
Universidade do Minho
Escola de Engenharia

Pedro Daniel Ferreira Duarte

Implementation of microservices and
network management for Cyber-Physical
Systems

Fevereiro, 2023

Universidade do Minho
Escola de Engenharia

Pedro Daniel Ferreira Duarte

Implementation of microservices and
network management for Cyber-Physical
Systems

Dissertação de Mestrado

Mestrado em Engenharia Eletrónica Industrial e Computadores

Sistemas Embebidos e Computadores

Trabalho efetuado sob a orientação do

Doutor Duarte Manuel Azevedo Fernandes

Fevereiro, 2023

ii

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and

good practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositóriUM of Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

Acknowledgements

First of all, I would like to thank my advisor, Dr. Duarte Fernandes, for his availability in guiding this

dissertation and for all the support he provided throughout its development. I would also like to thank the

staff at DTx, especially Sofia Paiva and Rui Machado, for accompanying me through the various stages

of this project and always being available to help me. To Professor Jorge Cabral, I thank him for the

opportunity to carry out this project in his group and for the knowledge he imparted throughout the years

of the course.

To my parents, for all their concern, patience, and investment in me, a huge thank you. Without you,

this journey would not have been possible.

Not forgetting those who were part of my daily life during these years, to my friends and members

of the infamous Mosca da Fruta group, I thank you for all the moments we spent together. These were

challenging years, but by your side, they provided many joys. My heartfelt thanks to all.

Finally, to all who directly or indirectly contributed to my academic journey, my sincere thanks.

Project ”(Link4S)ustainability - A new generation connectivity system for creation and integration of

networks of objects for new sustainability paradigms [POCI-01-0247-FEDER-046122 | LISBOA-01-0247-

FEDER-046122]”is financed by the Operational Competitiveness and Internationalization Programmes

COMPETE 2020 and LISBOA 2020 under the PORTUGAL 2020 Partnership Agreement, and through

the European Structural and Investment Funds in the FEDER component.

iii

iv

DECLARAÇÃO DE INTEGRIDADE

Declaro ter atuado com integridade na elaboração do presente trabalho académico e confirmo que não

recorri à prática de plágio nem a qualquer forma de utilização indevida ou falsificação de informações ou

resultados em nenhuma das etapas conducente à sua elaboração.

Mais declaro que conheço e que respeitei o Código de Conduta Ética da Universidade do Minho.

Abstract

Implementation of microservices and network management for

Cyber-Physical Systems

The Internet of Things (IoT) ecosystem is made up of a large number of devices and sensors that

capture and collect massive amounts of data before sending it to the cloud for analysis. Traditionally,

server-side software development has taken a monolithic approach, in which the application is a single

executable. However, the microservices architecture provides an alternative that can be applied to the IoT

environment.

This dissertation aims to continue the development of the microservices-based cloud architecture

developed as part of the Link4S project, which seeks to create a new generation of connected devices and

their platforms. The development involved the integration of the cloud with a Connectivity Management

Platform (CMP) and the creation of a fully integrated platform for device management and data analysis.

In the context of this dissertation, new microservices were created to integrate with CMP architecture

components and provide application support, as well as a data visualization and device management

platform in the form of a Dashboard built with the Dash framework. Furthermore, the development of REST

APIs for retrieving and manipulating device data opens the door for other applications to be developed for

a variety of purposes. Before being successfully deployed to a production server, the architecture was also

tested and validated.

This dissertation concludes with a cloud architecture that is more autonomous, secure, and reconfig-

urable during runtime via CLI commands. It also highlights the importance of microservices architecture

in the IoT ecosystem and shows how the CMP architecture can serve as the foundation for future IoT cloud

architectures.

Keywords: cloud, CMP, Dash, dashboard, IoT, microservices, REST API

v

Resumo

Implementation of microservices and network management for

Cyber-Physical Systems

O ecossistema da Internet das Coisas (IoT em inglês) consiste num vasto número de dispositivos

e sensores que captam e recolhem enormes quantidades de dados, que são depois enviados para a

cloud para análise. Tradicionalmente, o desenvolvimento de software do lado do servidor tem adotado

uma abordagem monolítica, na qual a aplicação é um único executável. No entanto, a arquitetura dos

microserviços fornece uma alternativa que pode ser aplicada ao ecossistema IoT.

Esta dissertação visa continuar o desenvolvimento da arquitetura de cloud baseada emmicrosserviços

criada no âmbito do projeto Link4S, que procura criar uma nova geração de dispositivos ligados e as

suas plataformas. O desenvolvimento envolveu a integração da cloud com uma Plataforma de Gestão da

Conectividade (CMP em inglês) e a criação de uma plataforma totalmente integrada para a gestão de

dispositivos e análise de dados.

No contexto desta dissertação, foram criados novos microsserviços para se integrarem os componen-

tes da arquitetura CMP e fornecerem suporte às aplicações, bem como uma plataforma de visualização

de dados e gestão de dispositivos sob a forma de um dashboard utilizando a framework Dash. Além disso,

o desenvolvimento de REST API para a aquisição e manipulação de dados de dispositivos abre a porta

para outras aplicações serem desenvolvidas para uma variedade de fins. Antes de ser implementada com

sucesso num servidor de produção, a arquitetura foi também testada e validada.

Esta dissertação conclui com uma arquitetura da cloud que é mais autónoma, segura e reconfigurá-

vel através de uma interface de linha de comandos em tempo real. Também destaca a importância da

arquitetura de microsserviços no ecossistema IoT e demonstra como a arquitetura CMP pode servir de

referência para futuras arquiteturas IoT na cloud.

Palavras-chave: cloud, CMP, Dash, dashboard, IoT, microsserviços, REST API

vi

Contents

List of Figures x

List of Tables xiii

Listings xiv

Acronyms xv

1 Introduction 1

1.1 Contextualization and Motivation . 1

1.2 Goals . 3

1.3 Methodology and Methods . 3

1.4 Dissertation Structure . 5

2 Background and State of the Art 6

2.1 Microservices . 6

2.1.1 Microservices architecture . 6

2.1.2 Microservices deployment . 20

2.2 Dashboard . 25

2.2.1 Good design practices . 25

2.2.2 Dashboard types . 27

2.2.3 Frameworks for dashboard development 30

2.3 Summary . 33

3 System Specification & Design 37

3.1 Functional and non-functional requirements . 37

vii

CONTENTS

3.1.1 Functional requirements . 37

3.1.2 Non-functional requirements . 38

3.2 Architecture overview . 39

3.3 Use cases . 42

3.4 Microservices . 42

3.4.1 Data parsing . 44

3.4.2 Data processing . 46

3.4.3 Devices . 49

3.4.4 Users . 51

3.5 Database . 53

3.5.1 Data . 53

3.5.2 Application . 54

3.6 Dashboard . 57

3.6.1 Functional and visual features . 57

3.6.2 Framework choice . 58

3.6.3 Architecture overview . 59

3.6.4 Design prototype . 60

3.6.5 Real-time updates . 66

3.6.6 Time series cache . 67

4 Implementation 71

4.1 Programming languages and tools . 71

4.2 Microservices . 72

4.2.1 Data parsing . 72

4.2.2 Data processing . 74

4.2.3 Devices . 75

4.2.4 Users . 78

4.3 Dashboard . 79

4.3.1 Initialization, routing and layout . 79

4.3.2 Pages . 81

4.3.3 Real-time updates . 93

4.3.4 Time series cache . 94

viii

CONTENTS

5 Results 96

5.1 Login . 96

5.2 Overview . 97

5.3 Metrics . 98

5.4 Specifications . 100

5.5 Sensors . 102

6 Conclusion 105

6.1 Future work . 107

Bibliography 108

ix

List of Figures

1 System architecture overview . 3

2 Monolith vs. Microservices CI/CD pipeline . 8

3 The different types of coupling, from loose to tight . 10

4 Collaboration styles and common implementation choices for synchronous and asynchronous

inter-microservice communication . 15

5 Remote Procedure Call flow . 16

6 High-level overview of gRPC . 17

7 REST API model . 18

8 Overview of a Kafka cluster with three brokers . 20

9 Comparison between the stack of virtual machines (type 1 hypervisor) and containers . . . 21

10 High-level overview of Docker architecture . 23

11 Overview of a Kubernetes cluster . 24

12 Taxonomy of dashboard characteristics . 28

13 Ubidots dashboard example . 33

14 Node-RED dashboard example . 33

15 Grafana dashboard example . 33

16 Thingsboard dashboard example . 33

17 Dash dashboard example . 33

18 Architecture overview . 40

19 Blackwing message format . 41

20 Device use cases . 42

21 Device Ecosystem use cases . 43

22 Applications use cases . 43

x

LIST OF FIGURES

23 Generic parsing microservice flowchart . 44

24 Cloud payload datagram with example . 45

25 Process command flowchart . 47

26 Command listener flowchart . 48

27 Data listener flowchart . 51

28 Data segment database collections . 55

29 Application segment database collections . 56

30 Dash framework components . 58

31 Dashboard MVC diagram . 60

32 Dashboard user flow . 61

33 Dashboard color palette . 61

34 Login page design prototype . 62

35 Overview page design prototype . 63

36 Metrics page design prototype . 64

37 Sensors page design prototype . 65

38 Specifications page design prototype . 66

39 MongoDB replica set diagram . 67

40 Change Streams flowchart . 68

41 Time series cache buckets diagram . 69

42 Time series cache flowchart . 70

43 Login page implementation . 82

44 Overview page implementation . 83

45 Overview page general status hover . 84

46 Overview page device location pin . 85

47 Overview page notification . 85

48 Metrics page implementation . 87

49 Metrics page settings menu . 88

50 Metrics page configuration . 88

51 Sensors page implementation . 90

52 Sensors page configuration . 90

53 Specifications page implementation . 92

xi

LIST OF FIGURES

54 Dashboard login page test . 97

55 Users microservices authentication request logs . 97

56 Dashboard overview page . 97

57 Dashboard emergency notification details . 98

58 Dashboard device location section . 98

59 Dashboard fetch sensor data logs . 99

60 Devices microservice metrics request logs . 99

61 Dashboard metrics page . 99

62 Dashboard metrics exported Excel spreadsheet . 100

63 Dashboard specifications set alarm . 100

64 Process Data microservice alarm command logs . 101

65 Database alarm commands . 101

66 Dashboard notifications section . 101

67 Dashboard command notification . 102

68 Dashboard configuration notification . 102

69 Dashboard change streams logs . 102

70 Dashboard sensors page parameters update . 103

71 Process Data microservice sensor variable command logs 103

72 Dashboard change streams logs . 103

73 Dashboard change streams logs . 104

xii

List of Tables

1 Comparison between Monolith architecture and Microservices architecture 8

2 Comparison between Microservices and IoT/CPS features 9

3 Comparison between containers and virtual machines 21

4 Guidelines for presentation formats and dashboards 26

5 Design choices of the different types of dashboards 29

6 Analysis of dashboard examples according to design choices 32

7 Comparison of common dashboard platforms available on the market 35

8 Analysis of dashboard examples according to guidelines 36

9 Process Data microservice API specification . 46

10 Devices microservice API specification (GET methods) 49

11 Devices microservice API specification (POST methods) 50

12 Users microservice API specification . 52

xiii

Listings

1 Process data microservice API creation . 72

2 Blackwing parsing microservice handler . 73

3 Parsing microservice API post method . 73

4 Process data microservice API methods . 74

5 Process data microservice command listener . 75

6 Devices microservice API endpoints . 76

7 Devices microservice listeners . 77

8 Users microservice authentication endpoint . 78

9 Dashboard initialization . 79

10 Dashboard layout and routing . 80

11 Dashboard sidebar and page content . 80

12 Dashboard User class and login callback . 81

13 Dashboard device data callback . 83

14 Dashboard device location callback . 84

15 Dashboard notifications callback . 86

16 Dashboard metrics plot generation . 89

17 Dashboard sensor variables callback . 91

18 Dashboard specifications apply callback . 92

19 Dashboard change streams handler . 93

20 Dashboard change streams main . 94

21 Dashboard WeeklyBucket class . 94

22 Dashboard SamplesFetcher class . 95

xiv

Acronyms

AKS Azure Kubernetes Service

API Application Programming Interface

AWS Amazon Web Services

CD Continuous Delivery

CI Continuous Integration

CLI Command Line Interface

CMP Connectivity Management Platform

CoAP Constrained Application Protocol

CPS Cyber-Physical Systems

CPU Central Processing Unit

CRUD Create, Read, Update and Delete

DDD Domain-Driven Design

DWPS Devices Profile for Web Services

EKS Elastic Kubernetes Service

ESB Enterprise Service Bus

FaaS Function as a Service

FOTA Firmware Over The Air

xv

ACRONYMS

GKE Google Kubernetes Engine

gRPC Google Remote Procedure Call

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IoT Internet of Things

IoT-mP Internet of m-Health Things Platform

JSON JavaScript Object Notation

K8s Kubernetes

Link4S (Link4S)ustainability

LTE Long Term Evolution

LXC Linux Containers

MQTT Message Queuing Telemetry Transport

MSA Microservices Architecture

MVC Model View Controller

NB-IoT Narrowband Internet of Things

OS Operating System

PHP Hypertext Preprocessor

REST Representational State Transfer

RPC Remote Procedure Call

RSRP Reference Signal Received Power

RSRQ Reference Signal Received Quality

RSSI Received Signal Strength Indicator

xvi

ACRONYMS

RTOS Real Time Operating System

SOA Service Oriented Architecture

SQL Structured Query Language

TAC Tracking Area Code

TAU Tracking Area Update

TTL Time To Live

UFS Union File System

URI Uniform Resource Identifier

VM Virtual Machine

WSGI Web Server Gateway Interface

xvii

C
h
a
p
te

r

1
Introduction

This chapter presents the contextualization, motivation, and objectives of the dissertation. First, the contex-

tualization provides an overview of the body of the dissertation. The motive for doing a study on this specific

topic is presented next, followed by the study’s objectives, research methods, and document structure.

1.1 Contextualization and Motivation

The IoT environment consists of a vast number of devices and sensors that enable the capture and col-

lection of massive volumes of data, which are then sent to the cloud for analysis. Traditionally, server-side

software is developed using a monolithic approach, in which the application consists of a single executable.

However, there is now an alternative based on microservices approach. When applied in this context, the

microservices approach enables ”the development of modular and extensible architectures, resulting in

significant gains in terms of performance, dynamism, and resilience” [1] as the monolith is broken down

into smaller services. Multiple studies have demonstrated that microservices and IoT services are highly

compatible [2]–[4], thanks to the massive investments made by companies, the industrial state of practice

on microservices is rapidly evolving and has already reached a certain level of maturity [5].

Although it is beyond the scope of this dissertation, a common method for deploying microservices

in the cloud is to use lightweight containers, such as Docker containers, which allow microservices to

be packaged as isolated and independent units that can then be inserted into a container management

platform, such as Kubernetes [6].

1

CHAPTER 1. INTRODUCTION

The end-devices that communicate with the cloud are monitoring systems with multiple sensors. Each

device is responsible for reading sensor values and sending them to the cloud at predetermined intervals.

They also communicate with the cloud when values exceed a predetermined threshold, indicating an

emergency. The majority of the time, these extremely low-power devices are in a sleep state in an effort to

achieve a lengthy battery life.

This dissertation’ content was developed in the context of a project in CPS domain, called

(LINK4S)ustainability of the Link4S consortium which aims to generate new scientific knowledge regarding

the design, development, and testing of a new generation of connectivity devices and their associated

platforms (communication and software) with the goal of integrating networks of objects in the context of

mobility and energy [7].

In the Masters’s thesis titled “Robust Software Services for IoT Embedded Systems” [8] developed in

the context of the Link4S project, the purpose was to improve the software stack of the bare-metal em-

bedded devices and enable them for secure communication with the cloud. This meant adding features

such as Firmware Over The Air (FOTA) and the ability to change the parameters on the devices through

commands received from the cloud. Using a microservices architecture, the cloud implementation is re-

sponsible for controlling and receiving data from the devices.

The top-level architecture overview is shown in Figure 1. It is composed of three layers: the device,

the network infrastructure and the cloud platform. The device is an ultra-low-power monitoring system

with a typical IoT architecture. It spends the majority of its life in a dormant state, awakening only to

measure environmental variables using multiple sensors or to signal an anomaly. It uses an Narrow Band

Internet of Things (NB-IoT) transceiver to communicate with the cloud, and a microcontroller as the system

brain. The network is provided by the project’s main sponsor, NOS Comunicações [9], and utilizes NB-IoT

technology by implementing a subset of the Long Term Evolution (LTE) standard in its mobile antennas,

allowing devices to be deployed in areas with antenna coverage. The cloud is composed of the server and

microservices; it receives data from devices, parses the data, and stores it in a database.

One of the main objectives of the Link4S project is to integrate all devices and applications in a Con-

nectivity Management Platform (CMP), that was also used to build an Internet of m-Health Things Platform

(IoT-mP) in [10]. This is a generic platform that is responsible for the unification of the IoT services between

IoT hardware (e.g., NB-IoT connected devices, such as patient monitoring, hospital records, etc.) and IoT

applications (e.g., hospital billings, emerging messages, emerging transportation, health software, etc.).

Additionally, a new IoT application in the form of a dashboard will be developed to provide a way to

2

CHAPTER 1. INTRODUCTION

Device Network Cloud

Link4S Boards

NOS Network

Server

Microservices

Figure 1: System architecture overview

view and manage the devices and data they generate. This new application will enable users to perform

functionalities that previously required the use of complex Python scripts, such as sending commands

to devices to change parameters and easily extracting structured sensor data with a single click. The

dashboard will facilitate the end-users’ access to and utilization of the data generated by the devices,

making it more accessible and efficient.

1.2 Goals

The goals of this dissertation are to empower the Link4S prototype with additional functionalities such as

control of IoT devices previously done on the cloud platform, and to develop microservices that will allow the

cloud to conform to the CMP [10] architecture. This architecture effectively decouples the applications from

the ecosystems that produce the data, by splitting the architecture into segments whose only cconnection

is the core of CMP, known as the Mediator. This enables applications to consume data from multiple

sources by simply modifying the Mediator’s configuration, without the need for additional development.

Additionally, the goal is to design and implement microservices to support additional cloud features,

such as the Dashboard application for data visualization and device management. The final goal is to test

and validate the final cloud architecture, including validation with project partners, and to deploy the cloud

architecture on a server that is production-ready.

1.3 Methodology and Methods

To achieve the goals above, the following methodology and methods will be used:

• Literature review - The first step will be to conduct a literature review on microservices architecture

and the current state of dashboard development. This will involve studying relevant research articles

3

CHAPTER 1. INTRODUCTION

and other sources to gain an understanding of the state of the art in these areas. The review will

focus on topics such as the benefits and challenges of microservices architecture, best practices

for designing and implementing microservices, and the latest trends and innovations in dashboard

development.

• Review of the current cloud architecture and CMP architecture - The current cloud architecture and

the CMP architecture will be reviewed in order to identify potential improvements and to gain a

better understanding of the implemented features. This will involve examining the existing cloud

architecture and identifying any areas that could be optimized or enhanced as part of the restruc-

turing process. The review will also involve understanding the features and requirements of the CMP

architecture to ensure that the restructured cloud architecture is compatible with it.

• Design and implementation of microservices - Based on the findings of the literature review, and

the reviews above, the following microservices will be implemented:

– Microservices to conform with the CMP architecture - This will require implementing the com-

ponents of the CMP architecture in advance using the available Command Line Interface

(CLI). The Mediator component implementation will not be included because it falls outside

the scope of this dissertation. The microservices will utilize the available interfaces to send

and receive data between the various components. It will be necessary to understand the

communication protocols and data formats used by the CMP architecture and to implement

the necessary code to facilitate communication between the components.

– Microservices to support additional cloud architecture features - These microservices will

provide APIs that the dashboard can use to interact with device data, user data, and to send

commands to control devices. It is possible that some of these microservices will also be

responsible for enabling the restructuring of the cloud according to the CMP architecture.

• Development of the dashboard application - Once the microservices have been implemented, the

next step will be to develop the dashboard application. This will involve designing and building an

interface that allows users to interact with the devices and view data from the sensors. The appli-

cation will also include features for analyzing and interpreting the sensor data, such as graphical

displays.

4

CHAPTER 1. INTRODUCTION

• Testing and validation - Before the updated cloud architecture is deployed, it will be thoroughly tested

to ensure that it is stable and reliable. This will involve conducting a series of tests to ensure that

all the components are working correctly and that the system as a whole meets the requirements.

• Deployment - Once the testing and validation is complete, the final cloud architecture will be de-

ployed on a server that is production-ready. This will involve installing the necessary software and

configuring the server to support the cloud and devices.

1.4 Dissertation Structure

This dissertation will consist of six chapters. The first chapter is dedicated to the introduction of the project,

its goals and objectives, and the dissertation’s position within the project.

After the introductory chapter, a research on the state of the art for some of the topics involved in the

implementation is presented, first covering the literature on the microservices architecture, why it is con-

sidered a viable alternative to the monolithic architecture, and how to design and implement microservices,

and then delving deeper into the best practices for dashboard design and determining which technologies

are best suited to achieve its objectives, laying the groundwork for the dashboard.

The third chapter contains the system specification and design, which begins with a review of the cloud

architecture as a whole, its systems, and their interactions. Then, each system in the cloud architecture will

be discussed in greater depth. In this chapter, there are three main topics: the Microservices that process

the device data and provide support to other cloud-based systems, the Database that stores all device and

end-user data, and the Dashboard that serves as the user interface.

The fourth chapter describes in depth how all the cloud-based systems designed in the previous chapter

are implemented and deployed on a production server.

The tests conducted to ensure that all systems are operating as intended and that all objectives have

been met are detailed in the next chapter.

The final chapter concludes the dissertation, summarizes the developed work, and provides recom-

mendations for potential future improvements.

5

C
h
a
p
te

r

2
Background and State of the Art

This chapter addresses the literature review on the two main topics of this dissertation: microservices

and dashboard design. The section on microservices covers the main concepts and provides a compre-

hensive understanding of microservices architecture, from its origins to the most recent implementations

based on containerization technologies. The section on dashboard design discusses best practices and

key considerations for designing effective dashboard platforms.

Multiple publications were collected and analyzed to determine the most recent advancements in

the above-mentioned research fields. This research provides the foundation for the cloud’s architecture

development.

2.1 Microservices

2.1.1 Microservices architecture

The development of server-side applications consists on the design and creation of single executable

artifacts, also called monoliths, whose modularisation abstractions rely on the sharing of resources of the

same machine (memory, databases, files). The monoliths, usually developed in languages like C/C++,

Java, and Python are not independently executable, since their modules depend on shared resources [11].

The inability to break down the complexity of monoliths into independent modules presented several

problems, as presented in [11]. Some of the most crucial being:

6

CHAPTER 2. BACKGROUND AND STATE OF THE ART

1. difficult to maintain and evolve due to complexity (large code base);

2. dependency issues due to libraries incompatibilities, resulting in systems that don’t compile/run or

misbehave;

3. updates, even small ones, significantly increase downtime due to rebooting the whole application;

4. limited scalability. The allocation of new resources has to go towards the whole application and not

the modules whose traffic justifies more resources since modules are not independent;

5. technology lock-in for developers. The application requires the use of the same languages and

frameworks over time.

Some of the issues presented above such as maintainability and the update of systems have been

mitigated using different Service Oriented Architecture (SOA) approaches, where an application is divided

into a set of business applications offering services to others through different protocols. SOA implemen-

tations appeared to be the solution for many companies, but the scaling of SOA became an issue due to

the usage of communication systems like Enterprise Service Bus (ESB) [12] that weren’t designed for the

cloud [13].

The microservices architectural style (MSA) emerged in 2014 as a way to avoid the problems of mono-

lithic applications while taking advantage of the best aspects of the SOA architecture. It was initially defined

as an approach to develop an application as a set of small services, each with a single and clearly de-

fined purpose, and running in its process and communicating over lightweight mechanisms, such as an

Hypertext Transfer Protocol (HTTP) based API or Remote Procedure Call (RPC) [14].

The decomposition of applications into smaller independent services allows each service to be devel-

oped, deployed and operated by different development teams using different technology stacks [15]. This

gives the ability for teams to set their own rhythm of development, meaning that features from a certain

team can be released and go into production whenever they are ready, instead of having to wait for the

others to be ready for release, as illustrated in Figure 2.

The comparison of microservices vs. monolithic architecture has been condensed into the categories

shown in Table 1. Although MSA is the most convenient option in most of the categories, there are still

drawbacks in the Communication and Integration categories when compared to the monolithic approach.

The usage of mechanisms such as HTTP introduces overhead that can present a problem towards IoT

devices, which are in many cases resource and time-constrained [16].

