
Universidade do Minho
Escola de Engenharia

Hugo Daniel Vieira de Carvalho

Diversity-Driven Hardware Task:
a Microcode Approach

janeiro de 2023U
M

in
ho

 |
 2

02
3

H
ug

o
Da

ni
el

 V
ie

ira
 d

e
Ca

rv
al

ho
D

iv
er

si
ty

-D
ri

ve
n

H
ar

dw
ar

e
Ta

sk
:

a
M

ic
ro

co
de

 A
pp

ro
ac

h

Hugo Daniel Vieira de Carvalho

Diversity-Driven Hardware Task:
a Microcode Approach

Dissertação de Mestrado
Mestrado em Engenharia Eletrónica Industrial e Computadores
Sistemas Embebidos e Computadores

Trabalho efetuado sob a orientação de
Professor Doutor Adriano José Conceição Tavares
Professor Doutor Vitor Alberto Teixeira da Silva

Universidade do Minho
Escola de Engenharia

janeiro de 2023

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e

boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas

no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Atribuição-NãoComercial-CompartilhaIgual

CC BY-NC-SA

https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agradecimentos

Primeiramente, gostaria de expressar os meus agradecimentos ao professor, doutor Adriano Tavares,

pelo conhecimento transmitido ao longo do mestrado, e pela disponibilidade e interesse demonstrados

durante o desenvolvimento da dissertação. O domínio das várias áreas do conhecimento incutido foi sem

dúvida importante para concretizar as metas impostas durante este ano de trabalho. Ao professor, doutor

Vitor Silva, um sincero obrigado, por todo o conhecimento passado, apoio, e críticas construtivas. A sua

experiência foi essencial para o desenvolvimento da dissertação e para o meu crescimento enquanto

engenheiro em várias vertentes.

Ao meu colega e amigo José Mendes, agradeço pelo companheirismo e apoio durante estes anos

e também durante os desafios e frustrações da dissertação. Não podia deixar de agradecer também

aos meus colegas e amigos com quem durante estes anos partilhei o laboratório e experiências, e um

especial obrigado aos meus amigos, Nuno Rodrigues e Francisco Marques pelas conversas e motivação

para perseguir os meus objetivos.

A toda a minha família, quero agradecer profundamente pela paciência e pelo suporte que me deram

e que tornou isto possível. Por todo o apoio, um obrigado do fundo do coração para o meu pai, para a

minha mãe, para a minha irmã, Joana, avós, tios e tias. Que esta seja apenas a linha de partida para um

futuro preenchido de sucesso e aprendizagem.

Um obrigado final a todas as pessoas que direta ou indiretamente me influenciaram a escolher um

caminho onde me sinto concretizado.

Hugo de Carvalho, Guimarães, 2022.

iv

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

Resumo
Tarefa de Hardware Orientada para a Diversidade: uma Abordagem em Microcódigo

Atualmente, a tecnologia escala a um ritmo muito elevado, proporcionando um crescimento de várias

ordens de grandeza no desempenho de sistemas VLSI em áreas cada vez mais pequenas. Contudo, o

aumento de desempenho eventualmente atingiu o limite, e multicores heterogéneos foram introduzidos,

dificultando o co-design por falta de mecanismos de adaptação e semelhanças entre, por exemplo,

CPUs e FPGAs. A direção principal da investigação começou então a mudar para uma que fundamental-

mente permitia: (i) sistemas fiáveis e seguros, com preocupações relacionadas com adaptação baseada

em reconfiguração, (ii) sistemas de baixa latência e determinísticos, baseados na aceleração em hard-

ware, e (iii) sistemas eficientes energeticamente, focados na centralidade de dados. Com isto em mente,

começaram a surgir modelos de co-design que visam abranger estas considerações como, por exemplo,

o modelo de acelerador HAL-ASOS. Apesar de todos os modelos de programação híbridos para CPU-FPGA

disponíveis na literatura, tanto quanto se sabe, exclusivamente o HAL-ASOS aplica microcódigo para al-

cançar um sistema com elasticidade by design e regularidade. Para expandir a investigação de HAL-ASOS

a cerca de microcódigo e explorar as suas limitações, a dissertação propõe uma nova e específica arquite-

tura de acelerador baseada em dois esquemas de microinstrução, para fornecer abstrações ao nível do

kernel e do utilizador. A arquitetura descreve um microkernel baseado nas premissas HAL-ASOS, com

serviços de gestão de eventos, gestão de memória e memória temporária, gestão de recursos (tanto no

kernel como na tarefa), bem como mecanismos de sincronização, e uma tarefa de hardware capaz de re-

alizar syscalls estendidas, comunicando com o sistema operativo do host através de memória partilhada.

Para fazer face à adaptabilidade do acelerador, a arquitetura foi migrada para permitir atualizações de

microcódigo, e testada com um esquema de injeção de falhas. As restantes funcionalidades do modelo

do acelerador foram verificadas sob um ambiente de simulação utilizando ferramentas Xilinx, e também

sob um ambiente de simulação completa com ferramentas HAL-ASOS. A implementação do modelo de

acelerador num SoC Zynq-7010 ARM/FPGA foi avaliada. Os resultados mostraram que, no que respeita

à escalabilidade, os procedimentos kernel-bounded na tarefa de hardware, conseguem sempre reduzir

um tipo de célula lógica combinacional da plataforma ZYBO Z7-10 (até 73%), considerando um ligeiro

aumento na utilização de LUT (até 32%), ambas dependentes da versão. Além disso, os resultados tam-

bém demonstraram que, por consequência, a execução kernel-bounded conseguiu reduzir a dispersão

de células lógicas até 29%, e o número de slices incompletas da FPGA .

Palavras-chave: aceleração em hardware, elasticidade evolutiva, microcódigo, tarefa de hardware

vi

Abstract
Diversity-Driven Hardware Task: a Microcode Approach

Nowadays, technology is scaling at a very high rate, coming along with a growth of several orders of

magnitude in VLSI performance within increasingly smaller areas. However, performance increase even-

tually hit a pitfall, and heterogeneous multi-cores were introduced, making the co-design harder due to

the lack of adapting mechanisms and commonalities regarding, for example, CPUs and FPGAs. The key

direction of research then started to shift into a direction that fundamentally allowed: (i) reliable and secure

systems, with concerns of adaptation through reconfiguration, (ii) low-latency and deterministic systems,

relying on hardware acceleration, and (iii) energy-efficient systems, focused on being data-centric. With this

in mind, co-design models that encompassed these considerations started appearing, e.g., the HAL-ASOS

accelerator model. Despite all the hybrid programming models for CPU-FPGA available in the literature,

to the best of one’s knowledge, only HAL-ASOS employs microcode to achieve system elasticity by design

and regularity. To expand upon HAL-ASOS research on microcode and explore its limitations, the disser-

tation proposes a new and specific accelerator architecture based on two microinstruction schemes, to

provide kernel- and user-level abstractions. The architecture describes a microkernel based on HAL-ASOS’

premises, with services for event management, memory and buffer management, resource management

(in both kernel and task), as well as synchronization mechanisms, and a hardware task capable of per-

forming extended syscalls, communicating with the host’s operating system through shared memory. To

tackle the adaptability of the accelerator, the architecture was migrated to allow for microcode updates,

and tested with a fault injection scheme. All the remaining functionalities of the accelerator model were

verified under a simulation environment using Xilinx’s tools, and also under a full simulation environment

with HAL-ASOS tools. The deployment of the accelerator model on a Zynq-7010 ARM/FPGA SoC was eval-

uated. The results showed that, regarding scalability, kernel-bounded procedures in the hardware task,

could always reduce one type of combinational logic cell of the ZYBO Z7-10 platform (up to 73%), con-

sidering a slight increase in LUT usage (up to 32%), both version-dependent. Moreover, the results also

exhibited that, as a by product, kernel-bounded execution was able to reduce the dispersion of logic cells

up to 29%, and the number of incomplete FPGA slices.

Keywords: evolutive elasticity, hardware acceleration, hardware task, microcode

vii

Contents

Page

Agradecimentos iv

Resumo vi

Abstract vii

Acronyms xxv

1 Introduction 1

1.1 Motivation . 3

1.2 Research Goals . 3

1.3 Dissertation Structure . 4

2 Context and State of the Art 6

2.1 Reconfigurable Computing . 7

2.1.1 FPGA Technology . 7

2.1.1.1 Evolution . 7

2.1.1.2 Granularity . 8

2.1.1.3 Reconfiguration . 8

2.1.2 Adaptability in Hybrid Operating Systems 9

2.1.2.1 Note on Lockstep . 10

2.2 Hybrid Programming Models . 12

2.2.1 Real-time Concerns . 12

2.2.2 Traditional Hardware Acceleration . 13

2.2.3 RTOS-Based Models . 14

2.2.3.1 Hthreads . 14

2.2.3.2 ReconOS V1 and V2 . 15

2.2.3.3 Additional Research Cases . 17

2.2.4 Linux-Based Models . 18

viii

Contents ix

2.2.4.1 ReconOS V2 . 18

2.2.4.2 ReconOS V3 . 19

2.2.4.3 BORPH . 20

2.2.4.4 SPREAD . 22

2.2.4.5 Additional Research Cases . 24

2.3 Microcode Fundamentals . 24

2.3.1 Control Unit Design . 25

2.3.1.1 Hardwired Approach . 25

2.3.1.2 Microprogrammed/Microcode Approach 26

2.3.2 Related Works . 28

2.3.2.1 Microcode-Level Customization and Security 29

2.3.2.2 Additional Research Cases . 30

2.4 Discussion . 31

3 Background 33

3.1 HAL-ASOS . 33

3.1.1 Design Methodology . 33

3.1.2 Accelerator Model . 35

3.1.3 Hardware Kernel . 36

3.1.4 Hardware Task . 37

3.1.5 Improvement Analysis . 38

3.2 KIVIO . 40

4 Supporting Microkernel 42

4.1 Architecture Overview . 42

4.2 Microkernel Core . 45

4.2.1 Control Registers . 45

4.2.2 Control Unit . 47

4.2.3 Microcoded System Calls . 50

4.2.4 Native Microprogram . 65

4.2.5 System-Level Datapath . 72

4.2.5.1 Event Manager . 83

Contents x

4.2.5.2 Index Manager . 85

4.2.5.3 Address Manager . 87

4.3 Hardware Task . 89

4.4 Resource Management . 91

4.4.1 Slave Decoder . 92

4.4.2 Page Decoder . 95

4.4.3 Mutex Decoder . 97

4.5 Hardware Resources . 98

4.5.1 Hardware Mutex . 98

4.5.2 Local Interrupt Controller . 103

4.5.3 Local Memory . 107

4.5.4 Slave Interface Event Manager . 110

4.5.5 Interface Configuration Registers . 113

4.6 External Interfaces . 114

4.6.1 AXI Lite Interface . 115

4.6.1.1 Optimized Control Unit and Associated Dapapath 118

4.6.2 BFM Verification . 124

4.6.2.1 Limitations . 127

4.6.3 S00 Control Interface . 131

4.6.4 S01 Data Interface . 133

4.6.5 M00 System Interface . 134

5 Architecture Extensions 136

5.1 KIVIO-Extended Features . 136

5.1.1 Procedure Scheduling . 143

5.1.2 BFM Verification and Extended Features . 148

5.2 Scalability and Execution Modes . 157

5.2.1 Runtime Management . 160

5.3 Diversity-Driven Hardware Task . 164

5.3.1 Microcode Storage Model Migration . 164

5.3.2 Host System Access . 165

Contents xi

5.3.3 Error Handling and Update Mechanism . 167

6 Experimental Results 169

6.1 Accelerator Model Resource Utilization . 169

6.1.1 Stand-Alone Kernel Single-Task . 169

6.1.2 Dual-Kernel Dual-Task . 174

6.2 Microprogram Fault Injection . 175

7 Conclusion 179

7.1 Future Works . 180

References 185

Book Sources . 185

Proceedings Sources . 186

Article Sources . 189

Academic Sources . 191

Other Sources . 191

A Source Listings 192

B Auxiliary Resources 212

List of Figures

Page

Chapter 1

1.3.1 Thesis Structure Diagram. 5

Chapter 2

2.1.1 Underlying Field-Programmable Gate Array Fabric [38]. 9

2.1.2 Basic Premise of Dynamic/Partial Reconfiguration. 9

2.1.3 ReconOS architecture extended to support thread shadowing, adapted [40]. 11

2.2.1 Overview of blocking and non-blocking hardware accelerator calls, without concurrency,

in a passive coprocessor-like model, adapted [43]. 13

2.2.2 Hthreads: Hybrid Thread Abstraction Layer and System Block Diagram, adapted [4, 3]. 15

2.2.3 Hthreads: Compilation Flow using the HybridThreads Transpiler (HTT) [49]. 15

2.2.4 ReconOS: Communication between HW Thread and OSIF, adapted [34, 32]. 16

2.2.5 ReconOS: Communication between the HW and Delegate Thread in eCos [32]. 17

2.2.6 ReconOS: Communication between the HW and Delegate Thread in Linux [32]. 18

2.2.7 ReconOS: Example Hardware Architecture with DPR [1]. 19

2.2.8 ReconOS: Communication between HW Thread and OSIF, adapted [1]. 20

2.2.9 BORPH: a) Traditional coprocessor-based FPGA system: SW-HW has a master-slave

relationship; b) BORPH-managed FPGA system: SW-HW has a peer-to-peer relationship;

adapted [9, 66]. 21

2.2.10 SPREAD: Example System Architecture, adapted [72]. 23

2.3.1 Example FSM Control Unit. 25

2.3.2 Example Module with a FSM Control Unit (Simplified). 26

2.3.3 Example Module with a Microprogrammed Control Unit (Simplified), adapted [58]. . . . 27

2.3.4 Horizontal vs Vertical Microinstructions, adapted [67]. 28

xii

List of Figures xiii

Chapter 3

3.1.1 HAL-ASOS: Design Flow, adapted [63, 62]. 34

3.1.2 HAL-ASOS: Accelerator Model integrated into Host Platform, [63, 62]. 35

3.1.3 HAL-ASOS: Hardware Kernel Simplified Model, [63, 62]. 36

3.1.4 HAL-ASOS: Hardware Task Simplified Model, [62]. 38

3.2.1 KIVIO: Information Flow, [42]. 41

Chapter 4

4.1.1 Microkernel Architecture Overview within Host Platform (Simplified), expanded view in

fig. B.10. 43

4.2.1 Microkernel Control Registers RTL Design Internal Architecture (Simplified). 45

4.2.2 Microkernel Control Unit Interaction Overview. 48

4.2.3 Microkernel Control Finite State Machine (FSM), adapted [62]. 49

4.2.4 AXI4 Protocol Waveform: Single Read Transfer. 61

4.2.5 AXI4 Protocol Waveform: Multiple Read Transfer. 62

4.2.6 AXI4 Protocol Waveform: Single Write Transfer. 64

4.2.7 AXI4 Protocol Waveform: Multiple Write Transfer. 64

4.2.8 Microprogram RTL Design Internal Architecture, adapted [62]. 65

4.2.9 Memory representation of four microinstructions, extended in table B.1 and table B.2. . 67

4.2.10 Loadable Counter RTL Design Internal Architecture. 69

4.2.11 System-Level Datapath (SLD) RTL Design Internal Architecture (Simplified), expanded

in fig. B.1. 73

4.2.12 System-Level Datapath: Syscall Wait Event Timeout Parameters and Returns. 74

4.2.13 System-Level Datapath: Local Bus Write Syscalls Parameters and Returns. 75

4.2.14 System-Level Datapath: Local Bus Read Syscalls Parameters and Returns. 76

4.2.15 System-Level Datapath: Master Bus Write Syscalls Parameters and Returns. 78

4.2.16 System-Level Datapath: Master Bus Read Syscalls Parameters and Returns. 78

List of Figures xiv

4.2.17 System-Level Datapath: Mutex Syscalls Parameters and Returns. 81

4.2.18 System-Level Datapath: Local Interrupt Controller Syscalls Parameters and Returns. . . 82

4.2.19 Event Manager RTL Design Internal Architecture, adapted [62]. 83

4.2.20 Event Manager Finite State Machine (FSM), adapted [62]. 84

4.2.21 Index Manager RTL Design Internal Architecture. 86

4.2.22 Index Manager Finite State Machine (FSM). 87

4.2.23 Address Manager RTL Design Internal Architecture. 88

4.2.24 Address Manager Finite State Machine (FSM). 88

4.3.1 Hardware Task: Simplified Example Architecture, adapted [62]. 90

4.4.1 Virtual Register Addressing. 92

4.4.2 Mutex Resource Management Overview. 93

4.4.3 Slave Decoder RTL Design Internal Architecture, adapted [62]. 94

4.4.4 Page Decoder RTL Design Internal Architecture, adapted [62]. 96

4.4.5 Mutex Decoder RTL Design Internal Architecture. 97

4.5.1 Hardware Mutex RTL Design Internal Architecture, adapted [62]. 99

4.5.2 Hardware Mutex Finite State Machine (FSM), adapted [62], HDL in listing A.7. 102

4.5.3 Local Interrupt Controller RTL Design Internal Architecture (Simplified), expanded in

fig. B.2. 104

4.5.4 Local Random-Access Memory (LRAM) RTL Design Internal Architecture. 108

4.5.5 Slave Interface (S00 and S01) Event Manager RTL Design Internal Architecture. 111

4.5.6 Interface Registers RTL Design Internal Architecture. 113

4.6.1 AXI4 Lite Interface RTL Design Internal Architecture. 115

4.6.2 AXI4 Lite Protocol Waveform: Write Transfer. 118

4.6.3 Connection of the S00 Control and S01 Data Interfaces with the Slave Interface Event

Manager and the LRAM. 120

4.6.4 Bit Signal Hold Entity RTL Design Internal Architecture. 121

4.6.5 AXI4 Lite Protocol Waveform: Read Transfer. 122

4.6.6 AXI4 Lite Interface Optimized Finite State Machine (FSM), HDL in listing A.2. 124

4.6.7 Using Verification IP in the form of BFMs, adapted [37]. 125

4.6.8 AXI VIP Simulation – S00 Control Interface Test: Block Design. 126

4.6.9 AXI VIP Simulation – S01 Data Interface Test: Block Design. 127

List of Figures xv

4.6.10 AXI4 Lite Interface Wave Diagram (Vivado VIP on S00 Control): BREADY Timeout (Fell

Dead) Scenario. 128

4.6.11 AXI4 Lite Interface Wave Diagram (Vivado VIP on S00 Control): BREADY Timeout and

WR_ACK and RD_ACK Not Asserted (Bad Interface) Scenario. 128

4.6.12 AXI4 Lite Interface Wave Diagram (Vivado VIP on S00 Control): Best Scenario. 129

4.6.13 AXI4 Lite Interface Wave Diagram (Vivado VIP on S01 Data w/ information check on

S00 Control): Best Scenario. 130

4.6.14 Native Microkernel: S00 Control Address Space. 131

4.6.15 S00 Control Two-Level Address Decoding Overview. 135

Chapter 5

5.1.1 Composite system call for executing KFIFO-extended features in a polling manner (SYS-

RAM); The figure on the left represents the memory-mapped kernel FIFO that provides

the call interface for extended composite syscalls; The figure on the right depicts the

sequence of simpler system calls needed to perform a polled send command and a

polled wait for return on the interface. Memory representation in table 5.1. 137

5.1.2 Microcode Entity Hierarchy Overview. The assertion of the enable_sched signal ac-

tivates scheduler-dictated microprogram execution, otherwise, the kernel uses stand-

alone microprogram execution. 144

5.1.3 Procedure Scheduler RTL Design Internal Architecture. 146

5.1.4 Pipe Communication Hardware Task’s Finite State Machine (FSM). 148

5.1.5 AXI VIP Simulation – Extended Feature Test: Block Design. 149

5.1.6 Extended Feature VIP Simulation: System Mutex Lock, Read Argument Fields, Check

Argument KFIFO Status and Generate IRQ. 150

5.1.7 Extended Feature VIP Simulation: Increment args.in, Send 64-bit Command, and Sleep. 151

5.1.8 Extended Feature VIP Simulation: System Mutex Lock, and Read Return Fields. 152

List of Figures xvi

5.1.9 Composite system call for executing KFIFO-extended features in a polling manner

(LRAM); The same tests for the pipe hardware task, c.f fig. 5.1.4, were also done for

LRAM communication, changing all the extended commands to map the KFIFOs into

local memory, and also store the non-encrypted/encrypted words. This scheme relies

on the system call sequence HDL of listing A.5. The pipe HW-Task’s HDL can be seen

in listing A.8 (SYSRAM), and in listing A.9 (LRAM). 153

5.1.10 Pipe Communication Hardware Task (SYSRAM w/ XOR Encryption): Overview. 154

5.1.11 Pipe Communication Hardware Task (LRAM w/ XOR Encryption): Overview. 155

5.1.12 Pipe Communication Hardware Task (SYSRAM w/ AES Encryption): Overview. 156

5.2.1 HAL-ASOS’ Hardware Task: Composite Procedure Model. 157

5.2.2 Overview of the microkernel mechanism to execute kernel-bounded user-level proce-

dures. User procedures are executed in the microkernel depending on the set proce-

dure ID when the bound_to_kernel signal is asserted, otherwise a non-scalable user

procedure can be executed in the hardware task by exchanging information with the

microkernel through the dedicated interfaces. In either case, the enable_sched is con-

sidered implicit since one is referring to composite procedures. 159

5.2.3 Runtime Management Overview. 161

5.2.4 Runtime Manager RTL Design Internal Architecture (Simplified). 163

5.3.1 Updatable Microprogram RTL Design Internal Architecture. 166

Chapter 6

6.1.1 Pipe Hardware Task Device Resource Utilization Scenarios for the Encryption of 32 Words. 171

6.1.2 Pipe Hardware Task Device Resource Utilization Scenarios for the Encryption of 32

Words, more procedures. 173

6.1.3 Kernel-Bounded Pipe Hardware Task Encryption: Resource Utilization Comparison. It

is noticeable that kernel-bounded procedures improve the accelerator deployment in

terms of scalability since the logic usage remains regular when increasing the amount of

extended procedures (XOR case), and also when changing to another type of encryption

task (AES). 174

List of Figures xvii

6.1.4 Pipe Hardware Task Device Resource Utilization with a Dual-Kernel Dual-task Scheme

(XOR Encryption), block design in fig. B.5. The hardware microkernel associated with

a certain hardware task communicates with the host system through shared memory. . 175

6.2.1 Microcode Fault Injection Test Overview, block design in fig. B.6. 176

6.2.2 Microcode Fault Injection Payload Overview, following Intel’s x86 example. 177

6.2.3 Update Mechanism Deployment on the Zybo Z7-10 board. 177

6.2.4 Microcode Fault Injection: Full Simulation with HAL-ASOS Link IP. 178

Chapter B

B.1 System-Level Datapath (SLD) RTL Design Internal Architecture (Expanded), back to

fig. 4.2.11. 212

B.2 Local Interrupt Controller RTL Design Internal Architecture (Expanded), back to fig. 4.5.3. 213

B.3 Extended Microprogram for ROM-RAM Execution: RTL Design Internal Architecture (Sim-

plified). 216

B.4 Pipe Hardware Task Block Design using the Zybo Z7-10 platform. 217

B.5 Dual-Kernel Dual-Task Scheme Block Design using the Zybo Z7-10 platform. 218

B.6 HAL-ASOS Link IP Full Simulation: Block Design. 219

B.7 Pipe Communication Hardware Task (SYSRAM w/ XOR Encryption): Overview (First

Half Zoomed). 220

B.8 Pipe Communication Hardware Task (SYSRAM w/ XOR Encryption): Overview (Second

Half Zoomed). 221

B.9 Updatable Scheduler RTL Design Internal Architecture. 222

B.10 (Native) Microkernel Internal Architecture Overview, back to fig. 4.1.1. 223

B.11 User-Level Procedure – Wait Event Elapsed: Sequence Diagram, back to fig. 4.2.19. . . 224

B.12 User-Level Procedure – Unsafe SYSRAM Write Burst: Sequence Diagram (Simplified),

back to fig. 4.2.21. 225

B.13 User-Level Procedure – Unsafe SYSRAM Read Burst: Sequence Diagram (Simplified),

back to fig. 4.2.21. 226

List of Figures xviii

B.14 User-Level Procedure – Unsafe LRAM Write Burst: Sequence Diagram (In-Depth), back

to fig. 4.2.23. 227

B.15 User-Level Procedure – Unsafe LRAM Read Burst: Sequence Diagram (In-Depth), back

to fig. 4.2.23. 228

List of Tables

Page

Chapter 2

2.1 FPGA Application Areas and Research Cases. 8

2.2 Gap Analysis among hybrid programming models. 32

Chapter 4

4.1 Microkernel: Low-Level Hardware System Call Summary. 50

4.2 Page Zero Internal Register Mapping. 132

4.3 Page One Internal Register Mapping. 134

Chapter 5

5.1 Simplified Memory Representation of the Polled Safe Send KFIFO Command, Polled Wait

for Return, back to fig. 5.1.1. 147

Chapter 6

6.1 Post-Implementation Accelerator Model Resource Utilization targeting Zybo Z7-10. 170

6.2 Post-Implementation Tasks’ Resource Utilization targeting Zybo Z7-10. 172

6.3 Post-Implementation Accelerator Model (with a Dual-Task Scheme) Resource Utilization

targeting Zybo Z7-10. 174

Chapter B

xix

List of Tables xx

B.1 Simplified Microprogram Memory Representation (Part 1), back to fig. 4.2.9. 214

B.2 Simplified Microprogram Memory Representation (Part 2), back to fig. 4.2.9. 215

List of Listings

Page

4.1 Microkernel Control: Control and Status Registers (HDL). 46

4.2 System Call Memory: Combinational ROM (HDL). 66

4.3 Microprogram: Input Multiplexer (HDL). 68

4.4 Counter with Load (HDL). 69

4.5 Microprogram: Microcode ROM and Microprogram Counter (HDL). 71

4.6 Microprogram: Output Multiplexer (HDL). 71

4.7 Microprogram: Mutex Status Decode Logic and Output Assignment (HDL). 72

4.8 System-Level Datapath: Syscall Wait Event Timeout Parameters and Returns (HDL). . . . 74

4.9 System-Level Datapath: Local Bus Write/Read (Burst) Syscalls Parameters and Returns

(HDL). 76

4.10 System-Level Datapath: Master Bus Write/Read (Burst) Syscalls Parameters and Returns

(HDL). 79

4.11 System-Level Datapath: Mutex Syscalls Parameters and Returns (HDL). 81

4.12 System-Level Datapath: LINTC Syscalls Parameters and Returns (HDL). 83

4.13 Slave Decoder (HDL). 94

4.14 Page Decoder (HDL). 96

4.15 Hardware Mutex Data Registers (HDL). 99

4.16 Hardware Mutex Multiplexers (HDL). 101

4.17 Hardware Mutex Valid Generation (HDL). 102

4.18 Hardware Mutex Status Register (HDL). 103

4.19 LINTC Control and Status Registers (HDL). 104

4.20 LINTC IRQ Logic (HDL). 105

4.21 LINTC Counter and Hold Units (HDL). 107

4.22 Local Memory (TDP RAM) Port Logic (HDL). 109

4.23 Local Memory (TDP RAM) Acknowledge Generation (HDL). 109

4.24 Slave Interface Event Manager (HDL). 111

4.25 Interface Registers (HDL). 113

4.26 AXI4 Lite Interface Datapath: Address (HDL). 116

xxi

List of Listings xxii

4.27 AXI4 Lite Interface Datapath: Data (HDL). 117

4.28 AXI4 Lite Interface Datapath: State Flip-Flop and Hold Units (HDL). 119

4.29 Bit Signal Hold Entity (HDL). 121

4.30 Flip-Flop Synchronizers: RVALID (HDL). 123

4.31 Flip-Flop Synchronizers: WR_CE (HDL). 123

5.1 User Package: File Subscribe and Unsubscribe Example (HDL). 138

5.2 Kernel Package: KFIFO Send Command Wait Return - System Mutex Lock (HDL). 139

5.3 Kernel Package: KFIFO Send Command Wait Return - Read Argument Fields (HDL). . . . 139

5.4 Kernel Package: KFIFO Send Command Wait Return - Check Argument KFIFO Status

and Generate IRQ (HDL). 140

5.5 Kernel Package: KFIFO Send Command Wait Return - Sleep (HDL). 140

5.6 Kernel Package: KFIFO Send Command Wait Return - Increment args.in and Send 64-bit

Command (HDL). 141

5.7 Kernel Package: KFIFO Send Command Wait Return - Read Return Fields (HDL). 141

5.8 Kernel Package: KFIFO Send Command Wait Return - Check Return KFIFO Status (HDL). 142

5.9 Kernel Package: KFIFO Send Command Wait Return - Increment rets.out and Read

Command Return (HDL). 142

5.10 Kernel Package: KFIFO Send Command Wait Return - Unlock System Mutex and Leave

Procedure (HDL). 143

5.11 Procedure Memory: Combinational ROM (HDL). 145

5.12 User Package: Simplified File Subscribe (HDL). 160

5.13 Runtime Manager (HDL). 162

5.14 Microprogram RAM Instantiation (HDL). 164

5.15 Microkernel’s Top-level: Updatable Microprogram Instantiation (HDL). 166

5.16 Microkernel Control FSM (HDL). 167

5.17 Microkernel’s Top-level: Interrupt Source Selection and LINTC Instantiation (HDL). . . . 168

A.1 Configuration Package: Microprogram and System Call Constants and Definitions (HDL);

back to listing 4.5. 192

A.2 AXI4 Lite Interface FSM (HDL); back to fig. 4.6.6. 194

A.3 Configuration Package: System-Level Datapath System Call Constants and Definitions

(HDL); back to listing 4.8. 197

List of Listings xxiii

A.4 Kernel Package: KFIFO Create Command 64 (HDL); back to section 5.1. 198

A.5 Kernel Package: LRAM Extended Features (HDL); back to fig. 5.1.9. 200

A.6 Hardware Mutex Acknowledge Generation (HDL); back to section 4.5.1. 202

A.7 Hardware Mutex FSM (HDL); back to fig. 4.5.2. 203

A.8 Pipe Hardware Task: SYSRAM Communication (HDL); back to section 5.1.2. 205

A.9 Pipe Hardware Task: LRAM Communication (HDL); back to section 5.1.2. 208

List of Algorithms

Page

Chapter 4

1 Microprogram to perform the no operation system call (■) 51

2 Microprogram to kill the accelerator associated with a certain hw-task (■) 52

3 Microprogram to perform the system call that waits for an event or timeout (■) 53

4 Microprogram to perform the LINTC write system call (■) 53

5 Microprogram to perform the system call that reads one word from the LRAM (■) . . . 54

6 Microprogram to perform the system call that writes one word to the LRAM (■) 55

7 Microprogram that burst reads multiple words from the LRAM (■) 56

8 Microprogram that burst writes multiple words to the LRAM (■) 57

9 Microprogram to perform the system call that locks a hardware mutex (■) 58

10 Microprogram to perform the system call that tries to lock a hardware mutex (■) 59

11 Microprogram to perform the system call that unlocks a hardware mutex (■) 59

12 Microprogram that reads one or multiple words from the SYSRAM (■) 60

13 Microprogram that writes one or multiple words to the SYSRAM (■) 63

xxiv

Acronyms

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | Z

A

AES Advanced Encryption Standard.

ALU Arithmetic Logic Unit.

AMBA Advanced Microcontroller Bus Architecture.

AMD Advanced Micro Devices, Inc..

API Application Programming Interface.

ASIC Application Specific Integrated Circuits.

AXI Advanced eXtensible Interface.

B

BFM Bus Functional Model.

BOF BORPH Object File.

BORPH Berkeley Operating System for Reprogrammable Hardware.

BRAM Block Random-Access Memory.

C

CHE Capability Hardware-Enhanced.

CISC Complex Instruction Set Computer.

CMF Common-Mode Failures.

COTS Commercial Off-The-Shelf.

CP Check-Pointing.

CPU Central Processing Unit.

D

DCLS Dual-Core Lockstep.

DMA Direct Memory Access.

DMR Dual Modular Redundancy.

xxv

Acronyms xxvi

DPR Dynamic Partial Reconfiguration.

DSE Design Space Exploration.

E

eCos Embedded Configurable Operating System.

EVM Event Manager.

F

FAST Features from Accelerated Segment Test.

FFT Fast Fourier Transform.

FIFO First In First Out.

FISH FPGA-Initiated Software-Handled.

FOS FPGA Operating System.

FPGA Field-Programmable Gate Array.

FSL Fast Simplex Link.

FSM Finite State Machine.

FUSE Front-End User Framework.

G

GCC GNU Compiler Collection.

GPU Graphics Processing Unit.

H

HAL Hardware Abstraction Layer.

HAL-ASOS Hardware Assisted Linux for Application Specific Operating Systems.

HDL Hardware Description Language.

HIF Hardware Intermediate Form.

HLS High Level Synthesis.

HTI Hardware Thread Interface.

HTT HybridThreads Transpiler.

HWR Hardware Region.

HWSC Hardware System Calls.

Acronyms xxvii

I

I/O Input/Output.

IBM International Business Machines Corporation.

IC Integrated Circuit.

IDU Instruction Decode Unit.

ILP Instruction Level Parallelism.

IP Intellectual Property.

IPC Inter Process Communication.

IR Intermediate Representation.

IRQ Interrupt Request.

ISA Instruction Set Architecture.

J

JIT Just-in-Time.

K

KFIFO Kernel FIFO.

KIVIO Kernel Interface for Virtualized I/O.

L

LBUS Local Bus.

LC Loosely-Coupled.

LINTC Local Interrupt Controller.

LKM Loadable Kernel Module.

LMUTEX Local Mutex.

LRAM Local Random-Access Memory.

LST Lockstep Shadow Threads.

LUT Look-Up Table.

M

MBUS Master Bus.

Acronyms xxviii

MEMIF Memory Interface.

MMU Memory Management Unit.

MSB Most Significant Bit.

N

NRE Non-Recurring Engineering.

NSF Next Step When False.

O

OS Operating System.

OSFSM Operating System Finite State Machine.

OSIF Operating System Interface.

P

PL Programmable Logic.

PLB Processor Local Bus.

PoC Proof of Concept.

POSIX Portable Operating System Interface.

PR Partial Reconfiguration.

PS Processing System.

Q

QEMU Quick Emulator.

R

R3TOS Reliable Reconfigurable Real-Time Operating System.

RACOS Reconfigurable Accelerator Operating System.

RAM Random-Access Memory.

RB Rollback.

RE2DA Reliable and Reconfigurable Dynamic Architecture.

RES Resource-Elastic Scheduling.

RIFFA Reusable Integration Framework for FPGA Accelerators.

Acronyms xxix

RISC Reduced Instruction Set Computer.

ROM Read-Only Memory.

ROP Return-Oriented Programming.

RTL Register-Transfer Level.

RTOS Real-Time Operating System.

S

SEOS Simple and Effective Real-Time Operating System.

SEU Single Event Upset.

SGX Software Guard Extensions.

SLD System-Level Datapath.

SoC System-on-Chip.

SPREAD Streaming-Based Partially Reconfigurable Architecture and Programming Model.

SRAM Static Random Access Memory.

ST Shadow Thread.

SYSMUTEX System Mutex.

SYSRAM System Random-Access Memory.

T

TC Tightly-Coupled.

TCLS Triple Core Lockstep.

TDP True Dual-Port.

TMR Triple Modular Redundancy.

TRI Task Resource Isolation.

TS Thread Shadowing.

TUO Thread-Under-Observation.

U

UML Unified Modelling Language.

V

VHDL Very High-Speed Integrated Circuit Hardware Description Language.

Acronyms xxx

VIP Verification IP.

VLSI Very-Large-Scale Integration.

Z

ZCU ZeroCopy Unit.

1. Introduction

In the era of smart-everything it is easy to forget or disregard the technology improvement of the

years past, but the fact is that the last few decades allowed for significant performance increases of about

five orders of magnitude in Very-Large-Scale Integration (VLSI) [8], e.g., Cerebras’ Wafer Scale Engine

accommodates one point two trillion transistors within around forty-six cubic millimeters, and Nvidia’s

Titan V GPU accommodates around twenty-one billion transistors within eight hundred and fifteen cubic

millimeters [44]. This happened whilst transistor sizes kept decreasing up to a certain period. This traces

back to the slowing of Moore’s Law, with the number of transistors per chip not doubling every year, and

the termination of Dennard’s Scaling, with the current and voltage of a certain silicon area not being able

to drop below threshold levels whilst proving functionality, c.f [48]. With this, the increase of clock rates

no longer provided steady performance increases, and the migration from single-core to multicore CPUs

occurred [10].

Subsequently, due to the multiprocessing limitations imposed by Amdahl’s Law, which states that per-

formance can not continue to grow indefinitely by adding additional cores to the system, the only route left

for performance increase was the one that considered specialized heterogenous multicore architectures,

e.g., ARM’s big.LITTLE [62] or Intel’s Alder Lake [22]. The first shift in notion was the aforementioned

heterogeneous multi-cores, but after the paradigm changed with the introduction of heterogeneous archi-

tectures based on different processing elements [68], e.g., CPU+FPGA or CPU+GPU. Alongside, these

FPGA-based architectures started to dethrone CPU-only architectures. Reliable systems want to use de-

vices like FPGAs to increase the flexibility and computation power in critical scenarios where failures are

not acceptable, e.g., self-driving automotive industry, clusters, cryptography, among others. Although,

FPGAs are also developing at a high rate, becoming more complex and dense devices [38]. This factor

is a concern because the programming of CPU+FPGA systems gets harder, due to the lack of adaptation

mechanisms and consistent and designer-friendly programming models for these hybrid systems.

Considering this, research started to shift into a direction that allowed: (i) fundamentally reliable and

1

Chapter 1. Introduction 2

secure systems that resolved the issues regarding new points of failure with novel adapting strategies, (ii)

fundamentally low-latency and predictable systems that surpassed traditional hardware acceleration, and

provided tools for a seamless design of systems based on CPU+FPGA, whilst accompanying the evolution

of FPGA devices, and (iii) fundamentally energy-efficient systems based on data-centricity to achieve long-

lasting operation. Hybrid programming models based on RTOS [4, 3, 49, 33, 34, 32, 46, 24] and Linux

[32, 1, 9, 66, 72, 23, 45, 25, 69, 70, 63] then started to appear to yield these considerations and allow

for “world crossing”, i.e., optimization across the software-hardware hierarchy. One of those models is the

HAL-ASOS accelerator model [63, 62].

HAL-ASOS distinguishes itself from the literature mainly because of its microcode mechanisms. Origi-

nally, microcode acted as an abstraction layer between the CPU’s hardware and the ISA, referred in some

instances plainly as firmware [67]. HAL-ASOS [62] transposed these concepts into the programmable

hardware, and established a microcode-based and CPU-like architecture with the capability for provid-

ing kernel- and user-level abstractions like a typical OS. Microprogrammed control units are different from

FSM-based control units in various aspects. Firstly, microprogrammed control units have a memory where

they store the microinstructions, and that, as a whole, forms the microcode. Additionally, associated with

this memory they typically have logic for the decoding of microinstructions into control signals, and se-

quencing logic that determines the next microcode memory address. The sequencer usually has signals

as inputs, and bases the decision of the next address on a logic expression of those signals. Altogether,

these components form a controlling entity which is responsible for sequencing and executing microin-

structions, dictating the execution flow. In terms of taxonomy the instructions present in the microcode

memory can be classified as horizontal or vertical depending on the encoding utilized and the control

granularity. Minimally encoded microinstructions fall into the horizontal spectrum, which means that a

certain microinstruction subfield might activate a control signal directly, while microinstructions that are

more encoded fall onto the vertical spectrum, specifying, for example, a function code to perform a series

of datapath operations.

The fundamental research on microcode and the establishment of the HAL-ASOS architecture and its

associated tools, e.g., full simulation, facilitate posterior research that aims to explore and improve upon

its limitations in an attempt to leverage diversity.

Chapter 1. Introduction 3

1.1 Motivation

FPGAs are becoming the go-to devices for implementing the majority of critical embedded systems in

many applications areas, e.g., aerospace [6, 7, 57, 52], supercomputing and clusters [71], edge comput-

ing [75], cryptography [2, 63, 72], high-throughput video processing [55, 56], and power electronics [61].

Moreover, there is no sign that this popularity growth will stop any time soon, so committing to research

in this area seems like a good investment for the future. The fact that FPGAs are connected to so many

emerging subjects and the fact that the knowledge gained also applies to ASIC design (with some slight

changes) is what also propelled the motivation to embrace this research challenge.

On another note, the implementation of hybrid systems presupposes the migration of certain parts

of the system to programmable logic, and thus, there are also new threats to the system caused by the

static and error-prone nature of the hardware. The application of microcode mechanisms for reconfigura-

bility in hybrid OSes is still in its early stages in terms of the literature. After an in-depth analysis of the

employment of these techniques in the context of hybrid OSes, one can identify that only a few focused

on reconfiguration premises and that only HAL-ASOS used microcode to tackle the problem. Concerning

these factors, one identifies that this is in fact a topic worth exploring, opening up the possibility to research

hybrid architectures in what relates to reconfiguration, adaptability, security, and scalability.

1.2 Research Goals

The dissertation work aims to improve upon some HAL-ASOS limitations and openly stated issues.

To do so, a sandbox-like kernel-task environment needs to be developed in hardware in order to replicate

some of the issues, and only then one can start to address them. Consider that in the sense of research

and development, this is meant to be done with in an exploratory manner, so the imposition of initial

restrictions to the project would be a lackluster. Even though, after a broad literature review, c.f chapter 2,

it is still possible to define the main goals as following:

1. Ad hoc microkernel to support the adaptable architecture: it is necessary to build a fun-

damental hardware kernel and hardware task somewhat similar to HAL-ASOS to understand the

architecture and the identified limitations;

2. Diversity-driven hardware task architecture extensions: upon being able to replicate some

of the issues, start improving the existing architecture from the ground up by adding functionality

Chapter 1. Introduction 4

and/or resolving the issues;

1.3 Dissertation Structure

The dissertation is structured according to the layout of fig. 1.3.1. This section presents the struc-

ture of the dissertation. For now, seven chapters constitute the dissertation: chapter 1 (the present one)

introduces the dissertation’s thematic, the motivation to embrace the research project, and defines its

envisioned goals. Chapter 2 approaches three different sections based around the dissertation’s title

that introduce some background concepts, contextualizes them and provides an in-depth analysis of re-

lated works. Chapter 2 starts with some reconfigurable computing considerations, followed by hybrid

programming models/operating systems, and finishes with some fundamental aspects about micropro-

gramming/microcode. Chapter 3 focuses on describing the groundwork and parallel work of the disser-

tation by presenting HAL-ASOS and KIVIO, respectively. At the end of the HAL-ASOS contextualization one

identifies its limitations, mainly based on openly-stated issues. Some of these limitations have the inten-

tion of being replicated and ultimately approached in chapter 5. Moreover, chapter 4 describes the first

goal of the dissertation, which is making a functional microkernel based on HAL-ASOS to know the system

and its limitations from the roots. Concerning this, the chapter approaches the microkernel’s architec-

ture, microcode, system calls implemented, available services, the hardware task development, resource

management considerations, available resources regarding interrupt management, synchronization mech-

anisms, memory management, interface timing, and functional registers. After, the external interfaces are

approached, ending with the microkernel’s register mapping onto those interfaces. Chapter 5 addresses

some of the limitations of HAL-ASOS introduced in chapter 3 by proposing solutions and also presents

solutions for adding additional features regarding adaptation. Chapter 6 talks about the tests performed

over the dissertation’s work to prove functionality and identify the weak and strong points of the developed

architecture. Finally, chapter 7 gives a brief summary on the work’s contextualization, describes what was

implemented and achieved, and ends with the future works suggestions.

Chapter 1. Introduction 5

Diversity-Driven Hardware Task: a Microcode Approach

Chapter 1: IntroductionChapter 1: Introduction Chapter 5: Architecture Extensions

How did hybrid OSes appear and why are they needed?

What is the motivation behind the research?

How does one intend to improve over the literature?

What are the goals and scope of the dissertation?

Chapter 2: Context and State of the Art

Reconfigurable Computing

Hybrid Programming Models

Microcode Fundamentals

Discussion and Gap Analysis

Literature

Review

Chapter 3: Background

HAL-ASOS Introduction and Design Methodology

Accelerator Model, Hardware Kernel, and HW-Task

Limitations and Improvement Discussion

HAL-ASOS Accelerator Model

Chapter 4: Supporting Microkernel

Microkernel Architecture and Microprogram

 Services, Resources, and Interfaces

External Interfaces

HAL-ASOS-Based Microkernel Bring Up

Microprogrammed Procedure Scheduler

Procedure Runtime Manager

KFIFO Extended Features

What was added?

Reconfiguration Capabilities

Overall Discussion

Chapter 6: Experimental Results

Memory interface for performing extended commands

System call branching based on jump conditions

Less inferred combinational logic in the HW-Task

What was tested and what were the results?

Ability to update the microcode memory

Result Discussion

Chapter 7: Conclusion and Future Works

Microcode authentication and encryption

Scatter-gather mechanism

HW-Task lockstep for radiation error protection

Thesis summary and future improvements to make

System call caching and argument checking

Multitask arbiter

Asynchronous extended features

KIVIO Framework Mention

Other ...

Figure 1.3.1: Thesis Structure Diagram.

2. Context and State of the Art

This chapter will be structured around the dissertation title, i.e., “Diversity-Driven Hardware Task:

a Microcode Approach”. Concerning this, the first section will approach reconfigurable computing (■)

leading up to the discussion of adaptability in hybrid (hardware-implemented) operating systems to analyze

the literature for the means of coping with diversity, i.e., develop diversity-driven architectures. The second

section will address hybrid programming models (■), as a way to explore the literature for the hardware

thread/task concept. Finally, in the third section, it will be provided some background on microcode

mechanisms (■) with an analysis of related works. The chapter ends with an overall and comprehensive

analysis of the state-of-the-art gaps as a whole, in the discussion section 2.4.

Sections

Reconfigurable

Computing

Section 2.1

Hybrid

Programming

Models

Section 2.2

Microcode

Fundamentals

Section 2.3

6

Chapter 2. Context and State of the Art 7

2.1 y Reconfigurable Computing

A diversity-driven system, i.e., a system driven by diversity or that evolves by adapting, needs, first and

foremost, of a mechanism that allows it to be reconfigurable, to be able to cope with change, e.g., for the

correction of errors or making updates. In this section one will, firstly, present FPGA technology, analyze

its evolution and reconfiguration capabilities, and, secondly, explore adaptability-related concepts in the

literature pertaining to hybrid programming models (c.f section 2.2) to form a research basis.

Contents

Page

2.1.1 FPGA Technology . 7

2.1.1.1 Evolution . 7

2.1.1.2 Granularity . 8

2.1.1.3 Reconfiguration . 8

2.1.2 Adaptability in Hybrid Operating Systems 9

2.1.2.1 Note on Lockstep . 10

2.1.1 FPGA Technology

As the name implies, a Field-Programmable Gate Array (FPGA) is a semiconductor IC, available as

COTS, in which the hardware is capable of being reprogrammed after manufacturing. This characteristic

solely distinguishes a FPGA system from an ASIC one, since the latter is custom manufactured for specific

applications that do not need much alteration after manufacturing. Accordingly, the FPGA technology leads

to faster design cycles, faster time-to-market, and cheaper implementations associated with the fact that

there are no upfront NRE costs [7].

2.1.1.1 Evolution

The flexibility and computation power that the FPGA technology yields allows for a plethora of critical

applications that require reliant and reconfigurable systems as their backbone, including systems that in-

tegrate FPGA architectures in existing operating systems using unified programming models. More on that

later in section 2.2. The first FPGA was launched by Xilinx in 1985. At the time FPGAs were mainly used

Chapter 2. Context and State of the Art 8

for implementing glue-logic, simple Finite State Machine (FSM), and data processing units, considering

that the number of gates in original devices was too small to compete with ASIC devices at the time [7].

Nevertheless, nowadays, the technology improved so much that these systems have taken over the ASIC

market and are the core of applications in areas like [21]: aerospace, supercomputing and clusters, edge

computing, cryptography, high-throughput video processing, power electronics, and more, table 2.1.

Table 2.1: FPGA Application Areas and Research Cases.

Field Research

Aerospace [6, 7, 57, 52]

Supercomputing and Clusters [71]

Edge Computing [75]

Cryptography [2, 63, 72, 62]

High-Throughput Video Processing [55, 56]

Power Electronics [61]

Note: The cases provided serve only as examples.

2.1.1.2 Granularity

FPGAs are comprised of programmable logic blocks embedded in programmable interconnect, as ob-

served in fig. 2.1.1. The architectural granularity of FPGA devices can be distinguished as fine-, medium-

or coarse-grained based on the number of connections established between logic blocks and the func-

tionality they provide. For that reason, architectures that call for a higher amount of interconnections

between blocks and relatively present much less functionality are classified as fine-grained. In contrast,

as the architectural granularity of FPGA devices increases beyond medium-grained the number of con-

nections decreases but the supported functionality increases, reaching the point in some coarse-grained

architectures where a single logic block can be a complex element as a Fast Fourier Transform (FFT) [38].

2.1.1.3 Reconfiguration

Reconfigurable FPGAs have a configuration memory that specifies the function of the device, for the

purpose of reprogramming [26]. This type of FPGAs typically have a SRAM-based memory, and can be

partially or dynamically reconfigured. The case in which the device can only be reconfigured once at boot

Chapter 2. Context and State of the Art 9

Programmable Interconnect

Programmable Logic Blocks

Figure 2.1.1: Underlying Field-Programmable Gate Array Fabric [38].

time is named as partial reconfiguration, and the case that allows the change of the memory contents at

runtime is named dynamic reconfiguration, fig. 2.1.2. All dynamic reconfigured FPGAs can be partially

reconfigured, hence the term dynamic partial reconfiguration, for the systems that use both methods.

FPGA

Reconfig.

Block "A"

A4.bit

A3.bit

A2.bit

A1.bit

Figure 2.1.2: Basic Premise of Dynamic/Partial Reconfiguration.

2.1.2 Adaptability in Hybrid Operating Systems

In the scope of this thesis, the term “hybrid operating systems” is used to describe a unified program-

ming model that benefits heterogeneous CPU+FPGA architectures. This topic will be discussed in more

detail in section 2.2. Regarding adaptability, this type of systems can use built-in mechanisms to deal

with problems or changes to the hardware architecture [63, 62] or rely on PR or DPR mechanisms, ex-

plained in section 2.1, in the last paragraph, to achieve the same goal, i.e., change hardware components

implemented in the FPGA.

HAL-ASOS [63, 62] makes use of a built-in mechanism that allows reconfiguration of a microcoded

Chapter 2. Context and State of the Art 10

unit through a AXI4 lite interface to promote system call changes without the need of PR or DPR. In

this particular case, adaptability is treated as inbred and considered since the phase of design. This

aspect removes the need for tacked-on approaches, i.e., approaches that rely on black-box modules to

make changes to hardware by swapping the bitstream of the boxes, fig. 2.1.2, since the hardware can

simply stop the hardware user space state machine, perform the desired changes, and then return to

normal execution. For more details about the hardware implementation of the HAL-ASOS user space FSM,

namely in the entity called “Hardware Task” (c.f section 3.1.4).

Fault tolerance [15, 5] is a concept that is connected to adaptability, as it has an error correction phase.

Once again, the problems that originate from this error detection can be treated by built-in mechanisms

or by other mechanisms that still rely on reconfiguration, section 2.1. Concerning error recovery, Avizienis

et al. [5] identifies error handling techniques based on error elimination, e.g., rollback, rollforward, and

compensation, and fault handling techniques based on fault activation prevention, e.g., diagnosis, isolation,

reconfiguration, and reinitialization.

The checkpointing and rollback technique focuses on restoring the system state to a previously saved

state with no errors, i.e., checkpoint. This method is used, for example, in the RE2DA architecture [51],

designed for the automotive domain, to save the state of four processors. The system uses processor

redundancy, i.e., processors behaving equally and comparing results, because of the nature of the tar-

get applications, i.e., the safety-critical field. This case implies a mechanism that handles change, i.e.,

appearing faults, so it is worth mentioning as an adaptable system.

R3TOS [24] is a case of a hybrid operating system that uses reconfiguration (DPR). It relies on an

isolation technique (TRI) to exclude the faulty element from the system and prevent it from being used in

future service delivery, followed by reconfiguration and diagnosis. This OS also uses rollforward to correct

errors in its hardware microkernel, i.e., the system tries to correct and eliminate the present error, to

achieve a new state with no errors.

Other works as SPREAD [72], FUSE [23], FOS [69], RACOS [70] can be included as hybrid OSes that

use reconfiguration mechanisms.

2.1.2.1 Note on Lockstep

Lockstep is a known technique in which two entities run in parallel, whilst executing the same set of

operations. Lockstep can use DMR to achieve fault detection, by comparison of the entities’ outputs, or

TMR to achieve fault detection and error correction, through majority voting. Concerning error recovery,

Chapter 2. Context and State of the Art 11

lockstep can use rollback techniques [36]. In application to processors, the former is known as Dual-Core

Lockstep (DCLS), and the latter as Triple Core Lockstep (TCLS) [36]. Due to the scope of the dissertation

(chapter 2), one is more interested in lockstep applied at the hardware thread level, as it is the case of

the work by Meisner and Platzner [41, 39, 40], and the work by Liu et al. [31]. This particular case of

thread-level lockstep is known as Thread Shadowing (TS).

HW Slot

CPU

OS Kernel

Thread Shadowing Layer

Software

Threads

Delegate

Threads

OSIF

HW Thread

TUO

HW Slot

HW Thread

ST

OSIF

Thead Shadowing MEMIF

PeripheralsPeripheralsPeripherals Memory

Controller

External

DRAM

System Bus

Figure 2.1.3: ReconOS architecture extended to support thread shadowing, adapted [40].

ReconOS [33, 34, 32, 1] is an example of an adaptable hybrid OS that uses DPR. This will be further

mentioned in section 2.2.4.2. Additionally, the work in [40] applies TS to hardware threads within a Re-

conOS environment, represented as an example in fig. 2.1.3. The system makes use of DMR to attach a

Shadow Thread (ST) to a Thread-Under-Observation (TUO), mirroring all the inputs and performing com-

parison on the outputs [40]. The work in [41] by the same authors, and referring to the same research,

also specifies that these threads are not type restricted, i.e., besides being possible for a software thread

to monitor a software thread, and a hardware thread to monitor a hardware thread, it is also possible for a

hardware thread to monitor a software one and vice-versa (use of implementation diversity). Time diversity

is implemented with a delay between the ST and TUO.

Furthermore, the research in [40, 41, 39] also introduced signature levels that specify the depth of

error coverage in output comparison: (1) OS system call name checking, (2) OS system call name and

parameter checking, and (3) which adds memory access comparison [39]. All of this makes ReconOS an

adaptable OS aware of errors, like calling unregistered system calls, calling registered system calls with

incorrect parameters, or performing memory accesses with wrong addresses.

Chapter 2. Context and State of the Art 12

2.2 y Hybrid Programming Models

The establishment of trade-offs is an inherent aspect of technological progression for improving, for

example, power consumption, performance, programmability, and portability [68]. To meet the ever-

evolving requirements imposed by the end-users, one needs to take a step into novel approaches for

programming models, exploring design trade-offs and the solution space. This section will go about hybrid

programming models/operating systems for CPU+FPGA systems. The latter begins with some real-time

considerations, followed by an analysis of traditional hardware acceleration strategies. After, one expands

a bit more on the evolution of FPGA technology to justify how the hardware acceleration schemes improve

within hybrid OSes and also explain the need for these hybrid models. Finally, somemodels are categorized

into RTOS- and Linux-based, being dissected more deeply to identify advantages and disadvantages.

Contents

Page

2.2.1 Real-time Concerns . 12

2.2.2 Traditional Hardware Acceleration . 13

2.2.3 RTOS-Based Models . 14

2.2.3.1 Hthreads . 14

2.2.3.2 ReconOS V1 and V2 . 15

2.2.3.3 Additional Research Cases 17

2.2.4 Linux-Based Models . 18

2.2.4.1 ReconOS V2 . 18

2.2.4.2 ReconOS V3 . 19

2.2.4.3 BORPH . 20

2.2.4.4 SPREAD . 22

2.2.4.5 Additional Research Cases 24

2.2.1 Real-time Concerns

A fundamental characteristic of real-time systems is the dependency upon time-constrained results.

Therefore, the meeting of deadlines becomes a key factor to ensure system execution non-degradation

Chapter 2. Context and State of the Art 13

or to safeguard functionality, depending on if the system is soft or hard real-time, respectively [47]. The

accomplishment of deadlines presupposes the existence of deterministic and as-fast-as-necessary con-

trollers that can mitigate latency and also make the system less prone to unpredictability. The lack of

determinism is associated with dynamic events and is provoked by response time variation, also known as

jitter. Among existing approaches that improve upon these metrics, there is one that distinguishes itself

from others due to its hitherto ever-growing capabilities: hardware acceleration.

2.2.2 Traditional Hardware Acceleration

The most simple case of hardware offloading is the one where an accelerator is treated as a simple

incarnation of a software function, while building the interface with the hardware based on the software

function prototype [43]. Although, this is an undermining view on the potential of hardware accelerators

since there is not a well-established strategy to provide services to the accelerator, as it can be seen in

fig. 2.2.1. As stated by Enno Lübbers and Marco Platzner et al., creators of the ReconOS [33, 34, 32, 1,

40, 41, 39]:

“ Traditional approaches integrate hardware accelerators as slave coprocessors [33]. Due to

the lack of pervasive high-level programming abstractions, most reconfigurable hardware

accelerators are implemented as passive coprocessor-like extensions invoked via procedure

calls [32]. ”
Accelerator

Execution

Accelerator

Thread

Blocking Call

Next Statement

(a) Blocking Accelerator.

Accelerator

Execution

Accelerator

Thread

Non-Blocking Call

Next Statement

(b) Non-blocking Accelerator.

Figure 2.2.1: Overview of blocking and non-blocking hardware accelerator calls, without concurrency, in a passive coprocessor-

like model, adapted [43].

Regarding the evolution of FPGAs into more complex and dense devices, as stated in section 2.1.1.1

and section 2.1.1.2, their role also shifts into being deployment targets for implementing, simultaneously,

Chapter 2. Context and State of the Art 14

more complex control-dominated tasks and data-centric tasks that explore the true parallel nature of the

hardware. However, programming models for designing such systems do not follow the same evolution,

and, consequently, the need for new software-hardware boundary-crossing models arises. Data-centric

tasks refer to tasks where the data-analysis resources are dynamically acquired or allocated, in response

to demand. Recurrently, data-centric tasks benefit from data locality provided by any sort of caching [54].

For example, novel approaches to system call checking are using specific caches to store safe system calls

and arguments to achieve faster analysis, and further protect the OS kernel from user attacks [64].

The aforementioned hybrid programming models can be classified into the following categories: RTOS-

based models [4, 3, 49, 33, 34, 32, 46, 24] and Linux-based models [32, 1, 9, 66, 72, 23, 45, 25, 69, 70,

63], depending on the assisting Operating System (OS) on the processing system side. The next sections

will detail a bit more on these models, starting from the RTOS-based models up to the Linux-based ones,

with an analysis of the most notable research cases.

2.2.3 RTOS-Based Models

This section refers to the RTOS-based programming models, introducing Hthreads [4], ReconOS ver-

sion one [34] and two [32], and some additional research cases.

2.2.3.1 Hthreads

Works like the ones by Andrews et al. and Peck et al. [4, 3, 49] broaden the outlook over hardware

acceleration by introducing the new concept of hardware thread. In [4] is proposed a model that attempts

to make programming across the software-hardware boundary seamless by migrating/mapping services

to the hardware and abstracting them under the form of a Hardware Thread Interface (HTI). This approach

makes the software- and hardware-based threads opaque and indistinguishable from the developer’s point

of view, opening up new options for designing compound systems. Figure 2.2.2 depicts the hybrid thread

abstraction layer and system block diagram according to Andrews et al. [4]. The work present in [3]

describes a multithreaded RTOS kernel for systems that benefit from the use of hardware and software

threads. Based on a hardware/software co-design scheme to extend OS kernel services like the sched-

uler, interrupt processing, and semaphores to the hardware, Andrews et al. achieves reduced worst-case

scheduling latency and interrupt latency, reduced scheduling jitter and asynchronous interrupt jitter, and

also less CPU context switches, when comparing the work with a version implemented only on software.

Nonetheless, it is important to note that these hardware threads are generated using a sequential

Chapter 2. Context and State of the Art 15

CPU

System Bus

Hybrid Thread

Abstraction Layer

Software Thread Interface

SW Thread 3

HW Thread 1 HW Thread 2

HTIHTI

SW Thread 1 SW Thread 2

SW Thread Manager

Condition Variables

Mutexes

CBIS

Shared Memory
Thread Scheduler

Figure 2.2.2: Hthreads: Hybrid Thread Abstraction Layer and System Block Diagram, adapted [4, 3].

language, i.e., the C programming language. The compilation flow for the translation of C code into a

Hardware Description Language (HDL) like VHDL follows the steps described in fig. 2.2.3. The baseline

source code (C) is compiled [16] into an Intermediate Representation (IR) (GIMPLE family), which is then

optimized by GCC, passing to the Hardware Intermediate Form (HIF) characteristic of hthreads. Subse-

quently, after being translated by a HIF compiler, one obtains the VHDL representation, which is then

integrated with the remaining hardware and included in synthesis. The Hthreads mechanism [49] can be

reasonably compared to a HLS mechanism. As so, the disadvantages dwell on extracting truly parallel

behavior from a sequential language and describing it, at the Register-Transfer Level (RTL).

Source VHDLHIFGIMPLE
GCC

Optimize

Translator
HIF

Compiler

Figure 2.2.3: Hthreads: Compilation Flow using the HybridThreads Transpiler (HTT) [49].

2.2.3.2 ReconOS V1 and V2

The work in Lübbers et al. [34] introduces ReconOS, a RTOS kernel that supports hardware and soft-

ware threads and that is built upon the eCos RTOS. The research baseline is the available and configurable

RTOS (eCos) and the primal goal is to integrate hardware cores into the system, to achieve a hybrid op-

erating system. With this purpose, three goals are identified: (1) hardware threads must have access to

services offered by eCos; (2) The model should support true parallel execution: concurrent execution of

Chapter 2. Context and State of the Art 16

one software thread and multiple hardware threads; (3) Support existing eCos API and existing hardware

Intellectual Property (IP).

OSIF

Local

RAM User Logic

Hardware Thread

OS Synchronization State Machine

IDLE

RUN

WRITE

POST

D
C

R
B

us
 (C

PU
)

Registers

to Interrupt

Controller

PL
B

 B
us

 (M
em

or
y)

clk

reset

run
 done

i_osif

o_osif

READIDLE READ

POST

WRITE

IDLE READ

POST

WRITE

Figure 2.2.4: ReconOS: Communication between HW Thread and OSIF, adapted [34, 32].

In common software implementations, threads interact with the OS using several library APIs, existing a

distinction between blocking and non-blocking calls. Additionally, threads execute sequentially. As opposed

to, hardware threads are innately parallel, and as such the notion of calling an OS function or making a

system call does not exist. For this, Lübbers et al. creates a library with VHDL procedures that wrap around

the required system call, necessary for the synchronization with the operating system and other hardware

threads. Accordingly, the hardware threads proposed have at least a synchronization state machine and

the user logic. The synchronization state machine is dependent on OS signaling, and therefore it executes

sequentially. In contrast, the hardware thread itself executes in a parallel manner. The hardware thread

interface with the OS [33, 34, 32] can be seen in fig. 2.2.4.

The work by Lübbers et al. also specifies the concept of delegate thread to achieve transparency

and allow for better Design Space Exploration (DSE). Each hardware thread created is associated with a

software thread (delegate thread) that executes system calls on the behalf of that specific hardware thread.

From the eCos point of view, the hardware thread is seen as a software thread with access to the Operating

System Interface (OSIF). Each delegate thread has a table of objects used by the hardware thread, so it can

Chapter 2. Context and State of the Art 17

map those resources into OS kernel resources. Whenever the OSIF generates an interrupt, the delegate

thread is scheduled for execution, as seen in fig. 2.2.5. The delegate threads were introduced into the eCos

ecosystem by extending its pre-existing thread class to include information relative to hardware threads.

This information includes OSIF addresses, interrupt numbers, and OS object tables. By doing so, the

delegate threads can benefit from existing eCos kernel services whilst providing the support the hardware

threads demand. Additionally, the approach based on eCos disables the Memory Management Unit (MMU)

to achieve simplified memory access by both the software and hardware threads to their virtual address

space. This is a trade-off between memory protection/privilege management to attain higher performance

and simpler memory transfers.

eCos Kernel

Hardware Thread OS Interface
 Interrupt Controller

C
PU

FP
G

A

DCR Bus

1 2

3

45

6

Delegate Thread
Interrupt Service

Routine
Deferred Service

Routine

Figure 2.2.5: ReconOS: Communication between the HW and Delegate Thread in eCos [32].

However, the existence of a single interface between the host operating system and the hardware

thread structure might be the cause of system bottlenecks, which is not favorable in a context where

one wants to minimize the overall latency and jitter without jeopardizing performance. This is a problem

resolved in future ReconOS versions, namely in version three, section 2.2.4.2.

2.2.3.3 Additional Research Cases

Other implementations of RTOSes in hardware include the works presented in [50] and [18]. Pereira

et al. presents a hybrid implementation of FreeRTOS by migrating critical services to the hardware. Ad-

ditionally, it also makes use of the Fast Simplex Link (FSL) bus support of Xilinx’s Microblaze soft-core

processor to connect the latter with the created hardware accelerators. The work in Pereira et al. [50]

improves system latency and jitter associated with timers and also makes the system more predictable

Chapter 2. Context and State of the Art 18

by reducing task-management jitter. Albeit, the approach requires a redesign of the FreeRTOS software,

more specifically in terms of the HAL’s functions for management and synchronization of tasks. Gomes

et al. [18] discusses an extension of the work presented in [50] that details a bit more on the offloading

of FreeRTOS into the hardware. As additional hybrid programming models based on RTOS one has SEOS

[46] and R3TOS [24]. The work in [46] focuses on improving system performance and grant adaptabil-

ity compared to other hardware implemented RTOSes, e.g., by implementing network connectivity and

file system functionalities. Little research has been conducted in terms of elasticity and adaptability in

hybrid OSes based on RTOS. To partly fill this literature gap, the research in [24] identifies a program-

ming model for high-performance computing on FPGA that also considers elasticity mechanisms based

on reconfiguration, i.e., Task Resource Isolation (TRI), through DPR.

2.2.4 Linux-Based Models

This section refers to the Linux-based programming models, analyzing ReconOS version two [32] and

three [1], BORPH [66], SPREAD [72], and some additional research cases.

2.2.4.1 ReconOS V2

The second version of ReconOS present in Lübbers et al. [32] also adds support to the Linux OS, in-

troduces FIFOs for hardware-thread intercommunication, and introduces a common virtual address space

between hardware and software threads.

Hardware Thread OS Interface

C
PU

FP
G

A

DCR Bus

1 2

3

4

Interrupt Handler

/dev/osif()

Linux Kernel

Interrupt Handler5

OSIF Driver

Interrupt Handler

Delegate Thread

Interrupt Controller

Figure 2.2.6: ReconOS: Communication between the HW and Delegate Thread in Linux [32].

With this, the programming model can now be based on the Linux kernel instead of the eCos kernel, but

Chapter 2. Context and State of the Art 19

that brings changes to the communication framework as seen in fig. 2.2.6. The changes include creating

new kernel drivers, so the delegate threads can execute privileged instructions, and changing the method

for inter-thread (SW and HW) data transfers, since Linux operates over virtual addressing, and therefore

the MMU is involved. Note that this was not the case on the eCos-based implementation.

2.2.4.2 ReconOS V3

The porting to the Microblaze/Linux and Microblaze/Xilkernel architectures is introduced with the third

version of ReconOS [1], as well as the integration of DPR-enabled elasticity. The use of Dynamic Partial

Reconfiguration (DPR) by ReconOS can be seen in fig. 2.2.7 with the implementation of reconfigurable

hardware slots that host the hardware threads. Additionally, this version [1] also makes a few changes in

the system by adjusting the OSFSM and introducing the Memory Interface (MEMIF), as it can be seen in

fig. 2.2.8. In conclusion, Lübbers et al. and Agne et al. [33, 34, 32, 1] introduce new concepts that add

upon hybrid OSes’ programming models but with the trade-off of higher system latency associated with

the processing of hardware-involving OS calls, given that these calls require context switches and interrupt

processing. Despite this, the separation of hardware threads into a data-centric fully parallel part and a

control-oriented sequential part allows for a more organized scheme that facilitates world crossing over the

software-hardware boundary.

MEMIF

MEMIF

Software
Thread

Delegate
Thread

Delegate
Thread

ReconOS

Linux

OSIF

OSIF

Memory

Subsystem

Arbiter

MMU

Burst
Generator

OSFSM

Reconfigurable Slot 0

OSFSM

Reconfigurable Slot 1

Hardware

Thread

Hardware

Thread

CPU

System Bus

Memory ICAP Ethernet
Other

Peripherals

(USB, UART, ...)

Delegate
Thread

Delegate
Thread

Delegate
Thread

Delegate
Thread

Software
Thread

Delegate
Thread

Delegate
Thread

Figure 2.2.7: ReconOS: Example Hardware Architecture with DPR [1].

Chapter 2. Context and State of the Art 20

User Logic

(Custom Datapath)

Hardware Thread

OS Synchronization Finite State Machine (OSFSM)

GET_DATA

run

ready
i_osif

o_osif

Ingress
Memory

M
em

or
y

In
te

rf
ac

e
(M

EM
IF

)
O

S
In

te
rf

ac
e

(O
SI

F)

i_memif

o_memif

Egress
Memory

PROCESS

PUT_DATA

UNLOCK

WRITE

LOCK
READ

data_in

data_out

Figure 2.2.8: ReconOS: Communication between HW Thread and OSIF, adapted [1].

2.2.4.3 BORPH

In short, the literature pertaining to BORPH [9, 66] introduces another programming model, for FPGA-

based systems, that unifies the hardware and software, but within a common runtime environment. The

work is based on a UNIX kernel interface and therefore speeds up the development stage and promotes

portability. BORPH advocates for the integration of hardware and software tasks within a familiar and

language-independent framework, but also promotes the idea of granting OS runtime support services,

e.g., file system access, to hardware and software tasks. The model can be categorized as coarse-grained

due to the homogeneous handling of hardware and software processes at the kernel level.

