
University of Minho

School of Engineering

Simão José Silva Leite

Study and selection of several artificial intel-

ligence algorithms for gas detection in sys-

tems with scarce resources

January, 2023

S
tu
d
y
a
n
d
s
e
le
c
ti
o
n
o
f
s
e
v
e
ra
l
a
rt
if
ic
ia
l

in
te
ll
ig
e
n
c
e
a
lg
o
ri
th
m
s
fo
r
g
a
s
d
e
te
c
ti
o
n
in

s
y
s
te
m
s
w
it
h
s
c
a
rc
e
re
s
o
u
rc
e
s

S
im

ã
o
L
e
it
e

U
M
in
h
o
|2

0
2
3

University of Minho

School of Engineering

Simão José Silva Leite

Study and selection of several artificial

intelligence algorithms for gas detection

in systems with scarce resources

Master’s Dissertation

Master’s in Industrial Electronics and Computer Engineering

Work supervised by

Jorge Miguel Nunes Cabral

January, 2023

i

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and

good practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositóriUM of University of Minho.

License granted to the users of this work

Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

Determination is nothing without dedication and hard work.

ii

Agradecimentos

Eu gostaria de agradecer ao professor Jorge Cabral por me orientar ao longo da minha dissertação e

por me dar a oportunidade de realizar este projeto. Queria também agradecer aos Professores João

Carvalho, Rui Machado e Sofia Paiva do DTx que sempre se mostraram disponíveis para me ajudar neste

projeto. Um grande abraço a todos os meus professores do departamento de Engenharia Eletrónica da

Universidade do Minho que fizeram a diferença no meu percurso de aprendizagem durante estes últimos

cinco anos.

Um agradecimento especial a todos os meus amigos que sempre me ajudaram a dar o melhor de mim e

que se mostraram disponíveis para me ajudar em tudo que fosse preciso.

À minha família queria agradecer do fundo domeu coração por me apoiarem em todas as minhas decisões,

pois sempre me indicaram o melhor caminho a seguir, profissional e pessoal. Um muito obrigado às três

mulheres da minha vida (a minha mãe, a minha irmã e a minha madrinha) e um grande abraço ao meu

pai, ao meu padrinho e ao meu avô.

Por fim, um obrigado a todos que me ajudaram neste percurso académico.

Project ”(Link4S)ustainability - A new generation connectivity system for creation and integration of net-

works of objects for new sustainability paradigms [POCI-01-0247-FEDER-046122 | LISBOA-01-0247-

FEDER-046122]” is financed by the Operational Competitiveness and Internationalization Programmes

COMPETE 2020 and LISBOA 2020 under the PORTUGAL 2020 Partnership Agreement, and through the

European Structural and Investment Funds in the FEDER component.

iii

iv

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

Abstract

Study and selection of several artificial intelligence algorithms for gas

detection in systems with scarce resources

The main contribution of this thesis is the study and selection of several artificial intelligence algorithms

for gas detection developed to be used with BME688 gas sensor, in IoT (Internet-of-Things) end device.

The proposed gas monitoring process provides the IoT end devices with gas leak detection, measuring

the air quality and ensuring the correct gas concentration for some environments. Nowadays, with the

development of the IoT technology, gas monitoring has been integrated into people’s lives and the industry.

One of the problems in gas monitoring is the lack of cross-sensitivity and low selectivity of the gas sensors.

So, as a way to solve these problems, the idea of implementing artificial intelligence algorithms capable

of overcoming such issues has arisen. Most artificial intelligence algorithms require a large processing

capacity by the systems in which they are running, leading to mass energy consumption. This high energy

consumption brings disadvantages, since not all systems have a significant number of resources to handle

it. The operation time of a gas monitoring device without requiring maintenance is another crucial aspect.

To achieve such a goal, the devices must consume little energy. Therefore, this thesis’s goal is the selection

of an artificial intelligence algorithm that is best suited for resource-scarce systems.

Keywords: Artificial intelligence algorithms; Resource scarce systems

v

Resumo

Estudo e seleção de vários algoritmos de inteligência artificial para a de-

teção de gases em sistemas com recursos escassos

O principal contributo desta dissertação é o estudo e seleção de vários algoritmos de inteligência artificial

para a deteção de gases em sistemas com recursos escassos. A monitorização de gases é um processo

bastante importante em alguns sistemas, pois permite detetar fugas de gases que possam ocorrer, medir

a qualidade do ar e garantir uma correta concentração de gases em determinados sistemas. Atualmente

com o desenvolvimento da tecnologia Internet-of-Things (IoT), a monitorização de gases, tem sido integrada

na vida das pessoas e na indústria. Um dos problemas que reside na monitorização de gases é a falta de

sensibilidade cruzada e a baixa seletividade por parte dos sensores de gases, existindo atualmente em

funcionamento. Assim, como forma de resolver estes problemas surgiu a ideia de implementar algoritmos

de inteligência artificial que possam colmatar tais problemas. A maioria dos algoritmos de inteligência

artificial requerem grande capacidade de processamento por parte dos sistemas nos quais estão inseridos,

levando a um grande consumo de energia dos mesmos. Este elevado consumo de energia traz grandes

desvantagens, pois nem todos os sistemas possuem um número elevado de recursos. Outro aspeto

também importante a ter em consideração é o tempo de operação de um dispositivo de monitorização de

gases sem necessitar de manutenção, este objetivo só é atingido se o consumo de energia for baixo. Por

conseguinte, o objetivo desta dissertação é selecionar um algoritmo de inteligência artificial que melhor

se adequa a sistemas de recursos escassos.

Palavras-chave: Algoritmos de inteligência artificial; Sistemas de recursos escassos

vi

Contents

List of Figures x

List of Tables xiii

Listings xiv

Acronyms xv

1 Introduction 1

1.1 Contextualization . 1

1.2 General Motivations . 2

1.3 Objective . 2

1.4 Methodology . 3

1.5 Dissertation Structure . 3

2 Literature Review 5

2.1 Background on Environmental Gases . 5

2.2 Sensing Technologies . 6

2.3 Background on gas sensors . 11

2.3.1 MQ gas sensors . 11

2.3.2 Bosch BME688 gas sensor . 12

2.4 Machine learning applied to gas detection . 15

2.5 Selection Criteria . 17

2.5.1 Root Mean Square Error (RMSE) . 17

2.5.2 Akaike Information Criterion (AIC) . 17

3 Theory 18

3.1 Training Models . 18

3.1.1 Linear Regression . 18

3.1.2 Gradient Descent . 19

vii

CONTENTS

3.1.3 Polynomial Regression . 21

3.1.4 Logistic Regression . 22

3.2 Classification . 24

3.2.1 Performance measures . 24

3.3 Machine Learning Models Background . 26

3.3.1 Support Vector Machine Classifier . 26

3.3.2 Decision Tree Classifier . 32

3.3.3 Ensemble Learning and Random Forests 35

3.3.4 Artificial Neural Network (ANN) . 37

3.3.5 Generalized Additive Models (GAM) . 39

3.3.6 Lattice-based ML models . 42

4 System Specifications 43

4.1 System Overview . 43

4.2 Requirements . 44

4.2.1 Functional Requirements . 44

4.2.2 Non-Functional Requirements . 44

4.3 Hardware . 44

4.4 Software . 48

4.4.1 Tools . 48

4.4.2 Software Tools Used . 48

4.4.3 Software Architecture . 49

4.4.4 Software Class Diagrams . 50

4.4.5 Software Flowcharts . 53

4.4.6 Sequence Diagram . 58

5 Implementation 59

5.1 BME688 Development Kit . 59

5.2 BME688 Graphical User Interface . 62

5.3 Data Structure . 63

5.4 BME688 Sensor Behavior . 63

5.5 Dataset for the Classifiers . 64

5.5.1 Training and Test set . 65

5.6 SVM Classifier . 66

5.7 Decision Tree Classifier . 69

5.8 Random Forest Classifier . 70

5.9 Classifiers Tests and Results . 72

viii

CONTENTS

5.9.1 Accuracy . 72

5.9.2 Confusion matrix . 73

5.9.3 Precision and Recall . 74

5.9.4 ROC Curve . 74

5.9.5 Computational Complexity . 75

5.10 Dataset for the Regressors . 76

5.10.1 Training and Test set . 79

5.11 Artificial Neural Network (ANN) . 79

5.12 Generalized Additive Models (GAM) . 83

5.13 TensorFlow Lattice . 84

5.14 Regressors Tests and Results . 85

6 Conclusion 87

6.1 Future Work . 88

References 89

ix

List of Figures

1 Working principle of electrochemical gas sensors . 7

2 Working principle of MOS gas sensors . 7

3 Ultrasonic speed-based gas sensor, which measures the target gas by a comparison of the

sound speed in the air and the sound speed in the presence of the target gas 8

4 Working principle of Catalytic gas sensors . 10

5 Catalytic gas sensor circuit and the relationship between gas concentration and output voltage 10

6 The fluorescent-quenching effect gas detector, this measures the target gas by evaluating

the reflected wavelength from the sensing material on the presence of the gases 11

7 Top and bottom package images . 14

8 A BME688 assembly after the metal lid is removed 14

9 Die photo of integrated MEMS sensor . 14

10 Gas sensor . 15

11 Deep Neural Network example . 16

12 Linear Regression Example . 19

13 Gradient descent algorithm . 20

14 Learning rate too small . 20

15 Learning rate too large . 21

16 Gradient descent algorithm in a non-convex function 21

17 Nonlinear data . 22

18 Polynomial Regression Example . 22

19 Nonlinear data . 23

20 Illustration of a confusion matrix for 5-images classifier 25

21 Dataset with two classes linearly separable . 26

22 Dataset with two classes linearly separable and the optimal hyperplane 27

23 Dataset unscaled and scaled . 27

24 Datasets with one outlier . 28

25 Dataset with large margin vs fewer margin violations 28

x

LIST OF FIGURES

26 Adding features to make a dataset linearly separable 29

27 Adding features to make a dataset linearly separable 29

28 Polynomial features . 30

29 Decision function implementation example . 31

30 Decision function of figure 29b in 2D . 31

31 Iris Decision Tree . 33

32 Sensitivity to training set rotation . 35

33 Ensemble Learning technique . 36

34 Bagging training set sampling and training . 36

35 Diagram of biological neuron . 37

36 Diagram of artificial neuron . 37

37 Artificial Neural Network with two hidden layers . 38

38 Artificial Neural Network with 1 input and 1 output . 39

39 GAM structure example . 40

40 Fitting a model with three different _ values . 41

41 Lattices example . 42

42 System overview . 43

43 BME688 development kit . 44

44 Adafruit HUZZAH32 feather board . 45

45 BME688 dev-kit board . 45

46 BME688 sensor . 46

47 TCA6408A Low-Voltage 8-bit I2C and SMBus I/O Expander Schematic 46

48 BME688 Schematic . 47

49 Heater profile example . 47

50 PCF8523 Real-Time Clock (RTC) . 48

51 Software architecture for the data collection process 50

52 Software architecture for machine learning models . 50

53 Class Diagram for the BME688 Development Kit data collection process 51

54 Class Diagram for the BME688 Development Kit GUI 52

55 Software Flowchart for the data collection process . 53

56 Software flowchart of comm_mux_init function . 54

57 Software flowchart of comm_mux module used to make the interface between the ESP32,

SMBus and the sensors . 55

58 Software Flowchart of BME68x API . 56

59 Software flowcharts of BME688-GUI . 57

xi

LIST OF FIGURES

60 Software Flowchart for machine learning models . 57

61 Sequence diagram for data collection process . 58

62 BME688 GUI . 62

63 Dataset Structure . 63

64 BME688 response time to ambient air . 64

65 Setup used to collect the data for the classifiers models 64

66 Gas Resistance collected in the ambient air environment 65

67 Gas Resistance collected in the �$2 environment . 65

68 BME688 resistance in �$2 and ambient air . 66

69 Linear SVM classifier using Polynomial features . 67

70 Linear SVM classifier using polynomial features (3D visualization) 67

71 BME688 resistance at 320ºC for �$2 and ambient air 68

72 SVM classifier with one sensor resistance as input . 68

73 Decision trees with max_depth parameter different from 6 69

74 Decision Tree classifier for �$2 detection with 3 temperatures 70

75 Tree of conditions for �$2 detection with 1 sensor 70

76 Random classifiers for �$2 detection . 71

77 Two of the three classifiers that make up the random forest with 1 sensor resistance as input 72

78 Confusion matrices of the classifiers with 3 temperatures as input 73

78 Confusion matrices of 3 temperature classifiers . 73

79 Confusion matrix of the classifiers with 1 sensor as input 74

80 ROC Curves . 75

81 Setup for the regressor’s dataset . 77

82 Concentration/Resistance relation of sensor 5 at heater step 9 78

83 Concentration/Resistance relation of sensor 5 at heater step 3, 6 and 9 78

84 Concentration/Resistance relation of 6 sensors at heater step 9 79

85 ANN with 6 sensors . 80

86 Different types of ANNs to predict ��4 . 80

87 ANN with 6 sensors and 1 hidden layer . 82

88 ANN with 6 sensors and 4 hidden layers . 83

89 GAM with 6 sensors . 84

90 Six-dimensional hypercube with orthographic projection 85

91 Lattice with 6 sensors . 85

92 Different types of regressors to predict ��4 . 86

xii

List of Tables

1 List of different types of gas sensors and what gases they sense 12

2 BME688 Technical data . 13

3 BME688 operation modes . 47

4 Classifier’s Accuracy . 72

5 Classifier’s Precision/Recall . 74

6 Classifier’s Computation Complexity . 75

7 Classifier’s Computation Complexity result . 76

8 Regressor’s performance results . 86

xiii

Listings

1 Decision Tree Classifier-Scikit . 33

2 Heater Profile buffer . 59

3 Configuration of all sensors . 60

4 Operation mode configuration of all sensors . 60

5 Read data from of all sensors . 61

6 SVM Classifier . 66

7 SVM Classifier Accuracy . 67

8 Decison Tree Classifier . 69

9 Random Forest Classifier . 71

10 ANN with 4 hidden layers . 81

11 RMSE and AIC Implementation . 81

12 GAM Implementation . 83

13 TensorFlow Lattice Implementation . 84

xiv

Acronyms

AI Artificial Intelligence

AIC Akaike Information Criterion

ANN Artificial Neural Network

ASIC Application-specific integrated circuit

AUC Area Under Curve

FN False Negatives

FP False Positives

FPR False Positive Rate

GAM Generalized Additive Models

GUI Graphical User Interface

HITRAN High-Resolution Transmission Molecular Absorption Database

IoT Internet-of-Things

LP Low Power

MEMS Microelectromechanical systems

ML Machine Learning

MOS Metal Oxide Semiconductors

RMSE Root Mean Square Error

ROC Receiver Operating Characteristic

SMBus System Management Bus

xv

ACRONYMS

SoC System on a Chip

SVM Suport Vector Machine

TN True Negatives

TNR Tue Negative Rate

TP True Positives

ULP Ultra Low Power

VOC Volatile Organic Compound

VSC Volatile Sulfur Compound

xvi

C
h
a
p
t
e
r

1
Introduction

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0

International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc/4.0/.

This chapter will present the contextualization, the general motivations, and the objective of this

dissertation. The contextualization will frame the work presented in the reality of gas detection in resource-

scarce systems. The general motivation’s subchapter will describe the main reasons that led the author

to choose the topic for his dissertation. Finally, the last subchapter will express the dissertation’s goal and

the methodology applied during its development.

1.1 Contextualization

Currently, the advancement of Internet-of-Things (IoT) technology has allowed the monitoring and

control of gas concentration in systems whose proper functioning depends on the concentration of certain

gases. One of the main problems in this type of gas monitoring system is the difficulty in measuring

different types of gases with few resources. In other words, implementing artificial intelligence techniques

to solve the problem of low selectivity of some gas sensors requires a lot of resources to achieve accurate

results.

1

http://creativecommons.org/licenses/by-nc/4.0/

CHAPTER 1. INTRODUCTION

1.2 General Motivations

Gas detection has become essential in several fields and applications, preventing accidents, avoiding

the malfunction of equipments, ensuring the correct gas mixture for patients, and alerting the occurrence

of gas leaks in industrial environments. Gas leaks can be significant, causing environmental impacts

and problems in people’s health. With the development of Internet-of-Things (IoT) technology, applying

gas sensors in IoT devices has demonstrated efficiency in monitoring gases in several environments.