7

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Team A

Team B

Team C

Release

Candidate Production

Team A Release Production

Team B Release Production

Team C Release Production

Monolithic Architecture Microservices Architecture

Figure 2: Monolith vs. Microservices CI/CD pipeline

Table 1: Comparison between Monolith architecture and Microservices architecture [17]

Category Monolith architecture Microservices architecture

Development hard to develop due to large code base,
while restricted to the languages and
frameworks already in use

each microservice implements a
simple task; different microservices
can use different languages or
frameworks

Scalability scaling requires replicating the whole
system

the smaller sized instances of
microservices are easily scalable

Maintenance hard to maintain and upgrade due to
single source code

easy to maintain and upgrade due to
small code size

Independence modules share resources, and thus are
not independent

modules should be completely
independent

Deployment all at once services can be deployed
independently

Size large code base services are fine-grained, i.e. small

Communication in-memory lightweight mechanisms (HTTP, RPC)

Integration challenging due to a large number of
independent modules

straightforward, since modules are
placed together

2.1.1.1 Microservices in the Internet of Things

The IoT architecture is comparable to MSA in that both are modular and capable of constructing appli-

cations that unify a large number of services. Due to the restricted nature of IoT devices, the service

oriented architecture that inspired microservices architecture is already actively employed for many CPS

implementations, with its solutions focusing on RPC and Representational State Transfer (REST) lighter

versions.

The main obstacle for MSA adoption in the IoT space is the fact that they come from different directions

and have conceptual differences. Microservices arose from the necessity of breaking large monoliths into

smaller, modular components, whereas IoT applications are already small to run in resource-constrained

8

CHAPTER 2. BACKGROUND AND STATE OF THE ART

embedded devices.

Moreover, as analysed in [18], where both approaches are compared in regards to several features,

these being: self-containment, monitoring and fault handling, choreography and orchestration, container

technologies and the handling of different service versions, with the conclusions in Table 2.

Table 2: Comparison between Microservices and IoT/CPS features [18]

Feature Description Microservices IoT/CPS

self-containment service completely independent
and contains all the necessary
dependencies to run on its own

services contain
business logic,
front-end and
back-end, as well
as the required
libraries

services built
around device
capabilities,
libraries might not
be packed with
application

orchestration vs.
choreography

orchestration: the services are
controlled by an orchestrator in
a centralized fashion;
choreography: the services are
independent and event driven

choreography
preferred

usually uses
orchestration
unless based on
Message Queuing
Telemetry
Transport (MQTT)
protocol

OS-level
virtualization

container includes all the
necessary dependencies to run
the application

yes, mostly using
Docker

no

continuous
integration

development changes often,
followed by builds and tests for
validation

yes partly (single
vendor scenarios)

continuous
delivery

deploying changes often in a
predicable and routine manner

yes no

protocols communication between
services

HTTP, RPC HTTP, MQTT,
Constrained
Application
Protocol (CoAP),
Devices Profile for
Web Services
(DPWS)

Research study [18] claims that the microservice approach is presented as a viable approach for IoT.

The differences, presented in Table 2, between microservices and IoT/CPS implementations are easily

bridged, as they are already mainly based on SOA architectures. The distributed nature and scalability of

9

CHAPTER 2. BACKGROUND AND STATE OF THE ART

microservices enables IoT implementations to achieve a level of interoperability that was not possible so

far.

2.1.1.2 Microservices design

The process of building a microservices architecture requires well-defined boundaries for different ser-

vices, and because there is no standard process for doing so, numerous aspects, such as the domain

model, bounded contexts, entities, aggregates, services, and non-functional requirements should all be

considered.

When creating the boundaries for the services, two concepts must be properly implemented: loose

coupling and high cohesion. Services in a loosely coupled system are as independent of one another as

possible, which implies that changes to one service have little effect on other services. Then, to achieve

high cohesion, related logic should be contained in a single service, reducing communication between

services and overall system latency.

Cohesion and coupling are closely related concepts because cohesion describes the relationship be-

tween things inside a boundary (microservice), whereas coupling describes the relationship between things

across a boundary. Given the context and problem at hand, the goal is to strike the right balance between

the two ideas [19].

Not all coupling is bad, and having some coupling is ultimately unavoidable, so the goal is to reduce

it as much as possible. In the context of a modular architecture like microservices-based systems, the

different types of coupling can be classified from loose coupling to tight coupling as illustrated in Figure 3.

Domain Pass-through Common Content

Loose coupling

(desirable)

Tight coupling

(undesirable)

Figure 3: The different types of coupling, from loose to tight [19]

The different types of coupling are defined in [19] as follows:

• Domain coupling - when a microservice needs to communicate with another microservice in

order to use a feature provided by the other microservice. Because a microservice-based system

requires the collaboration of multiple microservices to perform its function, this type of interaction

10

CHAPTER 2. BACKGROUND AND STATE OF THE ART

is unavoidable. However, a service should not be overly reliant on other services, as this may imply

that a microservice is doing too much.

• Pass-through coupling - when one microservice needs an intermediary microservice to pass data

further downstream to another microservice. To perform this coupling, the caller must understand

that the microservice it is invoking is simply an intermediary, as well as how it operates. This creates

a problem whenever the required data is changed downstream, because it also implies a change

upstream.

• Common coupling - when two or more microservices access a common set of data, such as a

shared database. Any changes to the data structure necessitate changes to the microservices that

rely on the data. This problem can worsen if multiple microservices are both reading and writing

to the same data, possibly leading to an overload of the shared resource, making it slow or even

unavailable in many cases.

• Content coupling - when an upstream service reaches into a downstream service and changes its

internal state, such as an external service directly accessing and changing the database of another

service. Doing this bypasses the logic in the service which owns the database, making the lines of

ownership less clear and increasing the difficulty for developers to change the system.

According to the findings in [20], the primary mechanism for determining microservices boundaries

is through a combination of domain-driven design (DDD) and business capabilities. It is also stated that

70.2% of practitioners use DDD alone or in conjunction with business capabilities.

Domain-driven design

Domain-driven design is a methodology that can assist in the creation of properly designed microser-

vices in two distinct phases: strategic and tactical. Strategic DDD focuses on the big picture of the system

while keeping the business capabilities in mind. Tactical DDD provides a set of design patterns used to de-

velop the domain model, which will aid in the creation of loosely coupled and cohesive microservices [21].

To properly implement DDD for MSA, the following approach should be taken:

Analyse domain:

A domain refers to the practical aspects of a solution (e.g. Healthcare, Aviation, Finance, Retail, etc).

The domain informs the requirements and acceptance criteria for the system.

11

CHAPTER 2. BACKGROUND AND STATE OF THE ART

All business functions and their connections should be mapped in order to model the business domain.

Domain experts, software architects, and other stakeholders are all involved in this collaborative effort. This

can be done in a simple, non-formal way, such as a diagram sketch or a whiteboard drawing [21].

As the domain model is being created, subdomains can also be identified. Subdomains typically re-

flect some organizational structure in which some users use a specific ubiquitous language; for example,

the automobile (domain) can be broken down into logistics, R&D, traders, production, and marketing

(subdomains). Subdomains can communicate with one another, and each subdomain can have its own

subdomains [22].

Define bounded contexts:

A bounded context is the region of a domain where a particular domain model applies. Because the

entire business model is too large and complex to comprehend as a whole, and it is impractical to maintain

a unified model, boundaries and relationships between different models must be established. Having

bounded contexts aids in the formalization of interactions between different services and the construction

of interfaces between them [22].

It is essential to understand the difference between subdomains and bounded contexts. A subdomain

belongs in the problem space, which is how the business perceives the problem, whereas bounded contexts

belong in the solution space, which is how the solution will be implemented. Each subdomain may have

multiple bounded contexts, but the goal should be one per subdomain [23].

Define entities, aggregates, and services:

Tactical DDD patterns are used in this section to define domain models with greater precision, and

they are applied within a single bounded context. The entity and aggregate patterns are the most relevant;

as a general rule, a microservice should be no smaller than an aggregate and no larger than a bounded

context [24]. According to [24], [25], the tactical patterns are:

• Entities - entities are an object with a unique identity that persists over time. Customers and

accounts, for example, are entities in a banking application. The unique identity may span many

bounded contexts and may persist beyond the lifetime of the application. It can hold references to

other entities, and its attributes can change over time.

• Value objects - value objects are objects with no identity and are defined solely by the value of

their attributes. These objects cannot be modified after they are created, and in order to update

12

CHAPTER 2. BACKGROUND AND STATE OF THE ART

them, a new instance must be created to replace the old one. Colors, dates and times, and currency

values are examples of value objects.

• Aggregates - aggregates describes a cluster or group of entities and behaviors that can be treated

as a cohesive unit with regard to data changes. In an aggregate, one single entity is accessible from

the outside, the root, and any other entities in the same aggregate are children of the root, and

can be referenced by following pointers from the root. The main purpose of the aggregate root is

to ensure consistency in the aggregate. If the root is removed from the aggregate, so are the other

objects in the aggregate. Aggregates are usually identified from the transaction operations within a

domain.

• Domain and application services - services are objects that implement some logic and don’t

maintain any state. They are frequently used to model behavior that spans multiple entities and are

classified as either application services, which provide technical functionality, or domain services,

which encapsulate domain logic.

• Domain events - domain events are used to notify other parts within the same domain when

something happens. ”A purchase was made”is an example of a domain event. Domain events are

extremely useful in MSA since they provide a way for microservices to coordinate with each other

since microservices are distributed and don’t share data stores.

Identify microservices:

When deriving microservices from a domain model, bounded contexts, entities, aggregates, services,

and non-functional requirements should all be considered. The approach outlined in [26] is a viable option

for this operation.

1. Begin with a bounded context because a microservices’ functionality should not span more than

one bounded context.

2. Consider the aggregates from the domain model, which are frequently good candidates for mi-

croservices. A well-designed aggregate should be loosely coupled and have high cohesion, both of

which are crucial concepts for well-designed microservices.

3. Domain services are another candidate for microservices. A workflow involving multiple microser-

vices is an example of domain service. They are stateless operations that can be performed across

multiple aggregates.

13

CHAPTER 2. BACKGROUND AND STATE OF THE ART

4. Non-functional requirements such as technologies, security, reliability, performance, maintainability,

scalability, and usability should be taken into account. Taking these into consideration may result

in the decomposition of a microservice into several smaller services, and vice-versa.

Finally, the microservices should be validated using the criteria listed below:

• Each service has a unique responsibility;

• Services should not communicate excessively with each other to perform their functions;

• Services are small enough to be developed by an independent small team;

• The deployment of a service should not require the redeployment of other services;

• Services can be updated and evolved independently of one another;

• The service boundaries should not cause issues with data consistency or integrity. To maintain

data consistency functionality can be combined into a single microservice, but in some cases, the

benefits of decomposing services can outweigh the challenges of managing eventual consistency

as strong consistency is not always needed.

As [26] states, domain-driven design is an iterative process, and when in doubt, it can be beneficial

to start with fewer and larger microservices and then try to split those into smaller services, as this is a

simpler process than attempting to refactor functionality from poorly designed smaller services.

2.1.1.3 Communication between services

Although methods such as DDD assist the developer in deriving and identifying the boundaries of microser-

vices, they do not assist the developer in determining the best method for microservice communication.

As an application is divided into microservices, one of the most important aspects is determining how

these services will communicate with one another, as communication between services is no longer as

straightforward as making a function call and is primarily accomplished via the network.

In Figure 4 the different collaboration styles of inter-microservice communication are presented, along

with the common implementation choices according to [19].

Within this model, the collaboration style and its respective implementation choices can be syn-

chronous or asynchronous:

14

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Database

Synchronous
blocking

Common
implementation

choice

Collaboration
style

Asynchronous
nonblocking

Topic-based
brokers

REST over HTTP
(Atom) Filesystem

Event-driven

REST over HTTP

RPC

Queue-based
brokers

RPC

Request-response Common data

Figure 4: Collaboration styles and common implementation choices for synchronous and asynchronous
inter-microservice communication [19]

• Synchronous blocking - a microservice makes a call to another microservice and blocks opera-

tion while waiting for a response.

• Asynchronous nonblocking - the microservice is able to continue processing after emitting a

call, even if the call is not received.

There are several collaboration styles, each providing different implementation choices:

• Request-response (Synchronous or Asynchronous) - a microservice sends a request to an-

other microservice to perform some action. The microservice sending the request expects a re-

sponse with the result. Depending on the implementation, may be either synchronous or asyn-

chronous.

• Event-driven (Asynchronous) - Microservices emit events that are detected and consumed by

other microservices. The microservice emitting the event is unaware of any microservices who

consume it. Typically used in microservice choreography, which follows a decentralized approach.

• Common data (Asynchronous) - microservices can collaborate by using a common data source.

Several factors, such as communication reliability, acceptable latency, and communication volume,

are considered when determining the optimal inter-microservice communication strategy. The first decision

that must be made is whether the communication should be synchronous or asynchronous, as this will

dictate the collaboration styles and implementation choices that will be utilized. Choosing asynchronous

communication, for instance, can enable more collaboration styles and implementation options. However,

15

CHAPTER 2. BACKGROUND AND STATE OF THE ART

asynchronous implementations are typically more complex than synchronous implementations, which may

not be desired in many application use cases [19].

In any case, it is important to notice that in a microservices architecture a mix of collaboration styles

may be implemented, as some interactions between microservices make more sense in a specific style

than the other, and even one microservice may implement more than one style of collaboration and im-

plementation choices [19].

Technology choices

There are many choices when it comes to communication technology in microservices, but the most

commonly used are RPC, REST and message brokers.

Remote Procedure Call:

RPC is a protocol based on the client-server model designed specifically for the support of network

applications, shown in Figure 5. It enables users to work with remote procedures as if the procedures were

local. The remote procedure calls are defined through routines in the RPC protocol and each call message

is matched with a reply message [27].

Client (caller)

Client stub

Client runtime

Server (callee)

Transport

Server stub

RPC runtime

TransportTransport

Server runtime

Server stub

Server (callee)

Figure 5: Remote Procedure Call flow

Each server provides a set of remote service procedures comprised of a host address, program number,

and procedure number. The RPC model requires the client to make a procedure call in order to send a

data packet to the server. When a packet arrives at the server, it invokes a dispatch routine, performs the

requested service, and returns a response to the client. The procedure call then returns to the client [27].

gRPC, also known as Google Remote Procedure Call, is an open source RCP architecture variant. One

of the primary advantages of gRPC is its performance, as it uses HTTP 2.0 as its underlying transport

protocol, a version that dramatically increases network efficiency and enables real-time communication.

On the server side, gRPC implements a service by specifying the methods that can be called remotely, as

16

CHAPTER 2. BACKGROUND AND STATE OF THE ART

well as their parameters and return types, and it runs a gRPC server to handle client calls. On the client

side, the client is comprised of a stub providing the same methods as the server [28], as can be seen

in Figure 6.

Figure 6: High-level overview of gRPC [28]

To serialize data between services, gRPC uses protocol buffers by default, an open source mechanism

developed by Google with a focus on performance (faster than JSON), small size, and simplicity. It also

supports the most popular programming languages, including Python, Java, C++, C#, and others. Given

this, gRPC may be a good choice for resource-constrained systems, such as many IoT environments, that

require lightweight messaging mechanisms.

REST:

REST is a set of architectural constraints that are commonly used to build RESTful APIs that interact

with RESTful web services. When a client makes a request via a RESTful API, it transfers a representation

of the resource’s state. This data is delivered via HTTP in one of several formats, including JSON, HTML,

PHP, or plain text, with JSON being the most popular [29].

For an API to be considered RESTful, it must comply with the following criteria [29]:

• client-server architecture comprised of clients, servers, and resources, with requests managed

through HTTP.

• statelessness, as each request needs to include all information necessary for processing it, which

means that no client information is stored between get requests and that each request is distinct.

• a uniform interface between components so that information is transferred in a standard form. The

same piece of data, such as the address of a user, belongs to only one uniform resource identifier

(URI).

17

CHAPTER 2. BACKGROUND AND STATE OF THE ART

• cache data when possible on the client and server side to improve performance on the client side,

and increase scalability on the server side.

• a layered system architecture that organizes each type of server involved in the retrieval of requested

information into many layers. Neither the client nor the server should be able to tell whether they

communicate with the end application or an intermediary.

• code-on-demand (optional): REST APIs usually only send static resources, but when requested, they

should provide the ability to send executable code from the server to the client.

REST APIs employ CRUD operations, which stand for Create, Read, Update, and Delete. When a client

sends a request to a server, he performs one of these operations, represented by the standard HTTP

methods of GET, POST, PUT, UPDATE, and DELETE, as shown in Figure 7. REST API calls also contain

request headers and parameters, which include identifier information such as metadata, authorizations,

uniform resource identifiers (URIs), caching, cookies, and more.

Client ServerREST API

GET, POST, PUT, DELETE

JSON Data

Figure 7: REST API model

REST APIs’ ease of use and scalability make them suitable for microservices, particularly because REST

services can communicate without requiring internal knowledge of one another; however, tight coupling

problems may arise over time as applications can become tightly coupled to the REST API services they

use.

Message brokers:

A Message broker allows applications, systems and services to communicate with one another by

translating messages between formal messaging protocols. This enables services to communicate even

when written in different languages or implemented on different platforms, making data exchange simple

and reliable [30].

The usage of message brokers enables the decoupling of processes and services within systems by

allowing senders to send messages without knowing the location of receivers, whether they are active, or

how many there are [30]. To accomplish this, they typically rely on a component known as a message

18

CHAPTER 2. BACKGROUND AND STATE OF THE ART

queue, widely used in asynchronous systems, that stores and orders messages until the consuming ap-

plications can process them. This frees the client from waiting for a task to finish, and it also allows the

server to process jobs in the order it prefers.

Message brokers typically offer two messaging distribution patterns: point-to-point messaging, used

in message queues where there is a one-to-one relationship between the senders and receivers, and

publish/subscribe messaging, used in message queues with a one-to-many relationship between senders

and receivers. In point-to-point messaging, a sender produces a message to a queue that is consumed

by only one receiver. In publish/subscribe messaging, the sender publishes to a topic, and the receiver

subscribes to one or more topics from which it wishes to receive data. When a sender publishes to a topic,

the message gets delivered to every consumer who has subscribed to it [30].

Apache Kafka is a popular example of a platform which provides messages queues. It was originally

conceived as a messaging queue, but now provides many more features as a distributed event streaming

platform. It can be used as a publish/subscribe messaging system, a storage system for streams of events

and a real-time data processing system [31].

A Kafka system is composed of clients and servers communicating via the TCP network protocol. Kafka

can run as a cluster of one or more servers, with some forming the storage layer, also known as brokers, and

the other servers running the tool Kafka Connect to continuously import and export data as event streams,

integrating Kafka with existing systems such as databases and other Kafka clusters, illustrated in Figure 8.

Kafka clusters also provide fault tolerance because if one server fails, the others will take over and ensure

that no data is lost. Kafka clients can be written in a variety of languages, including Java, C/C++, Python,

and others. The clients enable the development of distributed applications and microservices that read,

write, and process streams of events in parallel, at scale and in a fault-tolerant manner [31].

Events are used for reading and writing to Kafka, with each event containing a key, value, timestamp,

and optional metadata headers. Events are organized and stored in multi-producer and multi-subscriber

topics because many producers can write to a topic, and many consumers can subscribe to a topic. Unlike

other messaging systems, events are not deleted after consumption, and the user decides how long they

should be kept alive [31].

Kafka achieves high scalability because producers and consumers are decoupled from one another,

and then, to ensure fault tolerance and high availability, Kafka replicates topics across multiple brokers.

These concepts are critical in the implementation of microservices, which is why Kafka’s a choice in many

of them.

19

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Producer

Kafka Cluster

Leader Follower Follower

Broker 1

Partition
replicas

Broker 2

Partition
replicas

Broker 3

Partition
replicas

Publish data

Read data
Consumer group

Consumer 1 Consumer N

Figure 8: Overview of a Kafka cluster with three brokers

2.1.2 Microservices deployment

After developing microservices, one must find a suitable infrastructure for them to run on. Virtual machines

and containers are the two most common solutions for this purpose. Until a few years ago, the majority

of server-side software ran directly on virtual machines, but containers have since gained popularity and,

more importantly, have proven to be a suitable fit for microservices architecture.

Containers are executable software units that package code and its dependencies into a single object

that can run as a resource-isolated process in different computing environments. A container unit contains

all of the components required to run an application, such as code, runtime, system tools, system libraries,

and settings.

2.1.2.1 Containers vs. virtual machines

Container adoption in microservices has grown exponentially since their introduction, with containers be-

coming the de facto choice for many for packaging and running microservices [19]. Before the popularity

of containers, most implementations were based on virtual machines, which share many benefits with

containers in terms of resource isolation and allocation but operate differently.

The main difference between virtual machines and containers, as illustrated in Figure 9, is that vir-

tualization in containers occurs at the operating system level, whereas virtualization in virtual machines

occurs at the hardware level (type 1 hypervisor, i.e. bare metal). This means that a single machine can

run multiple containers and achieve isolation, whereas virtual machines, due to including the guest OS,

20

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Host hardware

Hypervisor

Guest OS

Binary files &
libraries

Application 1

VM 1

Guest OS

Binary files &
libraries

Application 2

VM 2

Host hardware

Host operating system

Container engine

Binary files &
libraries

Application 1

Container 1

Binary files &
libraries

Application 2

Container 2

Virtual machines Containers

Figure 9: Comparison between the stack of virtual machines (type 1 hypervisor) and containers

are much heavier and thus not as easily scalable. There are also a few other differences, listed in Table 3.

Table 3: Comparison between containers and virtual machines

Description Virtual machines Containers

Where virtualization
occurs

at hardware level at operating system level

Type of isolation achieved isolation of machines isolation of processes

How resources are
accessed

via hypervisor via kernel features such as
namespace and cgroups

Flexibility and portability great flexibility of hardware,
as many machines can be
created with specific
resources

great portability because the
same container can run on a
variety of machines

Security fully isolated hence more
secure

process-level isolation hence
less secure

Size can take up to tens of GBs typically tens of MBs

It is possible to conclude that containers are more portable and efficient than virtual machines and

thus more suitable for microservices. Running a microservice inside a container provides isolation and

hides the underlying technology used for the application, enabling developers to use different technologies

for different services [19].

However, these two technologies do not have to compete because virtual machines can still be very

useful in a microservices environment. Virtual machines composed of type 2 hypervisors, where the hyper-

visor runs on top of the operating system, can run multiple containers, combining the flexibility of virtual

21

CHAPTER 2. BACKGROUND AND STATE OF THE ART

machines and the portability of containers.

2.1.2.2 Containerization

Containerization is the process of creating containers through the use of virtualization technology. Although

Docker made containers muchmore popular in recent years, the technology has been present in UNIX-style

operating systems such as Linux for many years.

With the rise of Linux as the dominant open platform, the technology was eventually incorporated into

the standard distribution LXC, which combined the cgroups and namespaces kernel features to provide

an isolated environment for applications. Docker’s early iterations used LXC under the hood, though LXC

was dropped in later versions [32].

Docker

Docker is an open-source containerization platform that enables developers to package applications

and their dependencies into lightweight containers and run them in any environment using virtualization

technology.

Every docker container is created using base images. A docker image contains the application source

code, as well as all the libraries and dependencies that the application needs to run as a container. An

image is created based on a Dockerfile script which contains the instructions and arguments listed in

succession to automate the creation process [32].

Docker architecture:

The docker architecture illustrated in Figure 10 uses a client-server model divided into several compo-

nents [34]:

• Docker host - represents the physical machine or VM where the Docker daemon and containers

are deployed. The Docker daemon is in charge of building and storing images, as well as creating,

running, and monitoring containers. Normally, the host OS handles the Docker daemon launch.

• Docker client - it is the main interface for users to interact with Docker through commands. It

controls the host, creates images, publishes, executes/manages containers, and can communicate

with multiple Docker daemons. The communication with the Docker daemon occurs via sockets

through a RESTful API. The Docker client and Docker daemon compose the Docker engine.

• Docker registry - it stores and distributes Docker images. The Docker Hub is used by default, and

it can host both private and public repositories, but a private registry server can also be configured.

22

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Figure 10: High-level overview of Docker architecture [33]

Underlying technologies:

Docker builds on top of existing Linux container technology such as cgroups and namespaces, addi-

tionally it also uses union file systems (UFS) for added benefits to the container development process.

These features are integrated into a low-level component known as the runC tool, a portable container

runtime [34]. The key technologies of Docker are listed below:

• cgroups, which provide a way for the Linux OS to manage and monitor resource allocation for a

given process and set resource limits (e.g., CPU, memory, and network).

• namespaces help isolate containers by making sure that each container will have its own names-

pace and that processes running inside that namespace will not have access to the rest of the

system.

• the union file system is used to create and layer Docker images. All images are built on top of a

base image, and every change adds a new layer to the base image. Docker caches the layers the

first time they are built, so if a new layer is created and Docker detects it already exists in cache, it

will re-use the existing layer, avoiding the duplication of a complete set of files. This feature is what

enables Docker containers to be small in size and have quick start times.

2.1.2.3 Container orchestration

Container orchestration automates the deployment, networking, scaling, availability, and lifecycle manage-

ment of containers. When used in small numbers, containers are easy to deploy and manage manually,

23

CHAPTER 2. BACKGROUND AND STATE OF THE ART

but as the number of containerized applications grows, so does the need of an orchestration platform like

Kubernetes [35].

