w)®

1
1] w) =09 |1+ —arctan — arctan
lnter( ) < ™ h’Yinter m “Yinter 2T (h')’inter)2 + (QEF — ﬁw)Q

94

) |



B.8 Second order conductivity

In quasi-equilibrium, taking the zero-temperature limit, a simple expression is also obtained:

1 hw — 2F, 1 hw + 2F,
Uinter(w) =00 (1 + —arctan ——— < — Z arctan +e>
™ “Yinter ™ “Yinter
hw —2|Fy| 1 hw+2]Fh|>
—— — —arctan ——
h%nter 7T h7inter
oo (Mimer)” + @1Fn| + 1)\ oo | (Minter)” + (2Fe + Fw)? (.31
2\ (Minter)” + Q21FR| = hw)? ) 27\ (Wyinter)” + (2F, — hw)?

1
+ o9 ( arctan
s

This is similar to the equilibrium result, but with the additional contribution from the holes.
Nonetheless, there is a crucial difference. In the limit Yipter — 0 (no interband losses) and w — 0,

Ointer(w) yields a negative value:

lim  ojpter(w) = —0p -
Yinter ,W—>

This is different from the equilibrium situation, where the conductivity should yield zero. The fact
that the real part of the interband conductivity is negative implies that the solution for w and ¢ from

the SPP dispersion equation are complex. Physically, it represents gain, i.e. generation of photons.

In real situations Avyinter < kT so, in the limit Yipter — 0, Eq. (B.33) has the analytical form:

— (F, — F]
sinh [h/.u 2(k‘ T h)]
_ B
Ulnter(w) =00 o Fh TF ol T — (Fe — Fh) . (B35)
2kgT 2kgT

B.3 Second order conductivity

In this section we derive the expressions (3.20), (3.23) and (3.24) for DF conductivity. We
start by determining the general expression (3.14) for second order conductivity. The calculation is

performed in the velocity gauge to account for effects of spatial dispersion:

A~

H =vpo - (p + EA(t, r)) , (B.36)

where A(t,r) is the vector potential. The interaction term is:

Vint = EUTFU “A(t,r) . (B.37)
We expand A(¢,r) in plane waves:
1 .
_ = i(qr—wqt)
Atr) = 5 }q: (A (wg, q) ei(@r—wat) | c.c) . (B.38)
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1T Optical response of graphene

For each frequency wy, there is a wave-vector q associated to it. Since the field is real, its Fourier
components satisfy the relation A (wq,q) = A* (—wy, —q). We work in the gauge where the electro-
static potential is zero and V- A = 0. Then, by definition, the electric field is E(t) = — (1/c) 0, A(t)

and the relation between the Fourier components is:
w
E (wg,q) = %A (wg,q) - (B.39)

The calculation of the second-order response in graphene is performed using the density matrix
formalism. To determine the second order conductivity, Eq. (B.11) needs to be solved for N = 2.

Using Eq. (B.17) we find:
Joooi
pg)n(t) = (£>2 Z Z Z f(e)) = flen) vnlpvlmq. Ej(wp, P)Ei(wq, q) e~ Hwptwq)t
2h TS WqWp Wnl — Wp — ©Ynl Wnm — (Wp + Wq) — ©Ynm

io,J
<£> Z Z Z f 5m - 51) UniqVimp Ej (Wpa p)Ez' (wq7 CI) efi(prrwq)t
2h WqWp Wim, — Wp — ©Yim Wnm — (Wp + Wq) — 1Ynm ’

(B.40)

where vf}mq = vp{m|o’e™9|n) are the matrix elements of the spatially modulated velocity operator.

In Eq. (B.40) the Einstein summation convention is used.

The single particle current operator is:

J(rg,t) = —evd(r —rg) = ——VZ (r—ro) (B.41)

with & being the area of the graphene sheet and rg the particle’s position. The second order

contribution to the expectation value of the this operator is:

(J*) = Tr (p@)ﬁ(ro, )
i k
Z Z Z Z f Em - El) Unlqvlmpvmnu E] (wp, p)EZ (qu q) e—i(wp+wq)te—iu~ro
2h Wy

nml a Wq Wim — Wp — im Wnm — (wp + wq) — UYnm

o vl ok E. E.
Z Z Z Z f €l nlp Ilmq~“mnu J (wpu p) l(wq’ CI) efi(wpthq)tefiu-ro
nml a Wnl — Wp — ¥Ynl Wnm — (Wp + Wq) — UYnm

(B.42)
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B.8 Second order conductivity

The matrix elements v’ qvlmpvﬁmu impose momentum conservation relations that cancel out the
summation over u, that is u = — (q + p). Therefore, expression (B.42) is rewritten as:

i J k
. 67}F f Em, ) Unlqalmpgmn—(q+p) E] (wpv p)E’L (qu q)
7= s 22

fi(wp+wq)tei(q+p) ‘ro

e
2 _ _ . _ _ .
4h2S — wqu Wim — Wp — ©Vm  Wnm — (Wp + Wq) — 1Ynm
ol ol k
_ GUF Z Z Z f(er) en) PnipimqZmn—(atp)  Ej(wp, P)Ei(wg, q) o~ iwptwg)t yi(atp)To
4h2S =4 wqu Wi — Wp — 1Yl Wnm — (Wp + Wq) — 1Ynm

(B.43)

Notice that Ej(wp,p) is the total field. It is more convenient to write the incoming fields a and b
explicitly:
Ej(wp,p) = By, (wp, P) + Eaj(wp, P) - (B.44)

Making this substitution in (B.43), terms corresponding to interaction of the field with itself will

appear. We are not interested in these, so we truncate them and rewrite (B.43) as

k
Jk Z Z Z f ) nlqvlmpvmn (a+p) Ea,j (wpv p)Eb,i (wqa Q) e_i(wp+wq)t6i(q+p).r0
4h2S 4 wqu Wim — Wp — im  Wnm — (Wp + Wq) — 1Ynm
vl J k
Z Z Z fle (€1) YniqVimpYmn—(a+p) Eb,j(wp, P)Ea,i(wg, q) o~ i(Wptwq)t yi(a+p)-To
h2S — wqu Wim — Wp — Yim Wam — (Wp + Wq) — Ynm
A
Z Z Z fler) — f(en) nlpvlzmqvmn—(qup) Eq j(wp, P)Ep,i(wg, q) o~ ilwptwg)t yi(a+p)To
4h28 — WqWp Wl — Wp — 1Yl Wnm — (Wp + Wq) — iYnm
L
Z Z Z f 5[ En nlpvllmqvmnf(q+p) Eb,j (wp7 p)Ea,i (wqﬂ q) e_i(wp+wq)t6i(q+p),r0
4h28 — WqWp Wni — Wp — 1Vnl Wnm — (Wp + Wq) — 1Ynm
(B.45)
The second order conductivity is defined as:
1
T (wp +wg, p+q) = 501(”3(9, Qp, Q) By j(wp, P) Eai(wg, q) (B.46)

where the vectors €, = (wp, p) and Q = (wp, + wq, p + q) are used to simplify the notation. From

comparison with (B.45), we conclude that the second order conductivity is:

97



1T Optical response of graphene

3 oF j

c@ (Q.Q,,0,) = e Z Vmn—(q-+p) VimpUniq flem) — fle1)
Tjki P h2wqwpS =t Wiy — Wp — Mim Wnm — (Wp + Wq) — 1Ynm
k i
+ e vmn—(qup)vnlpvlzmq flem) — f(er)
hPwqwpS =t Wi — Wy — Vim Wnm — (Wp + Wq) — 1Ynm
ok J i
e Z Ymn— q+p)vnlpvllmq f(er) — flen)
h2wqu Wi — Wp — 1Yl Wnm — (Wp + Wq) — iVnm
k i
e Vinn—(q-+p) VlmpVniq f(er) — flen) (B.47)
h2wqwpS Wni — Wqg — 1Yl Wnm — (Wp + Wq) — iYnm

nml

In general, o7* (9, Q,,Q,) is a function of wy, wy, q and p as well as wy, +w, and q + p.

B.3.1 Derivation of the second-order conductivities

Beginning with the general expression (B.47) for the 2-nd order conductivity, we derive explicit
formulae for the processes of generation of a frequency difference excitation out of two incident
photons, w = w, — wy, and for the inverse processes contributing to the reflected optical beams. We
use the notation 2 = (w, q), 2y = (W, q,) and Qp = (wp, qp)-

The recipe of the calculation of all three different cases is the same : in the summation, only
the two channels in Fig. 3.1 are considered and the elements wym,, vfmp and the Fermi-Dirac
distributions are expanded to the first order in the momenta, q; and q. With these approximations,
a cancellation of the zeroth order contribution, between the channels, is observed, and only the first

order contributes to the conductivity.