The research establishes the concept of hardware process, i.e., a hardware design that behaves like

a common UNIX process with access to the file system, standard I/O, and communicates through UNIX

IPC mechanisms, e.g., file I/O, signal, and pipe. Similar to ReconOS [33, 34, 32, 1], BORPH provides

a set of APIs that aid hybrid application designers by abstracting the complexity of kernel and userspace

interactions. As the latter extends the Linux OS to provide this kind of runtime support, it is also favored

by the possibility of using well-known Linux-based applications, e.g., for testing and benchmarking. The

modifications include, for example, added BOF file support, the addition of APIs that allow for the load of

hardware regions as kernel modules, the creation of a hardware-dedicated thread that handles the HWR

allocation and configuration, software-hardware communication through packets, hardware-aware process

Chapter 2. Context and State of the Art 21

Hardware Platform

(Network, UART, etc)

FPGA FPGAH
ar

dw
ar

e
So

ft
w

ar
e

SW Process SW Process SW Process

Operating System Kernel

System Library

Device Driver

Hardware Platform

(Network, UART, etc)

SW Process SW Process SW Process

BORPH Kernel

System Library

Device Driver HW System Library

HW Process HW Process

HWR HWR

a b

Figure 2.2.9: BORPH: a) Traditional coprocessor-based FPGA system: SW-HW has a master-slave relationship; b) BORPH-

managed FPGA system: SW-HW has a peer-to-peer relationship; adapted [9, 66].

scheduler and signal handler, and software fringes, i.e., a software process that performs blocking file I/O

operations on the behalf of a certain file system-blocked hardware process in an asynchronous manner.

These software fringes are analogous to the concept of delegate threads in ReconOS [33, 34, 32, 1] in

the sense that a piece of software is operating on the behalf of a particular executing piece of hardware.

In fig. 2.2.9, one can see a typical BORPH-managed FPGA system compared to a traditional coprocessor-

based FPGA system (mentioned in section 2.2.2).

In contrast to traditional approaches, BORPH does well by separating reconfigurable hardware from

the hardware support platform, by creating the concept of reconfigurable Hardware Region (HWR). These

regions can execute hardware designs and are denoted as hardware processes. The hardware processes

are created executing BORPH Object Files (BOFs), i.e., executable binary files, that have some stipulations

regarding the configuration of hardware regions, and that specify how to create the virtual files associated

with the latter. This way, when the virtual file is accessed, the kernel establishes communication with the

hardware and sends a packet message of the corresponding access. The works in [9, 66] also propose a

Simulink-based hardware design flow for BORPH-based systems.

All things considered, BORPH allows for an improvement of hybrid pipes’ latency and throughput by

twelve and fourteen percent, respectively. As a downside, it does not explore Dynamic Partial Reconfigu-

ration (DPR), but only Partial Reconfiguration (PR). Additionally, it does not employ adaptability techniques

and, thus, shows conflicts in keeping up with the evolution of the Linux kernel, mainly due to extensions

Chapter 2. Context and State of the Art 22

proposed onto the Linux source, i.e., these extensions, e.g., adding the BORPH binary files, requires ad-

justments in the kernel source every time there is a new Linux patch [62]. Ultimately, this OS uses what

can be considered as a rudimentary communication mechanism, i.e., no software-hardware interface is

established, e.g., an AXI-based interface, and the system still behaves as a passive slave since hardware

processes are mapped onto the Linux folder where the software processes also exist [62]. This surely

brings problems related to not having a fixed position for the resources and features of the hardware ar-

chitecture, complicating a lot the job of the running user application [62]. Considering this, BORPH is a

hardware-and-software-as-peers kind of OS, and not a software-as-master and hardware-as-slave OS. Due

to the disadvantages of this peer-to-peer relation between hardware and software, one would still argue

that an interchangeable master-slave communication would bring more advantages than disadvantages,

i.e., the hardware working as master and slave and the software also working as master and slave depend-

ing on the objective. This type of mold-breaking communication mechanism, i.e., that deviates from the

passive coprocessor-like model for the hardware, is present in the investigation pertaining to [62].

2.2.4.4 SPREAD

SPREAD [72] is a software-hardware unifying architecture that allows for partial reconfiguration directed

to streaming applications, runtime software-hardware switching, and exploitation of data and thread par-

allelism. For this, the authors propose: (1) a high-throughput streaming channel, (2) a method to switch

between software and hardware threads at runtime, and (3) a programming library to facilitate the design

of hybrid streaming systems.

Compared to the other related works, SPREAD is more oriented for streaming applications, it presents

a higher throughput streaming channel than other non-streaming architectures, e.g., BORPH supported

streaming through file I/O, but the bandwidth of the latter was narrow, and others like Hthreads [4, 3,

49] or FUSE [23] base themselves on a system bus architecture, which is not directed towards streaming.

Additionally, [72] allows for dynamic hardware thread creation and termination, and also a dynamical con-

nection of the two streaming channels at runtime, depending on thread data dependency. This approach

also resolves the potential problem of system data flow bottlenecks existent in system bus architectures

like Hthreads [4, 3, 49] and FUSE [23], and adds more flexibility for inter-thread communication with mul-

tiple full-duplex channels between threads, opposed to the statically allocated FIFOs in ReconOS, within

the OSIF [33, 34, 32, 1]. Figure 2.2.10 represents an example SPREAD system architecture.

The implementation of switchable threads is performed by having a software and hardware version

Chapter 2. Context and State of the Art 23

of the same thread with the same behavior. In the moment of switching, the reconfiguration capabilities

allow for dynamic resource allocation, context transfer, and stream redirection. This clone is created at

the same time as the hardware counterpart, and it is named stub thread, both the stub thread and the

hardware thread are encapsulated as a switchable thread. The concept of stub thread can be compared

in a coarse manner to the concept of the delegate thread introduced in ReconOS [33, 34, 32, 1] and the

concept of software fringe introduced in BORPH [9, 66]. Regarding the view over software and hardware

threads, it is basically the same as portraited by the former literature, as both thread types are viewed in

the same manner by the system designer with a unifying API, but adding support to pthread-compatible

APIs.

Regarding disadvantages, the SPREAD architecture is mainly streaming-focused, which makes it too

specific for a wide range of applications. More significantly, the architecture does not present error check-

ing at the hardware thread-level nor adaptation strategies at the operating system kernel level, which is

noteworthy given the scope of the dissertation. It only mentions these aspects in the future works section.

Additionally, even though this OS improves over the traditional hardware acceleration, it still lacks ways to

shift the slave coprocessor paradigm [62].

System Bus

Configuration
Controller

Other

Peripherals

CPU

T1 T5

Operating System

External SDRAM

FPGA

Multi-Port Memory Controller (MPMC)

T1

T5

SW-HW Streaming Interface (Full-duplex mode)

HW-HW Streaming Interface (Full-duplex mode)

Control Path

Streaming Path

T2

T3

T4

Software Thread

Hardware Thread

HTI

T3

HTI

T2

HTI

T4

Figure 2.2.10: SPREAD: Example System Architecture, adapted [72].

Chapter 2. Context and State of the Art 24

2.2.4.5 Additional Research Cases

Considering Linux-based hybrid programming models, one can identify a few more research cases.

FUSE [23] presents a framework for the abstraction of hardware accelerators, with a customizable interface

between hardware accelerators and the OS kernel via Loadable Kernel Module (LKM). FISH [45] introduces

a framework that allows hardware accelerators to make system calls via a FISH kernel module (kmodule),

which talks to a host Linux system on the behalf of the hardware accelerator. RIFFA [25] is a open-source

framework that includes a C library, Linux device driver and IP cores on the FPGA, connected by a PCIe

bus. It presents another work that aims to bridge the gap between hardware and software, allowing for

multiple accelerator management. FOS [69] is a hybrid operating with a modular development flow, two

APIs for hardware abstraction with static accelerators and multiple partially reconfigurable accelerators,

and a daemon for dynamic acceleration request. It can adapt to dynamic workloads and supports dynamic

resource allocation, allowing for multiple types of hardware accelerators and runtime accelerator switching.

RACOS introduces a hybrid OS for reconfigurable hardware accelerators that uses DPR. HAL-ASOS [62]

is also another hybrid operating system based on Linux, but due to its importance, the discussion of the

latter will be done in chapter 3.

2.3 y Microcode Fundamentals

Microcode acts as an abstraction layer between the hardware of the CPU and the user-visible In-

struction Set Architecture (ISA) instructions, being mainly used in CISC implementations. This section

will explore microcode concepts to clearly define the microprogrammed approach to control unit design,

ending with a broad analysis of related works.

Contents

Page

2.3.1 Control Unit Design . 25

2.3.1.1 Hardwired Approach . 25

2.3.1.2 Microprogrammed/Microcode Approach 26

2.3.2 Related Works . 28

2.3.2.1 Microcode-Level Customization and Security 29

2.3.2.2 Additional Research Cases 30

Chapter 2. Context and State of the Art 25

2.3.1 Control Unit Design

Control unit design is one of the most important subjects in the field of embedded systems. This sole

component can optimize the organization of the entire system by establishing the sequence of operations

to perform, and also what must be executed in each operation. Not to mention that the latter can also

apply to hardware and software design, bridging the gap between both, e.g., a state machine implemented

in software can be simply transposed to hardware if one decides to offload it. A hardware control unit is

responsible for receiving inputs that dictate the state transitions, and in each state activate the control

signals necessary. The implementation of the control unit can follow two main approaches, the hardwired

approach, and the microprogrammed/microcode approach, which will be explained in section 2.3.1.1 and

section 2.3.1.2, respectively. Figure 2.3.1 depicts a simple FSM-based control unit.

FSM_INPUT_A/

/CONTROL_SIG_B

#0. STATE_A

#1. STATE_B

/CONTROL_SIG_A /CONTROL_SIG_C

#2. STATE_C

FSM_INPUT_B/

FSM_INPUT_C/

Figure 2.3.1: Example FSM Control Unit.

2.3.1.1 Hardwired Approach

The hardwired approach to control unit design is the most common when referring to hardware, as the

latter is merely a Finite State Machine (FSM) and it is easier to implement. This type of control unit implies

that its inputs describe the next state to go in the next clock cycle, and that, in each state, the selected

outputs are effectively activated. As so, it has the functions of producing control signals that activate a

certain datapath element, e.g., a multiplexer (M0) or flip-flops (FF0), activate control signals on the system

bus, e.g., an AXI interface, generate control signals on an inter-module interface, or control signals in an

internal module, e.g., a counter. An example module, with a FSM control unit, is depicted by fig. 2.3.2.

The forementioned control unit behaves accordingly to the state diagram of fig. 2.3.1.

Chapter 2. Context and State of the Art 26

0

1

CE
D Q

reset

FF0

clk

M0

Control Unit

Module A

CLOCK

RESET

DATA_A

ADD

result

A0

ALU

1

DATA_B

fsm_input_a_i

OUT_DATA

control_signal_b

control_signal_a
control_signal_c SIG_C

fsm_input_b_i
fsm_input_c_i

Figure 2.3.2: Example Module with a FSM Control Unit (Simplified).

2.3.1.2 Microprogrammed/Microcode Approach

A microprogrammed control unit fetches low-level microinstructions from a microcode memory or

control store and decodes those microinstructions to determine the active control signals for a single clock

cycle, specifying the system’s behavior during that time frame [65]. The control signals outputted depend

on the flow of microinstructions dictated by a series of test input signals [58]. The input signals to test

are also specified by a certain field in the microinstruction. A microprogram control unit consists of two

main components: the microcode memory, associated with its field decoding logic, and what is sometimes

referred to in the literature as the microprogram sequencer [35], which job is to generate the next address

in the microcode memory. This scheme can be seen in fig. 2.3.3. Mano [35] denotes the following

address-sequencing capabilities in a microprogram sequencer:

• Increments the present address for control memory;

• Branches to an address as specified by the address field of the microinstruction;

• Branches to a given address if a specified status bit is equal to one;

• Transfers control to a new address as specified by an external source;

• Has a facility for subroutine calls and returns.

All the trade-offs for supplying these capabilities must be taken into consideration when designing the

microprogrammed units of the dissertation.

Chapter 2. Context and State of the Art 27

Module B

Microcode Memory

Fields

Microprogram
Sequencer

Field Decode
Logic

CONTROL_SIG
TEST_INPUTS

Address

Figure 2.3.3: Example Module with a Microprogrammed Control Unit (Simplified), adapted [58].

The microcode approach implementation is easier and less error-prone than the hardwired approach,

which uses complex logic for the sequencing of operations. On the contrary, the microcode approach uses

basic logic for sequencing and decoding the control signals. The hardwired control unit tends to be faster

than the microcode one, in some cases. Despite this, microprogramming is still popular to implement

CISC architectures, e.g., the x86 architecture, while hardwired control units are more common in RISC

architectures, e.g., Pentium Four used a hybrid approach [67], since it had most RISC-like instructions

implemented in a hardwired approach and some other instructions implemented in microcode. Siewiorek

et al. [60] identified some key advantages of microprogramming:

• Regularity: microprograms are easy to debug and maintain;

• Extensibility: it allows the addition of new features, or replacement of existing ones, e.g., through

microcode updates [62];

• Flexibility: easy to add to new features and reduced design effort;

• Cost-effectiveness: can implement complex designs reducing the hardware cost in terms of

resources (important if one intends to minimize area [27]).

Microinstructions. Microinstructions are control words with unique memory addresses in the mi-

crocode memory (ROM or RAM), having a particular field for specifying the control signals to activate and

a field to indicate the next microinstruction to execute, given by the boolean test result, i.e., true or false,

of a certain jump condition (JC), e.g., unconditional, the overflow of a counter, a module-external signal.

Chapter 2. Context and State of the Art 28

Microinstruction Encoding. In terms of literature taxonomy, the microinstructions can be classified

into the following categories [60]:

• Vertical: completely encoded, fig. 2.3.4 (Bottom);

• Horizontal: partially encoded or no encoding, fig. 2.3.4 (Top).

On the one hand, vertical microinstructions tend to be compact, and specify a complete or maximal

encoding, so multiple control signals are encoded and associated with each bit pattern. Each bit pattern is

connected to a function code that performs a series of datapath operations in a sequential manner. In the

vertical microinstruction paradigm, there is a trade-off between less microcode ROM memory usage and

additional decoders, due to the more compressed microcode. However, this trade-off is still viable in most

cases as a result of the encoder’s cost being less than the cost of larger memory elements. e.g., ROMs

[2]. On the other hand, horizontal microinstructions tend to be longer and minimally encoded, resulting

in less hardware compared to vertical microinstructions. A subfield of a horizontal microinstruction might

control a data function directly, e.g., one bit for each system bus control line and one bit for each internal

control signal. Generally, despite the length of microinstructions and sequences, the goal is always directed

towards reducing the microcode memory footprint, i.e., reduce the microcode store usage.

Internal CPU Control Signals (CS) System Bus CS JC Microinstruction Address

Horizontal Microinstruction

Function Code Function Code Function Code Jump Condition (JC) Microinstruction Address

Vertical Microinstruction

Figure 2.3.4: Horizontal vs Vertical Microinstructions, adapted [67].

2.3.2 Related Works

Wilkes introduced the term microprogram in 1951 as a novel approach to control unit design that sim-

plified and added flexibility over the hardwired approach [73]. Although, the concept only became popular

in 1964 with the introduction of IBM’s System/360. The system used microprogramming to implement

Chapter 2. Context and State of the Art 29

bidirectional (upwards and downwards) compatibility across different System/360 models [17]. By the

mid-to-late seventies, eight-bit microprocessors, e.g., Intel 8080 and Zilog Z80, sixteen-bit microproces-

sors, e.g., Intel 8086, and thirty-two-bit microprocessors, e.g., Motorola 68k, were already microcode-

based [65].

Originally, microcode was stored in read-only memory, yet later microcode updates were introduced

to mitigate hardware errors, e.g., Intel Pentium floating-point division bug in 1994 [53], to deploy new

security measures, e.g., Intel SGX [12], and also to protect the CPU from attacks, e.g., Spectre and

Meltdown. Spectre consists of attacks that focus on hardware vulnerabilities rather than software ones.

Regarding this, the attacks rely on techniques as (V1) bounds check bypass, (V1.1) bounds check bypass

store, (V1.2) read-only protection bypass, (V2) branch target injection, (V3) rogue data cache load, i.e,

Meltdown; among others [20]. Intel and AMD deploy microcode updates since the nineties, with the

Pentium Pro (P6 microarchitecture) in 1995, and the K7 microarchitecture in 1999, respectively [29].

Since then, numerous research has been conducted in terms of microcode customization, security, and

other applications.

2.3.2.1 Microcode-Level Customization and Security

Kollenda et al. [28] examines the reverse engineering of a COTS AMD x86 CPU microcode. Regard-

ing this, the work explores the microcode customization and microcode-assisted defenses, proposing a

myriad of defense techniques as case studies, e.g., limiting the resolution on user-accessible timers to

mitigate timing side-channel attacks; implementing a microcode-assisted address sanitizer that inserts

new instructions that perform checks and instrumentation for allocation and deallocation, during the com-

pilation process, to reduce temporal faults, e.g., use-after-free bugs; performing microcoded instruction

set randomization, i.e., randomizing the instruction encoding and breaking the link between x86 operation

and its semantics to decrease code-reuse attacks, e.g., Just-in-Time (JIT)—Return-Oriented Programming

(ROP) attacks; adding a microcode-assisted instrumentation scheme that generates microcode updates to

intercept the execution flow and redirect it to an address where instrumentation is performed, resuming

execution afterwards; developing authenticated microcode updates to thwart attacks, e.g., microcode tro-

jans; introducing a trusted execution environment via µEnclave similar to Intel SGX [12], to assure that even

code with kernel-level privileges cannot interfere with a certain enclave program. The enclave functionality

is based on a separate Instruction Decode Unit (IDU). Similarly to [28], in [29], Koppe et al. discusses the

reverse engineering of x86 processor microcode. Specifically, the work focuses on the reverse engineering

Chapter 2. Context and State of the Art 30

of the AMD’s K8 and K10 microarchitectures, and explores further how to develop custom microcode up-

dates to change the CPU’s behavior. Koppe et al. also considered the potential of microcode technology

to implement CPU-assisted instrumentation for system defense based on the augmentation of preexisting

instructions, and how malicious microcode updates can be the source of bug attacks, i.e., attacks based

on innate computation bugs, and timing attacks, i.e., attacks based on the meticulous analysis of execu-

tion time. While [28] and [29] focus on the reverse engineering of microcode related to AMD processors,

the work presented by Yang et al. in [74] turns its attention to the reverse engineering of Intel’s microcode

update structure to investigate security and form a basis for future research. Additionally, still concerning

Intel processors, the work presented by Chen et al. [11] explores x86 microcode in what relates to security

aspects.

Since microcode is mainly proprietary, works that focus on it need to reverse engineer the microcode of

existing architectures [28, 29] or build their custom microcode mechanisms [2, 63, 62]. Considering this,

Albartus et al. [2] discusses the design of a RISC-V architecture alongside a microcode development and

evaluation environment to design microcode trojans. This work focuses more on the effect of malicious

microcode on embedded CPUs.

The CHEx86 architecture [59] extends the well-known x86 architecture to include an instrumentation

mechanism that targets spatial and temporal memory safety vulnerabilities, e.g., use-after-free, double-

free, and uninitialized reads. Concerning this, the architecture implements this instrumentation by re-

routing the translation of native macro-operations to the microcode RAM, which has custom microcode

instrumentation translations. The work also discusses the shadow capability, i.e., the capability of tracking

(statically/dynamically) allocated and deallocated memory, and the speculative pointer tracking capability.

2.3.2.2 Additional Research Cases

The work in [30] introduces the implementation of a microcode-programmable learning engine, i.e.,

each neuron of a spiking neural network is programmable with microcode instructions. Besides, in the

future works section, Kollenda et al. [28] discusses the benefits of lightweight system calls implemented

in microcode. Kollenda et al. does not implement this type of system calls, but the work by Silva et al.

[63, 62] does. Although, since the work presented in Silva et al. [63, 62] is of major importance to the

groundwork of the dissertation, the implementation of hardware system calls will be addressed later in

the appropriate chapter. Even though the aforementioned works focus on microcode mechanisms, they

cannot be directly compared to the goal of the dissertation, except [63, 62], as it acts as groundwork.

Chapter 2. Context and State of the Art 31

2.4 Discussion

This section will discuss the state-of-the-art gaps, considering the three main sections presented in

chapter 2 (section 2.1, section 2.2, section 2.3). Table 2.2 presents a comprehensive gap analysis between

some hybrid operating systems like HAL-ASOS [63, 62].

As it can be seen in table 2.2, most of the recent hybrid operating systems do not explore enough the

concepts relating to adaptability mechanisms, and microcode. Generally, the literature neglects the matter,

or fails to provide solutions for hybrid OSes reconfiguration without the use of a post-design technique, i.e.,

they typically rely on DPR. With this in mind, the exceptions are encountered in ReconOS [1] with a built-in

TS mechanism based on DMR that permits different levels of system call verification, parameter checking,

and memory access checking [40, 41, 39]. Although, the scheme falls onto the fault tolerance scope,

whilst the part referring to the system upgrade relies on post-design DPR.

Another gap in the literature is the use of microcode. As one can observe (table 2.2), only HAL-ASOS

[63, 62] focuses on this approach within a hybrid operating system. ReconOS [1] employs procedure-based

system calls similar to HAL-ASOS kernel-level procedures, but to perform simpler tasks and without using

microcode mechanisms. Overall, a system would benefit from the built-in microcode update features

and hardware system call scheme that HAL-ASOS [63, 62] introduces, paired with the error detection

and correction strategy of ReconOS with some type of design diversity, i.e., different implementations of

redundant modules, to protect the system against CMF, i.e., modules that are affected equally by the same

fault. This could be achieved using a dual-task lockstep scheme for error detection and correction within

HAL-ASOS [63, 62] similar to the TS of ReconOS [40, 41, 39].

All of these considerations open up an opportunity to innovate in relation to the literature, by possibly

maintaining the update scheme and hardware system calls of HAL-ASOS [63, 62], and improving some

aspects of the latter, e.g., procedure scalability, extended feature interface, just to name a few. More on

that topic in section 3.1.5. Note that most of the hybrid programming models advantages and disadvan-

tages, were already compared in section 2.2, as well as the microprogrammed approach advantages and

disadvantages in section 2.3.

Chapter 2. Context and State of the Art 32

Table 2.2: Gap Analysis among hybrid programming models.

Based On Elasticity Adaptability
Diversity5 µCode

RTOS Linux Other Support Method Level

Hthreads [4] 3 7 7 7 7 7 7 7

ReconOS [1] 3 3 7 DPR LST/DMR1 HWTL/RTL T3/I4 77

SEOS [46] 3 7 7 7 7 7 7 7

R3TOS [24] 3 7 7 PR TRI MSL 7 7

RE2DA [51] 7 7 3 PR CP/RB MSL 7 7

BORPH [66] 7 3 7 7 7 7 7 7

SPREAD [72] 7 3 7 PR 7F 7F 7 7

FUSE [23] 7 3 7 PR 7 7 7 7

FISH [45] 7 3 7 7 7 7 7 7

RIFFA [25] 7 3 3 7 7 7 7 7

FOS [69] 7 3 7 DPR RES6 SL 7 7

RACOS [70] 7 3 7 DPR 7 7 7 7

HAL-ASOS [62] 7 3 7 BI/MP2 RBMS HWTL/MSLS 7S HWSCS

(PR) Partial Reconfiguration (BI) Built-In (MP) Microprogrammable (LST) Lockstep Shadow Threads (DMR) Dual Modular

Redundancy (TRI) Task Resource Isolation (CP/RB) Check-Pointing and Rollback (HWTL) Hardware Thread Level (MSL)

Module and System Level (SL) System Level (RES) Resource-Elastic Scheduling (RBM) RAM-Based Microprogram (HWSC)

Hardware System Calls (T) Time Diversity (I) Implementation Diversity (M) Microarchitectural Diversity

1 Considering the Loosely-Coupled Thread Shadowing in [40].

2 Tightly-Coupled elasticity with the evolution of Linux OS by design, through microprogramming [63].

3 In signature level three [39].

4 Trans-modal LST in [41].

5 Diversity refers to design diversity, i.e., different implementations of redundant modules.

6 RES refers to dynamically changing the allocated resources used by an accelerator based on the workload and the availability.

7 ReconOS [1] provides procedure-based system calls, but does not employ microcode mechanisms.

F Stated in the future works section but not implemented.

S Scope of the dissertation.

3. Background

In this chapter, one presents the groundwork and background for the thesis work. Firstly, one describes

the HAL-ASOS tool, upon which the dissertation’s microkernel infrastructure is based. Secondly, one

explains the architecture existing in the software side, developed in a parallel thesis, that handles Linux

interaction on the hardware microkernel’s behalf.

3.1 HAL-ASOS

HAL-ASOS [63, 62] is an embedded system design tool focused on applications that intend to be

offloaded to CPU+FPGA architectures, like the ones presented in section 2.2. The latter centers on bridging

the gap between software and hardware by promoting specific hardware to fundamental computing units,

and breaking the state-of-the-art mold of passive co-processor-like hardware extensions. This section will

firstly describe the tool’s design methodology, and later explain the main hardware accelerator model,

alongside with some primal computing entities. Finally, the improvement gaps are analyzed.

3.1.1 Design Methodology

The HAL-ASOS design flow follows a hardware-agnostic approach to hardware design and offloading.

This means that the offloading of the hardware is deeply connected with meeting the imposed require-

ments with a series of thought out steps, leaving the decision of the target CPU+FPGA platform to a stage

where there is a better understanding of the resources needed to perform the deployment. As seen in

fig. 3.1.1, a typical development cycle with HAL-ASOS starts with the description of a new application, or an

existing one, through UML and task graphs, to describe the overall system, and the relations between the

functional units, respectively [62]. The next step is the software refactoring, where the initial application

is restructured and transitioned to one of the frameworks that HAL-ASOS supports in terms of software,

e.g., POSIX, C++, or boost-based runtime. The next step, allows the transitioned application to be profiled,

identifying system bottlenecks that justify the migration of a certain software task to hardware in the form

33

Chapter 3. Background 34

of a hardware task. With the application partitioned, one can then begin the co-design stage regarding

the system parts to offload. For this, the software task is represented via a hardware task, through a set

of system calls that rely on hardware kernel resources, based on the hardware accelerator model. This

representation is more at the software and hardware interaction level, while the hardware task’s datapath

represents the actual algorithm to offload. This transition of a software algorithm to hardware can be done

manually, which requires more design effort and time, or with the support of HLS tools, e.g., Vitis HLS, or

Matlab to perform the C/C++ to HDL transpilation, i.e., source-to-source compilation.

Application Design

and Modelling

Software Refactoring

System Implementation

Application partitioning

HAL-ASOS software API

Host compilation/debug

Functional validation

Application Profiling
Profiling the application

Hot kernels identification

Functional validation

Computational Offloading
HAL-ASOS HW Task(s)

Compilation/debug

Co-Simulation

Platform Deployment
Cross-compilation

Platform BSP

Full system simulation

Bootloader

Linux root file system

FPGA bitstream

elf dtb

*.c *.cpp *.v *.vhdtask graph

GDB GCC

POSIX

17

Other

Tools

application devicetree

Figure 3.1.1: HAL-ASOS: Design Flow, adapted [63, 62].

The computational offloading stage culminates into the RTL simulation of the hardware accelerator

(kernel) and hardware task entities within a tool like Xilinx’s Vivado. The last stage is the platform de-

Chapter 3. Background 35

ployment one, in which the designer must decide the targeting platform, typically a SoC, based on the

expended resources of the overall system. This step is aided by the full simulation capabilities of HAL-

ASOS, which allows for the simulation of the both system parts, i.e., hardware and software, within a

QEMU environment with virtualized memory positions. For this, a custom Linux image is tailored to the

application needs in Buildroot, and launched on QEMU with the platform (board) selected. This step allows

for further debug of the application before actually deploying it to the SoC running Linux. The last step

includes the platform validation with the comparison of initial metrics with the achieved ones.

It is important to clarify that the goal of the dissertation is not subjecting an application to this design

flow stack, but to develop upon the existing hardware model, section 3.1.2, and entities, fig. 3.1.3 and

fig. 3.1.4, to improve metrics and add functionality.

3.1.2 Accelerator Model

As in [63, 62], one will refer to the hardware kernel as accelerator, and to the entities shown in

fig. 3.1.2 as accelerator model. The accelerator model revolves around two main entities named as

hardware kernel, representing the hardware version of the software’s kernel space, and the hardware

task, representing the software’s user space in hardware. These two entities are described in fig. 3.1.3

and fig. 3.1.4, respectively. Additionally, the accelerator model presents three distinct interfaces with

the hardware kernel of HAL-ASOS, fig. 3.1.2: (1) a slave control-based interface, deemed as the control

channel, (2) a slave data-based interface, deemed as the data channel, and (3) a master interface, deemed

as the system channel.

Figure 3.1.2: HAL-ASOS: Accelerator Model integrated into Host Platform, [63, 62].

Chapter 3. Background 36

The terms master and slave are applicable from the hardware kernel’s point of view, and, therefore, here

the paradigm of co-processor-like hardware acceleration is shifted since the hardware can now act as

master through the last aforementioned interface. Depending on the accelerator model, with HAL-ASOS,

one can have these interfaces implemented with a PLB or AXI bus. More specification on the purpose of

the interfaces will be given in fig. 3.1.3. Finally, HAL-ASOS also has an interrupt line for synchronization

with the host operating system [62].

3.1.3 Hardware Kernel

The hardware kernel of HAL-ASOS bases itself around a microcoded control unit that translates higher

level system calls coming from the hardware task into lower level control signals that interact with the kernel

resources present in fig. 3.1.3, or with the host system. The kernel core has a single-address microprogram

entity which hosts the horizontal microcode translations of the aforementioned syscalls, e.g., ones that

manipulate the writing and reading to and from the message queues, ones that write and read to and from

the local memory, or that manipulate the hardware mutexes. For more information on microcode, refer to

section 2.3.

Figure 3.1.3: HAL-ASOS: Hardware Kernel Simplified Model, [63, 62].

Chapter 3. Background 37

In addition, it has a system-level datapath entity that decides the system call parameters and returns,

a module that manages timing events and the sleep features of HAL-ASOS, and modules to manage the

kernel’s runtime, with a index managing service and a procedure scheduler. The control of the hardware

kernel is made through the control and status registers of the core, made available in through the S00

Control interface, as seen in fig. 3.1.3. Although, the safe writing to kernel’s control register is ensured

by the authenticator module. The core also has a FSM that dictates the kernel’s current state, and also

indirectly the hardware task entity’s state, depending on the contents of the control register. The kernel

resources can be accessed from the host for read or write through the S00 Control interface, while the

S01 Data interface serves as a direct communication channel connected with the local memory of the

accelerator. The core also has access to the resources of the accelerator through the local bus element,

which generically implements a decoder that decides the flow of data to/from the resources, the zero

copy unit of HAL-ASOS, or the LRAM. The zero copy unit of HAL-ASOS comes in when one wants to make

bursts from the system memory to the local memory of the accelerator or vice-versa. Moreover, the M00

System interface serves as channel between the accelerator and the host’s main memory region. The

kernel communicates with the hardware task through the M00 Kernel and S00 Task interfaces, which are

groups of ports regarding a kernel’s response or call, respectively.

3.1.4 Hardware Task

As forementioned in section 3.1.1, the hardware task entity can be divided into a control unit and

datapath, like most common architectures [62]. The control unit of the hardware task determines the

order of operations of the entity and manages the requests to the hardware kernel and host system. On

the other hand, the datapath provides the hardware version of the software algorithm chosen to offload.

As seen in fig. 3.1.4, the entity makes use of VHDL procedures of two types: (1) user-level procedures

and (2) kernel-level procedures. Typically, user-level procedures wrap the kernel ones, i.e., kernel-level pro-

cedures are called by user-level procedures. Both together define the kernel calls at any given state, while

the kernel’s execution results are updated through the kernel response mechanism, which is also captured

by the hardware task’s procedures. The kernel-level procedures abstract the microprogram system calls

by specifying the system call that will be executed, its parameters, and capturing its returns, while the

user-level ones usually determine the enabled services of the hardware kernel. Although, the user-level

procedures also have to capture and forward the returns to the hardware task’s top-level so that the results

can be used in consequent states or in the same state. The hardware task makes use of VHDL procedures

Chapter 3. Background 38

Figure 3.1.4: HAL-ASOS: Hardware Task Simplified Model, [62].

to link the signals used inside the procedure body to signals existing in the module where the procedure is

called. This is doable since the working principle of VHDL procedures performs these attributions in zero

simulation time, or in delta cycles. Delta cycles are non-time-consuming timesteps used by simulators

to model the behavior of VHDL code. Additionally, as stated in section 3.1.3, the kernel call and kernel

response are propagated to the hardware kernel through the slave kernel and master task interfaces. The

hardware task’s FSM might have a higher number of states depending on the functionality to implement,

since the architecture only allows one user-level procedure per state.

3.1.5 Improvement Analysis

HAL-ASOS proves that it is possible to achieve an accelerator model where the accelerator is a first-

class computing entity [62], focusing on microcode mechanisms to provide elasticity by design with low

power consumption, but still has some limitations and openly stated issues:

• The use of one user-level procedure per state sometimes leads to the creation of user-level pro-

cedures with multiple steps to achieve functionality, with a kernel-level procedure being called in

each step, leveraging the capabilities of the procedure scheduler. As the number of FSM states

increases in the hardware task, the capability that allows the manipulation of external signals to

the procedure, using signal drivers, rapidly becomes a liability. Multistep user-level procedures are

Chapter 3. Background 39

modeled around switch statements, which are mapped to combinational logic. After synthesis,

these cases can generate hardware LUTs, ROMs, or multiplexers. The procedures’ zero simulation

time attribution “copy-pastes” these switch statements every time a multistep user procedure is

called, making the combinational logic cell usage of the hardware task to increase proportionally to

the number of multistep procedures used. Thus, additions can be done to make these multistep

procedures scalable.

• Although HAL-ASOS introduced and fomented the microcode approach to reconfigurable architec-

tures based on CPU+FPGA, it still left a lot to explore since the microcode mechanism employed can

generate runtime errors due to a mismatch between the version of the microcode in the hardware

kernel and the system calls invoked. Additionally, the framework does not support the compilation

and addition of new syscalls by the host system, which can hinder its evolutive elasticity premises

if the system becomes unusable. This leaves room for improvement in terms of update strategies

for the microprogram, and also in terms of its means to adapt to different runtime errors, e.g.,

use-after-free, or in other words, its means of coping with diversity.

• Considering all the recent versions of HAL-ASOS [62], specifically version 4 (that uses an AXI bus),

it is possible to perceive that the master interface, deemed as M00 System, and which establishes

a memory channel to the host system’s main memory is always implemented with an AXI4 Lite

Interface. Improvements on the architecture might be added by investigating the migration of

this channel to AXI4, unveiling the possibility of making main memory burst transfers without the

intervention of the ZeroCopy Unit (ZCU). Additionally, this memory burst feature can be utilized to

simplify the extended feature scheme presented by HAL-ASOS.

• For the time being the accelerator allocates all the memory it needs from the kernel space, this

can hinder future designs that require large amounts of contiguous memory. The memory could

be allocated as blocks of various sizes like in GPUs, and a hardware solution could be proposed to

handle those scattered blocks as a contiguous memory region, through a scatter-gather mechanism.

• The accelerator model does not have a way to deal with hardware multitasking, which means that in

a scenario of, for example, two hardware tasks, representing two offloaded algorithms, one has to

partition the design into two separate hardware kernels each one controlling its hardware task, with

some sort of mechanism to handle inter-task communication. Developing an arbiter with scheduling

Chapter 3. Background 40

policies that allowed one hardware kernel to receive requests from more than one control unit would

solve the problem.

• The HAL-ASOS accelerator model does not perform syscall parameter and bounds checking and

does not have a way to bank recently used system calls. A caching mechanism like the one in [64]

could be employed to resolve these issues. Although, there is a mechanism to recover from an

unregistered address failure with a memory allocation request to the host system.

• The work in [19] advocates that an unmasked physical source, generated by radiation effects, may

cause a fault that manifests itself with a certain probability as a single or multiple bit-flip in a certain

register or memory cell. This type of error is different since it affects the underlying hardware, and

at the moment HAL-ASOS is not ready to deal with these type of errors. A lockstep scheme with

two hardware tasks might resolve the issue by applying some redundancy like in [40].

3.2 KIVIO

KIVIO or Kernel Interface for Virtualized I/O is the software architecture developed on a parallel thesis

[42], that operates at the Linux kernel-level on the microkernel’s behalf. Thus, it solely links the multi-

threaded software application with the hardware task, as seen in fig. 3.2.1 task graph with the entities APP

and HWT, respectively. Without going into too much depth about the inner workings of the architecture,

since it is out of this dissertation’s scope, the most relevant thing to note is that KIVIO relies on a Linux

kernel FIFO structure, KFIFO, purposely (and natively) mapped to certain positions of the host system’s

main memory. This way, the hardware task has the possibility of requesting specific commands to KIVIO

that it would not be able solely perform, e.g., opening a Linux pipe, binary file, or socket. For this, it is nec-

essary that the hardware task’s packages comply with the established formatting of the 64-bit commands,

and perform the writing of the commands to shared memory. In the same way, via the memory-mapped

KFIFO, the hardware task receives the command results, e.g., a descriptor for opening a pipe, file, or

socket, in a specific region of shared memory, dedicated to the extended system call returns. One will

refer to the syscalls that perform these OS-aided features as extended features or extended system calls.

Additionally, the KIVIO architecture has direct access to selected microkernel registers through the S00

Control interface, and the microkernel’s local memory through the S01 Data interface, fig. 3.2.1. With this,

it is possible to control the microkernel’s execution, and, consequently, the hardware task’s execution, and

also perform some extended syscalls that relate to local memory operations.

Chapter 3. Background 41

Although, it is important to note that (natively) these extended features are achieved with the trade-off

of more memory operations, which, in a system with multi-level cache might originate non-deterministic

access delays. Even though, this is an approach worth exploring since it simplifies the one presented by

HAL-ASOS.

KIVIO

HWT Agent

SWT file handlerSWT File Handler

Requests FIFO

Responses FIFO

SWT file handlerHWT File Handler

Requests FIFO

Responses FIFO

ISR

HW Kernel

S00_Control

S01_Data

read

write
APP

HWT

M00_System

M00_System

Figure 3.2.1: KIVIO: Information Flow, [42].

4. Supporting Microkernel

This section refers to the specifics about the hardware microkernel implemented to support the archi-

tecture proposed in chapter 5. Specifically, one dives deeper into the internals of the microkernel top-level

module and its components, interrupt management, memory management, the hardware task’s internals,

and the microkernel’s external interfaces to communicate with the processing system as master or slave.

4.1 Architecture Overview

The microkernel developed in this dissertation is a minimal version of the HAL-ASOS’ kernel and hard-

ware task structures, designed to ultimately achieve less combinational logic usage in the composite proce-

dures of the hardware task’s extended features, simplify the hardware kernel’s and supporting OS (Linux)

interactions to perform these extended features, and expand on the microcode update functionalities that

HAL-ASOS brings forward in its research [63, 62]. With this in mind, the microkernel’s internal scheme is

kept somewhat similar to HAL-ASOS, maintaining some essential architecture modules, redesigning oth-

ers, and adding new ones. This thesis is developed in pair with another thesis [42] that supports the

microkernel architecture in the host system side (c.f section 3.2). Both the thesis together define the new

interaction model for hardware-software communication.

As HAL-ASOS version four [63, 62], the microkernel establishes three transfer channels based on the

AMBA AXI protocol, developed by ARM. The two channels, represented in green (■) in fig. 4.1.1, differ-

entiate the slave interfaces into a control-oriented S00 interface, connected to hardware resources, and

a data-oriented S01 interface connected to the local memory (LRAM), with the microkernel acting as an

AXI4 lite bus slave in both scenes. In contrast, the M00 channel, represented in red (■) in fig. 4.1.1,

stipulates interactions with the system memory (SYSRAM) with the microkernel acting as an AXI4 bus

master. With the newly added interaction scheme between the microkernel and the host operating system

(c.f section 5.1), this master interface now implements both control- and data-oriented communication

through the system memory, opposed to the data-only SYSRAM mechanism employed by HAL-ASOS [63,

42

Chapter 4. Supporting Microkernel 43

System Memory (DRAM)

AM
B

A
AX

I I
nt

er
co

nn
ec

t
Slave

Interface

Slave
Interface

Interrupt Ctrl.

Local

Mutex

System

Mutex

Local RAMS01_Data

S00_Control

M00_System System Call
MemoryHardware Task

Control Unit

User-Level
Datapath

Hardware Microkernel

IRQ

Core

Master
Interface

µProgram

Slave IF
Event

Manager

System-Level
Datapath

Runtime

Manager

Two-Level

Decoding

Logic

Interface

Registers

Procedure
Memory

Scheduler

Single-Level
Decoding

Logic

µCore

M
00

_T
as

k

S00_Task

M00_Kernel

To System Memory (DRAM)

To Global Interrupt Controller (GINTC)

S0
0_

Ke
rn

el

MPDRAMC

Host Multiprocessor
Core

Core 0

GINTC

Kernel Call

Kernel Response

Microkernel
Control

Registers

Control Unit

Blackbox IPs

Figure 4.1.1: Microkernel Architecture Overview within Host Platform (Simplified), expanded view in fig. B.10.

62]. Additionally, when considering the data-oriented communication of HAL-ASOS through the M00 Sys-

tem interface, the microkernel additions now make it possible to perform burst data transfers by migrating

the interface from AXI4 lite to AXI4. To improve clarity throughout the dissertation the host system’s main

memory will be denominated as SYSRAM, since the latter corresponds to the available portion of main

memory allocated for the accelerator and used as shared memory region.

The microkernel core, fig. 4.1.1, consists of the microprogram, represented in purple (■), the micro-

programmed procedure scheduler, represented in bright blue (■), the system-level datapath, represented

in gray (■), and the runtime manager entity, represented in a darker blue (■). The microprogram entity,

as in [63, 62], is the microprogrammed control unit responsible for executing the hardware system calls

(refer to section 4.2.3). The latter takes some test input signals and acts regarding those signals to pro-

duce the specified control signals. For more information about this unit, please refer to section 2.3.1.2

for a generic overview and section 4.2.4 for a specific overview. The system-level datapath supports the

microprogram to execute the aforementioned hardware system calls, but its job is to enable certain datap-

ath logic elements, e.g., a flip-flop, or entities, e.g., the event manager, the index manager, or the address

Chapter 4. Supporting Microkernel 44

manager, section 4.2.5. The job of the procedure scheduler, section 5.1.1, is to decide the next system

call for execution when using composite system calls, i.e., user-level (or hardware task) system calls that

demand more than one kernel-level system call. As an example, the user-level system call that performs

a safe write of data to the SYSRAM would demand the use of the kernel-level system call for locking the

mutex that refers to the system memory, represented in teal (■), the system call for actually writing to

the SYSRAM, and, ultimately, the system call for unlocking the same SYSRAM mutex. The system call is

deemed as safe since the use of the mutex prevents race conditions. The procedure scheduler developed

in the dissertation adds onto the incremental one used in [63, 62] since it has branch capabilities. By

making the scheduler unit microprogrammable, one can achieve a flow of system calls dictated by the

unit’s test input signals, and, therefore, increase the procedure’s adaptability to certain scenarios, e.g., a

user-level procedure that acts upon a FIFO can now decide to carry through a different sequence of system

calls if the FIFO is full or not full. One additional advantage of having a microprogrammed scheduler, as

the microprogram, is the ability to map to both memories onto one of the microkernel’s slave interfaces, so

the host system side can change the sequence of system calls within a user-level procedure or the steps

of a certain kernel-level system call, respectively. The runtime manager is a module closely related with

the reduction of logic used by the user-level procedures in the hardware task. Thus, the latter improves

the scalability of the procedures by re-using cases, more on that later in section 5.2.

As forementioned, the microkernel makes use of a local memory (LRAM), represented in orange (■)

in fig. 4.1.1, connected to the S01 slave interface (■) and locked by the local mutex, represented in darker

orange (■). As additional resources, the microkernel also has a local interrupt controller, represented in

yellow (■) to generate the PL-to-PS interrupts, the slave interface event manager, represented in darker

yellow (■), that manages timeouts and event waits of both of the slave interfaces (S00 and S01), and an

interface register area, represented in a light-colored red (■), for the host system to specify parameters

regarding the system memory, e.g., the SYSRAM base address, or read information concerning the local

memory, e.g., LRAM depth in words.

The next sections will detail on the design, implementation, and testing of all the modules of the micro-

kernel, with an analysis of the trade-offs and design considerations. Note that throughout the dissertation,

to increase understandability, the module’s channels pertaining to the host (software side) will use blue

tones (■), and the module’s channels pertaining to the hardware side will use orange tones (■), which

is the case for the aforementioned mutexes. However, this only applies to the external interfaces and the

dual port modules.

Chapter 4. Supporting Microkernel 45

4.2 Microkernel Core

As mentioned before, the microkernel core comprises the microprogram, the procedure scheduler, the

system-level datapath, and the runtime manager. This section will mainly explore the microprogram’s and

system-level datapath’s internal architectures and their interactions. For this, one will also talk about the

implemented microcoded system calls stored in the microprogram memory as well as the HDL kernel-level

procedures that abstract these system calls. The implementation and discussion of the microprogrammed

procedure scheduler and the runtime manager will be left to section 5.1.1 and section 5.2.1, as they belong

to the chapter about the proposed architecture extensions.

4.2.1 Control Registers

The control registers module is important since it establishes an interface for the host system to control

the hardware microkernel. Throughout the dissertation the hardware microkernel might be referred to as

kernel to improve clarity. The design of this module is represented in fig. 4.2.1.

Microkernel Status Register
Microkernel Control Register

Reset Unused

[30] [28:0]

Control Interface Registers

O_RD_ACK

I_WR_CE

I_CS [0:1] CE
D Q

reset

FF0

clk

O_WR_ACK

G1

G2

write_ack_d

write_ack_q

CE
D Q

reset

FF1

clk

I_RD_CE

G4

G3

read_ack_d

read_ack_q

UG0

CE
D Q

reset

FF2

clk

D Q

reset

FF3

clk
I_RXWORD [31:0]

G5
I_CS(0)

O_UK_CTRL

O_UK_STATUS

Page 0 Decoder Signals

[31:0]

[31:0]

CTRL

Running

[31]

STATUS Blocked

[30]

Done

[29]

Resetting

[28]

Error

[27]

Dead

[26]

I_STATUS_SIG

I_STATUS_SIG

Syscall

[25:22]

task_doneG6*
G7*

task_error

Unused

[21:0]

Run

[31]

Updated

[29]

Figure 4.2.1: Microkernel Control Registers RTL Design Internal Architecture (Simplified).

As it is possible to see as well in other modules that use the AXI4 lite interface S00 Control, the control

registers entity of fig. 4.1.1 has two flip-flops, FF0 and FF1, to generate the write and read slave acknowl-

Chapter 4. Supporting Microkernel 46

edges, respectively. This means that once the chip select, i_cs, and the write clock enable, i_wr_ce, or

the read clock enable, i_rd_ce, are asserted one clock cycle later on will have either the i_wr_ack or

o_rd_ack ports asserted as well. This methodology follows a generic bus interface, used as well in [62].

For the latter to work, the AXI4 lite interface module must be compliant with this type of bus and its control

unit must react to slave confirmation signals alongside with AXI4 lite ones. Refer to section 4.6.1 for an

in-depth explanation of the interface and control unit.

Additionally, the latter also has two other flip-flops, FF2 and FF3, that control the control unit of the

microkernel and stand for its current status, respectively. Both of these registers, control and status, are

32-bit wide, but only the control register is writable and readable, whilst the status register is read-only,

depicted by the connection to the input port, i_rxword, coming from the slave decoder logic element,

more on that later in section 4.4.1. For the control only two bits can be asserted/cleared by the host. The

MSB (bit 31) puts the microkernel in a running state, while the bit 30 resets the microkernel. Since the

microkernel is deeply connected to the hardware task unit, the once one puts the kernel onto a running or

reset state the hardware task follows, and enters such states as well. The status register has bits that give

information on the current state of the kernel and hardware task. The running bit to indicate the kernel

and hardware task are processing something, the blocked bit to indicate the hardware task is blocked and

waits a confirmation from the microkernel to continue processing, the done bit to indicate the hardware

task finished executing, the resetting bit to point to a restart of the hardware task, the error bit to report an

error while executing the hardware task system calls, a dead bit that represents a shutdown accelerator,

via a specific yield syscall, and finally a field that specifies the currently active microprogram system call.

In fig. 4.2.1 there is also a mention of signals coming from the page zero decoder, because this entity is

mapped to page zero of the accelerator. More on the S00 Control address space in section 4.6.3, and

the page decoder in section 4.4.2. The HDL for the control and status registers, and the combinational

update of the status is represented in listing 4.1.

Listing 4.1: Microkernel Control: Control and Status Registers (HDL).

1 --
2 KERNEL_CONTROL_FF2 : process (I_CLK)
3 --
4 begin
5 if rising_edge(I_CLK) then
6 if(I_RESET = '1') then
7 ukernel_ctrl_q <= ukernel_vector_to_control_data((others => '0'));
8 elsif I_WR_CE = '1' and I_CS(0) = '1' then
9 ukernel_ctrl_q <= ukernel_vector_to_control_data(I_RXWORD);
10 elsif I_TASK_DONE = '1' or I_TASK_ERROR = '1' then
11 ukernel_ctrl_q <= ukernel_vector_to_control_data(('0' & I_RXWORD(

C_MACHINE_WIDTH-2 downto 0)));
12 end if;
13 end if;

Chapter 4. Supporting Microkernel 47

14 end process KERNEL_CONTROL_FF2;
15 --
16 O_UKERNEL_CTRL <= ukernel_control_data_to_vector(ukernel_ctrl_q);

18 ukernel_status_d.unused <= (others => '0');
19 --
20 UKERNEL_STATUS_D_UPDT_0 : process(ukernel_ctrl_q,I_BLOCK_TASK,
21 I_TASK_DONE,I_TASK_DEAD,I_TASK_ERROR,I_SYSCALL_ID,I_TASK_RUN,I_TASK_RESET)
22 --
23 begin
24 ukernel_status_d.running <= I_TASK_RUN;
25 ukernel_status_d.hwt_blocked <= I_BLOCK_TASK;
26 ukernel_status_d.done <= I_TASK_DONE;
27 ukernel_status_d.resetting <= I_TASK_RESET;
28 ukernel_status_d.error <= I_TASK_ERROR;
29 ukernel_status_d.dead <= I_TASK_DEAD;
30 ukernel_status_d.syscall_id <= I_SYSCALL_ID;
31 ---
32 end process UKERNEL_STATUS_D_UPDT_0;
33 --

35 --
36 KERNEL_STATUS_FF3 : process (I_CLK)
37 --
38 begin
39 if rising_edge(I_CLK) then
40 if(I_RESET = '1') then
41 ukernel_status_q <= ukernel_vector_to_status_data((others => '0'));
42 elsif I_WR_CE = '1' and I_CS(0) = '1' then
43 ukernel_status_q <= ukernel_status_d;
44 end if;
45 end if;
46 end process KERNEL_STATUS_FF3;
47 --
48 O_UKERNEL_STATUS <= ukernel_status_data_to_vector(ukernel_status_q);

4.2.2 Control Unit

The microkernel control unit intends to sync the host application with the microkernel and hardware

task entities. For this the latter needs to interact with both hardware entities in a way that leverages correct

functioning and synchrony. The overall interaction scheme between the control unit, the hardware task,

and of other units of the kernel is represented in fig. 4.2.2.

As it is possible to see the control unit receives as inputs the internal signals run_i and reset_i from the

control register, section 4.2.1, the task_done_i signal from the hardware task when it finishes execution,

and signals from the microprogram, section 4.2.4, to kill the accelerator when executing a yield syscall,

kill_acc_i, and to indicate runtime errors that occur when executing system calls, fault_i. A signal to

indicate a dead state of the accelerator is then used to inform the microprogram entity, and the signals

referent to run and reset, task_run and task_reset, respectively, are used to synchronize the hardware

task with the kernel, via the kernel response message. In a similar way the task_done_i signals comes

within the kernel call message.

The kernel FSM starts off in state #0, ready, and moves onto the state #1, running, if the run bit (31) of

Chapter 4. Supporting Microkernel 48

HW-Task

Microkernel
Registers

O_UKERNEL_CONTROL

O_UKERNEL_STATUS

I_RXWORD

I_CS

I_WR_CE

I_RD_CE

M00_AXI_ARESETN

M00_AXI_CLK

I_STATUS_SIG

O_WR_ACK

O_RD_ACK

Microkernel

Control Unitkill_acc_i

task_done_i

run_i

reset_i

fault_i

task_run

task_reset

acc_dead

S00_KERNEL
I_HWT_RESET

I_HWT_CLK

Control Unit

User Level
Datapath

BlackBox

IP

BlackBox

IP

Microkernel

M00_TASK

M00_KERNELS00_TASK

Microprogram

kernel response

kernel call

kernel_fault

Local Intr.
Controller

Figure 4.2.2: Microkernel Control Unit Interaction Overview.

the control register, fig. 4.2.1, is asserted. If that occurs, the FSM moves to #1 in the next clock cycle with

the assignment of the next_state signal to the state signal. While in running state (#1), the kernel asserts

the task_run signal and extends it to the hardware task entity through the kernel response message, as it

is possible to see in fig. 4.2.3. In the running state the kernel can either go to #4, the dead state, or go to

#2, the error state. If the signal kill_acc is asserted by the microprogram, fig. 4.2.3, the FSM reaches #4

in the next clock cycle and the signal acc_dead is asserted to conclude the work yield system call, more

on that in section 4.2.3. Otherwise, if the microprogram asserts the fault signal instead, the FSM reaches

#2 and asserts the task_error signal. In the case that none of these signals are asserted, the FSM keeps

itself in the running state (#1) if the run register is not cleared. Moreover, from #1, the next state can also

be #0, ready, if the hardware task has finished executing. When this happens the task_done signal is also

used to clear the run register to prevent unwanted multiple-iteration execution, as seen in fig. 4.2.3 (G6*).

Chapter 4. Supporting Microkernel 49

In either the #1 state, running, or the #0 state, idle, the FSM’s next state can be the restart one, #3.

This occurs if the reset register of the control module, section 4.2.1, is asserted by the host application.

Upon assertion, the next state will be #3, restart, in the next clock cycle, and the task_reset signal will be

extended to the hardware task through the kernel response message, as for the task_run case. This can

be observed in fig. 4.2.3.

#0. READY

#1. RUNNING

/TASK_RUN

#3. RESTART

/TASK_RESET

#2. ERROR
/TASK_ERROR

/KERNEL_FAULT

#4. DEAD

/ACC_DEAD

KERNEL_CONTROL.RUN/

KERNEL_CONTROL.RESET/

KERNEL_CONTROL.RUN/

KERNEL_CONTROL.RESET/

TASK_DONE/

FAULT/KILL_ACC/

FSM Input

FSM Output

A/

/B

Figure 4.2.3: Microkernel Control Finite State Machine (FSM), adapted [62].

Chapter 4. Supporting Microkernel 50

4.2.3 Microcoded System Calls

The microcoded system calls are closely related with the microprogram, section 4.2.4, and the system-

level datapath, section 4.2.5, as one stores the system calls, specifies the sequence of steps to execute,

and what control signals are active based on test inputs, and the other activates datapath resources

associated with the system calls, respectively. These system calls can be seen as a simple sequence of

steps to perform a particular function, e.g., lock or unlock a mutex. The microcoded system calls, as

stated by [62], reduce the complexity of using kernel resources and are abstracted by kernel-level HDL

procedures. HAL-ASOS [62] uses system calls with a maximum of four steps, and the same approach was

used in the dissertation, as depicted by table 4.1. The summary describes the functionality of each of the

system calls and the color identifier used for them to improve clarity. The system calls might be referred to

as syscalls for better readability. Additionally, microprogram might refer to the entity responsible for storing

the system calls and sequencing them, section 4.2.4, or the program composed by microinstructions or

steps that makes a system call.

Table 4.1: Microkernel: Low-Level Hardware System Call Summary.

System Call ID Description Steps Identifier

SYSCALL_WORK_NONE 0 No operation 1/4*

SYSCALL_WORK_YIELD 1 Kill the accelerator 2/4*

SYSCALL_WAIT_EVENT_TIMEOUT 2 Wait a certain amout of clock cycles for an event or until timeout 3/4*

SYSCALL_LINTC_READ 3 Read from Local Interrput Controller (Control and Status Reg.) 1/4*

SYSCALL_LINTC_WRITE 4 Write to Local Interrupt Controller (Generate IRQ) 2/4*

SYSCALL_LBUS_READ 5 Read one word from the LRAM, requires LRAM offset 2/4*

SYSCALL_LBUS_WRITE 6 Write one word to the LRAM, requires data and LRAM offset 2/4*

SYSCALL_LBUS_READ_BURST 7 Read multiple words from the LRAM (section 4.5.3), in burst mode 3/4*

SYSCALL_LBUS_WRITE_BURST 8 Write multiple words to the LRAM (section 4.5.3), in burst mode 3/4*

SYSCALL_MUTEX_LOCK 9 Lock the hardware mutex (section 4.5.1) with an owner ID 4/4

SYSCALL_MUTEX_TRY_LOCK 10 Try locking the hardware mutex (section 4.5.1) with an owner ID 4/4

SYSCALL_MUTEX_UNLOCK 11 Unlock the hardware mutex (section 4.5.1) with an owner ID 4/4

SYSCALL_MBUS_READ 12 Read one word from the SYSRAM, requires SYSRAM offset 3/4*

SYSCALL_MBUS_WRITE 13 Write one word to the SYSRAM, requires data and SYSRAM offset 4/4

SYSCALL_MBUS_READ_BURST 14 Read multiple words from the SYSRAM, in burst mode 3/4*

SYSCALL_MBUS_WRITE_BURST 15 Write multiple words to the SYSRAM, in burst mode 4/4

Note: The syscalls marked with an asterisk use four steps but employ safeguard corrections in the remaining steps, like [62].

The first syscall present in table 4.1 is syscall_work_none. As the name indicates, this syscall does

Chapter 4. Supporting Microkernel 51

not do anything, and it is often used to keep the microprogram in a no operation state similar to a NOP

instruction in some CPU architectures, e.g., Intel’s x86 or RISC-V. The pseudocode for the behavior of

syscall_work_none is represented in algorithm 1. As it is possible to see, the syscall continuously tests

the auxiliary false input on step zero, originating a jump to the same step (zero) on a false condition.

Since the input selected to test is always false, this syscall remains in step zero forever, only signalling

the hardware task to advance with the valid signal. The behavior of this microinstruction is similar to

what a jump $ would generate, for example, in 8051 assembly. Additionally, the next three steps employ

safeguard corrections, as [62], making the microprogram jump to step zero if it reaches any of these other

steps. Each safeguard step (one, two, and three) activates the block task signal to stop the execution of

the hardware task until the flow of microinstructions returns to the initial step. This is possible because

each one of the aforementioned steps also always tests the auxiliary false input, going back to step zero

in the next clock cycle. For more specifications on this mechanism, refer to section 4.2.4.

Algorithm 1 Microprogram to perform the no operation system call (■)

pseudocode SYSCALL_WORK_NONE

1: Step 0 : test auxiliary false select null produce valid

2: if condition false then goto step zero.

3: Step 1 : test auxiliary false select null produce block task ▷ Safeguard Correction

4: if condition false then goto step zero.

5: Step 2 : test auxiliary false select null produce block task ▷ Safeguard Correction

6: if condition false then goto step zero.

7: Step 3 : test auxiliary false select null produce block task ▷ Safeguard Correction

8: if condition false then goto step zero.

end pseudocode

The system call to kill the accelerator, represented in algorithm 2, behaves in a way that enables the

kill_accelerator control signal in its first step while waiting for the confirmation signal accelerator_dead.

The signal to kill the accelerator and deactivate a certain hardware task makes the microkernel FSM to go

to the dead state and assert the forementioned confirmation signal, accelerator_dead.

The syscall_wait_event_timeout in algorithm 3 uses the event manager, section 4.2.5.1, in the

system-level datapath, to wait on an event for a stipulated amount of clock cycles, or just wait a time-

out. With this in mind, the first step of the system call stays in step zero until the event manager is ready,

Chapter 4. Supporting Microkernel 52

Algorithm 2 Microprogram to kill the accelerator associated with a certain hw-task (■)

pseudocode SYSCALL_WORK_YIELD

1: Step 0 : test accelerator dead select kill accelerator produce valid

2: if condition false then goto step zero.

3: Step 1 : test auxiliary false select null produce valid ▷ Exit Step

4: if condition false then goto step zero.

5: Step 2 : test auxiliary false select null produce block task ▷ Safeguard Correction

6: if condition false then goto step zero.

7: Step 3 : test auxiliary false select null produce block task ▷ Safeguard Correction

8: if condition false then goto step zero.

end pseudocode

advancing to step one when the latter condition is true. The syscall then stays in step one for the entirety

of the specified wait, always enabling the event manager with the selection of the event manager trigger

control signal, and waiting on true condition on event elapsed to move to the next step. The event elapsed

signal becomes true if the specified event is asserted within the time specified, or if there is a timeout.

For example, if one intended to wait on a AXI signal like BVALID with a timeout of sixteen clock cycles, the

event elapsed would be asserted if BVALID had the logical value ’1’ within sixteen cycles or at the end of

that same time, even if BVALID was not asserted. The step two of the syscall employs a jump on a false

condition to step zero. As in [62], this favors regularity, and makes the next system call to be executed to

start on step zero. This happens because the microcode memory address is given by a concatenation of

the external address of the syscall, given by the syscall ID, and the two bits that specify the next step, given

by the logic element that increments or loads this address part. For more information on the matter, refer

to section 4.2.4. The last step of the syscall performs a safeguard correction, blocking the hardware task

and going to step zero in the next clock cycle if the microprogram ever reaches this state. Additionally, this

step also stores the syscall return on the return argument register, section 4.2.5.

The system call for reading from the LINTC entity is straightforward, since it is similar to the no

operation syscall (c.f algorithm 1) in terms of the microcode stored in memory. This means that the major

difference between them actually occurs in the System-Level Datapath, i.e., the no operation syscall does

not perform anything in terms of datapath operation. The syscall for the LINTC read only forwards the

content of the control and status registers to the hardware task.

Chapter 4. Supporting Microkernel 53

Algorithm 3 Microprogram to perform the system call that waits for an event or timeout (■)

pseudocode SYSCALL_WAIT_EVENT_TIMEOUT

1: Step 0 : test event manager ready select null produce block task

2: if condition false then goto step zero.

3: Step 1 : test event elapsed select event manager trigger produce block task

4: if condition false then goto step one.

5: Step 2 : test auxiliary false select null produce valid ▷ Exit Step

6: if condition false then goto step zero.

7: Step 3 : test auxiliary false select null produce block task ▷ Safeguard Correction

8: if condition false then goto step zero.

end pseudocode

The syscall for writing to the LINTC entity is a bit different since it generates an interrupt request from

the PL to the PS given a certain interrupt source as parameter. Thus, it stays on step zero, until the

interrupt is raised, described in algorithm 4 by the test input signal selection. On the next clock cycle, the

microprogram exits with the aforementioned dummy jump to step zero. For more information about the

generation of the intr_raise signal refer to section 4.5.2.

Algorithm 4 Microprogram to perform the LINTC write system call (■)

pseudocode SYSCALL_LINTC_WRITE

1: Step 0 : test interrupt raise select null produce block task

2: if condition false then goto step zero.

3: Step 1 : test auxiliary false select null produce valid ▷ Exit Step

4: if condition false then goto step zero.

5: Step 2 : test auxiliary false select null produce block task ▷ Safeguard Correction

6: if condition false then goto step zero.

7: Step 3 : test auxiliary false select null produce block task ▷ Safeguard Correction

8: if condition false then goto step zero.

end pseudocode

The syscall to read one word from the local RAM, syscall_lbus_read in algorithm 5, is very simple,

with only one step referent to the read, the exit step already described earlier in this section (paragraph

two), and the remaining two steps for safeguard corrections. For the most part, this syscall is almost

Chapter 4. Supporting Microkernel 54

assured by the system-level datapath, since the latter specifies the LRAM address and also activates the

CS_B signal of the local memory. The only thing the syscall has to do is wait the lbus_rd_ack coming

one clock cycle after both CS_B and RD_CE signals are active, if the memory in question has a RD_CE

port. In this case, the local memory does not have a RD_CE port and, as so, the system call has no

need to select the lbus_rd_ce. Thus, the memory generates the read acknowledge with the logical NOT

of the WR_CE signal paired with a logical AND of the CS signal for both A and B ports. More on that in

section 4.5.3. Additionally, the local memory read is performed without any enabling signal, i.e., opposed

to the write where the WR_CE signal needs to be asserted to perform the write, in the read the contents

of the specified address appear one clock cycle later in the LRAM’s DOUT port.

Algorithm 5 Microprogram to perform the system call that reads one word from the LRAM (■)

pseudocode SYSCALL_LBUS_READ

1: Step 0 : test local bus read ack select null produce block task

2: if condition false then goto step zero.

3: Step 1 : test auxiliary false select null produce valid ▷ Exit Step

4: if condition false then goto step zero.

5: Step 2 : test auxiliary false select null produce block task ▷ Safeguard Correction

6: if condition false then goto step zero.

7: Step 3 : test auxiliary false select null produce block task ▷ Safeguard Correction

8: if condition false then goto step zero.

end pseudocode

The lbus and mutex system calls refer to the local bus, as HAL-ASOS [62] uses this nomenclature.

In the latter [62], the local bus is a decoding unit similar to the ones in section 4.4, that allows the

microprogram to write words not only to the local memory but also to some hardware kernel resources,

e.g., the local interrupt controller, and to the zero copy unit of HAL-ASOS. Since the dissertation develops

a microkernel, there are not enough units to justify the addition of a local bus (decoder), even thought

this was possible. The naming of local bus was kept to encompass future expansions of the microkernel

if the need for an in-fact local bus arises. The test signals in the syscalls that refer to the local bus use

signals that refer to the local bus as well, e.g., lbus_rd_ack or lbus_wr_ce, but for the aforementioned

reasons the microkernel’s local bus signals are only connected with the local RAM and the two mutex

resources. This means that is only possible to read or write to the LRAM using the syscall_lbus_read

Chapter 4. Supporting Microkernel 55

or syscall_lbus_write syscalls, respectively, or using the equivalent syscalls in that use the burst format,

namely syscall_lbus_read_burst or syscall_lbus_write_burst.

Observing the syscall to write one word to the local RAM, one notices that it is very akin to the system

call for a single word read. Similarly, the sycall_lbus_write has to wait on the lbus_wr_ack, which in

this case is the LRAM write acknowledge signal, but while selecting the lbus_wr_ce signal. The syscall

needs to assert the lbus_wr_ce since the write is dependent on that signal assertion. In the same way, the

lbus_wr_ack coming from the local memory should arrive after one clock cycle if the write was successful,

i.e., if the local RAM is not locked by the local mutex with an owner from the system channel (A). For more

information on the mutex resource refer to section 4.5.1.

Algorithm 6 Microprogram to perform the system call that writes one word to the LRAM (■)

pseudocode SYSCALL_LBUS_WRITE

1: Step 0 : test local bus write ack select local bus write clock enable produce block task

2: if condition false then goto step zero.

3: Step 1 : test auxiliary false select null produce valid ▷ Exit Step

4: if condition false then goto step zero.

5: Step 2 : test auxiliary false select null produce block task ▷ Safeguard Correction

6: if condition false then goto step zero.

7: Step 3 : test auxiliary false select null produce block task ▷ Safeguard Correction

8: if condition false then goto step zero.

end pseudocode

The microprogram to read multiple words from the local memory in burst mode, depicted by the

syscall_lbus_read_burst in algorithm 7, needs the help of the address manager element in the system-

level datapath to perform the increment of the address. For example, if one intends to do a read burst of

five elements from the word offset four, the address needs to be incremented from four to eight. For this

reason, the syscall_lbus_read_burst waits the address manager to be ready while selecting the control

signal that triggers the address load and increment, before moving on to step one. In this step the syscall

tests the local bus read acknowledge coming from the local RAM like in syscall_lbus_read, but this time

also waits the read_last signal, to indicate the last element to read. This strategy was developed to mimic

what happens in the AXI4 protocol with the RLAST signal. Thus, the microprogram will receive a read

acknowledge for each element read from the LRAM but only moves to the exit step with the logic AND

Chapter 4. Supporting Microkernel 56

between the lbus_rd_ack of the last element and the read_last signal. As stated before, the unused

step, in this case step three, employs a safeguard correction. For an in-depth description of the address

manager element, refer to section 4.2.5.3.

Algorithm 7 Microprogram that burst reads multiple words from the LRAM (■)

pseudocode SYSCALL_LBUS_READ_BURST

1: Step 0 : test address manager ready select address manager trigger produce block task

2: if condition false then goto step zero.

3: Step 1 : test local bus read ack and read last select null produce block task

4: if condition false then goto step one.

5: Step 2 : test auxiliary false select null produce valid ▷ Exit Step

6: if condition false then goto step zero.

7: Step 3 : test auxiliary false select null produce block task ▷ Safeguard Correction

8: if condition false then goto step zero.

end pseudocode

Once again, the syscall for writing multiple words to the local memory (LRAM) in burst mode,

syscall_lbus_write_burst in algorithm 8, is very similar to the read syscall, syscall_lbus_read_burst, in

terms of the microprogram steps. This syscall also relies on the address manager, section 4.2.5.3, to load

and increment the address of the LRAM in each write, waiting for it to be ready and selecting the address

manager trigger as active control signal. The next step, step one, focuses on performing the successive

writes until the write_last signal is asserted and while selecting the local memory clock enable, since the

write cannot be done without it being asserted. The only big difference between these two system calls is

the fact that the write one also relies on another entity, the index manager (section 4.2.5.2), to increment

the index of the hardware task buffers that hold the data to be written at a given address in the local mem-

ory. For example, if one wants to perform a burst write of six thirty-two bit words, e.g., 0×01 up to 0×06,

from the LRAM address offset zero to word offset five, then one needs the address manager to specify the

LRAM address per clock cycle, and also the index manager to specify the data word per clock cycle. This

makes it possible to write the word 0×01 to address offset zero in the first clock cycle, and write 0×02 to

address offset one in the next clock. The mention of address offset is due to the fact that these burst local

bus system calls allow the specification of the initial address one is writing to. This means that the syscall

might write from word offset zero to five if the address offset zero corresponds to the start of the RAM or,

Chapter 4. Supporting Microkernel 57

for example, to the RAM address four up until address nine, considering the same burst of six words, if

the address offset zero corresponds to the word offset four. Note that the syscall_lbus_read_burst also

makes use of the index manager, to increment the index of the output buffer in the hardware task, and

also to know when to generate the read_last signal. For more information on the index manager unit, refer

to section 4.2.5.2.

Algorithm 8 Microprogram that burst writes multiple words to the LRAM (■)

pseudocode SYSCALL_LBUS_WRITE_BURST

1: Step 0 : test address manager ready select address manager trigger produce block task

2: if condition false then goto step zero.

3: Step 1 : test lbus write ack and write last select lbus write clock enable produce block task

4: if condition false then goto step one.

5: Step 2 : test auxiliary false select null produce valid ▷ Exit Step

6: if condition false then goto step zero.

7: Step 3 : test auxiliary false select null produce block task ▷ Safeguard Correction

8: if condition false then goto step zero.

end pseudocode

The system call used to lock a hardware mutex, syscall_mutex_lock in algorithm 9, is used to lock

both the local mutex and the system mutex of fig. 4.1.1, which are related with avoiding race conditions

in both the LRAM and SYSRAM, respectively. This system call starts by analyzing the status of the mutex

locked A flag to comprehend if the mutex is locked by the A channel, i.e., the host system channel (step

zero). If it is indeed locked by the latter, given by a false condition on the logical NOT of the locked A flag

this blocking syscall remains in step zero always checking the locked A status until the mutex is released

by the channel A.