Sometimes in very complex detection scenarios, gas sensors demonstrate poor cross sensitivity efficiency

and low selectivity. Therefore, new gas detection methods were proposed to address these issues, such

as developing artificial intelligence algorithms to address the lack of efficiency given by the sensors

used. Another very important aspect in some gas detection systems is the choice of a sensor with low

power consumption, thus providing gas monitoring over long periods without requiring maintenance. The

BME688, according to Bosch, is the first gas sensor with artificial intelligence and low energy consumption

[26]. This project seeks to select several artificial intelligence algorithms for gas detection, considering

energy consumption. This project is part of the LINK4S project that aims to develop a new smart embedded

connected device for monitoring applications.

1.3 Objective

This dissertation intends to study and select several artificial intelligence algorithms for gas detection

in scarce resource systems. To this end, different artificial intelligence algorithms will be implemented to

be compared, considering the system costs. Thus, the objectives proposed for this dissertation are:

• BME688 sensor study

The BME688 sensor study goal is to understand how this sensor works and its possible application

in some industrial environments. It is crucial to understand the sensor behavior since it will affect

the data collection process, which is responsible for creating the dataset that will supply all Machine

Learning models.

• Study and development of classifiers for gas detection

As mentioned earlier, detection of gas has become essential in many fields and applications, such as

preventing industrial accidents, avoiding equipment malfunctions, etc. Consequently, the research

for techniques that improve gas sensor performance began to grow. One of these techniques

was the development of machine learning models for classifying certain gases in a controlled

environment (classifiers). One of the dissertation objectives is to develop such algorithms.

• Study and development of regressors for gas detection

In some situations, predicting discrete class labels (Classification) is not the best approach, since

2

CHAPTER 1. INTRODUCTION

some systems require a model capable of predicting a continuous quantity (Regressor). In the gas

detection field, it is crucial to have regressors to predict the gas concentration value in a specific

controlled environment, such as providing the correct gas concentration to patients in hospitals.

• Comparative analysis and evaluation of system performance for the several algo-

rithms implemented for gas detection

After the Machine Learning (ML) models’ implementation, the next step is to evaluate the model’s

performance, taking the system’s resources and power consumption into account. The final objec-

tive is to provide a list of all models implemented, with their associated prediction errors, enabling

an estimation of the quality of each model.

1.4 Methodology

Since one of the objectives of this dissertation is to study the BME688 sensor, the first step will be to

analyze all the information made available by Bosch Sensortech (the sensor’s developers). This first step

will be studying the sensor datasheet and analyzing, in detail, the software provided to communicate with

the sensor, allowing experiments with the sensor to understand its behavior when subjected to certain

gases. Once the working principle of the sensor is understood, the next step will be to study and develop

classifiers and regressors capable of detecting different types of gases. For that, it will be necessary

to collect a training dataset using the BME688 sensor. After that, the final step will be to measure the

performance of all models trained in the dataset collected. These tests will be executed to compare and

discuss which model fits best in the user application, optimizing the resources and memory processing

time used to implement such a model.

1.5 Dissertation Structure

This document is divided in six chapters. After this introductory chapter, the literature review of some

topics covered in this dissertation is presented. The literature review is one of the most crucial parts of

every scientific work since it refers to what has already been discovered about the researched subject,

avoiding wasting time with unnecessary investigations. In the following chapter will be described all the

basic theoretical concepts behind some AI methods used in this dissertation. Some of these concepts

are the operation principle of an SVM classifier, a decision tree, a random forest, and an ANN. Chapter

four presents the system specification, which explains the workflow of the system that makes up this

dissertation, describing the hardware and software used. After that, the implementation chapter is shown

to describe the whole implementation process. The implementation chapter will detail all the steps used

to implement the system mentioned in the previous chapter, including code fragments and configurations,

3

CHAPTER 1. INTRODUCTION

as well as tests and performance results of the ML models used to build the system. The last chapter

presents all the conclusions drawn about the development of this dissertation and the future steps to

improve the final solution.

4

C
h
a
p
t
e
r

2
Literature Review

2.1 Background on Environmental Gases

Some gases are fundamental to some systems and industries, being the main ones responsible for

many of the problems that may occur in the environments where they are used. In this subsection, the

principle gases that are used in most industries will be listed and explained.

• Oxygen (O2) is the principal gas for life. In a hospital, for example, in some cases, it is essential

to maintain the oxygen concentration administered to a particular patient who is recovering from

surgery or disease. The decrease in the oxygen concentration in enclosed spaces is sometimes

related to the escape of other gases, leading people inside these spaces to asphyxiation. Several

industrial processes depend on the correct oxygen concentration to ensure the best performance

of the systems. Regardless of the fuel level or the speed at which they are running, engine systems

depend on the oxygen level to deliver the desired performance [14].

• Carbon dioxide (CO2) is a colorless, odorless gas that results from the oxidation and combustion

of hydrocarbons, just as from the breathing process of living things. This gas is the principal cause

of the greenhouse effect, and the increase in the level of its concentration in the presence of other

gases is related to air pollution. Carbon dioxide also plays a significant role in the oxygen production

process through photosynthesis. The increased concentration level of this gas in enclosed spaces

can lead to asphyxiation, which can become deadly if its concentration reaches values above 3%

[14].

• Volatile organic compounds (VOCs) are carbon-based organic compounds that exist in the vapor

state at room temperature and result from the combustion of fossil fuels or natural emissions. Some

5

CHAPTER 2. LITERATURE REVIEW

of these compounds are toxic, affecting the health of humans by causing respiratory diseases, heart

disease, or even cancer [14].

• Hydrogen (H2) is a colorless, odorless, non-toxic, and very flammable gas. This gas becomes

flammable above a certain concentration level. Its density is 14 times less than the air density.

Hydrogen is used in the production of chemicals and intermediate products. The mixture of hydrogen

and carbon monoxide is part of the production processes for methanol and other products, such

as aldehydes [16].

• Methane (CH4) is a colorless and odorless gas. It is also known as marsh gas or methyl hydride.

The vapors are lighter than the air, and under prolonged exposure to fire, the CH4 containers may

rupture violently and rocket. It is used to make other chemicals. Methane is the main component

of natural gas, used mainly to produce light and heat [22].

Monitoring and controlling the concentration levels of these gases have become very important in

industry and human welfare, preventing accidents. This monitoring also makes it possible to reduce

pollution levels in the air, improving people’s quality of life and reducing the number of cases of respiratory

diseases.

2.2 Sensing Technologies

Methods used to detect different types of gases depend on the physical or chemical changes of a given

material in the presence of a gas. Some of these methods use the reaction between the gas sensor material

and the target gas to determine the gas concentration. Other methods compare physical properties such

as propagation speed and wave propagation between an ideal medium and a medium with gas. The gas

detection techniques that yield the best results are listed below.

• Electrochemical

The working principle of electrochemical sensors consists of chemical reactions between the sensor

material and the target gas. The product resulting from this reaction and its speed is proportional to

the concentration level of the target gas. These types of sensors consist of two electrodes (working

electrode and counter electrode) and an ion conductor that separates the two electrodes (figure

1). When a gas such as carbon dioxide (CO2) approaches the working electrode, it will oxidize the

electrode through chemical reactions with the water molecules in the air, generating protons (H+)
in the working electrode (equation 1 and 2).

�$ + �2$ → �$2 + 2�+ + 24− (1)

6

CHAPTER 2. LITERATURE REVIEW

2�+ + 1
2
$2 + 24− → �2$ (2)

Short-circuiting the two electrodes will allow the protons (H+) to travel between the working electrode
and the counter electrode through the ion conductor that separates them. This flow of protons will

generate current in the circuit between the working electrode and the counter electrode. This flow

of electrons will be proportional to the gas concentration level in the working electrode [14, 33].

Ion conductor where
H+ can move

Working
electrode

Counter
electrode

A A

In clean air In carbon monoxide

H+ H+

H+ H+

CO2 CO H2O e-

H2O e-O2

Figure 1: Working principle of electrochemical gas sensors (based on [33])

• Metal Oxide Semiconductors (MOS)

MOS gas sensors mainly consist of tin dioxide semiconductor particles. In clear air, donor electrons

of this semiconductor are attracted by external oxygen molecules, remaining on the surface of

the semiconductor. This phenomenon prevents the flow of electric current in the sensor. When

the sensor surface is subjected to reducing gases, the oxygen molecules will decrease due to the

reactions between the new gases and the oxygen in the air, releasing the tin dioxide donor electrons

and consequently creating an electron flow in the sensor. Finally, the gas concentration level can

be measured by the current flow in the sensor [34].

Heater

In clean air In combustible gas (Reducing gas)

Tin dioxide
Alumina substrate

A

Oxygen
Donor

electrons

Heater

Tin dioxide
Alumina substrate

A

Donor
electrons

Oxygen

Figure 2: Working principle of MOS gas sensors (based on [34])

When the semiconductor particles are heated in air at high temperatures, oxygen is absorbed onto

the surfaces of these particles by capturing free electrons. The depletion layer formed depends

7

CHAPTER 2. LITERATURE REVIEW

on the size of the semiconductor particles. If the particles are small (conventionally used in gas

sensors), the depletion layer will extend over the entire area of each particle (High sensitivity). On

the other hand, if the particle size is much larger, the depletion layer will be located on the periphery

of the particles (Low sensitivity) [34].

These types of sensors are used in hospitals to ensure the correct mixture of oxygen (O2) and

nitrogen (N2) for some patients. These sensors are also simple to manufacture and low cost relative

to other gas detection technologies [14].

• Acoustic

Sound propagates differently in the different propagation mediums. The speed at which sound

travels through a medium containing gases depends on the temperature, pressure, humidity, and

gas properties. Acoustic waves can detect the presence of a specific gas in the environment. Gases

can be analyzed using sound speed, signal attenuation, acoustic impedance, or a combination of

these features. Figure 3 demonstrates the schematic of an acoustic sensor.

Reference Gas

Mixture

Length

Gas In

Gas Out

Figure 3: Ultrasonic speed-based gas sensor, which measures the target gas by a comparison of the sound

speed in the air and the sound speed in the presence of the target gas (based on [14])

The most used and researched method is based on the sound speed difference in the different

propagation mediums, using the propagation time in a defined distance to identify the composition

of a particular gas mixture. The following equation (3) shows the relationship between sound speed

and the gaseous propagation medium.

2 =

√
:')

"
(3)

8

CHAPTER 2. LITERATURE REVIEW

Here 2 is the sound velocity, in meters per second, : the average specific heat ratio, ' the gas

constant,) the temperature in Kelvin, and" the average molecular weight. This method helps to

measure gas concentration in systems with only two types of gases. When more gases come into

such systems, they can indicate false positives due to the presence of another gas in proportions

that would produce the same sound velocity in the propagation medium. A sensor that combines

this technology with another detection approach can improve detection accuracy and selectivity.

The attenuation of the acoustic signal refers to the scattered energy over a certain propagation

distance. When a signal travels through a gaseous medium, the gaseous equilibrium is disrupted,

and the molecules collide, exchanging energy and generating heat energy. The amount of energy

generated is proportional to the amount of energy consumed by the gaseous molecules that cause

the collisions. The system absorbs the acoustic energy, and the amount absorbed is proportional

to the concentration of the gases that make up the propagation medium. Equation 4 is used to

calculate the signal’s attenuation, where %> and % are the acoustic pressure in two different points,

U is the attenuation coefficient, and - is the distance from %> to % [14].

% = %>4
(−U-) (4)

Acoustic impedance analysis is a less well-studied approach for sensing gases, with no commercial

applications yet discovered. Equation 5 is used to determine the acoustic impedance (/), d is

the gas density, and 2 is the sound speed. This approach can lead to detection mistakes, since a

particular gas mixture can be confused with another due to its different density [14].

/ = d2 (5)

• Catalytic

Catalytic gas sensors are used to detect the presence of combustible gases in environments with O2
concentrations of at least 15%. The working principle of these sensors is based on the measurement

of the internal resistance variation of the sensor. This gas detection process consists of a chemical

reaction between the sensor’s catalytic element and the gas present in the environment, causing

an increase in the sensor’s temperature and a subsequent change in its internal resistance. These

sensors are quick to react, but are not particularly good at detecting the gas concentration to which

they are subjected. These sensors can be installed in environments with variations in humidity and

temperature without losing their ability to detect the target gases. Under normal conditions, their

operating time is approximately ten years, but if they are in the presence of corrosive gases in high

concentrations, their lifetime will drastically reduce [14].

9

CHAPTER 2. LITERATURE REVIEW

Catalytic sensors consist of a sensing element (catalytic material sensitive to combustible gases)

and a passive material (inert material) (figure 5). Combustible gases will be consumed only by the

sensing material, causing a temperature increase and, thus, the internal resistance change of the

sensor. The passive material will not change in the presence of combustible gases. The Catalytic

sensors structure has a circuit that connects the two materials (catalyst and passive). When the

sensor is in the same environment of combustible gases, the resistance of the sensing material

will increase, causing the output signal of the circuit to vary. This signal is directly proportional to

the concentration level of the combustible gas surrounding the sensor [32].

In clean air In combustible gas

Compensator element
(C) no catalystRC

RD Detector element (D)
with catalyst

Platinum
heater

Resistance RC
unchangedRC

RD + ΔR

 Increased resistance

Platinum
heater

Figure 4: Working principle of Catalytic gas sensors (based on [32])

C

D

Vout

R2

R1

VR
Sensor

GND

VH

(a) Gas circuit, Wheatstone bridge (VR

is responsible for maintaining a state of

balance of the bridge circuit in clear air)

Gas Concentration

O
ut

pu
t v

ol
ta

ge

Relationship between gas
concentration and output voltage

(b) Catalytic relationship between gas

concentration and output voltage

Figure 5: Catalytic gas sensor circuit and the relationship between gas concentration and output voltage

(based on [32])

• Optic

One of the properties of gases is their ability to absorb different wavelengths. Many of the gases

10

CHAPTER 2. LITERATURE REVIEW

and the corresponding absorbed wavelengths are listed in the High-Resolution Transmission Molec-

ular Absorption Database (HITRAN). Many gas detection techniques use this optical principle to

determine the concentration of a specific gas. On the other hand, some methods rely on adding ma-

terials that react with gases in the presence of light, emitting different wavelengths, and absorbing

or reflecting the emitted light.

Nanomaterials, such as polymers or metals, are typically employed to create these effects. Fluorescence-

quenching sensors (figure 6) are usually composed of a matrix of nanomaterials permissible and

sensitive to the target gas nanoparticles, primarily polymers or metals, coupled to the tip of a fiber

optic using a 50:50 Y-type optical coupler. A light source is connected to one end of the coupler,

while an optical spectrometer is attached to the other. With the appropriate wavelength and en-

ergy, the polymer matrix will react and emit a distinct wavelength, with the intensity of the light

corresponding to the gas concentration [14].

Optical
Spectrometer

Sensitive
Material Optic Filter Y-Type

Connector

Figure 6: The fluorescent-quenching effect gas detector, this measures the target gas by evaluating the

reflected wavelength from the sensing material on the presence of the gases (based on [14])

2.3 Background on gas sensors

Gas sensors are devices developed to detect the presence and concentration levels of specific gases

in the environment. The operating principle of this type of device is to measure internal changes that occur

when exposed to certain gases.

2.3.1 MQ gas sensors

There are many gas sensors on the market today, and the most widely used in various applications

are the MQ-type gas sensors. These sensors have several operating principles, but the most used is

the MOS gas sensor. As mentioned earlier, these sensors consist of a semiconductor that has free

11

CHAPTER 2. LITERATURE REVIEW

electrons (the semiconductor usually used is tin dioxide). In the air, there is a higher concentration

of oxygen than in combustible gases, so the oxygen molecules will attract the free electrons from the

semiconductor, thus preventing the generation of an electron flow in the sensor. When the sensor is in

the same environment as combustible gases, these will react with the oxygen molecules, releasing the

electrons from the semiconductor. This phenomenon will cause a flow of electrons inside the sensor,

which can be used to measure the gas concentration level.[4] The following table (table 1) lists the different

types of MQ-type gas sensors and the gases that each one is responsible for detecting.