The main benefit of container orchestration is automation, which reduces the effort and complexity of

managing a large number of containers, allowing developers to create, deploy, and release new features

faster. Additionally, container orchestration platforms typically include features like load balancing and

scaling, which extend the benefits of containerization [35].

Kubernetes

Kubernetes, also known as K8s, is an open-source container management solution first announced by

Google in 2014 and released in 2015. It provides a managed execution environment for deploying, running,

managing, and orchestrating containers across clusters or clusters of hosts, making it extremely useful for

developers. Kubernetes clusters can be deployed on a variety of public clouds (AWS, Google Cloud, Azure)

and bare metal servers due to Kubernetes being infrastructure agnostic [36].

Kubernetes architecture:

As shown in Figure 11, the Kubernetes cluster is the largest entity in Kubernetes, and it is made up of

one or more machines, also known as nodes. In a Kubernetes cluster, there are two types of nodes: the

master node, which hosts the Kubernetes control plane and manages the cluster, and the worker nodes,

which run the containerized applications.

k-proxy

kubelet

sched
schedsched

Control Plane

Node

etcd

Kubernetes cluster

api
api

api

c-c-m
c-c-m

c-c-m

c-m
c-m

c-m

Node Node

k-proxy

kubelet kubelet

k-proxy
Control plane

Scheduler
sched

Cloud controller
manager
(optional) c-c-m

Controller
manager c-m

kubelet
kubelet

kube-proxy
k-proxy

(persistence store)
etcd

etcd

Node

API server
api

Figure 11: Overview of a Kubernetes cluster [37]

The worker nodes host the pods, which are the components of the application workload. A pod is the

smallest deployable unit on a cluster that can be created and managed. Multiple containers can run within

24

CHAPTER 2. BACKGROUND AND STATE OF THE ART

a pod, sharing the same network and storage space, but it is best practice to run as few containers as

possible per pod [37].

The control plane, which is located in the master node, manages the cluster’s worker nodes and pods.

It is in charge of making global cluster decisions as well as detecting and responding to cluster events via

its many components.

Kubernetes also provides several addons for more features, such as DNS and a web-based dashboard.

The dashboard provides an interface to manage the Kubernetes cluster, which can be used as an alternative

to the kubectl command-line tool, although with limited functionality.

2.2 Dashboard

The term dashboard, in its broad meaning, is simply a visual display of the relevant information required for

a certain purpose consolidated and arranged on one or multiple screens [38]. However, nowadays it is seen

as a nuclear tool for both individuals and organizations, as it can function as an interactive management

tool to monitor and act on critical information to achieve one or more individual and/or organizational

goals [39]. To that end, dashboards should not be be deemed as single-purpose visualization tools since

”their design and contexts of use are considerably different from exploratory visualization tools” [40].

Dashboards can also benefit from a cloud architecture based on microservices in terms of scalability

and reliability. Microservices allow the dashboard to be independently scalable, making it easier to han-

dle traffic or data volume increases. Moreover, if the dashboard is replicated and one instance fails, the

remaining instances can continue to function, resulting in a more resilient system overall. These advan-

tages make a microservices-based approach an attractive option for building and maintaining cloud-based

dashboards.

2.2.1 Good design practices

In the literature surrounding the subject of dashboards there are some guidelines that can be considered

as best practices, as is presented in [39], [41]. We leverage these studies to highlight the most relevant

characteristics, summarized in Table 4, in regards to the presentation and format of dashboards in the

context of operational dashboards.

The first step in dashboard design should be identifying the dashboard’s purpose, since the features

in a dashboard should always align with its purpose. A poor fit between purpose and features might result

25

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Table 4: Guidelines for presentation formats and dashboards

Year References Description

2000 [41] Define dashboard purposes

2006 [38] The dashboard should fit on a single screen but allow the
user to drill-down to break up large data sets

2006 [42] Use colors to increase perception

1993 [43] The use of Gestalt principles (similarity, continuity, closure,
proximity, figure/ground, and symmetry & order) to
improve perception

2005 [44] The ability to alter the display format can help focus on
more relevant information

1991 [45] Tabular information leads to better decisions when
monitoring specific values

1991, 1991,
1994

[46]–[48] Graphs are more suitable for comparing a set of values

2007 [48], [49] Graphs reduce information overload

in sub-optimal decision making by the end-user. Features such as drill-down and presentation flexibility

are crucial as they can serve all the purposes of the dashboard. The number of features should also be

carefully considered, as excessive or unnecessary feature usage can complicate the dashboard and detract

from its purpose, while too few features can also hinder the dashboard’s goals.

The features in a dashboard can be divided into functional features and visual features [39]. Functional

features refer indirectly to visualization and describe the capabilities of the dashboard:

• Format presentation type - provide the ability to choose between graph or tabular;

• Format presentation flexibility - display the data at different levels of aggregation;

• Drill-down and drill-up - move between levels of information to get a more detailed view or a

broader view;

• Scenario analysis - predict scenarios that can take place in the future with the available data;

• Automated alerts - notify the user when an event or error condition occurs.

Visual features refer to the essence of data visualization, i.e. how the data is effectively presented to

the user:

26

CHAPTER 2. BACKGROUND AND STATE OF THE ART

• Single page - keep the number of pages to a minimum;

• Frugal use of colors - use a color palette throughout the dashboard to keep colors consistent

and non distracting;

• High data-ink ratio - remove elements that do not add information to graphs;

• Grid lines in graphs - use grid lines to help detect differences between quantitative values.

Typically, unstructured data is preferred over aggregated and structured data, which may not be suffi-

cient for proper analysis. The drill-down feature can be used for this purpose, allowing the user to examine

the data further if necessary. And to compare data, the cognitive fit thesis suggests graphs, but the user

should have the option to select another format, such as tabular, due to varying user preferences.

To enhance visual perception, the choice of colors and style of graphs should adhere to the principles of

visualization, i.e., simple solutions that correctly guide the user, as opposed to flashy graphs that diminish

perception. The dashboard should be user-friendly and straightforward, allowing the user to concentrate

on the most pertinent data. In light of this, it is advisable to reduce the dashboard size to a minimum

number of pages, if possible a single page, and to enable additional data analysis via dashboard features.

In brief, given the versatility in functionality and applications of dashboards, there is no unique approach

to building dashboards. The best that can be achieved is a set of guidelines which can serve as a base

for dashboard design, as there is no guarantee that the design principles of one dashboard type will

systematically transfer to another. In addition, dashboard objectives and goals are not always clear at the

start, so it is practical to choose dashboard solutions that are more flexible and easier to upgrade.

2.2.2 Dashboard types

In [40] a survey on dashboard design was conducted to ”construct a design space for dashboards, and

identify major dashboard types”. The authors analysed 83 different dashboards and, in an initial phase,

derived the design space categories and codes to be later used to cluster dashboards into different types. As

shown in Figure 12, there are 15 distinguishing factors organized into 5 major groups: purpose, audience,

visual & interactive features, and data semantics.

The characteristics in Figure 12 establish a dashboard taxonomy, which the authors used to classify

dashboards based on ”their design goals, levels of interaction, and the practices around them”. As shown

27

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Goal (1) Decision Making
(1) Awareness (2) Motivation and

Learning (3)

Purpose (2)

Strategic (1) Tactical (2) Operational (3)

Learning (4)

Audience (3)

General Public (1)

Level of Visual
Literacy (4)

Domain Expertise
(5)

Organizations (2) Individuals (3)

Visual

Features (4)

Construction (1)

Highlighting (4) Multipage (5)

Interactivity (2) Modify
Data/World (3)

Data

Semantics (5)

Alerts and
notifications (1) Benchmarks (2) Updateable (3)

Figure 12: Taxonomy of dashboard characteristics

in Table 5, the authors defined 7 separate groups of dashboards based on their shared qualities. These

categories are elaborated upon below:

• Dashboards for Decision-Making - Strategic Decision-Making and Operational Decision-Making.

They primarily target organizations and provide views that allow the user to interact with the most im-

portant data and identify areas of concern or opportunity for the organization. In business contexts,

they can be used to view metrics in real-time (operational) or on a temporal scale (strategic).

• Static Dashboards for Awareness - Static Operational and Static Organizational. These dash-

boards are considered ”static”because they are designed for minimal interactivity and are primarily

used to provide awareness of a particular aspect of an operation or organization. Although they may

be designed with low visualization literacy in mind, domain knowledge is required for the user to

comprehend the significance of data trends and distributions.

• Dashboards for Motivation and Learning - Quantified Self and Communication. These dash-

boards fall out of the organizational context, and are either targeted towards individuals, or the

general public. Dashboards for personal use typically feature interactive user interfaces and alerts;

28

CHAPTER 2. BACKGROUND AND STATE OF THE ART

examples include finances, exercise, and dieting, whereas dashboards for the general public ap-

pear to be designed for communication and education of the consumer, as such they present the

data in a simple manner that can be independently interpreted by the end-user; examples include

dashboards for public health, crime rates, and other civic data.

• Dashboards Evolved - Composed of a singular cluster. This category identifies dashboards that

do not fit into the previously stated clusters, even if they share characteristics with multiple clusters.

Table 5: Design choices of the different types of dashboards

Category Goal Purpose Audience Visual
Features

Data
Semantics

Strategic
Decision-
Making

1.1 2.1 & 2.2 3.2 4.2 & 4.5 5.3

Operational
Decision-
Making

1.1 2.2 & 2.3 3.2 4.2 & 4.5 5.2 & 5.3

Static
Operational

1.2 2.3 3.2 & 3.4
(low)

5.2 & 5.3

Static Organi-
zational

1.2 3.2 & 3.4
(medium)

5.3

Quantified
Self

1.3 2.3 3.3 & 3.4
(high)

4.2 & 4.5 5.3

Communication 1.3 2.4 3.1 & 3.4
(medium)

5.3

Dashboards
Evolved

2.4 3.1 & 3.4
(high)

5.3

Although there are numerous types of dashboards, they do not utilize all of the characteristics iden-

tified in Figure 12, either because the characteristic is not dominant for the observed type of category,

or because it should not be present in that category. This demonstrates how challenging it is to properly

categorize dashboards, as they may exhibit characteristics from multiple clusters and there is no one-size-

fits-all solution. This is implied by the ”Dashboards Evolved”category, which encompasses an expanding

universe of dashboards that do not neatly fit the previous assumptions regarding dashboards’ appearance

and functionality. As exemplars circulate and tastes and fashions vary, dashboards may also undergo

substantial conceptual and graphical changes over time.

29

CHAPTER 2. BACKGROUND AND STATE OF THE ART

2.2.3 Frameworks for dashboard development

Most of the development in dashboards has been driven by practice and software providers, as opposed

to academic research. This means that a large range of solutions are available on the market, both as a

paid service and as a free service. This section compares the capabilities of some of these solutions based

on their market appeal and ubiquity in IoT-based systems, in order to locate the best-suited frameworks.

We also analyse the following properties of the frameworks available in the market to properly compare

the available solutions.

• License - describes the type of license of the software. The most common licenses are open-

source, which is available for anyone to use and modify for free, and proprietary software, which is

software that legally remains the property of the organisation that created it, and requires buying a

special license to use it.

• Codeless - codeless platforms, also known as low-code/no-code development platforms, allow

developers to quickly build applications by using drag-and-drop and other similar tools. The use of

codeless platforms lowers the development complexity and time to market, however, they may limit

the developer in terms of customization, i.e., a codeless application might not be able to fulfill all

the business needs.

• Write-back capacity - to provide write-back capacity, a platform must allow the user to interact

and change the state of the devices in the dashboard (e.g. a button to turn a LED on/off). This can

achieved through a variety of different communication protocols, or by simply writing to a database

from which the device can read periodically.

• Database support - the dashboards that the platform supports for reading/writing data to and

from the dashboard/devices. Some platforms extend their official support by allowing the commu-

nity to contribute (i.e. community created plugins) and thus provide support for a wide array of

databases.

• Multi-page application - describes if the platform provides the ability to create dashboard appli-

cations with more than one page.

• Design flexibility - a flexible design allows for functional modifications, such as new features or

upgrades to existing ones, without requiring structural changes. Platforms with greater flexibility can

adapt to new requirements considerably more quickly, albeit at the expense of increasing complexity.

30

CHAPTER 2. BACKGROUND AND STATE OF THE ART

• Ease of deployment - software deployment can be generally divided into three phases: devel-

opment, testing and monitoring. A platform with a higher ease of deployment covers the three

phases and produces an application which is ready for market in less time than others. Depending

on the market and the business needs, some businesses might prioritize less time-to-market over

expending more time to create a more expensive and perfected solution.

• Optimal use case - describes one or several attributes which can be seen as the main ”selling

points”of the respective platform. If the requirements for an application match the optimal use case

of a platform, then the platform might be a good choice for its development.

The findings in Table 7 were drawn from the official documentation provided by the platforms Things-

board [50], Ubidots [51], Node-RED [52], Grafana [53], and Dash [54]. To better understand these plat-

forms a few examples were analysed in respect to the topics that were approached in this chapter, such

as good design practices and dashboard categorization. These examples are drawn from literature, mostly

focusing on IoT applications.

The initial step in this analysis is to determine whether the examples adhere to the good design prac-

tices defined before. As the majority of guidelines and functional/visual features are intertwined, a mixture

of them was chosen and analysed in Table 8.

According to Table 8, the examples which are illustrated in Figures 13-17, use graphs as a presentation

format and do not offer tabular as an alternative, that could assist in decision-making. Some of these

examples, such as Mataloto et al. [55] could be improved by implementing scenario analysis, as predictive

analysis is already one of their stated goals for the platform; this would relieve the end-user of manually

performing this task.

In general, the examples presented are capable of achieving their purpose in accordance with the

guidelines, however there is room for improvement; only Chetty et al. [56] failed to adequately define its

purpose, and therefore its quality cannot be assumed.

The next step is to analyse the examples based on their design choices. Each example is assigned the

category that best matches its description, and then it is evaluated based on whether or not it satisfies the

category’s characteristics. This is accomplished using Table 5, and the results are presented in Table 6.

All of the examples meet the design choices for the proposed category, demonstrating that the pro-

posed taxonomy can successfully classify dashboards according to their characteristics. This may be partly

31

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Table 6: Analysis of dashboard examples according to design choices

Example Chetty et
al. [56]

Mataloto et
al. [55]

Ali et al. [57] Aghenta and
Iqbal [58]

Diaz et al. [59]

Platform Ubidots Node-RED Grafana Thingsboard Dash

Category Static
Operational

Operational
Decision-Making

Static
Operational

Static
Operational

Static
Organizational

Goal Yes Yes Yes Yes Yes

Purpose Yes Yes Yes Yes Yes

Audience Yes Yes Yes Yes Yes

Visual
Features

Yes Yes Yes Yes Yes

Data
Semantics

Yes Yes Yes Yes Yes

attributable to the selected platforms, as they permit customization but also direct the developer toward

common design interfaces and metrics, resulting in dashboards with consistent characteristics.

From this analysis, and with the data from Table 7 it is possible to conclude that Thingsboard and

Ubidots are complete solutions that attempt to address every business need in the IoT domain. As a result,

organizations should fully adhere to them in order to get the most out of them, rather than just use them

for data visualization.

Organizations who have already implemented some sort of IoT infrastructure and wish to expand it to

include data visualization and monitoring should look into more specialized platforms such as Node-RED,

Grafana, and Dash. These platforms are attractive alternatives since they are open-source and have been

enhanced by community contributions, making them more compatible with existing IoT infrastructure.

32

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Figure 13: Ubidots dashboard example [56] Figure 14: Node-RED dashboard example [55]

Figure 15: Grafana dashboard example [57] Figure 16: Thingsboard dashboard example [58]

Figure 17: Dash dashboard example [59]

2.3 Summary

The information presented in this chapter provides some valuable insight: (1) Microservices architecture

adheres to DDD principles by decomposing an application into small, focused services with a clear and

consistent domain model in order to maintain cohesion and loose coupling. The design process requires a

comprehensive knowledge of business processes and the application of DDD techniques such as bounded

contexts, entities, and aggregates. (2) Containers package applications with their dependencies and can

be deployed on most computing platforms and thus are ideal for microservices. Containers also pro-

vide isolation and conceal the underlying technology of the applications, which are core concepts in the

33

CHAPTER 2. BACKGROUND AND STATE OF THE ART

microservices architecture. (3) The collaboration style and implementation choice for inter-microservice

communication depends on the requirements imposed by the microservices solution, such as communi-

cation reliability and maximum allowed latency. A combination of technologies may also constitute a viable

strategy. (4) Dashboards are not limited to data visualization, and can be used as interactive management

tools. (5) There are guidelines and design choices that can be used to create a dashboard that is suitable

for the intended purpose.

34

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Table 7: Comparison of common dashboard platforms available on the market

Platform Ubidots [51] -
2013

Node-RED [52] -
2013

Grafana [53] -
2014

Things-
board [50] -

2016

Dash [54] -
2017

License Paid Profession-
al/Enterprise

versions

Open-source Open-source &
Paid Profession-
al/Enterprise

versions

Open-source &
Paid Profession-
al/Enterprise

versions

Open-source &
Paid Enterprise

version

Codeless Supported,
using

point-and-click
visual tools

Supported,
using

flow-based
programming

Supported,
using

point-and-click
visual tools

Supported,
using

flow-based
programming

Not supported,
requires

programming
knowledge of
either Python,
R, Julia, or F#

Write-back
capability

Supported,
using HTTP,
MQTT or
TCP/UDP

Supported,
using

communication
protocols

available in the
Node-RED
Library

Not supported Supported, in
the form of RPC

commands

Supported,
using

communication
protocols
available in
Python

Database
support

Ubidots’ own
time-series
backend
solution

Support for the
most common
databases is
provided

through the
Node-RED
Library

MySQL,
PostgreSQL and

SQLite are
supported by
default, with

plugins
available to

extend support
to other

databases

PostgreSQL is
recommended,
but Cassandra

and
TimescaleDB

are also
supported

Any database
available for

Python

Multi-page
application

Not supported Supported,
using

community
created nodes

Not supported Not supported Supported

Design
flexibility

Low Average Average Low High

Ease of
deployment

Easy Easy/Moderate Easy/Moderate Easy Moderate

Optimal use
case

Out-of-the-box
IoT cloud
solution for

device
management,
data collection,
processing, and
visualization

Visual
programming
tool with a

broad range of
applications,
including IoT
workflows

Cloud or
on-premises
framework for
data analysis

and
monitorization

Out-of-the-box
IoT cloud or
on-premises
solution for

device
management,
data collection,
processing, and
visualization

Cloud or
on-premises
framework for
interactive web
applications,
with great

scalability and
design flexibility

35

CHAPTER 2. BACKGROUND AND STATE OF THE ART

Table 8: Analysis of dashboard examples according to guidelines

Example Chetty et
al. [56]

Mataloto et
al. [55]

Ali et al. [57] Aghenta and
Iqbal [58]

Diaz et al. [59]

Defined
dashboard
purpose

No Yes Yes Yes Yes

Fits on a
single screen

Yes No Yes Yes Yes

Format
presentation
type

Graphs Graphs Graphs Graphs Graphs

Format
presentation
flexibility

No Yes No No Yes

Drill-down
and drill-up
features

No Yes No Yes No

Scenario
analysis

No No No No No

Automated
alerts

No Yes No No No

Use of Gestalt
principles

Average, lacks
continuity

Great Poor, the layout
is confusing and
lacks symmetry

Great Great

Use of colors Poor, should
use more colors
for different

graphs

Great Great Poor, excessive
use of colors

without
consistency

Great

Data-ink ratio High High Average, some
graphs are hard
to read due to
overlapping

Low, too much
color and
overlapping

High

36

C
h
a
p
te

r

3
System Specification & Design

This chapter offers a comprehensive examination of the inner workings of the cloud, and the changes that

are necessary for achieving the final architecture based on the CMP architecture. The chapter begins by

addressing the system’s requirements, architecture, and use cases, and then delves deeper into the three

key components of the system: microservices, database, and dashboard.

3.1 Functional and non-functional requirements

Since this dissertation is a continuation of [8], it must satisfy some of Link4S former requirements in

addition to new ones. To be successful, every project of this scope must define both functional and non-

functional requirements. Non-functional requirements, also known as non-behavioral requirements, are

the quality constraints that a system must meet. Functional requirements are the basic capabilities that

a system must provide. The project’s requirements, which influence the development of this dissertation,

are related to the cloud and data visualization:

3.1.1 Functional requirements

• Receive and parse data from devices in MessagePack format

• Send commands to devices in a format that can be understood by them

• Visualize the latest sensor data in real-time using a dashboard

37

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

• Control access to users by implementing a login system

• Allow for the ability to change end-device configuration remotely

• View the evolution of sensor data over time using a graph or chart

• Visualize system overview in real-time using a dashboard

• Implement in the microservices the components of the CMP architecture

• Use the interfaces of the CMP architecture to enable seamless communication between the com-

ponents

• Store the parsed data in a database for future querying and analysis

3.1.2 Non-functional requirements

• A user interface that is easy to understand and navigate for all users, as the user that interacts with

the dashboard might have low level of technological literacy and the amount of data available for

query is extensive. This includes providing clear labels and implementing a search function.

• Ensure the security of sensitive data by implementing encryption for data transmission between the

cloud and devices, hashing for data storage, and a robust access control system to protect against

unauthorized access.

• Scalability to accommodate new devices and sensors, with minimal interruption to the system’s

operation. This will be achieved by using the CMP architecture that allows for easy addition of new

devices and sensors with minimal interruption to the system’s operation.

• High reliability and availability, meaning the system should be able to operate consistently and

without interruption for prolonged periods of time.

• Performance must be efficient enough to handle high volume of data.

• The system will be designed to handle devices with different protocols and communication stan-

dards, while maintaining compatibility with existing system.

38

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

3.2 Architecture overview

Figure 18 provides an overview of the final cloud architecture, displaying the components and interfaces of

the CMP architecture on colored backgrounds. In addition, the original cloud implementation is highlighted

and included in the Device Ecosystem.

The Device Ecosystem is a key component of the CMP architecture as it provides the ”infrastructure

for the devices to operate using their own protocols and data formats” [10]. The infrastructure in this in-

stance consists of the Blackwing server, parsing microservices, Process Data microservice, and MongoDB

database. The Blackwing server communicates directly with the devices and reroutes the messages to the

appropriate microservice for parsing.

The server and parsing microservices utilize the Blackwing [60] framework, a Python framework that

handles all communication between microservices within the framework, freeing the developer to only

implement the code for the parsing microservices. TCP/IP is used for communication between the server

and microservices, and configuration files contain all required network settings.

The Blackwing framework uses the specific packet format illustrated in Figure 19. This format consists

of a header and a payload, with the header itself separated into four sections. The header’s first byte

identifies the Message Type, which indicates whether or not the header is encrypted. If the header is not

encrypted, it will only contain the Microservice Opcode which identifies the parsing microservice; if it is

encrypted, it will be encrypted using the RSA algorithm and will also contain the AES Key and AES IV.

When data is encrypted, decryption is the responsibility of the server. To accomplish this, it will first use

its own private RSA key to decrypt header data encrypted with a public RSA key. After the header data is

decrypted, the AES key and AES IV are used to decrypt the payload, which is then sent to the microservice

with the matching Opcode. If a response needs to be sent from the parsing microservice to the respective

device, the server must also encrypt the data.

For the final implementation, the parsing microservices require modifications in order to make API

calls to the Process Data microservice. In addition, direct database interactions are no longer supported,

as they are now handled by the Process Data microservice. Although not highlighted in the figure, the

MongoDB database was also present in the original implementation, but was instead connected to all the

parsing microservices in order to store device messages and configuration data.

Using a REST API, the parsing microservices communicate with the Process Data microservice. When

data that has been parsed arrives at the Process Data microservice, it is sent to the Mediator via the

Device Interface. As the foundation of the Device Ecosystem, the Process Data microservice uses the

39

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

MongoDB MongoDB
Replica

Parse
Regular

Change Stream

Parse
Emergency

Parse
Command

Devices

Users

MongoDB

Device data

entry/exit point

Blackwing server

Microservice

Database

Real-time updates

Dashboard

Original implementation

Redis cache

Mediator

Device Ecosystem

Entities:

Process Data

Parse
Configuration

Applications

Device

Interface

Data

Interface

Command
Interface

Management

Interface

Command Line Interface

Figure 18: Architecture overview

40

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

Message
Type

(1 byte)

Microservice
Opcode

(16 bytes)

AES Key
(16 bytes)

AES IV

(16 bytes)

Payload
(up to 895 bytes)

Header

RSA Encrypted AES Encrypted

Figure 19: Blackwing message format

Device interface to communicate with the Mediator via gRPC and can forward data from devices to the

Mediator as well as process responses to commands received from the Mediator.

The Mediator is the central component of the CMP architecture and is responsible for routing mes-

sages to the architecture’s other components via the available Interfaces. The implementation of interfaces

and the Mediator are beyond the scope of this dissertation. Instead, the microservices interact with the

interfaces via Python libraries that provide a high level of abstraction, and in the case of the Mediator, its

configurations are performed via a CLI so that it is aware of the correct data paths.