We start with the calculation of ag(c?gc (2, 2%, —Q,). Inserting in expression (B.47) the states in
Fig. 3.1 we obtain:

U33,-qV31,q,Y12,—q, ( flen) = fles)  fle2) = fle1) )

o) (Q, 0, -
T ( by =) = h2wbwaS Z W3n — W — Y32 w31 —Wp — Y31 W12 T We — 1712

123
A U —aUiira, By, (fex) = fEx)  fev) = fley)
h2wpweS Loy WY W 1Yo/ Worsr + We — 1Yy Wy — Wy — Y31 '
(B.48)

We call the first line in (B.48), channel 1, and the second line, channel 2. Let us focus on channel
1. Expansion of the spatially modulated velocity matrix elements and of the elements wy,, yields,
respectively:

T T T ~ 3 2
023’_qv31’qb1}127_qa ~ 5Qva_Qa5k3,kl+Qb 5kl+qu2vF COS 0]_ Sin 9]_ (B49)

and w31 =~ 2vpk] + vpgpcos by, wies & —2vpk; — Vpg, cos 1 and w3o & vpgcosfy. The expansion of
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B.8 Second order conductivity

the Fermi-Dirac distribution gives:

fe(extp) = felex) + Oz felex)hvpp cos b . (B.50)

fe(e) is the occupation function of conduction states and f,,(¢) = f.(—¢) of the valence states. With

these approximations, setting k1 = k and 6; = 0, we can write for Channel 1:

O~ § (evp Z cos 0sin? 0 (fv(sk) fe(ek) fc(sk) — fv(sk)>
W32 —w — 1y

B~ a 732

WpwaS w31 — Wy — 1Y w12 + wg — 1y
(evF) hop cos O sin® —qp cos 6 ga cos 0
+ dq.q,— E —0, € — — - .
DW= B2 0,8 W3z — W — 17 i felEx) W3l — Wy — 1Y W12 T We — Y

Changing the summation to integration and then performing a change of variable, ¢ = hvpk,

gS /kc 27 gS /ac 2
— dkk dj - ———— dee do . B.51
27 g fy W, (wr2en Jo ), (B51)

Channel 1 contribution is written:

2 102
eSvp cos fsin” 0 fule) = fe(e)
1) d do
€1 =qa,-a, h4wbwa772 / 68/ vpqcosl —w — iy 2e/h+ vpqycos O — wp — iy
s eSvp / dee /27r 40 cos sin? 0 ful(e) = fe(e)
2%~ h4wbwa7r2 vpqcost —w — iy 2e /i + vpq cos — wg + iy
e3v? 2 cos 0 sin? 6 qp cos 0
. —f d do O fe
DB~ a h3wbwa7r / 65/ vpqcosf —w — iy 2 (6)26/ﬁ+qubcosﬁ—wb — iy

2 s 02
e3v? cos f sin“ 6 g cos b
5 _—r [ g4 df ) . :
+0q,q,—q, Bwpwan? / 68/ vpqcosf —w — iy fele) 2e/h 4+ vpq, cos — w, + iy

(B.52)

Here g is the degeneracy factor equal to 4 and k. is an upper limit that has to be specified. If we

require that the circle in k-space has the same area as the hexagon (the first BZ), then:

8t 1
ke=4/—=— B.53
334 (B.53)
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and for a = 1.42 A [7], ec = 10* meV. At zero temperature, Eq. (B.52) simplifies to:

2w 2
0 0 1
F

wbwa vpqcost —w — iy 2e/h+ vpqy cos O — wp — iy
27r a2
e3v cos fsin“ 0 1
S — a / dee / do : :
’ @ By 2 vpqcost —w —iy2e/h+ vpq cos O] — w, + iy
3,2
e’veErp cos? 0 sin? 0
+ 0q,qy—q F2/ df o ;
’ * IBwpwam? /o vpqcost —w — iy 2wp + vpqp cos 0 — wy — 1y
e%%E [ cos? 0 sin® 0 Qa
—dqap-a, 73— 3 do - - (B.54)
’ * hBwpwam? J vpqcosf —w — iy 2w + vpqe cos 0 — w, + i
Now let us turn to Channel 2. For this channel:
7)%/2/7_012)%/1/7qb1)§/3/7_qa ~ _5‘170117_‘% 5k2/’k3*qa 5k3*qb’k1 U%" COSs 03 SiIl2 93 (B55)

and wyig3 & —2vpks + vpgg cosbs, w3 = 2vpks — VEqp cosf3 and woq = warz + w31 & —Vpg cosbs.
As before, the Fermi-Dirac function is also expanded, in this case, f,(¢). However, the first order
contribution vanishes at equilibrium. Setting ks = k, 3 = 6 and going to integration, assuming zero

temperature situation, Cy is written:

Ec 2 102

e’vp cos 0 sin“ 6 1

Cy =~ —§, dee df

2 D~ q“h4wbwa7r2/ / —vpqcost —w — iy 2e/h — vpqe cos 0 — w, + iy

Ec 2m 202
eSvp cos @ sin“ 0 1
) d df . (B.
+ Oa.a,-a, hwpwar? / 55/ —vpqcost —w — iy 2e/h — vpqy cos O — wy — iy (B.56)

Notice that the two lines in expression (B.56) for channel 2 cancel out the first two lines in for
channel (B.54), when we sum the channels, thus avoiding any divergent behavior. This observation
is made clear if we perform the change of variable § — 6 + 7 in (B.56) and use the periodicity of
the integrand to rewrite the limits of integration in € to be 0 and 27, again. With this modification,

the final expression for the conductivity is:

e 02 Ep [T cos? fsin” 6 a
Ozax (Qv Qbﬂ —Q ) 5‘51 qp— qaﬁ do . .
WpWa T J vpqcost —w — iy 2wp + vEpqp cos 0 — wy — 1y
s e U%EF /2” o cos? 0 sin® 0 Qa
%~ h3wbw w2 Jo VEqCcosh — w — iy 2wp + vpge cos 8 — w, + iy
2
3v2Ep 2WE — Wy
~ 0, E qA(w,q,7) , B.57
9,95~ h3wbwaﬂ. (2(,UF . wa)Q + ’_)/2 ( FY) ( )
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B.8 Second order conductivity

where

cos? 0 sin? 6

2T
Aw.a.) = [0

vpqcosf —w — iy

et [ e | (e )
" gt | TR \/1 (%) -

w1y

We now focus on the calculation of the conductivity ag)x (4, 2y, —K2), for the inverse pro-
cess of DF generation at frequency w,. The procedure here is the same used for the case of

o2, (2,2, —Q,). Inserting the channels 1 and 2 in the general expression (B.47), we write for

this case:
o2 (R, Q Z Ula—q,Y81q,Y23—q [ f(e3) = f(e2)  fle1) = fles)
Oxarx asSeby — thwbS Wol — Wq — i721 wo3 + W — i’Y23 W31 — Wy — i’731

123

evp Z 053 _q 03/1/ ‘71/2' fler) — fles) _ fez) = flev)
h2wwb8 o Wy T Wa =3y \Wy —wp — 131 Wy W — iy '

(B.58)

As before, expansion of the matrix elements and the Fermi-Dirac functions to the first order in
momentum, and setting the temperature to zero, yields for channels 1 ( first line in (B.58)) and 2 (

second line in (B.58)), respectively:

21 22
eSvp cos 0 sin“ 0 1
Ch~—6 dee db
1 Wb a A o2 /EF / 2e/h+ vpqqcos6 —wy — iy 2e/h+ vy cos @ — wy — iy

— 9,

eSv:Ep / cos? fsin? 6 q
DB~ a 35, w2 2WF + Vpgq 080 — wq — iy —vpgcosf +w — iy

3,2 E 2 2 0 si 2 0
—dq,a,-q SRR / do eor o . o — (B.59)
A e R3pwn? J, 2WE + VEQq coS 0 — wy — 177 2wE + VEQy cos 6 — wy — iy

2w
eSvp cos 0 sin“ 6 1
Coy ~ —§, d do .
2 VU~ pd o2 /EF 66/ 2e/h — vpqq cost —w, — iy 2e/h — vpgy cos O — wy — iy
(B.60)
Once again, making the change of variable 8 — 84 7 and using the periodicity of the function under
integration, makes it clear that Eq. (B.60) for channel 2 cancels out the first line in Eq. (B.59) for

channel 1. Thus, summing both channels yields a second-order response:

3U%EF q

( ) (QGJ Qb? Q) ~ (Scbqb_qa, hgwbwﬂ-Q QWF _ wa — Zf)/

.'L‘Z‘Z‘

A(w,q,—) - (B.61)

(2)

For the inverse process, o7z (2, Qq, ), the calculation follows the same procedure as the two

cases before. Considering the channels 1 and 2 in the general expression (B.47), yields:
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©). (. 0, Q) = \F)
acac:c( by S 8a, hgwawsg

(evr)? Z O32q,721q7V3—q, [ flev) = flea)  [flea) = fle)
hQWaWS Wy — Wy — Y3 \Wor — W — 1Y Wy — Wa — iy )

(B.62)

032q031q, 7 13—q, < flen) = fle2)  fle2) — fles) >

W31 —Wp — Y31 \Wa2l — Wq — 1721 W32 — W — 1732

1723/

As before, expansion of the matrix elements and the Fermi-Dirac functions to the first order in

momentum, and setting the temperature to zero, yields for channels 1 and 2, respectively:

21 22
eSvp cos 0sin” 6 1
CL~dz d df
1 7:q— Qah4w w2 /EF 66/ 2e/h+ vpgpcos O — wy — iy 2e/h+ vEQq cos 0 — w, — 17y
s UFEF/ 40 cos? fsin” 0 q B da
4:Gv—0a BBwawr? 2wp +vpqycos —wp — iy \vpqcosl —w — iy 2wWp + VEQe cos — wg — iy
(B.63)
27 2
eSvp cos 0 sin“ 6 1
Cy ~ 7 d do )
2 ~ 0g,q,— qah4w — / 55/ 2e/h — vpqycosf — wyp — iy 2e/h — VpQa cos 0 — wy — iy
(B.64)

Summing both channels yields the expression (3.23) for agg)x(ﬂb, Q,,9Q).
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Appendix C

Transmission and reflection coeflicients

In this section, the reflection and transmission coefficients for the situation in Fig. 3.3 are
derived. Let us consider two monochromatic plane waves, with frequencies w, (pump) and w,
(probe) (wp > wg), that interact with graphene via a difference frequency generation process (DFG).
The graphene sheet is placed between two dielectrics with dielectric constants €7 and e3, see Fig.
3.3. The incident and reflected electric fields are:

1 L I/R ,
B/ (r.t) = (B[ 0. B[N ™ 9 pee (j=ab). (C.1)
where
s
G (C.2)
and the transmitted fields are:
1 . .
BY(r,0) = (B0 L)X 0 e (j=ab), (C.3)
with
Wi
ki = ?Wa : (C.4)

We use the boundary conditions of Appendix A to relate the incident field with the reflected and

transmitted electric fields:
E1E‘1,z - 52E2,z = 4mps

(C.5)
El,x - EQ,x =0
The total electric field in medium 1 is:
E, =E.+E/ +EF + BE (C.6)
while in medium 2:
E, =E!' + E] , (C.7)
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1II Transmission and reflection coefficients

so Egs. (C.5) yield:
ey (EI pilk] T —w;t) | Eﬁzei(kf‘r—wjt)) —eY, Efzei(kf'r—th) — 87p, o

Z] [Efxei(kjl.r_wjt) + E‘fxei(ka—w]'t) o E]]:xe (kT r—w]-t):| 0

The position vector r is to be taken at z = 0 (interface between dielectrics). We expect graphene to

have a periodic response along it. This means that the surface charge density can be expanded in a

Fourier series. Using the orthogonality between e*(ki.»#=%it) functions, (C.8) simplifies to:

€1 (Ej{z + Eﬁ) — €2E]1:Z = 4dmp(wj, q5) ©9)

Ej, = Ej, + Ef,

and the conservation of momentum is obtained:
(C.10)

I _ 3R _ ;T __
Kjw=Fkjo=Kja =0 -

Using basic trigonometry, the field components can be related to the field itself and the angle with
respect to the normal to the plane z = 0. Introducing the reflection and transmission coeflicients:

E} Ej
= pr o BT (1)
J J
simplifies eq.C.9 to:
p(wja QJ)
] (C.12)

—e1 sin 0]1- (1+17;) +sin Hstztj =A4r 7z
J
COSQJth - COSGJI- (1—-7;)=0

The surface charge density, p(wj,q;), is related to the surface current density, j(wj,q;), by the

continuity equation. On the other hand, j.(wj, ;) can be expanded to the second order in response:

Jo(wj ) = oW (@) Ejo + 5P (wy,45) (C.13)
where j° (wj, q;) is the second order current. These considerations allow us to rewrite Eq. (C.12)

in the form:
2
°L (C.14)

tj =
4
k! cos GjT (61/]43;72, + 62/16]7-; + %0(1)(“’]'))

(2
+ 47 32w, 45) ; ’
ij][ cos GJT (51/kj{z + 52/1@%2 + Jo(l)(wj))
j
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rj =1—sec 9§ cos Q;th . (C.15)

If jéz) (wj,qj) =0, then:

2
t = £1 = _ t§°> (C.16)
kJ[ cos H;f <51/kjl-,z + sg/k;{; + wjo(l)(wj)>
Here t§0) is the usual linear transmission coefficient. Thus we rewrite (C.14):
(2D
t; =t 4 4r g (wj.4)) (C.17)

47 -
ijJI cos HjT <€1/kj{z + 82/’%% + wU(l)(wj)>

Now we shall calculate the transmission coefficient for each field. We use a truncated scheme,
where only the DFG process is considered. For the field a, we get:
1
o2 (R, U, —Q) Ep (2 = 0)Edp (2 = 0) | (C.18)

5 TXT

]3(52) (Wa» qa) =
with Egp being the SPP field. Using Eq. (3.8) for the SP-field, we conclude that (C.18) yields:

(2) (2)*
. Oaga (Qa, Ly, —Q) 02z (2, Qp, —Qy)
jg) (Was @a) = —i oD (w.q) Ity 2| EL 2 to B! cos? ] cos 61 . (C.19)

For the field b, a similar expression is obtained:

) o8 (b, 0, ) 05 (92,2, — Q) 1,5 ’

72 (wy, qp) = i wD(w,q) ?|ELI? cos 0] cos? 61 (C.20)

Thus the final expressions for the transmission coefficients are:

2 2)%
t, = th) (1 + 27_(.22»0-3(31)m (Qa? va _Q) Jﬂ(vx)m (Qv va _Qa) |El{‘2 C052 eg

-1
T,(0) 2
VerewD*(w, q) cos Oty ‘tb’> , (C.21)

(0) 2 O'a(c%c)x (Qb Qa Q) J:(E?E)x (Q Qb _Qa) |EI|2C052 9T 7,(0) 2 -
ty=t, |1—2n% - — 4 “costy t, |tal . (C.22)
VerewD(w, )

To linearize Egs. (C.21) and (C.22), we apply a perturbation treatment with the second order
conductivity as a perturbation. We call the perturbation parameter A\ and expand the transmission
coefficients:

_ 400 (1) 2,(2)
ty =10 + A+ AT 4 (C.23)
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1II Transmission and reflection coefficients

Formal expansion of the coefficients t, and t; yields a null first order contribution:

t1 =V =0

and the second-order contribution is:

2 =

2 Q,.Q
12 = 9240302 77z (B o, D) 7

VarewD(w, )

(2)x

—2m 2010

(2)

QZ.UQ(CZJJ)J: (Qay Oy, _Q) Ozzx (Qa Oy, _Qa) ’EbI‘Q cos? 05
V1D (,0)

(2, Qp, — ) |ECIL]2 cos? 05

Therefore,

(2)*

(2) ) 12 o2 T
by ~ tg()) <1 . 2tgo)|tl()0)|27_‘_2io'a:xx (Qay Qba _Q) Oxzx (Qy va _Qa) ‘Eb‘ COos eb

123

~
~

VerewD* (w,q)

)
T Q ) Qa? Q
#(0) (1 + 260102727 (8% )

oL (2,2, Q) | EL cos? 6

VErewD(w, q)
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cos Hgtl()o) .

cos 05) ,

T
b

cos thflo) ,

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)



Appendix D

Energy flux of SPPs

Here we calculate the energy flux, associated with the generated graphene plasmons, that prop-
agates along the surface, in the direction of the wavevector of the plasmons.

The energy flux density is given by the Stokes vector:
S = Re (iE x H) : (D.1)
8T
with H being the magnetic field. For SPPs, this vector has the form:

S (S2,2,0,95,2) €227 2 <0 02)
Sp = . .
($12,0,81.)e 2% 2>0

Its z-component is (m = 1,2):
C *
Sz = —gRe (Em-Hy,,) - (D.3)

From Maxwell’s equations, the electric and magnetic field components of SPPs satisfy,

.we
Hyy(w,q) = —(=1)"i——"F,, , . (D.4)
Chm,

Using this relation together with Eq. (2.3), we are able to write the energy flux density in terms of

the x-component of the electric field:

qWEm

Sm xT
2
8TKz,

, | Bl - (D.5)

The E,,, component is determined by Eq. (3.8). Hence, the energy flux density, per unit length

along vy, is:

J = /+0<> dzS, = qL Z E—m|Emz(w Q)? . (D.6)
T K3 o

—o0 m=12"""M
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Appendix E

Differential reflectance in the presence of

hot electrons

As a result of the evolution of the out-of-equilibrium carriers’ population, the non-equilibrium
optical conductivity, opneq, is assumed to vary slowly with time, so that it may be described as a

function of both time and frequency,

4oy , Foo 1— fO(e,t) — fP(e,t)
Onea(w;t) = —Eh(y —iw) /0 T i (2 — b [y — i (22 + )] (E-1)

Here, v is the interband scattering rate, f(¢)(e,t) and f(®)(e, t) are the electron and hole distributions

with contributions from thermalized and non-thermalized carriers.
In general, the current density can be written as

oo

jz(t) = / dt'c (t,t') B (¢) (E.2)

—0o0

where F, (') is the z-component of the probe’s electric field at z = 0 and

o (t,t) = /OO Z—:Jneq (w, ') exp {—iw (t = #') }

= [ ) [ e TGO B
T r ) oV Tinter o Ty —i (26 + hw)) (hy + i (26 — hw))

o0

exp {—iw (t — t’)} .