When the mutex is released or if it was not locked by the host in the first place, the syscall then proceeds to

step one. In this step the microprogram performs a true dummy test that goes to step two regardless of the

result, and selects the lbus_wr_ce control signal so, one cycle later, the write acknowledge is generated

alongside the writing of the channel B owner ID onto the hardware mutex data register. As stated, even

if the auxiliary true test results false by some glitch, the microprogram still enforces the next step of the

system call to be step two. In step two, a check on the locked B flag is performed to check if the hardware

mutex was properly locked by the microprogram channel, i.e., channel B. Following the same methodology

Chapter 4. Supporting Microkernel 58

Algorithm 9 Microprogram to perform the system call that locks a hardware mutex (■)

pseudocode SYSCALL_MUTEX_LOCK

1: Step 0 : test not locked A flag select local bus read clock enable produce block task

2: if condition false then goto step zero.

3: Step 1 : test auxiliary true select local bus write clock enable produce block task

4: if condition false then goto step two.

5: Step 2 : test locked B flag select local bus read clock enable produce block task

6: if condition false then goto step zero.

7: Step 3 : test auxiliary false select null produce valid ▷ Exit Step

8: if condition false then goto step zero.

end pseudocode

as the write, the lbus_read_ce control signal is always selected when performing a read on the mutex, in

order to generate the read acknowledge. The same applies for the step zero of this microprogram, when

reading the locked A flag. Ultimately, the step three ensures that the next system call address starts on

zero, by performing the exit step already explained earlier in this section. For the specifics on the inner

workings of the mutex hardware resource, consult section 4.5.1.

The system call to perform the lock of a mutex in a non-blocking way, syscall_mutex_try_lock, is

described in algorithm 10. This syscall repeats the steps zero and one, as syscall_mutex_lock, and

differs in the implementation of the third step, step two, as it employs a jump to step three, the exit

step, instead of step zero. This way, if the mutex lock was not successful the syscall exits, opposed to

syscall_mutex_lock, where the syscall would return to step zero to perform the lock again.

The system call to perform the unlock of a hardware mutex, syscall_mutex_unlock, is represented in

algorithm 11. The syscall starts by verifying if the mutex resource is locked by the system channel (A),

given by the locked A flag in step zero. The tested signal is the logical NOT of the locked A flag, this means

that the microprogram goes to step three, i.e., exits, if the mutex is owned by the system channel (A), i.e.,

the NOT on the flag is false, or proceeds to step one if the NOT on the locked A flag is true, indicating that

the mutex is not owned by A. Despite that, in step one, is still necessary to check if the mutex is locked

by the channel B before releasing it. This is important because a release of a mutex that is not locked by

B could originate an uncalled-for lock. This can happen because the release of the mutex resource also

relies on the write of the same owner ID to the data register as the mutex lock does. For more information

Chapter 4. Supporting Microkernel 59

Algorithm 10 Microprogram to perform the system call that tries to lock a hardware mutex (■)

pseudocode SYSCALL_MUTEX_TRY_LOCK

1: Step 0 : test not locked A flag select local bus read clock enable produce block task

2: if condition false then goto step zero.

3: Step 1 : test auxiliary true select local bus write clock enable produce block task

4: if condition false then goto step two.

5: Step 2 : test locked B flag select local bus read clock enable produce block task

6: if condition false then goto step three.

7: Step 3 : test auxiliary false select null produce valid ▷ Exit Step

8: if condition false then goto step zero.

end pseudocode

on the mutex refer to section 4.5.1. To achieve this the step one of the microprogram tests the locked

B flag, while activating the lbus_rd_ce control signal to generate the mutex read acknowledge after one

clock cycle, as mentioned already throughout this section, section 4.2.3. The next step in the flow of

microinstructions is either the exit step, if the mutex is not locked by B, or the step two, if the mutex is

indeed locked by the hardware channel (B). In step two, the microprogram perform a safety check on the

mutex free flag to evaluate if the mutex was properly released.

Algorithm 11 Microprogram to perform the system call that unlocks a hardware mutex (■)

pseudocode SYSCALL_MUTEX_UNLOCK

1: Step 0 : test not locked A flag select local bus read clock enable produce block task

2: if condition false then goto step three.

3: Step 1 : test locked B flag select local bus read clock enable produce block task

4: if condition false then goto step three.

5: Step 2 : test free flag select local bus write clock enable produce block task

6: if condition false then goto step zero.

7: Step 3 : test auxiliary false select null produce valid ▷ Exit Step

8: if condition false then goto step zero.

end pseudocode

This particular step needs to activate the lbus_wr_ce control signal to write the channel B owner ID onto

the mutex data register, and consequently perform the intended release of the resource.

Chapter 4. Supporting Microkernel 60

The system calls to write one or multiple words to the system memory, syscall_mbus_read(_burst),

are described by algorithm 12. For the system calls referent to the master bus, the microprogram behaves

as an AXI4 bus master. This means that it must comply with the AXI4 protocol, testing AXI4 signals while it

activates AXI4 control signals in response. The decision to use a AXI4 interface even in syscall_mbus_read,

where a AXI4 lite master interface would suffice to perform single word reads, was made to favor master

bus regularity. The AXI4 protocol is similar to the AXI4 lite protocol in terms of signals, but the latter

does not allow the burst mode, and, therefore, does not account for burst-related signals. For an in-depth

description of the AXI4 protocol without the burst mode (AXI4 lite), refer to section 4.6.1.1. For an overall

view on the AXI4 protocol, refer to fig. 4.2.4 and fig. 4.2.5.

Algorithm 12 Microprogram that reads one or multiple words from the SYSRAM (■)

pseudocode SYSCALL_MBUS_READ(_BURST)

1: Step 0 : test AXI read address ready select AXI read address valid produce block task

2: if condition false then goto step zero.

3: Step 1 : test AXI read valid and bus read last select AXI read ready produce block task

4: if condition false then goto step one.

5: Step 2 : test auxiliary false select null produce valid ▷ Exit Step

6: if condition false then goto step zero.

7: Step 3 : test auxiliary false select null produce block task ▷ Safeguard Correction

8: if condition false then goto step zero.

end pseudocode

As described by fig. 4.2.4 and fig. 4.2.5, the AXI4 bus master, in this case the microprogram, defines

the read address from the system memory and activates the ARVALID signal to identify the start of a read

transfer. At the same time, the master waits for the address confirmation from the slave, given by the

ARREADY signal. This is described in step zero of algorithm 12, where the microinstruction activates the

m_axi_arvalid control signal, and tests the m_axi_arready signal. The microprogram remains in step zero

until the ready signal from the slave, i.e., ARREADY, is asserted. If one continues to analyze fig. 4.2.4 and

fig. 4.2.5, it is possible to see that, following the assertion of the ARREADY signal, the master asserts the

RREADY signal to indicate that it is ready to receive the specified data. This translates to the selection of

the m_axi_rready control signal in step one of algorithm 12. The slave then asserts the RVALID signal

while the data to transmit is valid, and finally asserts the RLAST signal to indicate to the master which

Chapter 4. Supporting Microkernel 61

element is the last to be read. This can be viewed in algorithm 12 with the testing of the logical AND of

m_axi_rvalid and m_axi_rlast. The microprogram only goes to the exit step, step two, when the data is

valid concerning the last element to be transferred, staying in step one otherwise.

aclk

addr A1 A2

arvalid

rready

arready

rdata D1

rvalid

rlast

ad
dr

da
taAX

I M
as

te
r

ad
dr

da
ta

bu
rs

t
AX

I S
la

ve

Read Address Read Data

Figure 4.2.4: AXI4 Protocol Waveform: Single Read Transfer.

Concerning this, the master bus read last signal, RLAST, comes at the same time as the RVALID signal,

in syscall_mbus_read (fig. 4.2.4), as there is only one data element to read from the system memory, or

when the slave data changes to the last element, in syscall_mbus_read_burst (fig. 4.2.5). As seen earlier

in this section, the last step of the two system calls described utilizes a safeguard correction that redirects

the flow of microinstructions to step zero, if a glitch occurs.

The system calls to write one or multiple words to the system memory, syscall_mbus_write(_burst),

are represented in algorithm 13. As it can be seen in the waveforms of fig. 4.2.6 and fig. 4.2.7, the AXI4

write transfer starts with the specification of the write address and the assertion of the AWVALID signal

by the AXI4 bus master. The latter then waits for the slave to assert the AWREADY signal to indicate

the acceptance of the address. Microprogram-wise, this can be observed in step zero of algorithm 13,

where one tests the m_axi_awready signal and selects the m_axi_awvalid as the active control signal

only proceeding to step two with a true condition on the assertion of AWREADY. The next phase of the

protocol is the write data phase. In this phase, the master stipulates the data to send and activates the

Chapter 4. Supporting Microkernel 62

aclk

addr A1 A2

arvalid

rready

arready

rdata D1 D2 D3 D4 D5

rvalid

rlast

ad
dr

da
taAX

I M
as

te
r

ad
dr

da
ta

bu
rs

t

AX
I S

la
ve

Read Address Read Data

Figure 4.2.5: AXI4 Protocol Waveform: Multiple Read Transfer.

WVALID signal, waiting for the slave response with the WREADY signal. If there is only one element

to write the master asserts the write last signal, WLAST, as soon as the data to write is determined,

fig. 4.2.6, in this case, this job pertains to system-level datapath, section 4.2.5. With this setup, making

a single write to the system memory represents a burst write of size one. Otherwise, if the burst size

is greater than one element the WLAST signal is asserted by the master when writing the last element,

fig. 4.2.7. This is depicted in algorithm 13 with the testing of the logical AND between the m_axi_wready

and m_axi_wlast signals, and the selection of the m_axi_wvalid control signal, in the step one of the

microprogram. The AXI4 write transfer is considered complete when the master asserts the bus ready

signal, BREADY, and cycles after, the slave asserts the bus valid signal, BVALID. Typically, the protocol

revolves around the valid-ready handshake, meaning that the first asserted signal is valid followed by a

ready signal. In this case, as the master operates faster, it asserts its ready signal before the slave asserts

its valid signals. The bus valid-ready handshake that completes the write transfer is represented in step two

of the microprogram of algorithm 13. Thus, the microinstruction specifies the testing of the m_axi_bvalid

signal and selection of the m_axi_bready control signal. Additionally, it is important to note that the write

transfers microprogrammed by this system call make use of the event manager unit, section 4.2.5.1, to

specify a timeout on the BVALID signal. The event manager unit generates the timeout signal if BVALID is

asserted within the number of clock cycles specified or with the unit’s counter overflow. With this purpose,

Chapter 4. Supporting Microkernel 63

the step two also selects the control signal that triggers the event manager unit, and it is continuously

testing the timeout of the latter, before moving to the exit step, in this case, step three.

Algorithm 13 Microprogram that writes one or multiple words to the SYSRAM (■)

pseudocode SYSCALL_MBUS_WRITE(_BURST)

1: Step 0 : test AXI write address ready select AXI write address valid produce block task

2: if condition false then goto step zero.

3: Step 1 : test AXI write ready and bus write last select master AXI write valid produce block task

4: if condition false then goto step one.

5: Step 2 : test AXI bvalid and EVM timeout select AXI bready and EVM trigger produce valid

6: if condition false then goto step two.

7: Step 3 : test auxiliary false select null produce valid ▷ Exit Step

8: if condition false then goto step zero.

end pseudocode

Both of the master bus system calls, syscall_mbus_read_burst and syscall_mbus_write_burst, rely

on the index manager unit section 4.2.5.2, for the same reasons specified in the read and write burst

syscalls referent to the local memory, i.e., for incrementing the index of the buffers on the hardware task.

Chapter 4. Supporting Microkernel 64

aclk

addr A1 A2

awvalid

wdata D1

wvalid

bready

wlast

awready

wready

bvalid

ad
dr

da
ta

re
sp

bu
rs

t
AX

I M
as

te
r

ad
dr

da
ta

re
sp

AX
I S

la
ve

Write Address Write Data Write Response

Figure 4.2.6: AXI4 Protocol Waveform: Single Write Transfer.

aclk

addr A1 A2

awvalid

wdata D1 D2 D3 D4 D5

wvalid

bready

wlast

awready

wready

bvalid

ad
dr

da
ta

re
sp

bu
rs

t
AX

I M
as

te
r

ad
dr

da
ta

re
sp

AX
I S

la
ve

Write Address Write Data Write Response

Figure 4.2.7: AXI4 Protocol Waveform: Multiple Write Transfer.

Chapter 4. Supporting Microkernel 65

4.2.4 Native Microprogram

The microprogram unit of the dissertation is responsible for the execution of the system calls described

earlier in section 4.2.3, i.e., defines the active control signals until the next clock transition, and is also

responsible for their sequencing depending on the testing inputs. Similarly to [62], the microprogram uses

horizontal microinstructions as forementioned in section 2.3.1.2, with single address, meaning that the

field decode of the contents gives origin to a series of control signals with minimal encoding, and that

is needed only one address to specify the location of a certain microinstruction in the microcode ROM,

respectively.

Microprogram

CE

clear Q[1:0]D[1:0]

inc

clk

C0

I_RESET

0
1
2
3
4
5
6
7
8
9

10
11

(CS_I)

12
13
14
15

lbus_wr_ce
dummy_out

dummy_out
m_axi_arvalid
m_axi_rready
m_axi_awvalid
m_axi_wvalid

m_axi_bready_trigger

dummy_out
ev_manager_trigger

addr_manager_trigger
dummy_out
dummy_out
dummy_out

NULL
dummy_out

test_result

M2

Control
Signals

 µProgram Counter
load OV OPEN

0
1
2
3
4
5
6
7
8
9

10
11

aux_false_test
m_axi_arready
m_axi_rvalid

m_axi_awready
m_axi_wready_wlast
lbus_wr_ack_b_wlast

lbus_wr_ack_b
lbus_rd_ack_b

lbus_rlast
locked_a
locked_b

12locked_a

13

31aux_true_test

free

locked_b

M1

1

0

14
15
16

lbus_wlast

17

bvalid_timeout

event_elapsed

rvalid_rlast

Test
Inputs

1

ROM Data Out

Step

[15:14]

Input

[13:9]

NSF

[8:7]

Output

[6:3]

Valid

[2]

Block_task

[1]

Fault

[0]

CLOCK

RESET

(I_CLK)

(I_RST)

O_SYSCALL_OUT

I_SYSCALL_IN

System Call Memory (ROM)

addr

syscall_id
this_call_safe

syscall_id

K0

pc_q

pc_q

ROM0

ROM_DEPTH: 64 words

(2**4 = 16 system calls,

 each w/ 2**2 = 4 max steps)

ROM_ADDR_WIDTH: 6 bits

ROM_DOUT_WIDTH: 16 bits

addr_manager_ready

ev_manager_ready

lbus_rd_ack_b_rlast

18
19
20

[5:2]

[31]

[30]

free_i

locked_a_i

locked_b_i

Mutex Test Input Generation

I_MTX_STATUS

block_task

valid

G0

G1

G2

Figure 4.2.8: Microprogram RTL Design Internal Architecture, adapted [62].

Figure 4.2.8 represents the microprogram RTL internal architecture. In it one can see three main elements

that constitute the microprogram: (1) the microcode memory, in this case a ROM (■); (2) the associated

field decode multiplexer M2, which defines the active control signals; (3) a counter with load capabilities

(■), that together with the multiplexer M1 (■), stipulates the flow of microinstructions, i.e., sequences

the microinstructions. The third logic element mentioned can be considered the microcode sequencer to

a certain extent, section 2.3.1.2, following the literature’s nomenclature. Additionally, the microprogram

Chapter 4. Supporting Microkernel 66

also has some logic (■) to decode the mutex status word into the locked A, locked B, and free flags.

The microcode memory can be implemented as a ROM or RAM. As stated earlier in section 2.3.2,

the microcode storage started with read-only memories, and later, as the need for microcode updates

arose, i.e., the demand for changing the contents of the microcode due to hardware errors increased, the

microinstructions started being stored in random access memories (RAMs). This particular section will

refer to the microcode memory element as a ROM, represented in orange (■), fig. 4.2.8. As it is possible

to see, the microcode ROM depth is sixty-four words, meaning that it can hold up to sixteen system calls

of four steps each, this system calls are the ones described in section 4.2.3. The ROM address width is

six bits because one needs four bits to specify the system call out of the sixteen possible, and another

two bits to stipulate the current step of the latter. The microcoded system calls are represented in binary

format in the listing 4.2.

Listing 4.2: System Call Memory: Combinational ROM (HDL).

1 -- MORE
2 subtype rom_word_t is std_logic_vector(ROM_DATA_WIDTH-1 downto 0);
3 type syscall_rom_t is array (0 to ROM_DEPTH-1) of rom_word_t;
4 signal syscall_rom : syscall_rom_t := (

6 -- SYSCALL_WORK_NONE -- SYSCALL_LBUS_WRITE -- SYSCALL_MBUS_READ
7 0 => "0000000001110100", 24 => "0000110000110010", 48 => "0000001000001010",
8 1 => "0100000001110010", 25 => "0100000001110100", 49 => "0101110010010010",
9 2 => "1000000001110010", 26 => "1000000001110010", 50 => "1000000001110100",
10 3 => "1100000001110010", 27 => "1100000001110010", 51 => "1100000001110010",

12 -- SYSCALL_WORK_YIELD -- SYSCALL_LBUS_READ_BURST -- SYSCALL_MBUS_WRITE
13 4 => "0010101001000010", 28 => "0010011001010010", 52 => "0000011000011010",
14 5 => "0100000001110100", 29 => "0110100011110010", 53 => "0100100010100010",
15 6 => "1000000001110010", 30 => "1001000001110100", 54 => "1001111100101010",
16 7 => "1100000001110010", 31 => "1100000001110010", 55 => "1100000001110100",

18 -- SYSCALL_WAIT_EVENT_TIMEOUT -- SYSCALL_LBUS_WRITE_BURST -- SYSCALL_MBUS_READ_BURST
19 8 => "0010010001110010", 32 => "0010011001010010", 56 => "0000001000001010",
20 9 => "0110001011001010", 33 => "0100101010110010", 57 => "0101110010010010",
21 10 => "1000000001110100", 34 => "1000000001110100", 58 => "1000000001110100",
22 11 => "1100000001110010", 35 => "1100000001110010", 59 => "1100000001110010",

24 -- SYSCALL_LINTC_READ -- SYSCALL_MUTEX_LOCK -- SYSCALL_MBUS_WRITE_BURST
25 12 => "0000000001110100", 36 => "0001100000111010", 60 => "0000011000011010",
26 13 => "0100000001110010", 37 => "0111111100110010", 61 => "0100100010100010",
27 14 => "1000000001110010", 38 => "1001010000111010", 62 => "1001111100101010",
28 15 => "1100000001110010", 39 => "1100000001110100", 63 => "1100000001110100");

30 -- SYSCALL_LINTC_WRITE -- SYSCALL_MUTEX_TRY_LOCK
31 16 => "0000000001110100", 40 => "0001100000111010",
32 17 => "0100000001110010", 41 => "0111111100110010",
33 18 => "1000000001110010", 42 => "1001010110111010",
34 19 => "1100000001110010", 43 => "1100000001110100",

36 -- SYSCALL_LBUS_READ -- SYSCALL_MUTEX_UNLOCK
37 20 => "0000111001110010", 44 => "0001100110111010",
38 21 => "0100000001110100", 45 => "0101010110111010",
39 22 => "1000000001110010", 46 => "1001011000110010",
40 23 => "1100000001110010", 47 => "1100000001110100",

42 begin
43 O_DOUT <= syscall_rom(to_integer(unsigned(I_ADDR)));
44 end architecture rtl;

Chapter 4. Supporting Microkernel 67

As it is possible to observe, the memory is fully combinational to avoid any latency associated with the

reads performed, and it has a data out width of sixteen bits to accommodate the microinstruction fields.

Namely, the step field, the input field, the “next step when false” (NSF) field, the output field, the valid bit,

the block task bit, and ultimately, the fault bit.

Figure 4.2.9 depicts the memory representation of four microinstructions from two system calls that

read and write to the master bus. These syscalls can also be seen in listing 4.2 as they are stored in the

system call ROM of the microprogram. With this schematic one intends to portray the translation of the

binary fields of the system call to actual signals. In the case of the first step of syscall_mbus_read, the two

MSB identify the step as zero, selects input one for testing, in this case the ARREADY signal, determines

the next step on a false test, NSF is zero, asserts the ARVALID control signal, and blocks the hardware

task, with the assertion of the block bit. The other microinstructions present behave in the same way, with

all the decoding of test and control signals represented in listing 4.3 and listing 4.6.

SYSCALL_MBUS_WRITE (13)

SYSCALL_MBUS_READ (12)

Decimal
Address

Decimal
Address

8-byte
Instruction

8-byte
Instruction

Step

[15:14]

Input

[13:9]

NSF

[8:7]

Output

[6:3]

Valid

[2]

Block

[1]

Fault

[0]

00 00001 00 0001 0 1 0

11 00000 00 1110 0 1 0

Zero ARREADY Zero ARVALID No Yes No

Memory Binary Content

Maps to

Three
Auxiliary

False

Zero Null No Yes No

Maps to

10 01111 10 0101 0 1 0

Two
BVALID

/Timeout
Two

BREADY/

Trigger

No Yes No

Maps to

00 00011 00 0011 0 1 0

Zero AWREADY Zero AWVALID No Yes No

Maps to

 48 => "0000001000001010",
 49 => "0101110010010010",
 50 => "1000000001110100",
 51 => "1100000001110010",

 48 => "0000011000011010",
 49 => "0100100010100010",
 50 => "1001111100101010",
 51 => "1100000001110100",

Figure 4.2.9: Memory representation of four microinstructions, extended in table B.1 and table B.2.

Concerning purpose, the step field assures that the microinstruction is identified by its step bits, this

makes it easier to update the microcoded system calls manually. The step field only has two bits because

that is what it takes to represent all the four doable steps of a certain microinstruction. Additionally,

one makes room, so the latter can be propagated to the top-level module of the microkernel in future

implementations, having a representation, for example, on the kernel response interface or in some status

register available to the host. With this, one means that there is space for exposing the current step of the

system call to the co-designer either in software or hardware, but the same applies to the other fields as well.

Chapter 4. Supporting Microkernel 68

The input field of the microinstruction dictates the currently active line of the test input multiplexer M1 (■).

Thus, it has five bits to encompass all the tests from zero to thirty-one, i.e., two to the power of five, minus

one. Each line of the aforementioned tests can represent directly a single bit signal, e.g.,m_axi_awready or

locked_a, or represent a logical function of two single bit signals, e.g., the bvalid_timeout input is actually

implemented as a logical AND between the m_axi_bvalid signal and the timeout signal coming from the

event manager in the system-level datapath, section 4.2.5.1 and section 4.2.5, respectively. Auxiliary false

and true test lines are also available to permit the microinstruction flows that use unconditional jumps.

Listing 4.3: Microprogram: Input Multiplexer (HDL).

1 -- Input decoding
2 --
3 INPUT_DECODING_M1 : process (rom_dout(SYSCALL_INPUT'RANGE),I_M_AXI_ARREADY,
4 I_M_AXI_RVALID,I_M_AXI_AWREADY,I_M_AXI_WREADY,I_M_AXI_BVALID,locked_a_i,
5 locked_b_i,free_i,I_M_AXI_RLAST,I_LBUS_WR_ACK_B,I_M_AXI_WLAST,I_EVENT_ELAPSED,
6 I_LBUS_RLAST,I_EV_MANAGER_READY,I_LBUS_WLAST,I_LBUS_RD_ACK_B,I_ADDR_MANAGER_READY,
7 I_M_AXI_TIMEOUT)
8 --
9 variable select_M1 : integer range 0 TO (2**C_SYSCALL_INPUT_WIDTH)-1;
10 begin
11 select_M1 := to_integer(unsigned(rom_dout(SYSCALL_INPUT'RANGE)));
12 data_M1 <= '0';
13 case select_M1 is
14 when C_AUX_TEST_FALSE_OFFSET => data_M1 <= '0'; --00
15 when C_ARREADY_OFFSET => data_M1 <= I_M_AXI_ARREADY; --01
16 when C_RVALID_OFFSET => data_M1 <= I_M_AXI_RVALID; --02
17 when C_AWREADY_OFFSET => data_M1 <= I_M_AXI_AWREADY; --03
18 when C_WREADY_WLAST_OFFSET => data_M1 <= I_M_AXI_WREADY and --04
19 I_M_AXI_WLAST; --""
20 when C_LBUS_WR_ACK_B_WLAST_OFFSET => data_M1 <= I_LBUS_WR_ACK_B and --05
21 I_LBUS_WLAST; --""
22 when C_LBUS_WR_ACK_B_OFFSET => data_M1 <= I_LBUS_WR_ACK_B; --06
23 when C_LBUS_RD_ACK_B_OFFSET => data_M1 <= I_LBUS_RD_ACK_B; --07
24 when C_LBUS_RLAST_OFFSET => data_M1 <= I_LBUS_RLAST; --08
25 when C_LOCKED_A_OFFSET => data_M1 <= locked_a_i; --09
26 when C_LOCKED_B_OFFSET => data_M1 <= locked_b_i; --10
27 when C_FREE_OFFSET => data_M1 <= free_i; --11
28 when C_NOT_LOCKED_A_OFFSET => data_M1 <= not(locked_a_i); --12
29 when C_NOT_LOCKED_B_OFFSET => data_M1 <= not(locked_b_i); --13
30 when C_RVALID_RLAST_OFFSET => data_M1 <= I_M_AXI_RVALID and --14
31 I_M_AXI_RLAST; --""
32 when C_BVALID_TIMEOUT_OFFSET => data_M1 <= I_M_AXI_BVALID or --15
33 I_M_AXI_TIMEOUT; --""
34 when C_LBUS_WLAST_OFFSET => data_M1 <= I_LBUS_WLAST; --16
35 when C_EVENT_ELAPSED_OFFSET => data_M1 <= I_EVENT_ELAPSED; --17
36 when C_EV_MANAGER_READY_OFFSET => data_M1 <= I_EV_MANAGER_READY; --18
37 when C_ADDR_MANAGER_READY_OFFSET => data_M1 <= I_ADDR_MANAGER_READY; --19
38 when C_LBUS_RD_ACK_B_RLAST_OFFSET => data_M1 <= I_LBUS_RD_ACK_B and --20
39 I_LBUS_RLAST; --""

41 when C_INTR_RAISE_OFFSET => data_M1 <= I_INTR_RAISE; --22
42 -- ... ----
43 when C_AUX_TEST_TRUE_OFFSET => data_M1 <= '1'; --31
44 when others => null;
45 end case;
46 end process INPUT_DECODING_M1;
47 --
48 test_result <= data_M1;
49 test_resultn <= not(data_M1);

The NSF field is closely related with the loadable counter element C0, represented in yellow (■),

fig. 4.2.8, so it is important to firstly understand this logic element before proceeding. The internal archi-

Chapter 4. Supporting Microkernel 69

tecture of this counter with load is represented in fig. 4.2.10. As the name indicates, the counter presented

has capabilities to increment, load, and remain in standby, by loading the same value of the last clock

transition. Taking a closer look at the RTL, one notices that a multiplexer M0 (■) is used to decide the

combinational input of the counter register FF0 (■). When the concatenation of the I_LOAD and I_INC

signals gives “00”, i.e., zero, the counter register FF0 (■) combinational input D is the concatenation (K1)

of the counter output Q with the counter overflow register output Q, assuring that in the next clock cycle

the value of O_Q will be the same.

Counter w/ Load

0

1
2

3

M0CLOCK

RESET

(I_CLK)

(I_RESET)

I_LOAD

I_INC

I_D

CE
D Q

reset

FF0

clk

CE
D Q

reset

FF1

clk

I_CE

K0

[N]
0

[N-1:0]
[N:0]

[N]

[N-1:0]

K1

[N:0]

+1

add A0K2

counter_q

counter_ov_q

[N-1:0]

[N]

O_Q

O_COUNTER_OV

[N-1:0]

[N]w/ N = COUNTER_WIDTH

[N-1:0]

[N]

Figure 4.2.10: Loadable Counter RTL Design Internal Architecture.

Additionally, when the concatenation of I_LOAD and I_INC gives “01”, i.e., one, the logic element behaves

as a normal counter and increments the value on the register FF0 (■). This is depicted by the add operation

performed by the ALU element A0 (■). One makes sure that, when incrementing, the counter overflow

given by the FF1 register is kept, with the concatenation in K2. When the M0 (■) selection is “10” or

“11”, i.e., two or three, the counter loads the value at I_D and clears the overflow bit in K0. When both

the load and increment signals are asserted, “11”, the module gives priority to the load operation. The

HDL representation of the design of fig. 4.2.10 is depicted by listing 4.4.

Listing 4.4: Counter with Load (HDL).

1 -- Counter data decoding
2 --
3 COUNTER_MUX_C0 : process (I_INC,I_LOAD,counter_Q,I_D,counter_ov_Q)
4 --

Chapter 4. Supporting Microkernel 70

5 variable select_C0 : std_logic_vector(1 downto 0);
6 begin
7 select_C0 := I_LOAD & I_INC;
8 counter_D <= (others => '0');
9 case select_C0 is
10 when "00" =>
11 counter_D <= counter_ov_Q & unsigned(counter_Q);
12 when "01" =>
13 counter_D <= (counter_ov_Q & ZEROS) OR ('0' & unsigned(counter_Q) + 1);
14 when "10" =>
15 counter_D <= '0' & unsigned(I_D);
16 when "11" =>
17 counter_D <= '0' & unsigned(I_D);
18 when others =>
19 null;
20 end case;
21 end process COUNTER_MUX_C0;
22 --
23 -- Counter register and overflow register
24 --
25 COUNTER_REG_C0 : process (I_CLK)
26 --
27 begin
28 if rising_edge(I_CLK) then
29 if I_RESET = '1' then
30 counter_Q <= (others => '0');
31 counter_ov_Q <= '0';
32 elsif (I_CE = '1') then
33 counter_Q <= std_logic_vector(counter_D(COUNT_WIDTH-1 downto 0));
34 counter_ov_Q <= counter_D(COUNT_WIDTH);
35 end if;
36 end if;
37 end process COUNTER_REG_C0;
38 --
39 O_COUNTER_OV <= counter_ov_Q;
40 O_Q <= counter_Q;

By understanding the counter element, it is now conceivable to explain how it acts as the microprogram

counter. The combinational output of multiplexer M1 (■) generates the test result that will serve as the

increment and load signals, as one can see in fig. 4.2.8. Regarding that, the test_result signal itself

is connected to the INC input port of the counter C0, and the logical NOT of the test_result signal is

connected to the counter’s LOAD input port. With this one achieves an increment of the system call step

on a true test of the input flags and a jump to a different step on a false result. The latter is possible since

the microcode ROM address is given by the concatenation of the sycall_id signal, stipulated in a certain

kernel-level procedure, and the output Q of the microprogram counter C0, which gives the next step of the

system call. The counter in question is enabled by the this_call signal, connected to its clock enable (CE)

input port. The mention to the this_call_safe signal in fig. 4.2.8 is justified since the this_call signal is

debounced somewhere outside the module. In this specific case the overflow port of the counter is left

OPEN because it is not used within the microprogram. Although, it is useful in other scenarios like in

the event manager unit of section 4.2.5.1. The HDL containing the instantiation of the microcode ROM

and the microprogram counter is portrayed by listing 4.5, with the constants and definitions used in the

configuration package in listing A.1.

Chapter 4. Supporting Microkernel 71

Listing 4.5: Microprogram: Microcode ROM and Microprogram Counter (HDL).

1 rom_addr(SYSCALL_MSB'RANGE) <= std_logic_vector(to_unsigned(SYSCALL_T'POS(I_SYSCALL_INPUT.
SYSCALL_ID),SYSCALL_MSB'LENGTH));

3 --System Call Memory (ROM)
4 --
5 SYSCALL_ROM0 : entity syscall_mem
6 --
7 port map(
8 I_ADDR => rom_addr,
9 O_DOUT => rom_dout);
10 --
11 -- Microprogram Counter
12 --
13 UPROGRAM_COUNTER_C0 : entity COUNTER_LOAD
14 --
15 generic map(
16 COUNT_WIDTH => C_SYSCALL_NSF_WIDTH)
17 port map(
18 I_CLK => I_CLK,
19 I_CE => I_SYSCALL_INPUT.THIS_CALL,
20 I_RESET => I_RESET,
21 I_INC => test_result,
22 I_LOAD => test_resultn,
23 I_D => rom_dout(SYSCALL_NSF'RANGE),
24 O_Q => rom_addr(SYSCALL_MSB'LOW-1 downto 0),
25 O_COUNTER_OV => OPEN);
26 --

Continuing with the explanation of the microinstruction fields, as forementioned, the output field is

used to specify the active control signals, and, therefore, it is used as the select signal of the multiplexer

M2, represented in dark rose (■), fig. 4.2.8. The HDL for the multiplexer M2 is represented in listing 4.6,

alongside with the mutex status decode logic and output assignment in the listing 4.7.

Listing 4.6: Microprogram: Output Multiplexer (HDL).

1 -- Output encoding
2 --
3 OUTPUT_ENCODING_M2 : process (rom_dout(SYSCALL_OUTPUT'RANGE),CS_I)
4 --
5 variable select_M2 : integer range 0 TO (2**C_SYSCALL_OUTPUT_WIDTH)-1;
6 begin
7 select_M2 := to_integer(unsigned(rom_dout(SYSCALL_OUTPUT'RANGE)));
8 O_M_AXI_ARVALID <= '0';
9 O_M_AXI_RREADY <= '0';
10 O_M_AXI_AWVALID <= '0';
11 O_M_AXI_WVALID <= '0';
12 O_M_AXI_BREADY <= '0';
13 O_LBUS_WR_CE <= '0';
14 O_LBUS_RD_CE <= '0';
15 O_EV_MANAGER_TRIGGER <= '0';
16 O_ADDR_MANAGER_TRIGGER <= '0';
17 O_M00_TIMEOUT_TRIGGER <= '0';
18 case select_M2 is
19 when C_ARVALID_OFFSET => O_M_AXI_ARVALID <= CS_I; --01
20 when C_RREADY_OFFSET => O_M_AXI_RREADY <= CS_I; --02
21 when C_AWVALID_OFFSET => O_M_AXI_AWVALID <= CS_I; --03
22 when C_WVALID_OFFSET => O_M_AXI_WVALID <= CS_I; --04
23 when C_BREADY_M00_TRIGGER_OFFSET => O_M_AXI_BREADY <= CS_I; --05
24 O_M00_TIMEOUT_TRIGGER <= CS_I; --""
25 when C_LBUS_WR_CE_OFFSET => O_LBUS_WR_CE <= CS_I; --06
26 when C_LBUS_RD_CE_OFFSET => O_LBUS_RD_CE <= CS_I; --07
27 -- ... ----
28 when C_EV_MANAGER_TRIGGER_OFFSET => O_EV_MANAGER_TRIGGER <= CS_I; --09
29 when C_ADDR_MANAGER_TRIGGER_OFFSET => O_ADDR_MANAGER_TRIGGER <= CS_I; --10
30 -- ... ----
31 when C_NULL_OFFSET => null; --14

Chapter 4. Supporting Microkernel 72

32 when others => null;
33 end case;
34 end process OUTPUT_ENCODING_M2;
35 --

Finally, the valid and block_task bits are related with the communication with the hardware task

module. The block_task bit stops the hardware task, since it is used in the flip-flop that holds the next

state of the hardware task’s FSM, section 4.3. The valid bit is related with a valid return argument in the

return argument register of the system-level datapath, section 4.2.5, and also it indicates that the hardware

task can proceed its execution to the next state, where another system call can be executed, considering

single syscall procedures.

Listing 4.7: Microprogram: Mutex Status Decode Logic and Output Assignment (HDL).

1 -- Mutex status decode
2 ---
3 locked_a_i <= I_STATUS(C_LOCKED_BIT) and not(I_STATUS(C_CHANNEL_ID_BIT));
4 locked_b_i <= I_STATUS(C_LOCKED_BIT) and I_STATUS(C_CHANNEL_ID_BIT);
5 free_i <= not(I_STATUS(C_LOCKED_BIT));
6 ---
7 O_SYSCALL_OUTPUT.valid <= rom_dout(C_SYSCALL_VALID_BIT);
8 O_SYSCALL_OUTPUT.block_task <= rom_dout(C_SYSCALL_BLOCK_TASK_BIT);
9 O_SYSCALL_OUTPUT.syscall_id <= I_SYSCALL_INPUT.syscall_id;

4.2.5 System-Level Datapath

The system-level datapath unit functions as a supporting entity of the microprogram, section 4.2.4.

Thus, it contains all the datapath elements for the specification of the system call arguments and returns,

and also entities that help the microprogram manage timeouts and events, section 4.2.5.1, and index-

es/addresses, section 4.2.5.2 and section 4.2.5.3, respectively. The RTL description of the system-level

datapath is present in fig. 4.2.11. This section will detail on the datapath entity as a whole, regarding design

and implementation, its subunits, i.e., the event manager, index manager, and the address manager, the

specification of the syscall’s arguments and return bit fields, and also the interactions regarding the M00

system interface for the system calls related to the master bus, refer to algorithm 13 and algorithm 12.

Looking closely at fig. 4.2.11, one can see that the system level datapath is almost fully combinational,

only having sequential elements regarding the events, index, and address units, and also concerning the

system call return flip-flop FF0. The main component of the SLD is the multiplexer M0, represented in light

yellow (■). This logic element establishes the parameters, the returns and the active units of a certain

system call. This section will detail on the aspects of the System-Level Datapath that allow the execution

of the system calls and also its established parameters and returns.

The system call that waits a certain amount of clock cycles for an event or timeout, represented earlier

Chapter 4. Supporting Microkernel 73

System-Level Datapath

SYSCALL_WORK_NONE 	 	 --00
SYSCALL_WORK_YIELD 	 	 --01
SYSCALL_WAIT_EVENT_TIMEOUT 	 --02
SYSCALL_LINTC_READ 	 	 --03
SYSCALL_LINTC_WRITE 	 	 --04
SYSCALL_LBUS_READ 	 	 --05
SYSCALL_LBUS_WRITE, 	 	 --06
SYSCALL_LBUS_READ_BURST 	 --07
SYSCALL_LBUS_WRITE_BURST 	 --08
SYSCALL_MUTEX_LOCK 	 	 --09
SYSCALL_MUTEX_TRY_LOCK 	 --10
SYSCALL_MUTEX_UNLOCK 	 --11
SYSCALL_MBUS_READ 	 	 --12
SYSCALL_MBUS_WRITE 	 	 --13
SYSCALL_MBUS_READ_BURST 	 --14
SYSCALL_MBUS_WRITE_BURST 	 --15

M0

Kernel Call

syscall_id
Event

Manager

Index

Manager

Address

Manager

selects

Microprogram

LINTC

Kernel
Response

D Q

reset

FF0

clk

o_return_arg

0

1

return_arg_i

valid_i

M1

Mutexes

LRAM

MBUS

Parameter, Return, Service Select

Figure 4.2.11: System-Level Datapath (SLD) RTL Design Internal Architecture (Simplified), expanded in fig. B.1.

in algorithm 3, specifies its calling parameters and return arguments as depicted by fig. 4.2.12. Thus,

it only needs one bit to stipulate the event to monitor and sixteen bits to indicate the maximum time on

intends to wait for that event or until timeout, if no event is specified. Moreover, the system call returns

the timeout status, which is asserted if a timeout occurs, and the time remaining until timeout. Both of

the parameters are signals connected with the event manager unit, and both of the return arguments are

signals coming from the same unit, as it can be seen as yellow lines (■) in fig. 4.2.11. For a detailed

explanation of the inner workings of the event manager unit, i.e., how it uses these input signals and how

it outputs the forementioned output signals, refer to section 4.2.5.1.

Concerning this, and analyzing the HDL in the SLD multiplexer M0, listing 4.8, the syscall uses the

MSB (bit 63) to return the timeout status, in line 10, and the bits from 15 to 0 to return the remaining

time, in line 11. Regarding parameters, the bit 62 is used for the event to monitor, in line 12, and the

Chapter 4. Supporting Microkernel 74

U
WAIT

EVENT
ELAPSED

E Unused [61:32]
Unused [31:16]

T Unused [62:32]
Unused [31:16]

P

R

P

R

UE

T

System Call Parameters

System Call Return Arguments

Event to Monitor

Timeout Status

Unused Field

Remaining Time [15:0]

Timeout Value [15:0]

32 bits

8 bits

1 bit

16 bits

Figure 4.2.12: System-Level Datapath: Syscall Wait Event Timeout Parameters and Returns.

timeout value is specified in line 13. Note that it is important to use the bits from 15 to 0 for the timeout

value and remaining time in case one intends to expand the width of the event manager beyond 16 bits.

As fig. 4.2.11 and listing 4.8 depict, the system call parameters come directly from the kernel call signal,

namely from its parameter field, lines 12 and 13. All the constants and definitions used in the system

calls in the SLD are represented in listing A.3.

Listing 4.8: System-Level Datapath: Syscall Wait Event Timeout Parameters and Returns (HDL).

1 PARAM_SERVICE_SELECT_M0 : process (I_KERNEL_CALL.syscall_id,I_KERNEL_CALL.parameters,CS_I,
timeout_i,time_remaining_i,I_M00_AXI,I_LRAM_DOUT,I_MUTEX_STATUS)

2 --
3 begin
4 --MORE
5 --
6 case I_KERNEL_CALL.syscall_id is
7 --MORE
8 --
9 when SYSCALL_WAIT_EVENT_TIMEOUT =>
10 return_arg_i(RPARAM_TIMEOUT_STATUS) <= timeout_i; --[63]
11 return_arg_i(RPARAM_REMAINING_TIME'RANGE) <= time_remaining_i; --[15:0] (16 bits)
12 event_i <= I_KERNEL_CALL.parameters(PARAM_EVENT_TO_MONITOR); --[62]
13 timeout_val_i <= I_KERNEL_CALL.parameters(PARAM_TIMEOUT_VAL'RANGE); --[15:0] (16 bits)
14 --

Regarding the syscalls to read and write to the local memory (LRAM), aforementioned in section 4.2.3

as local bus system calls, one stipulates their parameters and return as represented in fig. 4.2.13 and

fig. 4.2.14. In the write of one word to the local memory, one needs to specify the data to write, represented

as source data, and the offset to which one intends to write to. This will translate later to an actual address

of the Local Random-Access Memory through the use of the address manager, section 4.2.5.3. The only

difference between the latter syscall and the burst format one, is that the burst length parameter and

return field differs from one word to multiple words, fig. 4.2.13. Since this is a write operation one only

returns the amount of words written to memory as result of the syscall, and this applies to both syscall

Chapter 4. Supporting Microkernel 75

formats, i.e., burst format or single-word format.

LBUS WORD
WRITE

LBUS WORD
WRITE BURST

P

R

P

R

Burst Length = 0x01

Burst Length = 0x01

Source Data [55:32]
Source Data [31:24] Unused [23:10]

Unused [62:32]
Unused [31:16]

Local Bus Offset [9:0]

Burst Length [63:56]

Burst Length [63:56]

Source Data [55:32]
Source Data [31:24] Unused [23:10]

Unused [62:32]
Unused [31:16]

Local Bus Offset [9:0]

P

R

System Call Parameters

System Call Return Arguments

32 bits

8 bits 16 bits

1 bit

Figure 4.2.13: System-Level Datapath: Local Bus Write Syscalls Parameters and Returns.

Concerning the read operations from the LRAM, one needs to indicate the number of words, as in

the write, and from where to read, with the local bus offset. As for returns, now it makes sense to return

the read data and keep returning the amount of words read from memory. Once again, the burst format

only differs in the amount of words. One made sure to keep the system call parameters and return fields

mirrored throughout the design to increase clarity, i.e., for example, the local bus offset is maintained in

the least significant 10 bits in writes and reads and makes room for the expansion of this offset up to

24 bits, as it is possible to see in fig. 4.2.14. Additionally, the read data is always returned in the same

position as the source data for the writes, from bit 55 to bit 24.

The HDL representation of fig. 4.2.13 and fig. 4.2.14 can be seen in listing 4.9. As it is possible to

see, the number of words to write or read, is always placed from bits 63 to 56, lines 10, 16, 22, and

31. This field is named as “burst length” even in single word operations, since this nomenclature is used

as well in master bus system calls. The master bus is an AXI4 interface, thus the single word transfers

are treated as single word bursts. Even tho the local memory bus does not impose these restrictions,

one opted to use the name “burst length” to keep consistency. The single word read, line 9, returns the

read word within a 64 bit return from bits 55 to 24, line 11. The same happens for each word read in

burst format, in line 23. All the syscalls for write and read also specify the offset from bit 9 to 0, lines

12, 18, 25, and 34, and need to enable the port B chip select of the LRAM, CS_B, in lines 13, 19, 26,

Chapter 4. Supporting Microkernel 76

LBUS WORD
READ

LBUS WORD
READ BURST

P

R

P

R

Burst Length = 0x01

Burst Length = 0x01

Burst Length [63:56]

32 bits

8 bits 16 bits

1 bit

Unused [55:32]
Unused [31:24]

Read Data [55:32]
Read Data [31:24] Unused [23:0]

Read Data [55:32]
Read Data [31:24] Unused [23:0]

Unused [23:10] Local Bus Offset [9:0]

Burst Length [63:56] Unused [55:32]
Unused [31:24] Unused [23:10] Local Bus Offset [9:0]

P

R

System Call Parameters

System Call Return Arguments

Figure 4.2.14: System-Level Datapath: Local Bus Read Syscalls Parameters and Returns.

and 35. The burst write/read system calls also enable the address and index manager in lines 27/37

and 28/38, respectively, and specify the burst length in lines 24 and 32. Additionally, the single write and

the write burst also determine the source data from bits 55 to 24, this can be seen in lines 17 and 33,

respectively. The use of the subtype param_mbus_source (that can be consulted in listing A.3) is used

because, as forementioned, the local bus system calls were designed to mimic the master bus ones in

terms of parameters and returns where it was possible. This means that there is no need to create another

VHDL subtype to represent the same parameter bit field.

Listing 4.9: System-Level Datapath: Local Bus Write/Read (Burst) Syscalls Parameters and Returns (HDL).

1 PARAM_SERVICE_SELECT_M0 : process (I_KERNEL_CALL.syscall_id,I_KERNEL_CALL.parameters,CS_I,
timeout_i,time_remaining_i,I_M00_AXI,I_LRAM_DOUT,I_MUTEX_STATUS)

2 --
3 begin
4 --MORE
5 --
6 case I_KERNEL_CALL.syscall_id is
7 --MORE
8 --
9 when SYSCALL_LBUS_READ =>
10 return_arg_i(RPARAM_LBUS_BURST_LEN'RANGE) <= I_KERNEL_CALL.parameters(

PARAM_LBUS_BURST_LEN'RANGE); --[63:56] (8 bits)
11 return_arg_i(RPARAM_LBUS_SOURCE'RANGE) <= I_LRAM_DOUT; --[55:24] (32 bits)
12 lbus_address_i <= I_KERNEL_CALL.parameters(PARAM_LBUS_OFFSET'RANGE); --[9:0] (10 bits)
13 O_CS_B <= CS_I; -- enable LRAM port b chip select
14 --
15 when SYSCALL_LBUS_WRITE =>
16 return_arg_i(RPARAM_LBUS_BURST_LEN'RANGE) <= I_KERNEL_CALL.parameters(

PARAM_LBUS_BURST_LEN'RANGE); --[63:56] (8 bits)
17 source_i <= I_KERNEL_CALL.parameters(PARAM_MBUS_SOURCE'RANGE); --[55:24] (32 bits)
18 lbus_address_i <= I_KERNEL_CALL.parameters(PARAM_LBUS_OFFSET'RANGE); --[9:0] (10 bits)
19 O_CS_B <= CS_I; -- enable LRAM port b chip select
20 --
21 when SYSCALL_LBUS_READ_BURST =>

Chapter 4. Supporting Microkernel 77

22 return_arg_i(RPARAM_LBUS_BURST_LEN'RANGE) <= I_KERNEL_CALL.parameters(
PARAM_LBUS_BURST_LEN'RANGE); --[63:56] (8 bits)

23 return_arg_i(RPARAM_LBUS_SOURCE'RANGE) <= I_LRAM_DOUT; --[55:24] (32 bits)
24 burst_len_i<= to_integer(unsigned(I_KERNEL_CALL.parameters(PARAM_LBUS_BURST_LEN'RANGE)));

--[63:56] (8 bits)
25 lbus_address_i <= I_KERNEL_CALL.parameters(PARAM_LBUS_OFFSET'RANGE); --[9:0] (10 bits)
26 O_CS_B <= CS_I; -- enable LRAM port b chip select
27 enable_addr_i <= CS_I; -- enable address manager
28 enable_index_i <= CS_I; -- enable index manager
29 --
30 when SYSCALL_LBUS_WRITE_BURST =>
31 return_arg_i(RPARAM_LBUS_BURST_LEN'RANGE) <= I_KERNEL_CALL.parameters(

PARAM_LBUS_BURST_LEN'RANGE); --[63:56] (8 bits)
32 burst_len_i<= to_integer(unsigned(I_KERNEL_CALL.parameters(PARAM_LBUS_BURST_LEN'RANGE)));

--[63:56] (8 bits)
33 source_i <= I_KERNEL_CALL.parameters(PARAM_MBUS_SOURCE'RANGE); --[55:24] (32 bits)
34 lbus_address_i <= I_KERNEL_CALL.parameters(PARAM_LBUS_OFFSET'RANGE); --[9:0] (10 bits)
35 O_CS_B <= CS_I; -- enable LRAM port b chip select
36 enable_addr_i <= CS_I; -- enable address manager
37 enable_index_i <= CS_I; -- enable index manager
38 --

As previously mentioned in this section, the system calls to write and read from the system/host

memory are similar to the ones that write/read to the local memory to a certain extent. The parameter

and return fields are described in fig. 4.2.15 and fig. 4.2.16. Concerning parameters in the write syscalls

for the SYSRAM, one has a field for the number of words to be written to memory, a field for the source data

to write to a certain memory position, and a master bus offset that determines that memory location. For

returns, the syscall gives again the amount of words written to memory, but in the MBUS case, also gives

information relative with the timeout of the bus. This is important since as explained earlier in section 4.2.3,

the MBUS syscalls, specially the write ones, are bound to wait on bus signals like BVALID. For this the

write syscalls related to the system memory follow a return scheme similar to the one seen previously in

the wait event timeout syscall, returning a bit for the bus timeout status and also the remaining time until

timeout, as it is possible to see in fig. 4.2.15. As in the LBUS syscalls, the MBUS burst syscalls differ from

the single word ones only in the burst length parameter. However, in the case of single word transfers, the

burst length must be assigned to one since the interface is AXI4. This means that every transaction uses

the burst format even on single word transfers, and that applies for writes and also reads.

The MBUS system calls for reads are depicted in fig. 4.2.16. This system calls do not differ too much

from the local bus ones since one does not need to perform any timeout related returning. This happens

because in the read there is not a bus acknowledgement stage. Regarding this, the read in both formats

also needs a burst length parameter for the same reasons explained earlier for the SYSRAM write syscalls,

and a parameter to designate the memory location to read from, named as master bus offset. Additionally,

it then returns the amount of words read from memory and the read data, in the locations specified by

fig. 4.2.16.

Chapter 4. Supporting Microkernel 78

MBUS WORD
WRITE

MBUS WORD
WRITE BURST

Burst Length [63:56]

Burst Length [63:56]

P

R

P

R

Burst Length = 0x01

Burst Length = 0x01

P

R

TSystem Call Parameters

System Call Return Arguments

Timeout Status

Source Data [55:32]
Source Data [31:24] Master Bus Offset [23:0]

Source Data [55:32]
Source Data [31:24] Master Bus Offset [23:0]

T Unused [62:32]
Unused [31:16] Remaining Time Until Timeout [15:0]

T Unused [62:32]
Unused [31:16] Remaining Time Until Timeout [15:0]

32 bits

8 bits 16 bits

1 bit

Figure 4.2.15: System-Level Datapath: Master Bus Write Syscalls Parameters and Returns.

MBUS WORD
READ

MBUS WORD
READ BURST

P

R

P

R

Burst Length = 0x01

Burst Length = 0x01

Burst Length [63:56]

Burst Length [63:56]

32 bits

8 bits 16 bits

1 bit

Unused [55:32]
Unused [31:24] Master Bus Offset [23:0]

Read Data [55:32]
Read Data [31:24] Unused [23:0]

Unused [55:32]
Unused [31:24] Master Bus Offset [23:0]

Read Data [55:32]
Read Data [31:24] Unused [23:0]

P

R

System Call Parameters

System Call Return Arguments

Figure 4.2.16: System-Level Datapath: Master Bus Read Syscalls Parameters and Returns.

In the system calls for single word reads and writes from/to the SYSRAM, line 9 and 15, respectively,

one specifies the burst length as one, lines 13 and 22, since the master bus follows an AXI4 interface,

with all the transfers occurring in burst format. As part of the AXI4 protocol, for the same reasons, the

syscall for single word writes also has to assert the WLAST signal in line 21. Regarding timeouts, the latter

syscall and the burst write also specify the BVALID as the event to monitor, lines 24 and 43, and wait

for its assertion within the determined timeout value, lines 25 and 44. This timeout value is given by the

Chapter 4. Supporting Microkernel 79

constants c_mbus_timeout_value and c_mbus_burst_timeout_value, which stipulate 10 and 150 cycles

for timeout, respectively. These values were adjusted through experimentation with the AXI interface, and

set this way since the BVALID signal for burst transfers tends to arrive later, i.e., the bus confirmation for

the slave took longer with multiple word transactions. Additionally, as seen in fig. 4.2.15, the source data

comes within the bits 55 to 24 of the parameters, and it is assigned to an internal signal, source_i, in

lines 19 and 39. Considering returns, the reads only devolve the number of words read, bits 63 to 56,

and the read data, from bits 55 to 32, lines 10/28 and 11/29. As for writes, one also returns the amount

of words written, from bits 63 to 56, lines 16 and 35, but also the timeout information, i.e., the timeout

status (bit 55), lines 17 and 36, and the time remaining until timeout (bits 15 to 0), lines 18 and 37.

As it happened with the local bus system calls, the burst ones considering the MBUS also have to

enable the index manager unit of the SLD, section 4.2.5.2, lines 32 and 41, to be able to handle the read

and write from and to buffers in the hardware task entity. These burst syscalls get the number of words

to read or write from the parameter bits 63 to 56, lines 30 and 38, which leaves room for multiple word

bursts of 256 words of 32 bits, i.e., 1K byte transfers. The system calls to write and read from and to the

system memory in both formats specify the MBUS address by adding the MBUS offset (parameter bits 23

to 0, fig. 4.2.15 and fig. 4.2.16) to the base SYSRAM address coming from a host-writable register in the

interface registers module, section 4.5.5. This can be seen in lines 12, 20, 31, and 40. The syscalls would

need extra address setup if one was considering writes or reads across multiple host memory pages. In

this case, pages are fixed on 1K bytes, and one does not consider bursts bigger than the page size.

Listing 4.10: System-Level Datapath: Master Bus Write/Read (Burst) Syscalls Parameters and Returns (HDL).

1 PARAM_SERVICE_SELECT_M0 : process (I_KERNEL_CALL.syscall_id,I_KERNEL_CALL.parameters,CS_I,
timeout_i,time_remaining_i,I_M00_AXI,I_LRAM_DOUT,I_MUTEX_STATUS)

2 --
3 begin
4 --MORE
5 --
6 case I_KERNEL_CALL.syscall_id is
7 --MORE
8 --
9 when SYSCALL_MBUS_READ =>
10 return_arg_i(RPARAM_MBUS_BURST_LEN'RANGE) <= std_logic_vector(to_unsigned(1,return_arg_i(

RPARAM_MBUS_BURST_LEN'RANGE)'LENGTH)); --[63:56] (8 bits)
11 return_arg_i(RPARAM_MBUS_SOURCE'RANGE) <= I_M00_AXI_rdata; --[55:32] (32 bits)
12 mbus_address_i <= std_logic_vector(unsigned(I_SYSRAM_BASE_ADDR) + unsigned(

std_logic_vector(to_unsigned(to_integer(unsigned(I_KERNEL_CALL.parameters(
PARAM_MBUS_OFFSET'RANGE))),mbus_address_i'LENGTH)))); --[23:0] (24b padded to 32)

13 burst_len_i <= 1; -- force burst length to one
14 --
15 when SYSCALL_MBUS_WRITE =>
16 return_arg_i(RPARAM_MBUS_BURST_LEN'RANGE) <= std_logic_vector(to_unsigned(1,return_arg_i(

RPARAM_MBUS_BURST_LEN'RANGE)'LENGTH)); --[63:56] (8 bits)
17 return_arg_i(RPARAM_M00_TIMEOUT) <= timeout_i; --[55]
18 return_arg_i(RPARAM_REMAINING_TIME'RANGE) <= time_remaining_i; --[15:0] (16 bits)
19 source_i <= I_KERNEL_CALL.parameters(PARAM_MBUS_SOURCE'RANGE); --[55:32] (32 bits)
20 mbus_address_i <= std_logic_vector(unsigned(I_SYSRAM_BASE_ADDR) + unsigned(

Chapter 4. Supporting Microkernel 80

std_logic_vector(to_unsigned(to_integer(unsigned(I_KERNEL_CALL.parameters(
PARAM_MBUS_OFFSET'RANGE))),mbus_address_i'LENGTH)))); --[23:0] (24b padded to 32)

21 mbus_wlast_i <= CS_I; -- declare as last write
22 burst_len_i <= 1; -- force burst length to one
23 event_i <= I_M00_AXI_BVALID; -- setup event to monitor as BVALID
24 timeout_val_i <= std_logic_vector(to_unsigned(C_MBUS_TIMEOUT_VALUE,timeout_val_i'LENGTH));
25 --
26 when SYSCALL_MBUS_READ_BURST =>
27 return_arg_i(RPARAM_MBUS_BURST_LEN'RANGE) <= I_KERNEL_CALL.parameters(

PARAM_MBUS_BURST_LEN'RANGE); --[63:56] (8 bits)
28 return_arg_i(RPARAM_MBUS_SOURCE'RANGE) <= I_M00_AXI_rdata; --[55:24] (32 bits)
29 burst_len_i<= to_integer(unsigned(I_KERNEL_CALL.parameters(PARAM_MBUS_BURST_LEN'RANGE)));

--[63:56] (8b)
30 mbus_address_i <= std_logic_vector(unsigned(I_SYSRAM_BASE_ADDR) + unsigned(

std_logic_vector(to_unsigned(to_integer(unsigned(I_KERNEL_CALL.parameters(
PARAM_MBUS_OFFSET'RANGE))),mbus_address_i'LENGTH)))); --[23:0] (24b padded to 32)

31 enable_index_i <= CS_I; -- enable index manager
32 --
33 when SYSCALL_MBUS_WRITE_BURST =>
34 return_arg_i(RPARAM_MBUS_BURST_LEN'RANGE) <= I_KERNEL_CALL.parameters(PARAM_MBUS_BURST_LEN

'RANGE); --[63:56] (8b)
35 return_arg_i(RPARAM_M00_TIMEOUT) <= timeout_i; --[55]
36 return_arg_i(RPARAM_REMAINING_TIME'RANGE) <= time_remaining_i; --[15:0] (16 bits)
37 burst_len_i <= to_integer(unsigned(I_KERNEL_CALL.parameters(PARAM_MBUS_BURST_LEN'RANGE)));

--[63:56] (8b)
38 source_i <= I_KERNEL_CALL.parameters(PARAM_MBUS_SOURCE'RANGE); --[55:24] (32 bits)
39 mbus_address_i <= std_logic_vector(unsigned(I_SYSRAM_BASE_ADDR) + unsigned(

std_logic_vector(to_unsigned(to_integer(unsigned(I_KERNEL_CALL.parameters(
PARAM_MBUS_OFFSET'RANGE))),mbus_address_i'LENGTH)))); --[23:0] (24b padded to 32)

40 enable_index_i <= CS_I; -- enable index manager
41 event_i <= I_M00_AXI_BVALID; -- setup event to monitor as BVALID
42 timeout_val_i <= std_logic_vector(to_unsigned(C_MBUS_BURST_TIMEOUT_VALUE,timeout_val_i'

LENGTH));
43 --

The system calls related to the hardware mutex, section 4.5.1, behave similarly in terms of the System-

Level Datapath. This means that they have as parameters the owner ID that intends to perform an action

on the mutex, and a bit to select which one of the two mutexes is the target, i.e., if one intends to lock

or unlock the system mutex or the local mutex, for example. Note again that the local mutex protects

the LRAM against race conditions, and that the system mutex protects the host memory/SYSRAM against

race conditions, likewise. Since the inner workings of the hardware mutex entity function around writing

the owner ID to the mutex data register for every operation, in terms of the SLD nothing really changes.

This happens because the mutex changes its current state, e.g., from locked to unlocked or from unlocked

to locked, by always writing the owner ID to the aforementioned register. The mutex selector bit is fed onto

the mutex decoder module, to select either one of the two mutexes, more on that later in section 4.4.3.

The mutex syscalls return the data present in the status register of the mutex, which gives information

on the mutex state, i.e., locked or unlocked, the mutex channel which performed the lock, and the mutex

owner’s ID. These fields for parameters and returns can be seen in fig. 4.2.17.

As it is possible to see in listing 4.11, the targeted mutex is selected with the bit 54 of the kernel call

parameters, lines 12, 18, and 24, the mutex chip select is enabled, lines 13, 19, and 25, and the owner

Chapter 4. Supporting Microkernel 81

MUTEX
LOCK

P

R

MUTEX
TRY

LOCK

MUTEX
UNLOCK

P

R

P

R

32 bits

8 bits 16 bits

1 bit

Unused [63:55]

P

R

System Call Parameters

System Call Return Arguments

Unused [63:54] Status [55:32]
Status [31:24] Unused [23:0]

Unused [63:55]

Unused [63:54] Status [55:32]
Status [31:24] Unused [23:0]

Unused [63:55]

Unused [63:54] Status [55:32]
Status [31:24] Unused [23:0]

S Owner ID [53:32]
Owner ID [31:24] Unused [23:0]

S Mutex Decoder Select

S

S Owner ID [53:32]
Owner ID [31:24] Unused [23:0]

Owner ID [53:32]
Owner ID [31:24] Unused [23:0]

Figure 4.2.17: System-Level Datapath: Mutex Syscalls Parameters and Returns.

ID is assigned to the internal signal mutex_owner_id_i, from bits 53 to 24 of parameters, according to

fig. 4.2.17. These syscalls then return the status of the mutex, from bits 55 to 24, which corresponds to

the word present in the status register of the latter, lines 10, 16, and 22.

Listing 4.11: System-Level Datapath: Mutex Syscalls Parameters and Returns (HDL).

1 PARAM_SERVICE_SELECT_M0 : process (I_KERNEL_CALL.syscall_id,I_KERNEL_CALL.parameters,CS_I,
timeout_i,time_remaining_i,I_M00_AXI,I_LRAM_DOUT,I_MUTEX_STATUS)

2 --
3 begin
4 --MORE
5 --
6 case I_KERNEL_CALL.syscall_id is
7 --MORE
8 --
9 when SYSCALL_MUTEX_LOCK =>
10 return_arg_i(RPARAM_MUTEX_STATUS'RANGE) <= I_MUTEX_STATUS; --[55:24] (32 bits)
11 mutex_owner_id_i <= std_logic_vector(to_unsigned(to_integer(unsigned(I_KERNEL_CALL.

parameters(PARAM_MUTEX_OWNER_ID'RANGE))),mutex_owner_id_i'LENGTH)); --[53:24] (30
bits) (padded to 32)

12 O_MUTEX_ADDR <= I_KERNEL_CALL.parameters(PARAM_MUTEX_DEC_ADDR'RANGE); --[54] (1 bit)
13 O_MUTEX_CS <= CS_I;
14 --
15 when SYSCALL_MUTEX_TRY_LOCK =>
16 return_arg_i(RPARAM_MUTEX_STATUS'RANGE) <= I_MUTEX_STATUS; --[55:24] (32 bits)
17 mutex_owner_id_i <= std_logic_vector(to_unsigned(to_integer(unsigned(I_KERNEL_CALL.

parameters(PARAM_MUTEX_OWNER_ID'RANGE))),mutex_owner_id_i'LENGTH)); --[53:24] (30
bits) (padded to 32)

18 O_MUTEX_ADDR <= I_KERNEL_CALL.parameters(PARAM_MUTEX_DEC_ADDR'RANGE); --[54] (1 bit)
19 O_MUTEX_CS <= CS_I;
20 --

Chapter 4. Supporting Microkernel 82

21 when SYSCALL_MUTEX_UNLOCK =>
22 return_arg_i(RPARAM_MUTEX_STATUS'RANGE) <= I_MUTEX_STATUS; --[55:24] (32 bits)
23 mutex_owner_id_i <= std_logic_vector(to_unsigned(to_integer(unsigned(I_KERNEL_CALL.

parameters(PARAM_MUTEX_OWNER_ID'RANGE))),mutex_owner_id_i'LENGTH)); --[53:24] (30
bits) (padded to 32)

24 O_MUTEX_ADDR <= I_KERNEL_CALL.parameters(PARAM_MUTEX_DEC_ADDR'RANGE); --[54] (1 bit)
25 O_MUTEX_CS <= CS_I;
26 --

The system call for reading the local interrupt controller does not need intervention of the system level

datapath, and, thus, it is called with no parameters, as seen in fig. 4.2.18. On the other hand, the write to

same entity, which generates a PL-to-PS interrupt request, only needs as parameter the selected interrupt

source. For returns, the read returns the current contents of the LINTC control and status registers, and

the write as no return. As forementioned, and similarly to the LRAM, the LINTC entity could be included

onto the local bus and one could have a dedicated decoding element that dictated the flow of data, in

an approach like-minded to [62]. Although, as the number of elements has not that high, one opted to

use one-to-one communication between the System-Level Datapath (SLD) and hardware resources like the

LRAM and the LINTC, for example.

LINTC
READ

P

R

LINTC
WRITE

P

R

32 bits

8 bits 16 bits

1 bit

Unused [63:32]

P

R

System Call Parameters

System Call Return Arguments

Unused [63:55]

Unused [31:0]

INTR SRC Unused [51:32]
Unused [31:0]

Control Word [63:32]
Status Word [31:0]

Unused [63:32]
Unused [31:0]

Figure 4.2.18: System-Level Datapath: Local Interrupt Controller Syscalls Parameters and Returns.

Listing 4.12 is the HDL representation of fig. 4.2.18. Thus, one can see the return of the control and

status words from the LINTC entity in lines 10 and 11, and also the selection of the interrupt source from

bits 54 to 52 of the kernel call parameters. For more information on the LINTC entity refer to section 4.5.2.

Chapter 4. Supporting Microkernel 83

Listing 4.12: System-Level Datapath: LINTC Syscalls Parameters and Returns (HDL).

1 PARAM_SERVICE_SELECT_M0 : process (I_KERNEL_CALL.syscall_id,I_KERNEL_CALL.parameters,CS_I,
timeout_i,time_remaining_i,I_M00_AXI,I_LRAM_DOUT,I_MUTEX_STATUS)

2 ---
3 begin
4 --MORE
5 ---
6 case I_KERNEL_CALL.syscall_id is
7 --MORE
8 ---
9 when SYSCALL_LINTC_READ =>
10 return_arg_i(RPARAM_LINTC_CONTROL'RANGE) <= I_LINTC_CONTROL_W; --[63:32] (32 bits)
11 return_arg_i(RPARAM_LINTC_STATUS'RANGE) <= I_LINTC_STATUS_W; --[31:0] (32 bits)
12 ---
13 when SYSCALL_LINTC_WRITE =>
14 O_LINTC_INTR_SELECT <= I_KERNEL_CALL.parameters(PARAM_LINTC_INTR_SELECT'RANGE); --[54:52]
15 ---

4.2.5.1 Event Manager

The microkernel’s time management is dictated by the event manager unit. The approach used in the

dissertation follows the one proposed in [62] but disregards the sleep feature and, thus, cannot wait for

asynchronous event sources, i.e., cannot wait for an event with no specified timeout. Although, this is not

something difficult to work around since one can always specify higher timeout values.

CE

clear Q[N-1:0]D[N-1:0]

incload

clk

C0

Counter OVI_TIMEOUT_VALUE

I_EVENT

I_TRIGGER_B

Control Unit

ADD

result

A0

ALU

CLOCK

RESET

(I_CLK)

(I_RESET)

1

compare

result

A1

ALU

0 I_EVENTload_i ce_i

inc_i

timeout_i

ADD

result

A2

ALU

1

timeout_i

event_elapsed_i

Event Manager

O_EVENT_ELAPSED

O_TIMEOUT

O_TIME_REMAINING

G0
invalid_i

Two's Complement

Two's Complement

ready_i O_READY

F0

F1

HW-Task Signals Microprogram Signals Internal CU Signals

w/ N = 16 bits

FFST

D Q
rst

next_state stateI_TRIGGER_A
G1

trigger_i

G1

Figure 4.2.19: Event Manager RTL Design Internal Architecture, adapted [62].

The event manager is used in the wait for event timeout syscall and also in the mbus write syscalls for

the waiting on the bus signals with a timeout, as explained earlier in section 4.2.5. For more information

Chapter 4. Supporting Microkernel 84

on the system calls refer to the table 4.1 of section 4.2.3.

The RTL representation of the event manager unit is depicted by fig. 4.2.19. The unit bases it-

self in an upwards counter C0, represented in yellow (■), that increments the given value specified by

i_timeout_value. For the event manager to count from that value to zero, one uses the ALU A0, repre-

sented in orange (■), to turn the timeout value into a two’s complement version by inverting all the bits

and adding one. The current count number is then reverted to its original form to output the remaining

time in A2. The counter only increments when the logical result on G0 is true, which means that the

counter stops with an overflow and also when the specified event to monitor, given by the i_event port, is

asserted. When these two conditions are false, the counter then increments by command of the module’s

control unit with the internal signal inc_i. In a similar way the counter’s clock enable and load inputs are

given by the control unit. When the counter overflows the o_timeout port is asserted to indicate that a

timeout occurred while waiting on an event.

TRIGGER_I/

FSM Input

FSM Output

A/

/B

#0. IDLE
/READY_I

#1. LOAD
/LOAD_I

#2. COUNT
#3. ELAPSED
/EVENT_ELAPSED_I

EVENT_I/ || TIMEOUT_I/

/CE_I

/INC_I

/CE_I

TRIGGER_I/

Figure 4.2.20: Event Manager Finite State Machine (FSM), adapted [62].

The event manager’s FSM is represented in fig. 4.2.20. The latter starts in state #0, deemed as idle,

and moves onto the next state in the next clock cycle if the trigger signal, trigger_i, is asserted. As it is

possible to see in fig. 4.2.19, this signal is the logical combination of two trigger sources A and B. Most

of the time, when waiting for events using the wait for event timeout syscall, the unit will use only one

Chapter 4. Supporting Microkernel 85

trigger source, since there is usually only one event to wait on. The addition of another trigger source was

added, so the module could be used within the slave interface event manager to manage waits on AXI4

lite signals coming from the S00 Control and S01 Data interfaces. More on that later in section 4.5.4.