In the Applications section the Dashboard application and its supporting entities are present. The De-

vices microservice implements two CMP architecture components: the Data Consumer and the Command

Producer. The first is responsible for receiving messages sent by devices, while the second is responsi-

ble for sending commands to devices and receiving the corresponding response (if sent). Each of these

components has a corresponding Interface for communicating with the Mediator.

Alongside the CMP components, the Process Data microservice interacts with the MongoDB database,

where it stores device data, and provides a REST API with device-specific endpoints. An API endpoint is

a URL that enables communication with a microservice to retrieve or modify data. The endpoints are

accessible via HTTP requests with common methods such as GET and POST, enabling applications to

access sensor data, device configurations, and device commands.

The Users microservice, unlike the Process Data microservice, does not implement any of the CMP

architecture’s components and is solely responsible for managing users; it also provides a REST API with

endpoints for user creation, management, and authentication.

The Dashboard is the primary component of the Application segment; it enables end-user interaction

with the devices via an intuitive interface. The user can view the state of the devices, sensor data, and

configurations, in addition to sending commands to the devices, which was previously only possible using

Python scripts. Using a WebSocket to communicate with the Dashboard, the Change Stream process

provides real-time updates.

41

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

The MongoDB Replica duplicates the data from the primary MongoDB instance, ensuring data avail-

ability and redundancy. It is also a requirement for the Change Stream service, as it is dependent on the

same-named MongoDB feature and cannot be implemented on a non-replicated database set.

3.3 Use cases

The use case diagrams in Figure 20, Figure 21, and Figure 22 illustrate how entities, also known as actors,

in a system interact to achieve specific goals. Three systems were identified for this exercise: the end-

device, the Device Ecosystem, and the Applications. The majority of the entities in the identified systems

were used as actors; only the database was omitted because interaction with the database occurs solely

via the respective microservices and can therefore be simplified.

Include and exclude relationships are used to establish relations between use cases. An include rela-

tionship is used to include one use case within the behavior sequence of another use case, this relationship

implies that the included use case must be executed when the base use case is executed. This is not true

for an exclude relationship, as most of the time, an extend relationship has a condition attached to it and

it only executes when the condition is true.

System running
Encrypt data

Get environmental
data

Sleep

Decrypt data

Receive command

Send message

Device

Environment Device Ecosystem

<<extend>>

<<extend>>

<<include>>

<<include>> <<include>>

<<include>>

Figure 20: Device use cases

3.4 Microservices

The cloud architecture contains a number of microservices that serve a variety of purposes and must

communicate using different protocols. This section will delve deeper into the design of the microservices’,

their features and how they communicate with each other.

42

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

Device Ecosystem

Device

Mediator

Parsing

Microservice

Process Data

Microservice

Store command

Receive message

<<extend>>

Decrypt data

<<include>>
Parse message

Send message

<<include>>

Send response

Consume command

<<extend>>
Send command

response

<<extend>>

Blackwing server
<<extend>>

<<include>>

Fetch database<<extend>>

Encrypt data

Figure 21: Device Ecosystem use cases

Applications

End-user

Mediator
Users

Microservice

Change Stream

Devices

Microservice

Dashboard

Consume message

Real-time update

View metrics

View system overview

Store data<<include>>

<<extend>>Fetch cache

<<include>>
Fetch database

Authentication

Fetch database
<<include>>

Change end-device
configurations

<<include>>

Send command

Figure 22: Applications use cases

43

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

3.4.1 Data parsing

The data parsing microservices are responsible for receiving the server’s raw data and transforming it

into a format that can be easily stored in a database and transmitted over the network. There are four

microservices that parse data: Regular, Emergency, Configuration, and Command. Due to the fact that

device communication is generic, all microservices adhere to the general structure depicted in Figure 23.

Start

Pair received message

Microservice specific
parsing code

Send data to process data
microservice

Request command from
process data microservice

Command
available? Return noneReturn command

yes no

Figure 23: Generic parsing microservice flowchart

Figure 24 illustrates the datagram format that the parsing microservice receives from the server. This

format is composed of datagram objects and is not constrained by the number of objects or the order

in which they appear. Also provided is an example of a datagram, in which each object includes a string

identifier and data that can consist of a single value or multiple values in a list. Certain objects within the

datagrams are included in every transmission because they provide essential metadata to the cloud, as

described below. The remaining data in the datagram is optional, and is typically sensor data or device

configuration data. The datagram displayed is only for a temperature (sTMP) and humidity (sHUM) sensor,

although it is scalable to many more sensors.

• P - the parts identifier specifies the current datagram part and the total number of parts. When

a message exceeds the 1024-byte modem transmission limit, it is broken up and sent in multiple

44

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

object object object object object

P 1 1 ID 268031902005756 TIME 1667314433 sTMP 210 211 210 sHUM 31 31 32

Identifier Data Identifier Data

Datagram

Figure 24: Cloud payload datagram with example

transmissions. If the values are 1 and 2, for instance, it indicates that this datagram corresponds

to the first of two total parts. Packages can also be received out of sequence, so receiving parts

with matching numbers does not necessarily indicate that all parts have been processed.

• ID - the board id identifying the board that transmitted the message.

• TIME - the transmission’s timestamp in Unix epoch format as determined by the device.

To process the message, the microservice will first form pairs from the received datagram consisting

of the string identifier and the corresponding data values. Then, the parsing code for the generated pairs is

executed, and the finalized data is sent to the Process Data microservice via an HTTP POST request. After

transmitting the data, the microservice makes a second request, this time using the HTTP GET method

to retrieve a command awaiting transmission to the respective device. If a command is returned, it is

included in the response and sent to the server, which will encrypt the response if encryption is enabled

and communicate with the device, otherwise a null value is returned.

In addition to the required datagram objects, the regular microservice will also parse the signal quality

with the respective Received Signal Strength Indicator (RSSI), Reference Signal Received Power (RSRP),

and Reference Signal Received Quality (RSRQ) and the sensor variables samples if they are present. In the

case of the configuration microservice, parsing is performed in various levels, as modem configuration,

sensor variables, and transmission interval configurations require additional parsing. The modem config-

uration parsing will separate the cell id, Tracking Area Code (TAC), and Tracking Area Update (TAU); the

sensors variable parsing will unify all sensor configurations; for example, if it receives the variable sTMP

corresponding to the temperature sensor, it will group the sensor’s period, interrupt id, interrupt status,

and state; and the transmission interval configurations parsing will parse the alarm or time interval in

accordance with the transmission mode. The remaining microservices necessitate no further processing.

45

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

3.4.2 Data processing

The Process Data microservice is responsible for receiving the parsed data from the parsing microservices

in JSON format through the available REST API endpoints. When data is received it is immediately sent

to the Mediator. Since it implements the Device Ecosystem, it also has the ability to receive commands

from the Mediator and store them in the database to be processed at a later stage, when a request is

received from a parsing microservice the command is included in the response. To communicate with the

Mediator, the Device Interface is used, which uses gRPC as the communication protocol. The use of gRPC

is a constraint for this microservice, as it was defined outside the scope of this dissertation.

The REST API consists of 6 endpoints, whose specification is provided in Table 9. The first 5 endpoints

are POST methods whose only purpose is to receive data from the parsing microservices and send it

to the Mediator using the Device Interface. Since this operation should always be successful, the HTTP

response status code should be ”200 OK”. If the operation is not successful, that means that the Mediator

is not functioning as intended, and thus a status code of ”500 Internal Server Error”is returned. The other

available endpoint is a GET method which receives two parameters, the board id, and the microservice.

These parameters are then used to query the database for commands with the matching board id and

microservice.

Table 9: Process Data microservice API specification

HTTP
Method

URI Description Status code

POST /v1/regular Send a regular message to the
Mediator

- 200 OK
- 500 Internal Server Error

POST /v1/emergency Send an emergency message to
the Mediator

- 200 OK
- 500 Internal Server Error

POST /v1/configuration Send a configuration message to
the Mediator

- 200 OK
- 500 Internal Server Error

POST /v1/command Send a command result
message to the Mediator

- 200 OK
- 500 Internal Server Error

GET /v1/command Retrieve and process a
command from the database

- 200 OK
- 204 No Content

The GET endpoint requires additional processing to be in a format that can be processed by the

device. Figure 25 illustrates the flowchart that describes this process in greater detail. Using the provided

46

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

parameters, board id and microservice, the first step is to locate a match in the database. If a microservice-

specific command cannot be located, the search scope is expanded to all microservices, also known as a

global command, to determine if there is a command available for the specified board id. If no command

is found, processing ends and a null value is returned; if multiple commands are found, a function is

executed to find the most recent temporary command, as they have a higher priority. The command will

then be removed from the database if it is temporary. Then, if the opcode of the command matches the

firmware over-the-air update opcode, the delta package containing the binary data for the device application

is retrieved from the database and appended to the response. The final steps involve serializing the data

using the MessagePack format and, if enabled, appending an MD5 hash to the response for checksum

purposes.

Start

Find microservice specific
command in database

Found? Find global command

in database

Found? Return null
NoPrioritize temporary

command over persistent
command

Temporary
command?

Yes

No

Yes

Yes Delete command from
database

No

OTA update?
Yes Find and add the delta

package from the
database to the response

Serialize data with
MessagePack

No

MD5
enabled?

Add MD5 hash to the
datagram

Yes

No

Return command
bytes

Figure 25: Process command flowchart

47

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

To receive commands sent by an application to the Mediator, a command listener is implemented

as a part of the Device Ecosystem component. This command listener supports four distinct command

types, and the execution pattern is similar for the majority of them. In Figure 26, the command listener

begins by decoding the received command and then identifies the command type. If a command is a

sensors variable command, alarm command, or FOTA update command, it is processed by Borges [8]

commands’ module, which generates command binary data that can be processed by devices and is then

stored in the database. After processing these commands, no result is generated, as this occurs only

after the command has been processed by the device. In the case of the FOTA versions command, it is

not necessary to send the command to the device because it only applies to cloud-based applications. In

response to this command, the database is searched for distinct firmware versions, which are then sent

using the API response method.

Start

Decode command data

Sensor variables
command?

Alarm

command?

FOTA update
command?

FOTA versions
command?

No

No

No

No

End

Yes

Yes

Yes

Yes
Process sensor variables

configuration

Process alarm configuration

Process OTA update
configuration

Store command in the
database

EndFind the available FOTA
versions in the database for

the specific board id

Send the results to the
orchestrator

End

Figure 26: Command listener flowchart

48

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

3.4.3 Devices

The devices microservice is the primary interface for applications, such as the dashboard, that wish to

interact with devices and their data. This is accomplished via a REST API with multiple endpoints that

meet the needs of the applications. These endpoints are defined in Table 10 and Table 11, and they allow

applications to retrieve sensor data and device configurations, as well as send commands to devices. In

addition, this microservice implements a Data Consumer and a Command Producer to receive data from

devices, send commands to devices, and receive command responses.

Table 10: Devices microservice API specification (GET methods)

URI Description Status code

/v1/devices Retrieve the available device ids - 200 OK

/v1/devices/state Retrieve the current state of all
devices

- 200 OK

/v1/devices/location Retrieve the location of all
devices

- 200 OK

/v1/devices/emergencies Retrieve the emergencies of all
devices

- 200 OK

/v1/devices/configurations Retrieve the configuration history
of all devices

- 200 OK

/v1/devices/commands Retrieve the command results of
all devices

- 200 OK

/v1/devices/{device_id}/
emergencies

Retrieve the emergencies of a
device

- 200 OK
- 400 Bad Request

/v1/devices/{device_id}/
configurations

Retrieve the configuration history
of a device

- 200 OK
- 400 Bad Request

/v1/devices/{device_id}/
configurations/latest

Retrieve the latest configuration
of a device

- 200 OK
- 400 Bad Request

/v1/devices/{device_id}/
samples

Retrieve the sensor samples of a
device

- 200 OK
- 400 Bad Request

/v1/devices/{device_id}/
samples/latest

Retrieve the latest sensor
samples of a device

- 200 OK
- 400 Bad Request

/v1/devices/{device_id}/
firmware

Retrieve the available firmware
versions of a device

- 200 OK
- 202 Accepted
- 400 Bad Request
- 500 Internal Server Error

49

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

Most endpoints provided in Table 10 can interact with the data from multiple devices, or a single

device when the ”device_id”field is included in the URI. If an operation is successful, the status code

”200 OK”must be returned for each and every endpoint. The endpoints whose queries must contain the

”device_id”field return the status code ”400 Bad Request”if the field is absent.

The last endpoint in Table 10 differs from the others in that it will send a command to the Mediator

to request the firmware versions available for a device if this information is not present in the database.

When this occurs, a ”202 Accepted”status code is returned, as a request has been made but cannot be

fulfilled until later. If this command cannot be sent to the Mediator, the status code ”500 Internal Server

Error”is returned.

The remaining API endpoints are HTTP POST methods, defined in Table 10. There are three endpoints

available, allowing applications to send commands to a specific device to change sensor configuration,

such as altering a sensor’s sampling period; altering the alarm configuration; and updating a device’s

firmware over the air. When the command is processed and sent correctly to the Mediator, a status code

of ”200 OK”is returned; if the command is improperly formatted, a status code of ”400 Bad Request”is

returned; and if the Mediator fails to receive the command, a status code of ”500 Internal Server Error”is

returned.

Table 11: Devices microservice API specification (POST methods)

URI Description Status code

/v1/devices/{device_id}/
commands/sensors

Send a sensor configuration
command

- 200 OK
- 400 Bad Request
- 500 Internal Server Error

/v1/devices/{device_id}/
commands/alarm

Send an alarm configuration
command

- 200 OK
- 400 Bad Request
- 500 Internal Server Error

/v1/devices/{device_id}/
commands/firmware

Send a FOTA update command - 200 OK
- 400 Bad Request
- 500 Internal Server Error

In a manner comparable to that of the Process Data microservice, a connection is established with

the Mediator. After establishing a connection to the Mediator, the microservice uses the Data Interface to

configure a Data Consumer to receive messages and a Command Producer to send commands and receive

command results. The Data Consumer implements a data listener that allows the microservice to receive

50

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

messages asynchronously. The data listener, depicted in Figure 27, begins by decoding the received data

and then verifies the type of message received in order to store it in the appropriate database collection.

Start

Decode data

Regular?

Emergency?

Configuration?

Command
result?

No

No

No

No

End

Yes

Yes

Yes

Yes
Store data in Regulars

collection

Store data in Emergencies
collection

Store data in Configurations
and ConfigurationHistory

collections

End

Store data in
CommandResults collection

Figure 27: Data listener flowchart

To receive command results, a separate listener associated with the Command Producer is utilized.

The command result listener operates similarly to the data listener depicted in Figure 27, with the exception

that it only checks for the FOTA versions command. This command’s output contains the available firmware

versions that are then stored in the configurations collection in the database.

3.4.4 Users

The Users microservice enables applications to effectively manage users, allowing only those with the

proper credentials to access applications rather than granting access to everyone. This REST APIs end-

points are defined in Table 12.

51

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

Users can be created using the POST method for registering a new user, which, when successful,

should return the status code ”201 Created.”The remaining status codes indicate that a user could not be

created: ”400 Bad Request”indicates a syntax error; ”409 Conflict”indicates that the user already exists;

and ”500 Internal Server Error”indicates a server error during request processing.

In addition to user registration, one of the most crucial aspects of user management is authentication,

which is also supported by this API. The authentication endpoint spends the majority of its time securing

the password to avoid storing it in plain text. The first step is to concatenate a Pepper [61] to the received

password, which is a secret random value stored on the server but not in the database. The concatenated

password is then hashed using the Argon2 [62] algorithm, which converts the data into a completely

different, unrecognizable set of characters. If the hash matches the hash stored in the database, the

authentication is successful and the status code ”200 OK”is returned; otherwise, the status code ”403

Forbidden”is returned instead.

Table 12: Users microservice API specification

HTTP
Method

URI Description Status code

GET /v1/users Retrieve the username of all
registered users

- 200 OK

POST /v1/users/
authenticate

Send authentication parameters
and check the database for a
matching user

- 200 OK
- 400 Bad Request
- 403 Forbidden
- 404 Not Found

POST /v1/users/
register

Create a new user - 201 Created
- 400 Bad Request
- 409 Conflict
- 500 Internal Server Error

GET /v1/users/
{username}

Retrieve a user’s information - 200 OK
- 404 Not Found

DELETE /v1/users/
{username}

Delete a specific user - 200 OK
- 204 No Content
- 500 Internal Server Error

52

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

3.5 Database

In the previous version of the cloud, there was a single database for all data. However, since the new

architecture divides the cloud into two segments, the database is also divided. The database in use is

the NoSQL database MongoDB [63]. As an alternative to relational databases, it employs a non-relational,

document-oriented data model and a non-structured query language that is quite useful for working with

large sets of distributed data. Since it stores data in JSON-like documents, it works well with REST APIs

that also store their data in the same format. To avoid creating interdependencies and thus violating one

of the microservices architecture principles, only the microservices interact directly with the database, and

a single database collection can only be accessed by a single microservice.

Before delving deeper into each database and its collections, it is necessary to explain several pa-

rameters found in multiple collections, including ”p”, ”board id”, ”board timestamp”, and ”system times-

tamp.”Since transmission packages can be sent in multiple packages, the ”p”arrays contain the current

package’s number and the total number of packages. Universally Unique Identifier (UUID) used for device

identification is ”board id.”Both the board and system timestamps are in Unix epoch format. The board

timestamp corresponds to the moment the board transmits, while the system timestamp corresponds to

the moment the server receives the message. The remaining parameters are each collection-specific.

3.5.1 Data

The data segment database stores all the data necessary for the correct processing of command re-

sponses, which requires four database collections, which are described below: Configurations, Commands,

Deltas, and Firmwares. In Figure 28, the fields of collections and their respective data types are illustrated.

• Configurations - stores the latest configuration for each endpoint device. These configurations

include: the alarms, which indicates the time interval between regular transmissions or the alarms

throughout the day at which it will transmit; the modem configuration with the cell id, tac, and tau

of the modem; the sensors variables configuration for each available sensor such as temperature

(sTMP), and humidity (sHUM); and the ota object, which specifies the addresses of application 1

and application 2 since the device memory is partitioned into two sections. In addition, it contains

the current index of the over-the-air update package, as updates are processed one package at a

time, as well as the total flash memory size of the device.

53

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

• Commands - stores the commands awaiting transmission to the target device. Each command

document contains the command opcode, the microservice to respond to, the MD5 hash status,

the command datagram to be transmitted to the device, and the command description. When a

non-persistent command is processed, its entry in this collection is deleted.

• Deltas - stores the deltas used for FOTA updates. The document’s packages range from 1 to the

total number of packages specified in the ”total packages”field. If a delta is designed as true, it

indicates that it was generated from the difference between two versions, and as a result, its size is

smaller; otherwise, it will include all packages pertinent to the new version, and thus is not a true

delta.

• Firmwares - stores the firmwares used to produce deltas. Each firmware includes a version string

and objects for each microcontroller unit that supports that version. Each version of microcontroller

unit stores two objects, one for each application address, with binary and Intel hexadecimal data

formats in each object.

3.5.2 Application

The database for the application segment stores data sent from devices as well as other data that may

be relevant to applications, such as user data. This database includes the Configurations, Configuration

History, Command Results, Regulars, and Emergencies collections. The listing that follows describes the

collections in greater detail, and Figure 29 shows the fields and their respective data types.

• Configurations - stores the most up-to-date configuration for each endpoint. This collection op-

erates identically to the Configurations collection described in the preceding section; the only dif-

ference is the addition of a new field, ”available_sw_versions,”which stores the results of the FOTA

versions command. This field contains an array of strings containing all possible firmware versions

for the device, whereas ”sw_version”specifies the current version.

• Configuration History - stores all configuration messages. This collection employs the exact

same structure as the Configurations collection, with the exception that its data is never updated

or removed, as a new document is inserted whenever a new configuration message arrives.

• Command Results - stores the command result messages. This collection, like the Commands

collection from the previous section, stores the command opcode, but it also includes a description

54

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

Commands
board_id: int64
options: object
opcode: int32
datagram: array
microservice: string
description: string

options
md5: boolean
persistent: boolean

Configurations
p: array
board_id: int64
board_timestamp: date
system_timestamp: date
mcu: string
sw_version: string
alarms: int32 or string
modem_config: object
variables: object
ota: object

modem_config
cell_id: string
tac: string
tau: string

variables
TMP: object
HUM: object
LGH: object
...

TMP
enable: boolean
emergency: boolean
sampling: boolean
avg_mode: boolean
avg_limit: int32
period: int32
emergency_value: int32

ota
app1: int32
app2: int32
now: int32
pckg_i: int32
flash_size: int32

Deltas
delta: boolean
new_addr: int32
new_version: string
old_addr: int32
old_version: string
checksum: int32
mcu: string
total_bytes: int32
total_packages: int32
package0: array
...
package(N-1): array

Firmwares
version: string
0x8002000_STM32L081KZU6: object
0x8019000_STM32L081KZU6: object
...

0x8019000_STM32L081KZU6
bin: binary
hex: binary

Figure 28: Data segment database collections

of the command opcode to provide context for applications. The command result is an object with

boolean values for set and get (a successful command displays both as true). There is an undefined

field at the end that varies based on the command type, such as variables for a sensor variables

configuration command.

• Regulars - stores regular messages. Eachmessage includes the common fields, as well as samples

of the sensors and modem signal quality. The signal quality and samples fields in each message

are not guaranteed.

• Emergencies - stores emergency messages. Each emergency message contains the emergency

flags that were triggered and all the sensor variable samples that were captured at the time of the

55

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

emergency. However, not all variables samples may warrant an emergency, only those specified in

the flags array.

• Users - stores relevant user data. There exists a unique document with a distinct username for

each registered user. Other user data, including name and email, is also stored. The password

field contains a hashed string that cannot be easily reversed to the original password for security

purposes.

Configurations
p: array
board_id: int64
board_timestamp: date
system_timestamp: date
mcu: string
sw_version: string
available_sw_versions: array
alarms: int32 or string
modem_config: object
variables: object
ota: object

modem_config
cell_id: string
tac: string
tau: string

variables
TMP: object
HUM: object
LGH: object
...

TMP
enable: boolean
emergency: boolean
sampling: boolean
avg_mode: boolean
avg_limit: int32
period: int32
emergency_value: int32

ota
app1: int32
app2: int32
now: int32
pckg_i: int32
flash_size: int32

Command Results
p: array
board_id: int64
board_timestamp: date
system_timestamp: date
opcode: int32
description: string
result: object
... (command specific)

result
set: boolean
get: boolean

Regulars
p: array
board_id: int64
board_timestamp: date
system_timestamp: date
signal_quality: object
samples: object

signal_quality
rssi: int32
rsrq: int32
rsrp: int32

samples
TMP: array
HUM: array
LGH: array
...

Emergencies
p: array
board_id: int64
board_timestamp: date
system_timestamp: date
flags: array
tmp: int32
hum: int32
lgh: int32
...

Users
username: string
password: string
first_name: string
last_name: string
email: string
password_modified_timestamp: date
user_creation_timestamp: date

Figure 29: Application segment database collections

56

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

3.6 Dashboard

The dashboard is the only application available to interact with the end-user in the Link4S project and is

part of the application segment. This section aims to provide a dashboard design that incorporates the

good design practices and market research presented in the preceding chapter, as well as develop any

additional software required to achieve the dashboard’s purpose.

3.6.1 Functional and visual features

As described in the previous chapter, a dashboard contains features that can be categorized as either

functional or visual in order to achieve its objectives. The following features were carefully considered

to ensure proper alignment with the dashboard’s purpose and to enhance the end-user decision-making

process.

3.6.1.1 Functional features

• Real-time notifications

• Graph and tabular format

• Show/hide graphs

• Global graph filters

• Time interval widget

3.6.1.2 Visual features

• Multipage

• Frugal use of colors

• High data-ink ratio

• Grid lines for graphs

57

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

3.6.2 Framework choice

The preceding chapter introduced several dashboard development frameworks, each with their own advan-

tages and disadvantages. However, only one of these frameworks is required for this project. Identifying

the dashboard type according to the taxonomy established in Figure 12 will assist in selecting the most

appropriate framework.

Since the dashboard is intended for an organization and requires user-interaction views, it appears to

fit best within the Dashboards for Decision-Making. Within these dashboards, there are two types: Strategic

Decision-Making and Operational Decision-Making. However, according to the design choices in Table 5,

these types of dashboards serve different purposes. In light of this, the dashboard can be categorized

under Operational Decision-Making.

Among the examples examined in Table 6, the Node-RED platform is the only one that corresponds to

the Operational Decision-Making dashboard category. The Node-RED platform could be an appropriate op-

tion for developing a dashboard, and it is adequate for a project that has already implemented the majority

of its infrastructure and is seeking to supplement it with a dashboard application. By examining Table 7, it

is possible to see that it does not offer the greatest design flexibility, and that there is a framework, Dash,

that offers the same capabilities as Node-RED. The Dash framework, despite requiring more development

effort and time, provides all the necessary features and allows development in Python, which is the lan-

guage already in use for the remainder of the Cloud. Due to its stateless design, Dash is also fault tolerant

and extremely scalable, making it the most suitable framework.