(E.3)

The integral over w in Eq. (E.3) can be solved by analytic continuation and using the residue

theorem. The poles are located at
w==+2/h—ivy, (E.4)

i.e, both of them lie within the lower half-plan. For ¢t < ¢’ the integral vanishes, which traduces the

causality principle, and the contour must be closed in the lower half plane. Employing the residue
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theorem, Eq. (E.3) simplifies to:
4 n [ 2
o(tt) = 0g (t—t) et )/ de (1 — @t — f(h)(s,t’)> cos {5 (t— t’)} . (E5)
mh 0 h

where the Heaviside function © (¢ — t’) expresses the causality principle.

It is worth noting that the electric field in Eq. (E.2) corresponds to the transmitted field at
z = 0. With this in mind, let us proceed to define the fields. The electric fields at z = 0 can be

written as follows:

Exl) (I‘, t) _ Az (t) cos aei(sin akqr—cos akqz—wqt) ’ E.6
Ey) (I‘, t) _ Ar (t) coS aei(sinakar+cos akqz—wat) 7 E7
Ert) (I’, t) _ At (t) COS eei(nsinGkazfncosek:aszat) ’ (E8)

where k, = w,/c and w,, is the wavevector and frequency of the probe beam, a and 6 are the incident
and transmitted angles of the probe, n is the index of refraction of the substrate and A;, A, and A;
are the incident, reflected and transmitted amplitudes of the fields. This amplitudes will be defined

as Gaussian functions:

2
Ai(rpy (1) = ai(rp) exp < ) ; (E.9)

7_73
where 7, is the duration time of the probe beam.

Applying Maxwell’s equations enables us to compute the corresponding magnetic fields. This

results in the following expressions:

(4) — e g

H, (r,t) ke cos E}Y (r,t) (E.10)
(r) —__ e g

H, (r,t) o cos E) (r,t) , (E.11)
(t) —_Wa  p

H, (r,t) kaccoseEx (r,t) . (E.12)

The reflection and transmission coefficients are determined using the following boundary condi-

tions:
EW + BN = E® | (E.13)
HO 4+ 7O = g0 4 75 0 (E.14)
Yy Yy - Yy c .]$ z, ) .
or in terms of the field amplitudes,
A;cosa+ A, cosa = A;cosb (E.15)
dm —i(sin akqr—wqt)
Ai — Ay = nAy + —ju(z, t)e al™Wal) (E.16)
c
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V' Differential reflectance in the presence of hot electrons

In the situation without pumping, the current is written simply as:
jz(-rat) = Oeq (Wa) Ea(gt)(xat) ) (E17)

where 0cq(wq) is the equilibrium optical conductivity. At the frequency wg, deq(wa) = 0o. As a

consequence, Eq. (E.16) yields:
4
A; — A, =nAy + —opAicos . (E.18)
c
Using (E.15) and (E.18), the familiar expression for the linear transmission coefficient is obtained,

47
cosf —ncosa+ —agcos b cos a
Ar = 4C7T AZ' = t((lO)Ai . (E.lg)
cosf + ncosa + —agcos b cos a
c

In the case involving pumping, j,(z,t) is determined by Eq. (E.2) and the conductivity is given
in Eq. (E.5). Therefore, multiplying Eq. (E.16) by cosa and summing it with Eq. (E.15) yields:

4 .
2A; cosa = (cosf +ncosa) Ay + ijm(x, t) cos ae (s akaz—wat) (E.20)
c

= (cos @ + ncosa) A,

UO cos acos 6
/ 2
/ dt'/ de@ eliwa—7)(t—t") (1 _ f(e)(e,t') _ f(h)(e,t')> cos {; (t _ t’)} A, (t’) .
Applying a Fourier-transform in the variable ¢, Eq. (E.20) becomes:

2A; cosa = (ncosa + cos ) Ay

1600 cos acos ¢ (E.21)

/ dt/y dt/ dee(iwa=7)(t=t) ’“t( —f(e)(e,t')—f(h)(e,t’)) cos{zhg(t—t’)}At t) ,

where:

Aiiry (w / dte™ A (t) - (E.22)

The integral over the variable ¢ in (E.21) yields:

00 L oy 2¢e ltw(z’7+w+w)
dte(wa=7)(t=t") giwt —(t-t)y = - k.23
/t/ e e cosy 5 ( ) (iy + w4+ wq — 26/h) (iy + w + wa + 2¢/h) ( )
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and consequently,

2A; cosa = (ncosa—i—cos@ ) Ay

cosacos&/ dt/ de 1— © (e, ')—f(h)(e,t’)>At(t')

i (iy + w + wy) €'

_l’_

, E.24
(iy + w+ wq — 2¢/h) (iy+ w + wg + 2¢/R) ( )
or in terms of the non-equilibrium conductivity (E.1):
4 oo L
2A; cosav = (ncosa + cos ) A + =T cos o cos 0/ At Opeq(w + wa, t') Ay (V') . (E.25)
c —0o0

The last term of the equation represents a convolution of both pulses, since the non-equilibrium
conductivity is a consequence of the pump beam. If there is a delay d; between pump and probe,

the conductivity is simply changed to,
Oneq (w7 t/) — Oneq (w, t+ 5,5) . (E.26)

Eq. (E.25) can solved by iteration in Ao (w + we,t’ + 8;) = Oneq (W + wq, t' + 0) — 00,

4 4 o —
2A;cosa = (n cosa + cosf + 10’0 COS (¥ COS 9) .Alt—i——Tr cosacos&/ dt' Ao (w + we, V' + 575) Ay (t') et
c c oo

(E.27)
The reflected and transmitted field amplitudes are expanded:

Ay = Ay + Ay + .. (E.28)

where Ag, )t) denotes the j-th iteration. The zeroth iteration consists in neglecting the second term in
the RHS of (E.27) and yields Eq. (E.19) as expected. The first order of the transmitted amplitude
is:
4 0t©) o o

AL — 27 e / dt' Ao (w + wa, t' +8) A; () e . (B.29)

C T

ncosa + cos + —o( cos acos 6
c
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V' Differential reflectance in the presence of hot electrons

Using Eq. (E.15), the reflected field amplitude is determined to be:

cos 6

A= 204, — A (E.30)

COos «x

Therefore, the expression for the iteration of zeroth-order is

4w
ncosa — cos @ + — cos a cos o

AY = vE A = =0 A, (E.31)
T
ncosa + cosf + — cos a cos oy
c

and for the first-order,

2 94(0) o L
A’Q) _ _41 COS et / dt/AO' (w +wa,t, +(5t> Az (t/) eltw ) (E32)

C 41
ncosa + cos + —og cos a cos 0
c

The reflectivity of the whole structure, under pumping, is defined to be

I dw | A (w)]?
I, dw | A (w)]?

Ra(6t) = (E.33)

Substituting the expansion for A,, up to first-order in Ao, in R,(d;) yields:

cos? 6 (5(0)) A(O
cosa 27w P,

Ra(00) ~ R + / dw/ A Ao (w -+ was t' + 61) As(w) A (¢) 6

(E.34)

> d,
b= [atlaP= [ EiawP=a/5n (B35

. Thus the differential reflectivity is:

where

and RY — |70 )|?

() 29 (§0) /
AR, _R,— Ry _cos®0 ( ) / dw/ dt' Ao (w + wa, '+ 6r) Ai(w)A; () e
R, RW Ccosa 2 d ré
(E.36)

A;(w) is a Gaussian function centered at w = 0. Since the pulse spectral width is much smaller than

wq, we make the approximation,
Ao (w + we, '+ 5t) ~ Ao (wa, t' + 5t) ) (E.37)

Then, Eq. (E.36) simplifies to:

70
AR, COS20<ta) Am [0, / |2
R, "~ cosa g0 c/_oo dt'ReAo (wa,t' +6;) |Ai (¢)] . (E.38)
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AR,/R, only depends on the real of opeq (wa,t’ + d¢). In the limit Yinter — 0, using Sokhotski-

Plemelj theorem, the real part of the conductivity is:

Re0neq (wa, t' + 6;) = o0 (1 — f (h;ja,t' + 5t> — f <h;ua,t' + 5,5)) (E.39)

and consequently,

0)) 2
AR COS20 (ta ) AT o / N |2 hw %)
a — JE— . (6) Fa gy (h) a ’
R, cosa g 70 c"o/_oodt |4: (t')] {f < 5ot +5t>+f ( : ,t+5t>} .
(E.40)
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Appendix F

Numerical implementation of the hot

electron model

The equations describing the model presented in Sec. 4.2 cannot be solved analytically. The
most accurate and easy way to solve the differential equations is using the forth order Runge-Kutta
method. If implemented without care, the calculation can take some time, so it is useful to provide
some details of the implemented algorithm.