Table 1: List of different types of gas sensors and what gases they sense

Sensor Name Gas to measure

MQ-2 Methane, Butane, LPG, Smoke

MQ-3 Alcohol, Ethanol, Smoke

MQ-4 Methane, CNG gas

MQ-5 Natural gas, LPG

MQ-6 LPG, butane

MQ-7 Carbon Monoxide

MQ-8 Hydrogen Gas

MQ-9 Carbon Monoxide, flammable gases

MQ131 Ozone

MQ135 Air Quality

MQ136 Hydrogen Sulphide gas

MQ137 Ammonia

MQ138 Benzene, Toluene, Alcohol, Propane, Formaldehyde gas, Hydrogen

MQ214 Methane, Natural gas

MQ216 Natural gas, Coal gas

2.3.2 Bosch BME688 gas sensor

The BME688 gas sensor, according to Bosch, is one of the first gas sensors having artificial intelligence

integrated with pressure, humidity, and temperature sensors. This sensor was developed for mobile

applications and systems where energy consumption is a crucial requirement. The BME688 was also

designed to detect volatile organic compounds (VOCs), volatile sulfur compounds (VSCs), and other gases

such as carbon monoxide [26]. The following table (table 2) shows the technical characteristics of the

BME688 sensor.

12

CHAPTER 2. LITERATURE REVIEW

Table 2: BME688 Technical data (from [26])

Parameter Technical data

Package dimensions • No measurements are performed

Operation range (full accuracy)

• Pressure: 300 … 1100 hPa

• Humidity: 0 … 100%

• Temperature: -40 … 85ºC

Supply voltage VDDIO • 1.2 … 3.6V

Supply voltage VDD • 1.71 … 3.6V

Interface • I2C and SPI

Average current consumption

• 2.1 `A at 1 Hz humidity and temperature

• 3.1 `A at 1 Hz pressure and temperature

• 3.7 `A at 1 Hz humidity, pressure, and temperature

• 90 `A at ULP mode for p/h/T & air quality

• 0.9 `A at LP mode for p/h/T & air quality

• 3.9<A in standard gas scan mode

Gas Sensor

Sensor-to sensor deviation (IAQ) • +/-15% +/-15 IAQ

Standard scan speed • 10.8 s/scan

Electric charge for standard scan • 0.18mAh (5 scans 1 min)

Major sensor outputs
• Index for Air Quality (IAQ), bVOC- & CO2-equivalents (ppm),
Gas scan result (%) & Intensity level

Humidity sensor

Response time • 8 s(g 0-63%)

Accuracy tolerance • ±3% relative humidity

Hysteresis • ≤1.5% relative humidity

Pressure sensor

RMS Noise • 0.12 Pa (equiv. to 1.7 cm)

Sensitivity Error • ±0.25 %

Temperature coefficient offset • ± 1.3 Pa/K

Temperature sensor

Absolute accuracy • +/-0.5 °C (25 °C)

The BME688 is housed in a metal lidded 8-pin LGA box. Its dimensions are 3.0 × 3.0 × 0.93 mm,

with an 8.4 mm3 container volume. Figure 7 shows the photographs of the top and bottom packages. The

sensors are exposed to the environment through a round aperture in the left upper corner of the metal lid

top surface. The package surface interconnection has eight contact pads and metal traces on the bottom

surface [19].

13

CHAPTER 2. LITERATURE REVIEW

Figure 7: Top and bottom package images (from [19]

Figure 8 shows a shot of the BME688 after the metal lid has been removed. There are two sensor

dies visible. On the left, it is possible to see how the pressure, temperature, and humidity sensors are all

incorporated into one substrate (integrated MEMS). The gas sensor is located on the right-hand side of

the second die. Below the left die, i.e., integrated MEMS is the SoC controller or ASIC [19].

Figure 8: A BME688 assembly after the metal lid is removed (from [19])

Figure 9 is an image of the integrated MEMS die. The pressure sensor is likely piezoelectric-based

and is situated in the middle of the die. The temperature sensor is at the top of the integrated MEMS,

above the pressure sensor, and is most likely a semiconductor diode. To the right of the pressure sensor

is the humidity sensor. This sensor is a pair of capacitor plates with a porous polymer-based dielectric.

The embedded MEMS are connected to the metal traces of the package substrate via eight bond wires

[19].

Figure 9: Die photo of integrated MEMS sensor (from [19])

14

CHAPTER 2. LITERATURE REVIEW

Figure 10 illustrates the gas sensor. It is based on a gas-sensitive layer (dark blue circle in figure 10)

that sits above two electrodes in the middle of the die. This sensor is bounded to metal traces on the

package substrate via four bond wires [19].

Figure 10: Gas sensor (from [19])

2.4 Machine learning applied to gas detection

Unlike other sensing types, such as force sensing or temperature sensing, which detect a single

variable, the principle, and the tasks of gas sensing are complex. Therefore, gas sensing encounters many

challenges:

• Cross sensitivity

A gas sensor that detects a given gas based on its chemical properties can be affected by gases

with identical chemical characteristics to the target gas. In other words, a gas sensor may show

readings of gases that are not the target gas. An example is the case of Hydrogen Sulfide (H2S)

sensors that react to Hydrogen (H2) [12].

• Low selectivity

The accuracy of a gas sensor depends on the temperature and humidity to which it is subjected.

Since gas activity is affected by temperature, the absorption capacity of a gas sensor is dependent

on that. On the other hand, since humidity affects the interaction of gases with the sensor, the

results obtained by the sensor become unpredictable. Most gas sensors use changes in their

internal resistance to detect the presence of certain gases. These changes can sometimes result

from the high temperatures at which the sensor is located, leading to errors in the sensor’s reading

[12].

The concept of “smart gas sensing” has been proposed as a way to solve all the problems mentioned

above, in other words, the use of machine learning to get around such obstacles. Several machine learning

models may be used in the gas detection field. The following list will discuss the most well-known ML

models used by most data scientists.

15

CHAPTER 2. LITERATURE REVIEW

• Linear Regression

By fitting a linear equation to observable data, linear regression seeks to model the connection

between two variables. One variable is regarded as an explanatory variable, while the other is

considered a dependent variable [36].

• Support Vector Machines (SVMs)

A Support Vector Machine (SVM) is a strong and flexible Machine Learning model that can do linear

and nonlinear classification, regression, and even outlier detection. It is one of the most widely

used Machine Learning models. SVMs are particularly well adapted to classifying complex datasets

that are small or medium. SVM aims to draw a line or a hyperplane that divides data into classes.

An SVM classifier takes the data as input and outputs a hyperplane that separates the input data

into classes [15].

• Decision Trees and Random Forests

Decision Trees and Random Forests are versatile Machine Learning algorithms that can perform

both classification and regression tasks. They are influential algorithms, capable of fitting complex

datasets. The fundamental components of Random Forests are the Decision Trees, which are

among today’s most powerful Machine Learning algorithms [15].

• Artificial Neural Networks (ANNs)

Node layers in artificial neural networks (ANNs) include an input layer, one or more hidden layers,

and an output layer. Each node, or artificial neuron, is linked to another and has its weight and

threshold. If the output of any particular node exceeds the given threshold value, that node is

activated and sends data to the network’s next tier. Training data is essential for neural networks

to develop and enhance their accuracy over time [17]. Figure 11 shows a deep neural network

example with one input layer, three hidden layers and one output layer.

Hidden Layers Output LayerInput Layer

Figure 11: Deep Neural Network example (based on [17])

16

CHAPTER 2. LITERATURE REVIEW

2.5 Selection Criteria

There are several ways to evaluate the performance of a machine learning model on a given dataset.

One of these is the calculation of RMSE (Root Mean Square Error).

2.5.1 Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) is a commonly used measure of the variations between predicted

values and observed values. Training set and test set creation are crucial in machine learning model

development. The latter will be used to evaluate the performance of the final model by calculating the

RMSE. The RMSE measures the standard deviation of the errors that the ML model makes in its prediction.

Equation 6 shows the mathematical formula to compute the RMSE, where n is the number of instances

in the train set, .8 is the vector of observed values, and .̂ is the predicted values [15].

'"(� =

√√√
1
=

=∑
8=1

(.8 − .̂)2 (6)

2.5.2 Akaike Information Criterion (AIC)

AIC is a single numerical score that can be used to identify the Machine Learning model that best fits

a dataset among several others. AIC scores are only helpful when compared to other AIC scores for the

same dataset because it estimates models relativistically. A lower AIC score is better. AIC operates by

determining how well the model fits the training set and then adding a penalty term for model complexity

[37]. Equation 7 shows how AIC score can be calculated. AIC uses a model’s maximum likelihood

estimation (log-likelihood) as measures of fit. In equation 7 ! represents the likelihood and : represents

the number of parameters.

��� = −2;=(!) + 2: (7)

17

C
h
a
p
t
e
r

3
Theory

3.1 Training Models

The next chapter aims to understand how most machine learning algorithms/models work, such

as the linear regression model, the gradient descent algorithm, a polynomial regressor, and a logistic

regressor. All these algorithms are essential for developing more complex Machine Learning models, so it

is necessary to have a good understanding of how they work.

3.1.1 Linear Regression

As mentioned in the literature review, linear regression seeks to model the connection between two

variables. The dependent variable is the one that will be predicted, and the independent variable is the

one that is used to forecast the value of the dependent variable. So, in other words, linear regression fits a

linear equation to the observed data to model the relationship between two variables. Generally, a linear

model computes the weighted sum of the input features plus a variable called the bias term to create a

prediction, as given in equation 8.

~̂ = \0 + \1G1 + \2G2 + ... + \=G= = \) x (8)

where ~̂ represents the predicted value, = represents the number of features, G8 means the 8
Cℎ feature

value, and \ 9 is the 9
Cℎ model parameter.

To train the linear regression model, it is necessary to measure how well the model fits the training

data. The most common performance measure for a regression model is the Root Mean Square Error

(shown in equation 9).

18

CHAPTER 3. THEORY

'"(� =

√√√
1
=

=∑
8=1

(~8 − ~̂)2

=

√√√
1
=

=∑
8=1

(~8 − \) x(8))2
(9)

In the training process, the goal is to find the value of \ that minimizes the RMSE. Figure 12 represents

an example of three linear models. Two (gray lines) have a higher RMSE than the one presented in black.

X

Y

Figure 12: Linear Regression Example (based on [15])

3.1.2 Gradient Descent

Gradient Descent is a general optimization algorithm that can locate the best answers for many issues.

Gradient Descent’s goal is to iteratively adjust parameters to reduce the cost function, which measures

how wrong a model is, in finding a relation between the input and output. In other words, it tells how badly

a model predicts. Gradient Descent is used to find a local minimum/maximum of a given function. This

method is commonly used in Machine Learning [15, 20]. The Gradient Descent algorithm does not work

in all functions. There are two criteria that a function must respect:

• Differentiable

• Convex

Before explaining how the Gradient Descent algorithm works, it is first necessary to understand what

a gradient is. The slope of a curve at a given location in a particular direction is the gradient. It is the first

19

CHAPTER 3. THEORY

derivative at a chosen point for a univariate function. In the case of multivariate functions, is a vector of

derivatives in each main direction (along variable axes) called partial derivatives.

The Gradient Descent algorithm (shown in equation 10 and in figure 13) iteratively calculates the

next point, measuring the local gradient of the model cost function, scales it with the learning rate, and

subtracts the obtained value from the current position. The cost function gradient is represented by the

letter \ in the following graphs [20].

\=+1 = \= − [∇5 (\=) (10)

The parameter [represents the learning rate, which scales the gradient and controls the step size.

Cost

Learning step

Minimum

Random
initial value

θ

Figure 13: Gradient descent algorithm

The learning rate has a strong influence on the performance of the Gradient Descent algorithm. For

example, if the learning rate is too short, the algorithm will have to go through many iterations to converge,

taking a long time to do it (figure 14).

Cost

Start
θ

Figure 14: Learning rate too small

Meanwhile, if the learning rate is too big, the algorithm may not converge to the optimal point (it will

jump around). Figure 15 represents the Gradient Descent algorithm with a learning rate too big.

20

CHAPTER 3. THEORY

X

Cost

Start

Figure 15: Learning rate too large

Not all cost functions are convex; some may feature ridges, plateaus, or holes that make the conver-

gence process to the minimum very difficult. Figure 16 shows some problems with the Gradient Descent

algorithm. The method will converge to a local minimum, which is inferior to the global minimum, if the

random initialization starts the algorithm on the left. On the other side, if it starts the algorithm on the

right, it will take a very long time to cross the plateau. If the algorithm quits too soon, it will never reach

the global minimum [15].

Cost

Local
minimum

Global
minimum

Plateau

θ

Figure 16: Gradient descent algorithm in a non-convex function

3.1.3 Polynomial Regression

If the data is more complex than a simple straight line, it is impossible to use a linear model to fit the

data. One way to overcome this, is to add new features to the original data space. For example, in the

case of a 2-dimensional nonlinear dataset, sometimes it is necessary to add another dimension to make

the dataset linear.

Figure 17 represents a nonlinear dataset, and figure 18 shows the dataset in a new data space, where

it is possible to see the mapping function responsible for the new feature (x_poly[1]), the plane resulted

21

CHAPTER 3. THEORY

from the linear regression applied to the new dataset and the interception between these two. The resulting

intersection line corresponds to a polynomial equation in the plane of x_poly[0] and y (axes of the original

space 18b). In this new polynomial equation, it will be the model responsible for predicting instance in

the original space.

3 2 1 0 1 2 3
x

0

2

4

6

8

10

y

Figure 17: Nonlinear data (based on [15])

x_poly[0]

3
2

1
0

1

2

3

x_
po
ly
[1
]

0

2

4

6

8

y

0

2

4

6

8

10

(a) New data space (mapping function G2)

x_poly[0]
3 2 1 0 1 2 3

x_
po
ly
[1
]

02
46
8

y

0

2

4

6

8

10

12

(b) New data space (mapping function G2) in

another viewing angle

Figure 18: Polynomial Regression Example

3.1.4 Logistic Regression

A machine learning technique called logistic regression, based on the idea of probability, is used to

solve classification problems. This technique computes a weighted sum of the input features using a

logistic regression model, just like a linear regression model. Rather than directly displaying the result as

the linear regression model does, it shows the logistic of this result [15].

22

CHAPTER 3. THEORY

The logistic function is a sigmoid function, that outputs a number between 0 and 1. It is defined as

shown in equation 11 and figure 19.

f (C) = 1
1 + 4G? (−C) (11)

0

1

100-10

0.6

0.4

σ(t)

t

Figure 19: Nonlinear data

The Logistic Regression model may readily make its prediction once it has calculated the probability

?̂ = f (\) x) that an instance x belongs to a class. If f (C) < 0.5 when C < 0, and f (C) ≥ 0.5 when

C ≥ 0, so logistic regression model predicts 1 if \) x is positive, and 0 if it is negative [15].

The training objective of a logistic regression model is to find the vector \ , which makes the model

estimate a high probability for positive instances (~=1) and a low probability for negative (~=0). The cost

function for a single training instance is shown in equation 12.

2 (\) =

−;>6(?̂), if ~ = 1,

−;>6(1 − ?̂), if ~ = 0.
(12)

In the cost function, it is possible to see that −;>6(?̂) grows when ?̂ approaches 0. In this scenario,

the result of the cost function will be larger if the model estimates a probability close to zero for a positive

instance. The cost function result will also be large if the model estimates a probability close to 1 for

negative instances (−;>6(1 − ?̂)). On the other hand, −;>6(?̂) is close to 0 when ?̂ is close to 1, which

means that, for negative instances, the model must predict a probability close to zero. The equation 13

shows the cost function over the whole training set, which is the average cost over all training instances.

This equation is called log loss.

� (\) = − 1
<

<∑
8=1

[~ (8);>6(?̂ (8)) + (1 − ~ (8));>6(1 − ?̂ (8))] (13)

Because equation 15 is a convex function, the Gradient Descent is guaranteed to find the global

minimum [15].

23

CHAPTER 3. THEORY

3.2 Classification

Predicting the class of a set of data points is the classification process. Targets and labels are all

common names for categories. Approximating a mapping function (5) from input variables (G) to discrete

output variables is the task of classification predictive modeling (~). There are many applications in

classification in many domains such as credit approval, medical diagnosis, target marketing, etc. [2].

3.2.1 Performance measures

There are several ways to measure a classifier’s performance, some of which are listed below.