As shown in Figure 30, the Dash framework consists of a variety of individual components. It employs

Flask [64], a well-known Python microframework, for the backend. React [65] is used to manage all com-

ponents because a Dash application is rendered as a single-page React application. This compatibility

with React enables the Dash feature set to be expanded by importing React components that were orig-

inally designed to function in JavaScript. It uses Plotly [66], the most widely supported package for data

visualization, to generate charts, although this is optional. Plotly will be used in the dashboard whenever

graphing is required.

+ + =

React interactive components Plotly graphing libraryFlask backend server

Figure 30: Dash framework components

58

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

3.6.3 Architecture overview

The architecture overview illustrated in Figure 18 has already established the connections between the

dashboard and other entities. The focus is now on understanding how the selected Dash framework for

the dashboard can interact with the other entities to achieve its goals and provide the best user experience.

3.6.3.1 Design pattern

The design pattern for the dashboard application is the MVC (Model View Controller) [67] design pattern,

which is commonly used to implement user interfaces, data, and controlling logic. It provides a clear

separation of data, business logic, and the user interface at its core. Following is a description of the MVC

design pattern’s three components:

• Model - manages data and business logic

• View - handles layout and display

• Controller - interprets inputs and commands the model and view parts accordingly

In the case of the Dash framework, the MVC pattern can be contained entirely within the framework,

eliminating the need to implement multiple frontend and backend technologies. The MVC pattern is de-

picted in Figure 31, which also contains all the entities that interact with the dashboard.

In Figure 31, it is evident that the User initiates the flow of information the majority of the time, as it

interacts with the dashboard and provides inputs to the Controller. In the case of a dashboard constructed

using the Dash framework, the controller is a callback, which are functions that are automatically invoked

whenever the property of an input component changes [68]. The controllers can also receive input from

other sources, such as the Change Stream, which is responsible for real-time database change detection

and sending the relevant data to the controller.

Although the information flow dictates that the Controller must interact with the model, there are times

when it can interact directly with the view, such as when the input relates to an action that does not require

data manipulation. If not, the controller will manipulate the model to obtain data from the microservices or

Redis cache. After processing the data, the View is updated and the User is presented with an interactive

layout.

59

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

Model

View Controller

Microservices

sometimes updates

 directly

input

User

presents input

updates manipulates

Change Stream

Redis

Figure 31: Dashboard MVC diagram

3.6.3.2 User flow

The user interaction is one of the most important aspects of the design of a user interface, such as a

dashboard. As depicted in Figure 32, a user will follow certain paths to reach the desired information when

interacting with an application. The paths contain only information pertinent from the user’s perspective;

the interaction between internal systems, such as microservices and databases, is not included.

As shown in Figure 32, the user begins by interacting with the login page and is then redirected to the

overview page, which serves as the dashboard’s homepage. The user has access to a sidebar containing

multiple links, one for each page, to which he is redirected when he clicks. The user may also click the

logout button in the sidebar to return to the login page.

3.6.4 Design prototype

To properly develop a dashboard application, a design prototype that incorporates all previously defined

requirements and features must be created as a reference for the implementation. The following page pro-

totypes were all developed using the UI design and prototyping tool UXPin [69]. The prototypes also make

use of color, and the color scheme depicted in Figure 33 serves as a reference for the implementation.

The colors were chosen based on a darker theme that improves visibility and does not strain the eyes of

60

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

Start

Login Page

Login data
correct?

Overview page

Yes

No

Click item on sidebar

Logout?

Overview?
Yes

Yes
Metrics?

Sensors?

Specifications?

Yes

Yes

Yes

Metrics page

Sensors page

Specifications page

View general
information section

View device location
section

View device health
section View notifications

Click notification item

View notification data

View device
specifications

Click settings button Change command
settings

Select device ID &
click apply button

Set device alarmSet device FOTA
update

Select device ID &
time interval Click apply button

Click settings button Change graph
settings

View sensors data
graphs

View device sensors
parameters

Select device ID &
click apply button Set new parameters

Click save button

Click send buttonClick send button

Click settings button Change command
settings

Figure 32: Dashboard user flow

the end-user.

Figure 33: Dashboard color palette

3.6.4.1 Login

The initial page with which the user interacts is the login page, which enables user authentication. This

page’s design is extremely straightforward, as its sole purpose is to receive two text parameters, the user-

name and password, and to provide a login button. The primary layout is centered on the display, and the

logo is present. The dashboard does not provide a method for user registration because this is outside of

61

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

its scope and is handled by the organization. As a security measure, the text entered into the password

text box will be unreadable.

Link4S

Login

Username

Password

Username

Password

Figure 34: Login page design prototype

3.6.4.2 Overview

After logging in, the user is redirected to the overview page, which serves as the dashboard’s homepage.

This page is divided into the following four sections: general, device location, device state, and notifications,

which are explained below:

• General - displays a global overview of the current state of the devices, beginning with a circular

gauge indicating the fraction of active devices. The remaining four rectangular items indicate the

number of devices in each of the following states: online, faulty (did not communicate in the expected

interval plus a grace period), and inactive (did not communicate in the expected interval plus 24

hours), as well as the number of unresolved emergencies.

• Device location - displays the current location of all devices that provide location information.

Each device is assigned a single pin that, when clicked, provides additional information.

• Device state - displays a list of items containing the current state of all devices. Each item displays

the device’s activity state, signal strength, and battery life.

62

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

• Notifications - displays a list of items containing three types of notifications: configuration, com-

mand result, and emergency. The user can click on these items to view additional information about

the specific notification.

Some of the information between the sections is repeated on purpose, as this allows the end-user to

obtain the relevant information at multiple levels, as the user may sometimes want to see only how many

devices are online without delving further into the data.

Additionally, it is one of the pages that receives real-time updates, so it can be used to monitor devices

without the need to frequently refresh the page. Real-time updates are available for all the sections in the

page.

Link4S

Overview

Metrics

Sensors

Speci�cations

Logout

General

Device location

Device state Notifications

Online

Emergencies

Faulty

Inactive

2

2

1

1

2/4
total devices

Device 1

Signal quality Strong

100%Battery

Online

Device 2

Signal quality Average

75%Battery

Online

Device 3

Signal quality Average

50%Battery

Device 4

Signal quality Weak

10%Battery

Faulty

Inactive

Device 1 Con�guration

Device 1

Device 2 Con�guration

Device 3

Emergency

Command

Figure 35: Overview page design prototype

3.6.4.3 Metrics

Themetrics page enables the end-user to interact with the sensor data transmitted by the devices. The page

includes views for selecting the desired device and the sensor data time interval. When the ”Apply”button

is clicked, multiple graphs for all sensors with available data are displayed.

Each sensor variable view includes two gauges, one for the most recent value and the other for the

average or mean value, depending on the dashboard configuration. While the average or mean will only

have an effect on the values from the selected time interval, the latest value is independent of the time

63

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

interval and will always be displayed if there is data for the sensor variable in question; it can also change

its value through real-time updates. In the instances where there is no data available for the selected time

interval, but there is data available outside the time interval, only the latest value gauge will be displayed,

without the graph or average/mean gauges. The primary graph displays points on a time scale, always

within the selected time interval.

A ”Settings”button is also present, which, when clicked, reveals another small window. The settings are

used to modify the appearance of the graphs, such as the plot type (lines, markers, or lines and markers)

and to enable/disable sensor views and the type of data to display (regular messages or regular messages

and emergencies). If multiple sensor variables are available, the graph will display multiple lines and adjust

its scale accordingly.

Link4S

Overview

Metrics

Sensors

Speci�cations

Logout

Temperature

Latest

Latest

Average

Average

Humidity

SettingsApplySelect device Start Date End Date

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

0

2

4

6

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

0

2

4

6

8

Figure 36: Metrics page design prototype

3.6.4.4 Sensors

The sensors page enables the end-user to interact with the devices, specifically to modify the configurations

of device sensor variables. To accomplish this, the user must first select a device from the drop-downmenu;

then, after clicking the ”Apply”button, all of the device’s current sensor configurations appear in separate

containers.

64

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

Each sensor variable container contains switches and input components that correspond to the fields

available in the database, as seen in the previous section. The user is free to modify these parameters,

and only after clicking the ”Save”button are the changes transmitted to the device.

This page also contains a ”Settings”button, which contains the settings for the command that is sent

whenever a save occurs. These settings include the MD5 hash status, the command’s persistence in the

database, and the parsing microservice used to consume the command.

Link4S

Overview

Metrics

Sensors

Speci�cations

Logout

Temperature

Enabled

Emergency

Sampling

Average Mode

Average Limit

Period

SettingsApply SaveSelect device

3

60

Humidity

Enabled

Emergency

Sampling

Average Mode

Average Limit

Period

3

100

Figure 37: Sensors page design prototype

3.6.4.5 Specifications

The last page of the dashboard, the specifications page provides an overview of the selected device’s

settings as well as useful views for frequently used commands. Similar to the other pages, the user must

select a device from the drop-down menu and then click ”Apply.”Then, the most pertinent settings for the

device are displayed, which correspond to the fields in the configuration collection that were displayed

in Figure 29.

Along with the device settings, two additional containers are provided: one for changing the device

alarm, which provides the user with containers for the hours, minutes, and seconds to make it easier to

select a time value, and another for FOTA updates, which includes a delta switch for determining whether

a delta should be used.

65

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

Similar to the sensors page, there is a ”Settings”button with the same settings: the MD5 hash status,

the command’s persistence in the database, and the parsing microservice used to consume the command.

Link4S

Overview

Metrics

Sensors

Speci�cations

1D22281D2228

Logout

Device ID device-1

12/10/22 22:00:00

12/10/22 22:00:00

STM32

V1.2

3600

128000

100000000

200000000

100000000

0

1234567AB

1000

00010001

Board timestamp

System timestamp

Microcontroller unit

Firmware version

Alarm

Flash size

Delta 1st address

Delta 2nd address

Delta current address

Delta package number

Cell ID

Tracking area code

Tracking area update

SettingsApplySelect device

Send

Select version

Alarm

Hours

Minutes Delta

Seconds

0

0

0 Send

Firmware Over
The Air

Figure 38: Specifications page design prototype

3.6.5 Real-time updates

The Dash framework requires assistance when real-time data is required. The framework attempts to ad-

dress this issue by providing components for live updates that enable updates at a predefined interval [70].

When this interval is set to a small value, the behavior is similar to receiving updates in real-time; however,

using this approach, which is similar to polling, would present a larger problem, as thousands of requests

would be made to the microservices to check if new data was available, resulting in an unreasonable

increase in network load.

Change Streams [71] is a feature of MongoDB that provides a better solution. This feature enables

applications to subscribe to all data changes on a single or multiple collections of a database and react to

those changes immediately. Change Streams also enable the data to be filtered using the same aggregation

framework as standard MongoDB database queries, thereby enhancing the overall efficiency of the process.

Change Streams is only available for replica sets, which is one of its few restrictions. A replica set

in MongoDB is a collection of processes that interact to ensure the consistency of a data set. Because

they offer both redundancy and a high level of availability, these sets are frequently used in production

66

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

systems. In this instance, the replica set is only used for Change Streams, so only one replica is required.

As depicted in Figure 39, the primary node receives all write operations and logs all modifications to

its data sets in its operation log, or oplog. The secondaries replicate the primary’s oplog and apply the

operations asynchronously to their respective data sets. In addition, a heartbeat signal, also known as a

ping, is exchanged every few seconds to ensure that all sets are operational.

Application

MongoDB Driver

Primary

Write Read

Secondary

ReplicationHeartbeat

Figure 39: MongoDB replica set diagram

The application flowchart for Change Streams is depicted in Figure 40. The first step in building this

application is to create the MongoDB client that will communicate with the database. The web application

responsible for communicating with clients via WebSockets is then developed. WebSockets are used for

the connections because they offer persistent connections and are event-driven, a requirement for true

real-time.

The changes handler, which is responsible for handling the clients and the messages sent to them,

is created after the web application has been created and assigned to it. The changes handler will be

invoked whenever an update occurs. After assigning the handler, the port where the application will listen

for clients is specified and the database collection callbacks are added.

The final action is to initiate the execution loop. After being initiated, the execution loop will jump to

the defined callback method whenever a database update occurs on database collections with assigned

callbacks. The callback method will then invoke the changes handler to process the data and send it to

connected clients.

3.6.6 Time series cache

The time series cache provides a caching solution for the dashboard to store sensor data in a local cache

which reduces the need to make frequent API calls for the same chunks of data. The creation of such

67

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

Create MongoDB client

Add callbacks for each
collection

Assign the changes
handler to the

application

Set a port for
communicating with

clients

Create changes
handler

Start the execution loop

Start

Execution loop

End

Create web application

Figure 40: Change Streams flowchart

a cache is challenging due to the fact that time series data can span multiple timeframes and contain

millions of samples, making classic caches inefficient. Popular caches such as Flask-Caching [72] use

memoization techniques in which the inputs of a function are used to create a cache key and the function

results are stored as cache values. When dealing with time series data, the inputs include the start and

end dates; therefore, the number of possible variations for the inputs is too high, and the cache would

consume an excessive amount of memory with a very low percentage of cache hits.

To address this issue, a more flexible approach is required, in which data collected and stored for

specific time periods can be reused. A viable solution is to divide the time series data into blocks and

use an approach similar to page caching in operating systems that read data from disk, where they read

and store entire chunks of data in cache pages as opposed to reading individual bytes [73]. To apply this

method to the sensor data, the time series data for each sensor variable can be divided into buckets with

68

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

the same period, such as one week, as depicted in Figure 41. When a request is made to the cache, all

buckets that fall within the start and end dates are returned, and if a bucket is not available in cache, a

request is sent upstream to the Devices microservice to retrieve the missing data.

start date end date

buckets

upstream
1 week cache miss

cache hit

request

Figure 41: Time series cache diagram [74]

The caching strategy, which describes how data will be loaded into the cache, is another aspect of

the cache that requires analysis. There are numerous caching strategies, but for simplicity’s sake, the lazy

loading strategy will be employed.

Lazy loading is a caching strategy that loads data into the cache only when it is requested, i.e. only

when there is a cache miss [75]. Thus, it can be retrieved more quickly the next time it is requested. It

is also a good way to prevent the cache from becoming bloated with unnecessary data. This strategy can

also be enhanced by adding a TTL (Time to live), which sets an expiration date for cache keys and prevents

data from becoming stale.

Redis [76], an open source, in-memory data store commonly used for caching purposes and containing

all the necessary features for the metrics cache, will be used as the cache client.

The flowchart in Figure 42 depicts the retrieval and transmission of data to the cache. It begins by

creating weekly buckets with the start and end dates the user provided. It’s important to note that the

buckets will always be aligned to the same day, and it doesn’t matter if they span a longer period of time

than the specified dates. A cache key is then generated for each bucket containing the bucket’s start and

end dates, as well as the ID of the device and sensor variable. Then, the keys are utilized to retrieve the

cached results, and a loop is initiated to determine if each cached key result contains sample values. If

there are no available values for a given key, a request is sent upstream for data, which is then cached

with a TTL. After all results have been processed, samples that fall outside of the user-specified start and

end dates are removed and the remaining results returned.

Moreover, it can be beneficial to populate the cache in the background with frequently accessed met-

rics. For this purpose, a task can be scheduled to run sporadically in order to send data to the cache,

69

CHAPTER 3. SYSTEM SPECIFICATION & DESIGN

thereby enhancing the dashboard user experience.

Start

Create buckets within
the start and end dates

Generate a cache key
for each bucket

Retrieve cache results
for the generated keys

Has

samples?

Yes

No
Fetch samples from

upstream

go to next key

Last
result?

Yes

No

Send data to cache and
set TTL

Remove samples
outside the start and

end date range

Return samples

End

Figure 42: Time series cache flowchart

70

C
h
a
p
te

r

4
Implementation

The implementation phase carries out the previously established design. This chapter details the imple-

mentation of the cloud architecture, from the microservices to the dashboard, although not all code is

documented due to the large codebase size.

4.1 Programming languages and tools

The main programming language used for the cloud was Python. The cloud components, such as the

dashboard, utilized a Python version of the Dash framework, while the microservices utilized either the

Blackwing or Falcon web frameworks, minimalist frameworks for building REST APIs and microservices.

In addition, CSS and JavaScript were used to improve the functionality of the dashboard.

The Black code formatter, which automatically styles the code in a PEP-8 compliant format, was used

to keep the Python code more organized and consistent across the multiple files. In addition to Black,

flake8 was used as a linter that analyzed warnings, PEP-8 violations, and code complexity.

Visual Studio Code is an open-source code editor created by Microsoft that includes support for de-

bugging, syntax highlighting, intelligent code completion, snippets, code refactoring, and embedded Git.

The entire coding process was performed in this editor.

The official MongoDB Compass tool was used to interact with the MongoDB database, enabling the

analysis of dashboard data and simplifying the testing process.

71

CHAPTER 4. IMPLEMENTATION

4.2 Microservices

The implementation of the data parsing microservices only reflects the newly added code, as the majority

of the code was already implemented and documented in [8]. Everything had to be implemented from

scratch for the remaining microservices, but not all code is displayed because in some cases it is irrelevant

or repetitive.

For the Process Data microservice, Listing 1 demonstrates the creation of a REST API. The microser-

vice’s primary method, create_api, begins by creating a Falcon app object and then adds the endpoints

to the app object. Each endpoint is assigned a route in the form of a string and an object of the resource

class ProcessData for handling requests. The suffix assists in identifying the resource class’s methods.

1 def create_api(log=True):
2 ...
3 db.init((db_config[”db_url”], db_config[”db_port”]), db_config[”db_name”])
4
5 resource = ProcessData()
6
7 _app = falcon.App()
8 _app.add_route(”/v1/regular”, resource, suffix=”regular”)
9 _app.add_route(”/v1/emergency”, resource, suffix=”emergency”)

10 _app.add_route(”/v1/configuration”, resource, suffix=”configuration”)
11 _app.add_route(”/v1/command”, resource, suffix=”command”)
12
13 return _app
14
15 app = application = create_api()

Listing 1: Process data microservice API creation

The resource class is the primary difference for the other microservices that implement a REST API,

namely the devices and users microservices. Every API endpoint was implemented according to the spec-

ification.

4.2.1 Data parsing

When a message is received by the Blackwing server, it is routed to one of the four available parsing

microservices: Regular, Emergency, Configuration, and Command. Each of these microservices includes

a handler derived from BlackwingHandler. This handler, whose code is displayed in Listing 2, is invoked

to process the message. It begins by loading the configuration and initiating the NB-IoT database, then

calls the appropriate parsing function and API post function to send the parsed data to the Process Data

microservice.

Then, a condition is evaluated to determine if the current package corresponds to the previous package.

If this condition is met, a GET request is sent to the Process Data microservice, specifically the commands

endpoint, along with the board ID and microservice identifier. If the response code is 200, the request was

72

CHAPTER 4. IMPLEMENTATION

successful and the data is encoded and assigned to the response; otherwise, a null value is assigned to

the response.

1 class ParseRegularHandler(BlackWingHandler):
2 def attendRequest(self):
3 try:
4 self.config = yaml.load(os.path.join(dirname, ”../../config.yaml”))
5 db.init((self.config[”db_url”], self.config[”db_port”]), ”NB-IoT”)
6 payload_dict = regular.parse(self.letter)
7 regular._api_post(payload_dict)
8 except Exception as e:
9 print(”Error parsing regular.. ”, e)

10 print(”Received: ”, self.letter)
11
12 try:
13 self.response = None
14 if payload_dict[”p”][0] == payload_dict[”p”][1]:
15 resp = requests.get(
16 self.COMMAND_API_URL,
17 params={”board-id”: regular.board_id, ”microservice”: ”regulars”},
18)
19 if resp.status_code == 200:
20 data = resp.json()
21 self.response = data.encode(”latin-1”)
22
23 except Exception as e:
24 print(f”Error calling response function.. {e}”)
25 self.response = None

Listing 2: Blackwing parsing microservice handler

One of the few differences between this handler and its previous implementation in [8] is the addition

of the API post method, illustrated in Listing 3, which is responsible for sending data to the Process

Data microservice using the appropriate HTTP method. It also performs a check to determine if a FOTA

update is available, as this also requires a configuration update. This method is similar for all four parsing

microservices, despite not being shown.

1 class Regular:
2 collection = ”Regulars”
3 board_id = None
4 ota_update = False
5 headers = {”Content-Type”: ”application/json”, ”Accept”: ”application/json”}
6
7 ...
8 @classmethod
9 def _api_post(cls, payload_dict):

10 data = payload_dict
11
12 if ”_id” in data:
13 del data[”_id”]
14
15 if cls.ota_update:
16 requests.post(
17 f”{common.API_URL}/configuration”,
18 data=json.dumps(data),
19 headers=cls.headers,
20)
21
22 requests.post(
23 f”{common.API_URL}/regular”,
24 data=json.dumps(data),
25 headers=cls.headers,
26)

Listing 3: Parsing microservice API post method

73

CHAPTER 4. IMPLEMENTATION

4.2.2 Data processing

The Process Data microservice utilizes a REST API to communicate with the parsing microservices and

the Python libraries for the Device Interface to communicate with the Mediator.

The resource class is ProcessData, as described in in Listing 4. This class implements all API methods

as functions that are invoked when a request is received. There are four similar POST methods, but only

the method on_post_regular for regular messages is displayed as the others are very similar. Each of

these methods receives data from the microservice performing the parsing, converts it to JSON format,

and sends it to the Mediator. The response status of the POST method will depend on whether the Mediator

received the messages successfully.

To retrieve commands from the database, the on_get_command method is implemented, which re-

ceives the parameters sent by the parsing microservices: board ID and microservice identification, before

calling the response function, which was ported from the commands module in [8]. If there are no com-

mands in the database, the 204 (No Content) HTTP status code is returned; otherwise, the 200 (OK) code

along with the command data is returned.

1 class ProcessData:
2 def on_post_regular(self, req, resp):
3 logging.log(logging.INFO, req)
4
5 data = req.media
6
7 output = {”type”: ”regular”, ”content”: data}
8
9 output_bytes = json.dumps(output).encode(”utf-8”)

10 status = orch_api.sendData(str(data[”board_id”]), output_bytes)
11
12 if status:
13 resp.status = falcon.HTTP_200
14 else:
15 resp.status = falcon.HTTP_500
16 ...
17 def on_get_command(self, req, resp):
18 logging.log(logging.INFO, str(req))
19
20 board_id = req.get_param_as_int(”board-id”, required=True)
21 microservice = req.get_param(”microservice”, required=True)
22
23 data = response(board_id, microservice)
24
25 if data is None:
26 resp.status = falcon.HTTP_204
27 return
28
29 resp.text = json.dumps(data.decode(”latin-1”), ensure_ascii=False)
30
31 resp.status = falcon.HTTP_200

Listing 4: Process data microservice API methods

In addition to the REST API, this microservice implements a command listener to receive commands

74

CHAPTER 4. IMPLEMENTATION

from the Mediator, which were originally sent by an application, such as the dashboard. The code in List-

ing 5 shows the function onSendCommand that overrides the corresponding method on the SendCom-

mandListener class. This function receives the device ID, the command data in bytes, and the context to

be returned with the command response.

The first example is the FOTA update command, which uses the commands module to process the

command data and store it in the database. As the command can only be executed later, the command’s

result is irrelevant, so the response returns the same data that was received. The other command is a

FOTA versions command, which is cloud-only, meaning it does not reach a device. This command queries

a database for the various available firmware versions and returns this information to the Mediator.

1 class _SendCommandListener(SendCommandListener):
2 def onSendCommand(self, device_id: str, cmd: bytes, context: bytes) -> None:
3 command = json.loads(cmd.decode(”utf-8”))
4
5 logging.log(
6 logging.INFO,
7 f”Command received from orchestrator: {device_id=}, {command=}”,
8)
9

10 commands = Commands(
11 db,
12 md5=command[”md5”],
13 persistent=command[”persistance”],
14 microservice=command[”consumer”],
15)
16
17 match command[”type”]:
18 ...
19 case ”fota”:
20 commands.setOTAUpdate(
21 int(device_id),
22 command[”fota”][”version”],
23 command[”fota”][”delta_mode”],
24)
25 orch_api.sendCommandResult(device_id, cmd, context)
26 case ”fota_versions”:
27 result = db.distinct(”Firmwares”, ”version”, {”version”: {”$ne”: None}})
28
29 output_dict = {
30 ”board_id”: int(device_id),
31 ”available_sw_versions”: sorted(result),
32 }
33
34 output_bytes = json.dumps(output_dict).encode(”utf-8”)
35 orch_api.sendCommandResult(device_id, output_bytes, context)

Listing 5: Process data microservice command listener

4.2.3 Devices

The devices microservice communicates with the Mediator and provides the sole interface through which

applications can interact with devices.

The majority of implemented API endpoints are GET methods, which are primarily used to retrieve data

from the database. The on_get_dev_samples shown in Listing 6 is particularly relevant, as it is used to

75

CHAPTER 4. IMPLEMENTATION

retrieve sensor data. This endpoint obtains the device ID from the URI, which must be an integer. Other

parameters, such as the sample ID and the timestamps used to create the sample’s time interval, are also

provided in the query. The only required parameter among these is the sample ID. The timestamps are

optional because the database search can go as far forward or backward in time as needed, as long as

there is available data. If all parameters are specified correctly, the search will return a 200 (OK) status

code even if no samples are located.