Moreover, idle (#0) also asserts the ready_i signal to synchronize the beginning of the syscall with the

microprogram. In the state #1, deemed as load, the ce_i and load_i signals are asserted to, respectively,

enable the C0 counter (■), and also enable the load of the timeout value. Unconditionally, in the next

clock cycle, the FSM moves onto the count state (#2) where it continues to enable the counter with the

ce_i signal, but now asserts the inc_i signal to start the incrementing. The FSM proceeds to the elapsed

state (#3) if the event that one is monitoring occurs or if there is a timeout of the counter. In the elapsed

state (#3) the event elapsed is asserted to inform the microprogram, as depicted in purple in fig. 4.2.19.

Refer to section 4.2.3 for more information on how the microprogram leverages these signals for the wait

for event timeout syscall. Additionally, as in [62], the FSM is kept in the elapsed state until the trigger_i

signal is not asserted anymore. When that happens the FSM naturally returns to the idle state in the next

clock cycle. The sequence diagram of fig. B.11 depicts the interaction between the entities involved in a

single syscall waiting procedure, wait event elapsed, called from the hardware task, i.e., using a procedure

that only calls the wait for event timeout syscall.

4.2.5.2 Index Manager

As mentioned earlier in section 4.2.3, the index manager unit allows for the writing and reading to

consecutive buffer positions in the hardware task entity. Due to this, the unit is related with the LBUS

and MBUS syscalls. To deal with this, the index manager entity has a counter C0, represented in yellow

(■), as the main logic element, which increments the current index, given by o_index. The module also

implements the same index but delayed one clock cycle (FF0) (■), o_index_d1, since in the LBUS syscalls

the LRAM has a one clock cycle latency to output its data on dout, and because depending on the syscall it

might be needed to read and write to the same buffer simultaneously. For this, having two indexes allows

one a similar scheme to the one existing in software, for example in kernel circular buffers, with a head

and a tail index. With the head representing the point in which the producer inserts elements into the

buffer, and the tail representing the point in which the consumer retrieves elements from the buffer.

The counter C0 (■) found in fig. 4.2.21 is the same exact logic element already explained in sec-

tion 4.2.4, with load and increment functionalities. As it possible to observe, the counter’s load input

is fed with the logical and between the enable of the index service in the SLD, i_syscall_en_index, the

Chapter 4. Supporting Microkernel 86

A1

match

ALU

CE

clear Q[N-1:0]D[N-1:0]

incload

clk

C0

I_RESET

Counter OV

D Q

reset

FF0

clk

index_d1_i

I_SYSCALL_EN_INDEX

O_INDEX

Index Manager

I_ENABLE_INDEX

O_INDEX_D1

CLOCK

RESET

(I_CLK)

(I_RESET)

I_BURST_LEN
compare

match/

greater

A0

ALU

burst_done_i

index_i

index_i

index_i

O_BURST_DONE_D1

I_INC_INDEX

G3

burst_done_i

counter_ce_i

counter_ce_i

index_load_i
index_load_i

w/ N = 10 bits

SLD Signals HW-Task Signals Internal CU Signals

Control Unit

G2

G1

G0

0

G4

Microprogram Signals

I_UP_INC_INDEX_TRIG

g1_load_i

[9:0]

[9:0][9:0]

g2_ce_i

OPEN

index_inc_i

rd_inc_i
I_INC_INDEX

is_mbus_burst_wr

index_inc_i

g3_inc_i

G5

G6

I_MB_INC_INDEX_TRIG

rd_inc_i

is_mbus_burst_rd

G7

g1_load_i

FFST

D Q
rst

next_state state

I_SYSCALL_ID

I_UP_RCV_DATA_READY

-1

sub A6

I_UP_LB_INC_INDEX_TRIG

match

ALU

match

ALU

match

ALU

A2
A3

A4

syscall_mbus_write_burst
syscall_mbus_read_burst

syscall_lbus_write_burst
syscall_lbus_read_burst

is_mbus_burst_wr

is_mbus_burst_rd

is_lbus_burst_wr

is_lbus_burst_rd

compare

is_lbus_burst_wr
G8

is_lbus_burst_rd

G9

g7_inc_i

g7_inc_i

D Q
rst

FF1

O_BURST_DONE

O_IS_MBUS_BURST_WR

O_IS_MBUS_BURST_RD

O_IS_LBUS_BURST_WR

O_IS_LBUS_BURST_RD

Figure 4.2.21: Index Manager RTL Design Internal Architecture.

enable coming from the hardware task, i_enable_index, and also the control unit signal index_load_i

(G0 and G1). The counter is enabled with the logical and of the output of G0 with the control unit sig-

nal counter_ce_i. The increment of the counter is activated whenever one has the i_inc_index signal

asserted in the hardware task (entering G3), and the MBUS trigger coming from the SLD (entering G7)

paired with one of the MBUS or LBUS syscalls (G6, G7, G8, and G9) and also the control unit signal in-

dex_inc_i (entering G5). Additionally, the increment stops with the assertion of burst_done_i (entering

G3), i.e., when the burst syscall is finished. The burst_done_i signal is generated in A0, represented in

orange (■), with the comparison of the current index, index_i, with the burst length, i_burst_len, minus

one. This happens since, for example, a burst of ten elements should stop at index nine, and for that

reason the o_burst_done is also used to generate the MBUS and LBUS wlast, while the one-cycle delayed

version, o_burst_done_d1, is used to generate the LBUS rlast. This can be seen in fig. 4.2.11, alongside

with the trigger and data ready inputs of the index manager unit. Moreover, the module also does some

comparison regarding the system call ID to determine the current burst syscall (from A1 to A4). The result

is used internally to the index manager but also in the address manager unit, section 4.2.5.3.

The index manager’s FSM is represented in fig. 4.2.22. The latter starts in the state #0, which

represents the load of the counter with index zero, fig. 4.2.21. Thus, the state #0 asserts the index_load_i

Chapter 4. Supporting Microkernel 87

/INDEX_LOAD_I

/COUNTER_CE_I

FSM Input

FSM Output

A/

/B
#1. INC_INDEX

/INDEX_INC_I

/COUNTER_CE_I

BURST_DONE/

#0. LOAD

UP_INC_INDEX_TRIGGER/ || UP_RCV_DATA_READY/

|| UP_LBUS_INC_INDEX_TRIGGER/

Figure 4.2.22: Index Manager Finite State Machine (FSM).

signal, and enables the counter with the counter_ce_i signal. If the other signals from the SLD and the

hardware task are asserted, the C0 counter will perform the initial load, and the FSM will move on onto state

#1, inc_index, if the condition of fig. 4.2.22 is true. This means that the one move to the increment state

if the one of the microprogram triggers is asserted. Upon reaching the inc_index state the FSM asserts

the index_inc_i and counter_ce_i signals, to perform the counting and enable the counter element,

respectively. The FSM is in the state #1 until the burst finished, returning to load in the next clock cycle.

The sequence diagrams of fig. B.12 and fig. B.13 depict the interaction between the entities involved in

a single syscall procedure that writes/reads in an unsafe manner, i.e., without mutex protection, to the

SYSRAM. The call is made from the hardware task entity, using a procedure that only calls the mbus write

or mbus read syscalls in single-word or burst format.

4.2.5.3 Address Manager

The address manager unit functions similarly to the index manager but with the purpose of increment-

ing the address of the LRAM in LBUS burst syscalls.

Regarding this, the latter also has a counter with load (C0), represented in yellow, that initially loads a

specific address, i_start_addr, and starts to increment from that address until the local memory burst

is finished. In fig. 4.2.23 it is possible to see that the C0 counter is enabled by the logical and of

i_en_addr_counter, coming from the SLD, and the control unit signal ce_i (entering G0). The counter

performs a load whenever there is a LBUS system call (G1, G4, and G5), and the load_i control unit signal

is asserted or at the end of each burst (G3). Moreover, the counter increments while one is perform-

ing a burst LBUS syscall with the control unit signal inc_i asserted. The counter stops when it reaches

Chapter 4. Supporting Microkernel 88

Address Manager

CE

clear Q[N-1:0]D[N-1:0]

incload

clk

C0

I_RESET

Counter OV

CLOCK

RESET

(I_CLK)

(I_RESET)

I_EN_ADDR_COUNTER

I_IS_LBUS_BURST_WR

I_IS_LBUS_BURST_RD

Control Unit
ce_i

load_i

inc_i

I_START_ADDR O_TARGET_ADDR

I_BURST_DONE

I_BURST_DONE

w/ N = 10 bits

ready_i O_READY

G0

G3
G2

FFST

D Q
rst

next_state state

I_UP_INC_TRIGGER

g0_ce_i

G1
G4

G5

g2_inc_i

g1_load_i

G6

OPEN

SLD Signals Internal CU Signals Microprogram Signals

Figure 4.2.23: Address Manager RTL Design Internal Architecture.

the end of the burst, given by the logical not of i_burst_done in G2. The unit receives a trigger signal,

i_up_inc_trigger, and outputs a ready signal, o_ready, in order to achieve synchronism with the micro-

program. For more information on the LBUS syscalls refer to section 4.2.3. Finally, the Q output of the

counter gives the target address, o_target_addr, to be fed to the LRAM.

/LOAD_I
/CE_I

FSM Input

FSM Output

A/

/B
#1. INC_ADDR

/INC_I

/CE_I

BURST_DONE/

UP_INC_TRIGGER/

#0. LOAD
/READY_I

Figure 4.2.24: Address Manager Finite State Machine (FSM).

The address manager FSM is represented in fig. 4.2.24. As it is possible to see it only has two states

and starts off in state #0, deemed as load. In the latter the FSM asserts the ready_i signal to inform the

microprogram, and performs the load of the initial counter value with the assertion of the load_i and ce_i

Chapter 4. Supporting Microkernel 89

signals. The FSM then waits for the trigger of the microprogram to go onto the next state. In state #1,

deemed as inc_addr, the FSM asserts the inc_i and maintains ce_i asserted to perform the increment of

the address. As seen before in the index manager FSM, fig. 4.2.22, the address manager FSM also returns

to the load state when the LRAM burst is finished, with burst_done asserted. The sequence diagrams of

fig. B.14 and fig. B.15 depict the interaction between the entities involved in a single syscall procedure that

writes/reads in an unsafe manner, i.e., without mutex protection, to the LRAM. The call is made from the

hardware task entity, using a procedure that only calls the lbus write or lbus read syscalls in single-word

or burst format.

4.3 Hardware Task

In HAL-ASOS the hardware task entity has a software application representative, as aforementioned

in fig. 3.1.4, which extends hardware operation by executing system calls that cannot be transposed to

programmable logic. This is the case of system calls related with descriptors, e.g., opening or closing

a binary file, socket, or pipe. The hardware task implemented follows a very similar structure to the one

existing in HAL-ASOS but it communicates with the host system via a new memory mechanism that makes

use of the AXI master interface (c.f section 5.1). Additionally, the hardware task of fig. 4.3.1 also differs

in the kernel call and response signals to execute the system calls because of module refactoring and the

addition of certain functionally. Altogether, this increased the number of signals in the S00 Kernel and

M00 Task interfaces. Moreover, it also does not exhibit a sleep feature regarding the state flip-flop FFST,

as it was removed from the kernel. As it is possible to see in fig. 4.3.1, the hardware task behaves like

most architectures with a control unit, represented in blue (■), and a datapath represented in orange

(■), where the control unit asserts signals that activate certain datapath elements, e.g., the run signal

activating the black box IP, and reacts from signals from the datapath to consider state switching, e.g., the

done signal coming from the black box IP as well.

The hardware task’s FSM is composed by a series of states dependent on the number of extra features

needed, i.e., features that need Linux help to be carried out, and some other features that allow for the

activation of microkernel services, like timing events or execute memory operations, represented in green

(■).

As previously stated in section 4.2.2, the hardware task’s control unit reacts to certain microkernel

signals to start operation, task_run, or restart it, task_reset, and informs the microkernel when the pro-

cessing is done with the task_done signal. This is possible to see at the top of fig. 4.3.1. While the

Chapter 4. Supporting Microkernel 90

Export

CE
D Q

reset
clk

FFST

user procedure 1

user procedure 2

Combinational

State Logic

0

1

G0

Black Box IP

State C

Import

S00_KERNEL

calls

calls

Control Unit
M00_TASK

State B

Datapath

(Not Pipelined)

block_task

task_reset

resetn
task_run

task_run/

State A

valid
index

index_delayed1
sched_progress

procedure_id
procedure_return

syscall_id
return_arg

this_call
enable_index
inc_index
enable_sched
procedure_id
kfifo_status
kfifo_cmd_id
procedure_param
bound_to_kernel
syscall_id
parameters

task_done

Kernel

Response

Kernel Call

Kernel Call

reset_i

state next_state

switch_state

M0

reset

run done

reset_i

params_1params_0 U0

HW-Task

Extended Features

(expanded)

P0 P1

valid/

Figure 4.3.1: Hardware Task: Simplified Example Architecture, adapted [62].

task_reset signal clears the state flip-flop, labelled as FFST, the inverted block_task signal functions as

ce for it. This way, the hw-task’s state remains the same whilst the microkernel is executing a syscall. One

major difference of a typical control unit and datapath architecture is that, in this case, the hardware task

can make a user procedure call per state, which consequently dictates the active signals for the kernel

call (P1). In a similar way, the results of syscall operation are reflected by the kernel through the signals

of the kernel response (P2). These extended features will be explained in more detail in section 5.1. Usu-

ally, the parameters and returns of these extended procedures in each state are fed and retrieved directly

onto/from the black box datapath elements (U0). Here this can be observed with the params_0 and

params_1 vectors. Additionally, as laid out by HAL-ASOS, the hw-task’s datapath, for most of the cases,

represents the algorithm to be offloaded, e.g., a FAST algorithm [62]. The latter can then be implemented

Chapter 4. Supporting Microkernel 91

sequentially, as it is represented in fig. 4.3.1, or exploit Instruction Level Parallelism (ILP) by the use of

various black box IPs in a pipelining configuration, as implemented in [62], if the need arises to achieve

timing closure.

4.4 Resource Management

The resource management of the microkernel is done with the decoder entities present in fig. 4.1.1.

Namely, the slave decoder, the page decoder, and the mutex decoder. As in [62], there are three main

areas where resource management is applied: (1) the area of the S00 Control interface, where the AXI

address must be properly decoded/translated into a kernel register, (2) the area of the S01 Data interface,

where the address must be forwarded to the local memory, and, lastly, in the selection of the active mutex

when using mutex-related system calls.

The most straightforward mapping happens in the S01 Data interface. This occurs since the local

memory is coded in way that infers resources of the project’s board after synthesis. Thus, the LRAM

already has address decoding as it infers a true dual port block RAM. The forwarding of the address from

the S01 Interface to the local memory only shrinks the interface’s output address to fit the address size

of the local memory, e.g., in this case, sixteen bits represent the address space of the AXI4 lite interfaces

since they have 64K of size, which means that only the nine least significant bits of the address are fed onto

the LRAM’s address A port because the depth of the peripheral is stipulated at 1K of size, c.f fig. 4.6.3.

The mapping of the S00 Control interface is the most complex since it uses two-level address decod-

ing as stipulated by HAL-ASOS. For this, it makes use of two combinational entities: the slave decoder,

section 4.4.1, and the page decoder, section 4.4.2. The combination of these decoders allows for the

organization of the S00 Control address space into pages. For more information about the actual register

mapping of the pages refer to section 4.6.3. This type of organization follows a similar scheme to virtual

addresses on Linux. So, it decomposes an address into multiple parts that, altogether, specify the physical

location of a certain register by identifying the page and its word offset. The S00 addressing considering

a twelve bit address is represented in fig. 4.4.1. In this case, the address’ bits 7 and 6 specify the page

of the register, e.g., “01” defines page one, and the bits 5 to 2 specify the word offset of the register,

e.g., “0011” defines word three. As it is possible to perceive the amount of bits that specifies a certain

page is two because the microkernel has four pages (from “00” to “11”), and the amount of bits for the

word offset is four because each page can be mapped up to sixteen registers (from “0000” to “1111”). A

detailed overview of the two-level address decoding of the S00 interface can be found in fig. 4.6.15.

Chapter 4. Supporting Microkernel 92

11 10 9 8 0 1 0 0 1 1 0 0

S00 Virtual Address

12 bits example

Page 1:
16x4=64 bytes
-> 16 (32-bit) words

Word Offset -> 0x03
Byte Offset -> 0x0C 0x08

Page 0

Page 1

Page 2

Page 3

Page 0x01
Offset -> 0x40

0x0C 0x0D 0x0E 0x0F

0x10

usedunused

Expands into

Figure 4.4.1: Virtual Register Addressing.

The third addressing area is the one concerning the mutexes. This area performs resource addressing

by utilizing the mutex decoder combinational entity, section 4.4.3. The mutex resources are also mapped

onto the S00 Control interface because of their dual port nature, fig. 4.4.2, having a specific region on the

interface’s address space, c.f section 4.6.3. Although, here one intends to portray the resource manage-

ment done regarding the B ports of both mutexes, i.e., how the microkernel handles mutex selection when

a mutex-related syscall is called, e.g., mutex lock, try-lock or unlock (c.f section 4.2.3). Regarding this,

the mutex decoder helps in that sense since it establishes the currently active mutex, and consequently

dictates which mutex data is used and forwarded from the SLD to the mutex and vice-versa. Further

information on the mutex decoder is provided in section 4.4.3.

4.4.1 Slave Decoder

The slave decoder is a fully combinational entity of the microkernel that divides the S00 Control AXI4

lite slave interface into multiple pages, hence the name. The unit was introduced in [62] as a way to

save target resources by multiplexing output data to various units in the same page and demultiplexing

input data coming in vector format from the same units. The RTL design of the slave decoder element is

represented in fig. 4.4.3. As it is possible to see, its primary logic element is the LUT L0, which takes some

Chapter 4. Supporting Microkernel 93

System Mutex

O_LOCKED

O_RD_ACK_A

O_WR_ACK_A

O_WR_ACK_B

O_STATUS

O_RD_ACK_BI_DIN_B

I_DIN_A

I_WR_CE_A

I_CS_A

I_RD_CE_A

I_CS_B

I_WR_CE_B

I_RD_CE_B

M00_AXI_ARESETN

M00_AXI_ACLK

Local Mutex

O_LOCKED

O_RD_ACK_A

O_WR_ACK_A

O_WR_ACK_B

O_STATUS

O_RD_ACK_B

FSM

I_DIN_B

I_DIN_A

I_WR_CE_A

I_CS_A

I_RD_CE_A

I_CS_B

I_WR_CE_B

I_RD_CE_B

M00_AXI_ARESETN

M00_AXI_ACLK

I_MUTEX_RXDATA

I_MUTEX_RD_CE

I_MUTEX_SELECT

I_MUTEX_ADDR

I_MUTEX_WR_CE O_WORD_RD_CE

O_WORD_SELECT [1]

O_WORD_WR_CE

Mutex Decoder (w/LUT 2:4)

O_MUTEX_TXDATA

O_MUTEX_WR_ACK

O_MUTEX_RD_ACK I_RXWORD [1]

O_TXWORD

I_RXWORD [0]

I_WR_ACK_BUS [1]

I_WR_ACK_BUS [0]

I_RD_ACK_BUS [0]

I_RD_ACK_BUS [1]

O_WORD_SELECT [0]
Mixed

D Q

rst

CE0
1 0

1

Mixed
D Q

rst

CE0
1 0

1

FSM

Fully Comb.
0
1 0

1

From page zero decoder

From page zero decoder

Hardware Resource Management

Mutex Selection

Figure 4.4.2: Mutex Resource Management Overview.

bits of the input address and uses them to specify the active pages. These select bits for the pages are

concatenated into a page_select array with size equal to the number of pages. The example of fig. 4.4.3 is

made for a generic scenario with N kernel pages and W words in each page, considering a 32-bit machine

word. The aforementioned LUT is enabled by the chip select provided by the AXI4 lite interface (S00

Control), c.f fig. 4.6.15. The data received by the slave decoder, rxdata, and the wr_ce and rd_ce signals

are forwarded to the page decoder entity, c.f section 4.4.2, to ultimately reach the slave modules. From a

post-synthesis standpoint this is possible to do if one does not surpass the fan-out threshold, which explains

why no decoding logic is used in these signals. Regarding data coming from multiple slaves, e.g., received

data, pagen_rxdata, read acknowledge, page_rd_ack, and write acknowledge, page_wr_ack, there is

decoding logic to generate only one word of data, txdata, one write acknowledge, wr_ack, and one read

acknowledge, rd_ack. The slave data is demultiplexed in M0, according to the same bits that identify the

Chapter 4. Supporting Microkernel 94

currently active page, while the acknowledges are generated by an unary OR of all the of the corresponding

page acknowledges, i.e., a logical OR of with all the write or read acknowledges (UG0 and UG1). The ports

marked as output, e.g., O_*, are directly connected to inputs of the AXI4 lite interface, c.f fig. 4.6.15 and

fig. 4.6.1. The HDL representation of the slave decoder is in listing 4.13. Future implementations of the

slave decoder element could improve the code scalability by using HDL generate statements.

Slave Decoder

Lookup

Table
(LUT)

(n+1):2**(n+1)

I3
I2
I1

O0
O1

ONEN

I_ADDR [n+w+2-1:2]
B(n+w+1)
B(n+w)

L0

I_CS

I_WR_CE

I_RXDATA [31:0]

O_TXDATA [31:0]

I_RD_CE

O_WR_ACK

O_RD_ACK

O_PAGE_SELECT [0:N-1]

O_PAGE_ADDR [w+2-1:2]

O_PAGE_WR_CE

O_PAGE_RD_CE

O_PAGE_TXDATA [31:0]

I_PAGEN_RXDATA [0:N-1][31:0]

I_PAGE_WR_ACK [0:N-1]

I_PAGE_RD_ACK [0:N-1]

0

1

N

M0 I_PAGE0_RX_DATA [31:0]

I_PAGE1_RX_DATA [31:0]

I_PAGEN_RX_DATA [31:0]

UG0

UG1

I_PAGE0_WR_ACK

I_PAGEN_WR_ACK

I_PAGE0_RD_ACK

I_PAGEN_RD_ACK

lut_out

lut_in

lut_en

N : N_PAGES

n: POW2(N_PAGES)

W: N_WORDS
w: POW2(N_WORDS)

B(n+w-1)

B(n+w+1:n+w-1)

Figure 4.4.3: Slave Decoder RTL Design Internal Architecture, adapted [62].

Listing 4.13: Slave Decoder (HDL).

1 -- Direct Connections
2 O_PAGE_ADDR <= I_ADDR(POW2(N_WORDS)+2-1 downto 2);
3 O_PAGE_WR_CE <= I_WR_CE;
4 O_PAGE_RD_CE <= I_RD_CE;
5 O_PAGE_TXDATA <= I_RXDATA;

7 -- Other Connections
8 O_WR_ACK <= unary_page_or(I_PAGE_WR_ACK);
9 O_RD_ACK <= unary_page_or(I_PAGE_RD_ACK);

11 -- Stage 1 address decoding
12 O_PAGE_SELECT <= lut_out;
13 lut_en <= I_CS;
14 ---
15 ADDR_DECODE_STAGE1_L0 : process (lut_en,I_ADDR,lut_in)
16 ---
17 begin
18 lut_in <= I_ADDR(POW2(N_PAGES)+POW2(N_WORDS)+2-1 downto POW2(N_WORDS)+2);

Chapter 4. Supporting Microkernel 95

19 lut_out <= (others => '0');
20 case to_integer(unsigned(lut_in)) is
21 when W_PAGE0_OFFSET => lut_out <= (C_PAGE0_BIT => lut_en, others => '0');
22 when W_PAGE1_OFFSET => lut_out <= (C_PAGE1_BIT => lut_en, others => '0');
23 when W_PAGE2_OFFSET => lut_out <= (C_PAGE2_BIT => lut_en, others => '0');
24 when W_PAGE3_OFFSET => lut_out <= (C_PAGE3_BIT => lut_en, others => '0');
25 when others => null;
26 end case;
27 end process ADDR_DECODE_STAGE1_L0;
28 ---

30 -- Slave RX data demultiplexing
31 ---
32 RX_DATA_DEMUX_M0 : process (I_ADDR, I_PAGEN_RXDATA)
33 ---
34 variable select_M0 : integer range 0 TO (N_PAGES-1);
35 begin
36 select_M0 := to_integer(unsigned(I_ADDR(POW2(N_PAGES)+POW2(N_WORDS)+2-1 downto POW2(

N_WORDS)+2)));
37 O_TXDATA <= (others => '0');
38 case select_M0 is
39 when W_PAGE0_OFFSET => O_TXDATA <= I_PAGEN_RXDATA(C_PAGE0_BIT);
40 when W_PAGE1_OFFSET => O_TXDATA <= I_PAGEN_RXDATA(C_PAGE1_BIT);
41 when W_PAGE2_OFFSET => O_TXDATA <= I_PAGEN_RXDATA(C_PAGE2_BIT);
42 when W_PAGE3_OFFSET => O_TXDATA <= I_PAGEN_RXDATA(C_PAGE3_BIT);
43 when others => null;
44 end case;
45 end process RX_DATA_DEMUX_M0;
46 ---

4.4.2 Page Decoder

The page decoder element, along the lines of the slave decoder, is also fully combinational and divides

a certain microkernel page into multiple words. Each one of these words then represents the data stored in

kernel registers with fixed positions in the S00 Control address space, c.f section 4.6.3. The page decoder

dictates the flow of data within a certain page, specifying the currently-active register word at any given

time. For this, its design also is based around a LUT element that specifies the active words, word_select,

activated by the page select signal, page_select, coming from the slave decoder. It is important to note

that every page has a slave decoder with direct connection to its registers, c.f fig. 4.6.15. These registers

are usually mapped in a level lower than the microkernel’s top-level inside specialized hardware resources,

e.g., mutex, LINTC, but can also trace back to a certain register mapped in the top-level associated with

unmapped register words, c.f fig. B.10. For simplification of the slave interfaces’ address spaces consider

that all unmapped registers words return “1facefff”, i.e., the unmapped-interface status. The rest of the

page decoder’s design complies with what was established for the slave decoder, but to feed multiple

registers, and decode their output data and acknowledges, instead of page-referrent data. The example

of fig. 4.4.4, as fig. 4.4.3, also refers to a kernel containing N pages each one with W words. The

HDL representation of the page decoder is in listing 4.14. As forementioned for the slave decoder, future

implementations of the page decoder could also focus on improving code scalability by using HDL generate

Chapter 4. Supporting Microkernel 96

statements.

Page Decoder

Lookup

Table

(LUT)

(w+1):2**(w+1)

I3
I2
I1

O0
O1

OWEN

I_PAGE_ADDR[w+2-1:2]
B(w+1)
B(w)
B(w-1)

L0

I_PAGE_SELECT

I_PAGE_WR_CE

I_PAGE_RXDATA [31:0]

O_PAGE_TXDATA [31:0]

I_PAGE_RD_CE

O_PAGE_WR_ACK

O_PAGE_RD_ACK

O_WORD_SELECT [0:W-1]

O_WORD_WR_CE

O_WORD_RD_CE

O_TXWORD [31:0]

I_RXWORD_N [0:W-1][31:0]

I_WR_ACK_BUS [0:W-1]

I_RD_ACK_BUS [0:W-1]

0

1

N

M0 I_RXWORD_0 [31:0]

I_RXWORD_1 [31:0]

I_RXWORD_N [31:0]

UG0

UG1

I_WR_ACK_0

I_WR_ACK_N

I_RD_ACK_0

I_RD_ACK_N

lut_out

lut_in

lut_en

I0B(w-2)

N : N_PAGES

n: POW2(N_PAGES)

W: N_WORDS
w: POW2(N_WORDS)

Figure 4.4.4: Page Decoder RTL Design Internal Architecture, adapted [62].

Listing 4.14: Page Decoder (HDL).

1 -- Direct Connections
2 O_WORD_WR_CE <= I_PAGE_WR_CE;
3 O_WORD_RD_CE <= I_PAGE_RD_CE;
4 O_TXWORD <= I_PAGE_RXDATA;

6 -- Other Connections
7 O_PAGE_WR_ACK <= unary_word_or(I_WR_ACK_BUS);
8 O_PAGE_RD_ACK <= unary_word_or(I_RD_ACK_BUS);

10 -- Stage 2 address decoding
11 O_WORD_SELECT <= lut_out;
12 lut_en <= I_PAGE_SELECT;
13 ---
14 ADDR_DECODE_STAGE2_L0 : process (lut_en,I_PAGE_ADDR,lut_in)
15 ---
16 variable select_L0 : integer range 0 TO (N_WORDS-1);
17 begin
18 lut_in <= I_PAGE_ADDR(POW2(N_WORDS)+2-1 downto 2);
19 select_L0 := to_integer(unsigned(lut_in));
20 lut_out <= (others => '0');
21 case select_L0 is
22 when W_WORD0_OFFSET => lut_out <= (C_WORD0_BIT => lut_en, others => '0');
23 -- MORE (From word 1 to E)
24 when W_WORDF_OFFSET => lut_out <= (C_WORDF_BIT => lut_en, others => '0');
25 when others => null;
26 end case;
27 end process ADDR_DECODE_STAGE2_L0;

Chapter 4. Supporting Microkernel 97

28 ---

30 -- RX word demultiplexing
31 ---
32 RX_WORD_DEMUX_M0 : process (I_PAGE_ADDR, I_RXWORD_N)
33 ---
34 variable select_M0 : integer range 0 TO (N_WORDS-1);
35 begin
36 select_M0 := to_integer(unsigned(I_PAGE_ADDR(POW2(N_WORDS)+2-1 downto 2)));
37 O_PAGE_TXDATA <= (others => '0');
38 case select_M0 is
39 when W_WORD0_OFFSET => O_PAGE_TXDATA <= I_RXWORD_N(C_WORD0_BIT);
40 -- MORE (From word 1 to E)
41 when W_WORDF_OFFSET => O_PAGE_TXDATA <= I_RXWORD_N(C_WORDF_BIT);
42 when others => null;
43 end case;
44 end process RX_WORD_DEMUX_M0;
45 ---

4.4.3 Mutex Decoder

The mutex decoder follows the same architecture stipulated for the page decoder, section 4.4.2, but

assuming a single-bit address. This happens because, in this case, one only has two mutex entities to

select from, the local mutex and the system mutex, c.f fig. 4.4.2.

Mutex Decoder

Lookup

Table

(LUT)

(n+1):2**(n+1)

I3
I2
I1

O0
O1

ONEN

I_MTX_ADDR[n+2-1:2]
B(n+1)

L0

I_MTX_SELECT

I_MTX_WR_CE

I_MTX_RXDATA [31:0]

O_MTX_TXDATA [31:0]

I_MTX_RD_CE

O_MTX_WR_ACK

O_MTX_RD_ACK

O_WORD_SELECT [0:N-1]

O_WORD_WR_CE

O_WORD_RD_CE

O_TXWORD [31:0]

I_RXWORD_N [0:W-1][31:0]

I_WR_ACK_BUS [0:N-1]

I_RD_ACK_BUS [0:N-1]

0

1

N

M0 I_RXWORD_LMUTEX [31:0]

I_RXWORD_SYSMUTEX [31:0]

I_RXWORD_N [31:0]

UG0

UG1

I_WR_ACK_LMUTEX

I_WR_ACK_SYSMUTEX

I_RD_ACK_LMUTEX

I_RD_ACK_SYSMUTEX

lut_out

lut_in

lut_en

I0

N : N_MUTEX = 2

n: POW2(N_MUTEX)

Figure 4.4.5: Mutex Decoder RTL Design Internal Architecture.

Chapter 4. Supporting Microkernel 98

Each one of these mutexes respectively prevents race conditions related with the local memory, sec-

tion 4.5.3, and the main memory, section 4.6.5. The system calls specified for handling the mutex

resource, section 4.5.1, comply with the establishment of this bit’s logical state in the SLD to indicate the

currently active mutex.

The mutex decoder entity is the equivalent to the HAL-ASOS’ local bus decoder, but in this case it only

decodes the mutex resources, instead of including other hardware resources, like the LRAM, or the ZCU.

As forementioned in section 4.2.3, the dissertation work directly maps the SLD to the hardware resources

except for the mutexes, which use the mutex decoder logic element, fig. 4.4.5.

4.5 Hardware Resources

With the resource management presented in section 4.4 it is possible to access multiple services of

the accelerator through the S00 Control and S01 Data interfaces. This section will present all of these

host- and accelerator-available services, specifically, related to synchronization and exclusivity, interrupt

management, memory management, event management related with the aforementioned interfaces, and,

lastly, parameter configuration concerning the shared portion of main memory.

4.5.1 Hardware Mutex

The microkernel’s exclusivity mechanism follows the premises of HAL-ASOS, and, as so, it makes use

of two mutexes to implement mutual exclusion regarding the LRAM, with the LMUTEX, and the SYSRAM,

with the SYSMUTEX. The term SYSRAM refers to the section of the host’s main memory dedicated to

the accelerator. Despite protecting different memory segments they are both based on the same hard-

ware module with the internal architecture depicted in fig. 4.5.1. Since one did not have access to the

source code of HAL-ASOS, the development of the hardware mutex followed its available RTL schematic.

Figure 4.5.1 represents this schematic, but with some changes to fit the microkernel needs. One then in-

terpreted the available design and coded the hardware mutex similar to other modules of the microkernel.

Thus, as a whole, the functioning of the mutex is similar to the one in HAL-ASOS.

The first thing to note is that the hardware mutex is a dual port module. This means that it needs to

have logic that handles lock and unlock requests from the A port, regarding the host system, and also the

B port, concerning the hardware microkernel. For this, each port is associated with its own datapath. As

the module must be written and read by the host system, it needs to implement datapath logic to comply

Chapter 4. Supporting Microkernel 99

Internal Control Unit Signals

MUTEX

I_CLK

I_RESET

I_DIN_A

I_WR_CE_A

I_RD_CE_A

I_CS_A [0:N]

I_DIN_B

O_WR_ACK_A

O_RD_ACK_A

O_LOCKED

O_RD_ACK_B

O_WR_ACK_B

CE
D Q

reset

FF0

clk

K0

0

[29:0]

[30:0]
[30]

CE
D Q

reset

FF1

clk

K1

1

[29:0]

[30:0]
[30]

0

1

[30:0] O_STATUS

clear_b_i

[30:0]
write_b_i

write_a_i

CE
D Q

reset

FF2

clk

write_a_Q
write_a_D

I_WR_CE_B

I_RD_CE_B

I_CS_B CE
D Q

reset

FF3

clk
write_b_Q

write_b_D

clear_a_i

write_a_Q

write_b_Q

CE
D Q

reset

FF4

clk

CE
D Q

reset

FF5

clk

I_CS_A

I_CS_B

I_RD_CE_B

I_RD_CE_A

0

1

2

3

[30:0]

[31:0]

K3

[30:0]

[31:0]
[31]

K4lock_i

[31]
select_i(0)

select_i [1:0]

compare

Match

A0

ALU

write_a_i

write_b_i

CE
D Q

reset

FF6

clk

write_i

lock_i

select_i [1:0]

write_b_i

write_i

write_b_q

clear_b_i

clear_a_i

lock_i

valid_i

Control Unit

valid_i

[31]

I_WR_CE_A

I_WR_CE_B

[30:0]

M0

M1

LOCKED CHID OWNER_ID

31 30 29:0
Status

[31:0]

G0

G2

G1

G3

G4
G5

G6

G7

G8

G9

G11

G12

FFST

D Q
rst

next_state state

"0XXXXXXA" "0000ACEB"Owner
[29:0] [29:0]

clear_i

clear_i

G10

G13

Figure 4.5.1: Hardware Mutex RTL Design Internal Architecture, adapted [62].

with the generic bus model, i.e., the aforementioned model applied in the dissertation based on slave

module write and read acknowledges. For this effect, one has FF2 and FF4, which, respectively, generate

the write and read acknowledges for the port A (host port), and FF3 and FF5, which, respectively, generate

the write and read acknowledges for port B (microkernel port). This logic allows for the generation of the

acknowledges one clock cycle later after the assertion of the respective clock enable and chip select. This

can be seen in listing A.6. To perform a lock of the mutex it is necessary to write the owner ID of a certain

entity (host or kernel) to the data registers of the mutex. The host uses the flip-flop FF0, whilst the kernel

uses the flip-flop FF1, listing 4.15.

Listing 4.15: Hardware Mutex Data Registers (HDL).

1 --
2 ---- Datapath
3 --
4 cs_a_i <= I_CS_A(0) or I_CS_A(1);

6 -- Channel A data (OWNER_ID) latch
7 --

Chapter 4. Supporting Microkernel 100

8 data_a_D <= C_HW_CHANNEL_A_ID & I_DIN_A(C_OWNER_ID_OFFSET downto 0);
9 --
10 DATA_A_FF0 : process (I_CLK)
11 --
12 begin
13 if rising_edge(I_CLK) then
14 if (I_RESET = '1') or (clear_a_i = '1') then
15 data_a_Q <= (others => '0');
16 elsif (I_WR_CE_A = '1') then
17 data_a_Q <= data_a_D;
18 end if;
19 end if;
20 end process DATA_A_FF0;
21 --

23 -- Channel B data (OWNER_ID) latch
24 --
25 data_b_D <= C_HW_CHANNEL_B_ID & I_DIN_B(C_OWNER_ID_OFFSET downto 0);
26 --
27 DATA_B_FF1 : process (I_CLK)
28 --
29 begin
30 if rising_edge(I_CLK) then
31 if (I_RESET = '1') or (clear_b_i = '1') then
32 data_b_Q <= (others => '0');
33 elsif (I_WR_CE_B = '1') then
34 data_b_Q <= data_b_D;
35 end if;
36 end if;
37 end process DATA_B_FF1;
38 --

The owner ID of the hardware is always “0000ACEB”, while the owner ID of the host is “0XXXXXXA”.

The host’s owner ID was established this way because the software application might want to lock or

unlock the mutex with multiple threads, which means that no other thread other than the one that locked

the mutex can unlock it. This mimics the way a typical mutex object functions in software. The hardware

mutex functions in the following way: the first entity to write its owner ID to the data register of the mutex

acquires it; a successive write of another owner ID that is different from the one that locked the mutex

in first place does not unlock it, so it must wait for the release of the resource; the mutex is unlocked by

writing the same owner ID that locked the mutex to the data register; since one is talking about mutual

exclusion, only A or B can have the mutex resource at a certain time, this being favored as well by the

module’s control unit, c.f fig. 4.5.2. Internally, the writing of the owner ID to the data register, FF0 or

FF1, depending on the entity, concatenates the 30-bit owner ID word with a bit indicating its channel ID,

at K0/K1. A ’0’ represents the A channel, i.e., the host system, and ’1’ represents channel B, i.e., the

hardware kernel. The FF0 and FF1 registers actually store the 30-bit words after concatenation. The

assertion of the write_a_i or the write_b_i are fed onto the mutex FSM but also promote the data in FF0

and FF1 to the register’s Q output, respectively.

Chapter 4. Supporting Microkernel 101

Listing 4.16: Hardware Mutex Multiplexers (HDL).

1 -- Channel data decoding
2 --
3 DATA_DECODING_M0 : process (select_i(0),data_a_Q,data_b_Q)
4 --
5 begin
6 data_M0 <= (others => '0');
7 case select_i(0) is
8 when '0' => data_M0 <= data_a_Q;
9 when '1' => data_M0 <= data_b_Q;
10 when others => null;
11 end case;
12 end process DATA_DECODING_M0;
13 --

15 -- Status decoding
16 --
17 STATUS_DECODING_M1 : process (select_i,lock_i,data_a_Q,data_b_Q,status_Q)
18 --
19 variable select_M1 : INTEGER RANGE 0 TO 3;
20 begin
21 select_M1 := to_integer(unsigned(select_i));
22 data_M1 <= (others => '0');
23 case select_M1 is
24 when 0 => data_M1 <= lock_i & data_a_Q;
25 when 1 => data_M1 <= lock_i & data_b_Q;
26 when 2 | 3 => data_M1 <= status_Q;
27 when others => null;
28 end case;
29 end process STATUS_DECODING_M1;
30 --

In the FSM, one expects the assertion of these write_a_i and write_b_i signals. The FSM then passes

from state #0, deemed as free, to #4 accept_a or #1 accept_b depending on the latter. The channel

considered as priority is the B channel, pertaining to the kernel. This observed in fig. 4.5.2 since one

can only enter accept_a if write_b_i is not asserted. Following the FSM flow, when reaching accept_b or

accept_a, the mutex clears the corresponding data register (FF0 or FF1), and selects the corresponding

word in the M0 multiplexer. The select_i signal with “01” selects the channel B word containing the owner

ID and the channel ID, and the same signal with “00” selects the channel A word. Note that only the

least significant bit of the select is used in M0. The HDL referent to the M0 and M1 multiplexers is in

listing 4.16.

These words, FF1_Q and FF0_Q are also concatenated in K3/K4 with their respective lock bit. If

the flow of the mutex’s FSM follows the channel B then the bit will be asserted on channel B, and the

same happens for channel A if the FSM performs a channel A lock. This is dictated by the lock_i output

portrayed in the accept_b/owned_b and accept_a/owned_a states. The owned_b and owned_a states

change the select output accordingly. While the owned_a state selects “10” the owned_b state selects

“11”, both in multiplexer M1. This is done to keep the mutex status register data the same, i.e., indicating

a lock, until the arrival of a new write on one of the data registers that changes the valid_i signal from ’0’

to ’1’.

Chapter 4. Supporting Microkernel 102

#0. FREE
/SELECT <- "11"

/SELECT <- "01"
/CLEAR_B

#1. ACCEPT_B

/SELECT <- "01"

/CLEAR_B

#3. RELEASE_B

/SELECT <- "11"

/LOCK

#2. OWNED_B
/SELECT <- "10"

/LOCK

#5. OWNED_A #4. ACCEPT_A

#6. RELEASE_A

WRITE_B/

Priority ChannelFSM Input

FSM Output

A/

/B

WRITE_B_Q/ && VALID/WRITE_A_Q/ && VALID/
WRITE_A/

&&

WRITE_B/

Channel B Lock-Release SequenceChannel A Lock-Release Sequence

/WRITE
/LOCK

/WRITE

/SELECT <- "00"

/CLEAR_A
/WRITE

/SELECT <- "00"
/CLEAR_A

/WRITE
/LOCK

/CLEAR

Figure 4.5.2: Hardware Mutex Finite State Machine (FSM), adapted [62], HDL in listing A.7.

As stated, the mutex is only unlocked if the owner ID and channel ID written to the respective date

register are the same. This comparison is done in A0, which asserts the valid_i signal, listing 4.17, that

is then fed onto the FSM. The combination of the valid_i signal and the respective indicator that the data

register was written again, with the assertion of write_b_q or write_a_q, makes the FSM go to release_b

or release_a in the next clock cycle, respectively.

Listing 4.17: Hardware Mutex Valid Generation (HDL).

1 -- Owner comparison (ALU)
2 --
3 valid_i <= '1' when status_Q(MUTEX_DATA_WIDTH-1-1 downto 0) = data_M0 else '0';
4 --
5 -- MORE (Control Unit)

In these states, #3 or #6, the select output is then changed again to save the unlock word, FF0_Q or

FF1_Q with the lock bit not asserted, onto the status register with the write_i signal assertion. The state

release_b uses “01” to select the word coming from the channel B datapath, while the state release_a

uses “00” to select the word from the channel A datapath portion. Both states clear their respective data

register with clear_b or clear_a. On the next clock cycle the FSM goes to #0 again where it keeps selecting

“11” to use what is on the status register, and also clears it with clear_i. The mutex’s status word (coming

from FF6) is then decoded in the microprogram to perform the mutex-related system calls, and the locked

Chapter 4. Supporting Microkernel 103

output, o_locked is used specifically in the LMUTEX to block access to the LRAM internally. The HDL

representing the status register is represented in listing 4.18.

Listing 4.18: Hardware Mutex Status Register (HDL).

1 -- Status latch
2 --
3 status_D <= data_M1;
4 --
5 STATUS_FF6 : process (I_CLK)
6 --
7 begin
8 if rising_edge(I_CLK) then
9 if (I_RESET = '1') or clear_i = '1' then
10 status_Q <= (others => '0');
11 elsif (write_i = '1') then
12 status_Q <= status_D;
13 end if;
14 end if;
15 end process STATUS_FF6;
16 --
17 O_STATUS <= status_D;
18 O_LOCKED <= status_D(C_LOCKED_BIT);

In the top left corner of HAL-ASOS is depicted the structure of the mutex status word and the owner

IDs from channel A and B. The hardware mutex control unit’s representation in HDL is represented in

listing A.7. The signals marked in blue (■), represent signals coming from the control unit.

4.5.2 Local Interrupt Controller

As it happened in HAL-ASOS, the synchronization with the host system side, in this case containing

KIVIO, c.f section 3.2, is performed with the utilization of the Local Interrupt Controller (LINTC) resource,

fig. 4.5.3. Specifically, this module helps with the notification of the host via Interrupt Request (IRQ),

pertaining actions that must be promptly executed, e.g., checking the allocated portion of main memory

in the case of important data exchange, or executing specific actions when the hardware microkernel

identifies a fault.

For this, the resource implements two registers available to the host system through the S00 Control

interface, with FF2 representing the LINTC’s control register (writable/readable) and with FF3 concerning

the LINTC’s status register (read-only), both represented in yellow boxes (■), listing 4.19. The structure of

the control register word is represented in the top-right corner of fig. 4.5.3 alongside with the structure of

the status register word.

The module receives an interrupt source bit vector with the logical state of multiple interrupt sources.

Each source then propagates the first stage of IRQ generation, which is the two cycle synchronizer/filter,

represented by the FF4 and FF5 flip-flops. As it is considered a sensitive signal, the interrupt source needs

this stage to assure protection against metastability, despite, higher clock frequencies might demand for

Chapter 4. Supporting Microkernel 104

DebounceDebounce

Status Register

Local Interrupt Controller

O_RD_ACK

I_WR_CE

I_CS [0:N] CE
D Q

reset

FF0

clk

O_WR_ACK

G1

G2

write_ack_d

write_ack_q

CE
D Q

reset

FF1

clk

I_RD_CE

G4

G3

read_ack_d

read_ack_q

UG0

CLOCK

RESET

(I_CLK)

(I_RESET)

CE
D Q

reset

FF2

clk
D Q

reset

FF3

clk

I_RXDATA [31:0] [31:0] O_STATUS

Control Register

O_CONTROL

[31:0]

[31:0]I_CS(0)
G5

FF4

D Q
rst

FF5

D Q
rst

FF6

D Q
rst

CE
D Q

reset

FF7

clk

G7

G8

EN INTR UNUSED

31 30:7
Control CLR2

5
CLR1

4
CLR0

3

intr_mask(i)

control_q.intr_clear(i)G9

CE
D Q

reset

FF8

clk

G8en_intr

I_INTR_SRC [0:2]

INTR RAISE UNUSED

31 30:3
Status LMTX

2
SMTX

1
UPDT

0

LMTX

2
SMTX

1
UPDT

0

intr_raise

2 Cycle Synchronizer

src(i)

intr_status(i)

control_d status_q

control_q

O_IRQ_PIN

w/ N = REG_NUM

clk
Hold

i_sig o_sig

clearreset

H3

intr_raise

CLRP

6

control_q.clrp

en_intr

ce

CE

clear Q[1:0]D[1:0]

inc

load

clk

C0

'1'

I_RESET

Counter

0
OV

o_sig

0

G19
OV

O_INTR_RAISE

UG18

Page 0 Decoder Signals

Figure 4.5.3: Local Interrupt Controller RTL Design Internal Architecture (Simplified), expanded in fig. B.2.

a three-stage synchronizer/filter. The signal then propagates to FF6 where a debounce stage is applied

(also associated with the G7 gate), this avoids any glitches that might occur in the span of one clock cycle.

The next flip-flop is the one responsible for storing the status of a certain interrupt, and thus, it is clock

enabled by the interrupt mask, i.e., an interrupt must be masked to generate an IRQ.

Listing 4.19: LINTC Control and Status Registers (HDL).

1 -- MORE (Acknowledge Generation Logic)
2 --
3 CONTROL_FF2 : process (I_CLK)
4 --
5 begin
6 if rising_edge(I_CLK) then
7 if(I_RESET = '1') then
8 control_q <= intc_vector_to_control_data((others => '0'));
9 elsif I_WR_CE = '1' and I_CS(0) = '1' then
10 control_q <= intc_vector_to_control_data(I_RXDATA);
11 end if;
12 end if;
13 end process CONTROL_FF2;
14 --
15 O_CONTROL <= intc_control_data_to_vector(control_q);

17 --
18 STATUS_FF3 : process (I_CLK)
19 --
20 begin
21 if rising_edge(I_CLK) then
22 if(I_RESET = '1') then
23 status_q <= intc_vector_to_status_data((others => '0'));
24 else

Chapter 4. Supporting Microkernel 105

25 status_q <= status_d;
26 end if;
27 end if;
28 end process STATUS_FF3;
29 --
30 O_STATUS <= intc_status_data_to_vector(status_q);

32 -- MORE (IRQ Logic)

The areas represented in dashed gray (■) represent logic that is replicated for each one of the interrupt

sources through a generate statement in the HDL. Concerning this, the control register has three clear bits

and three mask bits, while the status register has three status bits, all associated with the three interrupt

sources provided, i.e., local mutex, system mutex, and update. It is then the responsibility of KIVIO, to

have an handler for the interrupt and act depending on the contents of the status register, i.e., according

to the interrupts’ status bits. The HDL for the IRQ logic is represented in listing 4.20

Listing 4.20: LINTC IRQ Logic (HDL).

1 --
2 INTR_GEN:
3 for i in 0 to C_INTR_NUM-1 generate
4 --
5 begin
6 --
7 SYNC_FFI4_FFI5 : process (I_CLK)
8 --
9 begin
10 if rising_edge(I_CLK) then
11 if(I_RESET = '1') then
12 src_q(i) <= '0';
13 src_q2(i) <= '0';
14 else
15 src_q(i) <= I_INTR_SRC(i);
16 src_q2(i) <= src_q(i);
17 end if;
18 end if;
19 end process SYNC_FFI4_FFI5;
20 --

22 deb_src_i(i) <= src_q2(i) and not(deb_src_q(i));
23 --
24 DEBOUNCE_FFI6 : process (I_CLK)
25 --
26 begin
27 if rising_edge(I_CLK) then
28 if(I_RESET = '1') then
29 deb_src_q(i) <= '0';
30 else
31 deb_src_q(i) <= src_q2(i);
32 end if;
33 end if;
34 end process DEBOUNCE_FFI6;
35 --

37 mask_src_d(i) <= deb_src_q(i) or mask_src_q(i);
38 --
39 STATUS_FFI7 : process (I_CLK)
40 --
41 begin
42 if rising_edge(I_CLK) then
43 if(I_RESET = '1') or (control_q.clear(i) = '1') then
44 mask_src_q(i) <= '0';
45 elsif control_q.mask(i) = '1' then
46 mask_src_q(i) <= mask_src_d(i);

Chapter 4. Supporting Microkernel 106

47 end if;
48 end if;
49 end process STATUS_FFI7;
50 --

52 status_d.unused <= (others => '0');
53 --
54 STATUS_D_UPDT_0 : process(mask_src_q(i))
55 --
56 begin
57 status_d.status(i) <= mask_src_q(i);
58 end process STATUS_D_UPDT_0;
59 --

61 intr_i(i) <= mask_src_q(i) and not(deb2_src_q(i));
62 --
63 DEBOUNCE2_FFI8 : process (I_CLK)
64 --
65 begin
66 if rising_edge(I_CLK) then
67 if(I_RESET = '1') or control_q.clear(i) = '1' then
68 deb2_src_q(i) <= '0';
69 elsif control_q.enable_intr = '1' then
70 deb2_src_q(i) <= mask_src_q(i);
71 end if;
72 end if;
73 end process DEBOUNCE2_FFI8;
74 --
75 end generate INTR_GEN;
76 --

78 --
79 SYNC_FF19 : process (I_CLK)
80 --
81 begin
82 if rising_edge(I_CLK) then
83 if(I_RESET = '1') then
84 irq_sig_q <= '0';
85 else
86 irq_sig_q <= intr_i(0) or intr_i(1) or intr_i(2);
87 end if;
88 end if;
89 end process SYNC_FF19;
90 --

92 --
93 STATUS_D_UPDT_1 : process(irq_sig_q)
94 --
95 begin
96 status_d.intr_raise <= irq_sig_q;
97 O_INTR_RAISE <= irq_sig_q;
98 end process STATUS_D_UPDT_1;
99 --
100 -- MORE (Counter and Hold Units)

Each one of the clear bits of the control register word reset their respective status register, in this

generic case represented as FF7, and the control bits 2 to 0 serve as the interrupt masking signals, also

generically represented in FF7. After, the flip-flop FF8 applies another layer of debounce to guarantee

signal stability. This particular register is clock enabled by the global interrupt enabling/masking, which

means that if the en_intr signal is not asserted the IRQ will not be generated.

Lastly, the signal enters the hold entity H3 where the signal is held for four clock cycles to assure the

host can perceive it. The establishment of four clock cycles is determined by the counter unit C0, since

Chapter 4. Supporting Microkernel 107

one used a 2-bit counter with the overflow signal as clear input of H3. This could also be done with four

flip-flops in cascade, but this approach is more scalable since it allows rapid extension of the hold cycles

by adjusting the counter. Additionally, the interrupt raised signal, deemed as intr_raise is exposed as an

output of the module to allow synchronization with the microprogram in what relates to the LINTC write

system call, c.f section 4.2.3. These two units are represented in listing 4.21

Listing 4.21: LINTC Counter and Hold Units (HDL).

1 -- Interrupt pin hold
2 hold_reset_i <= I_RESET or control_q.clear_pin;
3 --
4 IRQ_PIN_HOLD_H3 : entity HOLD
5 --
6 port map (
7 I_CLK => I_CLK,
8 I_RESET => hold_reset_i,
9 I_CE => control_q.enable_intr,
10 I_CLEAR => counter_ov_i,
11 I_SIG => irq_sig_q,
12 O_SIG => irq_pulse_i
13);
14 --
15 O_IRQ_PIN <= irq_pulse_i;

17 --
18 IRQ_COUNTER_C0 : entity COUNTER_LOAD
19 --
20 generic map(
21 COUNT_WIDTH => 2)
22 port map(
23 I_CLK => I_CLK,
24 I_CE => '1',
25 I_RESET => I_RESET,
26 I_INC => irq_pulse_i,
27 I_LOAD => '0',
28 I_D => (others => '0'),
29 O_Q => OPEN,
30 O_COUNTER_OV => counter_ov_i
31);
32 --

4.5.3 Local Memory

The introduction of a kernel local memory was proposed by [62] in its research and its main function

was to store variables related to the hardware task, whilst, paired with the ZCU, acted similarly to a cache.

With this one means that the memory was the temporary storage for data that was intended to go to the

host’s main memory. As the HAL-ASOS’ core with the microprogram functions similarly to a CPU, the ZCU

allowed data transfers from the local to main memory (or vice-versa) without the intervention of the core

or central processing unit of the kernel in a DMA-like fashion, hence the term zero copy.

In the dissertation’s scenario, since one did not implement a ZCU, the main purpose of the LRAM is

solely to store hw-task variables internally with the use of appropriate system calls that operate over it, or

other data pertaining to the hw-task but coming from the host system through the AXI4 lite interface S01

Chapter 4. Supporting Microkernel 108

Local RAM

True Dual Port RAM

CS_A

WR_A

ADDR_A

DIN_A

DOUT_A

CS_B

WR_B

ADDR_B

DIN_B

DOUT_B

CLK_A CLK_B

D Q

FF1

clk
D Q

clk

D Q
clk

D Q
clk

CLOCK A(I_CLK_A) CLOCK B(I_CLK_B)

I_CS_A

I_ADDR_A

I_DIN_A

I_DOUT_A

I_WR_CE_A

O_RD_ACK_A

O_WR_ACK_A

FF0

FF3

FF2

I_ADDR_B

I_DIN_B

I_DOUT_B

O_WR_ACK_B

I_CS_B

I_WR_CE_B

O_RD_ACK_B

Channel A Channel B

Single Bank

32b:1024w

(4KBytes)

G0

G1

G2

G2

Figure 4.5.4: Local Random-Access Memory (LRAM) RTL Design Internal Architecture.

Data. In this case, the transfers of data from the hardware to the main memory are done directly, utilizing

an AXI4 master interface that supports burst transactions. More on that later in section 4.6.5.

HAL-ASOS implemented this memory element as a true dual-port synchronous RAM. The same ap-

proach was followed in the dissertation’s work, fig. 4.5.4, implementing a RAM capable of being simul-

taneously written or read by the host system through the A port, and by the kernel/task through the B

port. Since the RAM allows this type of interface it needs to be protected with some sort of synchronization

mechanism that implements mutual exclusion and, thus, prevents race conditions. That mechanism is

the local mutex. The latter is represented in fig. 4.1.1 with a connection to the local memory passing

through a blue lock icon to symbolize the protection enforced by this entity. Refer to section 4.5.1 for more

information on the design of the hardware mutex. The logical combination of the mutex’s locked signal

and the LRAM’s write enable gives origin to the memory’s write clock enable. A write to the memory is

only possible when both of them are asserted. The definition of the logical expression that generates the

LRAM’s write clock enable is given by the local RAM protection entity (c.f fig. B.10). This entity is very

simple, but it was used to avoid conflicts when inferring the target board’s block RAM, by assuring that the

Chapter 4. Supporting Microkernel 109

RAM only has one write clock enable for each one of the ports, listing 4.22.

Listing 4.22: Local Memory (TDP RAM) Port Logic (HDL).

1 -- MORE
2 type ram_t is array (RAM_DEPTH-1 downto 0) of std_logic_vector (RAM_W_WIDTH-1 downto 0);
3 shared variable ram_name : ram_t;

5 begin
6 --
7 PORT_A : process(I_CLK_A)
8 --
9 begin
10 if(I_CLK_A'event and I_CLK_A = '1') then
11 if(I_CS_A = '1') then
12 if(I_WR_CE_A = '1') then
13 ram_name(to_integer(unsigned(I_ADDR_A))) := I_DIN_A;
14 end if;
15 O_DOUT_A <= ram_name(to_integer(unsigned(I_ADDR_A)));
16 end if;
17 end if;
18 end process PORT_A;
19 --

21 --
22 PORT_B : process(I_CLK_B)
23 --
24 begin
25 if(I_CLK_B'event and I_CLK_B = '1') then
26 if(I_CS_B = '1') then
27 if(I_WR_CE_B = '1') then
28 ram_name(to_integer(unsigned(I_ADDR_B))) := I_DIN_B;
29 end if;
30 O_DOUT_B <= ram_name(to_integer(unsigned(I_ADDR_B)));
31 end if;
32 end if;
33 end process PORT_B;
34 --
35 -- MORE (Acknowledge Generation)

Another thing to note is that HAL-ASOS uses four 8-bit memories with 1K of depth (10-bit address)

leveraging the simplicity of typical microprocessor memory banking. Despite, the local memory of the

dissertation uses one 32-bit memory with 1K of depth since it provided the same functionality, i.e., the

output of a 32-bit word with one cycle of latency, whilst having reduced design effort for this particular

case, also in listing 4.22.

Moreover, since the memory segment needs to comply with the generic bus architecture aforemen-

tioned in other sections, i.e., based on slave acknowledges, to make use of the AXI4 lite interface, sec-

tion 4.6.1, it was imperative to add read and write acknowledge generation logic to the design (FF0 to

FF3). When both the chip select and the write clock enable of the RAM are asserted one has the write

acknowledge on the next clock cycle. Although, since there is not a read clock enable, the read acknowl-

edge is generated one cycle after the assertion of the chip select with the write clock enable not asserted.

This applies for both memory ports. The LRAM’s acknowledge logic implementation in HDL can be seen

in listing 4.23.

Chapter 4. Supporting Microkernel 110

Listing 4.23: Local Memory (TDP RAM) Acknowledge Generation (HDL).

1 -- MORE (Port Logic)
2 --
3 ACK_REGS_A : process(I_CLK_A)
4 --
5 begin
6 if(I_CLK_A'event and I_CLK_A = '1') then
7 O_WR_ACK_A <= i_wr_ce_a and i_cs_a;
8 O_RD_ACK_A <= not(i_wr_ce_a) and i_cs_a;
9 end if;
10 end process ACK_REGS_A;
11 --

13 --
14 ACK_REGS_B : process(I_CLK_B)
15 --
16 begin
17 if(I_CLK_B'event and I_CLK_B = '1') then
18 O_WR_ACK_B <= i_wr_ce_b and i_cs_b;
19 O_RD_ACK_B <= not(i_wr_ce_b) and i_cs_b;
20 end if;
21 end process ACK_REGS_B;
22 --
23 end architecture rtl;

4.5.4 Slave Interface Event Manager

The slave interface event manager, fig. 4.5.5, is the module that handles the timing of the events for

both AXI4 lite interfaces, S00 Control and S01 Data. Regarding this, it uses an event manager that reuses

the event’s module of the SLD, c.f section 4.2.5.1, but adds functionality in terms of compliance with

the generic bus model, implements an interface timeout counter, and adds specific registers to hold the

interfaces’ status.

Firstly, as seen in other dissertation modules, the interface event manager adds write and read ac-

knowledge generation logic to comply with the established protocol. For this the flip-flops FF2 and FF3

generate the write and read acknowledges one cycle after the assertion of the write clock enable, wr_ce,

and the chip select, cs. Both flip-flops have logic dedicated to reset their state when the wr_ce is not

asserted anymore and the wr_ack was emitted (G7/G8 and G9/G10).

This timing entity is deeply related with the AXI4 lite interface state machine, c.f fig. 4.6.6. Thus, the

FSM controls the module by specifying its input triggers, enabling the timeout counter C0, and determining

the events to wait on. The aforementioned counter starts at zero timeouts and increments every time a

timeout occurs until there is an overflow. With a counter overflow, the gate G2 gives origin to the assertion

of the counter clear input, and the latter is reset to its initial state. For the waiting on events, this unit

specifies a fixed timeout value of sixteen cycles. Moreover, the module has two explicit read-only registers

(FF0 and FF1), which hold the current status of both slave interfaces (S00 and S01), and two implicit

Chapter 4. Supporting Microkernel 111

0

1

Slave Interface Event Manager

CLOCK

RESET

(I_CLK)

(I_RESET)

Local Event Manager

EVENT_ELAPSED

READY

TIMEOUT

TIME_REMAINING

RESET

TRIGGER_A

TRIGGER_B

EVENT

TIMEOUT_VAL

CLK

I_S00_TRIGGER

I_S01_TRIGGER

CE

clear Q[15:0]D[15:0]

inc

load

clk

C0

0

Counter

OV
0

I_S00_ENABLE

Slave Timeout

Counter

I_S00_WR_EVENT

D Q

reset

FF1

clk

S01_status_q

O_RD_ACK

status_d

16I_S00_RD_EVENT
G0

I_S01_ENABLE

G1

I_S01_WR_EVENT

I_S01_RD_EVENT

O_TIMEOUT

G2event_i

enable_i

CE

D Q

reset

FF0

clk

status_d CE

S00_status_q

timeout_i
I_S00_ENABLE

G3
I_S01_ENABLE

G4

G5 G6
I_S00_WR_EVENT
I_S00_RD_EVENT

I_S01_WR_EVENT
I_S01_RD_EVENT

I_WR_CE

I_CS [0:3] CE
D Q

reset

FF2

clk

O_WR_ACK

G7

G8

write_ack_d

write_ack_q

CE
D Q

reset

FF3

clk

I_RD_CE

G9

G10

O_TIMEOUT_CNT

read_ack_d

read_ack_q

O_S01_STATUS

O_S00_STATUS

EVM0

timeout_i

timeout_cnt_i

time_remaining_i O_TIME_REMAINING

UG11

"fe11dead"

"bad1face"

I_S00_STANDBY

I_S01_STANDBY

G12

standby_i

M0

Figure 4.5.5: Slave Interface (S00 and S01) Event Manager RTL Design Internal Architecture.

read-only registers inside the local event manager and the timeout counter, which hold the remaining time

until timeout and the number of timeouts since the kernel started running, respectively. With specific logic

dependent on AXI4 lite interface FSM triggering, the module is capable of defining three status words for

the slave interfaces: (1) “00000000”, which indicates correct operation, (2) “fe11dead”, which indicates

AXI signal failure, and (3) “bad1face”, which indicates a failure of slave acknowledge signals. For more

information on the triggering of this module by the AXI4 lite interface refer to section 4.6.1. The HDL

representation of the slave interface event manager is portrayed by listing 4.24.

Listing 4.24: Slave Interface Event Manager (HDL).

1 cs_i <= I_CS(0) or I_CS(1) or I_CS(2) or I_CS(3);
2 event_i <= I_S00_WR_EVENT or I_S00_RD_EVENT or I_S01_WR_EVENT or I_S01_RD_EVENT;
3 timeout_value_i <= std_logic_vector(to_unsigned(C_TIMEOUT_CYCLES,timeout_value_i'LENGTH));
4 enable_i <= I_S00_ENABLE or I_S01_ENABLE;
5 standby_i <= I_S00_STANDBY or I_S01_STANDBY;
6 reset_i <= I_RESET or timeout_cnt_ov_i;
7 ---
8 EVENT_MANAGER_S0 : entity EVENT_MANAGER
9 ---
10 port map(
11 I_CLK => I_CLK,
12 I_RESET => I_RESET,
13 I_TRIGGER_B => I_S00_TRIGGER,
14 I_TRIGGER_A => I_S01_TRIGGER,
15 I_EVENT => event_i,
16 I_TIMEOUT_VALUE => timeout_value_i,
17 O_EVENT_ELAPSED => OPEN,
18 O_READY => OPEN,
19 O_TIMEOUT => timeout_i,
20 O_TIME_REMAINING => time_remaining_i

Chapter 4. Supporting Microkernel 112

21);
22 ---
23 O_TIMEOUT <= timeout_i;
24 O_TIME_REMAINING <= std_logic_vector(to_unsigned(to_integer(unsigned(time_remaining_i)),

O_TIME_REMAINING'LENGTH));

26 ---
27 TIMEOUT_COUNTER_C0 : entity COUNTER_LOAD
28 ---
29 generic map(
30 COUNT_WIDTH => C_SLV_IF_EVENT_MANAGER_WIDTH)
31 port map(
32 I_CLK => I_CLK,
33 I_CE => enable_i,
34 I_RESET => reset_i,
35 I_INC => timeout_i,
36 I_LOAD => '0',
37 I_D => (others => '0'),
38 O_Q => timeout_count_i,
39 O_COUNTER_OV => timeout_cnt_ov_i
40);
41 ---
42 O_TIMEOUT_CNT <= std_logic_vector(to_unsigned(to_integer(unsigned(timeout_count_i)),

O_TIMEOUT_CNT'LENGTH));

44 ---
45 STATUS_M0 : process (standby_i)
46 ---
47 begin
48 status_d <= (others => '0');
49 case standby_i is
50 when '0' =>
51 status_d <= x"fe11dead";
52 when '1' =>
53 status_d <= x"bad1face";
54 when others =>
55 null;
56 end case;
57 end process STATUS_M0;
58 ---

60 ---
61 STATUS_FF0 : process (I_CLK)
62 ---
63 begin
64 if rising_edge(I_CLK) then
65 if(I_RESET = '1') or I_S00_WR_EVENT = '1' or I_S00_RD_EVENT = '1' then
66 s00_status_q <= (others => '0');
67 elsif I_S00_ENABLE = '1' and (timeout_i = '1') then
68 s00_status_q <= status_d;
69 end if;
70 end if;
71 end process STATUS_FF0;
72 ---
73 O_S00_STATUS <= s00_status_q;

75 ---
76 STATUS_FF1 : process (I_CLK)
77 ---
78 begin
79 if rising_edge(I_CLK) then
80 if(I_RESET = '1') or I_S01_WR_EVENT = '1' or I_S01_RD_EVENT = '1' then
81 s01_status_q <= (others => '0');
82 elsif I_S01_ENABLE = '1' and timeout_i = '1' then
83 s01_status_q <= status_d;
84 end if;
85 end if;
86 end process STATUS_FF1;
87 ---
88 O_S01_STATUS <= s01_status_q;

90 -- MORE (Write and Read Acknowledgement Logic)

Chapter 4. Supporting Microkernel 113

4.5.5 Interface Configuration Registers

The interface registers module only serves the purpose of storing important information related to the

shared memory segments, namely the SYSRAM and the LRAM. For this unit implements three writable and

readable registers associated with the SYSRAM and one read-only register associated with the LRAM. The

register FF2 stores the base address where the allocated memory for the accelerator starts. The contents

of this register are then used later in the SLD to add the base to the intended address, c.f section 4.2.5.

Similarly, the register FF3 stores the initial position of the memory mapped KFIFO, being used in extended-

feature procedures to once again calculate the correct address, c.f section 5.1. The register FF4 stores the

beginning position of the allocated memory designated for data exchange with the host system and that

does not include the KFIFO. Additionally, this unit complies with the use of the generic bus interface based

on slave acknowledges (FF0 and FF1). The module’s HDL representation can be seen in listing 4.25.

Interface Registers

O_RD_ACK

I_WR_CE

I_CS [0:3] CE
D Q

reset

FF0

clk

O_WR_ACK

G1

G2

write_ack_d

write_ack_q

CE
D Q

reset

FF1

clk

I_RD_CE

G4

G3

read_ack_d

read_ack_q

UG0

CE
D Q

reset

FF2

clk
CE

D Q

reset

FF3

clk

CE
D Q

reset

FF4

clk

CE
D Q

reset

FF5

clk

I_RXWORD [31:0]

G5
I_CS(0)

G6
I_CS(1)

G8

I_CS(2)

G7

I_CS(3)

O_SYSRAM_BASE_ADDR

O_KFIFO_BASE_OFFSET

O_SYSDATA_BASE_OFST

O_LRAM_DEPTH

Page 1 Decoder Signals

[31:0]

[31:0]

[31:0]

[31:0]
"00000400"

Figure 4.5.6: Interface Registers RTL Design Internal Architecture.

Listing 4.25: Interface Registers (HDL).

1 cs_i <= I_CS(0) or I_CS(1) or I_CS(2) or I_CS(3);

3 -- MORE (Write and Read Acknowledgement Logic)
4 ---
5 SYSRAM_BASE_ADDR_FF2 : process (I_CLK)

Chapter 4. Supporting Microkernel 114

6 ---
7 begin
8 if rising_edge(I_CLK) then
9 if(I_RESET = '1') then
10 O_SYSRAM_BASE_ADDR <= (others => '0');
11 elsif I_WR_CE = '1' and I_CS(0) = '1' then
12 O_SYSRAM_BASE_ADDR <= I_RXWORD;
13 end if;
14 end if;
15 end process SYSRAM_BASE_ADDR_FF2;
16 ---

18 ---
19 KFIFO_BASE_OFFSET_FF3 : process (I_CLK)
20 ---
21 begin
22 if rising_edge(I_CLK) then
23 if(I_RESET = '1') then
24 O_KFIFO_BASE_OFFSET <= (others => '0');
25 elsif I_WR_CE = '1' and I_CS(1) = '1' then
26 O_KFIFO_BASE_OFFSET <= I_RXWORD;
27 end if;
28 end if;
29 end process KFIFO_BASE_OFFSET_FF3;
30 ---

32 ---
33 SYSDATA_BASE_OFFSET_FF4 : process (I_CLK)
34 ---
35 begin
36 if rising_edge(I_CLK) then
37 if(I_RESET = '1') then
38 O_SYSDATA_BASE_OFFSET <= x"00000080"; -- offset 128
39 elsif I_WR_CE = '1' and I_CS(2) = '1' then
40 O_SYSDATA_BASE_OFFSET <= I_RXWORD;
41 end if;
42 end if;
43 end process SYSDATA_BASE_OFFSET_FF4;
44 ---

46 ---
47 LRAM_DEPTH_FF5 : process (I_CLK)
48 ---
49 begin
50 if rising_edge(I_CLK) then
51 if(I_RESET = '1') then
52 O_LRAM_DEPTH <= std_logic_vector(to_unsigned(C_LRAM_DEPTH,O_LRAM_DEPTH'LENGTH));
53 else
54 O_LRAM_DEPTH <= std_logic_vector(to_unsigned(C_LRAM_DEPTH,O_LRAM_DEPTH'LENGTH));
55 end if;
56 end if;
57 end process LRAM_DEPTH_FF5;
58 ---

4.6 External Interfaces

This section will describe the microkernel interfaces with the host system. For this, firstly one describes

the AXI4 lite slave interface developed, c.f section 4.6.1, utilized by S00 Control and S01 Data. Afterwards,

one characterizes both interfaces and their register mappings, and ultimately the M00 System interface is

portrayed.