Since the pump is a 100-fs pulse, the initial time is chosen as ¢ty = 0.4 ps. The initial conditions
were: Fermi energy Er = F, = Fj, = 300 meV and temperature Ty = 300 K. To solve the differential
equations, a step h; = 0.02 fs was used to solve the nonlinear Eqs. (4.36), (4.48) and (4.52) at each
ho ~ 0.3 fs. The algorithm used was:

1. Apply Runge-kutta 4th order scheme with step hy to solve Egs. (4.31) and (4.34) from time
tytoty =t; + ho;

2. At time t§ = t; + ho, calculate the integral (4.44):

Fon e—tr/me  [ts ,
E(ty) = Iy + el / dt'e!’ /™ () (F.1)
t;

2 Tee

and solve Eqs. (4.36), (4.48) and (4.52). Iy is the value of the integral at the initial moment,

which is zero in the beginning;
3. Update the values of time, ¢; to ¢, and corresponding initial conditions of the integral:
IO — 5(tf) (FQ)

as well as the quasi-Fermi levels and temperature to F.(ty), Fp(ty) and T'(tf). Also update

the initial non-thermalized and thermalized carrier concentrations;

This procedure is repeated until ¢y equals the final time of the measurement chosen to be 2 ps.
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Appendix G

Quantization of the SPP electromagnetic

field

In this section, using the classical expression for the energy, the electromagnetic field, in a

dispersive lossless dielectric medium, is quantized following Ref. [58].

For electric and magnetic fields with a harmonic time dependence:
E(r,t) = BE,(r)e ™! 4 cc, (G.1)

B(r,t) = By(r)e ™! +c.c, (G.2)

the time-averaged classical electromagnetic energy in the presence of a dispersive, lossless dielectric

is given by:
Upm(w) = % /d3r <EZ(r)88w [wer(r,w)| Ey(r) + |Bw|2) , (G.3)

where ¢,(r,w) is the relative dielectric function. The idea is to take the above equation as the
quantum mechanical energy of a EM field eigenmode with frequency w. We work in the Weyl gauge,

in which the scalar potential is set to zero:
¢»=0, (G.4)

such that the electric and magnetic fields are obtained only from the vector potential A:

10A(r,t)

(1) = c Ot ’

B(r,t) =V x A(r,1) . (G.5)

In our case of interest, graphene is between two dielectrics, €1 and €9, that are homogeneous. Thus,

A(r,t) is expanded by making explicit the momentum in the zy-plane and since plasmons follow a
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VII Quantization of the SPP electromagnetic field

dispersion relation wq = w(q) , the expansion is written as:
1 A .
A(r,t) = 75 Z aqe e T Ay (2) + c.c (G.6)
q

so that q not only is the plasmon momentum but also represents a mode wq. The coefficients aq

are dimensionless. The mode functions Ay have units [A] - [distance] and S has units of area.

From Maxwell’s Egs. (A.3) and (A.4), we obtain the wave equation for E:

w2
V xV xEq(r) = C—Qar(r,wq)Eq(r) . (G.7)

Using expansion (G.6) in the wave equation, the eigenvalue equation for Aq(z) is obtained:

2
w
Dq x Dgq x Aq(z) = ﬁar(r7wq)Aq(Z) 5 (G.8)
where the operator Dq defined as:
Dy =iq+e;0, . (G.9)

Equation (G.8) is just Ampere’s law in the dielectric medium for the mode-function Aq(z). Next,

we assume that the total time-averaged energy for the vector potential is given by:

Upm = Y Usm(wq)log)® - (G.10)

q

The quantization of the theory is done by transforming the amplitudes o into quantum mechanical

2me 2me
~ % 1t
g =>4/ aq » Qg 4| al (G.11)
4 Lqwq 4 4 Lqwq 4

[&q,ag} = ap - (G.12)

Lgq is the called the mode-length. This term is determined by demanding that the quantum me-

operators:

with commutation relations:

chanical Hamiltonian obtained from Eq. (G.10):

A= =Usu(wq) (agaq + aqag) (G.13)

H=3% hug (ahaq +aqal) - (G.14)
q
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Thus Lq is:
2me
Lq = @UEM(Wq) . (G15)

Using expansion (G.6) in Eq. (G.3), the EM energy of mode q is found to be:

w2
Upm(wq) = 4715/6137" (c;lAZ(r)aiq [waer(r,wq)] Aq(r) + [V X Aq(r)|2> :

Using,
|V x Aq(r)]2 =V X (Aq(r) x VX Aq(r)) + Ag(r) - (V X V x Aqy(r)) (G.16)

as well as Aq(r) = €"9%A4(2), together with the dispersion Eq. (G.8), a simplified expression for
EM energy is obtained:

1 wg

S 2 /dBrA*( ) (ar(r wq) + w;aar(rwq)) Aqy(z) . (G.17)

Uem(wq) = D

By definition:

/d% =S, (G.18)

so the final expression for Upy(wg) is

wg wq O, (1, W
Uem(wq) = o /dzA*( ) (6T(Z wq) + q(%()> Aqy(z) . (G.19)

c2 2 Owg

Hence, the mode length (G.15) is:

1 . wq Oer (T, wq)
Lq = 7 /dzA (2) <5T(z wq) + 2qr8qu> Aqy(z) . (G.20)
Equation (G.20) remains valid for any linear optical medium (including effects of dispersion, non-
locality, inhomogeneity and anisotropy if €, is generalized to tensor) as long as losses are neglected.

Finally, the quantized vector potential and electric field are:

Z qqu Gge 9T AG(2) + c.c (G.21)
9 .
=1 Z Z:; dge “ale T Ay (2) + c.c . (G.22)

We now can determine the full expressions for Aq(z) and Lgq using Eq. (G.8) and (G.20)

respectively. In our case, the dielectric function is:

er(2,0q) = © (2)e1 + O (—2) en + ‘qu, w)8(2) | (G.23)
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VII Quantization of the SPP electromagnetic field

where 0(q,wq) is graphene’s conductivity function which we model using the Drude formula:
) =i——". G.24
o(a ) =i 1 (G.24)

In order to determine the plasmon mode, we look for p-polarized solutions of the electric field in

the form of evanescent waves. For z # 0 we have from Gauss’s law (A.1):
Dq-Eq(2)=0. (G.25)
The mode-function must then take the form:

u(+)e*”1qu z>0

Aqy(z) = Vhe g;q) , (G.26)
uy €79 2 <0
where:
w2
]2 %a R S| G.27
Kn,q q 2 o Ung =1 p ﬁn’qez : (G.27)
Using Egs. (G.23) and (G.26), Eq. (G.20) yields:
R COTE P L 2m) @) 9
Lq=e1 )‘h,q’ g T "12,(,’ eng o M| By (wqo(q,wq)) - (G.28)
Since the conductivity is given by Eq. (G.24), the mode length assumes the form:
2 2 2 2
Kig T K5 q T
Lq =€ La 3 7 €9 2.4 3 a (G.29)
267 4 265 o

G.1 Quantization of the optical field

The quantization of the incident, reflected and transmitted fields follows the same procedure as

above. However, in these cases, the dielectric function is:
er(z,wq) =1 (G-30)
where 7; is the refractive index of medium ¢, and the eigenmodes of the wave equation are:
Aq(r) = Vhee™Tey | (G.31)

where ey is the polarization vector. For a photon propagating in 3D space, the length mode Ly,
given in Eq. (G.20), is ill defined,

Ly = T]Z-Z/dz =n’R. (G.32)

118



G.1 Quantization of the optical field

Here R is interpreted as the distance between sample and position of the laser. If we have a beam

of cross section S, then:
V=§R (G.33)

is the volume occupied by a photon.

The quantized vector potential and electric field are:

. Imhc? ~ .
A(r,t) = Z gTZbkel(k'r_wkt)ek +c.c, (G.34)
i k
. b - -
E(r,t) = ’LZ WQVk be'Twktey 4 cc . (G.35)
’r,4
k 7

Here by ((;L) is the destruction (creation) operator of photons of the optical field. The normalization

27hic? 1/2
G.36
(772'2 Vwk) ( )

factor:

corresponds to one photon in the volume V.