The implementation of the POST methods is also very similar, and they are all used to receive com-

mands from the dashboard and send them to the Mediator so they can reach the devices. The method

on_post_dev_commands_sensors displayed in Listing 6 receives device sensor configurations and veri-

fies that all required data is present and of the appropriate data type. If the data is in the proper format, it

is converted to JSON and transmitted to the Mediator.

1 class DeviceResource(object):
2 ...
3 def on_get_dev_samples(self, req, resp, device_id):
4 logging.log(logging.INFO, req)
5
6 device_id = convert_to_int(device_id)
7
8 if not device_id:
9 resp.status = falcon.HTTP_400

10 return
11
12 sample_id = req.get_param_as_list(”sample-id”, required=True)
13 lower_ts = req.get_param_as_int(”lower-ts”)
14 higher_ts = req.get_param_as_int(”higher-ts”)
15
16 data = acq.get_dev_samples(device_id, sample_id, lower_ts, higher_ts)
17
18 resp.text = json.dumps(data, ensure_ascii=False)
19
20 resp.status = falcon.HTTP_200
21 ...
22 def on_post_dev_commands_sensors(self, req, resp, device_id):
23 logging.log(logging.INFO, req)
24
25 device_id = convert_to_int(device_id)
26
27 if not device_id:
28 resp.status = falcon.HTTP_400
29 return
30
31 data = req.media
32
33 required_data = [”md5”, ”persistance”, ”consumer”, ”variables”]
34
35 if not all(key in data for key in required_data):
36 resp.status = falcon.HTTP_400
37 return
38
39 if (type(data[”md5”]) is not bool or type(data[”persistance”]) is not bool or type(data[”consumer”]) is not str

↩→ or type(data[”variables”]) is not list):
40 resp.status = falcon.HTTP_400
41 return
42
43 data[”type”] = ”variables”
44
45 try:
46 for d in data[”variables”]:
47 process_sensor_command(d)
48 except Exception:
49 resp.status = falcon.HTTP_400

76

CHAPTER 4. IMPLEMENTATION

50 return
51
52 data_bytes = json.dumps(data).encode(”utf-8”)
53 status = orch_api.sendCommand(str(device_id), data_bytes, b”variables”)
54
55 if status:
56 resp.text = json.dumps(data, ensure_ascii=False)
57 resp.status = falcon.HTTP_200
58 else:
59 resp.status = falcon.HTTP_500

Listing 6: Devices microservice API endpoints

Two classes of listeners are used to communicate with the Mediator: the SendDataListener and the

CommandResultListener. The first, as its name suggests, is invoked when data is received from the Media-

tor. In this instance, the only relevant data are the messages sent by the devices, which can be one of four

types: regular, emergency, configuration, or command. After determining the type of message, its data is

stored in the appropriate database collection. The second listener receives the command’s output. This

listener has limited utility because the majority of commands do not provide instant results, only those

contained in the cloud, as is the case with the only command displayed, the FOTA versions command.

The remaining command results will be processed by the standard data listener, as they are treated as

any other device-sent message.

1 class _SendDataListener(SendDataListener):
2 def onSendData(self, device_id: str, data: bytes):
3 data_dict = json.loads(data.decode(”utf-8”))
4
5 logging.log(
6 logging.INFO, f”Data received from orchestrator: {device_id=}, {data_dict=}”
7)
8
9 device_id = convert_to_int(device_id)

10
11 match data_dict[”type”]:
12 case ”regular”:
13 acq.post_regular(data_dict[”content”])
14 case ”emergency”:
15 acq.post_emergency(data_dict[”content”])
16 case ”configuration”:
17 acq.post_configuration(device_id, data_dict[”content”])
18 acq.post_configuration_hist(device_id)
19 case ”command_result”:
20 acq.post_command_result(data_dict[”content”])
21
22 class _CommandResultListener(CommandResultListener):
23 def onCommandResult(self, device_id: str, result: bytes, context: bytes, accessToken: str):
24 result_dict = json.loads(result.decode(”utf-8”))
25 context = context.decode(”utf-8”)
26
27 logging.log(
28 logging.INFO,
29 f”Command result received from orchestrator: {device_id=}, {result_dict=}, {context=}”,
30)
31
32 device_id = convert_to_int(device_id)
33
34 if context == ”fota_versions”:
35 acq.post_firmware_versions(device_id, result_dict)

Listing 7: Devices microservice listeners

77

CHAPTER 4. IMPLEMENTATION

4.2.4 Users

The users microservice only implements an API for authentication and user management.

This API’s most important endpoint is the one used for user authentication, as it will be called more

frequently. This endpoint is responsible not only for validating the user name and password, but also for

ensuring the security of the user’s data. The on_post_authenticate method is a POST method that begins

by determining whether or not the required parameters are present, and then searches the database for

data corresponding to the specified username. If a user is located, the only remaining step is to compare

their passwords.

Before comparing passwords, the pepper is added to the user-supplied password. The pepper is a

secret 16-character value stored on the server to increase the complexity and length of passwords. After the

pepper is added, the password is hashed and compared to the database password using the Argon2 Python

bindings. If the passwords match, the password is checked for rehashing, as the Argon2 configuration

may be out of date, requiring the password to be hashed to a more recent configuration. The data is then

returned to the user with a status code of 200, excluding the password (OK). If the password is invalid, an

exception is thrown and the status code 403 (Forbidden) is returned.

1 class UserResource(object):
2 ...
3 def on_post_authenticate(self, req, resp):
4 logging.log(logging.INFO, str(req))
5
6 data = req.media
7
8 if ”username” not in data or ”password” not in data:
9 resp.status = falcon.HTTP_400

10 return
11
12 user_data = acq.get_user_data(data[”username”])
13
14 if user_data is None:
15 resp.status = falcon.HTTP_404
16 return
17
18 concatenated_pword = data[”password”] + PEPPER
19
20 try:
21 hasher.verify(user_data[”password”], concatenated_pword)
22
23 if hasher.check_needs_rehash(user_data[”password”]):
24 acq.update_password(
25 user_data[”username”], hasher.hash(concatenated_pword)
26)
27
28 del user_data[”password”]
29
30 resp.text = json.dumps(user_data, ensure_ascii=False)
31 resp.status = falcon.HTTP_200
32 except argon2.exceptions.VerificationError:
33 resp.status = falcon.HTTP_403

Listing 8: Users microservice authentication endpoint

78

CHAPTER 4. IMPLEMENTATION

4.3 Dashboard

The implementation of the dashboard was accomplished using the Python Dash framework. The framework

provides pure Python abstraction around HTML, CSS, and JavaScript and allows developers to extend

framework use cases with CSS and JavaScript code, which was done in some instances to improve the

dashboard’s design and/or functionality.

This implementation strives to adhere as closely as possible to the design layout and color scheme

established in the previous chapter, while also providing all the specified features. In some instances,

the implementation exceeds the design, as additional small features were added to enhance the user

experience without violating the established design principles.

Due to the size of the codebase, only the most pertinent callbacks and layouts are described here,

along with the dashboard’s final appearance.

4.3.1 Initialization, routing and layout

As shown in Listing 9, a Dash app object is created to initialize the dashboard. The Dash object receives

as arguments a Flask server that is used for the backend, as well as some stylesheets that improve the

components’ basic design and layout. Additionally, a server object is created for later use in the server

deployment.

1 flask_server = flask.Flask(__name__)
2
3 app = dash.Dash(
4 __name__,
5 server=flask_server,
6 external_stylesheets=[
7 dbc.themes.BOOTSTRAP,
8 dbc.icons.BOOTSTRAP,
9 dbc.icons.FONT_AWESOME,

10 ”https://fonts.googleapis.com/css?family=Montserrat&display=swap”,
11],
12 title=”Link4S Dashboard”,
13)
14 ...
15 login_manager = LoginManager()
16 login_manager.init_app(flask_server)
17 login_manager.login_view = ”/”
18 ...
19 server = app.server
20 ...

Listing 9: Dashboard initialization

The main layout is assigned to the app object in Listing 10, and the HTML div contains the sidebar

and page content. The sidebar and main content of the page are separated so that one can be updated

independently of the other and to provide greater design flexibility for the main page.

79

CHAPTER 4. IMPLEMENTATION

The callback displayed in Listing 10 offers routing functionality and updates the page’s layout. This

callback is triggered whenever a user interacts with the URL. The callback begins by generating a session

token if none is already present, and then verifies that the user has successfully logged in. If the user is

authenticated and the path matches one of the available paths, he will be redirected to the appropriate

page and the page content will be rendered; otherwise, the user will be returned to the login page. The

session token is also stored so that the user can use the dashboard for up to an hour without logging in

again, even if the dashboard is closed and reopened.

1 app.layout = html.Div(
2 [
3 dcc.Location(id=”url”, refresh=True),
4 sidebar,
5 content,
6 dcc.Store(id=”session-token-id”, storage_type=”local”),
7 WebSocket(id=”changestreams-ws”, url=WS_URL),
8]
9)

10
11 @app.callback(
12 Output(”url”, ”pathname”),
13 Output(”sidebar”, ”style”),
14 Output(”page-content”, ”children”),
15 Output(”session-token-id”, ”data”),
16 Input(”url”, ”pathname”),
17 State(”session-token-id”, ”data”),
18)
19 def render_page_content(pathname, session_token):
20 if session_token is None:
21 session_token = str(uuid.uuid1())
22
23 if not current_user.is_authenticated:
24 return (
25 no_update,
26 HIDE_SIDEBAR,
27 authentication.serve_layout(),
28 session_token,
29)
30
31 if pathname == ”/”:
32 return ”/overview”, SHOW_SIDEBAR, no_update, session_token
33 elif pathname == ”/overview”:
34 return no_update, SHOW_SIDEBAR, overview.serve_layout(), session_token
35 ...
36 elif pathname == ”/logout”:
37 logout_user()
38 return ”/”, SHOW_SIDEBAR, no_update, session_token

Listing 10: Dashboard layout and routing

In Listing 11, the sidebar and page content are defined, with the sidebar consisting of multiple naviga-

tion links, one for each page, and a logout button. The HTML div for the main page’s content is generated

without any children, as this is handled by the callback in Listing 10.

1 sidebar = html.Div(
2 [
3 html.Div(
4 [
5 ...
6 dbc.Nav(
7 [
8 dbc.NavLink(
9 [

10 ...

80

CHAPTER 4. IMPLEMENTATION

11 ”Overview”,
12],
13 href=”/overview”,
14 active=”exact”,
15),
16 ...
17],
18 vertical=True,
19 pills=True,
20),
21]
22),
23 dbc.Button(
24 ...
25 href=”/logout”,
26 className=”sidebar-button”,
27 id=”btn-logout”,
28 outline=True,
29 active=False,
30),
31],
32 id=”sidebar”,
33 ...
34)
35
36 content = html.Div(id=”page-content”, className=”content”)

Listing 11: Dashboard sidebar and page content

4.3.2 Pages

4.3.2.1 Login

The implementation of the login page is illustrated in Figure 43. The authentication of users was imple-

mented with the Python module Flask-Login, which provides user session management for Flask. This

greatly simplifies common tasks like logging in, logging out, and managing user sessions, as they are

mostly abstracted.

The code in Listing 12 demonstrates the implementation of the login using Flask-Login, which has a

few prerequisites. As demonstrated in the initialization of the Dash app 9, a LoginManager class object

is initially created. The LoginManager enables the creation of an user_loader callback, which is used to

reload the user object using the session-stored user ID. This callback returns an object of the User class

that has been declared and is derived from the Flask-Login UserMixin class. The User class provides

numerous authentication properties, including the is_authenticated property used in Listing 10.

The login callback is invoked when the login button is clicked. The callback begins by determining

whether both text fields are empty; if they are, the callback is terminated. If all required data is present, an

HTTP POST request is sent to the users microservice to verify that the user exists in the database. If the

request is successful, the user is redirected to the overview page. The user is presented with a toast error

message if the login attempt fails.

81

CHAPTER 4. IMPLEMENTATION

Figure 43: Login page implementation

1 class User(UserMixin):
2 def __init__(self, username):
3 self.id = username
4
5 @login_manager.user_loader
6 def user_loader(username):
7 return User(username)
8
9 ...

10
11 @app.callback(
12 Output(”login-url”, ”pathname”),
13 Output(”login-toast”, ”is_open”),
14 Input(”btn-login”, ”n_clicks”),
15 State(”uname-field”, ”value”),
16 State(”pword-field”, ”value”),
17 prevent_initial_call=True,
18)
19 def login_callback(n_clicks, uname, pword):
20 if uname is None or pword is None:
21 raise PreventUpdate
22
23 post_data = {”username”: uname, ”password”: pword}
24
25 response = requests.post(f”{USERS_API_URL}/users/authenticate”, data=post_data)
26
27 if response.status_code == LOGIN_SUCCESS:
28 user_obj = User(uname)
29 login_user(user_obj)
30 return ”/overview”, no_update
31
32 return ”/”, True

Listing 12: Dashboard User class and login callback

4.3.2.2 Overview

The overview page implementation is depicted in Figure 44; it includes all of the features proposed during

the design phase, as well as a few additional features to enhance the user experience, such as the search

82

CHAPTER 4. IMPLEMENTATION

features.

Figure 44: Overview page implementation

The majority of the data used in this section is generated at the time the callback in Listing 13 is

invoked. This callback can be triggered in one of three situations: when the page is initially loaded, when

the page is already loaded and the database is updated, or when the standard refresh interval of five

minutes has passed. In either case, a request is made to the devices API to obtain the current state of the

devices, followed by some processing to determine the status of the devices based on the amount of time

that has passed since they last connected or sent a message, and finally, the data is converted into JSON

format and stored locally in the browser.

1 @app.callback(
2 Output(”device-data”, ”data”),
3 Input(”changestreams-ws”, ”message”),
4 Input(”refresh-interval”, ”n_intervals”),
5 State(”device-data”, ”data”),
6)
7 def compute_device_data(ws_message, n_intervals, json_dev_data):
8 if json_dev_data is None:
9 dev_data = list()

10 else:
11 dev_data = json.loads(json_dev_data)
12
13 if ctx.triggered_id == ”changestreams-ws”:
14 ...
15
16 dev_data = requests.get(f”{utils.DEVICES_API_URL}/devices/state”).json()
17
18 for dev in dev_data:
19 ...
20
21 grace_period = dev[”alarm”] * 0.5
22
23 cur_ts = datetime.now().astimezone().timestamp()
24
25 if dev[”last_event_timestamp”]:

83

CHAPTER 4. IMPLEMENTATION

26 last_event_ts = date_parser.isoparse(dev[”last_event_timestamp”]).astimezone().timestamp()
27 else:
28 last_event_ts = None
29
30 last_conn_ts = date_parser.isoparse(dev[”last_connect_timestamp”]).astimezone().timestamp()
31
32 if last_event_ts and last_event_ts > last_conn_ts:
33 ts_delta = cur_ts - last_event_ts
34 else:
35 ts_delta = cur_ts - last_conn_ts
36
37 if ts_delta <= dev[”alarm”] + grace_period:
38 dev[”status”] = ”online”
39 elif ts_delta <= dev[”alarm”] + grace_period + utils.UNIX_24H:
40 dev[”status”] = ”faulty”
41 else:
42 dev[”status”] = ”inactive”
43
44 return json.dumps(dev_data)

Listing 13: Dashboard device data callback

After storing the device data, the general section and device status section are updated using two

distinct callbacks that receive the JSON data as input and return the updated layouts for each section as

output.

By hovering over the state’s layouts, as shown in Figure 45, the user can view the ID of all the devices

in each state as well as information about that state in the general section.

Figure 45: Overview page general status hover

The data for the location of the devices is provided through a different endpoint of the devices API, as

shown in Listing 14. Consequently, the computation of the location of the devices is performed differently.

This callback is invoked in the same circumstances as the device status callback, but it is also invoked

when the user interacts with the search box to only display the results area.

To generate the maps, the open-source Leaflet library was employed, which provides many features

that enable the user interaction with the map and device pins.

1 @app.callback(
2 Output(”geo-json”, ”data”),
3 Output(”map”, ”center”),
4 Output(”map”, ”zoom”),
5 Input(”changestreams-ws”, ”message”),
6 Input(”refresh-interval”, ”n_intervals”),
7 Input(”location-search”, ”value”),
8 State(”geo-json”, ”data”),
9)

10 def compute_location_data(ws_message, n_intervals, search_term, geo_data):
11 if ctx.triggered_id == ”changestreams-ws”:
12 ...
13 elif ctx.triggered_id == ”location-search”:
14 ...

84

CHAPTER 4. IMPLEMENTATION

15
16 devices_location = requests.get(f”{utils.DEVICES_API_URL}/devices/location”).json()
17
18 for device in devices_location:
19 board_ts_str = (date_parser.isoparse(device[”board_timestamp”]).astimezone().strftime(”%d-%m-%Y %H:%M:%S”))
20 system_ts_str = (date_parser.isoparse(device[”system_timestamp”]).astimezone().strftime(”%d-%m-%Y %H:%M:%S”))
21
22 device[”popup”] = f'Device ID: {device[”device_id”]}
\
23 Board timestamp: {board_ts_str}
\
24 System timestamp: {system_ts_str}'
25
26 geo_json = dlx.dicts_to_geojson(devices_location, lat=”latitude”, lon=”longitude”)
27
28 return geo_json, no_update, no_update

Listing 14: Dashboard device location callback

As depicted in Figure 46, when the user interacts with the location pin, he can view the ID of the device

and the timestamp of when the location was captured.

Figure 46: Overview page device location pin

In the form of a list, the notifications section displays the device’s critical notifications. Each entry in

the list displays the device’s identifier, the notification’s timestamp, and its type. When a user clicks on an

alert, a window containing additional information appears, similar to the example in Figure 47. Through

the click of a button, the user can delete a single notification or all of them.

Figure 47: Overview page notification

The notifications are stored in the browser’s local storage, which means they persist across browser

sessions and disappear only when the user deletes them. A strict limit of one hundred notifications is

imposed to prevent the page from experiencing performance issues due to loading a large number of

85

CHAPTER 4. IMPLEMENTATION

notifications. The notifications are computed in the callback in Listing 15, which also handles all user

actions, such as deleting a single or all notifications. Requests are sent to three distinct endpoints for

configurations, emergencies, and command results in order to acquire the required data. Each notification

is also assigned a unique identifier, which is required for keeping track of them within the list.

1 @app.callback(
2 Output(”notification-data”, ”data”),
3 Input(”changestreams-ws”, ”message”),
4 Input({”type”: ”delete-btn”, ”index”: ALL}, ”n_clicks”),
5 Input(”clear-notifications”, ”n_clicks”),
6 State(”notification-data”, ”data”),
7 State(”notification-data”, ”modified_timestamp”),
8)
9 def update_notification_data(ws_message, delete_btn, clear_btn, json_not_data, modified_timestamp):

10 if json_not_data is None:
11 not_data = list()
12 else:
13 not_data = json.loads(json_not_data)
14
15 new_ts = datetime.now().astimezone().timestamp()
16
17 if ctx.triggered_id == ”changestreams-ws”:
18 ...
19
20 if ctx.triggered_id == ”clear-notifications”:
21 not_data = []
22
23 elif (isinstance(ctx.triggered_id, dict) and ctx.triggered_id[”type”] == ”delete-btn”):
24 not_data = list(filter(lambda x: x[”idx”] != ctx.triggered_id[”index”], not_data))
25
26 else:
27 if not modified_timestamp:
28 lower_ts = new_ts
29 else:
30 lower_ts = modified_timestamp / 1000
31
32 new_configurations = requests.get(f”{utils.DEVICES_API_URL}/devices/configurations”, params={”lower-ts”: int(

↩→ lower_ts)}).json()
33 ...
34
35 configurations = [dict(cfg, **{”type”: ”configuration”}) for cfg in new_configurations]
36 ...
37
38 not_data = [*not_data, *configurations, *emergencies, *commands]
39
40 not_data = [dict(obj, **{”idx”: str(uuid.uuid4())}) for obj in not_data]
41
42 sorted_not_data = sorted(not_data, key=lambda x: x[”system_timestamp”])
43
44 if len(sorted_not_data) >= MAX_NOTIFICATION_NUM:
45 sorted_not_data = sorted_not_data[len(sorted_not_data) - MAX_NOTIFICATION_NUM :]
46
47 return json.dumps(sorted_not_data)

Listing 15: Dashboard notifications callback

4.3.2.3 Metrics

The metrics page displays graphs containing sensor data for each configured sensor. In Figure 48, an

example of the implemented layout is displayed using two distinct sensors with varying layout options. The

data in the plot is presented over a user-selected time scale, and two gauges or displays on both sides

indicate the most recent value and the average or mean value. In addition, there is an Export to Excel

86

CHAPTER 4. IMPLEMENTATION

button that, when clicked, generates and automatically downloads an Excel spreadsheet containing the

sensors divided by pages, with two columns per plot line (time and value) and an image of the plot for

each page.

Figure 48: Metrics page implementation

A settings menu is also provided, which contains the options shown in Figure 49, to allow for a degree

of customization. This allows the user to select the sensors he wishes to view, as well as modify certain

plot parameters. These settings are stored locally within the browser and are therefore retained between

sessions.

Although the settings menu allows the user to customize the page, the majority of configuration is

performed in a YAML configuration file outside of the dashboard. This file is also where new sensors and

their corresponding IDs can be added, along with the sensor variables. Unless a sensor is configured in

this file, it will not be displayed on the dashboard. This configuration is illustrated in Figure 50.

The configuration file permits the definition of various types of components, such as gauges and

displays, for displaying statistics, and the statistics themselves can be either average or mean values. The

sensor variables are contained within the properties, where the ID cannot be arbitrary and must correspond

to the one defined in the cloud for that variable. In this section, the color of the plot, as well as the labels,

units, decimal places, and minimum/maximum values for the gauges, can be specified.

This page’s code contains multiple callbacks, but the most important one is in Listing 16, which

retrieves sensor data from the devices API and generates the primary plot. This callback utilizes pattern-

matching callbacks [77] to retrieve data and generate graphs for multiple sensors simultaneously. It is

87

CHAPTER 4. IMPLEMENTATION

Figure 49: Metrics page settings menu

Figure 50: Metrics page configuration

activated when the user presses the apply button, and it utilizes the current state of multiple components,

such as the user-selected device ID, date/time period, and configurations chosen from the settings menu,

and outputs the results to a plot and the statistic column.

The fetch method of the SamplesFetcher class is invoked in lieu of a direct call to the device’s API to

retrieve the standard sensor data. The SamplesFetcher class is utilized as it is the class responsible for not

only the implementation of the time series cache, but also the acquisition and processing of sensor data

from the device’s API, as described in greater detail below. It returns the data as a DataFrame structure

from the Pandas library, which the Plotly graphing libraries can utilize directly.

Moreover, since the sensor data can consist of millions of samples depending on the selected time

period, it would be extremely challenging to interact with the plot without experiencing severe performance

issues. To prevent this, the Plotly-Resampler [78] library was used to implement a downsampling technique

88

CHAPTER 4. IMPLEMENTATION

that can reduce millions of samples to thousands without losing valuable information.

1 @app.callback(
2 Output({”type”: ”sensor-plot”, ”index”: MATCH}, ”figure”),
3 Output({”type”: ”plot-stat-comp”, ”index”: MATCH}, ”children”),
4 Output({”type”: ”plot-stat-col”, ”index”: MATCH}, ”style”),
5 Input(”apply-btn”, ”n_clicks”),
6 State({”type”: ”sensor-switch”, ”index”: MATCH}, ”value”),
7 State(”devices-dropdown”, ”value”),
8 State(”date-time-picker”, ”startDate”),
9 State(”date-time-picker”, ”endDate”),

10 State(”data-mode-input”, ”value”),
11 State(”plot-mode-input”, ”value”),
12 State(”interleave-switch”, ”value”),
13 State(”session-token-id”, ”data”),
14 prevent_initial_call=True,
15)
16 def plot_callback(apply_btn, sensor_switch, device_id, start_date, end_date, data_mode_input, plot_mode_input,

↩→ interleave_switch, session_token):
17 if device_id is None:
18 raise PreventUpdate
19
20 utils.set_selected_device(session_token, device_id)
21
22 if not sensor_switch:
23 raise PreventUpdate
24
25 ...
26
27 for property_data in sensors[ctx_sensor][”properties”].values():
28 sample_data = SamplesFetcher(device_id, property_data[”id”]).fetch(dt_start, dt_end)
29
30 if sample_data.empty:
31 continue
32
33 sample_data[”values”] = round(sample_data[”values”], property_data[”decimal_places”])
34
35 plot.add_trace(
36 go.Scattergl(
37 x=sample_data[”timestamps”],
38 y=sample_data[”values”],
39 mode=plot_mode_input,
40 name=f'{property_data[”label”]}
(regulars)',
41 line=dict(color=property_data[”color”]),
42)
43)
44
45 if ”emergency” in data_mode_input:
46 ...
47
48 if sensors[ctx_sensor][”plot_statistic”] == ”average”:
49 stat_value = round(sample_data[”values”].mean(skipna=True), property_data[”decimal_places”])
50 elif sensors[ctx_sensor][”plot_statistic”] == ”median”:
51 stat_value = round(sample_data[”values”].median(skipna=True), property_data[”decimal_places”])
52 else:
53 continue
54
55 if sensors[ctx_sensor][”component_type”] == ”gauge”:
56 ...
57 elif sensors[ctx_sensor][”component_type”] == ”digital”:
58 ...
59
60 ...
61
62 return plot, plot_stat_layout, plot_stat_style

Listing 16: Dashboard metrics plot generation

4.3.2.4 Sensors

As depicted in Figure 51, the sensors page allows for the configuration of the device sensor variables.