Chapter 4. Supporting Microkernel 115

4.6.1 AXI Lite Interface

The AXI4 Lite Interface module is used by both the S00 control-oriented interface and the S01 data-

oriented interface. The module itself has to comply with the register-based AXI4 lite protocol, responding

to the appropriate signals at the appropriate time. For this, the module has a control unit, marked in bright

blue (■) in fig. 4.6.1, that receives as inputs AXI signals and also outputs specific AXI signals back. This

section will explain all the datapath of the interface in detail, as well as its control unit, i.e., the main core

of the module. This explanation will cover not only the RTL design of fig. 4.6.1, but also, the module’s

implementation in VHDL.

CLOCK

RESET

I_WR_ACK

O_ADDR

AXI Interface Lite

S_AXI_ARADDR

(S_AXI_ACLK)

(S_AXI_ARESETN)

S_AXI_ARPROT

S_AXI_ARVALID

S_AXI_AWADDR

S_AXI_AWPROT

S_AXI_AWVALID

S_AXI_BREADY

S_AXI_RREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WVALID

S_AXI_ARREADY

S_AXI_AWREADY

S_AXI_BRESP

S_AXI_BVALID

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RVALID

S_AXI_WREADY

Read
Address
Channel

Write
Address
Channel

Read
Data

 Channel

Write
Data

 Channel

Write
Response
 Channel

I_RD_ACK

O_RD_CE

O_CS_A

O_TX_DATA

I_RX_DATA

O_WR_CE

CE
D Q

reset

FF0

clk

CE
D Q

reset

FF1

clk

1

0

ready

M0

G0 G1

CE
D Q

reset

FF2

clk

arready

awready
G2

latch_rdata

Control Unit

CE
D Q

reset
clk

1

select_M0

select_M0

write_data_Q

Priority Logic

read_data_Q

cs_a

rd_ce

wr_ce

latch_wdata

bvalid

wready

O_WR_EVENTwr_event

event_timeout I_TIMEOUT

read_acknowledge

write_acknowledge

ready
hold_clear

O_TRIGGER

O_ENABLEevm_enable
trigger_evm

rresp
bresp

bresp

rresp

address_Q

O_RD_EVENTrd_event

clk
Hold

i_sig o_sig

clearreset

FF3

D Q
rst

rvalid rvalid_Q

FFST

D Q
rst

next_state state

H0

Two Cycle
Synchronizer

hold_clear

I_WR_ACK holded_wr_ack

rready
wvalid
bready

awready
arready

holded_wr_ack
holded_rd_ack

clk
Hold

i_sig o_sig

clearreset

H1

hold_clear

I_RD_ACK holded_rd_ack

O_STANDBYevm_standby

FF4

D Q
rst

rvalid_Q2

FF8

D Q
rst

latch_rdata_Q

FF5

D Q
rst

FF6

D Q
rstFF7

D Q
rst

ce

ce

hold_wr_ce

hold_rd_ce

hold_wr_ce

hold_rd_ce

Figure 4.6.1: AXI4 Lite Interface RTL Design Internal Architecture.

Starting with the datapath, one of the main choices made in the design of the interface’s datapath

was that one would try to save as many resources as possible, in terms of logic gates, flip-flops, and

multiplexers, just to name a few. Another choice made was that all the important multi-bit signals coming

as interface inputs would end up being assured by a flip-flop, to ensure data correctness, even if that

meant that one would increase the overall latency of the interface by a few cycles. The signals submitted

Chapter 4. Supporting Microkernel 116

to flopping were the AXI address signal, represented in green (■), the AXI write data signal, represented

in red (■), and the AXI read data signal, represented in purple (■). In this case, that choice resulted

in some more flip-flops that function as synchronizers (FF3 to FF8) for some AXI signals, but that was a

trade-off one was willing to make once again to ensure data correctness, i.e., making sure one was writing

to, or reading from the right place, and that what was read or written was in fact the actual value to read

or write.

The AXI lite protocol presents five main channels of communication, the read address channel, the

write address channel, the read data channel, the write data channel, and ultimately, the write response

channel. As it is possible to perceive, the write transaction has three channels while the read transac-

tion only has two channels. That is justified by the fact that the read transaction does not require an

acknowledgment stage, and that is a factor to have in mind when designing the module’s state machine,

fig. 4.6.6. Note that some signals of multiple channels are not connected to anything because they really

do not contribute to state transition nor represent useful information, like an address or a multi-bit data

signal would represent. In this case, the signals left out were the ones pertaining to the write data strobe

(s_axi_wstrb), which indicates what bits of s_axi_wdata must be written to the slave, and the address

read and write protection of the master, namely s_axi_arprot and s_axi_awprot, respectively.

In the address datapath, one encounters logic to define the priority channel in the transaction, denoted

in the dashed blue rectangle (■), a multiplexer (M0) to select which address is going to be the combina-

tional input of the address flip-flop (FF0), and the FF0 flip-flop itself. A choice was made to define the write

transaction as the priority, since effectively saving the data is viewed as more important than reading it,

i.e., if the data was correctly written to the slave, the read transaction can wait and still perform a correct

read. On the contrary, a read made to a certain address might fail to obtain the proper data if the write

is not executed first, when talking about a read and write on the same address. The priority logic block

defines that if both of the protocol initiating signals s_axi_arvalid and s_axi_awvalid are set to the logic

value ’1’, the one selected in the M0 multiplexer will be the write address (s_axi_awaddr), according to

the G2 gate. For the clock enable of the FF0 flip-flop, one uses a logic and (G1) of the ready signal coming

from the FSM, marked in blue (■) in listing 4.26, and one of the protocol initiating signals (s_axi_arvalid or

s_axi_awvalid), assuring that, in the next clock cycle, one has the address at the module’s output o_addr.

Listing 4.26: AXI4 Lite Interface Datapath: Address (HDL).

1 -- Address latching
2 ---
3 ADDR_LATCH_FF0 : process (S_AXI_ACLK)
4 ---

Chapter 4. Supporting Microkernel 117

5 begin
6 if rising_edge(S_AXI_ACLK) then
7 if reset_i = '1' then
8 axi_addr_Q <= (others => '0');
9 elsif (ready_i = '1') and (S_AXI_AWVALID = '1' or S_AXI_ARVALID = '1') then
10 axi_addr_Q <= axi_addr_D;
11 end if;
12 end if;
13 end process ADDR_LATCH_FF0;
14 ---
15 O_ADDR <= axi_addr_Q;

17 -- Address select
18 ---
19 MUX_ADDR_M0 : process (S_AXI_AWVALID, S_AXI_ARVALID, S_AXI_AWADDR,
20 S_AXI_ARADDR)
21 ---
22 variable select_M0 : std_logic;
23 begin
24 select_M0 := ((not S_AXI_AWVALID) and S_AXI_ARVALID);
25 axi_addr_D <= (others => '0');
26 case select_M0 is
27 when '0' =>
28 axi_addr_D <= S_AXI_AWADDR;
29 when '1' =>
30 axi_addr_D <= S_AXI_ARADDR;
31 when others =>
32 null;
33 end case;
34 end process MUX_ADDR_M0;
35 ---

The datapath referring to the write and read data also assures valid data at the o_tx_data and

s_axi_rdata outputs when the signals latch_wdata and latch_rdata reach the flip-flops FF1 and FF2,

respectively. As seen in fig. 4.6.1, the signals latch_wdata and latch_rdata are outputs of the module’s

control unit, and are represented in listing 4.27 in blue (■).

Listing 4.27: AXI4 Lite Interface Datapath: Data (HDL).

1 -- Write data latching
2 ---
3 TX_DATA_FF1 : process (S_AXI_ACLK)
4 ---
5 begin
6 if rising_edge(S_AXI_ACLK) then
7 if reset_i = '1' then
8 txdata_Q <= (others => '0');
9 elsif latch_wdata_i = '1' then
10 txdata_Q <= S_AXI_WDATA;
11 end if;
12 end if;
13 end process TX_DATA_FF1;
14 ---
15 O_TX_DATA <= txdata_Q;

17 -- Read data latching
18 ---
19 RX_DATA_FF2 : process (S_AXI_ACLK)
20 ---
21 begin
22 if rising_edge(S_AXI_ACLK) then
23 if reset_i = '1' then
24 rxdata_Q <= (others => '0');
25 elsif latch_rdata_Q = '1' then
26 rxdata_Q <= I_RX_DATA;
27 end if;
28 end if;
29 end process RX_DATA_FF2;

Chapter 4. Supporting Microkernel 118

30 ---
31 S_AXI_RDATA <= rxdata_Q;

Note that other datapath elements also include the write and read acknowledge hold entities (H0

and H1), the state register (FFST), and the forementioned flip-flop synchronizers (FF3 to FF8). For more

information about these datapath elements, please refer to section section 4.6.1.1.

4.6.1.1 Optimized Control Unit and Associated Dapapath

As stated earlier in section 4.6.1, the AXI lite interface FSM complies with the AXI protocol by respond-

ing to certain AXI signals. This control unit is deemed as optimized for two main reasons. Firstly, it deals

with the failure of AXI signals that specify the end of a transfer, i.e., s_axi_bready and s_axi_rready, for

the write and read, respectively, and the failure of generic bus signals coming from the slave, i.e., the write

and read acknowledges. Secondly, it saves a clock cycle after a read transfer by skipping over the idle

state, if both of the signals that initiate a write transfer are asserted (s_axi_awvalid and s_axi_wvalid),

fig. 4.6.6.

aclk

addr A1 A2

awvalid

wdata D1

wvalid

bready

awready

wready

bvalid

ad
dr

da
ta

re
sp

AX
I M

as
te

r

ad
dr

da
ta

re
sp

AX
I S

la
ve

Write Address Write Data Write Response

Figure 4.6.2: AXI4 Lite Protocol Waveform: Write Transfer.

Figure 4.6.2 depicts the protocol waveform for a AXI4 lite write transfer. In this case, the master sends

an address accompanied by the address valid signal to identify a valid address, followed by the data and its

Chapter 4. Supporting Microkernel 119

data valid signal, and ultimately asserts its bus ready signal waiting for the slave’s response. The slave has

to assert its address ready signal and its data ready signal to accept the address and the data, respectively.

Finally, the slave must assert the bus valid signal to send an acknowledgment to the master and end the

transfer. Even though the example of fig. 4.6.2 refers to a AXI4 lite write transfer, the same principles of

valid-ready handshake expand across the AXI protocol, i.e., even the AXI4 lite read transfer, fig. 4.6.5, and

the AXI4 read and write transfers utilize these handshake signals.

The state machine of section 4.6.1.1 starts with the idle state, seen by the reset state of FFST in

listing 4.28, where the ready signal is asserted to latch the selected address onto the address flip-flop FF0

(paragraph four of section 4.6.1), and also where both bit signal-holding entities H0 and H1 are cleared,

listing 4.28.

Listing 4.28: AXI4 Lite Interface Datapath: State Flip-Flop and Hold Units (HDL).

1 -- State register
2 ---
3 FFST : process (S_AXI_ACLK)
4 ---
5 begin
6 if rising_edge(S_AXI_ACLK) then
7 if reset_i = '1' then
8 state <= S0_IDLE;
9 else
10 state <= next_state;
11 end if;
12 end if;
13 end process FFST;
14 ---
15 -- Write ack hold
16 ---
17 WR_ACK_HOLD_H0 : entity HOLD
18 ---
19 port map (
20 I_CLK => S_AXI_ACLK,
21 I_RESET => reset_i,
22 I_CE => hold_wr_ce_i,
23 I_CLEAR => hold_clear_i,
24 I_SIG => I_WR_ACK,
25 O_SIG => holded_wr_ack_i);
26 ---
27 -- Read ack hold
28 ---
29 RD_ACK_HOLD_H1 : entity HOLD
30 ---
31 port map (
32 I_CLK => S_AXI_ACLK,
33 I_RESET => reset_i,
34 I_CE => hold_rd_ce_i,
35 I_CLEAR => hold_clear_i,
36 I_SIG => I_RD_ACK,
37 O_SIG => holded_rd_ack_i);
38 ---

Starting with the write transfer path, one might notice that it has one extra state than its read coun-

terpart. As stated earlier in paragraph three of section 4.6.1, this is due to the fact that the read transfer

does not need an acknowledgment channel, and therefore, does not need an acknowledgement state ei-

Chapter 4. Supporting Microkernel 120

ther. The write address state, named as wr_addr, performs the first stage of the AXI protocol presented in

fig. 4.6.2 by confirming the address with the assertion of the s_axi_awready signal, whilst it asserts the

chip select of the intended slave. For clarification, the latter was named cs_a because some slaves that

use the S00 and S01 interface are dual port, meaning that they can be written to, or read from, by the

master using this AXI interface and also by another master entity on their B port.

S00_AXI_ARESETN

S00_AXI_ACLK

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

O_TXDATA

O_ENABLE

O_WR_EVENT

O_RD_CE

I_RXDATA

O_ADDR [11:0]

O_CS_A

O_WR_CE

S00 Interface

I_RD_ACK

I_WR_ACK

O_TRIGGER

O_RD_EVENT

O_STANDBY

I_TIMEOUT

S01_AXI_ARESETN

S01_AXI_ACLK

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

O_WR_CE

O_ENABLE

O_WR_EVENT

O_RD_CE

O_CS_A

O_ADDR [11:0]

O_TX_DATA

I_RX_DATA

S01 Interface

I_RD_ACK

I_WR_ACK

O_TRIGGER

O_RD_EVENT

O_STANDBY

I_TIMEOUT

S00_AXI_ARESETN

CLK

I_S00_TRIGGER

I_S00_ENABLE

I_S00_WR_EVENT

I_S00_RD_EVENT

I_RD_CE

SLV IF Event Manager

I_S01_TRIGGER

I_S01_ENABLE

I_S01_WR_EVENT

I_S01_RD_EVENT

O_TIMEOUT

I_S00_STANDBY

I_S01_STANDBY

O_S00_STATUS

O_S01_STATUS

O_TIMEOUT_CNT

O_TIME_REMAINING

O_WR_ACK

O_RD_ACK

S00_AXI

S01_AXI

CLK A

S01_AXI_ACLK

I_CS_A

I_ADDR_A [9:0]

I_DIN_A

I_WR_CE_A

Local RAM

O_RD_ACK_A

O_WR_ACK_A

O_DOUT_A

I_CS_B

I_ADDR_B [9:0]

I_DIN_B

I_WR_CE_B

O_RD_ACK_B

O_WR_ACK_B

O_DOUT_B

CLK B
M00_AXI_ACLK

I_CS [0:3]

I_WR_CE

S00_AXI_ARESETN

S00_AXI_ACLK

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

O_TXDATA

O_ENABLE

O_WR_EVENT

O_RD_CE

I_RXDATA

O_ADDR [11:0]

O_CS_A

O_WR_CE

S00 Interface

I_RD_ACK

I_WR_ACK

O_TRIGGER

O_RD_EVENT

O_STANDBY

I_TIMEOUT

I_TIMEOUT

S00_AXI_ARESETN

S00_AXI_ACLK

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

O_TXDATA

O_ENABLE

O_WR_EVENT

O_RD_CE

I_RXDATA

O_ADDR [11:0]

O_CS_A

O_WR_CE

S00 Interface

I_RD_ACK

I_WR_ACK

O_TRIGGER

O_RD_EVENT

O_STANDBY

I_TIMEOUT

Slave Decoder (w/LUT 3:8) Page1 Decoder (w/LUT 5:32)

Figure 4.6.3: Connection of the S00 Control and S01 Data Interfaces with the Slave Interface Event Manager and the LRAM.

When the wvalid signal is asserted, the state machine moves to the write data state, named wr_data.

This state corresponds to the write data stage of the AXI protocol in fig. 4.6.2. Concerning this, the state

activates the s_axi_wready signal to accept the data stipulated by the master, keeps the cs_a signal

asserted, activates the slave write clock enable, wr_ce, to enable the slave writing, and latches the write

data in the FF1 flip-flop with the latch_wdata signal (refer to fig. 4.6.1 or paragraph five of section 4.6.1).

The transition to the next state depends on the logic level of the bready signal, i.e., if bready is ’1’ then

the state machine proceeds to the ack state as normal, but if bready is ’0’ the next state is the write wait

one, named wr_wait. In the wait state, the FSM enables and triggers the slave interface event manager,

Chapter 4. Supporting Microkernel 121

that serves both the S00 and the S01 interfaces, to wait a specified number of cycles, sixteen in this case,

for the bready signal to be asserted. One transitions to the ack state if bready comes within the specified

cycles or if the event manager unit times out, dictated by the event_timeout signal. For more details on

the slave interface event manager, please refer to section 4.5.4, and for an overview of the S00 Control and

S01 Data interfaces’ connection with the slave interface event manager, and the LRAM, refer to fig. 4.6.3.

The modules used in the dissertation all have wr_ce and cs inputs and generate write and read

acknowledges with the logic AND of wr_ce and cs after one clock cycle (generic bus). Hence, when one

has both the cs_a and wr_ce signals asserted in the wr_data state, the wr_ack should come after one

clock cycle in the ack state or the wr_wait state. If the state machine does not need to wait on bready

one proceeds normally and the wr_ack is verified for the transition of ack state into the idle state. When

the FSM has to wait, and one takes in fact the path explained earlier that leads to the wr_wait state, the

wr_ack coming in from the slave must be postponed for the same number of cycles as the wait. This

calls for the activation of the hold_wr_ce signal in the wr_wait state. The signal is fed directly onto the

hold logic H0, fig. 4.6.1, that holds i_wr_ack until cleared. The HDL of the hold entity can be seen in

listing 4.29 and the module’s internal architecture is depicted in fig. 4.6.4. The state machine then passes

through the ack state, where the bresp signal is assigned with “00” to indicate an okay response, the

cs_a is maintained active for the final clock cycle, and the bvalid signal is asserted as specified by the AXI

protocol seen in fig. 4.6.2.

Listing 4.29: Bit Signal Hold Entity (HDL).

1 sig_d <= I_SIG or sig_q;
2 --
3 SIG_HOLD_FF0 : process (I_CLK)
4 --
5 begin
6 if rising_edge(I_CLK) then
7 if I_RESET = '1' or I_CLEAR = '1'

then
8 sig_q <= '0';
9 elsif I_CE = '1' then
10 sig_q <= sig_d;
11 end if;
12 end if;
13 end process SIG_HOLD_FF0;
14 --
15 O_SIG <= sig_d;

Bit Signal Hold

D Q

reset

FF0

clk
I_CLK

I_RESET

I_SIG

CE
I_CE

sig_d

sig_q

G1

G0

I_CLEAR

O_SIG

Figure 4.6.4: Bit Signal Hold Entity RTL Design Internal

Architecture.

Finally, as forementioned, following the best considered path, i.e., the path that has less latency in clock

cycles, the wr_ack signal should be active, and the system moves onto the idle state. Otherwise, if there

was a wait, one should expect the holded_wr_ack signal to be ’1’ and the system still proceeds to idle.

Another important part of the state machine design is accounting for the case where the slave fails

Chapter 4. Supporting Microkernel 122

to send the wr_ack or rd_ack for some particular reason. Referring to the write transfer, this is resolved

by adding another state as an alternative next state for the ack state. This state, named wr_standby,

implies a standby, similar to the one used for waiting on bready, but this time for waiting on the wr_ack.

The only change needed is the specification of the wr_ack as the new event. The interface then only gets

out of the standby state to the idle state by the assertion of wr_ack within sixteen cycles or the event

manager timeout, once again specified by the event_timeout signal. Note that the extra state, i.e., the

standby state, was added because bvalid could not be asserted for more than one cycle while waiting on

the wr_ack signal.

Figure 4.6.5 specifies how an AXI4 lite read transfer behaves. First off, the master sets the address

and asserts the arvalid signal, to indicate a valid address and the slave must respond with the awready

signal for address acceptance. Following, the transfer is complete, with the slave setting its data and

asserting the rvalid signal, since the read does not have an acknowledgment stage.

aclk

addr A1 A2

arvalid

rready

arready

rdata D1

rvalid

ad
dr

da
taAX

I M
as

te
r

ad
dr

da
taAX

I S
la

ve

Read Address Read Data

Figure 4.6.5: AXI4 Lite Protocol Waveform: Read Transfer.

As it happened with the write transfer, the AXI4 lite interface’s FSM for the read transfer tries to mimic

the protocol and stipulate the same stages, i.e., the read address and read data states. The state machine

goes into the read address state, named as rd_addr, from idle if the arvalid signal is asserted. When the

FSM reaches the wr_addr state, it sets arready to ’1’, and enables the read clock enable, rd_ce, and slave

chip select, cs_a, signals. Both of these signals are asserted immediately in the wr_addr state because

the rd_ack must be present in the read data state, and it takes one clock cycle to do so, as explained

Chapter 4. Supporting Microkernel 123

earlier in the write transfer. The next state after rd_addr either is the rd_data one if rready (coming from

master) is asserted, or rd_wait if rready is not asserted. The rd_data state keeps the cs_a signal ’1’ for

one more clock cycle, responds with okay, i.e., sets rresp to “00”, latches the read data onto the FF2

flip-flop, fig. 4.6.1, and asserts rvalid, to complete the read transfer. The rready signal is asserted first in

fig. 4.6.5 since the AXI masters tend to be faster than the slaves, even though the protocol flow is from

slave to master in the read transfer. The logic behind the read transfer follows the same thought process

as the write transfer. For that reason, the event waits on the rd_wait and rd_standby states also use

the slave interface event manager (section 4.5.4) but specify different events to wait on, i.e., the rready

and rd_ack signals, respectively. One extra particularity of the interface is the saving one clock cycle if

one leaves the read transfer with awvalid and wvalid asserted. In this situation, the FSM goes directly

to the wr_addr state. Note that this still presupposes the verification of the rd_ack, event_timeout, and

holded_rd_ack signals, as one can see in fig. 4.6.6. The synchronization flip-flops (FF3 to FF8), fig. 4.6.1,

are mainly needed due to the fact that the address, write data, and read data are flopped, FF0, FF1, and

FF2, respectively, causing certain datapath signals to fall behind by one clock cycle. Additionally, the

local RAM also has a one clock cycle latency to output data on dout after an address has been specified,

this is also a factor to take into account for synchronization because the AXI4 lite interface module must

serve for both the control-oriented S00 interface and also the data-oriented S01 interface with the same

datapath and control unit. The HDL of some of the aforementioned flip-flops (FF3 to FF5) are represented

in listing 4.30 and listing 4.31, since they all follow the same HDL structure.

Listing 4.30: Flip-Flop Synchronizers: RVALID (HDL).

1 --
2 SYNC_FF3_FF4: process (S_AXI_ACLK)
3 --
4 begin
5 if rising_edge (S_AXI_ACLK) then
6 if reset_i = '1' then
7 rvalid_Q <= '0';
8 rvalid_Q2 <= '0';
9 else
10 rvalid_Q <= rvalid_D;
11 rvalid_Q2 <= rvalid_Q;
12 end if;
13 end if;
14 end process SYNC_FF3_FF4;
15 --
16 S_AXI_RVALID <= rvalid_Q2;

Listing 4.31: Flip-Flop Synchronizers: WR_CE (HDL).

1 --
2 SYNC_FF5: process (S_AXI_ACLK)
3 --
4 begin
5 if rising_edge (S_AXI_ACLK) then
6 if reset_i = '1' then
7 wr_ce_Q <= '0';
8 else
9 wr_ce_Q <= wr_ce_D;
10 end if;
11 end if;
12 end process SYNC_FF5;
13 --
14 O_WR_CE <= wr_ce_Q;

Chapter 4. Supporting Microkernel 124

/RRESP <- "0"

/BRESP <- "0"

ARVALID/

WVALID/

/RVALID

/AWREADY
/WREADY
/WR_CE

BREADY/

/BVALID

/ARREADY

/CS_A

/CS_A

#0. IDLE

#1. WR_ADDR

 (AWVALID/ || WVALID/) && (RD_ACK/ || HOLDED_RD_ACK/)

/RD_CE RREADY/

#5. RD_ADDR

 (AWVALID/ && WVALID/) && (RD_ACK/ || HOLDED_RD_ACK/)

RREADY/

BREADY/

/HOLD_CLEAR

Priority Transaction

/LATCH_RDATA

/LATCH_WDATA

#2. WR_DATA

#6. RD_DATA

/CS_A

/EVM_ENABLEFSM Input

FSM Output

A/

/B

#4. WR_WAIT

/TRIGGER_EVM

#7. RD_WAIT

#3. ACK

BREADY/ || EVENT_TIMEOUT/

RREADY/ || EVENT_TIMEOUT/

/WR_EVENT <- BREADY

/CS_A

/CS_A

WR_ACK/ || HOLDED_WR_ACK/

/READY

/HOLD_WR_CE

/EVM_ENABLE

/TRIGGER_EVM

/RD_EVENT <- RREADY

/HOLD_RD_CE

#8. WR_STANDBY

#9. RD_STANDBY

WR_ACK/ || EVENT_TIMEOUT/

/EVM_ENABLE
/TRIGGER_EVM

/WR_EVENT <- WR_ACK

/EVM_ENABLE
/TRIGGER_EVM

/RD_EVENT <- RD_ACK

RD_ACK/

&& HOLDED_RD_ACK/

 (AWVALID/ || WVALID/) && (RD_ACK/ || EVENT_TIMEOUT/)

 (AWVALID/ && WVALID/) && (RD_ACK/ || EVENT_TIMEOUT/)

/STANDBY

/STANDBY

WR_ACK/ &&

HOLDED_WR_ACK/

 AWVALID/
&& WVALID/

Figure 4.6.6: AXI4 Lite Interface Optimized Finite State Machine (FSM), HDL in listing A.2.

4.6.2 BFM Verification

The AXI Verification IP (VIP) is an IP by AMD-Xilinx that allows system simulation with a SystemVer-

ilog interface. To use the IP in an environment like Vivado (used in the dissertation) the project must

ensure Verilog wrappers for designs, connect the IP to a top-level module with an AXI interface, and build

Chapter 4. Supporting Microkernel 125

SystemVerilog testbenches. The dissertation modules that use standard AXI interfaces use this type of

verification to test for correctness and regression.

BF
M

BF
MDUT

(RTL)

BFMs of processors,

I/O agents, arbiters, etc.

Complex signals at

the "bit twiddling" level

High-level

transaction

 request from

testbench or

verification

environment

High-level

transaction

 result to

testbench or

verification

environment

These could be

 the same BFM

Figure 4.6.7: Using Verification IP in the form of BFMs, adapted [37].

The AXI VIP can be seen as a Bus Functional Model, and therefore perform BFM verification. A BFM

emulates the behavior of a device at the bus-interface level, in this case an AXI one. Regarding this, the

BFM can generate or accept transactions such as writes and reads, as specified by the design’s testbench

[37, 27]. Figure 4.6.7 depicts the usage of a certain VIP to perform bus transactions. The AXI VIP used

has three modes of operation, thus it can be used as an AXI bus master, as an AXI bus slave, and also a

pass-through protocol checker between a AXI master and slave.

Concerning the aforementioned verification, one tested the interface in Vivado using the AXI verification

IP as a BFM, fig. 4.6.8. The tests represented consisted of writing and reading four times through the S00

interface into the interface registers module, section 4.5.5, and two last reads on the S00 interface event

manager’s status and timeout counter registers, section 4.5.4, to inquire the interface state, and timeout

count, respectively.

Figure 4.6.10 represents the behavior of the interface when bready is set to ’0’. For this purpose,

one uses an internal signal that is always ’0’ and assigns it to the interface instead of bready. With these

changes, the interface acts as expected, entering the wr_wait state in the write transfers, whilst it still

performs all the transfers to completion. In this case, the behavior of the read transfers follow the normal

path of operation, not entering the rd_wait state since they are not dependent on bready. The same

test was performed for the read transfers, and they in fact entered the rd_wait state if rready fails to be

Chapter 4. Supporting Microkernel 126

HW_TASK_0

HW_TASK_v1_0

S00_KERNEL M00_TASK

M00_AXI_0

S01_AXI_0

UKERNEL_0

UKERNEL_v1_0

S00_TASK
M00_KERNEL

M00_AXI
S00_AXI

S01_AXI

axi_interconnect_0

AXI Interconnect

S00_AXI M00_AXI

axi_vip_0

AXI Verification IP

M_AXI

Figure 4.6.8: AXI VIP Simulation – S00 Control Interface Test: Block Design.

asserted. As it is possible to see in fig. 4.6.10, the interface status after entering the wr_wait state and

occurring an event manager timeout is “fe11dead”, i.e., the interface fell dead waiting on bready to arrive,

and also the timeout counter is “00000004”, meaning that the interface timed out four times, which is

comprehensible since the bready signal was never asserted. Note that the third read performed on the

interface registers module is targeting the read-only register regarding the depth of the LRAM. For this

reason, the read always returns “00000400” in hexadecimal, or “1024” as an unsigned decimal. The

write on read-only registers performs to completion in terms of the AXI4 lite protocol, but acts as a dummy

write for the slave in question.

Figure 4.6.11 represents the interface’s behavior when one removes the wr_ack and rd_ack connec-

tion from slave to the module. In this case, the interface’s bready signal is still kept as ’0’. As it is possible

to perceive, the interface enters the wr_wait state once again, with bready missing, and now enters

wr_standby and rd_standby as well, with the missing of the write and read acknowledges, respectively.

Since the latest interface error is bad interface, i.e., acknowledges not asserted, the S00 interface status

is “bad1face”, even though there were “fe11dead” cases before. The timeout counter register shows the

value “0000000C” since the interface timed out twelve times, i.e., four times with the failure of bready

on the write transfers, another four with the failure of the wr_ack in the write transfers as well, and the

last four with the failure of the rd_ack in the read transfers pertaining to the interface registers module.

The same test was repeated for the S01 Data interface, writing and reading four times to and from

the local memory, respectively. In this test the 4K address space given by the twelve bits of the AXI VIP’s

“virtual” address (minimum possible) was split between the two interfaces, i.e., giving 2K to the S00

Control interface and 1K to the S01 Data interface, so one could perform the S01 Data functional tests in

a similar manner as the S00 Control ones. In this particular case, it did not matter being bounded to a

Chapter 4. Supporting Microkernel 127

HW_TASK_0

HW_TASK_v1_0

S00_KERNEL M00_TASK

M00_AXI_0

UKERNEL_0

UKERNEL_v1_0

S00_TASK
M00_KERNEL

M00_AXI
S00_AXI

S01_AXI

axi_vip_0

AXI Verification IP

M_AXI

axi_vip_0_axi_periph

AXI Interconnect

S00_AXI
M00_AXI

M01_AXI

Figure 4.6.9: AXI VIP Simulation – S01 Data Interface Test: Block Design.

LRAM with 1K words of depth since the actual size stipulated for the local memory was 1K words as well,

even when using sixteen bits for the address, which allows for the expansion of the LRAM up to 64K words

depth. The S00 Control interface was kept as writable/readable by the VIP, since one needed to access the

slave interface event manager to inquire the interface state and timeout count, as forementioned in earlier

paragraphs. As it is possible to see in fig. 4.6.13, the test results were as expected, reading the same

four values written to the memory. As for the slave interface event manager’s information, the two reads

referent to the S00 and S01 status revealed no errors, but future implementations of the S00 and S01

interface should improve the one clock cycle latency associated with the standby state, and that originates

some unwanted timeouts.

4.6.2.1 Limitations

The use of synchronizers to assure data correctness introduced a limitation to the interface. Since

the wr_ce and cs_a need to be delayed by one clock cycle, the wr_ack and rd_ack of the slave module

also arrives one cycle late. This particular situation, causes the module’s state machine to go from the

ack state to the wr_standby state and then to idle, for the write transfers, and from the rd_data state to

rd_standby state and then to idle. This means that the interface enters the standby mode, but the wr_ack

or rd_ack arrive exactly at the beginning of the standby state, making the FSM go to idle in the next clock

cycle. Future improvements on the interface should focus on mitigating this latency of one clock cycle,

when there are no waits. The best scenario for the interface state machine can be seen in fig. 4.6.12. In

this situation, the reads performed on the S00 status register and the timeout count register of the slave

interface event manager, section 4.5.4, return “00” meaning the interface did not encounter any errors

and, thus, there were no timeouts.

Chapter 4. Supporting Microkernel 128

Figure 4.6.10: AXI4 Lite Interface Wave Diagram (Vivado VIP on S00 Control): BREADY Timeout (Fell Dead) Scenario.

Figure 4.6.11: AXI4 Lite Interface Wave Diagram (Vivado VIP on S00 Control): BREADY Timeout and WR_ACK and RD_ACK Not Asserted (Bad Interface) Scenario.

Chapter 4. Supporting Microkernel 129

Figure 4.6.12: AXI4 Lite Interface Wave Diagram (Vivado VIP on S00 Control): Best Scenario.

Chapter 4. Supporting Microkernel 130

Figure 4.6.13: AXI4 Lite Interface Wave Diagram (Vivado VIP on S01 Data w/ information check on S00 Control): Best Scenario.

Chapter 4. Supporting Microkernel 131

4.6.3 S00 Control Interface

The S00 Control establishes a control channel for the host system to access the accelerator’s register

space. This interface leverages the resource management capabilities described in section 4.4 to divide

the register space into multiple pages. Since one is designing a microkernel there are fewer resources

when comparing to HAL-ASOS, so the maximum number of pages was established at four. Two of them are

not fully mapped (zero and one) and there is also two other pages (two and three) completely unmapped to

account for future microkernel expansion in terms of accessible registers. This can be seen in fig. 4.6.14.

Page 0

0x00

0x40
HW-Resources

Page 1

0x80
Interfaces

Page 2

0xC0
Unmapped

Page 3

0x100
Unmapped

S00 Control Address Space

Mapping Overview

Native microkernel space

Figure 4.6.14: Native Microkernel: S00 Control Address Space.

The table 4.2 describes the page zero of the accelerator model, and this page is dedicated to the

microkernel resources that do not relate to the interfaces. As it is possible to see, the first register mapped

is the microkernel control register, belonging to the control register module (c.f section 4.2.1), at word

offset 0×00 and byte offset 0×00. To allow the write of control words from the host system side and

reads to check if the word was correctly written, this particular register was deemed as writable/readable.

Moreover, still in the same module (c.f section 4.2.1), one has the microkernel status register which is

updated internally according to the current state of the kernel. The latter is mapped at word offset 0×01

and byte offset 0×04, and deemed as read-only due to the internal update performed. Note that, each

register that is not writable will still carry on an AXI transaction write to completion and generate a write

acknowledge, but the write will not have an effect on the register’s contents. Additionally, the byte offsets

Chapter 4. Supporting Microkernel 132

aforementioned are stipulated like this since the microkernel is a 32-bit machine by default. Pertaining to

the same page (zero), one also has the registers that refer to the mutexes (c.f section 4.5.1) and LINTC

(c.f section 4.5.2) resources. The local mutex maps its data register at word offset 0×02 and byte offset

0×08, and it is write-only. Each write-only register also carries through the AXI reads to completion but

returns the 32-bit word “1facefff” to identify a not permitted access. Following, comes the local mutex

status register (read-only) at word offset 0×03 and byte offset 0×0C. Likewise, the system mutex also has

a write-only data register at word offset 0×04 and byte offset 0×10, and its read-only status register at

word offset 0×05 and byte offset 0×14. For more information on these registers refer to section 4.5.1.

The LINTC maps its control register at word offset 0×06 and byte offset 0×18. For the same reasons as

the microkernel registers, the LINTC stipulates the control register to be writable/readable and the status

register to be read-only. As mentioned before, page zero still has room for eight more registers, since the

number of 32-bit words per page was set at sixteen.

Table 4.2: Page Zero Internal Register Mapping.

S00 Control

Page Offset Register Word Offset Byte Offset WR RD

0x00

(Page 0)

Microkernel Control 0x00 0x00
Microkernel Status 0x01 0x04 #
Local Mutex ID Data 0x02 0x08 #
Local Mutex Status 0x03 0x0C #
System Mutex ID Data 0x04 0x10 #
System Mutex Status 0x05 0x14 #
Local Interrupt Ctrl. Control 0x06 0x18
Local Interrupt Ctrl. Status 0x07 0x1C #

 Access Permitted. # Access Not Permitted.

Note: # Still performs the generic bus handshake.

Analyzing page one, table 4.3, one can notice that it maps the registers related to the slave and master

interfaces. Thus, the first four registers mapped are included in the slave interface event manager module.

At word offset 0×00 and byte offset 0×00 one encounters the S00 Control status register, which gives the

current state of the interface, i.e., “00000000” indicating normal, “fe11dead” indicating the failure of AXI

signals, or “bad1face” indicating the failure of slave signals. In a similar way, one has the S01 Data status

Chapter 4. Supporting Microkernel 133

register, for the same reasons, mapped to word offset 0×01 and byte offset 0×04. These registers are

read-only since they both represent a status, and, therefore, are updated internally. The next read-only

register represents the total timeout count of both interfaces (S00 Control and S01 Data), mapped to word

offset 0×03 and byte offset 0×08. The final register pertaining to this module (c.f section 4.5.4) is the

time remaining register (read-only as well), which is useful for checking how much time is left until one

of the interfaces reaches timeout. The latter is at word offset 0×03 and byte offset 0×0C. The next four

registers belong to the interface registers module (c.f section 4.5.5). The first one at word offset 0×04

and byte offset 0×10 represents the SYSRAM base address, and it is useful since it allows the host system

to configure the base of the allocated memory for the accelerator. The KFIFO base offset register is useful

for the host system to stipulate the beginning of the KFIFO area of the SYSRAM. This means that even tho

the allocated memory starts at a certain position, the KFIFO might not start in the same position, with this

it is also possible to configure that. The KFIFO base register is at word offset 0×05 and byte offset 0×14.

Succeeding, one has the SYSRAM data register, which indicates the starting position for the data-exchange

area of the SYSRAM. For the same reasons, this parameter is configurable since the data area might

change position depending on various factors. The SYSRAM data register is mapped at word offset 0×06

and byte offset 0×18. All of these three registers of the interface registers module are writable/readable

to ensure correct configuration. Additionally, one has the LRAM depth register, which is read-only and

indicates to the host the fixed depth (in words) of the local memory. The latter is mapped at word offset

0×07 and byte offset 0×1C. Finally, page one has the accelerator’s clock counter control register, and the

clock counter’s words, mapped to word offset 0×08, 0×09, and 0×0A, respectively.

4.6.4 S01 Data Interface

The S01 Data interface establishes a data-focused channel between the host system and the acceler-

ator’s local memory (LRAM). In the accelerator’s case there is not a ZCU unit and, thus, the host-system

transactions to local memory are limited to word-rated ones. This happens since S01 Data was stipulated

as an AXI4 lite interface, which, by itself, only allow single-word transfers. So, for the system co-designer

are available two options to interact with the local memory, (1) write words to memory and read them in

the hardware task, or (2) store words in memory through dedicated syscalls in the hardware task, and

then read them in the host system side through S01. For the contents of this memory to be reflected in the

host system’s and the accelerator’s shared memory, one has the option to store data read from the LRAM

locally, in a buffer for example, and then write it to main memory in burst format through M00 System

Chapter 4. Supporting Microkernel 134

Table 4.3: Page One Internal Register Mapping.

S00 Control

Page Offset Register Word Offset Byte Offset WR RD

0x40

(Page 1)

S00 Control Status 0x00 0x00 #
S01 Data Status 0x01 0x04 #
Timeout Count 0x02 0x08 #
Time Remaining 0x03 0x0C #
SYSRAM Base Address 0x04 0x10
KFIFO Base Offset 0x05 0x14
SYSRAM Data Base Offset 0x06 0x18
LRAM Depth 0x07 0x1C #
Acc. Counter Control 0x08 0x20
Acc. Counter Word Zero 0x09 0x24 #
Acc. Counter Word One 0x0A 0x28 #
 Access Permitted. # Access Not Permitted.

Note: # Still performs the generic bus handshake.

with the appropriate system calls. With all this, one means that the local memory acts as a cache for the

accelerator, but there is not a unit with DMA-like capabilities (ZCU) that transfers the contents from one

memory to another independently. Additionally, the local memory was stipulated at 1K words of depth,

but since the S01 interface uses a 16-bit address the memory can go up to 64K of depth, depending on

application demands, with a machine word of 32 bits by default.

4.6.5 M00 System Interface

The M00 System interface establishes a master channel between the accelerator and the allocated

memory region (deemed as shared memory) of the host system. This interface does not have complex

logic, unlike its slave counterparts (S00 Control and S01 Data), because it only forwards the microprogram

control signals associated with MBUS syscalls for write and read, with the top-level’s master outputs. In

the case of the dissertation’s accelerator the master channel is used to exchange control commands (c.f

section 5.1) and chunks of data from the hardware task entity to main memory. For this there is a specific

region for command and return placement, and also a region for the placing the data.

Chapter 4. Supporting Microkernel 135

I_PAGE_RXDATA

I_PAGE_RD_CE

I_PAGE_SELECT

I_PAGE_ADDR

I_PAGE_WR_CE O_WORD_RD_CE

O_WORD_SELECT

O_WORD_WR_CE

Page0_Decoder (w/LUT 5:32)

O_PAGE_TXDATA

O_PAGE_WR_ACK

O_PAGE_RD_ACK

I_WR_ACK_BUS

O_TXWORD

I_RXWORD_P0

I_RD_ACK_BUS

I_PAGE_RXDATA

I_PAGE_RD_CE

I_PAGE_SELECT

I_PAGE_ADDR

I_PAGE_WR_CE O_WORD_RD_CE

O_WORD_SELECT

O_WORD_WR_CE

Page1_Decoder (w/LUT 5:32)

O_PAGE_TXDATA

O_PAGE_WR_ACK

O_PAGE_RD_ACK

I_WR_ACK_BUS

O_TXWORD

I_RXWORD_P1

I_RD_ACK_BUS

Slave_Decoder

Lookup

Table

(LUT)

3:8

I3
I2

O0
O1

ONEN

I_ADDR [7:2]
Bit(7)
Bit(6)

L0

I_CS

I_WR_CE

I_RXDATA [31:0]

O_TXDATA [31:0]

I_RD_CE

O_WR_ACK

O_RD_ACK

O_PAGE_SELECT [0:3]

O_PAGE_ADDR [5:2]

O_PAGE_WR_CE

O_PAGE_RD_CE

O_PAGE_TXDATA [31:0]

I_PAGEN_RXDATA [0:3][31:0]

I_PAGE_WR_ACK [0:3]

I_PAGE_RD_ACK [0:3]

0

1

N

M0 I_PAGE0_RX_DATA [31:0]

I_PAGE1_RX_DATA [31:0]

I_PAGEN_RX_DATA [31:0]

UG0

UG1

I_PAGE0_WR_ACK

I_PAGEN_WR_ACK

I_PAGE0_RD_ACK

I_PAGEN_RD_ACK

lut_out

lut_in

lut_en

N_PAGES : 4
POW2(N_PAGES): 2

N_WORDS: 16
POW2(N_WORDS): 4

Page_2_Decoder (w/LUT 5:32)

Page_3_Decoder (w/LUT 5:32)

O_PAGE_SELECT(0)

O_PAGE_SELECT(1)

I_PAGEN_RXDATA(1)

I_PAGEN_RXDATA(0)

I_PAGE_WR_ACK(1)

I_PAGE_WR_ACK(0)

I_PAGE_RD_ACK(1)

I_PAGE_RD_ACK(0)

RESET

CLK
S00_AXI_ARESETN

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

O_TX_DATA [31:0]

O_RD_CE

O_WR_EVENT

I_RX_DATA [31:0]

O_TRIGGER

O_ADDR [11:0]

O_CS_A

O_WR_CE

S00 Interface

I_RD_ACK

I_WR_ACK

I_TIMEOUT

S00_AXI_BUS

O_CNT_EN

O_RD_EVENT

S00_AXI_ACLK

Bit(7:6)

Figure 4.6.15: S00 Control Two-Level Address Decoding Overview.

5. Architecture Extensions

As stated in section 1.2, after establishing the supporting microkernel architecture and understanding

its limitations, it is now possible to start improving the architecture by adding functionalities and resolving

some issues. This chapter approaches the proposed architecture extensions to the microkernel, which

include the creation of memory mechanisms for message/command exchange (c.f section 5.1) and the

leverage of complex procedure scalability (c.f section 5.2). Finally, the chapter culminates into the expla-

nation of how these extensions and some other additions contribute to a diversity-driven hardware task

capable of coping with diversity, i.e., adapting through reconfiguration (c.f section 5.3).

5.1 KIVIO-Extended Features

One of the goals of the dissertation work was to refactor the HAL-ASOS hardware accelerator model,

and that also included investigating new a way to perform the hardware task’s extended features, c.f sec-

tion 4.3. Transforming the HAL-ASOS version four M00 System interface from AXI4 lite to AXI4 opens up

the possibility of not only making write and read burst transfers to the allocated memory section pertaining

to data, but also utilize another section of the allocated memory, KFIFO, to implement a command ex-

change channel through shared memory. For this, KIVIO maps a Linux kernel FIFO element onto specific

main memory positions. Regarding both the software and the hardware point of view, this originates the

structure on the left-hand side of fig. 5.1.1. The structure has two main regions: (1) a region concerning

arguments, i.e., intended for the hardware to place commands, and another (2) region for the hardware

to retrieve the results of extended system call execution, deemed as returns. Observing closely, one can

see that the arguments section has five elements that map directly to a KFIFO struct in kernel space. It is

important to note that both of the sections forementioned behave as circular FIFOs regarding arguments

and returns, respectively. Thus, the args.in represents the circular FIFO’s write pointer and dictates the

args block number where the hardware will place the 64-bit command. For the same reasons the args.out

field represents the read pointer and indicates the block number to read from the host system side by the

136

Chapter 5. Architecture Extensions 137

KIVIO framework. The args.mask is used to make the writing and reading of arguments circular, meaning

that each operation applies the mask. In this example, the mask is three because one has four blocks of

arguments data. Ultimately, the args.data field is a pointer to the starting block of args, which means that

one only writes something to a args block if the writing is done by adding args.data to args.in times two,

since one is dealing with 64-bit command words. The same principles apply to the returns section with

also five elements pertaining to the returns circular FIFO, but with eight return entries because the system

works with return words of 32 bits.

Call Interface in SYSRAM

Argument and Return Values

args.in

32B

args.out

Re
qu
es
ts

args.mask
args.esize 8

3

var

var

64B

96B

KF
IF
O

Re
sp
on
se
s

4

7

var

128B

var

KF
IF
O

burst read 5 words

in <- (in + 1)

& mask

in - out

= mask?

kfifo full?

N

Y

lock mutex

(SYSMUTEX)

unlock mutex

(SYSMUTEX)

sleep

write 2 words

 to args.data_woffset

+ in*2

unlock mutex

(SYSMUTEX)

args.data
reserved
reserved
reserved

arguments

arguments

arguments

arguments

rets.in
rets.out
rets.mask
rets.esize
rets.data
reserved
reserved
reserved
returns
returns
returns
returns
returns
returns
returns
returns

System Call Sequence for KIVIO-Extended Features

Polled KFIFO Send Command and Polled Wait Return

sleep
lock mutex

(SYSMUTEX)
burst read 5 words

in - out

!= zero?

out <- (out + 1)

 & mask

read 1 word

from rets.data_woffset

+ out

unlock mutex

(SYSMUTEX)

Exit

Y

N

Figure 5.1.1: Composite system call for executing KFIFO-extended features in a polling manner (SYSRAM); The figure on the

left represents the memory-mapped kernel FIFO that provides the call interface for extended composite syscalls; The figure on

the right depicts the sequence of simpler system calls needed to perform a polled send command and a polled wait for return

on the interface. Memory representation in table 5.1.

Then, it is the responsibility of the accelerator to comply with the argument and return bitfields es-

tablished by KIVIO in its packages and construct the appropriate command depending on the system call

Chapter 5. Architecture Extensions 138

performed in the hardware task entity. This can be seen in listing A.4. This command must then follow

a standard number of steps to be placed in a args block, and another number of steps must be followed

to retrieve the return as well. The process of placing a command and recollect its return both in a polling

manner is described by the second part of fig. 5.1.1 in the right-hand side. This combination of steps is

performed by the kernel of the accelerator by dividing a certain extended user-level procedure into multiple

kernel-level procedures of smaller size. Each one of these kernel procedures wraps around a microcoded

syscall, c.f section 4.2.3, and establishes its arguments and returns. The hardware was developed in

a way that every extended system call that uses the mapped KFIFO always uses the same kernel-level

procedures and only changes the 64-bit command constructed, e.g., the extended syscall for opening a

file is the same as the one for closing it in terms of procedures, the only thing that changes is its ID and,

therefore, the 64-bit command constructed upon it, c.f listing 5.1.

Listing 5.1: User Package: File Subscribe and Unsubscribe Example (HDL).

1 -- MORE
2 --
3 procedure polled_kernel_bounded_file_subscribe(
4 signal kernel_call : out kernel_call_t;
5 signal kernel_response : in kernel_response_t;
6 constant hint_cookie : in natural;
7 constant message_flags_events : in std_logic_vector(C_KIVIO_FLAGS_WWIDTH-1 downto 0);
8 constant wcount_whence : in natural;
9 constant woffset : in natural range 0 to 2**C_KIVIO_WOFFSET_WWIDTH-1;
10 signal returned_cookie : out natural) is
11 --
12 begin
13 kernel_bounded_safe_kfifo_send_command_wait_return(kernel_call,kernel_response,

KI_SUBSCRIBE,hint_cookie,message_flags_events,wcount_whence,woffset);
14 returned_cookie <= to_integer(unsigned(kernel_response.procedure_return(

KIVIO_RET_COOKIE'RANGE)));
15 ---
16 end procedure polled_kernel_bounded_file_subscribe;
17 --

19 --
20 procedure polled_kernel_bounded_file_unsubscribe(
21 signal kernel_call : out kernel_call_t;
22 signal kernel_response : in kernel_response_t;
23 constant hint_cookie : in natural;
24 constant message_flags_events : in std_logic_vector(C_KIVIO_FLAGS_WWIDTH-1 downto 0);
25 constant wcount_whence : in natural;
26 constant woffset : in natural range 0 to 2**C_KIVIO_WOFFSET_WWIDTH-1) is
27 --
28 begin
29 kernel_bounded_safe_kfifo_send_command_wait_return(kernel_call,kernel_response,

KI_UNSUBSCRIBE,hint_cookie,message_flags_events,wcount_whence,woffset);
30 ---
31 end procedure polled_kernel_bounded_file_unsubscribe;
32 --
33 -- MORE

By analyzing the sequence of kernel-level system calls more deeply, one can notice that it always starts

with the lock of the mutex referent to the SYSRAM, i.e., the system mutex. This prevents the occurrence

of race conditions for the resource when executing the next steps, which access the allocated memory,

Chapter 5. Architecture Extensions 139

listing 5.2.

Listing 5.2: Kernel Package: KFIFO Send Command Wait Return - System Mutex Lock (HDL).

1 --
2 -- kernel safe (mutex-protected) kfifo polled send command (and polled wait return)
3 --
4 procedure kernel_safe_kfifo_send_command_wait_return(
5 signal kernel_call : out kernel_call_t;
6 signal kernel_response : in kernel_response_t;
7 signal sched_progress : in std_logic_vector(C_SCHEDULER_PROGRESS_WIDTH-1 downto 0);
8 signal kfifo_args_buffer : inout kfifo_arg_array_t;
9 signal kfifo_rets_buffer : inout kfifo_ret_array_t;
10 signal timeout : out boolean;
11 signal remaining_time : out natural;
12 constant timeout_value : in natural;
13 signal args_in_masked : inout std_logic_vector(C_MACHINE_WIDTH-1 downto 0);
14 signal rets_out_masked : inout std_logic_vector(C_MACHINE_WIDTH-1 downto 0);
15 signal return_rcvd : out std_ulogic;
16 signal procedure_done : out std_logic;
17 signal mutex_status : out std_logic_vector(C_MACHINE_WIDTH-1 downto 0);
18 data : in std_logic_vector(C_MESSAGE_WIDTH-1 downto 0);
19 read_return : out std_logic_vector(C_MACHINE_WIDTH-1 downto 0);
20 signal kfifo_base_offset : in std_logic_vector(C_MACHINE_WIDTH-1 downto 0)) is
21 --
22 -- MORE (Variables)
23 begin
24 return_rcvd <= '0';
25 case to_integer(unsigned(sched_progress)) is
26 --
27 when C_B_KFIFO_SYSMUTEX_LOCK | C_B_KFIFO_RET_PATH_SYSMUTEX_LOCK =>
28 system_mutex_lock(kernel_call,kernel_response);
29 --
30 -- MORE

Firstly, one burst reads the first five elements of the arguments FIFO and stores them in a local buffer

in the hardware. This is only possible since the M00 System from HAL-ASOS version four was migrated

to AXI4, the same would be possible to do with a AXI4 lite interface in M00 System, but that would incur

in dividing a read burst syscall into five single-word read system calls, and ultimately would result in more

memory footprint associated with storing them. More on that later in section 5.1.1.

Listing 5.3: Kernel Package: KFIFO Send Command Wait Return - Read Argument Fields (HDL).

1 -- MORE
2 --
3 when C_B_KFIFO_READ_ARGUMENTS =>
4 kernel_call.enable_index <= '1';
5 kernel_call.inc_index <= '1';
6 mbus_word_read_burst(kernel_call,kernel_response,C_KFIFO_ARG_WIDTH,to_integer(

unsigned(kfifo_base_offset)) + (C_KFIFO_ARGS_BASE_OFFSET*(C_MACHINE_WIDTH
/8)),read_args);

7 kfifo_args_buffer(kernel_response.index) <= read_args;
8 --
9 -- MORE

By having the argument fields stored, it is possible to subtract the args.out field from the args.in to

know if the argument’s KFIFO is full or not. This step is also associated with the generation of an interrupt

request from PL-to-PS to signal KIVIO of a new command. The IRQ is done before of writing the command

to memory since the interrupt source needs some cycles to generate an interrupt request (c.f section 4.5.2)

Chapter 5. Architecture Extensions 140

and reach the host system. Typically, enough time to be done before. These two steps can be seen in

listing 5.4.

Listing 5.4: Kernel Package: KFIFO Send Command Wait Return - Check Argument KFIFO Status and Generate IRQ (HDL).

1 -- MORE
2 --
3 when C_B_KFIFO_FULL_TEST =>
4 kernel_call.enable_index <= '0';
5 kernel_call.inc_index <= '0';
6 kfifo_in := kfifo_args_buffer(C_KFIFO_ARGS_IN_OFFSET);
7 kfifo_out := kfifo_args_buffer(C_KFIFO_ARGS_OUT_OFFSET);
8 kfifo_mask := kfifo_args_buffer(C_KFIFO_ARGS_MASK_OFFSET);
9 kfifo_esize := kfifo_args_buffer(C_KFIFO_ARGS_ESIZE_OFFSET);
10 kfifo_data := kfifo_args_buffer(C_KFIFO_ARGS_DATA_OFFSET);
11 result := std_logic_vector(unsigned(kfifo_in) - unsigned(kfifo_out));
12 if result = kfifo_mask then
13 kernel_call.kfifo_status <= '1'; -- kfifo full
14 else
15 kernel_call.kfifo_status <= '0'; -- kfifo not full
16 end if;
17 lintc_word_write(kernel_call,kernel_response,"010"); -- SYSMUTEX IRQ
18 --
19 -- MORE

If the arguments KFIFO happens to be full the flow of kernel procedures shifts and the system mutex is

unlocked to allow access to other entities that want to use the shared memory region, c.f listing 5.10. After

that, one triggers the kernel’s timing mechanism to sleep for a specified number of cycles, c.f listing 5.5,

before acquiring the system mutex again, c.f listing 5.2 and checking if the arguments KFIFO got space

for a command in the meantime, c.f listing 5.4. This would mean that the KIVIO framework was able to

dispatch the command to an handler entity.

Listing 5.5: Kernel Package: KFIFO Send Command Wait Return - Sleep (HDL).

1 -- MORE
2 --
3 when C_B_SLEEP_WAIT_RETURN | C_B_KFIFO_FULL_PATH_SLEEP =>
4 kernel_call.enable_sched <= '1';
5 kernel_call.resched_req <= '1';
6 wait_timeout_elapsed(kernel_call,kernel_response,timeout,remaining_time,

timeout_value);
7 --
8 -- MORE

In the case where the arguments KFIFO is not full one can proceed to the flow of kernel procedures

that summits the 64-bit word to memory. For this, the write pointer, args.in, is incremented and masked,

which presupposes the use of the single-word write syscall. In the next step the burst capabilities are used

again to write the two 32-bit words that constitute the 64-bit command to the argument zone dictated by

args.datawoffset + args.in ∗ 2, which corresponds to the actual memory position of the block. The

multiplication by two is done because one is using 64-bit commands. Both steps can be observed in

listing 5.6. The next step to end the placement of the command in memory is the release of the system

mutex with the unlock mutex system call, c.f section 4.2.3.

Chapter 5. Architecture Extensions 141

Listing 5.6: Kernel Package: KFIFO Send Command Wait Return - Increment args.in and Send 64-bit Command (HDL).

1 -- MORE
2 --
3 when C_B_KFIFO_INC_ARGS_IN =>
4 kernel_call.enable_index <= '1';
5 kernel_call.inc_index <= '0';
6 inc_args_in := std_logic_vector(unsigned(kfifo_args_buffer(

C_KFIFO_ARGS_IN_OFFSET)) + 1);
7 args_in_masked <= std_logic_vector(word32_and(inc_args_in,kfifo_args_buffer(

C_KFIFO_ARGS_MASK_OFFSET)));
8 mbus_word_write(kernel_call,kernel_response,(to_integer(unsigned(

kfifo_base_offset)) + (C_KFIFO_ARGS_BASE_OFFSET + C_KFIFO_ARGS_IN_OFFSET)
*(C_MACHINE_WIDTH/8)),args_in_masked);

9 --
10 when C_B_KFIFO_SEND_CMD_64 =>
11 kernel_call.enable_index <= '1';
12 kernel_call.inc_index <= '1';
13 temp := resize(unsigned(kfifo_args_buffer(C_KFIFO_ARGS_IN_OFFSET)),temp'LENGTH)

;
14 args_in_x2 := std_logic_vector(resize(shift_left(temp,1),args_in_x2'LENGTH));
15 kfifo_woffset := to_integer(unsigned(kfifo_args_buffer(C_KFIFO_RETS_DATA_OFFSET

)) + unsigned(args_in_x2));
16 aux_data_buffer(0) := data(63 downto 32);
17 aux_data_buffer(1) := data(31 downto 0);
18 mbus_word_write_burst(kernel_call,kernel_response,2,to_integer(unsigned(

kfifo_base_offset)) + (kfifo_woffset*(C_MACHINE_WIDTH/8)),aux_data_buffer(
kernel_response.index));

19 --
20 -- MORE

From here the extended syscall passes to the stage of waiting in polling for the return. As before, the

hardware enters a pseudo-sleep stage where it waits a certain amount of clock cycles before continuing, c.f

listing 5.5. This is supposed to give enough time for the return to be available in the KFIFO that concerns

to the returns. Pseudo-sleep is mentioned instead of only sleep since, following HAL-ASOS stipulations,

sleep would be associated with the deactivation of certain clock-enabled flip-flops. In this case, the term

sleep is only used for clarity, and it is associated with waiting for a specific time period, as stated. The

retrieval of returns also starts with lock of the system mutex, c.f listing 5.2, for the same reasons as before,

i.e., preventing race conditions, followed by a five word burst read regarding the returns KFIFO structure

elements, c.f listing 5.7.

Listing 5.7: Kernel Package: KFIFO Send Command Wait Return - Read Return Fields (HDL).

1 -- MORE
2 --
3 when C_B_KFIFO_READ_RETURNS =>
4 kernel_call.enable_index <= '1';
5 kernel_call.inc_index <= '1';
6 mbus_word_read_burst(kernel_call,kernel_response,C_KFIFO_RET_WIDTH,to_integer(

unsigned(kfifo_base_offset)) + (C_KFIFO_RETS_BASE_OFFSET*(C_MACHINE_WIDTH
/8)),read_args);

7 kfifo_rets_buffer(kernel_response.index) <= read_args;
8 --
9 -- MORE

With the return fields is possible to check if there is a return in the FIFO by subtracting rets.out to

rets.in, c.f listing 5.8.

Chapter 5. Architecture Extensions 142

Listing 5.8: Kernel Package: KFIFO Send Command Wait Return - Check Return KFIFO Status (HDL).

1 -- MORE
2 --
3 when C_B_KFIFO_RET_EMPTY_TEST =>
4 kernel_call.enable_index <= '0';
5 kernel_call.inc_index <= '0';
6 kfifo_in := kfifo_rets_buffer(C_KFIFO_RETS_IN_OFFSET);
7 kfifo_out := kfifo_rets_buffer(C_KFIFO_RETS_OUT_OFFSET);
8 kfifo_mask := kfifo_rets_buffer(C_KFIFO_RETS_MASK_OFFSET);
9 kfifo_esize := kfifo_rets_buffer(C_KFIFO_RETS_ESIZE_OFFSET);
10 kfifo_data := kfifo_rets_buffer(C_KFIFO_RETS_DATA_OFFSET);
11 result := std_logic_vector(unsigned(kfifo_in) - unsigned(kfifo_out));
12 ---
13 if to_integer(unsigned(result)) /= 0 then
14 return_rcvd <= '1'; -- return received
15 else
16 return_rcvd <= '0'; -- return not received
17 end if;
18 lintc_word_write(kernel_call,kernel_response,"010"); -- SYSMUTEX IRQ
19 --
20 -- MORE

If a return is not available the hardware unlocks the system mutex, c.f listing 5.10, and enters the

waiting stage again, c.f listing 5.5, repeating the steps until a return arrives. Upon arrival, the rets.out is

incremented andmasked recurring to a single-word write system call, c.f listing 5.9. The following step then

reads a single-word from a return block section, using a single-word read system call, c.f listing 5.9. Since

the accelerator model has a 32-bit machine word, the write and read pertaining to 32 bits are considered

single-word and the ones regarding more than 32 bits, i.e., multiple 32-bit words, are considered multiple

word bursts because of the burst feature is used. The actual case is that for the AXI4 interface, M00

System, all transfers are burst, but the ones concerning 32 bits are considered bursts of only one word.

Listing 5.9: Kernel Package: KFIFO Send Command Wait Return - Increment rets.out and Read Command Return (HDL).

1 -- MORE
2 --
3 when C_B_KFIFO_INC_RETS_OUT =>
4 kernel_call.enable_index <= '1';
5 kernel_call.inc_index <= '0';
6 inc_rets_out := std_logic_vector(unsigned(kfifo_rets_buffer(

C_KFIFO_RETS_OUT_OFFSET)) + 1);
7 rets_out_masked <= std_logic_vector(word32_and(inc_rets_out,kfifo_rets_buffer(

C_KFIFO_RETS_MASK_OFFSET)));
8 mbus_word_write(kernel_call,kernel_response,to_integer(unsigned(

kfifo_base_offset)) + ((C_KFIFO_RETS_BASE_OFFSET + C_KFIFO_RETS_OUT_OFFSET
)*(C_MACHINE_WIDTH/8)),rets_out_masked);

9 --------------------------------
10 when C_B_KFIFO_READ_PROC_RET_WORD =>
11 kernel_call.enable_index <= '1';
12 kernel_call.inc_index <= '0';
13 kfifo_woffset := to_integer(unsigned(kfifo_rets_buffer(C_KFIFO_RETS_DATA_OFFSET

)) + unsigned(kfifo_rets_buffer(C_KFIFO_RETS_OUT_OFFSET)));
14 mbus_word_read(kernel_call,kernel_response,to_integer(unsigned(

kfifo_base_offset)) + (C_KFIFO_RETS_BASE_OFFSET + (kfifo_woffset*(
C_MACHINE_WIDTH/8))),read_return);

15 --
16 -- MORE

Logically, the system mutex must be released with the appropriate system call before leaving the

Chapter 5. Architecture Extensions 143

extended procedure, listing 5.10.

Listing 5.10: Kernel Package: KFIFO Send Command Wait Return - Unlock System Mutex and Leave Procedure (HDL).

1 -- MORE
2 --
3 when C_B_KFIFO_SYSMUTEX_UNLOCK | C_B_KFIFO_RET_PATH_SYSMUTEX_UNLOCK |

C_B_KFIFO_FULL_PATH_SYSMUTEX_UNLOCK =>
4 system_mutex_unlock(kernel_call,kernel_response,mutex_status);
5 --
6 -- MORE
7 --
8 when C_B_PROCEDURE_DONE =>
9 procedure_done <= '1';
10 --
11 -- MORE

5.1.1 Procedure Scheduling

Performing these extended system calls requires not only memory storage to store the appropriate

flow of kernel procedures to execute but also some type of control to enforce the execution flow. For this,

another microcoded entity was introduced in the microkernel, i.e., the procedure scheduler entity. Vertical

microcode is based on the premise that a microinstruction activates a certain function through a func-

tion code to perform a set of datapath operations, c.f section 2.3. Thus, contrarily to the microprogram,

c.f section 4.2.4, the scheduler employs single address vertical microcode which means that instead of

activating control signals directly it activates kernel-level system calls. The decoding of these microinstruc-

tions that dictate the flow of low-level microinstructions from the microprogram is not complex since the

two entities are connected, which means that the decoding is performed in the scheduler but also in the

microprogram. The kernel requests issued by the hardware task are handled by the microprogram unless

a procedure establishes that the scheduler should be active, by asserting the enable_sched signal. When

the scheduler is enabled the kernel switches its execution mode and the scheduler starts instructing the

microprogram with the right syscalls IDs. The scheme follows an hierarchy as depicted by fig. 5.1.2. The

user-level procedures identified by their procedure ID enter the scheduler and are divided into multiple

kernel-level syscalls each one with a maximum of four steps. As in the microprogram, the scheduler se-

lects inputs for testing, the result then influences the low-level system calls to be executed, e.g., if one is

testing for the KFIFO status, a full result originates a mutex unlock followed by sleep, but if the KFIFO is not

full the scheduler establishes the writing of the 64-bit command to main memory, and after, the waiting

for return.

This implementation of the scheduler introduces the branching of system calls based on certain jump

conditions, and adds upon the idea of incremental procedure scheduler presented in [62]. With this, one

Chapter 5. Architecture Extensions 144

Microprogram

I_EVM_READY

I_EVENT_ELAPSED

I_ADDRM_READY

I_LBUS_RLAST

I_LBUS_WLAST

I_M_AXI_TIMEOUT

Mixed
D Q

rst

CE0
1 0

1

I_MUTEX_STATUS

I_SYSCALL_INPUT

I_SYSCALL_OUTPUT

AXI_MBUS

O_EVM_TRIGGER

O_LBUS_WR_CE

O_M00_TIMEOUT_TRIGGER

I_LBUS_RD_ACK

O_ADDRM_TRIGGER

I_LBUS_WR_ACK

M00_AXI_ARESETN

M00_AXI_ACLK

ROM-Based

Procedure Scheduler

Mixed
D Q

rst

CE0
1 0

1

I_PROCEDURE_ID

I_THIS_CALL

I_ENABLE_SCHED

I_RESCHED_REQ

I_VALID O_SCHED_PROGRESS

O_SCHED_SYSCALL_INPUT

O_SCHED_SYSCALL_OUTPUT

I_KFIFO_STATUS

I_EM_TIMEOUT

I_RETURN_RCVD

O_PROCEDURE_ID

M00_AXI_ARESETN

M00_AXI_ACLK

ROM-Based

0

1

syscall_input_d Import Syscall Input

P2

enable_sched
(HW-Task)

M0

from active
kernel call

Export
Syscall

P3
kernel response0

1

M1

syscall_output_d

I_INTR_RAISE

O_KILL_ACC

Runtime Manager

Figure 5.1.2: Microcode Entity Hierarchy Overview. The assertion of the enable_sched signal activates scheduler-dictated

microprogram execution, otherwise, the kernel uses stand-alone microprogram execution.

is capable of branching between kernel-level system calls in various ways. These include (1) conditional,

(2) unconditional, (3) indirect, and (4) call/return. The conditional jumps are processed by analyzing the

logical value of the test input signals of the scheduler, e.g., the testing of the input return_rcvd originates

two possible branches in fig. 5.1.1, one that returns to sleep if the return has not arrived yet (■) (signal not

asserted), and another branch that retrieves the return (■) (signal asserted), c.f table 5.1 and fig. 5.1.1.

The unconditional jumps are performed by testing an auxiliary true test flag, aux_true, that is always

’1’. This causes the scheduler to simply increment and pass to next syscall in the next memory position.

The indirect jump makes use of another auxiliary signal, aux_false, that is always ’0’. This induces the

scheduler to use the value of NSF, to generate the next address. This type of jump can be done to

any memory position that refers to the currently active procedure, i.e., any microinstruction out of the

sixteen defined, c.f table 5.1. The call/return functionality can be considered as branching to the low-level

memory of the microprogram, which has its own address space. The scheduler specifies the system call

ID input of the microprogram. The latter is then used to generate the address of microprogram memory

by concatenation with the microprogram counter, c.f section 4.2.4. The capability to return from low-level

Chapter 5. Architecture Extensions 145

subroutines is established by the microprogram, and it is done by providing the microprogram’s valid

signal, c.f section 4.2.4, to the scheduler. The logical combination, on a and gate (G0 in fig. 5.1.3), of

the rescheduling request, i_resched_req, coming from the hardware task, the internal test input result,

test_result, and the microprogram’s valid signal, gives origin to the scheduler’s program counter (C0 in

fig. 5.1.3) increment input. This way, a new scheduler address is only generated at the end of a four-step

low-level system call of the microprogram. Thus, when the kernel carries out scheduler-dictated execution,

the valid signal that the hardware task receives is the one pertaining to the scheduler.

The scheduler follows an internal architecture very similar to the microprogram, c.f section 4.2.4,

since they are both microcoded control units. Regarding this, the major difference in the scheduler is the

memory size, with a depth of 256 words, for procedure-granularity of up to 16 kernel-level system calls.

The HDL representation of the scheduler’s memory is represented in listing 5.11.

Listing 5.11: Procedure Memory: Combinational ROM (HDL).