Finally, the magnetic field is:

: 2mhwyk » N
H(r,t) =in; Z \ /%bkel(k’r*‘“k”k X ex +c.c, (G.37)
k K3

where k = k/k and k = nwy/c.
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Appendix H

Description of the experiment with BBO

H.1 BBO description

BBO is a negative-birefringence uniaxial crystal [12, 59] with dielectric tensor in the crystal’s

frame:
n3 0
e=|0 n3 0 . Mo > Ne s (H.1)
0 0 n?

where n, is called the ordinary refractive index and n., the extraordinary refractive index (ne < n,).
The z-axis is the crystal’s optical axis. Because BBO’s dielectric tensor has different eigenvalues,
the EM wave propagates with different speed in different directions [50, 60|. Thus, it is convenient
to determine the eigenmodes of the crystal. From Egs. (A.3) and (A.4) in momentum-frequency
space:
w w
kxE(r,w) =—-H(r,w) , kxH(r,w)=—-——D(r,w) , (H.2)
c c

we find the wave equation for a plane wave:

w2

k x (nk x H) = —C—QH , (H.3)

where 7 is the inverse matrix of the dielectric tensor €. The above equation is a eigenvalue problem:

w2

[H=-5H, (H.4)
with £ =k x (nkx) a hermitian operator. For:
k =k (cos¢sinf,sin¢sinf, cosh) , (H.5)
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H.1 BBO description

the eigenmodes are easily found to be':

h, = (—cospcosf,—sinpcosh,sinf), k,= %no , (H.6)

h, = (_Sin ¢, cos @, 0)7 ke = - = n(e)

(HL.7)
\/n(z) sin? @ +n2cos2 0 ©

N noNe w w
c

The first mode is called ordinary (with ordinary polarization) and the second one extraordinary

(with extraordinary polarization). Using Maxwell’s equation, the respective eigenvectors for D are:

A ko -
do = _? X ho = (—Sil’l ¢7COS ¢7O) (HS)
and k
de =~ x e = (c03 0 c03 9, cossin g, —sind) (19)

e
Notice that from Maxwell’s equations it follows that both H and D are always perpendicular to the

wavevector. This is not true for the electric field E since the dielectric tensor is not isotropic.

It is also important to describe the experiment is the non-linear (NL) response of BBO. Since

BBO has a trigonal structure with point group symmetry 3m [12, 59|, its second order susceptibility
(2

tensor, x;7r, contains the following non-vanishing elements:

T2Xx =YY ,

TTZ =YYz ,

ZxT = 2YY ,
zzz

YYy = —Yrr = —TTY = —TYT .

We ignore losses and use Kleinman’s symmetry to write the second order susceptibility tensor in

contracted notation [12]:

dis = dog = d31 ,
d31 = d3a
ds3

!The hat indicates that the vectors are normalized.
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VIII Description of the experiment with BBO

with the nonlinear susceptibility tensor written as:

0 0 0 0 d31 —dxo
d? = |—dyy dyy 0 dy3y O 0 | . (H.10)
d31 d31 dsz O 0 0

H.2 Crystal and lab frames

It is convenient to distinguish between the crystal and the lab frames since in the lab frame we
know the polarization and direction of the incident pulses and in the crystal frame it is easier to
describe the NL SF-process because we know d(2).

To distinguish between lab and crystal coordinates, we write the coordinates in the lab frame
with a prime. According to the crystal’s data sheet, the BBO’s optical axis is in the y'z’-plane and
makes a angles § = 6y + ¥ with the y'-axis (see Fig. 6.4). However, in the crystal’s frame, the
optical axis is coincident with the z-axis. Thus, the transformation Og () that takes us from the

lab frame to the crystal frame is:

e.=0g(0)e, , (H.11)
where:
1 0 0
Or(#)= |0 sinf —cosf| . (H.12)
0 cosf sind
The incident wavevectors are:
k! = ? (—sina, cosa,0) kgl =2 (sin o, cos v, 0) (H.13)
c c
and the respective fields outside of the crystal are:
D! = D! (- cos o, — sin v, 0) etka Tt , DI = D} (- cosa, sina, 0) ek Temiwt (H.14)
In the crystal frame, they read:
I w . . I w . .
k, = — (—sina,cosasinf,cosacosd) , k; = — (sina,cosasinf,cosacosh) (H.15)
c c
and
D! = DI (—cosa, —sinasin @, — cos § sin a) eika T it ) (H.16)
D! = DI (- cos a, sin asin 6, cos f sin ) etk Tt (H.17)

When enter the crystal, the ordinary and extraordinary components of the field will refract

differently [50]. Thus, it is better to write fields @ and b in terms of ordinary and extraordinary
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H.2 Crystal and lab frames

components. For the wavevector k}, using Eq. (H.4), the eigenmodes are are found to be:

w

kp = —n, (sin a,, cos a, sin 0, cos a, cos 6) (H.18)
c
and:
k; = Ene(Q, Q) (sin ae, cos e sin 6, cos e cos 6) (H.19)
c
with: ) ) ) ) )
1 coS” e cOs“ 6 cos” e sin“ @ sin® «
5 = S + S +—. (H.20)
n2(0, ae) n?2 n?2 n?2
The respective eigen-polarizations are:
A 1 . .
d, = (— cos a, sin @, sin ay,, 0) (H.21)
V/cos? a, sin? 6 + sin? a,
N 1 1

. (sin (2cre) cos b, cos? a, sin (20),—-2 sin? o, — 2 cos? a sin® 9) )

2 V/sin? a. cos? 6 + sin? 0
(H.22)
For beam a, the results are the same but with —«a, and —«,. Thus, the fields a and b inside the

crystal are:

. I
b __ sinf t,D, B L W (H.23)
‘ V/cos? a, sin? 6 + sin? o |
cos fsin o t. D! ke T —iwt g (—a)
e e )
\/ cos2 0 sin? o + sin? 0
sin 0 tODg kO jwt
Db _ ez b~re—zw do(ao) (H24)

\/ cos2 a, sin? @ + sin? oy,
cos 0 sin av teDZ{

D
. ezkb r, zwtde(ae) 7
V/cos? fsin2 o + sin2 0

where t, and t. are the transmission coefficients for ordinary and extraordinary polarizations, re-

spectively. The respective electric fields are given by E = nD:

. o
sin @ t,EletksTeiwt

n2 V/cos? a, sin? 0 + sin? ay,

E, = — do(—av) (H.25)

Qe ) S
ik r it cos fsin a t,EleKaTe=iwt

712(0, ae) v/ cos? 0 sin? o + sin? 0

cosfsina t.Ele

e
n2(0, ae) v/ cos? 0 sin? o + sin? 0

_ae) _|_

a
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VIII Description of the experiment with BBO

o

sin @ t,FletkyTe—ivt N

E, = — ob ; —do(a0) (H.26)
n2 \/ cos? a, sin® 0 + sin” a,

cosfsina t.Elekore—wt cosfsina t Bl ek Te—iwt

n2(0, ae)v/cos? O sin® a + sin2 0 o 12(0, o) v/ cos? O sin? a + sin? 0

kb7

where

1 _ (n? — n2) cos acos 0/ cos? 0 sin? a + sin? 0 (1.27)
nZ(0,ac) ngng ' '

The angles a, and «., as well as the transmission coefficients, are determined by the boundary

conditions.

H.3 Sum frequency generation

We start the calculation of the sum frequency process with the non-linear wave equation [12]:

2

w 2
VxVxE;— —Ss(ws)ES =
c

Py (H.28)

c2

with E4 denoting the field at sum frequency ws = wy + wp and
Pnr = ¥ ELE, . (H.29)

In practice, Eq. (H.28) is very difficult to solve. Nonetheless, we can make it easier if we approximate
the fields by plane waves and remember that sum frequency generation is only appreciable when
there is momentum conservation, that is, when Ak = k, +k; — Kk is equal to zero. This is only true
for the situation when ordinary components of fields a and b interact to produce a sum frequency
field with extraordinary polarization:

o+o—e. (H.30)

Thus, only the ordinary components of fields a and b are of relevance when writing Pyp, in Eq.
(H.29).

Taking into account only the ordinary polarizations, Pyr, is written:

Eabem
Eq.,Ey
0 0 0 0 d31 —d22 ayo v _d22 (Eaa:Eby + anEb:r)
Pnp=2|—dy dos 0 d31 0 0 0 =2 dap (anEby - Eabezt)
d31 d31 d33 0 0 0 0 d31 (anbe + anEby)
_EazEby + anEba:_

(H.31)

The z-component of the fields is not considered because the ordinary eigenmode only has x and
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H.3 Sum frequency generation

y-components. Explicitly, Pyy, is:

0

sin2 0

_d22 t2 - o (AW
Py, =2 n2 (sin2 6 cos? o + sin? a) —ZEC{Ege’(ka+kb) r
sin* @ — sin? f tan2 o

; 2
nd cos? a (sin? 6 + tan® )" |

o

31

t2 (k0 4k
= 4p5n—1EéEge’(ka+kb)'r . (H.32)

From the experiment, the SF field appears at ag = 0, so its eigenmode is:

de(os = 0) = (0,cos6, —sinf) | (H.33)
the polarization is:
Pur, = 4deg 4E1E1 Wtk Td, (o, = 0) + 4dy, 4EIEI etk T, (H.34)
where
k, = k, + k;, = (0,sin 6, cos 0) (H.35)

is the direction of propagation of the SF signal and

~

deff = Ps de(as = O) s dk =P lA{s . (H36)

Finally, we can write the non-linear wave Eq. (H.28) as

w2 167Tw

V XV x E; — ~2e(ws)By = S de s —2 Bl Ele'®atki)Td, (o, = 0)
C

O

S OEIEI katki) Tk, (H.37)