The page’s presentation is dynamic, which allows the page to load as many containers as required for

89

CHAPTER 4. IMPLEMENTATION

all variables. As the default ID values are not particularly explicit, the labels of the containers can also be

configured within the YAML file used for the metrics page.

Figure 51: Sensors page implementation

In contrast to the metrics page, the settings window does not alter the page layout, but rather modifies

the parameters of the command sent to the device’s API when the changes are saved. These parameters

include an MD5 hash for validating data integrity, the choice of parsing microservice to consume the

command, and the persistence of the command when consumed.

Figure 52: Sensors page configuration

The sensor_variables_callback shown in Listing 17 is responsible for generating the containers, storing

the current state of the sensor variables, and sending this information to the devices API. This callback

90

CHAPTER 4. IMPLEMENTATION

is triggered when the user presses either the apply or save button. The sensors data is retrieved from

the devices API for the apply function, and containers with parameters are generated for the available

variables. In the save function, a comparison is performed between the new and old parameter values to

determine which ones have changed. The modified values are then sent as a command to the device’s

API. If no changes are detected, no data will be transmitted.

1 @app.callback(
2 Output(”sensors-container”, ”children”),
3 Output(”device-data-store”, ”data”),
4 Output(”sensors-toast”, ”is_open”),
5 Output(”sensors-toast-txt”, ”children”),
6 Input(”btn-apply”, ”n_clicks”),
7 Input(”btn-save”, ”n_clicks”),
8 State(”devices-dropdown”, ”value”),
9 State(”device-data-store”, ”data”),

10 State(”command-input”, ”value”),
11 State(”md5-switch”, ”value”),
12 State(”persistent-switch”, ”value”),
13 State({”type”: ”sensor-prop-bool”, ”index”: ALL}, ”id”),
14 State({”type”: ”sensor-prop-bool”, ”index”: ALL}, ”value”),
15 State({”type”: ”sensor-prop-val”, ”index”: ALL}, ”id”),
16 State({”type”: ”sensor-prop-val”, ”index”: ALL}, ”value”),
17 State(”session-token-id”, ”data”),
18)
19 def sensor_variables_callback(apply_clicks, save_clicks, device_id, device_data, command_consumer, md5, persistent,

↩→ props_bool_ids, props_bool, props_val_ids, props_val, session_token):
20 if device_id is None:
21 raise PreventUpdate
22
23 if ctx.triggered_id == ”btn-save”:
24 return save_btn_click(save_clicks, device_id, device_data, command_consumer, md5, persistent, props_bool,

↩→ props_bool_ids, props_val, props_val_ids)
25 else:
26 return apply_btn_click(apply_clicks, device_id, session_token)
27
28 def apply_btn_click(n_clicks, device_id, session_token):
29 ...
30
31 configs = requests.get(f”{DEVICES_API_URL}/devices/{device_id}/configurations/latest”).json()
32
33 ...
34
35 return container, json.dumps(configs), no_update, no_update
36
37 def save_btn_click(n_clicks, device_id, device_data, command_consumer, md5, persistent, props_bool, props_bool_ids,

↩→ props_val, props_val_ids):
38 json_data = json.loads(device_data)
39 old_data = copy.deepcopy(json_data)
40
41 ...
42
43 changed_props = get_changed_props(old_data, json_data)
44
45 if not changed_props:
46 return no_update, json.dumps(old_data), True, ”Failed to send command. No changes detected.”
47
48 ...
49
50 response = requests.post(f”{DEVICES_API_URL}/devices/{device_id}/commands/sensors”, data=json.dumps(post_data),

↩→ headers=headers)
51
52 if response.status_code == 200:
53 return no_update, json.dumps(json_data), True, f”Sent command with data: {response.json()}.”
54 else:
55 return no_update, json.dumps(old_data), True, ”Failed to send command.”

Listing 17: Dashboard sensor variables callback

91

CHAPTER 4. IMPLEMENTATION

4.3.2.5 Specifications

The specifications page in Figure 53 displays the main specifications of the device that are not sensor

specifications, as this information is available on the sensors page. In addition, two containers for frequently

used commands, the alarm command and the FOTA update command, are also present. The first allows

the user to set the frequency of periodic messages sent from the device to the cloud, while the second

allows the user to update the device’s firmware. A settings window is also available, for the same reason

as on the sensors page, to allow the user to configure the command parameters.

Figure 53: Specifications page implementation

The callback displayed in Listing 18 is invoked when the apply button is clicked and returns the layout

containing the multiple device specifications. It begins by retrieving the data from the configurations end-

point of the devices API, which is then processed by the function prop_layout to generate the container

containing the various device specifications.

1 @app.callback(
2 Output(”info-container”, ”children”),
3 Output(”config-layout”, ”class_name”),
4 Input(”spec-apply-btn”, ”n_clicks”),
5 State(”spec-devices-dropdown”, ”value”),
6 State(”session-token-id”, ”data”),
7)
8 def apply_btn_callback(n_clicks, device_id, session_token):
9 if device_id is None:

10 raise PreventUpdate
11
12 set_selected_device(session_token, device_id)
13
14 config = requests.get(f”{DEVICES_API_URL}/devices/{device_id}/configurations/latest”).json()
15
16 layout = dbc.Container([], style={”background-color”: ”#272b34”}, class_name=”p-3 shadow rounded-3”)
17

92

CHAPTER 4. IMPLEMENTATION

18 for prop in config:
19 layout.children = prop_layout(prop)
20
21 return layout, SHOW_CONTAINER_CLASS

Listing 18: Dashboard specifications apply callback

The callbacks for the alarm and FOTA update commands are not displayed because they are nearly

identical to those previously displayed in Listing 17, specifically within the save_btn_click function. In each

instance, the current state of the user-defined settings for the command is retrieved, and the command is

created with the settings in addition to the main command content and sent to the devices API. Due to the

impossibility of receiving a prompt command response from the device, the status code of the response

indicates only whether the other section of the cloud successfully received the command.

4.3.3 Real-time updates

In order to provide real-time updates to the dashboard, a separate service based on MongoDB’s change

streams feature was developed. Motor, an asynchronous Python driver for MongoDB, was paired with Tor-

nado, a Python web framework that enables the creation of a WebSockets server, to implement this feature.

This is particularly important because the dashboard and this service communicate using WebSockets,

which provides a persistent connection with low latency and overhead.

The WebSockets server implementation is displayed in Listing 19. The ChangesHandler class overrides

the methods on the TornadoWebSocketHandler class and provides methods to initiate and terminate client

connections, as well as forward data to clients. The on_change method formats the data, which is then

transmitted to connected clients via the send_updates method.

1 class ChangesHandler(tornado.websocket.WebSocketHandler):
2 connected_clients = set()
3
4 def check_origin(self, origin):
5 return True
6
7 def open(self):
8 ChangesHandler.connected_clients.add(self)
9

10 def on_message(self, message):
11 logger.debug(message)
12
13 def on_close(self):
14 ChangesHandler.connected_clients.remove(self)
15
16 @classmethod
17 def send_updates(cls, message):
18 logger.debug(message)
19 for connected_client in cls.connected_clients:
20 connected_client.write_message(message)
21
22 @classmethod
23 def on_change(cls, change):
24 message = dict(tags=change[”tags”], document=change[”fullDocument”])
25
26 ChangesHandler.send_updates(message)

93

CHAPTER 4. IMPLEMENTATION

Listing 19: Dashboard change streams handler

The primary service implementation is displayed in Listing 20. As seen in the code, the asynchronous

function watch is created and used as the callback function for database collection collections. Once the

execution loop has begun, it is only interrupted by this function, which then invokes the ChangesHandler

object to process the database data. The web application that employs WebSockets is assigned a URI

(changestreams), a handler, and a port for communicating with clients (5500).

1 async def watch(collection, pipeline):
2 global change_stream
3
4 async with collection.watch(pipeline, ”updateLookup”) as change_stream:
5 async for change in change_stream:
6 ChangesHandler.on_change(change)
7
8 app = tornado.web.Application([(r”/changestreams”, ChangesHandler)])
9 app.listen(5500)

10
11 client = MotorClient(DB_URL, DB_PORT)
12
13 loop = tornado.ioloop.IOLoop.current()
14 loop.add_callback(watch, client[DB_NAME][REGULARS_COLLECTION], REG_PIPELINE)
15 loop.add_callback(watch, client[DB_NAME][EMERGENCIES_COLLECTION], EMERG_PIPELINE)
16 loop.add_callback(watch, client[DB_NAME][CONFIGURATIONS_COLLECTION], CFG_PIPELINE)
17 loop.add_callback(watch, client[DB_NAME][CONFIGURATION_HIST_COLLECTION], CFG_HIST_PIPELINE)
18 loop.add_callback(watch, client[DB_NAME][COMMAND_RESULTS_COLLECTION], CMD_RES_PIPELINE)

Listing 20: Dashboard change streams main

4.3.4 Time series cache

The implementation of the time series cache consists of two classes with multiple methods. One of these

classes, WeeklyBuckets, functions as a helper class to enable the computation of weekly buckets. It im-

plements a pydantic [79] model with an align_start validator to ensure weekly buckets can be stacked

by converting the date to the closest past Thursday midnight UTC, since Thursday is the epoch reference

date.

1 class WeeklyBucket(BaseModel):
2 start: datetime
3
4 @property
5 def end(self) -> datetime:
6 return self.start + week
7
8 @validator(”start”)
9 def align_start(cls, v: datetime) -> datetime:

10 seconds_in_week = week.total_seconds()
11
12 return datetime.fromtimestamp(
13 (v.timestamp() // seconds_in_week * seconds_in_week), timezone.utc
14)
15
16 def next(self) -> ”WeeklyBucket”:
17 return WeeklyBucket(start=self.end)
18
19 def cache_key(self) -> str:

94

CHAPTER 4. IMPLEMENTATION

20 return f”{int(self.start.timestamp())}”

Listing 21: Dashboard WeeklyBucket class

The SamplesFetcher class in Listing 22 is the main class as it provides the fetch method, which

abstracts the remaining code. This method receives the user-supplied start and end date/times and uses

them to create buckets resorting to the WeeklyBuckets class, which are then used in the cache keys. The

results for the provided cache keys are obtained in a single call, then iterated over to determine which

cache keys have been assigned data. The get_samples_from_upstream method is used to make a data

request to the devices API when a key does not contain any data. The data is subsequently filtered to

ensure that it remains within the specified date and time range and in the correct format for the graphing

libraries.

1 class SamplesFetcher:
2 ...
3
4 def get_cache_key(self, bucket: WeeklyBucket) -> str:
5 return f”samples:{self.device_id}:{self.sample_id}:{bucket.cache_key()}”
6
7 def get_samples_from_upstream(self, bucket: WeeklyBucket) -> pd.DataFrame:
8 start_date, end_date = bucket.start, bucket.end
9

10 ...
11
12 sample_objects = requests.get(f”{DEVICES_API_URL}/devices/{self.device_id}/samples”, params=request_params).json

↩→ ()
13
14 self.compute_dataframe(sample_objects)
15
16 def fetch(self, start_date: datetime, end_date: datetime) -> pd.DataFrame:
17 ...
18
19 buckets = get_buckets(start_date, end_date)
20
21 records_df = pd.DataFrame(dict(values=[], timestamps=[]))
22
23 key_list = [self.get_cache_key(bucket) for bucket in buckets]
24
25 cache_results = cache.mget(key_list)
26
27 for idx, cached_raw_samples in enumerate(cache_results):
28 # Check if there's anything in cache
29 if cached_raw_samples is not None:
30 raw_df = pickle.loads(cached_raw_samples)
31
32 records_df = pd.concat([records_df, raw_df])
33
34 continue
35
36 # Fetch the value from the upstream
37 self.get_samples_from_upstream(buckets[idx])
38 records_df = pd.concat([records_df, self.samples_df])
39
40 key_ttl_dict[key_list[idx]] = get_cache_ttl(buckets[idx])
41 cache_data_dict[key_list[idx]] = pickle.dumps(self.samples_df, protocol=pickle.HIGHEST_PROTOCOL)
42
43 ...
44
45 return fil_rec_df
46
47 ...

Listing 22: Dashboard SamplesFetcher class

95

C
h
a
p
te

r

5
Results

Multiple tests were conducted on the production server to validate the cloud’s architecture and ensure

that all components function as expected. Using log files, database collections, and the dashboard itself,

the results are displayed in a variety of ways. The test setup included two devices deployed on the Digital

Transformation CoLab (DTx) facilities and a remote computer connected to the cloud’s VPN with complete

access to the cloud’s systems.

This test deployment setup resembles a real deployment in that the devices are deployed in difficult

to access locations and interaction with them is conducted remotely. The tests were conducted from the

perspective of a user interacting with the dashboard as he manages devices and views data transmitted

by them. Following the user’s interaction with the dashboard, the data paths are followed to ensure that

the data arrives where and when it should.

5.1 Login

Logging into the dashboard with the correct credentials is the initial step. In this instance, the administrator

login was utilized, as displayed on Figure 54. After clicking the Login button, a POST request is sent to the

Users microservice API at the users/authenticate endpoint shown in Figure 55. After successfully logging

in, the user is redirected to the homepage.

96

CHAPTER 5. RESULTS

Figure 54: Dashboard login page test

Figure 55: Users microservices authentication request logs

5.2 Overview

As the devices were connected for some time prior to the tests, some activity is already available on

the overview page. As seen in Figure 56, the two test devices with the IDs 268031902005750 and

268031902005790 are online and transmitting messages every hour.

Figure 56: Dashboard overview page

97

CHAPTER 5. RESULTS

In addition, some emergencies were also received as a result of the default configuration of these

devices, as some sensor variables reached abnormal values. Clicking on the most recent emergency

notification opens the window in Figure 57 that displays additional information, including the timestamp

of the occurrence on the same day as well as the flag it belongs to, which is the accelerometer Z-axis in

this case (ACz). These emergencies can also be seen on the metrics page’s plots.

Unfortunately, it is not possible to view results for the device location section because none of the de-

vices in this test are equipped to transmit location data. However, the device with the ID 268031902004692

is capable of doing so on the development server, as shown in Figure 58. A pin is placed on the device’s

most recent known location, and upon clicking it, the device ID and timestamps of the last known location

are displayed.

Figure 57: Dashboard emergency notification details

Figure 58: Dashboard device location section

5.3 Metrics

On the metrics page, a time range for the previous twenty-four hours was selected. As seen in the logs

in Figure 59, after clicking the Apply button, a GET request for the sensor data was sent to the Devices

microservice because the data was not readily available in the cache. In this log, the requests for the

sensor variable ACx range from day 12 to day 19, and from day 19 to day 26 respectively. As the sensor

data is divided into weekly buckets, this is how requests for caching purposes are made. In Figure 60, the

logs of GET requests on the Devices microservice display the same time ranges converted to the Unix time

format.

98

CHAPTER 5. RESULTS

Figure 59: Dashboard fetch sensor data logs

Figure 60: Devices microservice metrics request logs

Once the sensor data for all available sensors has been retrieved, the plots are generated as shown

in Figure 61. Despite the fact that the data acquired from the Devices microservice API corresponds to a

much longer period due to the caching strategy, the displayed data is entirely contained within the user-

selected time range. In this instance, all sensors are enabled and the average is chosen as the optional

graph.

Figure 61: Dashboard metrics page

Using the Export to Excel function, an Excel spreadsheet containing all the data previously presented

to the user is generated and automatically downloaded. In Figure 62, the spreadsheet is separated into

multiple pages based on the sensors. Within each page, the data for each variable is presented in separate

columns alongside the corresponding timestamps, and an image of the plot is also created for each page.

99

CHAPTER 5. RESULTS

Figure 62: Dashboard metrics exported Excel spreadsheet

5.4 Specifications

On the specifications page, the majority of a device’s specifications can be viewed, and alarm and FOTA

update commands can be sent. As mentioned previously, the devices involved in these tests communicate

with the cloud once per hour. To test the commands, this interval will be reduced to 5 minutes. In Figure 63,

a 5-minute alarm is set for one of the devices, and the same is done for the other.

Figure 63: Dashboard specifications set alarm

The commands’ consumer is set to regulars, which means they will be consumed by the devices the

next time they send a regular message to the cloud. In the Process Data microservice logs displayed in Fig-

ure 64, it is possible to verify that the commands successfully passed through the Mediator, also known

100

CHAPTER 5. RESULTS

as the Orchestrator, and onto the Device Ecosystem. As shown in Figure 65, they were then successfully

saved in the database. Since their persistence is set to false, they will be deleted from the database when

consumed.

Figure 64: Process Data microservice alarm command logs

Figure 65: Database alarm commands

After a few minutes, the devices received the commands and, after processing them, transmitted the

command results along with the new configuration containing the updated alarm value. In the overview

page’s notification section, there are four new notifications, two for each device, as shown in Figure 66.

Figure 66: Dashboard notifications section

Clicking on the command notification in Figure 67 reveals that the opcode and description correspond

to the command that was sent to the device, and that it was executed successfully as both the set and

101

CHAPTER 5. RESULTS

get parameters are true. The configuration notification in Figure 68 displays some relevant information

regarding the device, which was not changed in this instance.

Figure 67: Dashboard command notification
Figure 68: Dashboard configuration notification

It is also important to note that both of these notifications were received in real-time using the change

streams feature, as seen in the logs in Figure 69, which shows the detected changes to the Comman-

dResult, Configurations, and ConfigurationHistory collections of the database.

Figure 69: Dashboard change streams logs

5.5 Sensors

On the dashboard’s sensors page, the current parameters for each sensor variable are displayed and can

be altered. In this case, the period of the accelerometer variables was changed to 600 seconds, and the

light and humidity sensors were deactivated, as shown in Figure 70.

The logs in Figure 71 indicate that the Process Data microservice received the command successfully,

and the modified variable data is as expected. The command’s consumer is set to regulars, and it will

be consumed when the next regular message is sent within 5 minutes. After a few seconds, the regular

endpoint receives a POST request, indicating that the device has sent a regular message. After the POST

request, a GET request is sent to the command endpoint to retrieve a command, if one is available in the

database. The sensors variable command is returned to the device in byte array format.

The device sends a command result message after processing the command, which is displayed

in Figure 72. Both set and get parameters are true, and the opcode and command description correspond

102

CHAPTER 5. RESULTS

Figure 70: Dashboard sensors page parameters update

Figure 71: Process Data microservice sensor variable command logs

to the command that was sent. After initiating communication with the cloud, the time required for the

device to receive the command, execute it, and send the results back to the cloud was approximately 5

seconds from the user’s perspective.

Figure 72: Dashboard change streams logs

103

CHAPTER 5. RESULTS

Finally, in it is possible to view the changes made to the configuration of the device in the database

collection. The updated configuration is received alongside the command result and the stored values

match what was initially selected on the dashboard.

In Figure 73, it is possible to view the modifications made to the database Configurations collection.

The updated configuration is delivered alongside the command result, and the stored values correspond

to the values that were initially selected on the dashboard.

Figure 73: Dashboard change streams logs

104

C
h
a
p
te

r

6
Conclusion

The Internet of Things (IoT) is a rapidly expanding field that promises to transform how we live and work

by connecting physical objects to the internet and enabling them to communicate and share data. This

has led to an increasing number of IoT devices being used for a wide range of applications, including

environmental monitoring, data acquisition, and machine learning. As the number of IoT devices increases,

the importance of cloud-based architectures that are efficient and dependable for managing and analyzing

the data they collect grows.

This dissertation was developed as part of the Link4S project, which seeks to generate new scientific

knowledge regarding the design, development, and testing of a new generation of connectivity devices and

their corresponding platforms. A segment of the cloud infrastructure had already been developed alongside

end-devices prior to this dissertation. The architecture of these ultra-low-power monitoring systems is typical

of the Internet of Things. They spend most of their lives in a dormant state, awakening only to measure

environmental variables using multiple sensors or to signal an anomaly, using an NB-IoT transceiver to

communicate with the cloud and a microcontroller as the system’s brain.

The original cloud architecture consisted of a microservices-based architecture that utilized the Black-

wing framework and only implemented microservices for parsing and storing device-sent data in a Mon-

goDB database. This approach made it difficult to analyze device data because there were no available

user interfaces, and all device interaction, such as sending commands, had to be performed manually

using Python scripts.

In the context of this dissertation, the emphasis was on improving the original cloud architecture to an

105

CHAPTER 6. CONCLUSION

CMP compliant microservices-based architecture. The CMP architecture enables interoperability between

IoT ecosystems by providing the ability to ”link any data source(s) to any data sink(s), independently of the

data formats and/or protocols that are used”, and can be implemented modularly using microservices.

Additionally, a dashboard application was required to facilitate themanagement and analysis of device data.

To achieve the proposed goals, a literature review was made on the subject of microservices architectures,

to better understand how they work and their benefits over monolithic architectures, and the best practices

on the design of microservices. On the topic of dashboards, the best practices for dashboard design and

the frameworks best suited to the task at hand were evaluated.

The requirements for this project, which influenced the development of this dissertation, were related

to the cloud and data visualization. As new microservices were created to implement the components of

the CMP architecture, and a data visualization and device management platform was created in the form

of a Dashboard, the project successfully met all requirements.

To enhance the functionality of the Dashboard application, additional components such as real-time

updates and a time series cache were added. In addition, the creation of REST APIs to access and ma-

nipulate device and user data enables the development of additional applications given the data’s ease of

access. Testing and validating the final cloud architecture, including validation with project partners, and

deploying the cloud architecture on a production-ready server were also accomplished.

In the context of the Link4S project, the implementation of this microservices-based architecture has

resulted in a more efficient and effective cloud architecture that is better suited to manage and analyze data

from a large number of IoT devices. This work contributes to the ongoing efforts to improve the reliability

and scalability of IoT systems and has the potential to have an impact on the IoT and cloud computing

fields.

The end-result of this project in an CMP-based cloud architecture that is more autonomous, secure,

and reconfigurable at runtime via CLI commands. The cloud architecture is based on microservices and

enables scalability to a large number of devices; end-devices are fully integrated with the cloud and have

an estimated field lifetime of 23 years. It supports secure end-to-end communications using the RSA and

AES encryption algorithms, as well as FOTA updates and other configurations. Overall, this dissertation

emphasizes the significance of microservices architecture in the IoT space and how the CMP architecture

can serve as a base for future IoT architectures.

106

CHAPTER 6. CONCLUSION

6.1 Future work

Containerization technology such as Docker could be used to move cloud components into containers,

and these containers could be managed using a container orchestration service such as Kubernetes.

Containers are a perfect fit for microservices due to their decentralized nature, as demonstrated in the

State of the Art chapter, and this deployment method can greatly improve their scalability and reliability.

This approach could also be combined with a CI/CD pipeline to streamline the development process, which

includes automatic builds on a dedicated server and integration tests to ensure that new code changes do

not break existing code.

Using a database for time series purposes, such as MongoDB’s own time series implementation or

TimescaleDB, can also improve the storage of sensor data and make the retrieval of data more efficient.

Adding more features to the dashboard could overwhelm the current framework, as its capabilities for

large and complex web applications are somewhat limited. In this situation, it may be preferable to migrate

the current implementation to JavaScript using the React framework and HTML/CSS. As the current Dash

framework is based on React, the majority of the existing codebase can be leveraged to facilitate this

transition.

107

Bibliography

[1] S. B. Atitallah, M. Driss, and H. B. Ghzela, “Microservices for data analytics in iot applications:

Current solutions, open challenges, and future research directions,” Procedia Computer Science,

vol. 207, pp. 3938–3947, 2022, Knowledge-Based and Intelligent Information & Engineering Sys-

tems: Proceedings of the 26th International Conference KES2022, issn: 1877-0509. doi: https:

/ / doi . org / 10 . 1016 / j . procs . 2022 . 09 . 456. [Online]. Available: https : / / www .

sciencedirect.com/science/article/pii/S1877050922013503.

[2] K. Dineva and T. Atanasova, “Architectural ml framework for iot services delivery based on microser-

vices,” in Distributed Computer and Communication Networks, V. M. Vishnevskiy, K. E. Samouylov,

and D. V. Kozyrev, Eds., Cham: Springer International Publishing, 2020, pp. 698–711, isbn: 978-

3-030-66471-8.