1 subtype rom_word_t is std_logic_vector(ROM_DATA_WIDTH-1 downto 0);
2 type procedure_rom_t is array (0 to ROM_DEPTH-1) of rom_word_t;

4 signal procedure_rom : procedure_rom_t := (
5 --
6 -- MORE
7 ------------------------------------ --
8 -- P02 - POLLED_SAFE_SEND_KFIFO_CMD -- P05 - POLLED_SAFE_SEND_KFIFO_CMD_LOCAL
9 32 => "000000011001111110000001", 80 => "000000011001111110000001",
10 33 => "000100101110111110000001", 81 => "000100100111111110000001",
11 34 => "001011100100000010000001", 82 => "001011100100000010000001",
12 35 => "001101001101111110000001", 83 => "001101000110111110000001",
13 36 => "010001011111111110000001", 84 => "010001011000111110000001",
14 37 => "010101101011111110000001", 85 => "010101101011111110000001",
15 38 => "011001110010111110000001", 86 => "011001110010111110000001",
16 39 => "011110001001111110000001", 87 => "011110001001111110000001",
17 40 => "100010011110111110000001", 88 => "100010010111111110000001",
18 41 => "100101010100000110000001", 89 => "100101010100000110000001",
19 42 => "101010111101111110000001", 90 => "101010110110111110000001",
20 43 => "101111001100111110000001", 91 => "101111000101111110000001",
21 44 => "110011011011111110000001", 92 => "110011011011111110000001",
22 45 => "110100000000000000000010", 93 => "110100000000000000000010",
23 46 => "111011111011111110000001", 94 => "111011111011111110000001",
24 47 => "111100000010000100000001", 95 => "111100000010000100000001",
25 ------------------------------------ --
26 -- MORE
27 --
28 begin
29 O_DOUT <= procedure_rom(to_integer(unsigned(I_ADDR)));
30 end architecture rtl;

In listing 5.11 one can see two user-level procedures to perform the aforementioned extended features.

Both procedures represent the blocking version of the extended features, which wait for the return in polling.

The procedure on the left does this by mapping the KFIFOs to the SYSRAM, and the procedure on the right

maps the KFIFOs to the LRAM. Overall, the kernel still lacks a procedure to access the returns regarding

the non-blocking version at later stages of the hardware task execution. Regarding this, the dissertation

mainly uses the polling versions to issue requests through shared memory (SYSRAM or LRAM).

Chapter 5. Architecture Extensions 146

Input Sel.

[11:7]

RESET(I_RESET)

CLOCK(I_CLK)

I_PROCEDURE_ID

I_EN_SCHED

ROM Data Out

gValid

[1]

pBlock

[0]

addr

ROM1

Progress

[23:20]

Syscall ID

[15:12]

CE

clear Q[3:0]D[3:0]

inc

clk

C0

I_RESET

 Program Counter
load OV OPEN

NSF

[19:16]

M0

0
1
2
3
4
5
6

31

Param Sel.

[6:2]

K0

progress_q

[7:0]
[7:4]

I_RESCHED_REQ

I_VALID

G0

test_result

Procedure

Scheduler

O_SCHED_SC_IN

O_SCHED_PROG

O_SCHED_PARAM

progress_q

I_THIS_CALL

[3:0]

I_THIS_CALL

O_PROCEDURE_IDI_PROCEDURE_ID

O_SCHED_SC_OUT

aux_false_test0 0

aux_true_test
1

kfifo_is_full

I_KFIFO_STATUS

I_EM_TIMEOUT

em_timeout

I_RETURN_RCVD

return_rcvd

ROM_DEPTH: 256 words (2**4 = user-level procedures, each w/ 2**4 = 16 max steps)

ROM_ADDR_WIDTH: 8 bits

ROM_DOUT_WIDTH: 24 bits

Procedure Memory (ROM)

SLD Signals HW-Task Signals Microprogram Signals

additional_param [4:0]

Figure 5.1.3: Procedure Scheduler RTL Design Internal Architecture.

Chapter 5. Architecture Extensions 147

Table 5.1: Simplified Memory Representation of the Polled Safe Send KFIFO Command, Polled Wait for Return, back to fig. 5.1.1.

KIVIO-Extended Features

Syscall (UL) Progress NSF Syscall (KL) Input Sel. GV PB

0 0001 SYSCALL_MUTEX_LOCK AUX_TRUE 0 1

1 0010 SYSCALL_MBUS_READ_BURST (5W) AUX_TRUE 0 1

2 1110 SYSCALL_LINTC_WRITE NOT_KFIFO_FULL 0 1

3 0100 SYSCALL_MBUS_WRITE AUX_TRUE 0 1

4 0101 SYSCALL_MBUS_WRITE_BURST (2W) AUX_TRUE 0 1

5 0110 SYSCALL_MUTEX_UNLOCK AUX_TRUE 0 1

6 0111 SYSCALL_WAIT_EVENT_TIMEOUT AUX_TRUE 0 1

7 1000 SYSCALL_MUTEX_LOCK AUX_TRUE 0 1

8 1001 SYSCALL_MBUS_READ_BURST (5W) AUX_TRUE 0 1

9 0101 SYSCALL_LINTC_WRITE RET_RCVD 0 1

10 1011 SYSCALL_MBUS_WRITE AUX_TRUE 0 1

11 1100 SYSCALL_MBUS_READ AUX_TRUE 0 1

12 1100 SYSCALL_MUTEX_UNLOCK AUX_TRUE 0 1

13 0000 SYSCALL_WORK_NONE AUX_FALSE 1 0

14 1111 SYSCALL_MUTEX_UNLOCK AUX_TRUE 0 1

Polled Safe Send KFIFO Cmd.,

Polled Wait for Return

15 0000 SYSCALL_WAIT_EVENT_TIMEOUT NOT_TIMEOUT 0 1

(UL) User-Level (KL) Kernel-Level (GV) Global Valid (PB) Procedure Block (W) Words (32 bits)

KFIFO Not Full Branch KFIFO Full Branch KFIFO Retrieve Return Branch Interrupt Request

Chapter 5. Architecture Extensions 148

5.1.2 BFM Verification and Extended Features

The interface M00 System and the KIVIO-extended features, c.f section 5.1, were tested with the AXI

VIP following the block design of fig. 5.1.5. Thus, the VIP acts a master writing to S00 Control and another

VIP acts as a slave to intersect the master interface requests. The tests were straightforward, the main

objective established was to test hardware task extended procedures in terms of functionality and M00

System interactions. In this particular case, one used an hardware task developed to exchange information

with the host system using Linux pipes.

/WAIT_EV_ELAPSED

#6 WAIT_OP

/SYSRAM_WR_BURST

#7 WRITE_SYSRAM

/SYSRAM_WRITE_RQ

#3 FETCH_TO_SYSRAM

/FILE_SUBSCRIBE

#2 SUB_RES_PIPE

/FILE_SUBSCRIBE

#1 SUB_DATA_PIPE#0. READY

/ACC_SYNC

#4 READ_SYSRAM

/SYSRAM_READ_RQ /TASK_DONE

#99 EXIT#8 PUBLISH_FROM_SR

RUN/

#5 TRIGGER_OP

/TRIGGER_OP
 /SYSRAM_RD_BURST

Figure 5.1.4: Pipe Communication Hardware Task’s Finite State Machine (FSM).

This hardware task’s FSM is represented in fig. 5.1.4. The main objective of the test is to explore pipe

communication between the software app on the host system side and the hardware accelerator developed.

For this, the test will request to subscribe to two KIVIO pipes, one for getting unencrypted data, and another

for returning encrypted data from the hardware. Thus, the latter fetches the data from the app through

the first pipe and writes it to shared memory, then the hardware task reads the data placed in the latter

and performs an encryption operation over it, writing it again in shared memory when the operation is

completed. Then, it requests for the latter to be published from memory again to the app through the

return pipe. The test also presupposes that the hardware task stays subscribed to the aforementioned

Chapter 5. Architecture Extensions 149

pipes. The test results can be seen in fig. 5.1.10, fig. B.7, and fig. B.8.

The test began by using the master VIP to write to the microkernel’s local interrupt controller, c.f

section 4.5.2, to enable all interrupts, asserting the enable_intr bit of the control register to enable all

interrupts, and mask the interrupt pertaining to the system mutex, specified as interrupt source one. The

latter was done by enabling bit 1 of the mask field of the LINTC’s control register. Both of these assertions

are made with write at 65.00 nanoseconds observed in fig. B.7. Note that the writes and reads performed

through the S00 Control interface and represented in fig. 5.1.10, fig. B.7, and fig. B.8 are made in the

VIP’s testbench to mimic KIVIO or host system intervention. Following, a read is performed on the same

register, i.e., LINTC control, to check if the write succeeded. Then the accelerator is enabled by writing to

the kernel’s control register and asserting the run bit. The assertion of the kernel’s run bit enables the

task_run signal and promotes the hardware task to its first running state one cycle later. With this, the

hardware task passes from s0_ready to s0_1_write_args, at 505.00 nanoseconds.

S01_AXI_0

axi_vip_1

AXI Verification IP

M_AXI

UKERNEL_0

UKERNEL_v1_0

S00_TASK
M00_KERNEL

M00_AXI
S00_AXI

S01_AXI

hw_pipe_com_0

hw_pipe_com_v1_0

S00_KERNEL M00_TASK

axi_smc

AXI SmartConnect

S00_AXI M00_AXI

axi_vip_0

AXI Verification IP

S_AXI

Figure 5.1.5: AXI VIP Simulation – Extended Feature Test: Block Design.

Since one is performing VIP simulation, the main memory positions related to the KFIFO have no

information. For this reason, in the state #0_1 and #0_2, one writes to main memory through the M00

System interface to the arguments and returns sections of the KFIFO, respectively. To perform the pipe

hardware task to completion, one stipulated an empty argument/command section and a return section

with some 32-bit words, so that the extended feature syscalls do not stay in loop because there are no

returns. The arguments write happens at 505.00 nanoseconds and the returns write happens at 925.00

nanoseconds, fig. B.7.

The first actual processing state of the hardware task starts at 1,225.00 nanoseconds, c.f fig. B.7. In

the latter, one performs the placement of the command that subscribes to the data pipe and waits for its

returned descriptor. From this point on one will use another simulation instance to describe in more detail

the execution of one extended procedure, in this case, related to the s1_sub_data_pipe state.

Concerning this, at 485.00 nanoseconds, in fig. 5.1.6, it is also possible to see the extended procedure

Chapter 5. Architecture Extensions 150

start with a mutex lock system call. This call relates to the first lock of the system mutex represented in

fig. 5.1.1 and happens at the instant of 585.00 nanoseconds. The lock is successful because the mutex’s

o_locked output is asserted, the status now has the owner “c000aceb”, which represents the acquisition

of the mutex by the microkernel, and the state of the mutex’s FSM changed to s2_owned_b at 535.00

nanoseconds. The next low-level system call is a burst read performed in the M00 System interface. This

step corresponds to the second step of fig. 5.1.1, where the five elements of the arguments KFIFO are

read and stored in local buffers. The burst read syscall starts at 545.00 nanoseconds and ends at 735.00

nanoseconds. It is important to note that here on is referring to the syscall ID output of the scheduler

since the scheduler-dictated microprogram execution is being used with the enable of enable_sched, c.f

fig. 5.1.2. At instant 735.00 nanoseconds one also reaches the start of the local interrupt controller write

system call, which asserts a specific interrupt source and generates an IRQ. The source number two

(735.00 nanoseconds) is used since it represents the interrupt source associated with the system mutex

and, therefore, related with the writing of a command to the arguments KFIFO. This IRQ is only generated

when the check on the KFIFO also performed in this stage establishes that the KFIFO is not full. This is

possible because the check is not performed by a low-level system call, then as one has the possibility of

using one syscall per case, the LINTC one is used. At instant 785.00 nanoseconds is possible to see the

generation of the IRQ with the transition of o_irq_pin from ’0’ to ’1’ at the rising edge of the system clock.

This interrupt request is held for four cycles to be perceived by the host system.

Figure 5.1.6: Extended Feature VIP Simulation: System Mutex Lock, Read Argument Fields, Check Argument KFIFO Status

and Generate IRQ.

Chapter 5. Architecture Extensions 151

The instant 805.00 nanoseconds in fig. 5.1.7 depicts the instant where the args.in field of the ar-

guments KFIFO is incremented and masked. Moreover, the instant 922.00 nanoseconds represents the

start of the burst word syscall that writes the 64-bit command to the shared memory region pertaining

to the arguments KFIFO. At 1,075.00 nanoseconds the system mutex is released from the microkernel’s

control since the command has been written, c.f fig. 5.1.1. Additionally, at 1,135.00 nanoseconds the wait

event timeout syscall begins, and the event manager unit starts counting from the specified value to zero,

1,225.00 nanoseconds.

Figure 5.1.7: Extended Feature VIP Simulation: Increment args.in, Send 64-bit Command, and Sleep.

In fig. 5.1.8 one can see the procedure sleep coming to an end when zero is reached, with the

o_time_remaining output of the event manager unit. The timeout output bit, o_timeout, is then as-

serted, which indicates to the kernel that it can go to the next system call established by the scheduler.

Following fig. 5.1.1, the next syscall is the one that reads the return KFIFO fields and stores then in a

local buffer. It starts at the instant 1,735.00 nanoseconds, and ends at instant 1,925.00 nanoseconds

where the next syscall begins. At this stage, the system call active is the one related to no operation since

one just wants to check the state of the returns KFIFO. As the test input of the scheduler related with the

reception of the return, i_return_rcvd, is not asserted the test fails, and the scheduler performs an indirect

jump to the mutex unlock system call, 1,935.00 nanoseconds, followed by the sleep once again, 1,995.00

nanoseconds, as depicted by fig. 5.1.1. At 2,0098.63 nanoseconds is possible to see the event manager

counting again until timeout.

Chapter 5. Architecture Extensions 152

As a Proof of Concept (PoC), this test was performed so that the scheduler would follow the KFIFO

not full branch, and never enter the KFIFO retrieve return branch, c.f table 5.1. Despite, in the overall

simulation of the hardware task, c.f fig. B.7, it is possible to see that one forced the retrieve return branch

with the write to the returns section of the SYSRAM in state s0_2_write_rets, to assure the hardware task

proceeded to the next state, deemed as s2_sub_res_pipe.

Figure 5.1.8: Extended Feature VIP Simulation: System Mutex Lock, and Read Return Fields.

Another thing to assure when going to the next extended feature state is that the interrupt is cleared, for

this, one performed two testbench writes on the LINTC’s control register through the S00 Control interface

to enable the bit that clears the system mutex interrupt followed by another to put that same bit to ’0’.

This process is done each time one moves to another extended procedure at the timestamps 2,145.00,

3,925.00, and 5,705.00 nanoseconds. As forementioned the clearing of the interrupt’s status registers

are meant to be done by KIVIO, but here that was emulated recurring to the master VIP. One subscribes

to the results pipe in state s2_sub_res_pipe at 2,995.00 nanoseconds. When this state terminates the

hardware task’s FSM moves to the next state at 4,775.00 nanoseconds. The state #3 requests a write

from the app unencrypted data to the SYSRAM through the data pipe. After, the next state, deemed

as s4_read_sysram, reads the host’s main memory section with the data and stores in a local buffer

(protected by the system mutex), in_buffer_0_q, in fig. B.8. This read (burst) into the buffer ends at

about 7,000.00 nanoseconds. The state #5 triggers the ip_xor entity to start its operation (or the HAL-

ASOS AES IP, in case of AES encryption, c.f fig. 5.1.12). Thus, the latter performs a xor between all the

32-bit words of the buffer and an established cypher key, outputting the results onto the out_buffer_0_q

Chapter 5. Architecture Extensions 153

buffer of fig. B.8. The state #6 waits for the xor_done signal or until timeout for stipulated amount of

cycles. Following fig. 5.1.4, the next state, s7_write_sysram, writes the contents of this buffer again to

the SYSRAM in burst format through the M00 System interface (also protected by the system mutex). The

write ends at 8,125.00 nanoseconds and the last state of the pipe hardware task also starts at this point.

As PoC, the read and writes of data performed from/to main memory were established as 32-word bursts,

but more complex applications might require bursts of more words. Future research has to make sure the

microkernel handles bursts with more words than the current maximum (256 words) while maintaining

data integrity. Lastly, in state s8_publish_from_sysram, a command request is made to publish the xor-

encrypted data frommain memory back to the app, through the results pipe. After this stage, the hardware

task simply goes to an idle state, deemed as s99_exit where it can be restarted if the host system decides.

In this state the hw-task also signals the end of processing to the microkernel with the task_done signal.

args.in

32B

args.out

Re
qu
es
ts

args.mask
args.esize 8

3

var

var

64B

96B

KF
IF
O

Re
sp
on
se
s

4

7

var

128B

var

KF
IF
O

burst read 5 words

in <- (in + 1)

& mask

in - out

= mask?

kfifo full?

N

Y

lock mutex

(LMUTEX)

unlock mutex

(LMUTEX)

sleep

write 2 words

 to args.data_woffset

+ in*2

unlock mutex

(LMUTEX)

args.data
reserved
reserved
reserved

arguments

arguments

arguments

arguments

rets.in
rets.out
rets.mask
rets.esize
rets.data
reserved
reserved
reserved
returns
returns
returns
returns
returns
returns
returns
returns

sleep
lock mutex

(LMUTEX)

burst read 5 words

in - out

!= zero?

out <- (out + 1)

 & mask

read 1 word

from rets.data_woffset

+ out

unlock mutex

(LMUTEX)

Exit

Y

N

Figure 5.1.9: Composite system call for executing KFIFO-extended features in a polling manner (LRAM); The same tests

for the pipe hardware task, c.f fig. 5.1.4, were also done for LRAM communication, changing all the extended commands to

map the KFIFOs into local memory, and also store the non-encrypted/encrypted words. This scheme relies on the system call

sequence HDL of listing A.5. The pipe HW-Task’s HDL can be seen in listing A.8 (SYSRAM), and in listing A.9 (LRAM).

Chapter 5. Architecture Extensions 154

Figure 5.1.10: Pipe Communication Hardware Task (SYSRAM w/ XOR Encryption): Overview.

Chapter 5. Architecture Extensions 155

Figure 5.1.11: Pipe Communication Hardware Task (LRAM w/ XOR Encryption): Overview.

Chapter 5. Architecture Extensions 156

Figure 5.1.12: Pipe Communication Hardware Task (SYSRAM w/ AES Encryption): Overview.

Chapter 5. Architecture Extensions 157

5.2 Scalability and Execution Modes

Another limitation of HAL-ASOS was the scalability regarding user-level procedures. The dissertation

implementation follows what was established by HAL-ASOS in what concerns the design of the hardware

task entity. Thus, the latter is divided into a common control-datapath architecture, establishing the call to

hardware user-level procedures in the control unit section. This basis presupposes that only one user-level

procedure can be called per state of the hardware task, which logically originates a number of hardware task

states that is proportional to the amount of features one wants to implement in hardware to communicate

with the host system, and also to activate specific services of the accelerator. Initially, one presented

a standalone microprogram flow, based on kernel-level system calls, c.f section 4.2.3. If this was the

only option to implement procedures in the microkernel the number of states of the hardware task would

increase drastically. For this reason, another layer of abstraction was presented, with the introduction of

the procedure scheduler, c.f section 5.1.1. With this approach, the hardware task can now use single-

syscall procedures, that use only one kernel-level procedure, or implement composite-syscall procedures,

the rely on multiple kernel-level procedures.

State C
call

State B
task_run/

State A

call

HW-Task
FSM

Procedure

safe_write_lram_burst

State A

State B

safe_write_lram_burst

State C

write_reg

Case: Step 1

mutex_lock Case: Step 2

write_lram_burst

Case: Step 3

mutex_unlock

task_run/

valid/

valid/

Return

Figure 5.2.1: HAL-ASOS’ Hardware Task: Composite Procedure Model.

By increasing the complexity of the task, the procedure paradigm is bounded to fall onto composite pro-

cedures to achieve overall-system functionality. The way that HAL-ASOS implements composite procedures

Chapter 5. Architecture Extensions 158

is extremely hindered by target-platform resources. This means that the latter implements procedures in a

way that ultimately, at the last stage of its design methodology (c.f section 3.1.1), uses almost, if not more

than, 100% of the resources of the deployment board. This fact is then solved by rearranging the hardware

task in a way that fits the board’s resource constraints. In these circumstances, a solution that could

leverage the resource problem at kernel-level would greatly benefit the accelerator model deployment.

To address the problem one has to analyze the way HAL-ASOS deals with composite procedures. In

fact, HAL-ASOS makes use of VHDL switch statements (deemed as cases) to deal with the composite

procedures, meaning that each statement can make a call to a kernel-level system call. This overcomes

the limitation of one procedure per control unit state, since there is now logic within a user-level procedure

that establishes the active kernel-level procedure based on information coming from the scheduler. Even

though, the root of the scalability problem lies with the user-level procedure directly establishing this case

statements that select the kernel-level procedures, c.f fig. 5.2.1. This approach induces the copy of the

selection logic for each user-level procedure every time one is called within a state of the hardware task.

The scalability problems then arise, after synthesis, with the repeated inferring of ROM/LUT resources

from this selection logic within user-level procedures, for each task state. To resolve this issue three main

decisions were made:

1. Simplify user-level procedures by passing a procedure ID to the kernel;

2. Add a kernel module responsible for reusing cases based on the procedure ID;

3. Make the module responsible for the switching between the execution modes;

To distinguish between the two executions modes, i.e., scalable and non-scalable, the scalable ac-

celerator execution will be referred as kernel bounded and the non-scalable accelerator execution will

be referred as normal or not kernel bounded execution. Additionally, the aforementioned module was

named runtime manager, and its RTL design internal architecture is represented in fig. 5.2.4.

A typical execution starts with a user-level procedure call from the hardware task, represented in 1

in fig. 5.2.2. This procedure establishes, among other things, the bound_to_kernel signal logical level. In

the microkernel, the signal serves as logic select to decide if the runtime manager’s case statements

should be used, represented in 2 in fig. 5.2.2. In the case of the assertion of enable_sched and

bound_to_kernel in the hardware task, the kernel uses the scheduler and runtimemanager, to perform the

user-level procedures in the kernel until the end of the procedure, which is determined with the scheduler’s

Chapter 5. Architecture Extensions 159

valid signal assertion, 3 in fig. 5.2.2. Otherwise, if only enable_sched is asserted, the kernel behaves as

already explained in section 5.1, i.e., by dividing a composite procedure in multiple kernel procedures, but

only executing the low-level ones in kernel space. With this, the kernel-level procedure switching is done

in the hardware task, and the kernel procedures exchange information with the task through the defined

interfaces, namely S00 Kernel and M00 Task, 4 in fig. 5.2.2.

User-Level Procedure

(Composite)

HW-Task

µKernel

Kernel-Level

Procedure

Kernel-Bounded
Procedure

Execute in µKernel and

assert valid when completed

Keep exchanging information through
the Task-µKernel interfaces until valid

Use scheduler and runtime manager

Use scheduler

bound_to_kernel

Is it a kernel-bounded

procedure?

2

Microkernel Mechanism for Kernel-Bounded Procedures

Runtime Execution Modes Overview

No

Yes 3

1

4

Figure 5.2.2: Overview of the microkernel mechanism to execute kernel-bounded user-level procedures. User procedures

are executed in the microkernel depending on the set procedure ID when the bound_to_kernel signal is asserted, otherwise a

non-scalable user procedure can be executed in the hardware task by exchanging information with the microkernel through the

dedicated interfaces. In either case, the enable_sched is considered implicit since one is referring to composite procedures.

Listing 5.12 represents the kernel-bounded version of the file subscribe extended feature. Its purpose

is to get a descriptor regarding a named-pipe, socket, or binary file on the host system side. It was named

file subscribe instead of file open, since it is bound to KIVIO operation, i.e., the hardware task always

calls the same procedure and lets KIVIO handle the matching with a descriptor based on the needs of the

overlaying user-level software application. Each extended feature always uses the procedure in line 5 to

establish the active kernel services, in this case, the scheduler and the runtime manager, with the assertion

of enable_sched and resched_req, and the assertion of bound_to_kernel, respectively. Additionally. it

Chapter 5. Architecture Extensions 160

also specifies the procedure ID, in line 19, forwards the KFIFO command ID to the create command

procedure, in line 22, while it retrieves the created 64-bit command, in the same line, and lastly, passes

it through the kernel call procedure parameters, in line 23.

Listing 5.12: User Package: Simplified File Subscribe (HDL).

1 -- MORE
2 --
3 -- (kernel-bounded) kfifo-extended features (return-blocking)
4 --
5 procedure kernel_bounded_safe_kfifo_send_command_wait_return(
6 signal kernel_call : out kernel_call_t;
7 signal kernel_response : in kernel_response_t;
8 constant kfifo_cmd_id : ki_feature_t;
9 constant hint_cookie : in natural;
10 constant message_flags_events : in std_logic_vector(C_KIVIO_FLAGS_WWIDTH-1 downto 0);
11 constant wcount_whence : in natural;
12 constant woffset : in natural range 0 to 2**C_KIVIO_WOFFSET_WWIDTH-1) is
13 --
14 variable cmd_data : std_logic_vector(C_MESSAGE_WIDTH-1 downto 0) := (others => '0');
15 begin
16 kernel_call.enable_sched <= '1';
17 kernel_call.resched_req <= '1';
18 kernel_call.bound_to_kernel <= '1';
19 kernel_call.procedure_id <= POLLED_SAFE_SEND_KFIFO_CMD;
20 kernel_call.kfifo_cmd_id <= kfifo_cmd_id;
21 ---
22 kfifo_create_cmd64(kfifo_cmd_id,hint_cookie,message_flags_events,wcount_whence,woffset,

cmd_data);
23 kernel_call.procedure_parameters <= cmd_data;
24 ---
25 end procedure kernel_bounded_safe_kfifo_send_command_wait_return;
26 --
27 -- MORE
28 --
29 -- (kernel-bounded) kfifo-extended file (socket, named-pipe and binary file) subscribe:
30 -- blocking version (polled to insert in kfifo and polled wait for return)
31 --
32 procedure polled_kernel_bounded_file_subscribe(
33 signal kernel_call : out kernel_call_t;
34 signal kernel_response : in kernel_response_t;
35 constant hint_cookie : in natural;
36 constant message_flags_events : in std_logic_vector(C_KIVIO_FLAGS_WWIDTH-1 downto 0);
37 constant wcount_whence : in natural;
38 constant woffset : in natural range 0 to 2**C_KIVIO_WOFFSET_WWIDTH-1;
39 signal returned_cookie : out natural) is
40 --
41 begin
42 kernel_bounded_safe_kfifo_send_command_wait_return(kernel_call,kernel_response,

KI_SUBSCRIBE,hint_cookie,message_flags_events,wcount_whence,woffset);
43 returned_cookie <= to_integer(unsigned(kernel_response.procedure_return(

KIVIO_RET_COOKIE'RANGE)));
44 ---
45 end procedure polled_kernel_bounded_file_subscribe;
46 --

5.2.1 Runtime Management

To achieve execution mode switching and also scalability in user procedures the runtime manager

module was added into the scheduler-microprogram scheme of fig. 5.1.2. The result can be seen in

fig. 5.2.3. As portrayed, the runtime manager receives the kernel call coming from the hardware task,

Chapter 5. Architecture Extensions 161

deemed as i_kernel_call, and also the kernel response generated by export response procedure (P3). To

construct the kernel response that enters the runtime manager the procedure P3 can receive the syscall

output from the microprogram or the scheduler, depending on the microinstruction flow chosen, i.e., if

one is considering standalone-microprogram execution or scheduler-dictated execution, respectively. Both

the kernel call coming from the S00 Task interface and the internal kernel response enter the runtime

manager to ultimately produce an active kernel call and also an active kernel response. This means that,

the execution mode selected, i.e., kernel bounded or normal, selects the which kernel call and kernel

response should be used.

Microprogram

I_EVM_READY

I_EVENT_ELAPSED

I_ADDRM_READY

I_LBUS_RLAST

I_LBUS_WLAST

I_M_AXI_TIMEOUT

Mixed
D Q

rst

CE0
1 0

1

I_INTR_RAISE

O_KILL_ACC

I_MUTEX_STATUS

I_SYSCALL_INPUT

I_SYSCALL_OUTPUT

AXI_MBUS

O_EVM_TRIGGER

O_LBUS_WR_CE

O_M00_TIMEOUT_TRIGGER

I_LBUS_RD_ACK

O_ADDRM_TRIGGER

I_LBUS_WR_ACK

M00_AXI_ARESETN

M00_AXI_ACLK

ROM-Based

Procedure Scheduler

Mixed
D Q

rst

CE0
1 0

1

I_PROCEDURE_ID

I_THIS_CALL

I_ENABLE_SCHED

I_RESCHED_REQ

I_VALID O_SCHED_PROGRESS

O_SCHED_SYSCALL_INPUT

O_SCHED_SYSCALL_OUTPUT

I_KFIFO_STATUS

I_EM_TIMEOUT

I_RETURN_RCVD

O_PROCEDURE_ID

M00_AXI_ARESETN

M00_AXI_ACLK

ROM-Based

0

1

syscall_input_d Import Syscall Input

P2

enable_sched
(HW-Task)

M0

Export
Syscall

P3
kernel response0

1

M1

syscall_output_d

I_KERNEL_RESPONSE

I_SCHED_PROGRESSI_KERNEL_CALL

I_SCHED_SYSCALL_INPUT

O_ACTIVE_KERNEL_CALL

O_ACTIVE_KERNEL_RESPONSE

Procedure Runtime Manager

M00_AXI_ARESETN

M00_AXI_ACLK

O_RETURN_RCVD

I_KFIFO_BASE_OFFSET

Mixed
D Q

rst

CE0
1 0

1

FSM

To SLD

Import Call

(from

S00_TASK)

P0
Export Syscall

P3
Export Response

(to M00_KERNEL)

P1

Figure 5.2.3: Runtime Management Overview.

Note that the kernel response stays nearly the same on both executionmodes because it is mainly given

by the scheduler-microprogram pair, in case of scheduler-dictated execution, or only the microprogram,

in standalone microprogram execution, and also the SLD. As described by fig. 4.3.1, the kernel response

includes information regarding the task’s valid bit, the current kernel indexes, procedure ID, scheduler

progress, procedure return, syscall ID, and syscall return arguments. On another note, the kernel call is

Chapter 5. Architecture Extensions 162

different because shifting between kernel-bounded execution and normal execution, i.e., the one employed

by HAL-ASOS and defined in fig. 5.2.1, stipulates the place where the kernel call information is coming

from. Thus, with normal execution, one has kernel call information coming from the hardware task, while

in kernel-bounded execution, one has information regarding kernel calls coming from the runtime manager.

This means that, besides selecting the currently active kernel call, represented in M1 (c.f fig. 5.2.4), the

runtime manager also has to generate its own kernel calls depending on the procedure ID passed to it

as input parameter. This is represented by the M0 and M0.01 case chain of fig. 5.2.4. The normal

kernel calls are kept if the aforementioned bound_to_kernel signal is not asserted (M1), otherwise, the

runtime manager uses its own kernel calls with the bound_to_kernel asserted (also in M1). The HDL

representation of the runtime manager can be seen in listing 5.13.

Listing 5.13: Runtime Manager (HDL).

1 --
2 KERNEL_BOUNDED_EXTENDED_FEATURES : process (state,procedure_done_i,bounded_kernel_call.

procedure_id,I_SCHED_PROGRESS,I_KERNEL_CALL.enable_sched,I_KERNEL_CALL.resched_req,
I_KERNEL_CALL.procedure_id,I_KERNEL_CALL.bound_to_kernel,I_SCHED_SYSCALL_INPUT.
syscall_id,I_KERNEL_RESPONSE,timeout_i,remaining_time_i,kfifo_args_buffer_q,
procedure_done_i,return_arg_i,mutex_status_i,args_in_masked_q,I_KFIFO_BASE_OFFSET,
kfifo_rets_buffer_q,rets_out_masked_q,kfifo_index_q,kfifo_index_d,kfifo_args_buffer_d,
args_in_masked_d,kfifo_rets_buffer_d,rets_out_masked_d)

3 --
4 begin
5 -- MORE
6 --
7 case state is
8 when S0_IDLE =>
9 bounded_kernel_call_sync(bounded_kernel_call,I_KERNEL_CALL,

I_SCHED_SYSCALL_INPUT);
10 next_state <= S1_RUNNING;
11 when S1_RUNNING =>
12 bounded_kernel_call_sync(bounded_kernel_call,I_KERNEL_CALL,

I_SCHED_SYSCALL_INPUT);
13 --
14 case bounded_kernel_call.procedure_id is
15 --
16 when PROCEDURE_ZERO => null; --00
17 --
18 -- MORE
19 --
20 when POLLED_SAFE_SEND_KFIFO_CMD => --02
21 activate_kernel_interface_feature_wait_return(bounded_kernel_call,
22 I_KERNEL_RESPONSE,I_SCHED_PROGRESS,kfifo_args_buffer_d,
23 kfifo_rets_buffer_d,timeout_i,remaining_time_i,50,args_in_masked_d,
24 rets_out_masked_d,procedure_done_i,mutex_status_i,O_RETURN_RCVD,
25 return_arg_i,I_KFIFO_BASE_OFFSET);
26 --
27 -- MORE
28 --
29 when others => null;
30 end case;
31 --
32 if procedure_done_i = '1' then
33 next_state <= S0_IDLE;
34 else
35 next_state <= S1_RUNNING;
36 end if;
37 when others => null;
38 end case;
39 end process KERNEL_BOUNDED_EXTENDED_FEATURES;
40 --

Chapter 5. Architecture Extensions 163

Scheduler Signals HW-Task Signals

Procedure Runtime Manager

I_SCHED_PROGRESS

PROCEDURE_ZERO 			 		 	--00
SAFE_SEND_KFIFO_CMD 	 	 	--01
POLLED_SAFE_SEND_KFIFO_CMD --02
PROCEDURE_THREE 		 		 	--03
PROCEDURE_FOUR 		 	 	--04
PROCEDURE_FIVE 	 		 	 	--05
PROCEDURE_SIX 	 	 	 	--06
PROCEDURE_SEVEN 		 		 	--07
PROCEDURE_EIGTH 	 	 	 	--08
PROCEDURE_NINE 		 	 		 	--09
PROCEDURE_TEN 	 	 	 	--10
PROCEDURE_ELEVEN 		 	 	--11
PROCEDURE_TWELVE 		 	 	--12
PROCEDURE_THIRTEEN 		 	 	--13
PROCEDURE_FOURTEEN 		 	 	--14
PROCEDURE_FIFTEEN 	 	 	 	--15

Procedure Selector M0

this_call
kernel_call_denable_index

inc_index
kfifo_status
parameters [63:0]

CASE_SIZE: 2**4 = 16 user-level

procedures, each w/ 2**4 = 16 max steps
[3:0]

[7:4]

RESET(I_RESET)

CLOCK(I_CLK)

KFIFO_SYSMUTEX_LOCK

KFIFO_READ_ARGUMENTS

KFIFO_FULL_TEST

KFIFO_INC_ARGS_IN

KFIFO_SEND_CMD_HIGH_WORD

KFIFO_SEND_CMD_LOW_WORD

KFIFO_SYSMUTEX_UNLOCK

PROCEDURE_DONE

KFIFO_FULL_PATH_SYSMUTEX_UNLOCK

KFIFO_FULL_PATH_SLEEP

Kernel Call Generator M0.01

Control Unit

running_state

0

1

O_ACTIVE_KERNEL_CALL

bounded_kernel_call

I_KERNEL_CALL

bound_to_kernel

bound_to_kernel
enable_sched
resched_req
procedure_id [3:0]

I_SCHED_SYSCALL_IN

syscall_id [3:0]

hwtask_kernel_call

scheduler_syscall_input

0

1

2

3

4

5

6

7

8

9

bounded_kernel_call.procedure_id

scheduler_progress

in out mask esize data kfifo_args_buffer

arguments

I_KERNEL_RESPONSEkernel_response.index

M1

M2 0 1 2 3 4

Internal CU SignalsMicroprogram Signals SLD Signals

kfifo_cmd_param [63:0]
kfifo_cmd_id [9:0]

O_ACTIVE_KERNEL_RESP
procedure_return_arg_i

I_KERNEL_RESPONSE

P0

FFST

D Q

reset
clk

next_state state

procedure_done_i

in out mask esize data

M3 0 1 2 3 4

returns

kfifo_rets_buffer

Figure 5.2.4: Runtime Manager RTL Design Internal Architecture (Simplified).

Chapter 5. Architecture Extensions 164

5.3 Diversity-Driven Hardware Task

The idea of a diversity-driven hardware task bases itself on the following premise: evolution by

adaptation. Following this concept the microprogram should start off with no system calls and be able

to issue multiple update requests until one had all low-level system calls in memory. This presupposes that

the kernel has mechanisms to handle all the update process, in what concerns to: changing the microcode

memory contents at runtime, grant partial host-system access to the microcode memory, and also have

error handling capabilities. This section explores these concepts and the design and implementation

choices that revolve around turning a normal hardware task into a diversity-driven one, capable of coping

with change.

5.3.1 Microcode Storage Model Migration

The first thing to consider is migrating the microcode memory from ROM to RAM, so one is able to

write into memory and perform microcode updates. As forementioned in section 2.3.2, the literature also

progressed in this direction to endow CPUs with capabilities against errors and also to deploy security

measures, c.f section 2.3.2, so this was the logical path to take regarding HAL-ASOS hardware task im-

provements. With this in mind, the only change to make to the microprogram was substituting the ROM

presented in section 4.2.4, with a true dual port RAM similar to the one used to construct the local memory,

c.f section 4.5.3. The microcode RAM needs to be dual port since one intends to use port B to specify a

program address when executing from it, while using port A to specify addresses and input data regarding

updates. The updatable microprogram scheme is represented in fig. 5.3.1. Additionally, the modifications

done to the microprogram HDL are represented in listing 5.14.

Listing 5.14: Microprogram RAM Instantiation (HDL).

1 mem_addr(SYSCALL_MSB'RANGE) <= std_logic_vector(to_unsigned(SYSCALL_T'POS(I_SYSCALL_INPUT.
SYSCALL_ID),SYSCALL_MSB'LENGTH));

2 --
3 SYSCALL_RAM0 : entity TDP_RAM
4 --
5 generic map(
6 RAM_W_WIDTH => 16,
7 RAM_DEPTH => 64)
8 port map(
9 --
10 -- System Channel --
11 --
12 I_ADDR_A => I_SYS_ADDR_A, -- 6 bits
13 I_DIN_A => I_SYS_DIN_A(15 downto 0), -- 16 bits
14 I_CLK_A => I_CLK,
15 I_WR_CE_A => I_SYS_WR_CE_A,
16 I_CS_A => I_SYS_CS_A,
17 O_DOUT_A => OPEN,

Chapter 5. Architecture Extensions 165

18 O_WR_ACK_A => O_SYS_WR_ACK_A,
19 O_RD_ACK_A => O_SYS_RD_ACK_A,
20 --
21 -- Microprogram Channel --
22 --
23 I_ADDR_B => mem_addr, -- 6 bits
24 I_DIN_B => (others => '0'), -- 16 bits
25 I_CLK_B => I_CLK,
26 I_WR_CE_B => '0',
27 I_CS_B => '1',
28 O_DOUT_B => mem_dout, -- 16 bits
29 O_WR_ACK_B => OPEN,
30 O_RD_ACK_B => OPEN
31);
32 --

To provide scheduler updates, one can also migrate the scheduler’s microcode memory from ROM

to RAM, following the design of fig. B.9. This approach was not left in the final implementation since it

required mechanism that ensures coherency between the order of the low-level syscalls in memory and

the datapath associated with them, i.e., at the current research state one has a kernel with capabilities

to receive microcode scheduler updates but the datapath is static and, therefore, does not follow the

changes introduced in the vertical microcode. This could be resolved with an some sort of arbiter that

decided the active datapath elements based on the system call ID dictated by the scheduler, similarly to

the SLD element, but regarding the runtime manager parameter stipulation. Another approach could be

the introduction of DPR to make use of dynamic datapaths that accompanied scheduler updates.

5.3.2 Host System Access

Another factor to take into consideration when modifying the architecture to a diversity-driven one is

the mapping of the microcode RAM onto one of the available interfaces. The interface chosen for this

was the S00 Control one. At the time, this interface is divided into four pages but only two pages are

used, one for hardware resources, and another for interface registers, both of them not occupied to the

fullest. This means that more registers can still be mapped on page zero and page one, and that one

still has two more pages (unmapped) that account for a possible microkernel expansion, leaving room

to map the microprogram and the even the scheduler here. The microprogram memory has 64 words

of 16 bits, and the microkernel was designed to also handle a machine word of 64 bits, but currently

the microkernel presupposes a machine word of 32 bits. This means that the microprogram could be

mapped to the equivalent of two pages, i.e., 32 words of 32 bits, but this would require temporary storage

in the microkernel to handle multiple AXI slave write transactions of 32 bits, and a way to process them as

single-word writes of 16 bits (in normal format) to the microprogram memory, or even as a single memory

write of multiple 16-bit words (in burst format). This temporary storage, could be a FIFO if one used the

Chapter 5. Architecture Extensions 166

Microprogram

CE

clear Q[1:0]D[1:0]

inc

clk

C0

I_RESET

0
1
2
3
4
5
6
7
8
9

10
11

(CS_I)

12
13
14
15

lbus_wr_ce
dummy_out

dummy_out
m_axi_arvalid
m_axi_rready
m_axi_awvalid
m_axi_wvalid

m_axi_bready_trigger

dummy_out
ev_manager_trigger

addr_manager_trigger
dummy_out
dummy_out
dummy_out

NULL
dummy_out

test_result

M2

Control
Signals

 µProgram Counter
load OV OPEN

0
1
2
3
4
5
6
7
8
9

10
11

aux_false_test
m_axi_arready
m_axi_rvalid

m_axi_awready
m_axi_wready_wlast
lbus_wr_ack_b_wlast

lbus_wr_ack_b
lbus_rd_ack_b

lbus_rlast
locked_a
locked_b

12locked_a

13

31aux_true_test

free

locked_b

M1

1

0

14
15
16

lbus_wlast

17

bvalid_timeout

event_elapsed

rvalid_rlast

Test
Inputs

1

RAM Data Out

Step

[15:14]

Input

[13:9]

NSF

[8:7]

Output

[6:3]

Valid

[2]

Block_task

[1]

Fault

[0]

CLOCK

RESET

(I_CLK)

(I_RESET)

O_SYSCALL_OUT
I_SYSCALL_INPUT

System Call Memory (RAM)

addr_b

syscall_id

valid

block_task
this_call_safe

syscall_id

K0

pc_q

pc_q

RAM0
RAM_DEPTH: 64 words

(2**4 = 16 system calls,

 each w/ 2**2 = 4 max steps)

RAM_ADDR_WIDTH: 6 bits

RAM_DOUT_WIDTH: 21 bits

addr_manager_ready

ev_manager_ready

lbus_rd_ack_b_rlast

18
19
20

[5:2]

[31]

[30]

free_i

locked_a_i

locked_b_i

I_MUTEX_STATUS

Mutex Test Input Generation

dina
addr_a
wr_ce_a
cs_a

rd_ack_a
wr_ack_a

I_SYS_CS_A

I_SYS_WR_CE_A

I_SYS_ADDR_A

I_SYS_DIN_A

O_SYS_WR_ACK_A

O_SYS_RD_ACK_A

Channel A Channel B

fault

Figure 5.3.1: Updatable Microprogram RTL Design Internal Architecture.

S00 Control interface, or even the LRAM acting as a microinstruction cache if one used the S01 Data

interface. Since both of these interfaces are single-word rated, performing burst updates would require

a ZCU-like unit to pass the microinstructions from the cache or FIFO to the microprogram RAM. Due to

the complexity of this scheme, one opted to view the microcode update as a write of 64 words of 32 bits

through the S00 Control interface, whilst discarding random noise added to the higher sixteen bits of the

update payload, c.f fig. 6.2.2, to avoid (side-channel) attacks that exploit the microcode-based systems with

meticulous payload analysis. Refer to section 7.1 for more information on the direction of future research.

The microprogram memory was mapped alongside the slave decoder element, receiving its data directly

from the AXI4 lite interface module for the S00 Control interface, c.f listing 5.15.

Listing 5.15: Microkernel’s Top-level: Updatable Microprogram Instantiation (HDL).

1 --
2 UP : entity ram_uProgram
3 --
4 port map(
5 I_CLK => m00_axi_aclk,
6 I_RESET => RESET_I,
7 --
8 I_SYSCALL_INPUT => syscall_input_d,

Chapter 5. Architecture Extensions 167

9 O_SYSCALL_OUTPUT => SYSCALL_OUTPUT,
10 --
11 I_SYS_CS_A => s00_addr_i(8),
12 I_SYS_WR_CE_A => s00_wr_ce_i,
13 I_SYS_ADDR_A => s00_addr_i(POW2(C_UP_RAM_DEPTH)+1 downto 2),
14 I_SYS_DIN_A => s00_txdata_i,
15 O_SYS_WR_ACK_A => ram_uprog_wr_ack,
16 O_SYS_RD_ACK_A => ram_uprog_rd_ack,
17 --
18 -- MORE (Microprogram Test Inputs)
19 --
20 -- MORE (Microprogram Control Signals)
21 --

5.3.3 Error Handling and Update Mechanism

All that is left to have an adaptable hardware task is the introduction of error handling capabilities.

These refer to the detection of a internal microprogram fault and the generation of an update request.

With this in mind, one stipulated the bit zero of all microprogram instructions as a fault bit. The initial

configuration of the microprogram memory should initialize the RAM with zeros and ensure these fault

bits are asserted for the unmapped microinstructions. As seen in listing 5.15 the fault bit is propagated

to the microkernel’s top-level through the output signal o_syscall_output. Its assertion makes the kernel’s

FSM to go from a running state to the fault state, activating a kernel fault signal. This signal serves as an

interrupt source input of the LINTC to generate an IRQ associated with the update. The HDL pertaining to

the kernel’s FSM and the enabling of the interrupt source can be seen in listing 5.16. For more information

on the kernel’s FSM refer to section 4.2.2.

Listing 5.16: Microkernel Control FSM (HDL).

1 --
2 UKERNEL_CONTROL_FSM : process(state,ukernel_control_i,ACTIVE_KERNEL_CALL.task_done,

kill_accelerator_i,SYSCALL_OUTPUT.fault)
3 --
4 begin
5 -- MORE
6 case state is
7 --
8 when S0_K_READY=>
9 --
10 if(ukernel_control_i(C_UKERNEL_CTRL_RUN) = '1') then
11 next_state <= S1_K_RUNNING;
12 elsif (ukernel_control_i(C_UKERNEL_CTRL_RESET) = '1') then
13 next_state <= S3_K_RESTART;
14 end if;
15 --
16 when S1_K_RUNNING =>
17 --
18 task_run_i <= '1';
19 if(SYSCALL_OUTPUT.fault = '1') then
20 next_state <= S2_K_ERROR;
21 elsif(ukernel_control_i(C_UKERNEL_CTRL_RUN) = '1') then
22 next_state <= S1_K_RUNNING;
23 elsif(ukernel_control_i(C_UKERNEL_CTRL_RESET) = '1') then
24 task_reset_i <= '1';
25 next_state <= S3_K_RESTART;
26 elsif(ACTIVE_KERNEL_CALL.task_done = '1') then

Chapter 5. Architecture Extensions 168

27 next_state <= S0_K_READY;
28 elsif(kill_accelerator_i = '1') then
29 next_state <= S4_K_DEAD;
30 end if;
31 --
32 when S2_K_ERROR =>
33 --
34 task_error_i <= '1';
35 kernel_fault_i <= "001"; -- update irq
36 next_state <= S0_K_READY;
37 --
38 when S3_K_RESTART =>
39 --
40 task_reset_i <= '1';
41 next_state <= S0_K_READY;
42 --
43 when S4_K_DEAD =>
44 --
45 accelerator_dead_i <= '1';
46 next_state <= S4_K_DEAD;
47 --
48 when others => null;
49 end case;
50 end process UKERNEL_CONTROL_FSM;
51 --
52 -- MORE (State Register)

This interrupt source is then multiplexed with the interrupt source coming from the SLD and pertaining

to the lintc_write system call, c.f section 4.2.3, to generate the interrupt source of the LINTC module, c.f

listing 5.17.

Listing 5.17: Microkernel’s Top-level: Interrupt Source Selection and LINTC Instantiation (HDL).

1 ---
2 INTR_SOURCE_M2 : process (task_error_i,lintc_intr_src_i,kernel_fault_i)
3 ---
4 begin
5 intr_source_d <= "000";
6 case task_error_i is
7 when '0' =>
8 intr_source_d <= lintc_intr_src_i;
9 when '1' =>
10 intr_source_d <= kernel_fault_i;
11 when others =>
12 null;
13 end case;
14 end process INTR_SOURCE_M2;
15 ---
16 LINTC : entity INTR_CONTROLLER
17 ---
18 port map(
19 I_CLK => s00_axi_aclk,
20 I_RESET => RESET_I,
21 I_CS(0) => page0_dec_word_select_i(C_WORD6_BIT),
22 I_CS(1) => page0_dec_word_select_i(C_WORD7_BIT),
23 I_WR_CE => page0_dec_wr_ce_i,
24 I_RD_CE => page0_dec_rd_ce_i,
25 I_RXDATA => page0_dec_txword_i,
26 I_INTR_SRC => intr_source_d,
27 O_WR_ACK => lintc_wr_ack_i,
28 O_RD_ACK => lintc_rd_ack_i,
29 O_CONTROL => lintc_control_i,
30 O_STATUS => lintc_status_i,
31 O_IRQ_PIN => O_IRQ_PIN,
32 O_INTR_RAISE => intr_raise_i
33);
34 ---

6. Experimental Results

The verification of a project’s functionality is very important to assure system reliability, i.e., the conti-

nuity of service correctness [15], or simply not doing the wrong thing [14], whilst it maintains its integrity,

i.e., remains unaltered through several changes [5]. Therefore, having a good testing environment is cru-

cial to ensure the system is fully functional, passes verification tests, and regression tests, i.e., a system

that does not degrade or reverts unexpectedly as one introduces a new feature. This section will introduce

the methods used to test the system implemented in the dissertation and their results.

6.1 Accelerator Model Resource Utilization

To evaluate the overall resource utilization of the accelerator model, one selected a PoC board, in this

case, the Zybo Z7-10 board. The tests were conducted using the final versions of the hardware task and

microkernel IPs, using the block designs of fig. B.4 and fig. B.5. The resource utilization for the modules

of the dissertation can be found in table 6.1.

6.1.1 Stand-Alone Kernel Single-Task

Following HAL-ASOS in what relates to the design methodology of the hardware modules, one achieved

a functional microkernel with minimal resource footprint. As a whole, the microkernel only uses minimal

resources considering it is based on the architecture of a microprogrammable CPU with kernel-level and

user-level abstractions. With this in mind, the microkernel represents around 10% of the board’s LUTs and

almost 3% of the board’s flip-flops. Additionally, it also uses 3 F7 muxes (less than 1%) and 2.5% of the

board’s total BRAM tiles. Regarding the hardware task, one made two distinct implementations that achieve

the same results of the pipe tests presented in section 5.1.2. The first one, deemed as normal, follows

the hardware task model of HAL-ASOS, c.f fig. 5.2.1, which does not reutilize cases and, thus, infers

combinational logic for each task state containing composite procedures. The other approach, kernel-

bounded, aforementioned in section 5.2, makes use of the runtime manager module developed to reutilize

169

Chapter 6. Experimental Results 170

the same case statement and avoid unnecessary inference of combinational logic. The experimental

results show that for the functional example of section 5.1.2, the kernel-bounded version infers less F7/F8

muxes than the normal version at the cost of a slight increase in LUT usage. Specifically, the kernel-

bounded hardware task drops the usage of both mux cells by about 73%, while only incrementing the

usage of LUT cells by about 11%. Overall, in this case, the proposed accelerator model represents nearly

29% of the target’s LUTs, around 16% of the target’s flip-flops, less than 1% of F7/F8 muxes, about 1.5%

of BRAMs, about 2% of the total LUTRAMs, and decreases slice usage by approximately 19%.

Table 6.1: Post-Implementation Accelerator Model Resource Utilization targeting Zybo Z7-10.

Module
LUTs

cnt. (%)

FFs

cnt. (%)

F7 Muxes

cnt. (%)

F8 Muxes

cnt. (%)

BRAMs

tiles (%)

Slices

cnt. (%)

Microkernel* 1801 (10.23) 939 (2.67) 3 (0.03) 0 (0.00) 1.5 (2.50) 567 (12.89)

Interface Regs. 62 (0.35) 98 (0.28) 0 (0.00) 0 (0.00) 0 (0.00) 57 (1.30)

Kernel Regs. 5 (0.03) 37 (0.11) 0 (0.00) 0 (0.00) 0 (0.00) 20 (0.45)

LINTC 15 (0.09) 34 (0.10) 0 (0.00) 0 (0.00) 0 (0.00) 18 (0.41)

LMUTEX 76 (0.43) 99 (0.28) 0 (0.00) 0 (0.00) 0 (0.00) 49 (1.11)

LRAM 1 (<0.01) 4 (0.01) 0 (0.00) 0 (0.00) 1 (1.67) 4 (0.09)

Runtime Manager 299 (1.70) 282 (0.80) 0 (0.00) 0 (0.00) 0 (0.00) 201 (4.57)

S00 Interface 183 (1.04) 88 (0.25) 1 (0.01) 0 (0.00) 0 (0.00) 84 (1.91)

S01 Interface 22 (0.13) 58 (0.16) 0 (0.00) 0 (0.00) 0 (0.00) 22 (0.50)

Scheduler 863 (4.90) 10 (0.03) 2 (0.02) 0 (0.00) 0 (0.00) 330 (7.50)

SL Datapath 123 (0.70) 76 (0.22) 0 (0.00) 0 (0.00) 0 (0.00) 113 (2.57)

Slave Event Manager 62 (0.35) 46 (0.13) 0 (0.00) 0 (0.00) 0 (0.00) 34 (0.77)

SYSMUTEX 87 (0.49) 99 (0.28) 0 (0.00) 0 (0.00) 0 (0.00) 54 (1.23)

Microprogram* 24 (0.14) 4 (0.01) 0 (0.00) 0 (0.00) 0.5 (0.83) 19 (0.43)

HWPipeCom4 (KB) 2046 (11.63) 3200 (9.09) 34 (0.39) 15 (0.34) 0 (0.00) 928 (21.09)

HWPipeCom4 (N) 1848 (10.50) 3284 (9.33) 128 (1.45) 56 (1.27) 0 (0.00) 1149 (26.11)

Difference (N→ KB) +10.71% -2.56% -73.40% -73.20% 0.00% -19.23%

HWPipeCom4_AES (KB) 3298 (18.74) 3029 (8.61) 41 (0.47) 0 (0.00) 0 (0.00) 1616 (36.73)

Accelerator Model*** 5014 (28.49) 5573 (15.83) 37 (0.42) 15 (0.34) 1.5 (2.50) 1850 (42.05)

(KB) Kernel-Bounded Execution (N) Normal Execution**

*Considering the updatable version of the microprogram.

**Normal execution refers to the one employed by HAL-ASOS [62].

***Including additional processing system, reset, and interconnect logic and a kernel-bounded hardware task (XOR).

Chapter 6. Experimental Results 171

These values also presuppose the consideration of the logic regarding the processing system, the AXI

peripheral, and memory interconnects, and the reset generation, while using a kernel-bounded hardware

task. The 1.5% of BRAM usage is supplemented by the correct inference of local memory (LRAM), and the

microprogram RAM. Finally, the accelerator model does not utilize LUTRAMs. In any case, the hardware

task is always the most resource-demanding entity in the accelerator model, specifically its datapath,

which usually contains the offloaded algorithm, e.g., AES, initially implemented in the software application,

following the HAL-ASOS methodology, c.f fig. 3.1.1. Therefore, incrementing the size of the hardware task’s

datapath might originate a migration to a target board with more resources in certain cases. This test (c.f

table 6.1) refers to the use of 4 extended procedures, and this applies for both the kernel-bounded and

normal execution modes.

(a) Kernel-Bounded 32-Word XOR Encryption, 4 Ext. Procedures. (b) Normal 32-Word XOR Encryption, 4 Ext. Procedures

Figure 6.1.1: Pipe Hardware Task Device Resource Utilization Scenarios for the Encryption of 32 Words.

Additionally, one can discuss resource utilization regarding fig. 6.1.1, which represents the visualization

of resource usage and placement on the selected PoC board, in this case, Zybo Z7-10. The fig. 6.1.1 refers

to a scheme in which there is a single kernel controlling a single hardware task. With this in mind, fig. 6.1.1a

and fig. 6.1.1b depict resource usage when executing with a kernel-bounded hardware task and a normal

one, respectively. The information present describes what was already analyzed in table 6.1, which is

the use of more mux cells when executing under normal task conditions, compared to kernel-bounded

execution. On another note, in fig. 6.1.1b is more perceptible that, in this case (4 extended procedures),

the number of FPGA slices used is greater. This is confirmed by analyzing fig. 6.1.1a and fig. 6.1.1b close

to each other and comparing the dispersion of the cells. Moreover, one can analyze maintaining the same

Chapter 6. Experimental Results 172

microkernel but using the two versions of the pipe hardware task with more extended procedures. With this,

it was possible to conclude that, for 8 extended procedures, the LUT usage still increases, with a greater

percentage increase, probably due to cell optimizations. In addition, the flip-flop usage decrease remains

basically the same with a decrease of about 2.53%. The F7 muxes at this phase start to increase, while

the F8 muxes decrease drops from around 73.20% to 19.23%. Regarding the use of pipe hardware tasks

with 16 extended procedures, one noticed that the LUT usage difference once again becomes close to the

initial values with 4 extended procedures, sitting around a 13% increase. For this case, the flip-flop usage

difference shifts from a 3% decrease to a 4% decrease. The F7 mux usage passes from a 15% increase to

a 18% increase, and the utilization of the F8 muxes decreases a bit more (comparatively) passing from a

19% decrease to a 29% decrease.

Table 6.2: Post-Implementation Tasks’ Resource Utilization targeting Zybo Z7-10.

Module
LUTs

cnt. (%)

FFs

cnt. (%)

F7 Muxes

cnt. (%)

F8 Muxes

cnt. (%)

BRAMs

tiles (%)

Slices

cnt. (%)

HWPipeCom8 (KB) 1962 (11.15) 3201 (9.09) 147 (0.39) 42 (0.34) 0 (0.00) 810 (18.41)

HWPipeCom8 (N) 1492 (8.48) 3284 (9.33) 128 (1.45) 52 (1.18) 0 (0.00) 1094 (24.86)

Difference (N→ KB) +31.50% -2.53% +14.84% -19.23% 0.00% -25.96%

HWPipeCom16 (KB) 2618 (14.88) 3207 (9.11) 140 (1.59) 30 (0.68) 0 (0.00) 943 (21.43)

HWPipeCom16 (N) 2319 (13.18) 3330 (9.46) 119 (1.35) 42 (0.95) 0 (0.00) 1320 (30.00)

Difference (N→ KB) +12.89% -3.69% +17.65% -28.57% 0.00% -28.56%

(KB) Kernel-Bounded Execution (N) Normal Execution**

**Normal execution refers to the one employed by HAL-ASOS [62].

Overall, the pattern found, when incrementing the number of extended procedures, is that the kernel-

bounded hardware task is always able to decrease one type of muxes, and also the total slice usage of the

system, with progressively a bigger decrease from 4 to 16 extended procedures, i.e., the difference starts

at around 19% decrease, passes to a 26% decrease at 8 extended procedures and ends at a 29% decrease

when using 16 extended procedures. These results are complemented by the analysis of cell placement

and dispersion of fig. 6.1.2. Both transitions from fig. 6.1.2b to fig. 6.1.2a, and from fig. 6.1.2d to fig. 6.1.2c,

represent the usage of fewer FPGA slices by depicting less cell dispersion. Thus, less dispersion means

that one has fewer incomplete cells, and, consequently, a better utilization of the resources. For example,

let’s say that one introduces module changes that originate 5 LUTs after synthesis and implementation.

Chapter 6. Experimental Results 173

If a slice has, for example, a maximum of four LUTs and three are already used, this means that the

implementation tool might never use the last LUT available. This might happen due to not being able

to establish a connection with other cell elements while meeting the timing requirements, and justifies

why one should opt by designs with fewer incomplete cells. Regarding fig. 6.1.1 and fig. 6.1.2, the blue

area (■) refers to the microkernel resources, the green area (■) represents the hardware task, the yellow

area (■) and the teal area (■) represent additional logic referring to interconnect and reset logic, and the

orange area (■) represents the processing system. Overall, the LUT and F7 Mux increase, in some cases,

is related with the case statements used to create the 64-bit command to place in shared memory, future

research on this matter should explore a way of also passing these cases to the kernel.

(a) Kernel-Bounded 32-Word XOR Encryption, 8 Ext. Procedures. (b) Normal 32-Word XOR Encryption, 8 Ext. Procedures

(c) Kernel-Bounded 32-Word XOR Encryption, 16 Ext. Procedures. (d) Normal 32-Word XOR Encryption, 16 Ext. Procedures.

Figure 6.1.2: Pipe Hardware Task Device Resource Utilization Scenarios for the Encryption of 32 Words, more procedures.

Chapter 6. Experimental Results 174

pXOR4 pXOR8 pXOR16 pAES4
0

1,000

2,000

3,000

Am
ou
nt
of
lo
gi
c
el
em

en
ts
(c
nt
.)

LUTs FFs F7 Muxes F8 Muxes Slices

Figure 6.1.3: Kernel-Bounded Pipe Hardware Task Encryption: Resource Utilization Comparison. It is noticeable that kernel-

bounded procedures improve the accelerator deployment in terms of scalability since the logic usage remains regular when

increasing the amount of extended procedures (XOR case), and also when changing to another type of encryption task (AES).

6.1.2 Dual-Kernel Dual-Task

Following, one evaluated the resource implications of shifting from a stand-alone kernel single-task

model to a multiple-kernel multiple-task model. The table 6.3 represents the resource usage of a model

using two kernels and two hardware tasks. The test were kept at two hardware tasks since the Zybo Z7-10

board was only capable of deploying two accelerators even when using the kernel-bounded versions of

the hardware tasks, as seen in fig. 6.1.4. Finally, this dual-kernel dual-task model represented about 58%

of the board’s LUTs, around 30% of the total flip-flops, almost 2% of F7 muxes, 12% of F8 muxes, 5% of

BRAMs to accommodate two local memories and two microprogram memories, nearly 3% of LUTRAMs,

and, as a whole, about 77% of the board’s slices.

Table 6.3: Post-Implementation Accelerator Model (with a Dual-Task Scheme) Resource Utilization targeting Zybo Z7-10.

Module
LUTs

cnt. (%)

FFs

cnt. (%)

F7 Muxes

cnt. (%)

F8 Muxes

cnt. (%)

BRAMs

tiles (%)

LUTRAMs

cnt. (%)

Slices

cnt. (%)

Accelerator Model* 10262 (58.31) 10506 (29.85) 230 (1.45) 64 (12.36) 3 (5.00) 172 (2.87) 3366 (76.5)

*Considering two updatable microprograms, two kernel-bounded pipe hardware tasks, and additional PS logic.

This means that adding another hardware task to the system would require the migration to a board with

Chapter 6. Experimental Results 175

more resources, like, for example, a Zynq Ultrascale, to open the possibility of three or more hardware

tasks/threads. In the case of the AES HW-Task, one could only deploy one kernel and one task on the

Zybo Z7-10 board.

Processing System

Interconnects, Concat, and Reset

Microkernel Zero

Hardware Task Zero

Microkernel One

Hardware Task One

Figure 6.1.4: Pipe Hardware Task Device Resource Utilization with a Dual-Kernel Dual-task Scheme (XOR Encryption), block

design in fig. B.5. The hardware microkernel associated with a certain hardware task communicates with the host system

through shared memory.

6.2 Microprogram Fault Injection

To validate the diversity-driven hardware task developed in the dissertation, one conducted a micropro-

gram fault injection test relying on the HAL-ASOS Link IP [62], fig. 6.2.1. This allows for execution of tests

within a full simulation environment, where one can analyze Vivado’s behavioral simulation while actually

writing and reading to/from QEMU-virtualized memory positions. In the same way, KIVIO is able to write

and read through the microkernel’s slave interfaces, and interact with the hardware microkernel.

For this, during the initial KIVIO configurations of the accelerator, the microprogram RAM was loaded

with zeros, which represents all low-level system calls unmapped, 1 . These configurations also include

the writing to the interface configuration registers and the masking and enabling of interrupts. Following,

KIVIO puts the accelerator in a running state by writing to its control register, this is seen in 2 . Following,

in 3 , the microkernel detects that there is unmapped system calls in the microprogram RAM and issues

a kernel fault to the host system, via an update interrupt request. This information is also passed through

Chapter 6. Experimental Results 176

1

KIVIO

Programmable Logic

S00_Control MCODE RAM

HAL-ASOS LINK

Load Initial Configuration

2 Run Accelerator

LINTC

3

IRQ

4 Read LINTC Status

5 Read Binary File and Update MCODE RAM

6 Resume Accelerator

Figure 6.2.1: Microcode Fault Injection Test Overview, block design in fig. B.6.

the HAL-ASOS Link IP and activates KIVIO’s interrupt handler. Concerning this, in step 4 , already in

the handler’s bottom-half, the kernel’s status register is read and the analyzed. This originates KIVIO to

perform a microcode update by seeing the status register’s bit pertaining to the update asserted.

This update, depicted in 5 , contains the mapping of all low-level system calls needed for the correct

operation of the accelerator. To avoid side-channel attacks that exploit the microcode update’s payload,

one opted to use the same method used in Intel’s x86 microcode updates, i.e., make the microcode

update words bigger than the actual size of the microprogram’s memory microinstructions and randomize

the rest of the payload bits that do not carry the actual data. An overview of this scheme can be seen in

fig. 6.2.2. Thus, the higher sixteen bits (from 31 to 16) of the payload are random for every word written

to the microcode RAM, and the lower sixteen bits (from 15 to 0) contain the actual microinstruction. All

that is left for the microcode update to take effect is restarting the accelerator, in 6 , and let the hardware

task run to completion. Note that, in the Intel’s case, encryption is also used in addition to the random

noise added within 2048 bytes of patch data (presupposing a 48-byte header).

The fault injection scheme was tested within a full simulation environment, as aforementioned, and

fig. 6.2.4 represents the results. At the beginning of the simulation one can see the load of the initial

Chapter 6. Experimental Results 177

configurations regarding the masking of interrupts and the set-up of the interface registers, followed by the

initial microcode memory configuration with all system calls unmapped and with faults (at about 13.00

microseconds). Then one can observe the hardware task starting, leaving the s0_ready state, and going to

s1_sub_data_pipe. In this state, a fault is detected and an IRQ is issued to the host system, at about 59.00

microseconds. Accordingly, the latter perceives this, and issues a microcode update with the appropriate

system call binaries, at about 76.00 microseconds. Then the hardware task resumes the processing as

intended, proving that it can handle reconfiguration of its microcode mechanisms at runtime.

Step

[15:14]

Input

[13:9]

NSF

[8:7]

Output

[6:3]

Valid

[2]

Block

[1]

Fault

[0]

Random Padding Binary

[31:16]

Unused for update Used for update

Figure 6.2.2: Microcode Fault Injection Payload Overview, following Intel’s x86 example.

After deployment on the target board, i.e., Zybo Z7-10, the microprogram fault injection was also

tested, and the system proved to recover from a faulty state by issuing a PL-to-PS IRQ, which led to the

update of the microprogram. This can be seen in fig. 6.2.3a, alongside the target board in fig. 6.2.3b.

(a) Deployment: Microprogram Fault Injection.

(b) Deployment Board: Zybo Z7-10 [13].

Figure 6.2.3: Update Mechanism Deployment on the Zybo Z7-10 board.

Chapter 6. Experimental Results 178

Figure 6.2.4: Microcode Fault Injection: Full Simulation with HAL-ASOS Link IP.

7. Conclusion

The technology improvements of the last few decades allowed for higher-density computing systems

to emerge, as their size kept getting smaller. Even though, technology has limitations and systems could

not keep getting smaller and denser. Meeting performance goals shifted from increasing the clock rates

to using multiple processing elements. Soon after, the increase of processing elements in a system hit a

pitfall and this approach could not keep up with the demand for even higher performance. For this, new

heterogeneous systems based on different processing elements started to appear, presenting significant

results relating to performance improvements. Nonetheless, the use of heterogeneous systems created

boundaries that could hinder the design and deployment process of this type of systems, especially when

one is designing for systems that lack commonalities on both ends, e.g., CPU+FPGA. To resolve the

issues, multiple heterogeneous architectures and programming models surfaced to reduce the overall

design effort of hybrid applications. One of which is the Hardware Assisted Linux for Application Specific

Operating Systems (HAL-ASOS) accelerator model.

Although the literature has introduced multiple implementations of hardware-assisted operating sys-

tems, by offloading certain OS portions, or by creating hardware representations of threads, no one, besides

HAL-ASOS, uses microcode techniques to increase design elasticity, extensibility, and regularity. The trans-

position of CPU-related concepts like microcode to hardware allowed for the creation of CPU-like hardware

cores, capable of running hardware threads, and fomented its integration with existing open-source OSes

like Linux by adding kernel- and user-level abstractions.

This thesis proposes an accelerator architecture based on HAL-ASOS, built from the ground up. The

accelerator applies horizontal microcode to leverage low-level system calls and vertical microcode to lever-

age high-level system calls. Additionally, following HAL-ASOS’ stipulations, the accelerator model is divided

into a microkernel region – representing the kernel space – and a hardware task region – representing

the user space. To support both system call types the microkernel also grants specific services, including

event, memory and buffer management, resource management, and synchronization mechanisms.

179

Chapter 7. Conclusion 180

The research aim was to develop the accelerator from scratch to explore the openly-stated issues of

HAL-ASOS, present solutions, and evaluate their results. Concerning this, three main limitations were

explored: (1) the accelerator interface for extended features – that allowed for the hardware task to call

Linux software system calls that could not be performed in hardware, e.g., for file I/O – (2) the scalability

of procedures in the hardware task – that was a system-resource bottleneck regarding target deployment

– and (3) the accelerator’s means to cope with internal or Linux-kernel changes, and update its microcode

structures – which was left at an early research state. With this purpose, the accelerator extensions intro-

duced a command-exchange framework through shared memory, for the processing of extended features,

runtime management capabilities to reduce the amount of combinational logic of the hardware task, and

refactored the accelerator to update the microcode.

By deploying a software application portion to hardware using the proposed accelerator model, one

is capable of issuing commands through shared memory to perform extended system calls, and perform

microcode updates protected using a random payload scheme, as tested with Xilinx’s VIP (simulation),

HAL-ASOS’ Link IP (full simulation), and ultimately on the ZYBO Z7-10 board (deployment). Moreover, the

scalability was improved by always achieving a resource usage decrease of at least one type of combina-

tional element, with a lot less cell dispersion. Furthermore, regularity is also provided when increasing

the amount of hardware task procedures, for the same encryption operation (XOR), and when using other

encryption operations (AES). This proved to be accomplished with the trade-off of more logic regarding

other elements that were not so scarce.