O

167Tw

This is still complicated to solve. However, we invoke the fact that the polarization cannot radiate

an electromagnetic wave along its direction of propagation. In fact, from Gauss law:
ks D, = 0=k, e(w)E, = 47k, - Pyp, , (H.38)

so the condition for the ki component of the polarization is automatically satisfied. Thus, the

radiated field only has an extraordinary component and the wave equation reduces to a scalar one:

d*E; 2 1 0 410
= S+ w—n 20, g = 0,w;) By = 6:“ deft "EIE[ (CAL A (H.39)
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VIII Description of the experiment with BBO

with € denoting the variable along k,. We now write the SF-field as
Ey = A (€)e'*t (H.40)

with A; being a slowly varying amplitude. Also, since the depletion of beams a and b is small, we

approximate F! and Eé as constants in Eq. (H.37). This then gives:

d*As . dA; wi 2 167W [l Ak
PR <62ne(0,as —0,w,) — k:) Ay(6) = =05 o 4E Bl (H41)
with (for w, = wp):
R w w
Ak = Ak ks = 2Zno(w) COS (tp — 2;%(9, as =0,2w) . (H.42)

Since, the crystal is mounted on a rotating stage, we can control § and tune it so that Ak = 0.
Hence from now on, we assume the condition of perfect phase match, Ak = 0. Using the slowly

varying amplitude approximation, Eq. (H.41) becomes:

dAs  8mw? 12
d€ ~ lﬁd 4E Eb y (H43)
which has solution: )
A, = i%pdeﬁ 4EIEb , (H.44)

S
where D is an effective interaction distance. This allows us to conclude that the SF-field is of the

form:

A, x EIEL . (H.45)

Since we have pulses with finite bandwidth,
As(w) = iﬁ/dw’Elf(w —WELW) (H.46)

where 8 the constant of proportionality,

8rw? 2
B= z—kSC; Ddeﬁn—i ; (H.47)
o

that can be determined by fitting to the experimental results. From the Manley-Rowe relations

(assuming no losses) [12], the intensity variation of beam a is:

ALL(#) = —%Is(t) | (H.48)
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H.3 Sum frequency generation

Here I oc |Ag(t)]? is the intensity of the SF-field. Therefore, the power depletion is:

1
AP,(t) & =5 Pa(t) o PIpL. (H.49)
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Appendix 1

Lock-in amplifier

Lock-in amplifiers are used to detect and measure very small AC signals, all the way down to a
few nanovolts |61, 62]. Accurate measurements may be made even when a small signal is obscured by
noise sources many thousands of times larger. This device uses a technique known as phase-sensitive
detection to extract signals in a defined frequency band around a specific reference frequency. Signals
at frequencies outside the frequency band are rejected and do not affect the measurement.

In the experiment, the process under study is excited at a fixed reference frequency v, and the
lock-in detects the response from the experiment at that frequency. In our case, the pump beam
(beam b) is modulated by an optical chopper, that fixes v,.. The lock-in then uses a phase-locked-
loop (PLL) to generate the reference signal. The PLL locks the internal reference oscillator to the
external reference, w, = 27y, resulting in a reference sine wave at w, with a fixed phase shift 0,¢f.
Since the PLL actively tracks the external reference, changes in w, do not affect the measurement.

To understand how the lock-in works, let us, for the sake of simplicity, consider the following
example. Imagine that the optical chopper modulates the beam as a sine wave!. Then, the signal is
of the form Vg sin (wyt + Osig), where Vyip is the signal amplitude. The lock-in amplifier generates
its own sine wave, V,sin (wrt + fref), and then multiplies it by the signal using a phase sensitive
detector (PSD). The output of the PSD is the product of two sine waves:

Vpsd = VL‘/sig sin (W'rt + esig) sin (th + Gref)

V1,V
= % cos [(wr —wr) t + Osig — Oref]

VL Vi
- % cos [(wy +wr) t + Osig + Oref]

one at the difference frequency w, — wyr and the other at the sum frequency w, + wr. If the PSD
output is passed through an ideal low pass filter, the AC signals are removed. Then, in general,

there is nothing left. However, if w, equals wy, the difference frequency component will be a DC

n reality, the chopper modulates the beam as a square wave. This is not a problem, since the lock-in’s reference
can be locked to the square wave’s first harmonic.
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signal. In this case, the filtered PSD output will be:

VL Vi
Vosd = L2 £ cos (Osig — Oret) - (I.1)

This is a very nice signal because it is a DC signal proportional to the signal amplitude. This is
possible because the PPL locks wy, equal to w,. It also ensures that the phase between the signals
does not change with time, otherwise cos (6sig — fref) would change and Vpsq would not be a DC
signal.

The phase dependency ¢ = gz — Orer can be eliminated by adding a second PSD. If the second
PSD multiplies the signal with the reference oscillator shifted by 90°, its low pass filtered output
will be:

Vi Vsig sinf . (I.2)

Vpsd? =

The first output is usually called z-component while the second, the y-component:
x = Vggcost  y = Vigsind (1.3)

and they represent the signal as a vector relative to the lock in reference oscillator. By computing

the magnitude R of the signal vector, the phase dependency is removed:

where R measures the signal amplitude and does not depend upon the phase between the signal and
lock in reference.

In practice, things are a bit more complicated. Since ideal filters don’t exist, some noise will
always be present at the output of the PSD. Real filters? have a bandwidth of frequencies that are
allowed to pass. Frequencies outside this bandwidth are heavily attenuated. Mathematically, filters
are well described in the frequency domain. The relationship between the incoming signal Vi, (w)

and the filtered signal Vo (w), in the frequency domain, is given by:
Vout(w) = H(W)V;n(w) s (15)

where H (w) is called the transfer function of the filter. For low-pass filters, H (w) is well approximated

by:
1

T 1+iwr

where 7 = RC is the filter time constant and R and C are the resistance and capacitance of the

H(w) (1.6)

RC circuit, that is, the low-pass filter. The cut-off frequency f. is defined as the frequency at which
the signal power is reduced by —3 dB or one half. The attenuation grows ten times every tenfold

frequency increase above f. = f_3qp. This equals 20 dB/decade corresponding to an amplitude

2In the case of the Lock-in, these filters are low-pass filters.
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IX Lock-in amplifier
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Figure I.1: Attenuation 20log;y Vout/Vint of frequencies for a low pass filter. First order (blue
line) and second order (orange line) low pass filters. Increasing the order of the filter decreases
the bandwidth (BW) and improves the roll-off.

reduction by a factor of 2 every doubling of the frequency. For the filter described by H(w), the
cut-off frequency is:

Je=5—". (L.7)

27T

Compared to the idealized filter, the first-order filter has a fairly poor roll-off behavior. To
increase the roll-off steepness it is common to cascade several of these filters. For every filter added
the filter order is increased by 1. Since the output of one filter becomes the input to the following

one, we can simply multiply their transfer functions. The transfer function of an n-th order filter is:

Hy(w) = <1)n . (1.8)

1+ iwr

In Fig. I.1 the behavior of a first and second order filters is shown.

We now have a complete picture of the principles behind lock-in amplifier. After mixing the
input signal with the reference signal, the input signal spectrum is shifted by the demodulation
frequency w,. Low-pass filtering further transforms the spectrum through a multiplication by the
filter transfer function H,(w). The demodulated signal contains all frequency components around

the reference frequency, weighted by the filter response:
V;)ut(w) = Hn(w)vin(w - W'r) . (19)

This equation clearly shows that demodulation behaves like a bandpass filter in that it picks out the
frequency spectrum centered at v, and extending on each side by f_34B.

The choice of the time constant (or cut-off frequency) and filter’s roll-off is usually a trade-off
between the quality of the results and the time that takes to do the experiment. The bigger the
filter’s time constant and order, the longer it takes for the lock-in’s output to settle. Although, a
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1.1 The dB unit

bigger time constant and filter order means more stable results, this is not a synonym of better
results, since the experimental conditions change over time. In our case, the laser power fluctuates
over the day and if the experiment takes too long, this fluctuations will start to appear in the final
results. Therefore, the order and time constant are chosen to give the most stable outputs in the
lowest time possible. The best combination is found by trial. A time constant of 1 second and a 60
dB/decade are enough to get good results, and this was the combination used to measure the pump

depletion.

1.1 The dB unit

The dB is a logarithmic way of describing a ratio. The ratio may be power, sound pressure,
voltage or intensity or several other things. In electrical circuits, dissipated power is typically
proportional to the square of voltage or current when the impedance is constant. Taking voltage as

an example, this leads to the equation for power gain level Lq:

Vou
L = 20logy, ( ‘; t) dB , (1.10)

m

where Vo4 is the root-mean-square (rms) output voltage and Viy is the rms input voltage.
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Appendix J

TOPAS-C

TOPAS-C is an optical parametric amplifier (OPA) [63]. This device exploits the second-order
nonlinearity of nonlinear crystals such as BBO to transfer energy from a fixed frequency pump pulse
to a variable frequency signal pulse, whose frequency is easily tuned.