• Accuracy score

Accuracy score is a value that measures the classification performance. This value is calculated

through equation 14.

022DA02~ (~, ~̂) = 1
=B0<?;4B

=B0<?;4B−1∑
8=0

1(~̂8 = ~8) (14)

where ~̂8 is the predicted value of the 8
Cℎ sample and ~8 is the corresponding true value. In other

words, the fraction between the correct predictions and the =B0<?;4B is used to calculate the

accuracy score of a respective classification model.

• Cross-Validation

A good way to evaluate a model is to use cross-validation. Cross-validation is the process of making

predictions and assessing them on each fold (a fold is a subset of the training dataset) using a

model learned on the other folds after splitting the training set into K-folds.

• Confusion Matrix

Another way to evaluate the performance of a classifier is analyzing the confusion matrix. The general

idea of a confusion matrix is to count the number of times instances of class A are classified as class

B (In machine learning, a class is the output category of the data). Each row in a confusion matrix

represents an actual class, while each column represents a predicted class. Figure 20 represents

a confusion matrix of a classifier trained to classify if an image is a number 5 or not.

24

CHAPTER 3. THEORY

Negative

Negative Positive

Positive

Actual

Predicted

True Negative False Positive

False Negative True Positive

Figure 20: Illustration of a confusion matrix for 5-images classifier

The first row of the confusion matrix considers non-5 images (negative class), and the second row

considers 5 images (positive class). In the negative class, the first column represents the number

of instances that were correctly classified as non-5s (true negatives), and the second column shows

the number of instances wrongly classified as 5s (false positives). On the other hand, the second

row considers the 5s images (positive class), where in the first column are represented the images

that were wrongly classified as non-5s (false negatives), and in the second column the images that

were correctly classified as 5s (true positives) [15].

• Precision and Recall

The confusion matrix gives a lot of information about a classifier, but sometimes most of that

information is not needed, and a more concise metric can be used. One of those metrics can

be the accuracy of the positive predictions, called precision. Equation 15 shows how to calculate

a classifier precision, where)% is the number of true positives, and �% is the number of false

positives.

?A428B>= =
)%

)% + �% (15)

Another metric that can be useful is the recall method, also called the classifier sensitivity. This

metric is responsible for indicating the ratio of positive instances that are correctly detected by the

classifier (Equation 16) [15].

A420;; =
)%

)% + �# (16)

�# is the number of false negatives.

25

CHAPTER 3. THEORY

3.3 Machine Learning Models Background

This section explains in detail all the models that will be used throughout this dissertation. Starting

with the classifiers and finishing with the regressors.

3.3.1 Support Vector Machine Classifier

A Support Vector Machine (SVM) is a strong and flexible Machine Learning model that can do linear and

nonlinear classification. It is one of the most widely used Machine Learning models. SVMs are particularly

well adapted to classify complex datasets that are small or medium. The goal of SVM is to draw a line

or a hyperplane that divides data into classes. An SVM classifier takes the data as input and outputs a

hyperplane that separates the input data into classes.

The fundamental idea of an SVM model can be explained using the dataset shown in figures 21 and 22

(For simplicity, it will be discussed in cases of datasets with only two classes). The two classes presented

in this dataset can be separated by a line, i.e., these two classes are linearly separable. In figure 21 it is

possible to verify the presence of several classifiers that separate the two classes. None of these classifiers

will work correctly in the presence of new instances, since these lines are not as far as possible from the

instances of the two classes.

Class 2

Class 1

X1X1

X2

Figure 21: Dataset with two classes linearly separable

The line in figure 22, on the other hand, indicates an SVM classifier’s decision boundary. This line not

only separates the two classes, but also remains away from the closest training instances as possible.

Conforming to an SVM algorithm, the points closest to the line from both classes are called support

vectors. The distance between the line and the support vectors is called the margin. The main objective

in an SVM algorithm is to maximize the margin. The hyperplane for which the margin is maximum is the

optimal hyperplane [25].

26

CHAPTER 3. THEORY

Maxim
ise

d

Margin

Optimal

Hyperplane

Class 2

Class 1

Support
Vector

X1X1

X2

Figure 22: Dataset with two classes linearly separable and the optimal hyperplane

SVMs are sensitive to the feature scales, as it can be seen in figure 23, the left plot (figure 23a) has a

vertical scale much larger than the horizontal scale, leading to a greatly reduced margin. In the opposite

side, the decision boundary looks much better on the right plot (figure 23b) [15].

60

40

20

0
1 2 3 4 5

Unscaled
80

X1

X2

(a) Dataset unscaled

1

0

-1

-2
-2 -1 0 1 2

Scaled

2

X2

X1

(b) Dataset scaled

Figure 23: Dataset unscaled and scaled

• Hard Margin Classification

Hard margin classification imposes that all instances (data) must be off the street (i.e., the area

inside the parallel dashed lines in figure 22) and on the right side (i.e., instances that belong to

a particular class must be on one side of the margin while instances of the other class must be

located on the other side of the margin). Hard margin classification has two major drawbacks. It

only works if the data is linearly separable, and it is quite sensitive to outliers.

The plot on the left of figure 24 represents a non-linearly separable dataset, making it impossible to

apply the hard margin classification method. On the other hand, the plot on the right corresponds

to a linearly separable dataset with a decision boundary very close to the data of one class due to

the presence of one outlier.

27

CHAPTER 3. THEORY

Class 2

Class 1X2

X1

Outlier

NonLinear

(a) Non-linearly separable dataset

Class 2

Class 1X2

X1

Outlier

(b) Dataset with one outlier

Figure 24: Datasets with one outlier

• Soft Margin Classification

It is desirable to utilize a more flexible model to prevent these concerns. The idea is to find a balance

between keeping the street as broad as possible while reducing margin violations (i.e., instances

that end up in the middle of the street or even on the wrong side). This method is known as soft

margin classification.

The balance between keeping all the instances outside the street and on the right side is controlled

by a hyperparameter called C.

Class 2

Class 1

X1X1

X2

C = 1

(a) Dataset with large margin

Class 2

Class 1

X1X1

X2

C = 100

(b) Dataset with few margin violations

Figure 25: Dataset with large margin vs fewer margin violations

In figure 25a, it is possible to see that the classifier has a very wide margin, thus allowing for some

margin violations (small hyperparameter C). In contrast to figure 25a, figure 25b has a very small

margin and therefore contains few margin violations (large C hyperparameter).

• NonLinear SVM Classification

An SVM model works correctly in the presence of a linearly separable dataset. However, it is not

always possible to work with such dataset. One way to get around this problem is to add more

28

CHAPTER 3. THEORY

features to the dataset in question, such as polynomial features. These changes, in some cases,

can lead to the presence of a linearly separable dataset.

In figure 26 it is possible to see that applying a polynomial transformation to a non-linearly separable

dataset can sometimes yield a linearly separable dataset. The transformation function (mapping

function) used is G2, so the final result is a curve.

Class 2

Class 1

X1

0-2 -1-3-4 3 421

(a) Non-linearly separable dataset

Class 2

Class 1

X1

0-2 -1-3-4 3 421

X2
16

12

8

4

0

(b) Linearly separable dataset, due to new fea-

tures (Polynomial features)

Figure 26: Adding features to make a dataset linearly separable

Figure 27a shows another non-linearly separable dataset. This dataset can become a linearly

separable dataset if another dimension (I = G2 + ~2) is added. The resulted dataset is shown in
figure 27b.

1.0 0.5 0.0 0.5 1.0
X

1.0

0.5

0.0

0.5

1.0

Y

Class 1
Class 2

(a) Non-linearly separable dataset

X

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Y

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Class 1
Class 2

(b) Linearly separable dataset, due to new fea-

tures (Polynomial features)

Figure 27: Adding features to make a dataset linearly separable

If we project the plane that separates the data of the two classes, in the original space, we will

obtain the circle represented in the figure 28a.

29

CHAPTER 3. THEORY

Figure 28b, on the other hand, shows the mapping function, responsible for transforming the

original dataset (figure 27a) into a linearly separable dataset (capable of being split by a plane)

1.0 0.5 0.0 0.5 1.0
X

1.0

0.5

0.0

0.5

1.0

Y

Class 1
Class 2

(a) Dataset separated by the circle

X

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Y

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Z

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Class 1
Class 2

(b) Linearly separable dataset, with the mapping

function representation

Figure 28: Polynomial features

SVMs Classifiers technical details

This subsection is intended to explain the principle of how SVM’s classifiers work. It starts by clarifying

the importance of a decision function in an SVM algorithm, as well as what is the training objective in the

developing of an SVM classifier. Finally, still within this section, it is possible to understand what are the

mathematical methods involved in the development of an SVM model (in this case an SVM classifier)

• Decision Function

The linear SVM classifier model predicts the class of a new instance by simply computing the

decision function. If the result of the decision function is positive, it means that the new instance

belongs to a class, otherwise it belongs to another class. In other words, the decision function is

responsible for classifying the new instance.

30

CHAPTER 3. THEORY

Figure 29 shows an example of a decision function in a random dataset, where it is possible to see

the positions where the decision function is equal to -1 or 1. These positions are represented by

the dashed lines in figure 29b.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Y

Class 1
Class 2

(a) Random dataset

x

0.00
0.25

0.50
0.75

1.00
1.25

1.50
1.75

2.00

y

2.0

1.5
1.0

0.5
0.0

0.5
1.0

1.5
2.0

z

3

2

1

0

1

2

3

Decision function

(b) Decision function representation

Figure 29: Decision function implementation example

• Training Objective

The main objective when training an SVM model is to minimize the slope of the decision function.

For example, figure 30a shows that the higher the slope, the smaller the margin responsible for

separating the two data classes in the dataset, leading to an algorithm (classifier) that is not very

robust, since the zone separating the two data classes is too small.

Y
0-1-2 21

Z

0

-3

-3
Slope = 1

(a) Slope = 1

Y
0-2 2

Z

0

-3

-3
Slope = 0.5

1-1

(b) Slope = 0.5

Figure 30: Decision function of figure 29b in 2D

In addition to minimizing the slope of the decision function, it is also necessary to take into account

margin violations (i.e., all instances must be off-street and on the correct side of the margin). In

the case of hard margin classification, no margin violation is allowed, while in the soft margin

classification, some violations are allowed.

31

CHAPTER 3. THEORY

• Kernel Trick

Due to the fact that most of the datasets collected from real scenarios correspond to non-linearly

separable datasets. It may occasionally be necessary to execute operations with the higher dimen-

sional vectors in the modified feature space when training an SVM classifier. In real applications,

there may be several features in the data, and applying transformations that include numerous

polynomial combinations of these features will result in expensive and unfeasible computational

costs. A solution for this problem is provided by the kernel trick.

The “trick” can be explained by looking at equation 17. This equation shows a couple of two-

dimensional vectors, a and b, where a 2nd degree polynomial mapping function was applied

together with the computation of the dot product between the transformed vectors.

q (0)) · q (1) =
©­­­«
021√
0102
022

ª®®®¬ ·
©­­­«
121√
1112
122

ª®®®¬ = 0211
2
1 + 201110212 + 0221

2
2

= (0111 + 0212)2 =

((
01
02

))
·
(
11
12

)) 2
= (0)1)2

(17)

As can be seen in equation 17, the dot product of the transformed vectors is equal to the square

of the dot product of the original vectors. This equation (17) represents the kernel trick for a 2nd

degree polynomial mapping. A benefit of the kernel trick is that the decision function, mentioned

earlier, whose purpose is optimizing it to fit the higher dimension decision boundary, only includes

the dot product of the transformed features vectors. Therefore, it is possible to substitute the dot

product terms with the kernel function and does not even use the mapping function (\ (G)). [35]

3.3.2 Decision Tree Classifier

Decision trees are adaptable Machine Learning algorithms that can carry out classification and regres-

sion tasks, as well as multioutput tasks, just as SVMs. They are powerful algorithms that can fit complex

datasets. The fundamental elements of Random Forests, one of the most effective Machine Learning

algorithms accessible today, are decision trees. In this subsection, it will be explained how decision trees

make predictions, and how they are trained.

• Visualizing

For reasons of simplicity, the following code was chosen to build a decision tree and to see or

understand how a decision tree works and makes predictions. All this code and the respective

explanation of it was based on the Aurélien Géron book, “Hands on Machine Learning with Scikit-

learn and TensorFlow”.

32

CHAPTER 3. THEORY

Listing 1: Decision Tree Classifier-Scikit

1 iris = load_iris()

2 X = iris.data[:, 2:] # petal lenght and width

3 y = iris.target

4

5 tree_clf = DecisionTreeClassifier(max_depth=2)

6 tree_clf.fit(X,y)

The code in listing 1 trains a decision tree on the iris dataset. This dataset is available in the

Scikit-learn library. The features used to train the model are the petal length and the petal width.

After the model training (DecisionTreeClassifier function), it is possible to create an image that

shows how the model makes predictions. This figure is generated through the export_graphviz

module of Scikit-learn library. Figure 31 represents the result from the model trained, and as can

be seen, the tree has three nodes, since it was specified in the DecisonTreeClassifier function that

the max_depth parameter is equal to two. The reason the number of nodes is three and not two

comes from the fact that the first node is number zero [15].

petal length (cm) <= 2.45
gini = 0.667

samples = 150
value = [50, 50, 50]

class = setosa

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) <= 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

False

gini = 0.168
samples = 54

value = [0, 49, 5]
class = versicolor

gini = 0.043
samples = 46

value = [0, 1, 45]
class = virginica

Figure 31: Iris Decision Tree

• Making Predictions

Following the tree depicted in figure 31, it is possible to check that there are three different types

of iris flowers (setosa, versicolor, and virginica). In the classification process of an iris flower, it

is necessary analyzing the root node (depth 0, at the top). This node asks if the new iris flowers

have a petal length equal to or lower than 2.45 cm. If it has, the flower is classified as setosa. If it

does not, the model will ask another question. This last question will decide if the new instance is

a versicolor (petal width ≤ 1.75) or a virginica (petal width > 1.75).

33

CHAPTER 3. THEORY

Each node has some attributes, such as the samples attribute indicating how many training in-

stances are applied to the respective node. For example, 54 of the 100 training cases (depth 1,

right) had petal widths lower than 1.75 cm. These 100 training instances have petal lengths of

more than 2.45 cm (depth 2, left).

Another attribute in some nodes is the value attribute, which tells how many training instances

of each class the respective node applies (the bottom-left node applies to 0 iris-setosa, 49 iris-

versicolor, and 5 iris-virginica). The last attribute presented in some nodes is the gini attribute,

which measures the impurity of the node. A node is “pure”, if its gini attribute is equal to 0 (all the

training instances that the node applies to belong to the same class, depth 1 left node). Equation

18 shows how to compute the gini score �8 of the 8
Cℎ node.

�8 = 1 −
=∑
:=1

(?8,:)2 (18)

where, p8,: is the ratio of class k instances among the training instances in the 8Cℎ node. For

example, the depth-2 left node has a gini score of 1 − (0/54)2 − (49/54)2 − (5/54)2 ≈ 0.168
[15].

• The CART Training algorithm

Scikit-learn uses the “Classification And Regression Tree” (CART) algorithm to train decision trees.

The algorithm first splits the training set into two subsets using a single feature : and a threshold C: .

The choice of the : , t: pair is done through the cost function that the algorithm is trying to minimize

during the training process. The cost function is represented in the equation 19, where G;4 5 C/A86ℎC
measures the impurity of the left/right subset, and m;4 5 C/A86ℎC represents the number of instances
in the left/right subsets.

� (:, C:) =
<;4 5 C

<
�;4 5 C +

<A86ℎC

<
�A86ℎC (19)

After splitting the dataset into two subsets, the algorithm splits the resulting subsets using the

process to divide the original dataset. The algorithm does this recursively. It will stop when it

reaches the maximum depth (defined by the max_depth hyperparameter) or if it is not possible to

find new subsets with lower impurity [15].

• Instability

Decisions Trees have some restrictions due to their preference for orthogonal decision boundaries

(all splits are perpendicular to an axis). As a result, decision trees are susceptible to changes in the

training set.

34

CHAPTER 3. THEORY

Figure 32 shows an example of a rotation change in the training set used to train a decision tree

classifier, and as can be seen, the model becomes more complex just by a slice change in the

orientation of the training set.