7.1 Future Works

The work in the dissertation addresses some of the HAL-ASOS limitations, by proposing a new and

specific hardware accelerator architecture. Despite, since the subject involves a lot of concepts there is still

room for the accelerator model to evolve and expand to various implementation paths, as the following:

Microcode Update Authentication. The current version of the microprogrammable units of the dis-

sertation allow for updates through the S00 Control AXI4 lite interface but if there is kernel tampering in the

KIVIO framework one has access to the microcode update mechanism. This could lead to meltdown-like

attacks that rely on rouge data load to the microcode RAM under the form of a microcode Trojans. This

could be avoided with a microcode authentication module that prevents malicious updates. The latter

could be also improved with the introduction of a microcode update header containing a safe key, and an

Chapter 7. Conclusion 181

update signature, containing, for example, a checksum. Additionally, encryption could be used alongside

the random payload method used in the dissertation to protect the overall system against side-channel

attacks that exploit the microcode by analyzing the update’s payload structure.

Procedure Datapath Reconfiguration. By exposing the procedure scheduler of the dissertation

to the host system it is possible to provide scheduler updates that dictate the flow of low-level syscalls.

Changing the order of the system calls to be executed creates discrepancies between the microcoded

scheduler and its datapath. This occurs since it is introduced a new point of failure related with incorrect

parameters and associated with having a datapath that is static. Improvements could be added to provide a

mechanism that can use dynamic datapaths with DPR, or implement an arbiter that establishes the active

datapath parameters according to the active user-level system call, similar to the SLD but for user-level

procedures.

Scatter-Gather Memory Mechanism. Currently, the KIVIO framework allocates a block of contigu-

ous memory dedicated to the accelerator as it happened with HAL-ASOS. This might start to generate

problems when the allocation starts requiring contiguous memory blocks of bigger size. To mitigate this,

future research could investigate the potentialities of implementing memory allocation in multiple blocks of

various sizes like in GPUs. This would require a module in the microkernel that could handle those mem-

ory blocks as contiguous memory through a scatter-gather mechanism, for example, when one wants to

make burst transfers to the main memory.

Syscall Caching and Argument Checking. At the moment, the microkernel does not have argument

checking, so calling system calls with incorrect parameters could happen if the designer does not pay

attention to particular system specifications. This could be avoided with the implementation of a syscall

cache that could save system calls that are used multiple times with the same arguments. After verifying

the parameters are safe, the system call and parameters would be stored in cache to be called later if

the need arose. This approach could also improve certain cases where a user-level system call could

immediately know its returns without interfacing with the host, e.g., if there is an already opened file and

the system call happened to be called again, then the hardware task would already know the descriptor

from the previous procedure run. The research could take the example of caching presented in [64].

Chapter 7. Conclusion 182

Hardware Task Lockstep. Presently the hardware task does not have protecting against radiation

effects that produce hardware faults, like SEUs. This could be mitigated with the use of lockstep in the

hardware task, recurring to Thread Shadowing. This would not only mitigate this kind of faults but could

also be a way to add another form of parameter checking and also memory access checks, by having a

hardware task monitoring another and performing result comparison, like in [40]. This would, ultimately,

add fault tolerance capabilities to the system.

Multitask Arbiter. The hardware task of the dissertation did not explore the concept of multitasking,

which means that there is only one kernel controlling one hardware task at any time, except when evaluating

resource usage for a dual-task scheme. Contrarily, HAL-ASOS goes beyond the standalone task execution

and explores the multitask execution with an inter-task communication mechanism to pass information

between tasks. Either way, even in the scenario of HAL-ASOS, the kernel cannot handle requests for

multiple control units from more than one hardware task. This means that for every task there is an

associated kernel, which might hinder the platform targeting if the final board does not have a lot of

resources. This could be solved with the introduction of an arbiter that would decide the active hardware

task by employing preemptive scheduling algorithms, e.g., round-robin or static priority.

Evaluate Standalone vs. Multiple Kernel Execution The introduction of a multitask arbiter would

allow for the introduction of standalone synchronous multitask execution, i.e., single kernel execution with

multiple synchronous tasks (hardware threads). This would open up the possibility of comparing this type

of execution with the ones already explored by HAL-ASOS, c.f [62]. Specifically, regarding standalone

kernel execution versus multiple kernel execution in their synchronous and asynchronous variants. One

thing that also would be worth exploring is the comparison of microcode updates under different kernel

execution architectures. For example, in the case of multi-kernel/multitask, one would probably need to

update the microcode individually for each kernel of the accelerator, similarly to microprogramming in

symmetric multiprocessing architectures [11]. Contrarily, the standalone single-task or the standalone

multitask make use of a mechanism like the one in the dissertation since there is only one kernel in the

accelerator model.

Increase Main Memory Word Burst Size. The microkernel is constrained to main memory burst

operations of 256 words. A mechanism that handles bursts above the limit could be implemented by

Chapter 7. Conclusion 183

dividing a big burst, e.g., 1024 words, into smaller bursts, e.g., four bursts of 256 words, like HAL-ASOS

proposes.

Asynchronous Extended Features. The current implementation of hardware task extended features

presupposes waiting in polling for the extended command to be accepted by KIVIO and after that continue to

wait in polling for the return of the system call, e.g., the descriptor of a file, socket, or pipe, when considering

a syscall that subscribes to a certain form of I/O. This could be improved with the implementation of

asynchronous system calls that only wait for the command to be accepted and later return to the KFIFO at

a more convenient time to retrieve the return, in an asynchronous manner. This would utilize the KFIFO to

its full potential by having multiple command requests in the argument section at a time, and also multiple

returns in the return section pertaining to multiple user-level system calls.

Merge the Microcode Adaptation Mechanisms. The system calls of the microkernel are imple-

mented with a vertical microcode entity (scheduler) controlling a horizontal microcode entity (micropro-

gram), for the execution of user-level procedures, whilst using the runtime manager entity to assure scala-

bility. Despite, this is a complex scheme that is not easily analyzed and debugged. To resolve this issues

one could merge the three units into one. This would result into a single microprogram with a high mem-

ory region dedicated to user syscalls and a low memory region for kernel syscalls. When executing user

syscalls, one would then jump from high memory to low memory for the execution of kernel microinstruc-

tions. The current scheme already implicitly does something like this but does not unify the address space

of the scheduler memory with the address space of the microprogram memory. The overall setup could

result in single-RAM execution (as presented in the dissertation but merging the microcode entity address

spaces) or ROM-RAM execution, but also still trying to reuse cases for the scalability issue.

Improve Microcode Error Handling. The microcode error handling mechanism only copes with

diversity by issuing interrupt requests to the host pertaining to updates. The microcode is then updated,

and the system proceeds with its execution. This is a good initial step but a more refined error handling

mechanism could be implemented. Regarding this, the microprogram could become aware of errors at an

higher level, i.e., it could perceive that a certain order of user-level procedures would produce errors, e.g.,

executing an operation based on a descriptor of a object that ceased to exist in the host. This would relate

to the mitigation of errors like use-after-free, and would also resort to some sort of caching to store the

Chapter 7. Conclusion 184

correct order of commands to send to the host to resolve the problem and generate, for example, another

object for the same purpose and resume execution in the point where the error initially occurred.

Explore Microprogram ROM-RAM Execution Model. While the merging of the microcode units

would be worth exploring, the alteration of the microprogram storage model to ROM-RAM execution would

be interesting as well. This approach presupposes maintaining the scheduler and runtime manager un-

changed and introducing an additional ROM onto the RAM-based microprogram. At runtime, depending

on the most significant bit of the system call ID, one would change between non-volatile memory and

the microprogram’s RAM to achieve internal error handling in critical scenarios. A PoC would resort to

fault injecting rouge data to the RAM, like the case study explored in this dissertation, and see if the mi-

croprogram could change between memories to resolve the problem. This approach would also need to

explore some sort of bootloader or bootload instruction to process the RAM updates while executing from

ROM. Additionally, since the writing of the microcode RAM is processed through the S00 Control interface

(dissertation), or possibly through the S01 Data interface (with the LRAM acting as cache and using the

aforementioned bootloader in this scheme), the updates are restricted to word-rated transactions, i.e, one

cannot perform burst updates. Another topic worth exploring would be introducing burst updates into the

system by adding some sort of ZCU unit responsible for transferring data from the local memory (acting

as an instruction cache) to the microprogram RAM. As whole, this approach was not explored since it in-

creased the scheduler’s memory footprint by≈ 100% and originated a complex low-level syscall branching

scheme. The design of this microprogram architecture would be similar to fig. B.3.

Add Preferred Direction Semantics. Right now every composite procedure has a granularity of

sixteen scheduler microinstructions, which means that the depth of branches does not justify the addition

of a branch predictor to mitigate the branch-not-taken execution penalties, i.e., the penalties for a not

taken branch are not that high since the system is not pipelined. Even though, it would be good to add

preferred direction semantics associated with branches. With this, one would additionally have another

microintruction field to indicate the likelihood of a branch to be taken, with keywords like likely_taken or

unlikely_taken. This could already be applied to the argument KFIFO full check since, for the polling case,

it never becomes full of commands.

References

Book Sources

[15] Elena Dubrova (2013). Fault-Tolerant Design. Springer Publishing Company, Incorporated. ISBN:

1461421128.

[21] Ted Huffmire et al. (2010). Handbook of FPGA Design Security. 1st ed. Springer.

[27] Steve Kilts (2007). Advanced FPGA Design: Architecture, Implementation, and Optimization. Wiley-

IEEE Press. ISBN: 0470054379.

[35] M. Morris Mano (2016). Digital Logic and Computer Design. Pearson Education India.

[37] Clive Maxfield (2008). FPGAs: Instant Access. 1st ed. Newnes.

[38] — (2009). FPGAs: World Class Designs. 1st ed. Elsevier.

[43] Bryon Moyer (2013). Real World Multicore Embedded Systems. Newnes.

[47] Robert Oshana and Mark Kraeling (2020). Software Engineering for Embedded Systems. 2nd ed.

Elsevier.

[48] David Patterson and John Hennessy (2017). Computer Architecture: A Quantitative Approach.

6th ed. Morgan Kaufmann.

[58] C.H. Roth and L.K. John (2007). Digital Systems Design Using VHDL. Cengage Learning. ISBN:

9780534384623.

[60] Daniel Siewiorek, Gordon Bell, and Allen Newell (1982). Computer Structures: Principles and Ex-

amples. McGraw-Hill, Inc.

[67] William Stallings (2010). Computer Organization and Architecture: Designing for Performance. Pren-

tice Hall.

185

References 186

Proceedings Sources

[2] Nils Albartus et al. (Aug. 2021). “On the Design and Misuse of Microcoded (Embedded) Proces-

sors — A Cautionary Note”. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX

Association, pp. 267–284. ISBN: 978-1-939133-24-3. URL: https://www.usenix.org/conference/

usenixsecurity21/presentation/albartus.

[3] David Andrews et al. (2005). “hthreads: a hardware/software co-designed multithreaded RTOS

kernel”. In: 2005 IEEE Conference on Emerging Technologies and Factory Automation. Vol. 2, 8

pp.–338. DOI: 10.1109/ETFA.2005.1612697.

[6] Melanie Berg (2011). “New Developments in Field Programmable Gate Array (FPGA) Single Event

Upsets (SEUs) and Fail-Safe Strategies”. In: Revolutionary Electronics in Space (ReSpace) / Military

and Aerospace Programmable Logic Devices (MAPLD) 2011 Conference.

[7] Melanie Berg, Kenneth LaBel, and Jonathan Pellish (2015). “New Developments in FPGA: SEUs

and Fail-Safe Strategies from the NASA Goddard Perspective”. In: SERRESSA 2015: on the Effects

of Radiation on Embedded Systems for Space Applications.

[9] Robert Brodersen, Artem Tkachenko, and Hayden Kwok-Hay So (2006). “A unified hardware/soft-

ware runtime environment for FPGA-based reconfigurable computers using BORPH”. In: Proceed-

ings of the 4th International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS ’06), pp. 259–264. DOI: 10.1145/1176254.1176316.

[18] Tiago Gomes et al. (Nov. 2016). “Hybrid real-time operating systems: deployment of critical FreeR-

TOS features on FPGA”. In: vol. 8. Inderscience Enterprises, pp. 483–492.

[23] Aws Ismail and Lesley Shannon (2011). “FUSE: Front-End User Framework for O/S Abstrac-

tion of Hardware Accelerators”. In: 2011 IEEE 19th Annual International Symposium on Field-

Programmable Custom Computing Machines, pp. 170–177. DOI: 10.1109/FCCM.2011.48.

[25] Matthew Jacobsen and Ryan Kastner (2013). “RIFFA 2.0: A reusable integration framework for

FPGA accelerators”. In: 2013 23rd International Conference on Field programmable Logic and

Applications, pp. 1–8. DOI: 10.1109/FPL.2013.6645504.

[28] Benjamin Kollenda et al. (2018). “An Exploratory Analysis of Microcode as a Building Block for

System Defenses”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-

munications Security. CCS ’18. Toronto, Canada: Association for Computing Machinery, pp. 1649–

1666. ISBN: 9781450356930. DOI: 10.1145/3243734.3243861.

https://www.usenix.org/conference/usenixsecurity21/presentation/albartus
https://www.usenix.org/conference/usenixsecurity21/presentation/albartus
https://doi.org/10.1109/ETFA.2005.1612697
https://doi.org/10.1145/1176254.1176316
https://doi.org/10.1109/FCCM.2011.48
https://doi.org/10.1109/FPL.2013.6645504
https://doi.org/10.1145/3243734.3243861

References 187

[29] Philipp Koppe et al. (Aug. 2017). “Reverse Engineering x86 Processor Microcode”. In: 26th USENIX

Security Symposium (USENIX Security 17). Vancouver, BC: USENIX Association, pp. 1163–1180.

ISBN: 978-1-931971-40-9. URL: https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/koppe.

[31] Ziyi Liu et al. (2014). “Programmable decoder and shadow threads: Tolerate remote code injec-

tion exploits with diversified redundancy”. In: 2014 Design, Automation Test in Europe Conference

Exhibition (DATE), pp. 1–6. DOI: 10.7873/DATE.2014.064.

[32] Enno Lübbers and Marco Platzner (2008). “A portable abstraction layer for hardware threads”. In:

2008 International Conference on Field Programmable Logic and Applications, pp. 17–22. DOI:

10.1109/FPL.2008.4629901.

[33] — (2007a). ReconOS: An RTOS Supporting Hardware and Software Threads. URL: http : //

www.reconos.de/publications/luebbers07_fpl_slides.pdf.

[34] — (2007b). “ReconOS: An RTOS Supporting Hardware and Software Threads”. In: 2007 In-

ternational Conference on Field Programmable Logic and Applications. IEEE, pp. 441–446. DOI:

10.1109/FPL.2007.4380686.

[39] Sebastian Meisner and Marco Platzner (2015). “Comparison of thread signatures for error detection

in hybrid multi-cores”. In: 2015 International Conference on Field Programmable Technology (FPT),

pp. 212–215. DOI: 10.1109/FPT.2015.7393153.

[40] — (2016). “Thread shadowing: On the effectiveness of error detection at the hardware thread

level”. In: 2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig),

pp. 1–8. DOI: 10.1109/ReConFig.2016.7857193.

[41] — (2014). “Thread Shadowing: Using Dynamic Redundancy on Hybrid Multi-cores for Error

Detection”. In: Reconfigurable Computing: Architectures, Tools, and Applications. Ed. by Diana

Goehringer et al. Cham: Springer International Publishing, pp. 283–290. ISBN: 978-3-319-05960-

0.

[45] Kevin Nam, Blair Fort, and Stephen Brown (2017). “FISH: Linux system calls for FPGA accelerators”.

In: 2017 27th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–

4. DOI: 10.23919/FPL.2017.8056785.

[46] Soon Ee Ong et al. (2013). “SEOS: Hardware Implementation of Real-Time Operating System for

Adaptability”. In: 2013 First International Symposium on Computing and Networking, pp. 612–616.

DOI: 10.1109/CANDAR.2013.110.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/koppe
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/koppe
https://doi.org/10.7873/DATE.2014.064
https://doi.org/10.1109/FPL.2008.4629901
http://www.reconos.de/publications/luebbers07_fpl_slides.pdf
http://www.reconos.de/publications/luebbers07_fpl_slides.pdf
https://doi.org/10.1109/FPL.2007.4380686
https://doi.org/10.1109/FPT.2015.7393153
https://doi.org/10.1109/ReConFig.2016.7857193
https://doi.org/10.23919/FPL.2017.8056785
https://doi.org/10.1109/CANDAR.2013.110

References 188

[49] Wesley Peck et al. (2006). “Hthreads: A Computational Model for Reconfigurable Devices”. In: 2006

International Conference on Field Programmable Logic and Applications, pp. 1–4. DOI: 10.1109/

FPL.2006.311336.

[50] Jorge Pereira et al. (2014). “Co-Designed FreeRTOS Deployed on FPGA”. In: 2014 Brazilian Sym-

posium on Computing Systems Engineering, pp. 121–125. DOI: 10.1109/SBESC.2014.11.

[52] César Polo (2017). “SEE Single Event Effects: Radiation Environment and its Effects in EEE Com-

ponents and Hardness Assurance for Space Applications”. In: URL: https://indico.cern.ch/event/

635099/ contributions /2570672/attachments / 1456364/2249943/Single _Event _ Effecs _

Radiation_Course_May_2017_SEE_CBP.pdf.

[53] Vaughan Pratt (1995). “Anatomy of the Pentium bug”. In: TAPSOFT ’95: Theory and Practice of

Software Development. Ed. by Peter D. Mosses, Mogens Nielsen, and Michael I. Schwartzbach.

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 97–107. ISBN: 978-3-540-49233-7.

[55] Piyumal Ranawaka et al. (2019a). “Application Specific Architecture for Hardware Accelerating HOG-

SVM to Achieve High Throughput on HD Frames”. In: 2019 IEEE 30th International Conference on

Application-specific Systems, Architectures and Processors (ASAP). Vol. 2160-052X, pp. 131–134.

DOI: 10.1109/ASAP.2019.00-18.

[59] Rasool Sharifi and Ashish Venkat (2020). “CHEx86: Context-Sensitive Enforcement of Memory

Safety via Microcode-Enabled Capabilities”. In: 2020 ACM/IEEE 47th Annual International Sym-

posium on Computer Architecture (ISCA), pp. 762–775. DOI: 10.1109/ISCA45697.2020.00068.

[61] V. Silva et al. (2016). “Linux- and FPGA-based accelerated single-phase shunt active power filter”.

In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 4802–

4807. DOI: 10.1109/IECON.2016.7793875.

[64] Dimitrios Skarlatos et al. (2020). “Draco: Architectural and Operating System Support for System

Call Security”. In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pp. 42–57. DOI: 10.1109/MICRO50266.2020.00017.

[68] L.T. Su (Feb. 2013). ““Architecting the future through heterogeneous computing””. In: pp. 8–11.

ISBN: 978-1-4673-4515-6. DOI: 10.1109/ISSCC.2013.6487618.

[70] Charalampos Vatsolakis and Dionisios Pnevmatikatos (2017). “RACOS: Transparent access and

virtualization of reconfigurable hardware accelerators”. In: 2017 International Conference on Em-

bedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 11–19. DOI:

10.1109/SAMOS.2017.8344606.

https://doi.org/10.1109/FPL.2006.311336
https://doi.org/10.1109/FPL.2006.311336
https://doi.org/10.1109/SBESC.2014.11
https://indico.cern.ch/event/635099/contributions/2570672/attachments/1456364/2249943/Single_Event_Effecs_Radiation_Course_May_2017_SEE_CBP.pdf
https://indico.cern.ch/event/635099/contributions/2570672/attachments/1456364/2249943/Single_Event_Effecs_Radiation_Course_May_2017_SEE_CBP.pdf
https://indico.cern.ch/event/635099/contributions/2570672/attachments/1456364/2249943/Single_Event_Effecs_Radiation_Course_May_2017_SEE_CBP.pdf
https://doi.org/10.1109/ASAP.2019.00-18
https://doi.org/10.1109/ISCA45697.2020.00068
https://doi.org/10.1109/IECON.2016.7793875
https://doi.org/10.1109/MICRO50266.2020.00017
https://doi.org/10.1109/ISSCC.2013.6487618
https://doi.org/10.1109/SAMOS.2017.8344606

References 189

Article Sources

[1] Andreas Agne et al. (2014). “ReconOS: An Operating System Approach for Reconfigurable Comput-

ing”. In: IEEE Micro 34.1, pp. 60–71. DOI: 10.1109/MM.2013.110.

[4] David Andrews et al. (2004). “Programming models for hybrid FPGA-cpu computational compo-

nents: a missing link”. In: IEEE Micro 24.4, pp. 42–53. DOI: 10.1109/MM.2004.36.

[5] A. Avizienis et al. (2004). “Basic concepts and taxonomy of dependable and secure computing”.

In: IEEE Transactions on Dependable and Secure Computing 1.1, pp. 11–33. DOI: 10.1109/TDSC.

2004.2.

[8] S. Borkar (2005). “Designing reliable systems from unreliable components: the challenges of tran-

sistor variability and degradation”. In: IEEE Micro 25.6, pp. 10–16. DOI: 10.1109/MM.2005.110.

[12] Victor Costan and Srinivas Devadas (2016). “Intel SGX Explained”. In: IACR Cryptol. ePrint Arch.

2016.86, pp. 1–118.

[17] David Gifford and Alfred Spector (Apr. 1987). “Case Study: IBM’s System/360-370 Architecture”.

In: Commun. ACM 30.4, pp. 291–307. ISSN: 0001-0782. DOI: 10.1145/32232.32233.

[19] Andreas Herkersdorf et al. (2014). “Resilience Articulation Point (RAP): Cross-layer dependability

modeling for nanometer system-on-chip resilience”. In: Microelectronics Reliability 54.6, pp. 1066–

1074. ISSN: 0026-2714. DOI: https://doi.org/10.1016/j.microrel.2013.12.012.

[20] Mark D. Hill et al. (2019). “On the Spectre and Meltdown Processor Security Vulnerabilities”. In:

IEEE Micro 39.2, pp. 9–19. DOI: 10.1109/MM.2019.2897677.

[24] Xabier Iturbe et al. (2013). “R3TOS: A Novel Reliable Reconfigurable Real-Time Operating System

for Highly Adaptive, Efficient, and Dependable Computing on FPGAs”. In: IEEE Transactions on

Computers 62.8, pp. 1542–1556. DOI: 10.1109/TC.2013.79.

[30] Chit-Kwan Lin et al. (2018). “Programming Spiking Neural Networks on Intel’s Loihi”. In: Computer

51.3, pp. 52–61. DOI: 10.1109/MC.2018.157113521.

[36] Ivo Marques et al. (2021). “Lock-V: A heterogeneous fault tolerance architecture based on Arm and

RISC-V”. In: Microelectronics Reliability 120, p. 114120. ISSN: 0026-2714. DOI: https://doi.org/

10.1016/j.microrel.2021.114120. URL: https://www.sciencedirect.com/science/article/pii/

S002627142100086X.

[51] Hung-Manh Pham, Ludovic Devaux, and Sébastien Pillement (June 2011). “Re2DA: Reliable and

Reconfigurable Dynamic Architectures”. In: DOI: 10.1109/ReCoSoC.2011.5981519.

https://doi.org/10.1109/MM.2013.110
https://doi.org/10.1109/MM.2004.36
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/MM.2005.110
https://doi.org/10.1145/32232.32233
https://doi.org/https://doi.org/10.1016/j.microrel.2013.12.012
https://doi.org/10.1109/MM.2019.2897677
https://doi.org/10.1109/TC.2013.79
https://doi.org/10.1109/MC.2018.157113521
https://doi.org/https://doi.org/10.1016/j.microrel.2021.114120
https://doi.org/https://doi.org/10.1016/j.microrel.2021.114120
https://www.sciencedirect.com/science/article/pii/S002627142100086X
https://www.sciencedirect.com/science/article/pii/S002627142100086X
https://doi.org/10.1109/ReCoSoC.2011.5981519

References 190

[56] Piyumal Ranawaka et al. (Dec. 2019b). “High Performance Application Specific Stream Architec-

ture for Hardware Acceleration of HOG-SVM on FPGA”. In: IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences E102.A, pp. 1792–1803. DOI: 10.1587/

transfun.E102.A.1792.

[57] David Ratter (2004). “FPGAs on mars”. In: Xcell J 50, pp. 8–11.

[63] Vitor Silva et al. (2021). “HAL-ASOS Accelerator Model: Evolutive Elasticity by Design”. In: Electron-

ics 10.17. ISSN: 2079-9292. DOI: 10.3390/electronics10172078. URL: https://www.mdpi.com/

2079-9292/10/17/2078.

[66] Hayden Kwok-Hay So and Robert Brodersen (2008). “A Unified Hardware/Software Runtime En-

vironment for FPGA-Based Reconfigurable Computers Using BORPH”. In: 7.2. ISSN: 1539-9087.

DOI: 10.1145/1331331.1331338.

[69] Anuj Vaishnav et al. (Sept. 2020). “FOS: A Modular FPGA Operating System for Dynamic Work-

loads”. In: ACM Trans. Reconfigurable Technol. Syst. 13.4. ISSN: 1936-7406. DOI: 10 . 1145 /

3405794.

[71] Hoang-Gia Vu, Takashi Nakada, and Yasuhiko Nakashima (2021). “Efficient hardware task migration

for heterogeneous FPGA computing using HDL-based checkpointing”. In: Integration 77, pp. 180–

192. ISSN: 0167-9260. DOI: https : / / doi . org / 10 . 1016 / j . vlsi . 2020 . 11 . 011. URL: https :

//www.sciencedirect.com/science/article/pii/S0167926020302984.

[72] Ying Wang et al. (2013). “SPREAD: A Streaming-Based Partially Reconfigurable Architecture and

Programming Model”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21.12,

pp. 2179–2192. DOI: 10.1109/TVLSI.2012.2231101.

[73] Maurice Wilkes (1981). “The Best Way to Design an Automatic Calculating Machine”. In: Micropro-

cessing and Microprogramming 8.3, pp. 141–144. ISSN: 0165-6074. DOI: https://doi.org/10.

1016/0165-6074(81)90018-1.

[74] Zhiguo Yang et al. (2020). “Reverse Engineering of Intel Microcode Update Structure”. In: IEEE

Access 8, pp. 169676–169687. DOI: 10.1109/ACCESS.2020.3024243.

[75] Zongwei Zhu et al. (2019). “A Hardware and Software Task-Scheduling Framework Based on

CPU+FPGA Heterogeneous Architecture in Edge Computing”. In: IEEE Access 7, pp. 148975–

148988. DOI: 10.1109/ACCESS.2019.2943179.

https://doi.org/10.1587/transfun.E102.A.1792
https://doi.org/10.1587/transfun.E102.A.1792
https://doi.org/10.3390/electronics10172078
https://www.mdpi.com/2079-9292/10/17/2078
https://www.mdpi.com/2079-9292/10/17/2078
https://doi.org/10.1145/1331331.1331338
https://doi.org/10.1145/3405794
https://doi.org/10.1145/3405794
https://doi.org/https://doi.org/10.1016/j.vlsi.2020.11.011
https://www.sciencedirect.com/science/article/pii/S0167926020302984
https://www.sciencedirect.com/science/article/pii/S0167926020302984
https://doi.org/10.1109/TVLSI.2012.2231101
https://doi.org/https://doi.org/10.1016/0165-6074(81)90018-1
https://doi.org/https://doi.org/10.1016/0165-6074(81)90018-1
https://doi.org/10.1109/ACCESS.2020.3024243
https://doi.org/10.1109/ACCESS.2019.2943179

References 191

Academic Sources

[10] Anselm Busse (Dec. 2016). “A Dynamic and Component-Based Process Scheduler Framework for

Heterogeneous Many-Core Systems”. Ph.D. Dissertation, Technischen Universität Berlin.

[11] Daming Dominic Chen and Gail-Joon Ahn (Dec. 2014). “Security Analysis of x86 Processor Mi-

crocode”. URL: https://www.dcddcc.com/docs/2014_paper_microcode.pdf.

[14] Björn Döbel (Nov. 2014). “Operating System Support for Redundant Multithreading”. Ph.D. Disser-

tation, Technischen Universität Dresden.

[26] Boris Kettelhoit (Sept. 2009). “Architektur und Entwurf Dynamisch Rekonfigurierbarer FPGA-

Systeme”. Ph.D. Dissertation, University of Paderborn.

[42] José Mendes (Jan. 2023). “Handling Linux and HAL-ASOS Model Discrepancies: a Microcode Ap-

proach”. Masters Dissertation, Universidade do Minho.

[44] Onur Mutlu (Sept. 2020). Computer Architecture Lecture 1: Introduction and Basics. URL: https:

//safari .ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur - comparch- fall2020-

lecture1-intro-afterlecture.pdf.

[54] Ioan Raicu et al. (Jan. 2007). “Harnessing grid resources with data-centric task farms”. University

of Chicago.

[62] Vitor Silva (June 2022). “HAL-ASOS – Hardware Assisted Linux for Application Specific Operating

Systems”. Ph.D. Dissertation, Universidade do Minho.

[65] Mark Smotherman (2009). “A Brief History of Microprogramming”. School of Computing, Clemson

University, Clemson, SC, USA, Tech. Rep.

Other Sources

[13] Diligent (Jan. 2023). Zybo Z7: Zynq-7000 ARM/FPGA SoC Development Board. URL: https : / /

digilent.com/reference/programmable-logic/zybo-z7/start.

[16] GCC (Oct. 2021). GCC Online Documentation: GNU Project. URL: https : / / gcc . gnu . org /

onlinedocs/.

[22] Intel (Nov. 2022). Alder Lake S: Overview and Technical Documentation. URL: https://www.intel.

com/content/www/us/en/products/platforms/details/alder-lake-s.html.

https://www.dcddcc.com/docs/2014_paper_microcode.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture1-intro-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture1-intro-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture1-intro-afterlecture.pdf
https://digilent.com/reference/programmable-logic/zybo-z7/start
https://digilent.com/reference/programmable-logic/zybo-z7/start
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/
https://www.intel.com/content/www/us/en/products/platforms/details/alder-lake-s.html
https://www.intel.com/content/www/us/en/products/platforms/details/alder-lake-s.html

A. Source Listings

Listing A.1: Configuration Package: Microprogram and System Call Constants and Definitions (HDL); back to listing 4.5.

1 --
2 -- UPROGRAM INPUT DECODER CONSTANTS
3 --
4 CONSTANT C_AUX_TEST_FALSE_OFFSET : NATURAL := 0;
5 CONSTANT C_ARREADY_OFFSET : NATURAL := 1;
6 CONSTANT C_RVALID_OFFSET : NATURAL := 2;
7 CONSTANT C_AWREADY_OFFSET : NATURAL := 3;
8 CONSTANT C_WREADY_WLAST_OFFSET : NATURAL := 4;
9 CONSTANT C_LBUS_WR_ACK_B_WLAST_OFFSET : NATURAL := 5;
10 CONSTANT C_LBUS_WR_ACK_B_OFFSET : NATURAL := 6;
11 CONSTANT C_LBUS_RD_ACK_B_OFFSET : NATURAL := 7;
12 CONSTANT C_LBUS_RLAST_OFFSET : NATURAL := 8;
13 CONSTANT C_LOCKED_A_OFFSET : NATURAL := 9;
14 CONSTANT C_LOCKED_B_OFFSET : NATURAL := 10;
15 CONSTANT C_FREE_OFFSET : NATURAL := 11;
16 CONSTANT C_NOT_LOCKED_A_OFFSET : NATURAL := 12;
17 CONSTANT C_NOT_LOCKED_B_OFFSET : NATURAL := 13;
18 CONSTANT C_RVALID_RLAST_OFFSET : NATURAL := 14;
19 CONSTANT C_BVALID_TIMEOUT_OFFSET : NATURAL := 15;
20 CONSTANT C_LBUS_WLAST_OFFSET : NATURAL := 16;
21 CONSTANT C_EVENT_ELAPSED_OFFSET : NATURAL := 17;
22 CONSTANT C_EV_MANAGER_READY_OFFSET : NATURAL := 18;
23 CONSTANT C_ADDR_MANAGER_READY_OFFSET : NATURAL := 19;
24 CONSTANT C_LBUS_RD_ACK_B_RLAST_OFFSET : NATURAL := 20;
25 CONSTANT C_ACC_DEAD_OFFSET : NATURAL := 21;
26 CONSTANT C_INTR_RAISE_OFFSET : NATURAL := 22;
27 ---
28 CONSTANT C_AUX_TEST_TRUE_OFFSET : NATURAL := 31;
29 --

31 --
32 -- UPROGRAM OUTPUT ENCODER CONSTANTS
33 --
34 CONSTANT C_ARVALID_OFFSET : NATURAL := 1;
35 CONSTANT C_RREADY_OFFSET : NATURAL := 2;
36 CONSTANT C_AWVALID_OFFSET : NATURAL := 3;
37 CONSTANT C_WVALID_OFFSET : NATURAL := 4;
38 CONSTANT C_BREADY_M00_TRIGGER_OFFSET : NATURAL := 5;
39 CONSTANT C_LBUS_WR_CE_OFFSET : NATURAL := 6;
40 CONSTANT C_LBUS_RD_CE_OFFSET : NATURAL := 7;
41 --... ...8
42 CONSTANT C_EV_MANAGER_TRIGGER_OFFSET : NATURAL := 9;
43 CONSTANT C_ADDR_MANAGER_TRIGGER_OFFSET : NATURAL := 10;
44 ---
45 CONSTANT C_NULL_OFFSET : NATURAL := 14;
46 --

48 --
49 -- SYSTEM CALL SPECIFICATION
50 --
51 type syscall_t is(
52 --
53 SYSCALL_WORK_NONE, --00
54 SYSCALL_WORK_YIELD, --01
55 SYSCALL_WAIT_EVENT_TIMEOUT, --02
56 SYSCALL_LINTC_READ, --03

192

Appendix A. Source Listings 193

57 SYSCALL_LINTC_WRITE, --04
58 SYSCALL_LBUS_READ, --05
59 SYSCALL_LBUS_WRITE, --06
60 SYSCALL_LBUS_READ_BURST, --07
61 SYSCALL_LBUS_WRITE_BURST, --08
62 SYSCALL_MUTEX_LOCK, --09
63 SYSCALL_MUTEX_TRY_LOCK, --10
64 SYSCALL_MUTEX_UNLOCK, --11
65 SYSCALL_MBUS_READ, --12
66 SYSCALL_MBUS_WRITE, --13
67 SYSCALL_MBUS_READ_BURST, --14
68 SYSCALL_MBUS_WRITE_BURST); --15
69 --
70 -- SYSTEM CALL ENCODING
71 --
72 TYPE syscall_T_ENC IS ARRAY (NATURAL RANGE<>) OF SYSCALL_T;
73 --
74 CONSTANT syscall_T_VAL : syscall_T_ENC :=(
75 SYSCALL_WORK_NONE, --00
76 SYSCALL_WORK_YIELD, --01
77 SYSCALL_WAIT_EVENT_TIMEOUT, --02
78 SYSCALL_LINTC_READ, --03
79 SYSCALL_LINTC_WRITE, --04
80 SYSCALL_LBUS_READ, --05
81 SYSCALL_LBUS_WRITE, --06
82 SYSCALL_LBUS_READ_BURST, --07
83 SYSCALL_LBUS_WRITE_BURST, --08
84 SYSCALL_MUTEX_LOCK, --09
85 SYSCALL_MUTEX_TRY_LOCK, --10
86 SYSCALL_MUTEX_UNLOCK, --11
87 SYSCALL_MBUS_READ, --12
88 SYSCALL_MBUS_WRITE, --13
89 SYSCALL_MBUS_READ_BURST, --14
90 SYSCALL_MBUS_WRITE_BURST); --15
91 --
92 CONSTANT C_SYSCALL_LEN : NATURAL := POW2(SYSCALL_T'POS(SYSCALL_T'HIGH)+1); --4
93 --

95 --
96 -- SYSTEM CALL FIELD CONSTANTS
97 --
98 CONSTANT C_SYSCALL_BASE : NATURAL := 19;
99 CONSTANT C_SYSCALL_ERROR_WIDTH : NATURAL := 5;
100 CONSTANT C_SYSCALL_INPUT_WIDTH : NATURAL := 5;
101 CONSTANT C_SYSCALL_NSF_WIDTH : NATURAL := 2;
102 CONSTANT C_SYSCALL_OUTPUT_WIDTH : NATURAL := 4;
103 --
104 -- SYSTEM CALL FIELD DEFINITION
105 --
106 SUBTYPE SYSCALL_ERROR IS std_logic_vector(C_SYSCALL_BASE-1 downto C_SYSCALL_BASE-

C_SYSCALL_ERROR_WIDTH); --18:14
107 SUBTYPE SYSCALL_INPUT IS std_logic_vector(SYSCALL_ERROR'LOW-1 downto SYSCALL_ERROR'LOW-

C_SYSCALL_INPUT_WIDTH); --13:9
108 SUBTYPE SYSCALL_NSF IS std_logic_vector(SYSCALL_INPUT'LOW-1 downto SYSCALL_INPUT'LOW-

C_SYSCALL_NSF_WIDTH); --8:7
109 SUBTYPE SYSCALL_OUTPUT IS std_logic_vector(SYSCALL_NSF'LOW-1 downto SYSCALL_NSF'LOW-

C_SYSCALL_OUTPUT_WIDTH); --6:3
110 SUBTYPE SYSCALL_MSB IS std_logic_vector(C_SYSCALL_LEN+SYSCALL_NSF'LENGTH-1 downto

SYSCALL_NSF'LENGTH); --5:2
111 --
112 CONSTANT C_SYSCALL_VALID_BIT : NATURAL := SYSCALL_OUTPUT'LOW-1; --2
113 CONSTANT C_SYSCALL_BLOCK_TASK_BIT : NATURAL := C_SYSCALL_VALID_BIT-1; --1
114 CONSTANT C_SYSCALL_FAULT_BIT : NATURAL := C_SYSCALL_BLOCK_TASK_BIT-1; --0
115 --

Appendix A. Source Listings 194

Listing A.2: AXI4 Lite Interface FSM (HDL); back to fig. 4.6.6.

1 ---
2 NST_CONTROL : process(state, S_AXI_AWVALID, S_AXI_ARVALID,
3 S_AXI_WVALID, S_AXI_BREADY, S_AXI_RREADY,I_TIMEOUT,I_WR_ACK,I_RD_ACK,
4 holded_wr_ack_i,holded_rd_ack_i)
5 ---
6 begin
7 next_state <= state;
8 case state is
9 when S0_IDLE =>
10 if S_AXI_AWVALID = '1' and S_AXI_WVALID = '1' then
11 next_state <= S1_WR_ADDR;
12 elsif S_AXI_ARVALID = '1' then
13 next_state <= S5_RD_ADDR;
14 else
15 next_state <= S0_IDLE;
16 end if;
17 when S1_WR_ADDR =>
18 if (S_AXI_WVALID = '1') then
19 next_state <= S2_WR_DATA;
20 else
21 next_state <= S1_WR_ADDR;
22 end if;
23 when S2_WR_DATA =>
24 if S_AXI_BREADY = '1' then
25 next_state <= S3_ACK;
26 elsif (S_AXI_BREADY = '0') then
27 next_state <= S4_WR_WAIT;
28 else
29 next_state <= S2_WR_DATA;
30 end if;
31 when S3_ACK =>
32 if I_WR_ACK = '1' or holded_wr_ack_i = '1' then
33 next_state <= S0_IDLE;
34 elsif I_WR_ACK = '0' and holded_wr_ack_i = '0' then
35 next_state <= S8_WR_STANDBY;
36 end if;
37 when S4_WR_WAIT =>
38 if S_AXI_BREADY = '1' or I_TIMEOUT = '1' then
39 next_state <= S3_ACK;
40 else
41 next_state <= S4_WR_WAIT;
42 end if;
43 when S8_WR_STANDBY =>
44 if I_WR_ACK = '1' or I_TIMEOUT = '1' then
45 next_state <= S0_IDLE;
46 else
47 next_state <= S8_WR_STANDBY;
48 end if;
49 when S5_RD_ADDR =>
50 if S_AXI_RREADY = '1' then
51 next_state <= S6_RD_DATA;
52 elsif S_AXI_RREADY = '0' then
53 next_state <= S7_RD_WAIT;
54 else
55 next_state <= S5_RD_ADDR;
56 end if;
57 when S6_RD_DATA =>
58 if (S_AXI_AWVALID = '1' and S_AXI_WVALID = '1') and (I_RD_ACK = '1' or

holded_rd_ack_i = '1') then
59 next_state <= S1_WR_ADDR;
60 elsif (S_AXI_AWVALID = '0' or S_AXI_WVALID = '0') and (I_RD_ACK = '1' or

holded_rd_ack_i = '1') then
61 next_state <= S0_IDLE;
62 elsif (I_RD_ACK = '0' and holded_rd_ack_i = '0') then
63 next_state <= S9_RD_STANDBY;
64 end if ;
65 when S7_RD_WAIT =>
66 if S_AXI_RREADY = '1' or I_TIMEOUT = '1' then
67 next_state <= S6_RD_DATA;
68 else
69 next_state <= S7_RD_WAIT;
70 end if;
71 when S9_RD_STANDBY =>

Appendix A. Source Listings 195

72 if (S_AXI_AWVALID = '1' and S_AXI_WVALID = '1') and (I_RD_ACK = '1' or
I_TIMEOUT = '1') then

73 next_state <= S1_WR_ADDR;
74 elsif (S_AXI_AWVALID = '0' or S_AXI_WVALID = '0') and (I_RD_ACK = '1' or

I_TIMEOUT = '1') then
75 next_state <= S0_IDLE;
76 else
77 next_state <= S9_RD_STANDBY;
78 end if;
79 when others =>
80 null;
81 end case;
82 end process NST_CONTROL;
83 ---

85 ---
86 OUT_CONTROL : process (state,S_AXI_BREADY,I_WR_ACK,S_AXI_RREADY,I_RD_ACK)
87 ---
88 begin
89 S_AXI_AWREADY <= '0';
90 ready_i <= '0';
91 cs_D <= '0';
92 S_AXI_AWREADY <= '0';
93 wr_ce_D <= '0';
94 S_AXI_WREADY <= '0';
95 latch_wdata_i <= '0';
96 S_AXI_BVALID <= '0';
97 S_AXI_ARREADY <= '0';
98 rd_ce_D <= '0';
99 rvalid_D <= '0';
100 latch_rdata_i <= '0';
101 S_AXI_BRESP <= (others => '0');
102 S_AXI_RRESP <= (others => '0');
103 O_TRIGGER <= '0';
104 O_ENABLE <= '0';
105 O_WR_EVENT <= '0';
106 O_RD_EVENT <= '0';
107 hold_clear_i <= '0';
108 hold_wr_ce_i <= '0';
109 hold_rd_ce_i <= '0';
110 O_STANDBY <= '0';

112 case state is
113 when S0_IDLE =>
114 ready_i <= '1';
115 hold_clear_i <= '1';
116 when S1_WR_ADDR =>
117 cs_D <= '1';
118 S_AXI_AWREADY <= '1';
119 when S2_WR_DATA =>
120 latch_wdata_i <= '1';
121 cs_D <= '1';
122 wr_ce_D <= '1';
123 S_AXI_WREADY <= '1';
124 when S3_ACK =>
125 cs_D <= '1';
126 S_AXI_BVALID <= '1';
127 S_AXI_BRESP <= (others => '0');
128 when S4_WR_WAIT =>
129 O_TRIGGER <= '1';
130 O_ENABLE <= '1';
131 O_WR_EVENT <= S_AXI_BREADY;
132 hold_wr_ce_i <= '1';
133 when S8_WR_STANDBY =>
134 O_TRIGGER <= '1';
135 O_WR_EVENT <= I_WR_ACK;
136 O_ENABLE <= '1';
137 O_STANDBY <= '1';
138 when S5_RD_ADDR =>
139 cs_D <= '1';
140 S_AXI_ARREADY <= '1';
141 rd_ce_D <= '1';
142 when S6_RD_DATA =>
143 cs_D <= '1';
144 rvalid_D <= '1';

Appendix A. Source Listings 196

145 S_AXI_RRESP <= (others => '0');
146 latch_rdata_i <= '1';
147 when S7_RD_WAIT =>
148 O_TRIGGER <= '1';
149 O_ENABLE <= '1';
150 O_RD_EVENT <= S_AXI_RREADY;
151 hold_rd_ce_i <= '1';
152 when S9_RD_STANDBY =>
153 O_TRIGGER <= '1';
154 O_RD_EVENT <= I_RD_ACK;
155 O_ENABLE <= '1';
156 O_STANDBY <= '1';
157 when others =>
158 null;
159 end case;
160 end process OUT_CONTROL;
161 ---

163 --
164 ---- Datapath
165 --

167 -- State register
168 ---
169 FFST : process (S_AXI_ACLK)
170 ---
171 begin
172 if rising_edge(S_AXI_ACLK) then
173 if reset_i = '1' then
174 state <= S0_IDLE;
175 else
176 state <= next_state;
177 end if;
178 end if;
179 end process FFST;
180 ---

Appendix A. Source Listings 197

Listing A.3: Configuration Package: System-Level Datapath System Call Constants and Definitions (HDL); back to listing 4.8.

1 CONSTANT C_TIMEOUT_WIDTH : NATURAL := 16;
2 CONSTANT RPARAM_TIMEOUT_STATUS : NATURAL := C_MESSAGE_WIDTH-1; --[63]
3 CONSTANT PARAM_EVENT_TO_MONITOR : NATURAL := C_MESSAGE_WIDTH-2; --[62]
4 SUBTYPE PARAM_TIMEOUT_VAL IS std_logic_vector(C_TIMEOUT_WIDTH-1 downto 0); --[15:0]
5 SUBTYPE RPARAM_REMAINING_TIME IS std_logic_vector(C_TIMEOUT_WIDTH-1 downto 0); --[15:0]
6 --
7 CONSTANT C_MAX_BURST_LEN_BITS : NATURAL := POW2(256); --(8 bits)
8 CONSTANT C_LBUS_BURST_SOURCE_WWIDTH : NATURAL := C_MACHINE_WIDTH;
9 CONSTANT C_LBUS_DEST_WWIDTH : NATURAL := 10; -- destination address (10 bits)
10 CONSTANT C_LBUS_UNUSED : NATURAL := C_MESSAGE_WIDTH-C_MAX_BURST_LEN_BITS-

C_LBUS_BURST_SOURCE_WWIDTH-C_LBUS_DEST_WWIDTH; --13 bits
11 --
12 SUBTYPE PARAM_LBUS_BURST_LEN IS std_logic_vector(C_MESSAGE_WIDTH-1 downto

C_MESSAGE_WIDTH-C_MAX_BURST_LEN_BITS); --[63:56]
13 SUBTYPE RPARAM_LBUS_BURST_LEN IS std_logic_vector(C_MESSAGE_WIDTH-1 downto

C_MESSAGE_WIDTH-C_MAX_BURST_LEN_BITS); --[63:56]
14 SUBTYPE PARAM_LBUS_SOURCE IS std_logic_vector(PARAM_LBUS_BURST_LEN'LOW-1 downto

PARAM_LBUS_BURST_LEN'LOW-C_LBUS_BURST_SOURCE_WWIDTH); --[55:24]
15 SUBTYPE RPARAM_LBUS_SOURCE IS std_logic_vector(PARAM_LBUS_BURST_LEN'LOW-1 downto

PARAM_LBUS_BURST_LEN'LOW-C_LBUS_BURST_SOURCE_WWIDTH); --[55:24]
16 SUBTYPE PARAM_LBUS_OFFSET IS std_logic_vector(PARAM_LBUS_SOURCE'LOW-C_LBUS_UNUSED-1

downto 0); --[9:0]
17 --
18 CONSTANT C_MBUS_BURST_SOURCE_WWIDTH : NATURAL := C_MACHINE_WIDTH;
19 CONSTANT C_MBUS_OFFSET_WWIDTH : NATURAL := C_MACHINE_WIDTH - C_MAX_BURST_LEN_BITS;
20 CONSTANT C_MBUS_TIMEOUT_VALUE : NATURAL := 10;
21 CONSTANT C_MBUS_BURST_TIMEOUT_VALUE : NATURAL := 150;
22 --
23 SUBTYPE PARAM_MBUS_BURST_LEN IS std_logic_vector(C_MESSAGE_WIDTH-1 downto

C_MESSAGE_WIDTH-C_MAX_BURST_LEN_BITS); --[63:56]
24 CONSTANT RPARAM_M00_TIMEOUT : NATURAL := PARAM_MBUS_BURST_LEN'LOW-1; --[55]
25 SUBTYPE PARAM_MBUS_SOURCE IS std_logic_vector(PARAM_MBUS_BURST_LEN'LOW-1 downto

PARAM_MBUS_BURST_LEN'LOW-C_MBUS_BURST_SOURCE_WWIDTH); --[55:24]
26 SUBTYPE RPARAM_MBUS_SOURCE IS std_logic_vector(PARAM_MBUS_BURST_LEN'LOW-1 downto

PARAM_MBUS_BURST_LEN'LOW-C_MBUS_BURST_SOURCE_WWIDTH); --[55:24]
27 SUBTYPE PARAM_MBUS_OFFSET IS std_logic_vector(PARAM_MBUS_SOURCE'LOW-1 downto 0);

--[23:0]
28 SUBTYPE RPARAM_MBUS_BURST_LEN IS std_logic_vector(C_MESSAGE_WIDTH-1 downto

C_MESSAGE_WIDTH-C_MAX_BURST_LEN_BITS); --[63:56]
29 --
30 CONSTANT MUTEX_OWNER_ID_WWIDTH : NATURAL := C_MACHINE_WIDTH-2;
31 CONSTANT MUTEX_STATUS_WWIDTH : NATURAL := C_MACHINE_WIDTH;
32 CONSTANT MTX_UNUSED_H_WIDTH : NATURAL := 9;
33 CONSTANT MTX_ADDR_WIDTH : NATURAL := 1;
34 --
35 SUBTYPE PARAM_MUTEX_DEC_ADDR IS std_logic_vector(C_MESSAGE_WIDTH-MTX_UNUSED_H_WIDTH-1

downto C_MESSAGE_WIDTH-MTX_UNUSED_H_WIDTH-MTX_ADDR_WIDTH); --[54]
36 SUBTYPE PARAM_MUTEX_OWNER_ID IS std_logic_vector(PARAM_MUTEX_DEC_ADDR'LOW-1 downto

PARAM_MUTEX_DEC_ADDR'LOW-MUTEX_OWNER_ID_WWIDTH); --[53:24]
37 SUBTYPE RPARAM_MUTEX_STATUS IS std_logic_vector(C_MESSAGE_WIDTH-MTX_UNUSED_H_WIDTH-1

downto C_MESSAGE_WIDTH-MTX_UNUSED_H_WIDTH-MUTEX_STATUS_WWIDTH); --[55:24]
38 --

Appendix A. Source Listings 198

Listing A.4: Kernel Package: KFIFO Create Command 64 (HDL); back to section 5.1.

1 --
2 -- kfifo create word64
3 --
4 procedure kfifo_create_cmd64(
5 constant ki_feature : in ki_feature_t;
6 constant hint_cookie : in natural;
7 constant message_flags_events : in std_logic_vector(C_KIVIO_FLAGS_WWIDTH-1 downto 0);
8 constant wcount_whence : in natural;
9 constant woffset : in natural range 0 to 2**C_KIVIO_WOFFSET_WWIDTH-1;
10 data : out std_logic_vector(C_MESSAGE_WIDTH-1 downto 0)) is
11 --
12 begin
13 data := (others => '0');
14 case ki_feature is
15 --
16 when KI_ECHO =>
17 data(C_MESSAGE_WIDTH-1) := '0'; --[63]
18 data(C_MESSAGE_WIDTH-2) := '1'; --[62]
19 data(KIVIO_HINT'RANGE) := std_logic_vector(to_unsigned(hint_cookie,

KIVIO_HINT'LENGTH)); --[61:56]
20 data(KIVIO_FEATURE_TYPE'RANGE) := std_logic_vector(to_unsigned(

C_KIVIO_ARGS_QUERY,KIVIO_FEATURE_TYPE'LENGTH)); --[31:28]
21 data(KIVIO_OP_ID'RANGE) := std_logic_vector(to_unsigned(C_KI_ECHO_ID,

KIVIO_OP_ID'LENGTH)); --[27:24]
22 data(KIVIO_MESSAGE'RANGE) := message_flags_events; --[15:0]
23 --
24 when KI_SUBSCRIBE =>
25 data(C_MESSAGE_WIDTH-1) := '0'; --[63]
26 data(C_MESSAGE_WIDTH-2) := '1'; --[62]
27 data(KIVIO_HINT'RANGE) := std_logic_vector(to_unsigned(hint_cookie,

KIVIO_HINT'LENGTH)); --[61:56]
28 data(KIVIO_FEATURE_TYPE'RANGE) := std_logic_vector(to_unsigned(

C_KIVIO_ARGS_CTRL,KIVIO_FEATURE_TYPE'LENGTH)); --[31:28]
29 data(KIVIO_OP_ID'RANGE) := std_logic_vector(to_unsigned(C_KI_SUBSCRIBE_ID,

KIVIO_OP_ID'LENGTH)); --[27:24]
30 data(KIVIO_FLAGS'RANGE) := message_flags_events; --[15:0]
31 --
32 when KI_UNSUBSCRIBE =>
33 data(C_MESSAGE_WIDTH-1) := '0'; --[63]
34 data(C_MESSAGE_WIDTH-2) := '0'; --[62]
35 data(KIVIO_COOKIE'RANGE) := std_logic_vector(to_unsigned(hint_cookie,

KIVIO_COOKIE'LENGTH)); --[61:56]
36 data(KIVIO_FEATURE_TYPE'RANGE) := std_logic_vector(to_unsigned(

C_KIVIO_ARGS_CTRL,KIVIO_FEATURE_TYPE'LENGTH)); --[31:28]
37 data(KIVIO_OP_ID'RANGE) := std_logic_vector(to_unsigned(C_KI_UNSUBSCRIBE_ID

,KIVIO_OP_ID'LENGTH)); --[27:24]
38 --
39 when KI_GET_SIZE =>
40 data(C_MESSAGE_WIDTH-1) := '0'; --[63]
41 data(C_MESSAGE_WIDTH-2) := '0'; --[62]
42 data(KIVIO_COOKIE'RANGE) := std_logic_vector(to_unsigned(hint_cookie,

KIVIO_COOKIE'LENGTH)); --[61:56]
43 data(KIVIO_FEATURE_TYPE'RANGE) := std_logic_vector(to_unsigned(

C_KIVIO_ARGS_QUERY,KIVIO_FEATURE_TYPE'LENGTH)); --[31:28]
44 data(KIVIO_OP_ID'RANGE) := std_logic_vector(to_unsigned(C_KI_GET_SIZE_ID,

KIVIO_OP_ID'LENGTH)); --[27:24]
45 --
46 when KI_SYNC =>
47 data(C_MESSAGE_WIDTH-1) := '0'; --[63]
48 data(C_MESSAGE_WIDTH-2) := '0'; --[62]
49 data(KIVIO_COOKIE'RANGE) := std_logic_vector(to_unsigned(hint_cookie,

KIVIO_COOKIE'LENGTH)); --[63:56]
50 data(KIVIO_FEATURE_TYPE'RANGE) := std_logic_vector(to_unsigned(

C_KIVIO_ARGS_CTRL,KIVIO_FEATURE_TYPE'LENGTH)); --[31:28]
51 data(KIVIO_OP_ID'RANGE) := std_logic_vector(to_unsigned(C_KI_SYNC_ID,

KIVIO_OP_ID'LENGTH)); --[27:24]
52 --
53 when KI_READ_LRAM =>
54 data(C_MESSAGE_WIDTH-1) := '0'; --[63]
55 data(C_MESSAGE_WIDTH-2) := '0'; --[62]

Appendix A. Source Listings 199

56 data(KIVIO_COOKIE'RANGE) := std_logic_vector(to_unsigned(hint_cookie,
KIVIO_COOKIE'LENGTH)); --[61:56]

57 data(KIVIO_WCOUNT'RANGE) := std_logic_vector(to_unsigned(wcount_whence,
KIVIO_WCOUNT'LENGTH)); --[55:32]

58 data(KIVIO_FEATURE_TYPE'RANGE) := std_logic_vector(to_unsigned(
C_KIVIO_ARGS_DXCHG,KIVIO_FEATURE_TYPE'LENGTH)); --[31:28]

59 data(KIVIO_OP_ID'RANGE) := std_logic_vector(to_unsigned(C_KI_READ_LRAM_ID,
KIVIO_OP_ID'LENGTH)); --[27:24]

60 data(KIVIO_WOFFSET'RANGE) := std_logic_vector(to_unsigned(woffset,
KIVIO_WOFFSET'LENGTH)); --[23:0]

61 --
62 when KI_WRITE_LRAM =>
63 data(C_MESSAGE_WIDTH-1) := '0'; --[63]
64 data(C_MESSAGE_WIDTH-2) := '0'; --[62]
65 data(KIVIO_COOKIE'RANGE) := std_logic_vector(to_unsigned(hint_cookie,

KIVIO_COOKIE'LENGTH)); --[61:56]
66 data(KIVIO_WCOUNT'RANGE) := std_logic_vector(to_unsigned(wcount_whence,

KIVIO_WCOUNT'LENGTH)); --[55:32]
67 data(KIVIO_FEATURE_TYPE'RANGE) := std_logic_vector(to_unsigned(

C_KIVIO_ARGS_DXCHG,KIVIO_FEATURE_TYPE'LENGTH)); --[31:28]
68 data(KIVIO_OP_ID'RANGE) := std_logic_vector(to_unsigned(C_KI_WRITE_LRAM_ID,

KIVIO_OP_ID'LENGTH)); --[27:24]
69 data(KIVIO_WOFFSET'RANGE) := std_logic_vector(to_unsigned(woffset,

KIVIO_WOFFSET'LENGTH)); --[23:0]
70 --
71 when KI_READ_SYSRAM =>
72 data(C_MESSAGE_WIDTH-1) := '0'; --[63]
73 data(C_MESSAGE_WIDTH-2) := '0'; --[62]
74 data(KIVIO_COOKIE'RANGE) := std_logic_vector(to_unsigned(hint_cookie,

KIVIO_COOKIE'LENGTH)); --[61:56]
75 data(KIVIO_WCOUNT'RANGE) := std_logic_vector(to_unsigned(wcount_whence,

KIVIO_WCOUNT'LENGTH)); --[55:32]
76 data(KIVIO_FEATURE_TYPE'RANGE) := std_logic_vector(to_unsigned(

C_KIVIO_ARGS_DXCHG,KIVIO_FEATURE_TYPE'LENGTH)); --[31:28]
77 data(KIVIO_OP_ID'RANGE) := std_logic_vector(to_unsigned(C_KI_READ_SYSRAM_ID

,KIVIO_OP_ID'LENGTH)); --[27:24]
78 data(KIVIO_WOFFSET'RANGE) := std_logic_vector(to_unsigned(woffset,

KIVIO_WOFFSET'LENGTH)); --[23:0]
79 --
80 when KI_WRITE_SYSRAM =>
81 data(C_MESSAGE_WIDTH-1) := '0'; --[63]
82 data(C_MESSAGE_WIDTH-2) := '0'; --[62]
83 data(KIVIO_COOKIE'RANGE) := std_logic_vector(to_unsigned(hint_cookie,

KIVIO_COOKIE'LENGTH)); --[61:56]
84 data(KIVIO_WHENCE'RANGE) := std_logic_vector(to_unsigned(wcount_whence,

KIVIO_WHENCE'LENGTH)); --[55:32]
85 data(KIVIO_FEATURE_TYPE'RANGE) := std_logic_vector(to_unsigned(

C_KIVIO_ARGS_DXCHG,KIVIO_FEATURE_TYPE'LENGTH)); --[31:28]
86 data(KIVIO_OP_ID'RANGE) := std_logic_vector(to_unsigned(

C_KI_WRITE_SYSRAM_ID,KIVIO_OP_ID'LENGTH)); --[27:24]
87 data(KIVIO_WOFFSET'RANGE) := std_logic_vector(to_unsigned(woffset,

KIVIO_WOFFSET'LENGTH)); --[23:0]
88 --
89 when KI_SEEK =>
90 -- MORE
91 --
92 when others => null;
93 end case;
94 ---
95 end procedure kfifo_create_cmd64;
96 --

Appendix A. Source Listings 200

Listing A.5: Kernel Package: LRAM Extended Features (HDL); back to fig. 5.1.9.

1 --
2 -- kernel safe kfifo polled send command (and polled wait return) (local - using lram)
3 --
4 procedure kernel_safe_kfifo_send_command_wait_return_local(
5 signal kernel_call : out kernel_call_t;
6 signal kernel_response : in kernel_response_t;
7 signal sched_progress : in std_logic_vector(C_SCHEDULER_PROGRESS_WIDTH-1

downto 0);
8 signal kfifo_args_buffer : inout kfifo_arg_array_t;
9 signal kfifo_rets_buffer : inout kfifo_ret_array_t;
10 signal timeout : out boolean;
11 signal remaining_time : out natural;
12 constant timeout_value : in natural;
13 signal args_in_masked : inout std_logic_vector(C_MACHINE_WIDTH-1 downto 0);
14 signal rets_out_masked : inout std_logic_vector(C_MACHINE_WIDTH-1 downto 0);
15 signal return_rcvd : out std_ulogic;
16 signal procedure_done : out std_logic;
17 signal mutex_status : out std_logic_vector(C_MACHINE_WIDTH-1 downto 0);
18 data : in std_logic_vector(C_MESSAGE_WIDTH-1 downto 0);
19 read_return : out std_logic_vector(C_MACHINE_WIDTH-1 downto 0);
20 signal kfifo_base_offset : in std_logic_vector(C_MACHINE_WIDTH-1 downto 0)) is
21 --
22 -- MORE (Variables)
23 begin
24 return_rcvd <= '0';
25 case to_integer(unsigned(sched_progress)) is
26 --
27 when C_B_KFIFO_LMUTEX_LOCK | C_B_KFIFO_RET_PATH_LMUTEX_LOCK =>
28 local_mutex_lock(kernel_call,kernel_response);
29 --
30 when C_B_KFIFO_READ_ARGUMENTS =>
31 kernel_call.enable_index <= '1';
32 kernel_call.inc_index <= '1';
33 lbus_word_read_burst(kernel_call,kernel_response,C_KFIFO_ARG_WIDTH,to_integer(

unsigned(kfifo_base_offset)) + (C_KFIFO_ARGS_BASE_OFFSET),read_args);
34 kfifo_args_buffer(kernel_response.index_delayed_1) <= read_args;
35 --
36 when C_B_KFIFO_FULL_TEST =>
37 kernel_call.this_call <= '1';
38 kernel_call.enable_index <= '0';
39 kernel_call.inc_index <= '0';
40 kfifo_in := kfifo_args_buffer(C_KFIFO_ARGS_IN_OFFSET);
41 kfifo_out := kfifo_args_buffer(C_KFIFO_ARGS_OUT_OFFSET);
42 kfifo_mask := kfifo_args_buffer(C_KFIFO_ARGS_MASK_OFFSET);
43 kfifo_esize := kfifo_args_buffer(C_KFIFO_ARGS_ESIZE_OFFSET);
44 kfifo_data := kfifo_args_buffer(C_KFIFO_ARGS_DATA_OFFSET);
45 result := std_logic_vector(unsigned(kfifo_in) - unsigned(kfifo_out));
46 ---
47 if result = kfifo_mask then
48 kernel_call.kfifo_status <= '1'; -- kfifo full
49 else
50 kernel_call.kfifo_status <= '0'; -- kfifo not full
51 end if;
52 lintc_word_write(kernel_call,kernel_response,"100"); -- LMUTEX IRQ
53 --
54 when C_B_KFIFO_INC_ARGS_IN =>
55 kernel_call.enable_index <= '1';
56 kernel_call.inc_index <= '0';
57 inc_args_in := std_logic_vector(unsigned(kfifo_args_buffer(

C_KFIFO_ARGS_IN_OFFSET)) + 1);
58 args_in_masked <= std_logic_vector(word32_and(inc_args_in,kfifo_args_buffer(

C_KFIFO_ARGS_MASK_OFFSET)));
59 lbus_word_write(kernel_call,kernel_response,(to_integer(unsigned(

kfifo_base_offset)) + (C_KFIFO_ARGS_BASE_OFFSET + C_KFIFO_ARGS_IN_OFFSET))
,args_in_masked);

60 --
61 when C_B_KFIFO_SEND_CMD_64 =>
62 kernel_call.enable_index <= '1';
63 kernel_call.inc_index <= '1';
64 temp := resize(unsigned(kfifo_args_buffer(C_KFIFO_ARGS_IN_OFFSET)),temp'LENGTH);

Appendix A. Source Listings 201

65 args_in_x2 := std_logic_vector(resize(shift_left(temp,1),args_in_x2'LENGTH));
66 kfifo_offset := to_integer(unsigned(kfifo_args_buffer(C_KFIFO_RETS_DATA_OFFSET))

+ unsigned(args_in_x2));
67 aux_data_buffer(0) := data(63 downto 32); aux_data_buffer(1) := data(31 downto

0);
68 lbus_word_write_burst(kernel_call,kernel_response,2,to_integer(unsigned(

kfifo_base_offset)) + (kfifo_offset),aux_data_buffer(kernel_response.index));
69 --
70 when C_B_KFIFO_LMUTEX_UNLOCK | C_B_KFIFO_RET_PATH_LMUTEX_UNLOCK |

C_B_KFIFO_FULL_PATH_LMUTEX_UNLOCK =>
71 local_mutex_unlock(kernel_call,kernel_response,mutex_status);
72 --
73 when C_B_SLEEP_WAIT_RETURN | C_B_KFIFO_FULL_PATH_SLEEP =>
74 kernel_call.enable_sched <= '1';
75 kernel_call.resched_req <= '1';
76 wait_timeout_elapsed(kernel_call,kernel_response,timeout,remaining_time,

timeout_value);
77 --
78 when C_B_KFIFO_READ_RETURNS =>
79 kernel_call.enable_index <= '1';
80 kernel_call.inc_index <= '1';
81 lbus_word_read_burst(kernel_call,kernel_response,C_KFIFO_RET_WIDTH,to_integer(

unsigned(kfifo_base_offset)) + (C_KFIFO_RETS_BASE_OFFSET),read_args);
82 kfifo_rets_buffer(kernel_response.index_delayed_1) <= read_args;
83 --
84 when C_B_KFIFO_RET_EMPTY_TEST =>
85 kernel_call.this_call <= '1';
86 kernel_call.enable_index <= '0';
87 kernel_call.inc_index <= '0';
88 kfifo_in := kfifo_rets_buffer(C_KFIFO_RETS_IN_OFFSET);
89 kfifo_out := kfifo_rets_buffer(C_KFIFO_RETS_OUT_OFFSET);
90 kfifo_mask := kfifo_rets_buffer(C_KFIFO_RETS_MASK_OFFSET);
91 kfifo_esize := kfifo_rets_buffer(C_KFIFO_RETS_ESIZE_OFFSET);
92 kfifo_data := kfifo_rets_buffer(C_KFIFO_RETS_DATA_OFFSET);
93 result := std_logic_vector(unsigned(kfifo_in) - unsigned(kfifo_out));
94 ---
95 if to_integer(unsigned(result)) /= 0 then
96 return_rcvd <= '1'; -- return received
97 else
98 return_rcvd <= '0'; -- return not received
99 end if;
100 lintc_word_write(kernel_call,kernel_response,"100"); -- LMUTEX IRQ
101 --
102 when C_B_KFIFO_INC_RETS_OUT =>
103 kernel_call.enable_index <= '1';
104 kernel_call.inc_index <= '0'; --
105 inc_rets_out := std_logic_vector(unsigned(kfifo_rets_buffer(

C_KFIFO_RETS_OUT_OFFSET)) + 1);
106 rets_out_masked <= std_logic_vector(word32_and(inc_rets_out,kfifo_rets_buffer(

C_KFIFO_RETS_MASK_OFFSET)));
107 lbus_word_write(kernel_call,kernel_response,to_integer(unsigned(

kfifo_base_offset)) + (C_KFIFO_RETS_BASE_OFFSET + C_KFIFO_RETS_OUT_OFFSET)
,rets_out_masked);

108 --
109 when C_B_KFIFO_READ_PROC_RET_WORD =>
110 kernel_call.enable_index <= '1';
111 kernel_call.inc_index <= '0';
112 kfifo_offset := to_integer(unsigned(kfifo_rets_buffer(C_KFIFO_RETS_DATA_OFFSET)

) + unsigned(kfifo_rets_buffer(C_KFIFO_RETS_OUT_OFFSET)));
113 lbus_word_read(kernel_call,kernel_response,to_integer(unsigned(

kfifo_base_offset)) + (C_KFIFO_RETS_BASE_OFFSET + kfifo_offset),
read_return);

114 --
115 when C_B_PROCEDURE_DONE =>
116 procedure_done <= '1';
117 --
118 when others =>
119 null;
120 end case;
121 ---
122 end procedure kernel_safe_kfifo_send_command_wait_return_local;
123 --

Appendix A. Source Listings 202

Listing A.6: Hardware Mutex Acknowledge Generation (HDL); back to section 4.5.1.

1 -- Channel A write ack generation
2 --
3 reset_FF2 <= not(I_WR_CE_A) and write_a_Q;
4 write_a_i <= cs_a_i and I_WR_CE_A and not(write_a_Q);
5 --
6 WR_ACK_A_GEN_FF2 : process (I_CLK)
7 --
8 begin
9 if rising_edge(I_CLK) then
10 if (I_RESET = '1') or (reset_FF2 = '1') then
11 write_a_Q <= '0';
12 elsif (I_WR_CE_A = '1') then
13 write_a_Q <= cs_a_i;
14 end if;
15 end if;
16 end process WR_ACK_A_GEN_FF2;
17 --
18 O_WR_ACK_A <= write_a_Q;

20 -- Channel B write ack generation
21 --
22 reset_FF3 <= not(I_WR_CE_B) and write_b_Q;
23 write_b_i <= I_CS_B and I_WR_CE_B and not(write_b_Q);
24 --
25 WR_ACK_B_GEN_FF3 : process (I_CLK)
26 --
27 begin
28 if rising_edge(I_CLK) then
29 if (I_RESET = '1') or (reset_FF3 = '1') then
30 write_b_Q <= '0';
31 elsif (I_WR_CE_B = '1') then
32 write_b_Q <= I_CS_B;
33 end if;
34 end if;
35 end process WR_ACK_B_GEN_FF3;
36 --
37 O_WR_ACK_B <= write_b_Q;

39 -- Channel A read ack generation
40 --
41 reset_FF4 <= not(I_RD_CE_A) and read_a_Q;
42 --
43 RD_ACK_A_GEN_FF4 : process (I_CLK)
44 --
45 begin
46 if rising_edge(I_CLK) then
47 if (I_RESET = '1') or (reset_FF4 = '1') then
48 read_a_Q <= '0';
49 elsif (I_RD_CE_A = '1') then
50 read_a_Q <= cs_a_i;
51 end if;
52 end if;
53 end process RD_ACK_A_GEN_FF4;
54 --
55 O_RD_ACK_A <= read_a_Q;

57 -- Channel B read ack generation
58 --
59 reset_FF5 <= not(I_RD_CE_B) and read_b_Q;
60 --
61 RD_ACK_B_GEN_FF5 : process (I_CLK)
62 --
63 begin
64 if rising_edge(I_CLK) then
65 if (I_RESET = '1') or (reset_FF5 = '1') then
66 read_b_Q <= '0';
67 elsif (I_RD_CE_B = '1') then
68 read_b_Q <= I_CS_B;
69 end if;
70 end if;
71 end process RD_ACK_B_GEN_FF5;

Appendix A. Source Listings 203

72 --
73 O_RD_ACK_B <= read_b_Q;

Listing A.7: Hardware Mutex FSM (HDL); back to fig. 4.5.2.