The principle of an OPA is shown in Fig. J.1: in a nonlinear crystal, energy is transferred
from a high frequency and high intensity pump beam, at frequency ws, to a lower frequency and
lower intensity signal beam, at frequency wy, which is amplified. Additionally, a third beam, called
the idler beam, at frequency ws, is created to fulfill energy conservation. In principle, the signal
frequency to be amplified can vary from 0 to pump frequency ws, and correspondingly the idler
can vary from wjz to 0. This mechanism is similar to DF generation, except for the strength of the
interacting fields: DF generation arises when the fields at ws and w; have comparable intensities,
while OPA occurs when the field at w; is much weaker. The OPA process is efficient when, in

addition to energy conservation, the phase-matching condition:
Ak =k; + ko —k3 =0 (Jl)

is satisfied, where k; is the wave vector of the i-th beam.

The TOPAS-C provides an optical amplifier with continuously variable frequency (determined
by the phase-matching condition) and represents an easy way of changing the output frequency of
an otherwise fixed femtosecond laser system. In our case, the pump is the output from the amplifier
at A3 = 800 nm and the output from TOPAS-C is to be changed between 800 nm and 729 nm in

Figure J.1: Optical parametric amplification: the pump at frequency w3 excites the system that relaxes via
stimulated emission of photons at frequency wi, thus amplifying the signal.

132



Sapphire
plate

3| NL crystal

€————| NL crystal [€———| NLcrystal f¢

Figure J.2: TOPAS-C schematics. Each box represents a stage. The pump at A3 = 800 nm, here represented
by the blue pulse, is used to generate the WLC and the signal pulse, w; (orange pulse), as well as for signal
amplification. a) WLC generation. The WLC is used as seed for the signal pulse. b) First stage amplification:
in this stage a particular frequency bandwidth, around wy, of the WLC is amplified. The idler pulse is also
created in this stage (not represented in the image). ¢) Second stage of amplification: the signal at frequency
wy is further amplified. d) The signal is used for second-harmonic generation. The final output frequency is
2(,01 .

order to properly DF scan the SPP dispersion and find a resonance.
The TOPAS-C operation is divided into four stages:

1. a seed pulse generation stage which will be the signal for optical parametric amplification (Fig.
J.2 a)). In TOPAS-C the seed is a white light continuum (WLC) pulse that is generated by
focusing a small fraction of the input pump in a sapphire plate. The WLC spectra usually
contain an intense residual peak at the driving pulse wavelength (which contains most of the
energy) and extends down to 450 nm in the visible and up to 1600 nm in the IR. Usually
the bluer and redder frequencies have a spectral energy density which is 3 and 4 orders or
magnitude lower than that of the driving pulse. The WLC displays excellent shot-to-shot
stability and diffraction-limited spatial beam quality;

2. first parametric amplification stage (Fig. J.2 b)). In this stage the wavelength A\; € [1600, 1458]
nm of the WLC is amplified, thus creating the signal beam. The amplified wavelength is
controlled by the time delay between WLC and pump as well as by the NL crystal angle, that

ensures phase match;

3. second parametric amplification stage with amplification of the signal (Fig. J.2 c)).
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X TOPAS-C

4. nonlinear generation of output signal (Fig. J.2 d)). In some cases, the frequency signal is not
the one desired; in our case we are interested in the second harmonic of the signal. At the end
of the TOPAS-C setup a set of nonlinear crystals are used to double the signal frequency to
the desired range A\, € [800,729] nm.

In total, TOPAS-C has five controllable parameters to change the output frequency: the time delay
between WLC and first pump and the NL crsytal angle, in the first stage; the NL crystal angle in
the second stage and time delay between signal and pump; NL crystal angle for second harmonic
of the signal. These parameters need to be calibrated for TOPAS-C to be used properly. There
is another parameter related to the probe that must also be calibrated. Whenever we change the
output frequency of TOPAS-C, the time delay between pump and probe changes. Thus, to make
the pulses arrive at the same time, the probe delay line must also change accordingly. This means

that the probe delay line must be calibrated relative to the TOPAS-C scan in frequency.
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Appendix K

Boxcar averager

The duty-cycle of both TOPAS-C and amplifier, in Fig. 6.3, is 1 KHz. The electronic signal
contains relevant information only in a fraction of each period; outside of that short interval only
noise exists. The boxcar averager is a device that achieves a high signal-to-noise ratio (SNR) in a
minimal amount of measurement time because it captures the signal from a well-defined temporal
window in each period, meaning that all signal components outside that window are rejected [55, 56].

In a typical periodic pulsed signal, the information is contained in a short pulse of duration 7,
with a significant waiting time between individual pulses. The signal is characterized by its duty
cycle d = 7,82, where Q is the repetition rate of the pulses. If the duty cycle is low, measuring
continuously in time results in a low SNR, as the time intervals between individual pulses contribute
to the captured noise but not to the signal. With a boxcar averager it is possible to acquire the
signal only during the pulse duration, ignoring the time intervals between pulses. This corresponds
to a multiplication of the input signal with a boxcar function, which is a rectangular pulse train. By
matching the period of the boxcar function 1/, the box car window width T}y and its position tg
with respect to the signal pulses, the noise between signal pulses can be discarded. The signal, s(t),

is then integrated over the duration of Ti,oy:

Tbox/2
Sbox = / s(t)dt . (K.1)
7Tbox/2

Finally, the integrated signal spox is averaged over N periods.
The width of the boxcar window T}ox and its position tg, are important parameters when op-
timizing the SNR. For example, consider the electronic signal from the photodetector. This signal

comes from the charge and discharge of the photodetector and is well described by the function!:

s(t) = sge~t/™e {1 + Erf (t ~ R )} : (K.2)

TR 2TRC

where 7R is the photodiode’s rise time and the Trc = RC is the system’s RC time. The captured

!See Appendix (K.1) for derivation.
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Figure K.1: (Right) spox (orange), nuox (green) and SNR (blue) as functions of the boxcar window Tpox.
Here the position with respect to the signal pulses is tg =~ 0.84 Trc. (Left) SNR as a function of the position
with respect to the signal pulses, t3. The window width for integration is Thox ~ 1.92 Trc. In both plots
TR = 3 us and Trc = 47r. SNR is maximized for tg ~ 0.84 Tre and Thox &~ 1.92 Tre.

signal increases with the boxcar window width until it approaches an amplitude of 1 when the full
pulse is captured by the boxcar window. Nonetheless, the captured noise also increases with Tjox.
In the case of white noise, the captured noise nyoy increases proportionally to the square root of the
boxcar window width:

Nhox XV Thox (K.3)

so choosing a big window T} to fully capture the signal may not be the best option to maximize
the signal to noise ratio:
SNR = Shox/Mbox - (K.4)

Figure K.1 shows how spex, mhox and SNR behave as functions of Thox and ty. Depending on Tiox
and tg, the SNR can be maximized.

Usually, the integration is averaged over multiple periods N. Assuming a white noise floor and

an ideal boxcar window, the captured signal s increases linearly with N:

N
s = Z Sbox = N Sbox (K.5)

whereas the noise contribution 7 increases as the square root of the sum of the squares of the

captured noise:

(K.6)

Therefore, for N boxcar periods, assuming that the signal spox and the noise npox are the same in
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each period, the final SNR is given by:

= Zhox /N (K.7)

Npox

SNR =

Si| @i

K.1 Signal from a photodetector

In this appendix we derive a phenomenological expression for the photodetector electronic signal

due to a ultrashort light pulse. The voltage signal is determined by the differential equation:

ds s W

(K.8)

)

dt TRC B TRC

s is the electronic signal, T is the photodetector’s RC time and Vi, is the driving voltage pulse
caused by the ultrashort light pulse. Since the light pulse is much shorter than the circuits time
response, the relevant time is not the light pulse width, but the rise time of the photodiode 5. We
write V;, as:

Vinlt) = Vie /7 (K.9)

Equation (K.8) is solved using the Green’s function method. The full solution is the sum of the

homogeneous solution V}, and a particular solution V,,:
s(t) = Va(t) + Vp(t) . (K.10)
The homogeneous solution is simply:
Vin(t) = Voe™"/me (K.11)

The particular solution is determined by:
+o0
Vy(t) = / d'G(t —t")Vin(t') . (K.12)

—0o0

For Eq. (K.8), Green’s function is:

G(t) = ’ r<? : (K.13)

so the integral in (K.12) yields:

Vy(t) = st/ meVy g {1 + Fxf <t - )} : (K.14)

2 TR  2TRC
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Using the results (K.11) and (K.14), the full solution to (K.8) is:

1 t
s(t) = e7/™ (Vo + Vi 1+ Baf | — — =& : (K.15)
2 TR 27RC
At t = 0 and for the cases of interest (Tp < Trc):
1
s(t=0)=s0o~ Vo + iwn\/%TR . (K.16)
I set: .
iwn\/;TTR =S50, (K17)

so that the final expression assumes the simplified form:

s(t) = sget/me {1 + Exf <t __® )} | (K.18)

TR  2TRC
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