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x1

0.6

0.4

0.2

0.0

0.2

0.4

0.6

x2

(a) Training set without rotation

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x1

0.6

0.4

0.2

0.0

0.2

0.4

0.6

x2

(b) Training set with rotation

Figure 32: Sensitivity to training set rotation (Figure based on [15])

A decision tree model can be different if, for example, some instances are removed from the training

set. This modification will imply another behavior in the training process, leading to a new and

different decision tree model [15].

3.3.3 Ensemble Learning and Random Forests

A group of predictors is called an ensemble, and the technique that aggregates the predictions of an

ensemble is named Ensemble Learning. A classifier group prediction is better than the prediction of the

best classifier in the group. For example, figure 33 represents four different types of classifiers (Two SVM

Classifiers and two Decision Tree Classifiers), each one with about 80% of accuracy. The selection of the

35

CHAPTER 3. THEORY

most voted prediction will lead to a creation of a better classifier. In other words, a classifier with higher

accuracy.

SVM
Classifier

SVM
Classifier

Decision Tree
Classifier

Decision Tree
Classifier

New
Instance

1 1 2 1

1

Prediction
(Majority Vote)

Figure 33: Ensemble Learning technique (Figure based on [15])

• Bagging and Pasting

Utilizing a wide range of training techniques is one method for obtaining a diversified group of

classifiers. Another way to get a diverse set of classifiers can be by using the same algorithm for

every predictor, but the training process is done in different subsets of the training set. In this case,

if the sampling process is executed with the subset replacement, it is called bagging, and if the

sampling is performed without the subset replacement, it is named pasting. The difference between

bagging and pasting is that bagging allows training instances to be sampled several times for one

predictor, unlike pasting. Figure 34 shows an example of bagging training set sampling and training

[15].

Traning set

Random sampling

(with reppacement)

Predictors

Figure 34: Bagging training set sampling and training (Figure based on [15])

36

CHAPTER 3. THEORY

• Random Forest

The Decision Tree classifier group, for instance, could be trained using various random subsets

of the training set. It is required to get the predictions of each tree before predicting the class

that would receive the most votes. A random forest is a collection of decision trees, and despite

its apparent simplicity, it is one of the most effective Machine Learning algorithms nowadays. A

random forest is generally trained via the bagging method [15].

3.3.4 Artificial Neural Network (ANN)

An artificial neural network is usually a computational network based on biological neural networks

that construct the structure of the human brain. Similar to a human brain, artificial neural networks also

have neurons that are linked to each other in various layers of the networks. Figure 35 represents the

diagram of a biological neuron.

Dendrite

Cell
Nucleo

Axon

Synapse

Figure 35: Diagram of biological neuron (Figure based on [17])

Figure 36 shows a typical Artificial Neural Network with just one neuron, and as can be seen, compared

to figure 35, the inputs are represented by dendrites, the nodes by cell nucleus, the weights by synapses,

and the outputs by axons.

Y =ω1X1 + ω2X2 + ω3X3 + b

Neuron

b

YX2
ω2

X1 ω1

X3
ω3

Figure 36: Diagram of artificial neuron (Figure based on [13])

37

CHAPTER 3. THEORY

Figure 36 also represents the mathematical form of an artificial neuron. In this representation, the

neuron takes the inputs and computes the weighted sum of those, including a bias term (b). This example

shows an ANN with just one neuron, but there are others with more than one. This number is proportional

to the complexity of the problem that is trying to be solved by the ANN [18]. Just like any ML model, ANNs

also need to be trained. So the ANN training process lies in finding the best weights and bias terms that

fit the problem. The mathematical representation of a neuron, given by the previous figure, only works

for modeling linear relationships between inputs and outputs. So in the presence of non-linear data, the

neurons of an artificial neural network should use an activation function to calculate their outputs. There

are different types of activation functions, but the most popular and most used activation function is the

sigmoid function. The mathematical formula of this function is represented in equation 20.

B86<>83 (G) = 1
1 + 4−G (20)

In each neuron, the activation function accepts the sum of the product between the inputs and the

weights, and then returns a single value that is able to non-linearly map between the inputs and the

output(s) [13].

In an artificial neural network with more than one neuron, the neurons are arranged in a sequence of

layers. Figure 37 shows an ANN with one input layer, two hidden layers, and one output layer. The input

layer accepts the inputs in several formats provided by the programmer, unlike the hidden layers, which

are responsible for performing all the calculations to find hidden features and patterns in the input values.

The last layer is responsible for showing the result of the neural network [18].

Hidden
Layer 1

Output
Layer

Input
Layer

Hidden
Layer 2

Figure 37: Artificial Neural Network with two hidden layers

As mentioned earlier, the training operation consists in finding the weights and the bias terms that

best fit the data and reduce the error (the difference between the original data and the prediction data).

This process requires the gradient descent algorithm application to the equation that relates the error and

the ANN parameters.

For example, in the case of an ANN with one input and one output (Figure 38), the equation that

associates the prediction error and the ANN parameters (weights) is represented in equation 21 [13].

38

CHAPTER 3. THEORY

Input
Layer

Output
Layer

Error

Activation
Functionωx

ωx

Figure 38: Artificial Neural Network with 1 input and 1 output

4AA>A = (?A4382C43 − C0A64C)2 =

(
1

1 + 4−FG − C0A64C
) 2

(21)

Applying the gradient descent algorithm to this equation allows finding the value of l that best fits

the data used for training. The examples mentioned before correspond to Feed-Forward ANN. There are

various types of ANN, the most famous and used types of ANN are listed below:

• Feedback ANN

The output of this type of ANN is feedback into the network to achieve the best internal results.

Feedback neural networks allow signal transmission in both ways, and the complexity of these

neural networks can grow faster. Neural networks with feedback are dynamic. When such a net-

work reaches an equilibrium point, the “state” will no longer change until the input changes. The

architecture of a feedback neural network is also known as interactive or recurrent [29].

• Feed-Forward ANN

In a feed forward Neural Network, signals only flow one way, from input to output. No loops or

feedback exist. In such networks, the output of one layer does not affect another layer below it.

Simple networks that link inputs and outputs are feed-forward neural networks [29].

3.3.5 Generalized Additive Models (GAM)

Generalized Additive Models (GAMs) are a kind of regression model used to model the relationship

between a dependent variable and one or more independent variables. Unlike traditional regression

models, which assume that the relationship between the dependent and independent variables is linear,

GAMs allow for non-linear relationships between the variables, which makes them more flexible and able to

capture complex patterns in the data. GAMs are based on additive modeling, where the response variable

is modeled as a sum of multiple functions, each of which is a function of one of the independent variables

(figure 39).

39

CHAPTER 3. THEORY

S1 (x1)

x1

S2(x2)

x2

+

Sp(xp)

xp

+ ... +

Figure 39: GAM structure example (Figure based on [21])

The GAM structure can be written as:

6(� (.)) = U + (1(G1) + ... + (? (G?) (22)

where . is the dependent variable (i.e., the predicted value), � (.) the expected value, and 6(� (.))
denotes the link function that links the expected value to the predictor variables G1, ..., G? . The terms

(1(G1), ..., (? (G?) indicate smooth, nonparametric functions. In contrast to parametric functions, which

are defined by a typically small set of parameters, nonparametric function’s shape is entirely determined by

the data. This will enable a more flexible estimation of the underlying predictive patterns without requiring

prior knowledge of the pattern’s appearance [21].

GAM is a powerful algorithm because of its interpretability, flexibility, and regularization.

• Interpretability

In an additive regression model, the interpretation of the marginal impact of a single variable (the

partial derivative) don’t depend on the values of the other variables in the model. Therefore, it

is possible to make simple statements about the predictive variables, such as in figure 39 the

expected value of . increases linearly as G2, holding everything else constant [21].

• Flexibility

GAM can detect common nonlinear patterns that a classic linear model would miss. Therefore, fitting

parametric regression models with nonlinear data will result in nonlinear effects captured through

binning or polynomials, and a gawky model with many correlated terms. In addition, selecting the

best model involves developing several models, followed by a search algorithm to choose the best

one. In GAM, this type of problem doesn’t exist, since the predictor functions are automatically

derived during model estimation. It is not necessary to know upfront what type of functions best

fits the data [21].

• Regularization

GAM has the capacity of controlling the smoothness of the predictor functions to prevent overfitting.

As a way to further explain regularization in the GAM algorithm, the following example is presented.

This example consists of a two-dimensional dataset (G , ~) in which the relationship between these

40

CHAPTER 3. THEORY

two variables follows a sine function (with random error). The purpose of this example is to predict

~, giving, G by fitting the following model (equation 23).

~ = B_ (G) + 4 (23)

where B_ (G) is the smooth function, and the level of smoothness is determined by the smoothing
parameter(i.e., _). The higher the value of this parameter, the smoother the predicted function.

Figures 40a, 40b, and 40c, represent three fitted models to the mentioned dataset, each with a

different smoothness parameter. In the figures, the orange line represents the final model, while

the blue line corresponds to the sine function, which the dataset follows. Finally, the blue dots

indicate the constituent data of the dataset.

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

(a) _ = 0

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

(b) _ = 0.6

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

(c) _ = 200

Figure 40: Fitting a model with three different _ values (Figure based on [21])

As it is possible to check, the model with _ = 0 provides the best fit for the data, but with a resulting
curve very prone to outliers. Oppositely, the model with _ = 200 presents a function that diverges

significantly from the data. The best solution in this situation is the one in figure 40b, which seems

to be the intermediate model between the other two.

For more information about the working principle of the GAM algorithm, you can refer to [21].

41

CHAPTER 3. THEORY

3.3.6 Lattice-based ML models

Lattice is an interpolated look-up table that can approximate arbitrary input-output relationships in the

data. It overlays a regular grid onto the input space and learns values for the output in the vertices of

the grid. The following figure, 41, shows an example of two lattices. The one on the left represents an

example of a function with two input features and four parameters (\), which are the function’s values at

the corners of the input space. The rest of the function’s values are interpolated from these parameters.

f(x)

θ[2] θ[3]

θ[0] θ[1]feature 1

fe
at

ur
e

2

θ[0] θ[1]

θ[3]

θ[2]

f(x)

θ[4]

θ[5]

θ[7]

θ[6]

feature 1

fe
at

ur
e

2

feature 3

Figure 41: Lattices example (Figure based on [30])

In figure 41, the example on the right show an example of a lattice with three input features, and as

can be seen, it has eight parameters (25 40CDA4B_=D<14A). To implement lattice-based machine learning
models, TensorFlow Lattice library, provide some tools. (see more in [30])

Lattice models are a kind of interpretable machine learning model that can make accurate predictions

while also providing insight into the relationships between the input features and the output. Lattice

models consist of interconnected nodes, or lattice points, representing the input features and the output.

The connections between the lattice points are called edges, and the strength of these connections is

represented by the weights of the edges. These weights are learned during the training process and

determine how much influence each input feature has on the output. To train a lattice model, a dataset is

provided to the model along with the desired output. The model then adjusts the weights of the edges to

minimize the difference between the predicted output and the desired output. This process is repeated for

multiple epochs or passes through the dataset until the model reaches a satisfactory level of accuracy.One

of the benefits of lattice models is their interpretability. Since the weights of the edges represent the

strength of the relationship between the input features and the output, it is possible to analyze these

weights to understand the relative importance of each attribute in predicting the final result. This can be

useful for understanding the relationships between the features and the output, and identifying features

that are not important for the prediction process (For more information about the working principle of the

Lattice-based ML models, you can refer to [30]).

42

C
h
a
p
t
e
r

4
System Specifications

4.1 System Overview

For the application proposed in this dissertation, the system overview is shown in figure 42. In this

system, it is possible to check the data collection that will constitute the training dataset responsible for

the overall machine learning models. These models, represented in figure 42 by the box whose legend is

(classifier/regressor), are responsible for classifying or predicting new gas instances.

To collect the training data and the new data to be evaluated, the BME688 sensor was chosen. This

sensor is present in the BME688 development kit, available from Bosch Sensortec.

Classifier /
Regressor

Gas
Result

Training
algorithm

Gas
Sensor

Gas

New Instance

Gas
Sensor

Main System

Gas
Train set

Figure 42: System overview

43

CHAPTER 4. SYSTEM SPECIFICATIONS

4.2 Requirements

System requirements are all the requirements that describe the functions that the system as a whole

must fulfill. It is important to respect all the system requirements during its development so that it responds

to the problem as intended.

4.2.1 Functional Requirements

• Collect data correctly

• Train robust machine learning models

• Classify a given instance or predict the concentration of a gas in the newly collected gas instance.

• Selection of the best machine learning model for a specific dataset based on selection criteria

4.2.2 Non-Functional Requirements

• Ensure a small classification/prediction error

• Fast response from the machine learning models

4.3 Hardware

The BME688 development kit from Bosch Sensortec enables the testing and creation of use cases

for temperature, barometric pressure, humidity, and gas sensing. As can be seen in figure 43, this kit

consists of an Adafruit HUZZAH32 feather board and a BME688 dev-kit board.

8x BME688
gas sensor

BME688 dev-kit
board

Adafruit HUZZAH32
feather board

SD card

Buttons

Figure 43: BME688 development kit

44

CHAPTER 4. SYSTEM SPECIFICATIONS

The Adafruit HUZZAH32 feather board presented in figure 44 is responsible for processing the data

collected from the BME688 dev-kit board. This feather contains a dual-core ESP32 chip, 4 MB of SPI Flash,

a tuned antenna, and other features. The following list shows some of the most significant specifications

of this board.

Adafruit HUZZAH32 feather specifications:

• 240 MHz dual-core Tensilica LX6 microcontroller with 600 DMIPS

• Integrated 520 KB SRAM

• Integrated 802.11b/g/n HT40 Wi-Fi transceiver, baseband, stack and LWIP

• Integrated dual mode Bluetooth (classic and BLE)

• 4 MByte flash include in the WROOM32 module

• 3 x SPI Hosts

• 2 x I2C Hosts

• PWM/timer input/output available on every pin

Figure 44: Adafruit HUZZAH32 feather board

The other board that makes up the BME688 development kit is the BME688 dev-kit board, which

is responsible for taking temperature, pressure, humidity, and gas readings. This board features eight

BME688 sensors, an RTC, and an SD Card slot.

Figure 45: BME688 dev-kit board

45

CHAPTER 4. SYSTEM SPECIFICATIONS

BME688 development kit has 8 BME688 gas sensors, all responsible for collecting gas data. The

BME688 sensor can discriminate between various gas compositions by detecting and measuring their

distinct electronic fingerprint. Figure 46 shows an BME688 sensor.

0.93 mm

3 mm

3 mm

Figure 46: BME688 sensor

Another significant aspect of the BME688 development kit is that the Adafruit HUZZAH32 feather

board, connected to the eight BME688 sensors, communicates with all the sensors by an SPI interface,

sharing the same MISO and MOSI line. Because all sensors share the same resources, the BME688 dev-kit

board has a device that allows the ESP32 (Adafruit HUZZAH32 feather board) to select the sensor that

wants to communicate with, i.e., the microprocessor must choose which sensor wants to communicate,

to avoid conflicts in communication and reduce the number of resources (in this case SPI hosts by the

microcontroller). The device chosen by Bosch Sensortec to unpack such a function was the TCA6408A

Low-Voltage 8-bit I2C and SMBus I/O Expander. Its schematic is shown in the figure 47.

TCA6408ARGTR

VCCI15

ADDR16

RESET1

P0 2

P1 3

P2 4

P3 5

GND6

P4 7

P5 8

P6 9

P7 10

INT11

SCL12

SDA13

VCCP14

EP17

GPIO10

10k
R10

SCL
SDA

3V3

3V3

100nF
C22

100nF
C23

10kR11

TP1
CS_0
CS_1
CS_2
CS_3
CS_4
CS_5
CS_6
CS_7

Figure 47: TCA6408A Low-Voltage 8-bit I2C and SMBus I/O Expander Schematic

The output of the TCA6408A is connected to all eight sensors in the BME688 dev-kit, as shown in

figure 47. Figure 48 shows the schematic of sensor number zero (CS_0 ⇒ Chip Select 0).