1 -- MORE
2 --
3 ---- Control
4 --

6 -- Next state logic
7 --
8 NST_CONTROL : process(state,write_b_i,write_a_i,write_b_q,valid_i,
9 write_a_q)
10 --
11 begin
12 next_state <= state;
13 case state is
14 -- Idle state
15 when S0_FREE =>
16 if write_b_i = '1' then
17 next_state <= S1_ACCEPT_B;
18 elsif write_a_i = '1' and write_b_i = '0' then
19 next_state <= S4_ACCEPT_A;
20 else
21 next_state <= S0_FREE;
22 end if;
23 when S1_ACCEPT_B =>
24 next_state <= S2_OWNED_B;
25 when S2_OWNED_B =>
26 if write_b_q = '1' and valid_i = '1' then
27 next_state <= S3_RELEASE_B;
28 else
29 next_state <= S2_OWNED_B;
30 end if;
31 when S3_RELEASE_B =>
32 next_state <= S0_FREE;
33 when S4_ACCEPT_A =>
34 next_state <= S5_OWNED_A;
35 when S5_OWNED_A =>
36 if write_a_q = '1' and valid_i = '1' then
37 next_state <= S6_RELEASE_A;
38 else
39 next_state <= S5_OWNED_A;
40 end if;
41 when S6_RELEASE_A =>
42 next_state <= S0_FREE;
43 when others =>
44 null;
45 end case;
46 end process NST_CONTROL;
47 --

49 --
50 OUT_CONTROL : process (state)
51 --
52 begin
53 select_i <= (others => '0');
54 write_i <= '0';
55 clear_b_i <= '0';
56 clear_a_i <= '0';
57 lock_i <= '0';
58 clear_i <= '0';

60 case state is
61 when S0_FREE =>
62 select_i <= "11";
63 clear_i <= '1';
64 when S1_ACCEPT_B =>
65 select_i <= "01";
66 clear_b_i <= '1';
67 write_i <= '1';
68 lock_i <= '1';

Appendix A. Source Listings 204

69 when S2_OWNED_B =>
70 select_i <= "11";
71 lock_i <= '1';
72 when S3_RELEASE_B =>
73 select_i <= "01";
74 clear_b_i <= '1';
75 write_i <= '1';
76 when S4_ACCEPT_A =>
77 select_i <= "00";
78 clear_a_i <= '1';
79 write_i <= '1';
80 lock_i <= '1';
81 when S5_OWNED_A =>
82 select_i <= "10";
83 lock_i <= '1';
84 when S6_RELEASE_A =>
85 select_i <= "00";
86 clear_a_i <= '1';
87 write_i <= '1';
88 when others =>
89 null;
90 end case;
91 end process OUT_CONTROL;
92 --

94 -- State register
95 --
96 FFST : process (I_CLK)
97 --
98 begin
99 if rising_edge(I_CLK) then
100 if I_RESET = '1' then
101 state <= S0_FREE;
102 else
103 state <= next_state;
104 end if;
105 end if;
106 end process FFST;
107 --
108 end architecture rtl;

Appendix A. Source Listings 205

Listing A.8: Pipe Hardware Task: SYSRAM Communication (HDL); back to section 5.1.2.

1 --
2 -- MORE
3 --
4 hwtask_reset_i <= not (I_HWT_RESET);
5 --
6 TASK_REGS : process (I_HWT_CLK)
7 --
8 begin
9 if rising_edge(I_HWT_CLK) then
10 if (hwtask_reset_i = '1') then
11 data_pipe_ret_cookie_q <= 0;
12 res_pipe_ret_cookie_q <= 0;
13 wwritten_q <= 0;
14 wread_q <= 0;
15 out_buffer_0_q <= (others => (others => '0'));
16 in_buffer_0_q <= (others => (others => '0'));
17 -- More: VIP Setup (arguments)
18 -- More: VIP Setup (returns)
19 else
20 data_pipe_ret_cookie_q <= data_pipe_ret_cookie_d;
21 res_pipe_ret_cookie_q <= res_pipe_ret_cookie_d;
22 wwritten_q <= wwritten_d;
23 wread_q <= wread_d;
24 out_buffer_0_q <= out_buffer_0_d;
25 in_buffer_0_q <= in_buffer_0_d;
26 -- More: VIP Setup (arguments)
27 -- More: VIP Setup (returns)
28 end if;
29 end if;
30 end process TASK_REGS;
31 --

33 -- import kernel response
34 --
35 kernel_to_task_import_response(KERNEL_RESPONSE,
36 I_SYSCALL_VALID,
37 I_SYSCALL_BLOCK_TASK,
38 I_SERVICE_INDEX,
39 I_SERVICE_INDEX_D1,
40 I_SCHEDULER_PROGRESS,
41 I_SCHEDULER_PROCEDURE_ID,
42 I_SYSCALL_SYSCALL_ID,
43 I_SYSCALL_RETURN_ARG,
44 I_PROCEDURE_RETURN_ARG,
45 I_TASK_RUN,
46 I_TASK_RESET);
47 --

49 -- export task call
50 --
51 task_to_kernel_export_call(KERNEL_CALL,
52 O_SYSCALL_THIS_CALL,
53 O_SERVICE_ENABLE_INDEX,
54 O_SERVICE_INC_INDEX,
55 O_SCHEDULER_ENABLE,
56 O_SCHEDULER_RESCHED_REQ,
57 O_SCHEDULER_PROCEDURE_ID,
58 O_KFIFO_STATUS,
59 O_KFIFO_CMD_ID,
60 O_BOUND_TO_KERNEL,
61 O_SYSCALL_SYSCALL_ID,
62 O_SYSCALL_PARAMETERS,
63 O_PROCEDURE_PARAMETERS,
64 O_TASK_DONE);
65 --

67 --
68 HW_TASK_CONTROL : process(state,KERNEL_CALL,KERNEL_RESPONSE,
69 data_pipe_ret_cookie_q,res_pipe_ret_cookie_q,wwritten_q,out_buffer_0_q,
70 in_buffer_0_q,xor_done_q2,timeout_i,remaining_time_i,wread_q,out_buffer_0_d,
71 aux_buffer_0_q,aux_buffer_1_q)
72 --

Appendix A. Source Listings 206

73 begin
74 data_pipe_ret_cookie_d <= data_pipe_ret_cookie_q;
75 res_pipe_ret_cookie_d <= res_pipe_ret_cookie_q;
76 in_buffer_0_d <= in_buffer_0_q;
77 trigger_op_i <= '0';
78 timeout_i <= false;
79 remaining_time_i <= 0;
80 wwritten_d <= wwritten_q;
81 wread_d <= wread_q;
82 next_state <= state;
83 task_ukernel_sync(KERNEL_CALL,KERNEL_RESPONSE);
84 --
85 case state is
86 --
87 when S0_READY =>
88 if KERNEL_RESPONSE.task_run = '1' then
89 next_state <= S1_SUB_DATA_PIPE;
90 task_ukernel_sync(KERNEL_CALL,KERNEL_RESPONSE);
91 end if;
92 --
93 -- More: VIP State Setup (arguments)
94 --
95 -- More: VIP State Setup (returns)
96 --
97 when S1_SUB_DATA_PIPE =>
98 polled_kernel_bounded_file_subscribe(KERNEL_CALL,KERNEL_RESPONSE,128,

data_pipe_flags_q,0,0,data_pipe_ret_cookie_d);
99 if KERNEL_RESPONSE.valid = '1' then
100 next_state <= S2_SUB_RES_PIPE;
101 end if;
102 ---
103 when S2_SUB_RES_PIPE =>
104 polled_kernel_bounded_file_subscribe(KERNEL_CALL,KERNEL_RESPONSE,129,

res_pipe_flags_q,0,0,res_pipe_ret_cookie_d);
105 if KERNEL_RESPONSE.valid = '1' then
106 next_state <= S3_FETCH_TO_SYSRAM;
107 end if;
108 ---
109 when S3_FETCH_TO_SYSRAM =>
110 polled_kernel_bounded_sysram_write(KERNEL_CALL,KERNEL_RESPONSE,

data_pipe_ret_cookie_q,(others => '0'),C_WCOUNT,C_WOFFSET,wwritten_d);
111 if KERNEL_RESPONSE.valid = '1' then
112 next_state <= S4_LOCK_SYSMUTEX;
113 end if;
114 ---
115 when S4_LOCK_SYSMUTEX =>
116 hwt_system_mutex_lock(KERNEL_CALL,KERNEL_RESPONSE);
117 if KERNEL_RESPONSE.valid = '1' then
118 next_state <= S5_READ_SYSRAM;
119 end if;
120 ---
121 when S5_READ_SYSRAM =>
122 sysram_read_burst(KERNEL_CALL,KERNEL_RESPONSE,in_buffer_0_d,32,C_WOFFSET);
123 if KERNEL_RESPONSE.valid = '1' then
124 next_state <= S6_UNLOCK_SYSMUTEX;
125 end if;
126 ---
127 when S6_UNLOCK_SYSMUTEX =>
128 hwt_system_mutex_unlock(KERNEL_CALL,KERNEL_RESPONSE,mutex_status_i);
129 if KERNEL_RESPONSE.valid = '1' then
130 next_state <= S7_TRIGGER_OP;
131 end if;
132 ---

133 when S7_TRIGGER_OP =>
134 trigger_op_i <= '1';
135 next_state <= S8_WAIT_OP;
136 ---
137 when S8_WAIT_OP =>
138 wait_event_elapsed(KERNEL_CALL,KERNEL_RESPONSE,xor_done_q2,timeout_i,

remaining_time_i,C_MAX_WAIT_TIME);
139 if KERNEL_RESPONSE.valid = '1' then
140 next_state <= S9_LOCK_SYSMUTEX;
141 end if;

Appendix A. Source Listings 207

142 ---
143 when S9_LOCK_SYSMUTEX =>
144 hwt_system_mutex_lock(KERNEL_CALL,KERNEL_RESPONSE);
145 if KERNEL_RESPONSE.valid = '1' then
146 next_state <= S10_WRITE_SYSRAM;
147 end if;
148 ---
149 when S10_WRITE_SYSRAM =>
150 sysram_write_burst(KERNEL_CALL,KERNEL_RESPONSE,out_buffer_0_q,32,C_WOFFSET);
151 if KERNEL_RESPONSE.valid = '1' then
152 next_state <= S11_UNLOCK_SYSMUTEX;
153 end if;
154 ---
155 when S11_UNLOCK_SYSMUTEX =>
156 hwt_system_mutex_unlock(KERNEL_CALL,KERNEL_RESPONSE,mutex_status_i);
157 if KERNEL_RESPONSE.valid = '1' then
158 next_state <= S12_PUBLISH_FROM_SYSRAM;
159 end if;
160 ---
161 when S12_PUBLISH_FROM_SYSRAM =>
162 polled_kernel_bounded_sysram_read(KERNEL_CALL,KERNEL_RESPONSE,

res_pipe_ret_cookie_q,(others => '0'),C_WCOUNT,C_WOFFSET,wread_d);
163 if KERNEL_RESPONSE.valid = '1' then
164 next_state <= S99_EXIT;
165 end if;
166 ---
167 when S99_EXIT =>
168 KERNEL_CALL.task_done <= '1';
169 next_state <= S99_EXIT;
170 ---

171 when others => null;
172 end case;
173 end process HW_TASK_CONTROL;
174 --

176 --
177 IP_XOR : entity data_op
178 --
179 port map (
180 I_CLK => I_HWT_CLK,
181 I_RESET => hwtask_reset_i,
182 I_RUN => trigger_op_i,
183 I_BUFFER => in_buffer_0_d,
184 O_BUFFER => out_buffer_0_d,
185 O_DONE => xor_done_i
186);
187 --

189 --
190 XOR_DONE_SYNC : process (I_HWT_CLK)
191 --
192 begin
193 if rising_edge(I_HWT_CLK) then
194 if hwtask_reset_i = '1' then
195 xor_done_q <= '0';
196 xor_done_q2 <= '0';
197 else
198 xor_done_q <= xor_done_i;
199 xor_done_q2 <= xor_done_q;
200 end if;
201 end if;
202 end process XOR_DONE_SYNC;
203 --

205 --
206 FFST : process (I_HWT_CLK)
207 --
208 begin
209 if rising_edge(I_HWT_CLK) then
210 if hwtask_reset_i = '1' or KERNEL_RESPONSE.task_reset = '1' then
211 state <= S0_READY;
212 elsif I_SYSCALL_BLOCK_TASK = '0' then
213 state <= next_state;

Appendix A. Source Listings 208

214 end if;
215 end if;
216 end process FFST;
217 --

Listing A.9: Pipe Hardware Task: LRAM Communication (HDL); back to section 5.1.2.

1 --
2 -- MORE
3 --
4 hwtask_reset_i <= not (I_HWT_RESET);
5 --
6 TASK_REGS : process (I_HWT_CLK)
7 --
8 begin
9 if rising_edge(I_HWT_CLK) then
10 if (hwtask_reset_i = '1') then
11 data_pipe_ret_cookie_q <= 0;
12 res_pipe_ret_cookie_q <= 0;
13 wwritten_q <= 0;
14 wread_q <= 0;
15 out_buffer_0_q <= (others => (others => '0'));
16 in_buffer_0_q <= (others => (others => '0'));
17 -- More: LRAM Setup (arguments)
18 -- More: LRAM Setup (returns)
19 -- More: LRAM Setup (data)
20 ---
21 else
22 data_pipe_ret_cookie_q <= data_pipe_ret_cookie_d;
23 res_pipe_ret_cookie_q <= res_pipe_ret_cookie_d;
24 wwritten_q <= wwritten_d;
25 wread_q <= wread_d;
26 out_buffer_0_q <= out_buffer_0_d;
27 in_buffer_0_q <= in_buffer_0_d;
28 -- More: LRAM Setup (arguments)
29 -- More: LRAM Setup (returns)
30 -- More: LRAM Setup (data)
31 end if;
32 end if;
33 end process TASK_REGS;
34 --

36 -- import kernel response
37 --
38 kernel_to_task_import_response(KERNEL_RESPONSE,
39 I_SYSCALL_VALID,
40 I_SYSCALL_BLOCK_TASK,
41 I_SERVICE_INDEX,
42 I_SERVICE_INDEX_D1,
43 I_SCHEDULER_PROGRESS,
44 I_SCHEDULER_PROCEDURE_ID,
45 I_SYSCALL_SYSCALL_ID,
46 I_SYSCALL_RETURN_ARG,
47 I_PROCEDURE_RETURN_ARG,
48 I_TASK_RUN,
49 I_TASK_RESET);
50 --

52 -- export task call
53 --
54 task_to_kernel_export_call(KERNEL_CALL,
55 O_SYSCALL_THIS_CALL,
56 O_SERVICE_ENABLE_INDEX,
57 O_SERVICE_INC_INDEX,
58 O_SCHEDULER_ENABLE,
59 O_SCHEDULER_RESCHED_REQ,
60 O_SCHEDULER_PROCEDURE_ID,
61 O_KFIFO_STATUS,
62 O_KFIFO_CMD_ID,
63 O_BOUND_TO_KERNEL,
64 O_SYSCALL_SYSCALL_ID,
65 O_SYSCALL_PARAMETERS,
66 O_PROCEDURE_PARAMETERS,

Appendix A. Source Listings 209

67 O_TASK_DONE);
68 --

70 --
71 HW_TASK_CONTROL : process(state,KERNEL_CALL,KERNEL_RESPONSE,
72 data_pipe_ret_cookie_q,res_pipe_ret_cookie_q,wwritten_q,out_buffer_0_q,
73 in_buffer_0_q,xor_done_q2,timeout_i,remaining_time_i,wread_q,out_buffer_0_d,
74 aux_buffer_0_q,aux_buffer_1_q,lram_words_buffer_q,mutex_status_i)
75 --
76 begin
77 data_pipe_ret_cookie_d <= data_pipe_ret_cookie_q;
78 res_pipe_ret_cookie_d <= res_pipe_ret_cookie_q;
79 in_buffer_0_d <= in_buffer_0_q;
80 trigger_op_i <= '0';
81 timeout_i <= false;
82 remaining_time_i <= 0;
83 wwritten_d <= wwritten_q;
84 wread_d <= wread_q;
85 next_state <= state;
86 task_ukernel_sync(KERNEL_CALL,KERNEL_RESPONSE);
87 --
88 case state is
89 ---
90 when S0_READY =>
91 if KERNEL_RESPONSE.task_run = '1' then
92 next_state <= S1_SUB_DATA_PIPE;
93 task_ukernel_sync(KERNEL_CALL,KERNEL_RESPONSE);
94 end if;
95 ---
96 -- More: LRAM Setup State (arguments)
97 -- More: LRAM Setup State (returns)
98 -- More: LRAM Setup State (data)
99 ---
100 when S1_SUB_DATA_PIPE =>
101 polled_kernel_bounded_file_subscribe_local(KERNEL_CALL,KERNEL_RESPONSE,128,

data_pipe_flags_q,0,0,data_pipe_ret_cookie_d);
102 if KERNEL_RESPONSE.valid = '1' then
103 next_state <= S2_SUB_RES_PIPE;
104 end if;
105 ---
106 when S2_SUB_RES_PIPE =>
107 polled_kernel_bounded_file_subscribe_local(KERNEL_CALL,KERNEL_RESPONSE,129,

res_pipe_flags_q,0,0,res_pipe_ret_cookie_d);
108 if KERNEL_RESPONSE.valid = '1' then
109 next_state <= S3_FETCH_TO_LRAM;
110 end if;
111 ---
112 when S3_FETCH_TO_LRAM =>
113 polled_kernel_bounded_lram_write_local(KERNEL_CALL,KERNEL_RESPONSE,

data_pipe_ret_cookie_q,(others => '0'),C_WCOUNT,C_WOFFSET,wwritten_d);
114 if KERNEL_RESPONSE.valid = '1' then
115 next_state <= S4_LOCK_LMUTEX;
116 end if;
117 ---
118 when S4_LOCK_LMUTEX =>
119 hwt_local_mutex_lock(KERNEL_CALL,KERNEL_RESPONSE);
120 if KERNEL_RESPONSE.valid = '1' then
121 next_state <= S5_READ_LRAM;
122 end if;
123 ---
124 when S5_READ_LRAM =>
125 lram_read_burst(KERNEL_CALL,KERNEL_RESPONSE,in_buffer_0_d,32,512);
126 if KERNEL_RESPONSE.valid = '1' then
127 next_state <= S6_UNLOCK_LMUTEX;
128 end if;
129 ---
130 when S6_UNLOCK_LMUTEX =>
131 hwt_local_mutex_unlock(KERNEL_CALL,KERNEL_RESPONSE,mutex_status_i);
132 if KERNEL_RESPONSE.valid = '1' then
133 next_state <= S7_TRIGGER_OP;
134 end if;
135 ---

136 when S7_TRIGGER_OP =>

Appendix A. Source Listings 210

137 trigger_op_i <= '1';
138 next_state <= S8_WAIT_OP;
139 ---
140 when S8_WAIT_OP =>
141 wait_event_elapsed(KERNEL_CALL,KERNEL_RESPONSE,xor_done_q2,timeout_i,

remaining_time_i,C_MAX_WAIT_TIME);
142 if KERNEL_RESPONSE.valid = '1' then
143 next_state <= S9_LOCK_LMUTEX;
144 end if;
145 ---
146 when S9_LOCK_LMUTEX =>
147 hwt_local_mutex_lock(KERNEL_CALL,KERNEL_RESPONSE);
148 if KERNEL_RESPONSE.valid = '1' then
149 next_state <= S10_WRITE_LRAM;
150 end if;
151 ---
152 when S10_WRITE_LRAM =>
153 lram_write_burst(KERNEL_CALL,KERNEL_RESPONSE,out_buffer_0_q,32,512);
154 if KERNEL_RESPONSE.valid = '1' then
155 next_state <= S11_UNLOCK_LMUTEX;
156 end if;
157 ---
158 when S11_UNLOCK_LMUTEX =>
159 hwt_local_mutex_unlock(KERNEL_CALL,KERNEL_RESPONSE,mutex_status_i);
160 if KERNEL_RESPONSE.valid = '1' then
161 trigger_op_i <= '1';
162 next_state <= S12_PUBLISH_FROM_LRAM;
163 end if;
164 ---
165 when S12_PUBLISH_FROM_LRAM =>
166 polled_kernel_bounded_lram_read_local(KERNEL_CALL,KERNEL_RESPONSE,

res_pipe_ret_cookie_q,(others => '0'),C_WCOUNT,C_WOFFSET,wread_d);
167 if KERNEL_RESPONSE.valid = '1' then
168 next_state <= S99_EXIT;
169 end if;
170 ---
171 when S99_EXIT =>
172 KERNEL_CALL.task_done <= '1';
173 next_state <= S99_EXIT;
174 ---

175 when others =>
176 null;
177 end case;
178 end process HW_TASK_CONTROL;
179 --

181 --
182 IP_XOR : entity data_op
183 --
184 port map (
185 I_CLK => I_HWT_CLK,
186 I_RESET => hwtask_reset_i,
187 I_RUN => trigger_op_i,
188 I_BUFFER => in_buffer_0_d,
189 O_BUFFER => out_buffer_0_d,
190 O_DONE => xor_done_i
191);
192 --

194 --
195 XOR_DONE_SYNC : process (I_HWT_CLK)
196 --
197 begin
198 if rising_edge(I_HWT_CLK) then
199 if hwtask_reset_i = '1' then
200 xor_done_q <= '0';
201 xor_done_q2 <= '0';
202 else
203 xor_done_q <= xor_done_i;
204 xor_done_q2 <= xor_done_q;
205 end if;
206 end if;
207 end process XOR_DONE_SYNC;

Appendix A. Source Listings 211

208 --

210 --
211 FFST : process (I_HWT_CLK)
212 --
213 begin
214 if rising_edge(I_HWT_CLK) then
215 if hwtask_reset_i = '1' or KERNEL_RESPONSE.task_reset = '1' then
216 state <= S0_READY;
217 elsif I_SYSCALL_BLOCK_TASK = '0' then
218 state <= next_state;
219 end if;
220 end if;
221 end process FFST;
222 --

B. Auxiliary Resources

O_CS_B

System-Level Datapath

SYSCALL_WORK_NONE 	 	 --00
SYSCALL_WORK_YIELD 	 	 --01
SYSCALL_WAIT_EVENT_TIMEOUT 	 --02
SYSCALL_LINTC_READ 	 	 --03
SYSCALL_LINTC_WRITE 	 	 --04
SYSCALL_LBUS_READ 	 	 --05
SYSCALL_LBUS_WRITE, 	 	 --06
SYSCALL_LBUS_READ_BURST 	 --07
SYSCALL_LBUS_WRITE_BURST 	 --08
SYSCALL_MUTEX_LOCK 	 	 --09
SYSCALL_MUTEX_TRY_LOCK 	 --10
SYSCALL_MUTEX_UNLOCK 	 --11
SYSCALL_MBUS_READ 	 	 --12
SYSCALL_MBUS_WRITE 	 	 --13
SYSCALL_MBUS_READ_BURST 	 --14
SYSCALL_MBUS_WRITE_BURST 	 --15

Parameter, Service Select M0

Event Manager

EVM1

CLK

TRIGGER_A
TRIGGER_B
EVENT
TIMEOUT_VAL

RESET

EVENT_ELAPSED
READY

TIMEOUT
TIME_REMAINING

Index Manager

IM0

CLK

I_INC_INDEX
I_EN_INDEX
I_SC_EN_INDEX
I_BURST_LEN

RESET

O_INDEX
O_INDEX_D1

O_IS_MB_BWR
O_IS_MB_BRD

I_LB_INC_TRIG
I_MB_INC_TRIG
I_UP_DATA_RDY
I_SYSCALL_ID
I_UP_INC_TRIG

O_IS_LB_BWR
O_IS_LB_BRD

O_BURST_DONE
O_BURST_DONE_D1

Address Manager

AM0

CLK

I_EN_ADDR_CNT
I_START_ADDR
I_UP_INC_TRIG

RESET

O_READY

O_TARGET_ADDR

I_IS_LB_BWR
I_IS_LB_BRD

I_M00_AXI_BVALID

I_M00_AXI_WREADY

I_M00_AXI_AWVALID

I_M00_AXI_WVALID

I_M00_AXI_RVALID

I_M00_AXI_RREADY

I_KERNEL_CALL

O_RETURN_ARG

CLOCK

RESET

(I_CLK)

(I_RESET)

O_LBUS_ADDR

O_LBUS_DATA

I_LRAM_DOUT

O_EVENT_ELAPSED

O_EVM_READY
I_EVM_TRIGGER

I_M00_TO_TRIGGER

WVALID
RVALID
RREADY

I_UP_ADDR_TRIGGER

O_INDEX

O_INDEX_D1

I_BURST_DONE O_ADDR_M_READY

Norm.

Burst

kernel_call.syscall_id

lbus_addr_i

M2

O_CS_B <- '1'

kernel_call.parameters(source)

burst_length/LRAM_data

burst_length/RDATA

return_arg_i

return_arg_i

0

1

I_SYSCALL_VALID is_lbus_burst_rd

M1

Q D

reset

FF0

clk

return_D

return_Q

burst_length

I_M00_AXI_RDATA

burst_length/timeout/time_remaining

mutex_status

O_MUTEX_ADDR

O_MUTEX_CS

O_MUTEX_DATAkernel_call.parameters(mutex_owner)

kernel_call.parameters(mutex_dec_id)

O_MTX_CS <- '1'I_MUTEX_STATUS

O_LBUS_WLAST

O_LBUS_RLAST

G0

G2

G1

O_M00_AXI_AWADDR

O_M00_AXI_WDATA

O_M00_AXI_ARADDR

O_M00_AXI_WLAST

O_WR_BURST_LEN

O_RD_BURST_LEN

mbus_addr_i

source_i

mbus_addr_i

burst_len_i

burst_len_i

mbus_wlast_i

burst_done_i
is_mbus_burst_wr

G3

G4

O_TIMEOUT

Burst Syscalls

LBUS Burst Syscalls To/From Hardware Task

To/From Microprogram

I_LINTC_CONTROL_W

I_LINTC_STATUS_W

O_LINTC_INTR_SEL

LINTC_status_word/LINTC_ctrl_word

Figure B.1: System-Level Datapath (SLD) RTL Design Internal Architecture (Expanded), back to fig. 4.2.11.

212

Appendix B. Auxiliary Resources 213

DebounceDebounce

Status Register

Local Interrupt Controller

O_RD_ACK

I_WR_CE

I_CS [0:N] CE
D Q

reset

FF0

clk

O_WR_ACK

G1

G2

write_ack_d

write_ack_q

CE
D Q

reset

FF1

clk

I_RD_CE

G4

G3

read_ack_d

read_ack_q

UG0

CLOCK

RESET

(I_CLK)

(I_RESET)

CE
D Q

reset

FF2

clk
D Q

reset

FF3

clk

I_RXDATA [31:0] [31:0] O_STATUS

Control Register

O_CONTROL

[31:0]

[31:0]I_CS(0)
G5

FF4

D Q
rst

FF5

D Q
rst

FF6

D Q
rst

CE
D Q

reset

FF7

clk

G7

G8

EN INTR UNUSED

31 30:7
Control CLR2

5
CLR1

4
CLR0

3

intr_mask(lmtx)

control_q.intr_clear(lmtx)G9

CE
D Q

reset

FF8

clk

G8en_intr

I_INTR_SRC [0:2]

INTR RAISE UNUSED

31 30:3
Status LMTX

2
SMTX

1
UPDT

0

LMTX

2
SMTX

1
UPDT

0

intr_raise

2 Cycle Synchronizer

src(2)

intr_status(lmtx)

control_d status_q

control_q

DebounceDebounce

FF9

D Q
rst

FF10

D Q
rst

FF11

D Q
rst

CE
D Q

reset

FF12

clk

G10

G11

control_q.intr_clear(smtx)G13

CE
D Q

reset

FF13

clk

G12en_intr

2 Cycle Synchronizer

src(1)

intr_status(smtx)

intr_mask(smtx)

DebounceDebounce

FF14

D Q
rst

FF15

D Q
rst

FF16

D Q
rst

CE
D Q

reset

FF17

clk

G14

G15

control_q.intr_clear(updt)G17

CE
D Q

reset

FF18

clk

G16en_intr

2 Cycle Synchronizer

src(0)

intr_mask(updt)

intr_status(updt)

intr_status(smtx)

intr_status(updt)

O_IRQ_PIN

Page 0 Decoder Signals

w/ N = REG_NUM

UG18
intr_raise

clk
Hold

i_sig o_sig

clearreset

H3

intr_raise

CLRP

6

control_q.clrp

en_intr

ce

CE

clear Q[1:0]D[1:0]

inc

load

clk

C0

'1'

I_RESET

Counter

0
OV

o_sig

0

G19
OV

Figure B.2: Local Interrupt Controller RTL Design Internal Architecture (Expanded), back to fig. 4.5.3.

Appendix B. Auxiliary Resources 214

Table B.1: Simplified Microprogram Memory Representation (Part 1), back to fig. 4.2.9.

Microprogram Memory

Syscall (KL) Progress Input Sel. NSF Output Sel. Valid Block Fault

00 AUX_FALSE 00 NULL 1 0 0

01 AUX_FALSE 00 NULL 0 1 0

10 AUX_FALSE 00 NULL 0 1 0
SYSCALL_WORK_NONE (0)

11 AUX_FALSE 00 NULL 0 1 0

00 ACC_DEAD 00 KILL_ACC 0 1 0

01 AUX_FALSE 00 NULL 1 0 0

10 AUX_FALSE 00 NULL 0 1 0
SYSCALL_WORK_YIELD (1)

11 AUX_FALSE 00 NULL 0 1 0

00 EM_READY 00 NULL 0 1 0

01 EVENT_ELAPSED 01 EM_TRIGGER 0 1 0

10 AUX_FALSE 00 NULL 1 0 0
SYSCALL_WAIT_EVENT_TIMEOUT (2)

11 AUX_FALSE 00 NULL 0 1 0

00 AUX_FALSE 01 NULL 1 0 0

01 AUX_FALSE 00 NULL 0 1 0

10 AUX_FALSE 00 NULL 0 1 0
SYSCALL_LINTC_READ (3)

11 AUX_FALSE 00 NULL 0 1 0

00 IRQ_RAISE 00 NULL 0 1 0

01 AUX_FALSE 00 NULL 1 0 0

10 AUX_FALSE 00 NULL 0 1 0
SYSCALL_LINTC_WRITE (4)

11 AUX_FALSE 00 NULL 0 1 0

00 LBUS_RD_ACK 00 NULL 0 1 0

01 AUX_FALSE 00 NULL 1 0 0

10 AUX_FALSE 00 NULL 0 1 0
SYSCALL_LBUS_READ (5)

11 AUX_FALSE 00 NULL 0 1 0

00 LBUS_WR_ACK 00 LBUS_WR_CE 0 1 0

01 AUX_FALSE 00 NULL 1 0 0

10 AUX_FALSE 00 NULL 0 1 0
SYSCALL_LBUS_WRITE (6)

11 AUX_FALSE 00 NULL 0 1 0

00 ADDR_READY 00 ADDR_TRIGGER 0 1 0

01 LBUS_RD_ACK_RLAST 01 NULL 0 1 0

10 AUX_FALSE 00 NULL 1 0 0
SYSCALL_LBUS_READ_BURST (7)

11 AUX_FALSE 00 NULL 0 1 0

(KL) Kernel-Level

Safeguard Correction

Appendix B. Auxiliary Resources 215

Table B.2: Simplified Microprogram Memory Representation (Part 2), back to fig. 4.2.9.

Microprogram Memory

Syscall (KL) Progress Input Sel. NSF Output Sel. Valid Block Fault

00 ADDR_READY 00 ADDR_TRIGGER 0 1 0

01 LBUS_WR_ACK_WLAST 01 LBUS_WR_CE 0 1 0

10 AUX_FALSE 00 NULL 1 0 0
SYSCALL_LBUS_WRITE_BURST (8)

11 AUX_FALSE 00 NULL 0 1 0

00 NOT_LOCKED_A 00 LBUS_RD_CE 0 1 0

01 AUX_TRUE 10 LBUS_WR_CE 0 1 0

10 LOCKED_B 00 LBUS_RD_CE 0 1 0
SYSCALL_MUTEX_LOCK (9)

11 AUX_FALSE 00 NULL 1 0 0

00 NOT_LOCKED_A 00 LBUS_RD_CE 0 1 0

01 AUX_TRUE 10 LBUS_WR_CE 0 1 0

10 LOCKED_B 11 LBUS_RD_CE 0 1 0
SYSCALL_MUTEX_TRY_LOCK (10)

11 AUX_FALSE 00 NULL 1 0 0

00 NOT_LOCKED_A 11 LBUS_RD_CE 0 1 0

01 LOCKED_B 11 LBUS_RD_CE 0 1 0

10 FREE 00 LBUS_WR_CE 0 1 0
SYSCALL_MUTEX_UNLOCK (11)

11 AUX_FALSE 00 NULL 1 0 0

00 M_AXI_ARREADY 00 M_AXI_ARVALID 0 1 0

01 M_AXI_RVALID_RLAST 01 M_AXI_RREADY 0 1 0

10 AUX_FALSE 00 NULL 1 0 0
SYSCALL_MBUS_READ (12)

11 AUX_FALSE 00 NULL 0 1 0

00 M_AXI_AWREADY 00 M_AXI_AWVALID 0 1 0

01 M_AXI_WREADY_WLAST 01 M_AXI_WVALID 0 1 0

10 M_AXI_BVALID_TIMEOUT 10 M_AXI_BREADY_TRIGGER 0 1 0
SYSCALL_MBUS_WRITE (13)

11 AUX_FALSE 00 NULL 1 0 0

00 M_AXI_ARREADY 00 M_AXI_ARVALID 0 1 0

01 M_AXI_RVALID_RLAST 01 M_AXI_RREADY 0 1 0

10 AUX_FALSE 00 NULL 1 0 0
SYSCALL_MBUS_READ_BURST (14)

11 AUX_FALSE 00 NULL 0 1 0

00 M_AXI_AWREADY 00 M_AXI_AWVALID 0 1 0

01 M_AXI_WREADY_WLAST 01 M_AXI_WVALID 0 1 0

10 M_AXI_BVALID_TIMEOUT 10 M_AXI_BREADY_TRIGGER 0 1 0
SYSCALL_MBUS_WRITE_BURST (15)

11 AUX_FALSE 00 NULL 1 0 0

(KL) Kernel-Level

Safeguard Correction

Appendix B. Auxiliary Resources 216

error_control_sig

Extended

Microprogram

Channel A (Host)

ROM0

addr

Step

[15:14]

Input

[13:9]

NSF

[8:7]

Output

[6:3]

Valid

[2]

Block_task

[1]

Fault

[0]

Error

[19:16]

syscall_id

K1

pc_q

[5:2]

MCODE ADDR

hw_cs[6]

Step

[1:0]

Memory

[6]

Syscall ID

[5:2]

syscall_id

valid

block_task

syscall_fault

ROM_DEPTH: 64 words (2**4 = 16 system calls, each w/ 2**2 = 4 max steps)

ROM_ADDR_WIDTH: 6+1 bits

ROM_DOUT_WIDTH: 20 bits

Error System Call Memory (ROM): 20b:64w

Channel B (Hardware)

RAM Data Out

Step

[15:14]

Input

[13:9]

NSF

[8:7]

Output

[6:3]

Valid

[2]

Block_task

[1]

Fault

[0]

addr_b

RAM0

dina
addr_a
wr_ce_a
cs_a

rd_ack_a
wr_ack_a

cs_b

Extended System Call Memory (RAM): 16b:64w

RAM_DEPTH: 64 words (2**4 = 16 system calls, each w/ 2**2 = 4 max steps)

RAM_ADDR_WIDTH: 6+1 bits

RAM_DOUT_WIDTH: 16 bits

ROM Data Out

CE

clear Q[1:0]D[1:0]

inc

clk

C0

I_RESET

 µProgram Counter
load OV OPEN

pc_q0

1

syscall_id(6)M0

G4

G5

0
1
2
3

31

error_test_inputs

M6

data_M6

0
1
2
3

31

test_inputs

M1

data_M1

0
1

31

M5
unreg_syscall

bad_addr

...
Errors

I_SYSCALL_INPUT
syscall_id

K0

pc_q

[6]

[5:2]

this_call_safe

I_SYS_CS_A

I_SYS_WR_CE_A

I_SYS_ADDR_A

I_SYS_DIN_A

O_SYS_WR_ACK_A

O_SYS_RD_ACK_A

[31]

[30]

free_i

locked_a_i

locked_b_i

Mutex Test Input Generation
G0

G1

G3

I_MUTEX_STATUS

0
1

15
(CS_I)

1

M2

control_sig

syscall_id

0
1

15
(CS_I)

1

M3

O_SYSCALL_OUTPUTsyscall_output0

1

syscall_id(6)M4

valid
block_task

syscall_fault

FF0

D Q
rst

ROM Test
Inputs

Error
Control
Signals

Control
SignalsRAM Test

Inputs

Figure B.3: Extended Microprogram for ROM-RAM Execution: RTL Design Internal Architecture (Simplified).

Appendix B. Auxiliary Resources 217

DDR

FIXED_IO

O_HEART_BEAT_0

UKERNEL_0

UKERNEL_v1_0

S00_TASK

M00_KERNEL

M00_AXI

S00_AXI

S01_AXI

O_HEART_BEAT

O_IRQ_PIN

M00_AXI_aclk

M00_AXI_aresetn

S00_AXI_aclk

S00_AXI_aresetn

S01_AXI_aclk

S01_AXI_aresetn

axi_mem_intercon

AXI Interconnect

S00_AXI

M00_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

hw_pipe_com_0

hw_pipe_com_v1_0

S00_KERNEL

M00_TASKI_HWT_CLK

I_HWT_RESET processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

USBIND_0

S_AXI_HP0_FIFO_CTRL

M_AXI_GP0

S_AXI_HP0

M_AXI_GP0_ACLK

S_AXI_HP0_ACLK

IRQ_F2P[0:0]
FCLK_CLK0

FCLK_RESET0_N

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

rst_M00_AXI_aclk_0_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

Figure B.4: Pipe Hardware Task Block Design using the Zybo Z7-10 platform.

Appendix B. Auxiliary Resources 218

DDR

FIXED_IO

UKERNEL_0

UKERNEL_v1_0

S00_TASK

M00_KERNEL

M00_AXI

S00_AXI

S01_AXI

O_IRQ_PIN

M00_AXI_aclk

M00_AXI_aresetn

S00_AXI_aclk

S00_AXI_aresetn

S01_AXI_aclk

S01_AXI_aresetn

UKERNEL_1

UKERNEL_v1_0

S00_TASK

M00_KERNEL

M00_AXI

S00_AXI

S01_AXI

O_IRQ_PIN

M00_AXI_aclk

M00_AXI_aresetn

S00_AXI_aclk

S00_AXI_aresetn

S01_AXI_aclk

S01_AXI_aresetn

axi_mem_intercon

AXI Interconnect

S00_AXI

M00_AXI

S01_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

S01_ACLK

S01_ARESETN

hw_pipe_com_0

hw_pipe_com_v1_0

S00_KERNEL

M00_TASKI_HWT_CLK

I_HWT_RESET

hw_pipe_com_1

hw_pipe_com_v1_0

S00_KERNEL

M00_TASKI_HWT_CLK

I_HWT_RESET

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

USBIND_0

S_AXI_HP0_FIFO_CTRL

M_AXI_GP0

S_AXI_HP0

M_AXI_GP0_ACLK

S_AXI_HP0_ACLK

IRQ_F2P[1:0]
FCLK_CLK0

FCLK_RESET0_N

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

M03_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

M02_ACLK

M02_ARESETN

M03_ACLK

M03_ARESETN

rst_M00_AXI_aclk_0_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

xlconcat_0

Concat

In0[0:0]

In1[0:0]
dout[1:0]

Figure B.5: Dual-Kernel Dual-Task Scheme Block Design using the Zybo Z7-10 platform.

Appendix B. Auxiliary Resources 219

UKERNEL_0

UKERNEL_v1_0

S00_TASK

M00_KERNEL

M00_AXI

S00_AXI

S01_AXI

O_HEART_BEAT

O_IRQ_PIN

M00_AXI_aclk

M00_AXI_aresetn

S00_AXI_aclk

S00_AXI_aresetn

S01_AXI_aclk

S01_AXI_aresetn

axi_interconnect_0

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

axi_smc

AXI SmartConnect

S00_AXI

M00_AXIaclk

aresetn

hal_asos_link_cv_0

hal_asos_link_v4_00_cv

m00_axi

s00_axi

interrupt_bus[0:0]

m00_axi_aclk

m00_axi_aresetn

s00_axi_aclk

s00_axi_aresetn

hw_pipe_com_0

hw_pipe_com_v1_0

S00_KERNEL

M00_TASKI_HWT_CLK

I_HWT_RESET

m00_axi_aclk_0

m00_axi_aresetn_0

Figure B.6: HAL-ASOS Link IP Full Simulation: Block Design.

Appendix B. Auxiliary Resources 220

Figure B.7: Pipe Communication Hardware Task (SYSRAM w/ XOR Encryption): Overview (First Half Zoomed).

Appendix B. Auxiliary Resources 221

Figure B.8: Pipe Communication Hardware Task (SYSRAM w/ XOR Encryption): Overview (Second Half Zoomed).

Appendix B. Auxiliary Resources 222

Input Sel.

[11:7]

RESET(I_RESET)

CLOCK(I_CLK)

I_PROCEDURE_ID

I_ENABLE_SCHED

RAM Data Out

gValid

[1]

pBlock

[0]

Procedure Memory (RAM)

addr_b

Progress

[23:20]

Syscall ID

[15:12]

CE

clear Q[3:0]D[3:0]

inc

clk

C0

I_RESET

 Procedure Counter
load OV OPEN

progress_q

NSF

[19:16]

M0

0
1
2
3
4
5
6
7
8
9

10

31

Param Sel.

[6:2]

K0

progress_q

[7:0]
[7:4]

I_RESCHED_REQ

I_VALID

RAM_DEPTH: 256 words

(2**4 = 16 user-level procedures,

 each w/ 2**4 = 16 max steps)

RAM_ADDR_WIDTH: 8 bits

RAM_DOUT_WIDTH: 24 bits

G0

test_result

Procedure Scheduler

O_SCHED_SYSCALL_INPUT

O_SCHED_PROGRESS

O_SCHED_PARAMETERS

SLD Signals Microprogram SignalsHW-Task Signals

progress_q

I_THIS_CALL

[3:0]

I_THIS_CALL

O_PROCEDURE_IDI_PROCEDURE_ID

O_SCHED_SYSCALL_OUTPUT

aux_false_test0 0

aux_true_test
1

kfifo_is_full

I_KFIFO_STATUS

I_EM_TIMEOUT

em_timeout

I_RETURN_RCVD

return_rcvd

RAM1

dina
addr_a
wr_ce_a
cs_a

rd_ack_a
wr_ack_a

I_SYS_CS_A

I_SYS_WR_CE_A

I_SYS_ADDR_A

I_SYS_DIN_A

O_SYS_WR_ACK_A

O_SYS_RD_ACK_A

Channel A

additional_param [4:0]

Figure B.9: Updatable Scheduler RTL Design Internal Architecture.

Appendix B. Auxiliary Resources 223

this_call Debounce

NO_IF_REG

S00_AXI_ARESETN

S00_AXI_ACLK

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

O_TXDATA

O_ENABLE

O_WR_EVENT

O_RD_CE

I_RXDATA

O_ADDR [11:0]

O_CS_A

O_WR_CE

S00 Interface

I_RD_ACK

I_WR_ACK

O_TRIGGER

O_RD_EVENT

O_STANDBY

I_TIMEOUT

S01_AXI_ARESETN

S01_AXI_ACLK

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

O_WR_CE

O_ENABLE

O_WR_EVENT

O_RD_CE

O_CS_A

O_ADDR [11:0]

O_TX_DATA

I_RX_DATA

S01 Interface

I_RD_ACK

I_WR_ACK

O_TRIGGER

O_RD_EVENT

O_STANDBY

I_TIMEOUT

S00_AXI_ARESETN

CLK

I_S00_TRIGGER

I_S00_ENABLE

I_S00_WR_EVENT

I_S00_RD_EVENT

I_RD_CE

SLV IF Event Manager

I_S01_TRIGGER

I_S01_ENABLE

I_S01_WR_EVENT

I_S01_RD_EVENT

O_TIMEOUT

I_S00_STANDBY

I_S01_STANDBY

O_S00_STATUS

O_S01_STATUS

O_TIMEOUT_CNT

O_TIME_REMAINING

O_WR_ACK

O_RD_ACK

S00_AXI

S01_AXI

I_RXDATA [31:0]

I_RD_CE

I_ADDR [7:2]

I_CS

I_WR_CE

O_PAGE_WR_CE

O_PAGE_SELECT [3]

O_PAGE_ADDR [5:2]

Slave Decoder (w/LUT 3:8)

O_TX_DATA [31:0]

O_WR_ACK

O_RD_ACK
O_PAGEN_RXDATA [0][31:0]

O_PAGE_RD_CE

O_PAGE_TXDATA [31:0]

I_PAGE_WR_ACK [0]

O_PAGEN_RXDATA [1][31:0]

O_PAGEN_RXDATA [2][31:0]

O_PAGEN_RXDATA [3][31:0]

I_PAGE_WR_ACK [1]

I_PAGE_WR_ACK [2]

I_PAGE_WR_ACK [3]

I_PAGE_RD_ACK [0]

I_PAGE_RD_ACK [1]

I_PAGE_RD_ACK [2]

I_PAGE_RD_ACK [3]

I_PAGE_RXDATA

I_PAGE_RD_CE

I_PAGE_SELECT

I_PAGE_ADDR

I_PAGE_WR_CE O_WORD_RD_CE

O_WORD_WR_CE

O_WORD_SELECT

Page0 Decoder (w/LUT 5:32)

O_PAGE_TXDATA

O_PAGE_WR_ACK

O_PAGE_RD_ACK

I_WR_ACK_BUS

O_TXWORD

I_RXWORD_P0

I_RD_ACK_BUS

O_PAGE_SELECT [2]

O_PAGE_SELECT [1]

O_PAGE_SELECT [0]

Microprogram

I_EVM_READY

I_EVENT_ELAPSED

I_ADDRM_READY

I_LBUS_RLAST

I_LBUS_WLAST

I_M_AXI_TIMEOUT

Mixed
D Q

rst

CE0
1 0

1

I_MUTEX_STATUS

I_SYSCALL_INPUT

I_SYSCALL_OUTPUT

AXI_MBUS

O_EVM_TRIGGER

O_LBUS_WR_CE

O_M00_TIMEOUT_TRIGGER

I_LBUS_RD_ACK

O_ADDRM_TRIGGER

I_LBUS_WR_ACK

M00_AXI_ARESETN

M00_AXI_ACLK

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

M00 Interface

M00_AXI

BURST INFO

M00_AXI_ARESETN

M00_AXI_ACLK

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

BURST INFO

Procedure Scheduler

Mixed
D Q

rst

CE0
1 0

1

I_PROCEDURE_ID

I_THIS_CALL

I_ENABLE_SCHED

I_RESCHED_REQ

I_VALID O_SCHED_PROGRESS

O_SCHED_SYSCALL_INPUT

O_SCHED_SYSCALL_OUTPUT

I_KFIFO_STATUS

I_EM_TIMEOUT

I_RETURN_RCVD

O_PROCEDURE_ID

M00_AXI_ARESETN

M00_AXI_ACLK

I_KERNEL_RESPONSE

I_SCHED_PROGRESSI_KERNEL_CALL

I_SCHED_SYSCALL_INPUT

O_ACTIVE_KERNEL_CALL

O_ACTIVE_KERNEL_RESPONSE

Procedure Runtime Manager

M00_AXI_ARESETN

M00_AXI_ACLK

CLK A

S01_AXI_ACLK

I_CS_A

I_ADDR_A [9:0]

I_DIN_A

I_WR_CE_A

Local RAM

O_RD_ACK_A

O_WR_ACK_A

O_DOUT_A

I_CS_B

I_ADDR_B [9:0]

I_DIN_B

I_WR_CE_B

O_RD_ACK_B

O_WR_ACK_B

O_DOUT_B

CLK B
M00_AXI_ACLK

I_M00_AXI_WREADY

I_M00_AXI_BVALID

I_KERNEL_CALL

O_SYSCALL_RETURN_ARG

O_INDEX

O_LBUS_RLAST

O_CS_B

O_LBUS_WLAST

System-Level Datapath

I_M00_AXI_AWVALID

I_LBUS_WR_ACK

I_LBUS_RD_ACK

O_ADDRM_READY

O_EVM_READY

O_EVENT_ELAPSED

O_M00_AXI_WLAST

O_M00_AXI_AWADDR

O_M00_AXI_WDATA

O_M00_AXI_ARADDR

O_M00_AXI_WR_BURST_LEN

O_M00_AXI_RD_BURST_LEN

O_MUTEX_CS
I_M00_TIMEOUT_TRIGGER

I_EVM_TRIGGER

I_UP_ADDR_TRIGGER

O_LBUS_DATA [31:0]

O_LBUS_ADDR [9:0]

M00_AXI_ARESETN

M00_AXI_ACLK

I_M00_AXI_RVALID

I_M00_AXI_WVALID

I_M00_AXI_RREADY

I_LRAM_DOUT

ROM-Based

ROM-Based

I_PAGE_RXDATA

I_PAGE_RD_CE

I_PAGE_SELECT

I_PAGE_ADDR

I_PAGE_WR_CE O_WORD_RD_CE

O_WORD_SELECT [0:3]
O_WORD_WR_CE

Page1 Decoder (w/LUT 5:32)

O_PAGE_TXDATA

O_PAGE_WR_ACK

O_PAGE_RD_ACK
I_WR_ACK_BUS [0:3]

O_TXWORD

I_RXWORD_P1 [0]

I_RD_ACK_BUS [0:3]

I_RXWORD_P1 [1]

I_RXWORD_P1 [2]

I_RXWORD_P1 [3]

I_CS [0:3]

I_WR_CE

D Q

reset
clk

"1facefff"
no_if_status_q

S00_KERNEL

M00_TASK

I_HWT_RESET

I_HWT_CLK

Control Unit

User Level
Datapath

M00_KERNEL

S00_TASK

Microkernel

System Mutex

O_LOCKED

O_RD_ACK_A

O_WR_ACK_A

O_WR_ACK_B

O_STATUS

O_RD_ACK_BI_DIN_B

I_DIN_A

I_WR_CE_A

I_CS_A

I_RD_CE_A

I_CS_B

I_WR_CE_B

I_RD_CE_B

M00_AXI_ARESETN

M00_AXI_ACLK

Local Mutex

O_LOCKED

O_RD_ACK_A

O_WR_ACK_A

O_WR_ACK_B

O_STATUS

O_RD_ACK_B

FSM

I_DIN_B

I_DIN_A

I_WR_CE_A

I_CS_A

I_RD_CE_A

I_CS_B

I_WR_CE_B

I_RD_CE_B

M00_AXI_ARESETN

M00_AXI_ACLK

I_MUTEX_RXDATA

I_MUTEX_RD_CE

I_MUTEX_SELECT

I_MUTEX_ADDR

I_MUTEX_WR_CE O_WORD_RD_CE

O_WORD_SELECT [1]

O_WORD_WR_CE

Mutex Decoder (w/LUT 2:4)

O_MUTEX_TXDATA

O_MUTEX_WR_ACK

O_MUTEX_RD_ACK I_RXWORD [1]

O_TXWORD

I_RXWORD [0]

I_WR_ACK_BUS [1]

I_WR_ACK_BUS [0]

I_RD_ACK_BUS [0]

I_RD_ACK_BUS [1]

O_WORD_SELECT [0]

O_WORD_SELECT [2:3]

I_RXWORD_P0 [3]

I_WR_ACK_BUS [2:3]

I_RD_ACK_BUS [2:3]

O_WORD_SELECT [4:5]

I_RXWORD_P0 [5]

I_WR_ACK_BUS [4:5]

I_RD_ACK_BUS [4:5]

O_MUTEX_ADDR

O_MUTEX_DATA
I_MUTEX_STATUS

O_TIMEOUT

O_INDEX_D1

0

1

syscall_input_d
CE

D Q

reset

FFDEB

clk

this_call

GDEB

Import Call

P0
this_call_safe

KERNEL_CALL

Export
Response

P1Import Syscall Input

P2

O_RETURN_RCVD

enable_sched

M0

0

1

M1

Export
Syscall

KERNEL_RESPONSE

P3

I_SYSCALL_VALID

I_LOCAL_WR_CE

I_SYSTEM_WR_CE

O_LRAM_LOCAL_WR_CE

O_LRAM_SYSTEM_WR_CE

LRAM WR/RD
Protection

LMUTEX_STATUS

M00_AXI_ACLK

M00_AXI_ARESETN

S00_AXI_ARESETN

S00_AXI_ACLK

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

O_TXDATA

O_ENABLE

O_WR_EVENT

O_RD_CE

I_RXDATA

O_ADDR [11:0]

O_CS_A

O_WR_CE

S00 Interface

I_RD_ACK

I_WR_ACK

O_TRIGGER

O_RD_EVENT

O_STANDBY

I_TIMEOUT

S01_AXI_ARESETN

S01_AXI_ACLK

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

O_WR_CE

O_ENABLE

O_WR_EVENT

O_RD_CE

O_CS_A

O_ADDR [11:0]

O_TX_DATA

I_RX_DATA

S01 Interface

I_RD_ACK

I_WR_ACK

O_TRIGGER

O_RD_EVENT

O_STANDBY

I_TIMEOUT

S00_AXI_ARESETN

CLK

I_S00_TRIGGER

I_S00_ENABLE

I_S00_WR_EVENT

I_S00_RD_EVENT

I_RD_CE

SLV IF Event Manager

I_S01_TRIGGER

I_S01_ENABLE

I_S01_WR_EVENT

I_S01_RD_EVENT

O_TIMEOUT

I_S00_STANDBY

I_S01_STANDBY

O_S00_STATUS

O_S01_STATUS

O_TIMEOUT_CNT

O_TIME_REMAINING

O_WR_ACK

O_RD_ACK

CLK A

S01_AXI_ACLK

I_CS_A

I_ADDR_A [9:0]

I_DIN_A

I_WR_CE_A

Local RAM

O_RD_ACK_A

O_WR_ACK_A

O_DOUT_A

I_CS_B

I_ADDR_B [9:0]

I_DIN_B

I_WR_CE_B

O_RD_ACK_B

O_WR_ACK_B

O_DOUT_B

CLK B
M00_AXI_ACLK

I_CS [0:3]

I_WR_CE

S00_AXI_ARESETN

S00_AXI_ACLK

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

O_TXDATA

O_ENABLE

O_WR_EVENT

O_RD_CE

I_RXDATA

O_ADDR [11:0]

O_CS_A

O_WR_CE

S00 Interface

I_RD_ACK

I_WR_ACK

O_TRIGGER

O_RD_EVENT

O_STANDBY

I_TIMEOUT

S01_AXI_ARESETN

S01_AXI_ACLK

WR RESPONSE

WR DATA

RD ADDRESS

WR ADDRESS

RD DATA

O_WR_CE

O_ENABLE

O_WR_EVENT

O_RD_CE

O_CS_A

O_ADDR [11:0]

O_TX_DATA

I_RX_DATA

S01 Interface

I_RD_ACK

I_WR_ACK

O_TRIGGER

O_RD_EVENT

O_STANDBY

I_TIMEOUT

S00_AXI_ARESETN

S00_AXI_ACLK

I_S00_TRIGGER

I_S00_ENABLE

I_S00_WR_EVENT

I_S00_RD_EVENT

I_RD_CE

SLV IF Event Manager

I_S01_TRIGGER

I_S01_ENABLE

I_S01_WR_EVENT

I_S01_RD_EVENT

O_TIMEOUT

I_S00_STANDBY

I_S01_STANDBY

O_S00_STATUS

O_S01_STATUS

O_TIMEOUT_CNT

O_TIME_REMAINING

O_WR_ACK

O_RD_ACK

CLK A

S01_AXI_ACLK

I_CS_A

I_ADDR_A [11:2]

I_DIN_A

I_WR_CE_A

Local RAM

O_RD_ACK_A

O_WR_ACK_A

O_DOUT_A

I_CS_B

I_ADDR_B [9:0]

I_DIN_B

I_WR_CE_B

O_RD_ACK_B

O_WR_ACK_B

O_DOUT_B

CLK B
M00_AXI_ACLK

I_CS [0:3]

I_WR_CE

IF Registers

O_SYSRAM_BASE_ADDR

O_WR_ACK

O_RD_ACK

O_KFIFO_BASE_OFFSET

O_SYSDATA_BASE_OFFSET

I_RXWORD

I_CS

I_WR_CE

I_RD_CE

M00_AXI_ARESETN

M00_AXI_CLK

O_LRAM_DEPTH

Microkernel
Registers

O_UKERNEL_CONTROL

O_UKERNEL_STATUS

I_RXWORD

I_CS

I_WR_CE

I_RD_CE

M00_AXI_ARESETN

M00_AXI_CLK

I_STATUS_SIG

O_WORD_SELECT [0:1]

O_WR_ACK

O_RD_ACK

I_RD_ACK_BUS [0:1]

I_WR_ACK_BUS [0:1]

I_RXWORD_P0 [0]

I_RXWORD_P0 [1]

LINTC

O_CONTROL

O_WR_ACK

O_RD_ACK

O_STATUS

O_IRQ_PINI_INTR_SRC

I_RXDATA

I_CS

I_WR_CE

I_RD_CE

M00_AXI_ARESETN

S00_AXI_CLK

O_WORD_SELECT [6:7]
I_RD_ACK_BUS [6:7]

I_WR_ACK_BUS [6:7]

I_RXWORD_P0 [6]

I_RXWORD_P0 [7]

FSM

FSM

Event Manager

Index Manager

Addr. Manager

I_SYSRAM_BASE_ADDR

I_KFIFO_BASE_OFFSET

HW-Task

BlackBox

IP

BlackBox

IP

BlackBox

IP

Control Unit
task_done

task_run task_reset

ctrl.run, ctrl.reset

Invalid Interface Register

Sequential
D Q

rst

CE

Sequential
D Q

rst

CE

Mixed
D Q

rst

CE0
1 0

1

Mixed
D Q

rst

CE0
1 0

1

FSM

Sequential
D Q

rst

CE

Fully Comb.
0
1 0

1

Fully Comb.
0
1 0

1

Fully Comb.
0
1 0

1

I_RXWORD_P1 [7]

I_RXWORD_P1 [6]
I_RXWORD_P1 [5]

I_RXWORD_P1 [4]

Mixed
D Q

rst

CE0
1 0

1

FSM

Mixed
D Q

rst

CE0
1 0

1

Logic

Mixed
D Q

rst

CE0
1 0

1

TDP RAM

Fully Comb.
0
1 0

1

I_M00_AXI_RDATA

I_LINTC_CONTROL_WORD

I_LINTC_STATUS_WORD
O_LINTC_INTR_SELECT

lintc_o_ctrl

lintc_o_status

sld_o_lintc_intr_select

O_IRQ_PIN

FSM

FSM

FSM

O_INTR_RAISE

to microprogram

I_INTR_RAISE

O_KILL_ACC

kill_acc
(from microprogram)

I_RXWORD_P1[4:7]

Figure B.10: (Native) Microkernel Internal Architecture Overview, back to fig. 4.1.1.

Appendix B. Auxiliary Resources 224

HW-TASKHardware Task µKernel
System-level

Datapath
Event Manager

Microprogram

response
{block_task}

wait_event_elapsed (

	 call, response,

	 event, timeout_flag,

	 remaining_time, timeout_value)

syscall_wait_event_timeout:

syscall_id 02

this_call '1'

syscall_input {

syscall_id,

this_call }

call {syscall_id, parameters},

syscall_output {valid}

syscall_output {

valid, block_task

syscall_id }

response
{valid}

response {return_arg}

syscall_output {valid}

connect (trigger)

load (timeout_val)

connect (event)

timeout_flag, time_remaining

ready, event_elapsed

flag_rise

flag_not_rise

(-- timeout_val) + 1

(-- timeout_val) + 2

(-- timeout_val) + N

response
{valid}

response {

valid, block_task,

index, index_delayed_1,
syscall_id, return_arg }

(procedure interface)

wait_event_elapsed (

	 call, response,

	 event, timeout_flag,

	 remaining_time, timeout_value)

(procedure interface)

wait_event_elapsed (

	 call, response,

	 event, timeout_flag,

	 remaining_time, timeout_value)

EM
SLD

MP

flag_rise

flag_not_rise

(-- timeout_val) + 1

(-- timeout_val) + 2

(-- timeout_val) + N
timeout_flag, time_remaining

EC

Figure B.11: User-Level Procedure – Wait Event Elapsed: Sequence Diagram, back to fig. 4.2.19.

Appendix B. Auxiliary Resources 225

both w/ data in_buffer[index]

HW-TASKHardware Task µKernel
System-level

Datapath
Index Manager

Microprogram
response

{block_task}

sysram_write_burst (

call, response,

in_buffer, burst_length, sysram_offset)

syscall_mbus_write(_burst):

syscall_id 13/15

this_call '1'

call {syscall_id, parameters,
enable_index, inc_index},

syscall_output {valid}

response
{valid}

response {return_arg}

connect (inc_index_trigger,

rcv_data_ready)

connect (enable_index)

trigger

trigger

response
{valid}

response {

valid, block_task,

index, index_delayed_1,
syscall_id, return_arg }

Index Counter

syscall_input {

syscall_id,

this_call }

connect (inc_index) load (index_zero)

connect (burst_len)

syscall_output {valid}

mbus_word_write_burst (call, response,

burst_length, sysram_offset, data) if (burst_len 1)

syscall_output {

valid, block_task

syscall_id }

Increment Index
connect (burst_done)

burst_done

burst_done

First Index

Nth Index-1 (N = burst_len)

(burst_length)

index, index_d1

(1st level procedure interface)

sysram_write_burst (

call, response,

in_buffer, burst_length, sysram_offset)

(1st level procedure interface)

mbus_word_write (call, response,

sysram_offset, data) if (burst_len = 1)

(2nd level procedure interface)

enable_index '1'
inc_index '1'	 	
(2nd level procedure interface)

Second Index

alt

calls procedure

Master Bus

Master AXI Transaction

IM
IC

SLD

MP

write_data

connect (mbus_wlast)

Event Manager

flag_rise

flag_not_rise

(-- timeout_val) + 1

(-- timeout_val) + 2

(-- timeout_val) + N

flag_rise

flag_not_rise

(-- timeout_val) + 1

(-- timeout_val) + 2

(-- timeout_val) + N

EC

timeout_flag,

 time_remaining

m00_timeout_trigger

timeout_flag

(wait on m_axi_bvalid
w/ timeout)

EM

Figure B.12: User-Level Procedure – Unsafe SYSRAM Write Burst: Sequence Diagram (Simplified), back to fig. 4.2.21.

Appendix B. Auxiliary Resources 226

both w/ out_buffer[index] data

HW-TASKHardware Task µKernel
System-level

Datapath
Index Manager

Microprogramresponse
{block_task}

sysram_read_burst (

call, response,

out_buffer, burst_length, sysram_offset)

syscall_mbus_read(_burst):

syscall_id 12/14

this_call '1'

call {syscall_id, parameters,
enable_index, inc_index},

syscall_output {valid}

response
{valid}

response {return_arg}

connect (inc_index_trigger,

rcv_data_ready)

connect (enable_index)

trigger

trigger

response
{valid}

response {

valid, block_task,

index, index_delayed_1,
syscall_id, return_arg }

syscall_input {

syscall_id,

this_call }

connect (inc_index)
load (index_zero)

connect (burst_len)

syscall_output {valid}

mbus_word_read_burst (call, response,

burst_length, sysram_offset, data) if (burst_len 1)

syscall_output {

valid, block_task

syscall_id }

Increment Index
(burst_length, read_data) index, index_d1

(1st level procedure interface)

sysram_read_burst (

call, response,

out_buffer, burst_length, sysram_offset)

(1st level procedure interface)

mbus_word_read (call, response,

sysram_offset, data) if (burst_len = 1)

(2nd level procedure interface)

enable_index '1'
inc_index '1'	 	
(2nd level procedure interface)

alt

calls procedure

Master Bus

Master AXI Transaction

read_data

IC
SLD

MP
IM

Figure B.13: User-Level Procedure – Unsafe SYSRAM Read Burst: Sequence Diagram (Simplified), back to fig. 4.2.21.

Appendix B. Auxiliary Resources 227

both w/ data in_buffer[index]

HW-TASKHardware Task µKernel
System-level

Datapath
Index Manager

Microprogram
response

{block_task}

lram_write_burst (

call, response,

in_buffer, burst_length, lram_offset)

syscall_lbus_write(_burst):

syscall_id 06/08

this_call '1'

call {syscall_id, parameters,
enable_index, inc_index},

syscall_output {valid}

response
{valid}

response {return_arg}

connect (lbus_inc_index_trigger)

connect (enable_index)

trigger

trigger

response
{valid}

response {

valid, block_task,

index, index_delayed_1,
syscall_id, return_arg }

Index Counter

syscall_input {

syscall_id,

this_call }

connect (inc_index)

load (index_zero)

connect (burst_len)

syscall_output {valid}

lbus_word_write_burst (call, response,

burst_length, lram_offset, data) if (burst_len 1)

syscall_output {

valid, block_task

syscall_id }

Increment Index
connect (burst_done)

burst_done

burst_done

First Index

Nth Index-1 (N = burst_len)

(burst_length)

index, index_d1

(1st level procedure interface)

lram_write_burst (

call, response,

in_buffer, burst_length, lram_offset)

(1st level procedure interface)

lbus_word_write (call, response,

sysram_offset, data) if (burst_len = 1)

(2nd level procedure interface)

enable_index '1'
inc_index '1'	 	
(2nd level procedure interface)

Second Index

alt

calls procedure

Local RAM

IC
SLD

MP

connect (lbus_wlast)

LR

connect (address_b, write_data_b,
chip_select_b, write_enable_b)

connect (write_clock_enable_b)

connect (write_ack_b)

Address Manager

trigger

trigger

load (target_address)

Increment Address

AC

connect (burst_done)

index

Address Counter

burst_done

burst_done

First Address

Nth Address-1 (N = burst_len)

Second Address

addressaddress

addr_manager_ready

AM

IM

Figure B.14: User-Level Procedure – Unsafe LRAM Write Burst: Sequence Diagram (In-Depth), back to fig. 4.2.23.

Appendix B. Auxiliary Resources 228

both w/ data out_buffer[index_delayed_1]

HW-TASKHardware Task µKernel
System-level

Datapath
Index Manager

Microprogram
response

{block_task}

lram_read_burst (

call, response,

out_buffer, burst_length, lram_offset)

syscall_lbus_read(_burst):

syscall_id 05/07

this_call '1'

call {syscall_id, parameters,
enable_index, inc_index},

syscall_output {valid}

response
{valid}

response {return_arg}

connect (lbus_inc_index_trigger)

connect (enable_index)

trigger

trigger

response
{valid}

response {

valid, block_task,

index, index_delayed_1,
syscall_id, return_arg }

Index Counter

syscall_input {

syscall_id,

this_call }

connect (inc_index)

load (index_zero)

connect (burst_len)

syscall_output {valid}

lbus_word_read_burst (call, response,

burst_length, lram_offset, data) if (burst_len 1)

syscall_output {

valid, block_task

syscall_id }

Increment Indexconnect (burst_done)

burst_done

burst_done

First Index

Nth Index-1 (N = burst_len)

(burst_length, read_data)

index, index_d1

(1st level procedure interface)

lram_read_burst (

call, response,

in_buffer, burst_length, lram_offset)

(1st level procedure interface)

lbus_word_read (call, response,

sysram_offset, data) if (burst_len = 1)

(2nd level procedure interface)

enable_index '1'
inc_index '1'	 	
(2nd level procedure interface)

Second Index

alt

calls procedure

Local RAM

AM
IC

SLD

MP

connect (lbus_rlast)

LR

connect (address_b, chip_select_b,
 write_enable_b)

connect (write_clock_enable_b)

connect (read_ack_b)

Address Manager

trigger

trigger

load (target_address)

Increment Address

AC

connect (burst_done)

index

Address Counter

burst_done

burst_done

First Address

Nth Address-1 (N = burst_len)

Second Address

addressaddress

addr_manager_ready

connect (read_data_b)

IM

Figure B.15: User-Level Procedure – Unsafe LRAM Read Burst: Sequence Diagram (In-Depth), back to fig. 4.2.23.

	Agradecimentos
	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	Acronyms
	Introduction
	Motivation
	Research Goals
	Dissertation Structure

	Context and State of the Art
	Reconfigurable Computing
	FPGA Technology
	Evolution
	Granularity
	Reconfiguration

	Adaptability in Hybrid Operating Systems
	Note on Lockstep

	Hybrid Programming Models
	Real-time Concerns
	Traditional Hardware Acceleration
	RTOS-Based Models
	Hthreads
	ReconOS V1 and V2
	Additional Research Cases

	Linux-Based Models
	ReconOS V2
	ReconOS V3
	BORPH
	SPREAD
	Additional Research Cases

	Microcode Fundamentals
	Control Unit Design
	Hardwired Approach
	Microprogrammed/Microcode Approach

	Related Works
	Microcode-Level Customization and Security
	Additional Research Cases

	Discussion

	Background
	HAL-ASOS
	Design Methodology
	Accelerator Model
	Hardware Kernel
	Hardware Task
	Improvement Analysis

	KIVIO

	Supporting Microkernel
	Architecture Overview
	Microkernel Core
	Control Registers
	Control Unit
	Microcoded System Calls
	Native Microprogram
	System-Level Datapath
	Event Manager
	Index Manager
	Address Manager

	Hardware Task
	Resource Management
	Slave Decoder
	Page Decoder
	Mutex Decoder

	Hardware Resources
	Hardware Mutex
	Local Interrupt Controller
	Local Memory
	Slave Interface Event Manager
	Interface Configuration Registers

	External Interfaces
	AXI Lite Interface
	Optimized Control Unit and Associated Dapapath

	BFM Verification
	Limitations

	S00 Control Interface
	S01 Data Interface
	M00 System Interface

	Architecture Extensions
	KIVIO-Extended Features
	Procedure Scheduling
	BFM Verification and Extended Features

	Scalability and Execution Modes
	Runtime Management

	Diversity-Driven Hardware Task
	Microcode Storage Model Migration
	Host System Access
	Error Handling and Update Mechanism

	Experimental Results
	Accelerator Model Resource Utilization
	Stand-Alone Kernel Single-Task
	Dual-Kernel Dual-Task

	Microprogram Fault Injection

	Conclusion
	Future Works

	References
	Book Sources
	Proceedings Sources
	Article Sources
	Academic Sources
	Other Sources

	Source Listings
	Auxiliary Resources