[3] S. P. R. Asaithambi, R. Venkatraman, and S. Venkatraman, “Mobda: Microservice-oriented big data

architecture for smart city transport systems,” Big Data and Cognitive Computing, vol. 4, no. 3,

2020, issn: 2504-2289. doi: 10.3390/bdcc4030017. [Online]. Available: https://www.mdpi.

com/2504-2289/4/3/17.

[4] Z. Li, D. Seco, and A. E. Sánchez Rodríguez, “Microservice-oriented platform for internet of big data

analytics: A proof of concept,” Sensors, vol. 19, no. 5, 2019, issn: 1424-8220. doi: 10.3390/

s19051134. [Online]. Available: https://www.mdpi.com/1424-8220/19/5/1134.

[5] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and gains of microservices: A

systematic grey literature review,” Journal of Systems and Software, vol. 146, pp. 215–232, 2018,

issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2018.09.082. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0164121218302139.

108

https://doi.org/https://doi.org/10.1016/j.procs.2022.09.456
https://doi.org/https://doi.org/10.1016/j.procs.2022.09.456
https://www.sciencedirect.com/science/article/pii/S1877050922013503
https://www.sciencedirect.com/science/article/pii/S1877050922013503
https://doi.org/10.3390/bdcc4030017
https://www.mdpi.com/2504-2289/4/3/17
https://www.mdpi.com/2504-2289/4/3/17
https://doi.org/10.3390/s19051134
https://doi.org/10.3390/s19051134
https://www.mdpi.com/1424-8220/19/5/1134
https://doi.org/https://doi.org/10.1016/j.jss.2018.09.082
https://www.sciencedirect.com/science/article/pii/S0164121218302139

BIBLIOGRAPHY

[6] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Microservices: The journey so far

and challenges ahead,” IEEE Software, vol. 35, no. 3, pp. 24–35, 2018. doi: 10.1109/MS.2018.

2141039.

[7] COMPETE 2020. (2022). (link4s)ustainability: Um sistema de conectividade de nova geração, [On-

line]. Available: https://www.compete2020.gov.pt/noticias/detalhe/Newsletter_

46122_(Link4S)ustainability (visited on 06/01/2023).

[8] J. Borges, “Robust software services for iot embedded systems,” Master’s thesis, University of

Minho, 2021.

[9] NOS Comunicações. (2022). (link4s)ustainability, [Online]. Available: https://www.nos.pt/

institucional/PT/a-nos/inovacao/Paginas/(Link4S)ustainability.aspx (visited

on 06/01/2023).

[10] P. Mestre, E. Dogruluk, C. Ferreira, R. Cordeiro, J. Valente, S. Branco, B. Gaspar, and J. Cabral,

“A Platform Architecture for m-Health Internet of Things Applications,” in Wireless Mobile Commu-

nication and Healthcare. MobiHealth 2022. Lecture Notes of the Institute for Computer Sciences,

Social Informatics and Telecommunications Engineering, Springer, Cham, 2022.

[11] N. Dragoni, S. Giallorenzo, A. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina, “Mi-

croservices: yesterday, today, and tomorrow,” in Present and Ulterior Software Engineering, M. Maz-

zara and B. Meyer, Eds., Springer, Sep. 2017. [Online]. Available: https://hal.inria.fr/hal-

01631455.

[12] H. J. La, J. S. Bae, S. H. Chang, and S. D. Kim, “Practical methods for adapting services using

enterprise service bus,” in Proceedings of the 7th International Conference on Web Engineering,

ser. ICWE’07, Springer-Verlag, 2007, pp. 53–58, isbn: 9783540735960.

[13] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casallas, and S. Gil, “Evaluating

the monolithic and the microservice architecture pattern to deploy web applications in the cloud,”

in 2015 10th Computing Colombian Conference (10CCC), 2015, pp. 583–590. doi: 10.1109/

ColumbianCC.2015.7333476.

[14] J. Lewis and M. Fowler. (2014). Microservices, [Online]. Available: https://martinfowler.

com/articles/microservices.html (visited on 12/08/2022).

109

https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://www.compete2020.gov.pt/noticias/detalhe/Newsletter_46122_(Link4S)ustainability
https://www.compete2020.gov.pt/noticias/detalhe/Newsletter_46122_(Link4S)ustainability
https://www.nos.pt/institucional/PT/a-nos/inovacao/Paginas/(Link4S)ustainability.aspx
https://www.nos.pt/institucional/PT/a-nos/inovacao/Paginas/(Link4S)ustainability.aspx
https://hal.inria.fr/hal-01631455
https://hal.inria.fr/hal-01631455
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

BIBLIOGRAPHY

[15] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi, “From monolithic systems to microservices: An as-

sessment framework,” Information and Software Technology, vol. 137, Sep. 2021, issn: 09505849.

doi: 10.1016/j.infsof.2021.106600.

[16] P. Krivic, P. Skocir, M. Kusek, and G. Jezic, “Microservices as agents in iot systems,” in Agent and

Multi-Agent Systems: Technology and Applications, Jan. 2018, pp. 22–31, isbn: 978-3-319-59393-

7. doi: 10.1007/978-3-319-59394-4_3.

[17] R. M. Munaf, J. Ahmed, F. Khakwani, and T. Rana, “Microservices architecture: Challenges and

proposed conceptual design,” in 2019 International Conference on Communication Technologies

(ComTech), 2019, pp. 82–87. doi: 10.1109/COMTECH.2019.8737831.

[18] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices approach for the internet of things,”

in 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation

(ETFA), 2016, pp. 1–6. doi: 10.1109/ETFA.2016.7733707.

[19] S. Newman, Building Microservices, 2nd. O’Reilly Media, Inc., 2021, isbn: 9781492034025.

[20] M. Waseem, P. Liang, M. Shahin, A. D. Salle, and G. Márquez, “Design, monitoring, and testing of

microservices systems: The practitioners’ perspective,” Journal of Systems and Software, vol. 182,

Dec. 2021, issn: 01641212. doi: 10.1016/j.jss.2021.111061.

[21] Microsoft. (2021). Using domain analysis to model microservices, [Online]. Available: https :

//docs.microsoft.com/en-us/azure/architecture/microservices/model/domain-

analysis (visited on 12/08/2022).

[22] E. Norelus. (2019). Implementing domain-driven design for microservice architecture, [Online].

Available: https://medium.com/design-and-tech-co/implementing-domain-driven-

design-for-microservice-architecture-26eb0333d72e (visited on 12/08/2022).

[23] C. Ramalingam. (2020). Building domain driven microservices, [Online]. Available: https://

medium.com/walmartglobaltech/building-domain-driven-microservices-af688aa1b1b8

(visited on 12/08/2022).

[24] Microsoft. (2021). Using tactical ddd to design microservices, [Online]. Available: https://docs.

microsoft.com/en-us/azure/architecture/microservices/model/tactical-ddd

(visited on 12/08/2022).

110

https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.1007/978-3-319-59394-4_3
https://doi.org/10.1109/COMTECH.2019.8737831
https://doi.org/10.1109/ETFA.2016.7733707
https://doi.org/10.1016/j.jss.2021.111061
https://docs.microsoft.com/en-us/azure/architecture/microservices/model/domain-analysis
https://docs.microsoft.com/en-us/azure/architecture/microservices/model/domain-analysis
https://docs.microsoft.com/en-us/azure/architecture/microservices/model/domain-analysis
https://medium.com/design-and-tech-co/implementing-domain-driven-design-for-microservice-architecture-26eb0333d72e
https://medium.com/design-and-tech-co/implementing-domain-driven-design-for-microservice-architecture-26eb0333d72e
https://medium.com/walmartglobaltech/building-domain-driven-microservices-af688aa1b1b8
https://medium.com/walmartglobaltech/building-domain-driven-microservices-af688aa1b1b8
https://docs.microsoft.com/en-us/azure/architecture/microservices/model/tactical-ddd
https://docs.microsoft.com/en-us/azure/architecture/microservices/model/tactical-ddd

BIBLIOGRAPHY

[25] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley,

2004.

[26] Microsoft. (2021). Identifying microservice boundaries, [Online]. Available: https : / / docs .

microsoft.com/en-us/azure/architecture/microservices/model/microservice-

boundaries (visited on 12/08/2022).

[27] IBM. (2021). Remote procedure call, [Online]. Available: https://www.ibm.com/docs/en/

aix/7.3?topic=concepts-remote-procedure-call (visited on 15/08/2022).

[28] gRPC. (2021). Introduction to grpc, [Online]. Available: https://grpc.io/docs/what-is-

grpc/introduction (visited on 15/08/2022).

[29] Red Hat. (2020). What is a rest api? [Online]. Available: https://www.redhat.com/en/

topics/api/what-is-a-rest-api (visited on 15/08/2022).

[30] IBM. (2020). Message brokers, [Online]. Available: https://www.ibm.com/cloud/learn/

message-brokers (visited on 15/08/2022).

[31] Apache Kafka. (2021). Kafka 3.0 documentation, [Online]. Available: https://kafka.apache.

org/documentation (visited on 15/08/2022).

[32] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” IEEE Cloud Computing,

vol. 1, no. 3, pp. 81–84, 2014. doi: 10.1109/MCC.2014.51.

[34] F. Paraiso, S. Challita, Y. Al-Dhuraibi, and P. Merle, “Model-Driven Management of Docker Contain-

ers,” in 9th IEEE International Conference on Cloud Computing (CLOUD), IEEE, Ed., San Francisco,

United States, Jun. 2016, pp. 718 –725. doi: 10.1109/CLOUD.2016.0100. [Online]. Available:

https://hal.inria.fr/hal-01314827.

[33] Docker. (2021). Docker overview, [Online]. Available: https : / / docs . docker . com / get -

started/overview (visited on 14/08/2022).

[35] IBM. (2021). Container orchestration, [Online]. Available: https://www.ibm.com/cloud/

learn/container-orchestration (visited on 14/08/2022).

[36] Stratoscale. (2019). Everything kubernetes: A practical guide, [Online]. Available: https://www.

stratoscale.com/resources/ebooks/everything-kubernetes-5/ (visited on 15/08/2022).

[37] Kubernetes. (2021). Kubernetes components, [Online]. Available: https://kubernetes.io/

docs/concepts/overview/components (visited on 14/08/2022).

111

https://docs.microsoft.com/en-us/azure/architecture/microservices/model/microservice-boundaries
https://docs.microsoft.com/en-us/azure/architecture/microservices/model/microservice-boundaries
https://docs.microsoft.com/en-us/azure/architecture/microservices/model/microservice-boundaries
https://www.ibm.com/docs/en/aix/7.3?topic=concepts-remote-procedure-call
https://www.ibm.com/docs/en/aix/7.3?topic=concepts-remote-procedure-call
https://grpc.io/docs/what-is-grpc/introduction
https://grpc.io/docs/what-is-grpc/introduction
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.ibm.com/cloud/learn/message-brokers
https://www.ibm.com/cloud/learn/message-brokers
https://kafka.apache.org/documentation
https://kafka.apache.org/documentation
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/CLOUD.2016.0100
https://hal.inria.fr/hal-01314827
https://docs.docker.com/get-started/overview
https://docs.docker.com/get-started/overview
https://www.ibm.com/cloud/learn/container-orchestration
https://www.ibm.com/cloud/learn/container-orchestration
https://www.stratoscale.com/resources/ebooks/everything-kubernetes-5/
https://www.stratoscale.com/resources/ebooks/everything-kubernetes-5/
https://kubernetes.io/docs/concepts/overview/components
https://kubernetes.io/docs/concepts/overview/components

BIBLIOGRAPHY

[38] S. Few, Information dashboard design: Effective visual communication of data, en. Sebastopol, CA:

O’Reilly Media, 2006, isbn: 9780596100162.

[39] O. M. Yigitbasioglu and O. Velcu, “A review of dashboards in performance management: Implica-

tions for design and research,” International Journal of Accounting Information Systems, vol. 13,

no. 1, pp. 41–59, 2012, issn: 1467-0895. doi: https://doi.org/10.1016/j.accinf.2011.

08.002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S1467089511000443.

[40] A. Sarikaya, M. Correll, L. Bartram, M. Tory, and D. Fisher, “What do we talk about when we talk

about dashboards?” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 1,

pp. 682–692, 2019. doi: 10.1109/TVCG.2018.2864903.

[41] K. Pauwels, T. Ambler, B. Clark, P. LaPointe, D. Reibstein, B. Skiera, B. Wierenga, and T. Wiesel,

“Dashboards as a service : Why, what, how, and what research is needed?” Journal of Service

Research, vol. 12, pp. 175–189, Oct. 2009. doi: 10.1177/1094670509344213.

[42] E. B. Goldstein, Sensation and Perception. Belmont, CA: Wadsworth Publishing, 2006.

[43] P. Moore and C. Fitz, “Gestalt theory and instructional design,” Journal of Technical Writing and

Communication, vol. 23, no. 2, pp. 137–157, 1993. doi: 10.2190/G748-BY68-L83T-X02J.

eprint: https://doi.org/10.2190/G748-BY68-L83T-X02J. [Online]. Available: https:

//doi.org/10.2190/G748-BY68-L83T-X02J.

[44] W. Dilla and P. Steinbart, “The effects of alternative supplementary display formats on balanced

scorecard judgments,” International Journal of Accounting Information Systems, vol. 6, pp. 159–

176, Sep. 2005. doi: 10.1016/j.accinf.2004.12.002.

[45] T. Amer, “An experimental investigation of multi-cue financial information display and decision mak-

ing.,” Journal of Information Systems, vol. 5, no. 2, pp. 18–34, 1991.

[46] I. Vessey and D. Galletta, “Cognitive fit: An empirical study of information acquisition,” Information

Systems Research, vol. 2, no. 1, pp. 63–84, 1991, issn: 10477047, 15265536. [Online]. Available:

http://www.jstor.org/stable/23010613.

[47] I Vessey and D Galletta, “Cognitive fit: An empirical study of information acquisition,” Informa-

tion Systems Research, vol. 2, no. 1, pp. 63 –84, Jan. 1991. [Online]. Available: http://d-

scholarship.pitt.edu/13949/.

112

https://doi.org/https://doi.org/10.1016/j.accinf.2011.08.002
https://doi.org/https://doi.org/10.1016/j.accinf.2011.08.002
https://www.sciencedirect.com/science/article/pii/S1467089511000443
https://www.sciencedirect.com/science/article/pii/S1467089511000443
https://doi.org/10.1109/TVCG.2018.2864903
https://doi.org/10.1177/1094670509344213
https://doi.org/10.2190/G748-BY68-L83T-X02J
https://doi.org/10.2190/G748-BY68-L83T-X02J
https://doi.org/10.2190/G748-BY68-L83T-X02J
https://doi.org/10.2190/G748-BY68-L83T-X02J
https://doi.org/10.1016/j.accinf.2004.12.002
http://www.jstor.org/stable/23010613
http://d-scholarship.pitt.edu/13949/
http://d-scholarship.pitt.edu/13949/

BIBLIOGRAPHY

[48] N. S. Umanath and I. Vessey, “Multiattribute data presentation and human judgment: A cognitive

fit perspective*,” Decision Sciences, vol. 25, no. 5-6, pp. 795–824, 1994. doi: https://doi.

org/10.1111/j.1540-5915.1994.tb01870.x. eprint: https://onlinelibrary.wiley.

com/doi/pdf/10.1111/j.1540- 5915.1994.tb01870.x. [Online]. Available: https:

//onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-5915.1994.tb01870.x.

[49] L. Diamond and F. Lerch, “Fading frames: Data presentation and framing effects*,” Decision Sci-

ences, vol. 23, pp. 1050 –1071, Jun. 2007. doi: 10.1111/j.1540-5915.1992.tb00435.x.

[50] Thingsboard. (2022). Thingsboard documentation, [Online]. Available: https://thingsboard.

io/docs (visited on 22/08/2022).

[51] Ubidots. (2022). Ubidots documentation, [Online]. Available: https://ubidots.com/docs

(visited on 22/08/2022).

[52] OpenJS Foundation, Node-RED contributors. (2022). Node-red documentation, [Online]. Available:

https://nodered.org/docs (visited on 22/08/2022).

[53] Grafana Labs. (2022). Grafana documentation, [Online]. Available: https://grafana.com/docs

(visited on 22/08/2022).

[54] Plotly. (2022). Dash documentation & user guide, [Online]. Available: https://dash.plotly.

com (visited on 22/08/2022).

[55] B. Mataloto, J. C. Ferreira, and N. Cruz, “Lobems—iot for building and energy management sys-

tems,” Electronics, vol. 8, no. 7, 2019, issn: 2079-9292. doi: 10.3390/electronics8070763.

[Online]. Available: https://www.mdpi.com/2079-9292/8/7/763.

[56] R. Chetty, S. M.S., S. D., and R. R. Marathe, “A lorawan based open source iot solution for monitoring

rural electrification policy,” Institute of Electrical and Electronics Engineers Inc., 2020, pp. 888–

890, isbn: 9781728131870. doi: 10.1109/COMSNETS48256.2020.9027490.

[57] A. Ali, C. Coté, M. Heidarinejad, and B. Stephens, “Elemental: An open-source wireless hardware

and software platform for building energy and indoor environmental monitoring and control,” Sen-

sors, vol. 19, p. 4017, Sep. 2019. doi: 10.3390/s19184017.

113

https://doi.org/https://doi.org/10.1111/j.1540-5915.1994.tb01870.x
https://doi.org/https://doi.org/10.1111/j.1540-5915.1994.tb01870.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-5915.1994.tb01870.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-5915.1994.tb01870.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-5915.1994.tb01870.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-5915.1994.tb01870.x
https://doi.org/10.1111/j.1540-5915.1992.tb00435.x
https://thingsboard.io/docs
https://thingsboard.io/docs
https://ubidots.com/docs
https://nodered.org/docs
https://grafana.com/docs
https://dash.plotly.com
https://dash.plotly.com
https://doi.org/10.3390/electronics8070763
https://www.mdpi.com/2079-9292/8/7/763
https://doi.org/10.1109/COMSNETS48256.2020.9027490
https://doi.org/10.3390/s19184017

BIBLIOGRAPHY

[58] L. O. Aghenta and M. T. Iqbal, “Design and implementation of a low-cost, open source iot-based

scada system using esp32 with oled, thingsboard and mqtt protocol,” AIMS Electronics and Elec-

trical Engineering, vol. 4, no. 1, pp. 57–86, 2020, issn: 2578-1588. doi: 10.3934/ElectrEng.

2020.1.57. [Online]. Available: https://www.aimspress.com/article/doi/10.3934/

ElectrEng.2020.1.57.

[59] P. Diaz, K. Potter, G. Johnson, and A. Lopez, “Uncertainty visualization for renewable energy poten-

tial,” in Proceedings of the Twelfth ACM International Conference on Future Energy Systems, Asso-

ciation for Computing Machinery, Jun. 2021, pp. 335–340, isbn: 9781450383332. doi: 10.1145/

3447555.3466593. [Online]. Available: https://doi.org/10.1145/3447555.3466593.

[60] S. Branco. (2018). Blackwing specifications, [Online]. Available: https://blackwing.readthedocs.

io/en/latest (visited on 21/12/2022).

[61] NordPass. (2022). Learning password security jargon: Password peppering, [Online]. Available:

https://nordpass.com/blog/pepper-password (visited on 10/10/2022).

[62] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: New generation of memory-hard functions for

password hashing and other applications,” in 2016 IEEE European Symposium on Security and

Privacy (EuroS&P), 2016, pp. 292–302. doi: 10.1109/EuroSP.2016.31.

[63] MongoDB. (2022). Mongodb, [Online]. Available: https : / / www . mongodb . com (visited on

10/10/2022).

[64] Flask. (2022). Welcome to flask — flask documentation (2.2.x), [Online]. Available: https://

flask.palletsprojects.com/en/2.2.x (visited on 12/10/2022).

[65] React. (2022). A javascript library for building user interfaces, [Online]. Available: https : / /

reactjs.org/ (visited on 12/10/2022).

[66] Plotly. (2022). Plotly open source graphing library for python, [Online]. Available: https : / /

plotly.com/python (visited on 12/10/2022).

[67] MDN Web Docs. (2022). Mvc - mdn web docs glossary: Definitions of web-related terms, [Online].

Available: https://developer.mozilla.org/en- US/docs/Glossary/MVC (visited on

12/10/2022).

[68] Plotly. (2022). Basic dash callbacks, [Online]. Available: https://dash.plotly.com/basic-

callbacks (visited on 20/10/2022).

114

https://doi.org/10.3934/ElectrEng.2020.1.57
https://doi.org/10.3934/ElectrEng.2020.1.57
https://www.aimspress.com/article/doi/10.3934/ElectrEng.2020.1.57
https://www.aimspress.com/article/doi/10.3934/ElectrEng.2020.1.57
https://doi.org/10.1145/3447555.3466593
https://doi.org/10.1145/3447555.3466593
https://doi.org/10.1145/3447555.3466593
https://blackwing.readthedocs.io/en/latest
https://blackwing.readthedocs.io/en/latest
https://nordpass.com/blog/pepper-password
https://doi.org/10.1109/EuroSP.2016.31
https://www.mongodb.com
https://flask.palletsprojects.com/en/2.2.x
https://flask.palletsprojects.com/en/2.2.x
https://reactjs.org/
https://reactjs.org/
https://plotly.com/python
https://plotly.com/python
https://developer.mozilla.org/en-US/docs/Glossary/MVC
https://dash.plotly.com/basic-callbacks
https://dash.plotly.com/basic-callbacks

BIBLIOGRAPHY

[69] UXPin. (2022). Ui design and prototyping tool, [Online]. Available: https://www.uxpin.com

(visited on 24/10/2022).

[70] Plotly. (2022). Live updating components, [Online]. Available: https://dash.plotly.com/

live-updates (visited on 25/10/2022).

[71] MongoDB. (2022). An introduction to change streams, [Online]. Available: https://www.mongodb.

com/blog/post/an-introduction-to-change-streams (visited on 25/10/2022).

[72] Flask Cache. (2022). Flask-caching documentation, [Online]. Available: https://flask-caching.

readthedocs.io/en/latest (visited on 28/10/2022).

[73] G. Duarte. (2009). Page cache, the affair between memory and files, [Online]. Available: https:

//manybutfinite.com/post/page-cache-the-affair-between-memory-and-files

(visited on 29/10/2022).

[74] R. Imankulov. (2022). Time series caching with python and redis, [Online]. Available: https :

//roman.pt/posts/time-series-caching (visited on 29/10/2022).

[75] AWS. (2022). Caching strategies - amazon elasticache, [Online]. Available: https : / / docs .

aws.amazon.com/AmazonElastiCache/latest/mem-ug/Strategies.html (visited on

29/10/2022).

[76] Redis. (2022). Introduction to redis, [Online]. Available: https://redis.io/docs/about

(visited on 29/10/2022).

[77] Plotly. (2022). Pattern-matching callbacks, [Online]. Available: https://dash.plotly.com/

pattern-matching-callbacks (visited on 20/11/2022).

[78] J. Van Der Donckt, J. Van Der Donckt, E. Deprost, and S. Van Hoecke, Plotly-resampler: Effective

visual analytics for large time series, 2022. doi: 10 . 48550 / ARXIV . 2206 . 08703. [Online].

Available: https://arxiv.org/abs/2206.08703.

[79] pydantic. (2022). Models, [Online]. Available: https://docs.pydantic.dev/usage/models

(visited on 22/12/2022).

115

https://www.uxpin.com
https://dash.plotly.com/live-updates
https://dash.plotly.com/live-updates
https://www.mongodb.com/blog/post/an-introduction-to-change-streams
https://www.mongodb.com/blog/post/an-introduction-to-change-streams
https://flask-caching.readthedocs.io/en/latest
https://flask-caching.readthedocs.io/en/latest
https://manybutfinite.com/post/page-cache-the-affair-between-memory-and-files
https://manybutfinite.com/post/page-cache-the-affair-between-memory-and-files
https://roman.pt/posts/time-series-caching
https://roman.pt/posts/time-series-caching
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Strategies.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Strategies.html
https://redis.io/docs/about
https://dash.plotly.com/pattern-matching-callbacks
https://dash.plotly.com/pattern-matching-callbacks
https://doi.org/10.48550/ARXIV.2206.08703
https://arxiv.org/abs/2206.08703
https://docs.pydantic.dev/usage/models

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Contextualization and Motivation
	Goals
	Methodology and Methods
	Dissertation Structure

	Background and State of the Art
	Microservices
	Microservices architecture
	Microservices deployment

	Dashboard
	Good design practices
	Dashboard types
	Frameworks for dashboard development

	Summary

	System Specification & Design
	Functional and non-functional requirements
	Functional requirements
	Non-functional requirements

	Architecture overview
	Use cases
	Microservices
	Data parsing
	Data processing
	Devices
	Users

	Database
	Data
	Application

	Dashboard
	Functional and visual features
	Framework choice
	Architecture overview
	Design prototype
	Real-time updates
	Time series cache

	Implementation
	Programming languages and tools
	Microservices
	Data parsing
	Data processing
	Devices
	Users

	Dashboard
	Initialization, routing and layout
	Pages
	Real-time updates
	Time series cache

	Results
	Login
	Overview
	Metrics
	Specifications
	Sensors

	Conclusion
	Future work

	Bibliography