46

CHAPTER 4. SYSTEM SPECIFICATIONS

100nF
C3

3V3 3V3

100nF
C4 GND1

CSB 2

SDI 3

SCK 4

SDO 5VDD8

GND7

VDDIO6
BME688

SCK

MISO

MOSI

CS_0

Figure 48: BME688 Schematic

According to Bosch Sensortec, the BME688 sensor contains a metal oxide layer. Operating this layer

at different temperatures allows different gas concentrations with different sensitivities, creating unique

fingerprints for each gas concentration. This sensor lets the definition of its heating profile through its

internal registers, i.e., select the different temperatures at which the sensor will operate. Figure 49 shows

a heater profile example divided into ten steps, each with a specific time duration [26].

2s 4s 6s 8s 10s

320ºC

200ºC

100ºC

0s

0

1 2 3

4 5 6

7 8 9

Figure 49: Heater profile example

The BME688 sensor supports low-level power modes, such as sleep, forced and parallel mode, each

with a specific key feature. The key features of all operation modes are summarized in table 3.

Table 3: BME688 operation modes (from [26])

Operation Key feature

Sleep Mode
• No measurements are performed

• Minimal power consumption

Forced Mode

• Single TPHG cycle is performed

• Sensor automatically returns to sleep mode afterwards

• Gas sensor heater only operates during gas measurement

Parallel Mode

• Multiple TPHG cycle are performed

• Sensor will not automatically return to sleep mode

• Gas sensor heater operates in parallel to TPH measurement

47

CHAPTER 4. SYSTEM SPECIFICATIONS

A TPHG cycle, presented in the table above, corresponds to the execution of a heater profile, in

which the sensor collects data on temperature, ambient pressure, humidity, and ambient gases. The

BME688 sensor automatically enters sleep mode after a power-up procedure. Execution of mode switching

commands is postponed until the end of the measurement period if the device is currently running one

[26].

The BME688 dev-kit board is equipped with an external RTC, allowing the time logging of the data

read by the gas sensors. Figure 50 represents the schematic of the external RTC, whose reference is

PCF8523.

SCL

SDA

3V3

1kR7 12 ABS06-32.768KHZ-9-T
GPIO8

OSCI 1

OSCO 2

VBAT 3

VSS 4SDA5 SCL6 INT/CLKOUT7 VDD8
PCF8523T/1,118

INT

KEYSTONE
1056TR

1
2

+

R9

10µF
C16

10µF
C17

Figure 50: PCF8523 Real-Time Clock (RTC)

4.4 Software

4.4.1 Tools

• Visual Studio Code

A streamlined code editor, Visual Studio Code, supports development activities like task execution

and version management. It seeks to give developers the resources they require for a rapid cycle

of code-build-debug [23].

• Spyder

Spyder is a free and open source scientific environment created by and for scientists, engineers,

and data analysts in Python. This tool has a distinctive combination of capabilities, including code

editing, analysis, and debugging. This tool also allows advanced and detailed data analysis and

visualization [9].

4.4.2 Software Tools Used

• Scikit-learn

Unsupervised and supervised learning are both supported by the open source machine learning

48

CHAPTER 4. SYSTEM SPECIFICATIONS

package Scikit-learn. Additionally, it offers several tools for data preprocessing, model selection,

model evaluation, and many other utilities [8].

• TensorFlow

TensorFlow is an end-to-end platform for machine learning. It provides resources to speed up model

building and create scalable ML solutions. TensorFlow offers multiple levels of abstraction, such

as building and training models using the high-level Keras API [3].

• NumPy

NumPy is a Python library that provides a multidimensional array object, and an assortment of

functions for fast operations on arrays, including mathematical, logical, shape manipulation, sorting

and much more [6].

• Pandas

Pandas is a Python-based open-source data analysis and manipulation tool that is quick, strong,

adaptable, and easy to use [7].

• Matplotlib

Python’s Matplotlib toolkit provides a complete tool for building static, animated, and interactive

visualizations [5].

• BME68x Driver

Bosch Sensortec’s provide a sensor API to operate the BME688 gas sensor [27].

4.4.3 Software Architecture

The project proposed in this dissertation is divided into 3 phases: data collection process, training

machine learning models based on the collected data, and execution of the trained models. For the data

collection stage, the software architecture is represented in figure 51, and for the two other phases, the

software architecture is shown in figure 52. The data collection process will be executed in the BME688

Development Kit, in contrast with the two others processes, which will be performed in a personal computer

(capable to support the libraries in figure 52).

49

CHAPTER 4. SYSTEM SPECIFICATIONS

Middleware

Application

ESP32

Sensors

Sensor 2 Sensor NSensor 0

SD Card

RTC

BME68x API

Sensor 1

GPIOBluetooth I2CUART SPI

Figure 51: Software architecture for the data collection process

Libraries
Classifier

Application

Scikit Learn TensorFlow Numpy Matplotlib Pandas

Classifier

Decision Tree Random
Forest SVM

Regressor

ANN GAM Lattice

Regressor

TensorFlow

Figure 52: Software architecture for machine learning models

The software architecture, shown in figure 51, represents the organization of the data collection

system. This organization includes all components, how they interact with each other and the environment

in which they operate. The ESP32 layer has five modules. The SPI and I2C modules enable, with the help

of the BME68x API, the digital interface with the eight BME688 sensors in the application layer. This layer,

beyond the sensors modules, has two other modules. One is for SD Card interface, and the other is for

interfacing with the external RTC in the BME688 dev-kit board. The software architecture for the final two

phases of the project is shown in figure 52. It has two layers. The library layer is used to help the ML

model’s implementation, and the application layer implements the respective ML models (three classifiers

and three regressors). The Scikit-learn and TensorFlow modules are libraries used for classification and

regression processes, respectively.

4.4.4 Software Class Diagrams

In this subsection, the class diagrams for the software of this dissertation will be described. The class

diagram in figure 53 shows all the structures used in the data collection process. In this diagram, it is

50

CHAPTER 4. SYSTEM SPECIFICATIONS

possible to see the bme68x_dev structure, responsible for representing the BME688 sensor. This structure

is part of the API provided by BOSCH Sensortec that aims to simplify communication between the user

and the sensor. This structure contains the attributes responsible for storing the addresses of the read

and write functions for the BME688 sensor (bme68x_read_fptr_t read and bme68x_write_fptr_t write).

In addition to this structure, the bme68x_heatr_conf and bme68x_data structures that are part of the

BME68x API are delegated to configure the sensor’s heater profile and store the sensor data, respectively.

BME688
Development Kit

BME68x API

<<Struct>>

bme68x_dev

+ chip_id: uint8_t

+ *intf_ptr: void
+ variant_id: uint32_t
+ intf: bme68x_intf
+ mem_page: uint8_t
+ amb_temp: int8_t
+ calib:bme68x_calib_data
+ read: bme68x_read_fptr_t
+ write: bme68x_write_fptr_t
+ delay_us :bme68x_delay_us_fptr_t
+ intf_rslt: int8_t
+ info_msg: uint8_t

<<Enum>>

bme68x_intf

+ BME68X_SPI_INTF

+ BME68X_I2C_INTF

<<Struct>>

bme68x_calib_data

+ par_h1: uint16_t

+ par_h2: uint16_t
+ par_h3: int8_t
...
+ par_p9: int16_t

+ par_p10: uint8_t

Structure to hold the
calibration coefficients

Interface selection
Enumerations

<<Struct>>

comm_mux_interface_t

+ host: spi_host_device_t
+ dev: spi_device_handle_t

Structure working as an
interface descriptor

<<Struct>>

comm_mux_t

+ cs_io: uint8_t
+ *comm_mux_intf: comm_mux_interface_t

<<Struct>>

bme68x_heatr_conf

+ enable: uint8_t
+ heatr_temp: uint16_t
+ heatr_dur: uint16_t
+ *heatr_temp_prof: uint16_t
+ *heatr_dur_prof: uint16_t
+ profile_len: uint8_t
+ shared_heatr_dur: uint16_t

Structure for the BME688 sensor
gas heater configuration

<<Struct>>

bme68x_data

+ status: uint8_t
+ gas_index: uint8_t
+ meas_index: uint8_t
+ res_heat: uint8_t
+ idac: uint8_t
+ gas_wait: uint8_t
+ temperature: float
+ pressure: float
+ humidity: float
+ gas_resistance: float

Structure to save
 BME688 sensor data

ESPRESSIF API

<<Struct>>

spi_host_device_t

<<Struct>>

spi_device_handle_t

Figure 53: Class Diagram for the BME688 Development Kit data collection process

As mentioned earlier in the hardware subsection, the BME688 dev-kit board has an SMBus to control

access to the various sensors presented in the kit. The structures represented in figure 53 with the name of

comm_mux_intterface_t and comm_mux_t are responsible for establishing the communication between

51

CHAPTER 4. SYSTEM SPECIFICATIONS

the SMBus, the ESP32 microcontroller, and the 8 BME688 sensors. The first structure (comm_mux_int-

terface_t) will control the ESP32’s SPI peripherals while working as masters, and the second structure

(comm_mux_t), will command the communication process between each sensor in the board and the

ESP32 microcontroller. This last one has the cs_io variable as an attribute that will take the sensor number

as a value.

BME688 GUI

Qt API

<<Class>>

QMainWindow

<<Class>>

MainWindow

- *ui: MainWindow
- *agent: QBluetoothDiscoveryAgent
- *socket: QBluetoothSocket

- timeData: QVector<QCPGraphData>
- data: QString
- searchButton: QPushButton
- deviceListWidget: QListWidget
- uartListWidget: QListQWidget
- plotWidget: QCustomPlot

+ MainWindow(QWidget)
+ ~MainWindow()
+ addPoint(double, double): void
+ plot(): void
+ parsing(): void

Slots
- on_searchButton_clicked(): void
- discoveryDeviceCompleted(): void
- connectedSocket(): void
- disconnectedSocket(): void
- on_deviceListWidget_itemClicked(QListWidgetItem*): void
- receiveData(): void

<<Class>>

QListWidgetItem

<<Class>>

QPushButton

<<Class>>

...

<<Class>>

QBluetoothDiscoveryAgent

Figure 54: Class Diagram for the BME688 Development Kit GUI

Since the data collection process will be done in a controlled environment to avoid gas leaks, access to

the BME688 Development Kit (ESP32 microcontroller and the BME688 dev-kit board) will be constrained,

making it necessary to develop an application that monitors the data reading process. This application

was design to run in any personal computer that support Qt. The class diagram of this application is

represented in figure 54. In this figure, it is possible to analyze the ”MainWindow”class that contains

the ”agent”, ”socket”, and ”plotWidget”attributes, which will establish the Bluetooth connection with the

BME688 Development Kit and display the read data to the user. The structures used in the ESP32 to

create a Bluetooth host are not shown in figure 53 for simplicity reasons (see [11]).

52

CHAPTER 4. SYSTEM SPECIFICATIONS

4.4.5 Software Flowcharts

A flowchart is a diagram that describes a process, system, or computer algorithm. This type of diagram

can be defined as a diagrammatic representation of an algorithm. The flowchart in figure 55 illustrates

the algorithm flow responsible for the collection data process. This algorithm will run in the BME688

Development Kit, and because it owns two external buttons, one of which is used to control the data

collection process. The Bluetooth host used to monitor the kit execution will work in the background, waiting

for new connections (some computer) to send the data read by the sensors. If any device connects to this

host, the program will keep saving the data into the SD Card. In other words, the BME688 Development

Kit will save the sensor’s data into the SD Card independently of a Bluetooth device connection.

main

-Init all sensors

-Init SD Card

-Start bluetooth

host

Begin

Button Pressed

False

True

Read data from
the 8 sensors

Write data in SD
Card and send
it by bluetooth

End

Unmount SD
Card and close
bluetooth host

Read time from
external RTC

-comm_mux_init

-array of 8

bme68x_dev

-bme68x_get_data
used to read the
data from the 8

sensors

Figure 55: Software Flowchart for the data collection process

53

CHAPTER 4. SYSTEM SPECIFICATIONS

The comm_mux_init function represented in figure 56, and called at the beginning of the ”main

function”above, is responsible for configuring the SMBus mentioned earlier, and the SPI bus (MISO, MOSI,

and SCK) used in the communication between the sensors and the ESP32. The configuration process

consists in putting all SMBus user peripherals as output pins, since they will work as the chip select for

the 8 BME688 sensors in the board.

comm_mux_init

Begin

End

- Set TCA6408A peripherals as
output pins

- Set TCA6408A peripherals to 1

Init SPI bus

True

Add device

to SPI bus

True

Return Error Return OK

Figure 56: Software flowchart of comm_mux_init function

The comm_mux_read and comm_mux_write functions (represented in figure 57) are responsible for

writing and reading information to a specific BME688 sensor. The address of these two functions will

be assigned to the ”read”and ”write”attributes of the bme68x_dev structure (figure 53) to provide easy

communication with the sensors. All these functions make part of the comm_mux module, which was

developed to connect the ”main function”with the BME68x API.

54

CHAPTER 4. SYSTEM SPECIFICATIONS

comm_mux_read

Begin

End

-Prepare the SPI transaction

Send transaction

 by the SPI bus

True

Return Error

-Read data and
save it

-Select the sensor (Sensor Chip
Select to 0) with the help of

TCA6408A

Return OK

False

(a) Software flowchart of

comm_mux_read function

comm_mux_write

Begin

End

-Prepare the SPI transaction

Send transaction

 by the SPI bus

Return Error

-Select the sensor (Sensor Chip
Select to 0) with the help of

TCA6408A

Return OK

False

True

(b) Software flowchart of

comm_mux_write function

Figure 57: Software flowchart of comm_mux module used to make the interface between the ESP32,

SMBus and the sensors

To better explain the process of reading the internal registers of the BME688 sensor, the following

flowcharts are presented. These flowcharts represent the workflow of the functions bme68x_get_data and

bme68x_get_regs provided by BOSCH Sensortec. The bme68x_get_regs reads the registers from a given

sensor via the comm_mux_read procedure passed as an argument through the bme68x_dev structure.

On the other hand, the bme68x_get_data task will read the sensor’s register fields, taking into account

its operating mode (Parallel mode or forced mode). For more information about the BME688 sensor’s

register fields, which contain all the information read by the sensor, the sensor’s datasheet provides more

detailed information about these fields [26].

55

CHAPTER 4. SYSTEM SPECIFICATIONS

BME68x API

bme68x_get_regs

Begin

BME688

device

interface

(bme68x_dev->intf)

=

SPI

True

False

Set memory page

(bme68x_dev-
>mem_page)

-Read register from the sensor
and save it

(bme68x_read_fptr_t =
comm_mux_read)

End

bme68x_get_data

Begin

BME688

device

operation mode

=

Parallel mode

True

Read all fields in the
BME688 device and

save it

Read the first fields in
the BME688 device

and save it

End

-bme68x_get_data
use

bme68x_get_regs,
which also use

comm_mux_read

False

Figure 58: Software Flowchart of BME68x API

The monitoring process of the readings taken by the BME688 dev-kit board will be performed through

an application external to the kit (In a computer that supports Qt). The flowcharts that present the workflow

of this application are shown in figure 59. The flowcharts illustrated by 59a, and 59b, represent the process

of searching and listing all the Bluetooth devices around the user to select the BME688 Development Kit

Bluetooth host. The searching process will be triggered by a button available in the application interface.

After establishing the connection between the monitoring application and the kit, the application will be

on hold until it receives information from the sensors. After this information arrives to the application, it

will execute the procedure described by the flowchart 59c, where it is possible to verify the parsing of the

new data and subsequent plot of the same.

56

CHAPTER 4. SYSTEM SPECIFICATIONS

on_searchButton_clicked

Begin

End

Bluetooth

agent is active

True

-Agent stop listening

-Device List Widget clear

-Set search button label

to "Search"

False

-Agent start listening

-Set search button label to

" Stop Search"

(a) on_searchButton_clicked func-

tion

discoveryDeviceCompleted

Begin

End

-Set search button label to
"Search"

-Clear device list widget

-Counter = 0

-Add device[counter] to device
list widget

- Increment counter

Counter

=

Devices

number

True

False

(b) discoveryDeviceCompleted

function

receiveData

Begin

-Read data from socket

-Write data to uart list

widget

parsing

End

plot

(c) receiveData function

Figure 59: Software flowcharts of BME688-GUI

The process that follows after collecting the data obtained from the sensors present in the BME688

Development Kit is the training process and subsequent execution of the ML algorithms. Therefore, in the

training models process, the developed algorithm is shown in figure 60. This algorithm contains a few

steps, since the model training step is performed with the help of the Scikit-learn and TensorFlow libraries.

One step that is very important in this flowchart is the last, since it will be helpful in the result stage of this

dissertation, allowing the comparison between all ML models.

Begin Load dataset
Split dataset in
train, test and
validation set

Train ML model
Measure ML

model
performance

End

Regressors and
Classifiers

Dataset collect by
BME688

Development Kit

Figure 60: Software Flowchart for machine learning models

57

CHAPTER 4. SYSTEM SPECIFICATIONS

4.4.6 Sequence Diagram

Since sequence diagrams are interaction diagrams that detail how operations work, the following

sequence diagram (61) demonstrates how it will be the interaction between the BME688 Development

Kit and the monitor application. This diagram shows that the BME688 Development Kit will work (save

the sensor’s data into the SD Card) independently of a Bluetooth device connection. After establishing

a Bluetooth connection between the kit and the application, the kit will enter a loop to send information

about the sensors to the application, which is then made available to the users by the application.

BME688-GUI

User

BME688
Development Kit

Press "Search"
button

Send bluetooth
device list

Select BME688
DevKit

Connect to BME688
DevKit

Start BME688
DevKit

Request Sensors
data

Send data
Requested

Plot sensors data

break Close

BME688-GUI Disconnect from

BME688 DevKit

SD Card

Mount SD Card

loop Write sensors data
SD Card

Break will occur when
the user decides

Stop BME688
DevKit Unount SD Card

and save the data

loop

Figure 61: Sequence diagram for data collection process

58

C
h
a
p
t
e
r

5
Implementation

5.1 BME688 Development Kit

The dataset collection process, as mentioned earlier, was implemented in the BME688 Development

Kit. In this process, it was necessary to define the heater profile of each sensor in the kit. The heater profile

implementation is represented in figure 49, and as can be seen, the sensors will start by heating to 320

°C, passing by 100 °C, and finishing at 320ºC. Each heater step has a run time of one second (mult_prof

buffer), which means that all sensors will be heating for one second at each heater step temperature.

Listing 2: Heater Profile buffer

1 // Heater profile

2 uint16_t temp_prof[10] = {320, 100, 100, 100, 200, 200, 200, 320, 320, 320};

3 uint16_t mul_prof[10] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};

4 uint8_t idac_prof[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

5

6 uint16_t shared_heatr_dur;

7 bme68x_heatr_conf_t heatr_conf = {

8 .enable = BME68X_ENABLE,

9 .heatr_temp_prof = temp_prof,

10 .heatr_dur_prof = mul_prof,

11 .profile_len = 10

12 };

After defining the sensor’s heater profile, the next step is each sensor configuration, including selecting

the communication interface between the sensor and microcontroller (SPI), setting the communication

functions to treat the sensor’s data, and setting the heater profile defined earlier. All these configurations

59

CHAPTER 5. IMPLEMENTATION

are represented in code 3.

Listing 3: Configuration of all sensors

1 // Config all 8 bme688 sensors

2 for (uint8_t i = 0; i < SENSORS_NUMBER; i++)

3 {

4 comm_mux[i].comm_mux_intf = &comm_mux_intf;

5 comm_mux[i].cs_io = i;

6 bme688[i].intf_ptr = &comm_mux[i];

7 bme688[i].intf = BME68X_SPI_INTF;

8 bme688[i].read = comm_mux_read;

9 bme688[i].write = comm_mux_write;

10 bme688[i].delay_us = comm_mux_delay_us;

11 bme688[i].amb_temp = 25;

12 bme68x_init(&bme688[i]);

13 bme68x_get_conf(&conf, &bme688[i]);

14 conf.os_hum = BME68X_OS_1X;

15 conf.os_temp = BME68X_OS_16X;

16 conf.os_pres = BME68X_OS_2X;

17 bme68x_set_conf(&conf, &bme688[i]);

18 shared_heatr_dur = 1000 - (bme68x_get_meas_dur(BME68X_PARALLEL_MODE, &conf, &bme688[i])

↩→ / 1000); // 1s

19 heatr_conf.shared_heatr_dur = shared_heatr_dur;

20 bme68x_set_heatr_conf(BME68X_PARALLEL_MODE, &heatr_conf, &bme688[i]);

21 bme68x_set_regs(®_addr, idac_prof, 10, &bme688[i]); // Boost

22 }

As mentioned previously, BME688 sensor has three operations mode (sleep mode, forced mode,

parallel mode), all represented in table 3. In this project, the operation mode required was the parallel

mode since it is the only one that allows multiple TPHG (Temperature, Pressure, Humidity, and Gas

Resistance) cycles of measurements. The code presented in 4 is responsible for the configuration of every

sensor operation mode.

Listing 4: Operation mode configuration of all sensors

1 for (uint8_t i = 0; i < SENSORS_NUMBER; i++)

2 {

3 bme68x_set_op_mode(BME68X_PARALLEL_MODE, &bme688[i]);

4 }

The BME68x API supplies a lot of functions that help the communication between the main program

and the BME688 sensor. One of those functions is the bme68x_get_data, responsible for reading the

pressure, temperature, humidity, and gas data, from the sensor. All this information is stored in the

60

CHAPTER 5. IMPLEMENTATION

bme68x_data structure instance passed to bme68x_get_data as an argument. The code 5 shows the

workflow of the BME688 Development Kit to collect the sensors data and save it in the SD Card.

Listing 5: Read data from of all sensors

1 for (uint8_t i = 0; i < SENSORS_NUMBER; i++) {

2 bme68x_get_data(BME68X_PARALLEL_MODE, data, &n_fields, &bme688[i]);

3 for (uint8_t field = 0; field < 3; field++) {

4 // New data

5 if (data[field].status & BME68X_NEW_DATA_MSK) {

6 f = fopen(”/sdcard/data.txt”, ”a”);

7 if (f != NULL) {

8 rtc_get_hour(&hour);

9 rtc_get_minutes(&minutes);

10 rtc_get_seconds(&seconds);

11 idac = ((float)(data[field].idac) + 1) / 8;

12 // Timestamp

13 fprintf(f, ”%02x:%02x:%02x”, hour, minutes, seconds);

14 // Sensor Index

15 fprintf(f, ”%d,”, i);

16 // Temperature

17 fprintf(f, ”%f,”, data[field].temperature);

18 // Pressure

19 fprintf(f, ”%f,”, data[field].pressure);

20 // Humidity

21 fprintf(f, ”%f,”, data[field].humidity);

22 // Gas Resistance

23 fprintf(f, ”%f,”, data[field].gas_resistance);

24 // DAC Current

25 fprintf(f, ”%.3f,”, idac);

26 // Heater Step

27 fprintf(f, ”%d,”, data[field].gas_index);

28 // Valid data or not

29 if (data[field].status == 0xB0) {

30 fprintf(f, ”1\n”);

31 }

32 else {

33 fprintf(f, ”0\n”);

34 }

35 bluetooth_write(buffer); // buffer contain all BME688 DevKit data

36 fclose(f);

37 }

38 }

39 }

61

CHAPTER 5. IMPLEMENTATION

5.2 BME688 Graphical User Interface

The application used to monitor the entire data collection process is shown in figure 62. In this figure,

it is possible to see the graph that will present the BME688 sensor’s resistance subjected to the gases

under study.

Search
Button

Bluettoth
devices list

Data receivec by
BME688 DevKit

Plot data
received

Figure 62: BME688 GUI

The monitoring application also displays a list of Bluetooth devices available to establish a connection,

as well as a window that contains all the information received by the Bluetooth device connected to the

application. This application works in real-time, since its goal is to update the user on the current state of

the BME688 development kit while it collects the data needed to train various machine-learning models.

The graph in the application, used to plot the data received by the Bluetooth device, was developed

with the help of the QCustomPlot API. This API is a Qt widget for plotting and data visualization. It is a

customizable and powerful solution for displaying graphs and charts in Qt-based applications. QCustomPlot

is built on top of the Qt graphics framework and provides a wide range of features for creating professional-

quality plots and charts. Some features of QCustomPlot include ([10]):

• Support for multiple axes and plot layouts;

• A wide range of plot types, including line plots, bar plots, scatter plots, and more;

• Customization of plot elements, such as axis labels, tick marks, and grid lines;

62

CHAPTER 5. IMPLEMENTATION

• Support for user interactions, such as zooming, panning, and selecting data points;

• Export to various image formats, such as PNG, JPG, and PDF.

5.3 Data Structure

The data collected by the BME688 Development Kit is organized in a certain way, represented in figure

63.

Figure 63: Dataset Structure

This figure shows the sensor number, the data read by the respective sensor (Temperature, Pressure,

Humidity, Gas Resistance, and DAC Current), the timestamp, the heater step (Temperature at which the

sensor is working), and a value that indicates if the data collected is valid or not.

The DAC Current is a value that shows the current presented in the BME688 sensor that will make

the internal sensor resistance achieve the requested heater temperature. The BME688 sensor contains a

control loop that periodically measures the heater resistance value and adapts the value of current injected

from a DAC [26].

5.4 BME688 Sensor Behavior

Before starting the training process of the machine learning models, it is necessary to understand the

sensor operating principle when subjected to a particular gas and the influence of the heater profile on its

response. To this purpose, an experiment was conducted, consisting in recording the response of a sensor

configured to work at a single temperature (320ºC) and configured to work at different temperatures,

both performed in ambient air. This experiment intends to study the influence of the heater profile on the

sensor response. The image 64 shows the experiment result, where it can be noticed that the sensor

63

CHAPTER 5. IMPLEMENTATION

reacts much faster when set to work at different temperatures than at various temperatures, leading to

the conclusion that using a heater profile helps reduce the response time of the BME688 sensor.

20 40 60 80 100 120
Time (s)

300

400

500

600

700

Re
sis

ta
nc

e
(k

)

Air
Constant temperature
Variable temperature

Figure 64: BME688 response time to ambient air

5.5 Dataset for the Classifiers

The gas chosen to train the classifiers was�$2 because of its ability to cause shortness of breath and

other harmful effects on human health when accumulated at high concentration levels. The dataset that

will serve as the basis for training the classifiers, was collected from eight BME688 sensors, belonging

to the BME688 development kit. Figure 65 shows the setup used for collecting the classifier’s dataset,

where it is possible to see the container responsible for keeping the data samples (air with and without

�$2) in a controlled environment. Inside the container, beyond the sample data, was also placed the

BME688 Development Kit connected with a battery for power supply reasons.

Figure 65: Setup used to collect the data for the classifiers models

64

CHAPTER 5. IMPLEMENTATION

The experimental procedure lasted 6 minutes for each sample (ambient air and �$2), and during

those 6 minutes, the gas resistance recorded is represented in figures 66 and 67. After analyzing those

graphs, the gas resistance in each concentration has different behaviors when submitted to non-identical

heater steps (higher the temperature, lower the gas resistance). Even though the sensor response is

accelerated with the heater profile application, the sensor always takes some time to react to a specific

gas. Therefore, for the total�$2 and ambient air dataset, the initial gas instances were removed, resulting

in a training and testing dataset with a time range between 1 minute and 6 minutes.

00:00:00 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00
Time (s)

20

30

40

50

60

70

80

R
e
si

st
a
n
ce

 (
k

)

320°C

Heater Step 0
Heater Step 7
Heater Step 8
Heater Step 9

00:00:00 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00
Time (s)

1

2

3

4

5

6

7

R
e
si

st
a
n
ce

 (
M

)

100°C

Heater Step 1
Heater Step 2
Heater Step 3

00:00:00 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00
Time (s)

0.1

0.2

0.3

0.4

0.5

R
e
si

st
a
n
ce

 (
M

)

200°C

Heater Step 4
Heater Step 5
Heater Step 6

00:00:00 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00
Time (s)

105

106

R
e
si

st
a
n
ce

 (
)

100°C

320°C

200°C

Figure 66: Gas Resistance collected in the ambient air environment

00:00:00 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00
Time (s)

60

80

100

120

140

160

R
e
si

st
a
n
ce

 (
k

)

320°C

Heater Step 0
Heater Step 7
Heater Step 8
Heater Step 9

00:00:00 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00
Time (s)

5

10

15

20

25

R
e
si

st
a
n
ce

 (
M

)

100°C

Heater Step 1
Heater Step 2
Heater Step 3

00:00:00 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00
Time (s)

0.4

0.6

0.8

1.0

1.2

1.4

R
e
si

st
a
n
ce

 (
M

)

200°C

Heater Step 4
Heater Step 5
Heater Step 6

00:00:00 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00
Time (s)

105

106

107

R
e
si

st
a
n
ce

 (
)

100°C

320°C

200°C

Figure 67: Gas Resistance collected in the �$2 environment

5.5.1 Training and Test set

The only way to know how well a model will generalize to new cases is to try it out in other instances.

The best solution to do it is splitting the data into two sets (training and test set). The training set will be

65

CHAPTER 5. IMPLEMENTATION

used to train the model, while the test set will be helpful in the test procedure, indicating if the model is

good. So, after collecting the data for the classifiers, it is necessary to split the dataset into two sets. For

the creation of the test set was used the function train_test_split provided by the Scikit-learn library.

5.6 SVM Classifier

This subsection shows the implementation of the SVM classifier with the dataset collected earlier.

Figure 68 shows the data collected by one sensor of the BME688 Development Kit. The SVM classifier

developed was trained with this dataset since it is crucial to understand whether the sensor can distinguish

between two different types of gases, in this case, �$2 and ambient air. As can be seen in figure 68, the

data collected is not linearly separable, requiring a transformation of the dataset space (i.e., adding new

features to the dataset to create a 3D dataset)

100 150 200 250 300
Temperature (°C)

0

5

10

15

20

25

Re
sis

ta
nc

e
(M

)

Ambient air
CO2

Figure 68: BME688 resistance in �$2 and ambient air

To implement the SVM classifier, first a Pipeline containing a PolynomialFeatures was created, followed

by a LinearSVC. The first method creates a new feature (/ = - ·.) that will turn the nonlinear dataset into
a linear one (Figure 70 shows the new dataset). The LinearSVC finds the best hyperplane that separates

the two classes presented in the dataset (ambient air and �$2). This hyperplane is also represented in

figure 70. The training process of the SVM classifier is shown in code 6 and its result is represented in

figure 69, which is a 2D representation of figure 70.

Listing 6: SVM Classifier

1 polynomial_svm_clf = Pipeline ([

2 (”poly_features”, PolynomialFeatures(degree=2, interaction_only=True, include_bias=False)),

↩→ # add column z=x*y -> (x, y, z)

3 (”svm_clf”, LinearSVC(C=5, loss=”hinge”))

4])

66

CHAPTER 5. IMPLEMENTATION

5 polynomial_svm_clf.fit(X_train, y_train)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Temperature

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
sis

ta
nc

e

Ambient air
CO2

Figure 69: Linear SVM classifier using Polynomial features

The blue function presented in figure 70 corresponds to the mapping function used to transform the

old dataset into the new one.

Tem
perature

2

1

0

1

2

3 Resist
ance

2
1

0
1

2
3 T

e
m

p
e
ra

tu
re

G

a
s

R
e
si

st
a
n
ce

5.0
2.5

0.0

2.5

5.0

7.5

CO2

Ambient air

Figure 70: Linear SVM classifier using polynomial features (3D visualization)

As can be seen, the interception between the mapping function and the hyperplane corresponds to

the classifier presented in figure 69, responsible for separating the two classes: (�$2) and Ambient air.

One aspect mentioned before was the evaluation of machine learning model performance. In the case

of the SVM classifier, the evaluation method chosen was accuracy. The implementation of this metric

is represented in code 7, and its result was around 0.67. The accuracy was calculated in the test set

mention earlier (20% of total dataset).

Listing 7: SVM Classifier Accuracy

67

CHAPTER 5. IMPLEMENTATION

1 # SVM Classifier Accuracy

2 y_pred = polynomial_svm_clf.predict(X_test)

3 print(”SVM Classifier Accuracy:”, end=” ”)

4 print(accuracy_score(y_test, y_pred))

The performance of the resulting model has a very low accuracy due to the scale difference between

resistance values for different temperatures (heater steps). An alternative to solve this problem is to remove

the temperature as an input parameter of the model, thus making it entirely dependent on the resistance

value of the sensor. Figure 71 illustrates resistance values at a temperature of 320ºC, where a vertical

line can be identified to separate the data into two distinct classes.

60 80 100 120 140 160
Resistance (k)

Ambient air
CO2

Figure 71: BME688 resistance at 320ºC for �$2 and ambient air

By training a classifier with 80% of the data shown in figure 71 it is possible to train a model with

an accuracy equal to 1 that finds a hyperplane (in the case of a 1-dimensional dataset, the hyperplane

corresponds to a point) that separates the two gas. Figure 72 shows the SVM classifier model result with

one sensor as input.

0.0 0.2 0.4 0.6 0.8 1.0
Resistance

Ambient air
CO2

Figure 72: SVM classifier with one sensor resistance as input

68

CHAPTER 5. IMPLEMENTATION

5.7 Decision Tree Classifier

The decision tree classifier implementation will be performed over the same dataset used by the

SVM classifier presented in the subsection 5.6. The decision tree training process was done using the

DecisionTreeClassifier function provided by the Scikit-learn library, where code 8 shows the training process

implementation of the decision tree classifier.

Listing 8: Decison Tree Classifier

1 tree_clf = DecisionTreeClassifier(max_depth=6)

2 tree_clf.fit(X_train, y_train)

In the decision tree classifier implementation, the max_depth parameter was set to 6. This choice

resulted from comparing several graphs created from training some decision tree models with different

values for the max_depth parameter. Figure 73 represents two decision tree classifiers that are not the

best option to separate the two classes presented in the dataset (�$2 and ambient air).

0 50 100 150 200 250 300 350
Heater Step (°C)

10

5

0

5

10

15

20

25

30

Re
sis

ta
nc

e
(M

)

Ambient air
CO2

(a) Decision tree with max_depth parameter equal

to 2

0 50 100 150 200 250 300 350
Heater Step (°C)

10

5

0

5

10

15

20

25

30

Re
sis

ta
nc

e
(M

)

Ambient air
CO2

(b) Decision tree with max_depth parameter equal

to 8

Figure 73: Decision trees with max_depth parameter different from 6

Figure 73b, which represents the decision tree classifier with the parameter max_depth equal to 8,

is overfitting the data, whereas figure 73a is underfitting, leading to the best solution for a classifier the

max_depth parameter set to 6 (figure 74a). This classifier is characterized by a tree of conditions that is

represented in figure 74b. After the training process of the decision tree classifier, the model accuracy

calculation was performed using the training dataset (20%). The evaluation result was 1, indicating that

the classifier, whose input parameters are the internal resistance of the sensor and the corresponding

operating temperature, can distinguish between a �$2 sample and an ambient air sample.

69

CHAPTER 5. IMPLEMENTATION

0 50 100 150 200 250 300 350
Heater Step (°C)

10

5

0

5

10

15

20

25

30

Re
sis

ta
nc

e
(M

)

Ambient air
CO2

(a) Decision tree with max_depth parameter equal to 6

Resistance <= 0.092
gini = 0.5

samples = 480
value = [233, 247]

class = CO2

gini = 0.0
samples = 87
value = [87, 0]

class = ambient air

True

Heater Step <= 260.0
gini = 0.467

samples = 393
value = [146, 247]

class = CO2

False

Resistance <= 0.677
gini = 0.5

samples = 297
value = [146, 151]

class = CO2

gini = 0.0
samples = 96
value = [0, 96]
class = CO2

gini = 0.0
samples = 72
value = [72, 0]

class = ambient air

Heater Step <= 150.0
gini = 0.441

samples = 225
value = [74, 151]

class = CO2

Resistance <= 9.424
gini = 0.499

samples = 143
value = [74, 69]

class = ambient air

gini = 0.0
samples = 82
value = [0, 82]
class = CO2

gini = 0.0
samples = 74
value = [74, 0]

class = ambient air

gini = 0.0
samples = 69
value = [0, 69]
class = CO2

(b) Tree of conditions for

�$2 detection

Figure 74: Decision Tree classifier for �$2 detection with 3 temperatures

Just as done for the SVM classifier, it is also possible to train a decision tree model with only a sensor

resistance as input. This approach was applied in the case of the SVM classifier to increase its accuracy.

However, in the case of the decision tree, the reason for implementing this technique is to reduce the

costs and resources needed to run the model. Figure 75 show the tree of conditions resulted from training

a decision tree with 80% of the resistances instances at 320ºC.

Resistance <= 92946.484
gini = 0.5

samples = 48
value = [24, 24]

class = ambient air

gini = 0.0
samples = 24
value = [24, 0]

class = ambient air

True

gini = 0.0
samples = 24
value = [0, 24]
class = CO2

False

Figure 75: Tree of conditions for �$2 detection with 1 sensor

5.8 Random Forest Classifier

Despite the great accuracy results with the SVM and the decision tree classifier, two random forest

classifiers were also developed for�$2 detection. The Random Forest classifiers implementation is based

on the bagging method to mitigate the risk of overfitting. Code 9 trains a group of three decision tree

classifiers (i.e., random forest classifier) using an ensemble learning approach.

70

CHAPTER 5. IMPLEMENTATION

Listing 9: Random Forest Classifier

1 # Bagging

2 bag_clf = BaggingClassifier (

3 DecisionTreeClassifier(max_leaf_nodes=6),

4 n_estimators=3, max_samples=1.0, bootstrap=True, n_jobs=-1

5)

6 bag_clf.fit(X_train, y_train)

The resulting classifiers are represented in figure 76, and it is possible to see that those models are

quite good at separating the ambient air from �$2.

0 50 100 150 200 250 300 350
Heater Step (°C)

10

5

0

5

10

15

20

25

30

Re
sis

ta
nc

e
(M

)

Ambient air
CO2

(a) Random forest with 3 temperatures

60 80 100 120 140 160
Resistance (k)

Ambient air
CO2

(b) Random forest with 1 sensor

Figure 76: Random classifiers for �$2 detection

Following the training of the random forest classifiers, the subsequent phase involves assessing their

accuracy using the test dataset, which constitutes 20% of the overall dataset. The resulting evaluation

yielded a value of 1 for both models, signifying their proficiency in distinguishing between �$2 and

ambient air instances. For the model with the resistance of a sensor as an input parameter, two of the

condition trees that make up its random forest are shown in figure 77.

71

CHAPTER 5. IMPLEMENTATION

Resistance <= 92946.484
gini = 0.497

samples = 29
value = [26, 22]

class = Ambient Air

gini = 0.0
samples = 14
value = [26, 0]

class = Ambient Air

True

gini = 0.0
samples = 15
value = [0, 22]
class = CO2

False

(a) Decision tree nº1 with 1 sensor

Resistance <= 94246.004
gini = 0.469

samples = 29
value = [30, 18]

class = Ambient Air

gini = 0.0
samples = 17
value = [30, 0]

class = Ambient Air

True

gini = 0.0
samples = 12
value = [0, 18]
class = CO2

False

(b) Decision tree nº2 with 1 sensor

Figure 77: Two of the three classifiers that make up the random forest with 1 sensor resistance as input

Since the accuracy of a random forest increases with the number of decision trees, all implemented

random forest models are composed of three decision trees. This number is not too large since the project

aims to study ML models for systems with scarce resources.

5.9 Classifiers Tests and Results

The main difference between a regressor and a classifier is that regression algorithms are used to

predict continuous values, such as age, size, etc., and classifiers are used to categorize discrete values,

such as True or False, one or zero. As a result, evaluating a classifier is different from evaluating a

regressor. This subchapter will show all the performance measures executed in the classifiers developed

in this dissertation (SVM, Decision Tree, Random Forest).

5.9.1 Accuracy

Table 4 displays the accuracy scores obtained by the classifiers during evaluation with the test dataset.

The results indicate that all classifiers performed similarly, except the SVM classifier that utilized 3 tem-

peratures as input, which displayed inferior performance.

Table 4: Classifier’s Accuracy

Classifiers Accuracy

SVM with 3 temperatures 0.67

Decision Tree with 3 temperatures 1

Random Forest with 3 temperatures 1

SVM with 1 sensor 1

Decision Tree with 1 sensor 1

Random Forest with 1 sensor 1

72

CHAPTER 5. IMPLEMENTATION

This method of evaluating the performance of a classifier can sometimes mislead the user. For

example, in a dataset of photos built by only 5% of photos with dogs, the probability of a classifier trained

to indicate that the sample received as input is another animal is 95%. This example shows that accuracy

is not advised to some classifiers, especially when they are trained in skewed datasets (datasets with

some classes much more frequent than others) [15].

5.9.2 Confusion matrix

As was explained in the first chapters, another way to evaluate a classifier is by analyzing the confusion

matrix of its model. Figures 78a, 78b and 78a demonstrate the confusion matrices resulted from all

classifiers with temperature and resistance as input parameters previously implemented.

Normal
Air

Normal
Air

CO2

CO2

Actual

Predicted

True Negative False Positive

False Negative True Positive

29 24

4918

Total instances

120

(a) SVM confusion matrix

Normal
Air

Normal
Air

CO2

CO2

Actual

Predicted

True Negative False Positive

False Negative True Positive

67 0

530

Total instances

120

(b) Decision Tree confusion matrix

Figure 78: Confusion matrices of the classifiers with 3 temperatures as input

Normal
Air

Normal
Air

CO2

CO2

Actual

Predicted

True Negative False Positive

False Negative True Positive

67 0

530

Total instances

120

(a) Random Forest confusion matrix

Figure 78: Confusion matrices of 3 temperature classifiers

The first row of each confusion matrix represents the non-�$2 instances (negative class), and the

second row shows the�$2 instances. In the non-�$2 row, the cell to the left shows the number of points

correctly classified as non-�$2. The cell to the right shows the number of non-�$2 instances classified

as �$2. The classifier that performs the worst classification of non-�$2 data is the SVM since it has the

higher value of False Positives points of all classifiers. This model has a higher value of False Negative

instances, further reinforcing the idea that it is the model with the lowest performance.

Regarding the classifiers with resistance as the only input parameter, the confusion matrix is the same

for all three, indicating a similar performance. The result is represented in figure 79, where it can be seen

73

CHAPTER 5. IMPLEMENTATION

that the dataset size is considerably smaller than the models incorporating 3 temperatures because this

particular dataset comprises only 20% of the instances recorded at a temperature of 320°C.

Normal
Air

Normal
Air

CO2

CO2

Actual

Predicted

True Negative False Positive

False Negative True Positive

6 0

60

Total instances

12

Figure 79: Confusion matrix of the classifiers with 1 sensor as input

5.9.3 Precision and Recall

There are several ways to evaluate a classifier, and two of them are precision and recall. Those metrics

calculations are represented in equations 24 and 25, respectively. These equations are also illustrated in

the theory chapter.

?A428B>= =
)%

)% + �% (24)

A420;; =
)%

)% + �# (25)

Table 5 shows the results from precision and recall calculations of SVM, Decision Tree, and Random

Forest Classifiers. In this table, it is possible to see that the model with the worst performance is the SVM

classifier with 3 temperatures.

Table 5: Classifier’s Precision/Recall

Classifiers Precision Recall

SVM with 3 temperatures 0.67 0.73

Decision Tree with 3 temperatures 1 1

Random Forest with 3 temperatures 1 1

SVM with 1 sensor 1 1

Decision Tree with 1 sensor 1 1

Random Forest with 1 sensor 1 1

5.9.4 ROC Curve

The receiver operating characteristic (ROC) curve is a frequently used tool for binary classifiers (which

have only two classes). The true positive rate (recall) and false positive rate are plotted on the ROC curve.

74

CHAPTER 5. IMPLEMENTATION

The ratio of negative events that are mistakenly labeled as positive is known as the FPR (false positive

rate). It equates to one less than the true negative rate (TNR). As a result, the ROC curve represents

sensitivity (recall) as a function of one less TNR [15]. Figure 80 shows the ROC curves of all classifiers

implemented in the previous chapter.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e(
Re

ca
ll)

SVM with 3 temp
Decision Tree with 3 temp
Random Forest with 3 temp
SVM with 1 sensor
Decision Tree with 1 sensor
Random Forest with 1 sensor

Figure 80: ROC Curves

The area under the curve (AUC) can be used to compare classifiers, and as can be seen, the SVM

classifier with 3 temperatures performs worst than the others since it has an AUC lower than the others.

5.9.5 Computational Complexity

During the development of an algorithm, it is crucial to always keep in mind the temporal and physical

cost it may occupy. In other words, it is necessary to establish a compromise between the space occupied

and the execution time of an algorithm or model. The Big $ notation is a mathematical notation that

describes the limiting behavior of a function when its arguments tend to infinity values [24]. Table 6 shows

the computation complexity for each classifier in the Big $ notation.

Table 6: Classifier’s Computation Complexity

Classifier Time Complexity Space Complexity

SVM $ (; · 3) $ (; · 3)
Decision Tree $ (;>6(=)) $ (<)

Random Forest (Three Classifiers) $ (: · ;>6(=)) $ (: ·<)

where ; corresponds to the number of support vectors in the SVM classifier, 3 the dimension of the

dataset, = the size of the dataset,< the node’s number and : the number of decision trees inside the

random forest. This notation is related to the running time of the models and not concerning the training

75

CHAPTER 5. IMPLEMENTATION

process, since one of the objectives of this dissertation is to study and select ML algorithms for resource-

scarce systems. Therefore, looking at the training models, it is possible to collect all the variables (; , 3 , =,

<, and :) necessary to choose which model presents the higher temporal and spatial complexity.

The number of support vectors in the SVM classifier with 3 temperatures is 261 (; = 261), and the
dimension is equal to 2 since the model has two inputs (Heater Step and Resistance). The SVM classifier

with 1 sensor has 6 support vectors (dataset with 1D dimension). The other variables have these values:

= = 600 for 2 inputs classifiers, = = 60 for classifiers with a 2D dataset,< = 2 for the decision trees with
1 sensor as input, and 6 for each decision tree with 3 temperatures as input, and finally : = 3 (random

forest with 3 decision trees). The resulted calculation is presented in the table 7.

Table 7: Classifier’s Computation Complexity result

Classifier Time Complexity Space Complexity

SVM with 3 temperatures $ (261 · 2 = 522) $ (261 · 2 = 522)
Decision Tree with 3 temperatures $ (;>6(600) = 2.83) $ (6)
Random Forest with 3 temperatures $ (3 · ;>6(600) = 8.49) $ (3 · 6 = 18)

SVM with 1 sensor $ (6 · 1 = 6) $ (6 · 1 = 6)
Decision Tree with 1 sensor $ (;>6(60) = 1.77) $ (1)
Random Forest with 1 sensor $ (3 · ;>6(60) = 5.33) $ (3 · 1 = 3)

The classifier with a time and space complexity lower is the decision tree model (1 input), unlike the

SVM (2 inputs), which has the most expensive cost.

5.10 Dataset for the Regressors

Instead of using classifiers to detect carbon dioxide, the following chapters will train and implement

regressors to predict the amount of methane (��4) in a given environment. This selection of different

gases (datasets) for both the classifiers and regressors was determined by the objective of this dissertation

to conduct a comprehensive study of the BME688 sensor’s performance across several gas types. To

the regressors train, it was collected a dataset with different concentrations of methane using the eight

BME688 sensors that come with the BME688 development kit. The setup used to measure several levels

of ��4 concentrations is represented in figures 81a and 81b.

76

CHAPTER 5. IMPLEMENTATION

Target Gas
Regulator

N2
Regulator

BME688 Kit
Chamber

(a) Setup used to collect the regressor’s

dataset

(b) Controlled environment to release the gas

Figure 81: Setup for the regressor’s dataset

Figure 81b shows the controlled environment where it was released several concentrations of��4, and

where the BME688 development kit was placed. The ��4 gas concentration released into the controlled

environment was managed by two flow regulators presented in the upper part of figure 81a. During this

collection process, a control gas was used as the reference point for all readings. The selected gas for

this purpose was #2, owing to its prevalence as the primary component of the Earth’s atmosphere, and

its low reactivity. One of the flow regulators was deployed to monitor the concentration of #2, while the

other regulated the concentration level of the target gas (��4). The range of concentrations chosen were

as follows: 0 ppm (0 % LEL), 4100 ppm (9.36 % LEL), 8200 ppm (18.64 % LEL), 12300 ppm (27.96 %

LEL), 16400 ppm (37.28 % LEL), 20500 ppm (46.6 % LEL), 24600 ppm (55.92 % LEL), 28700 ppm

(65.24 % LEL), 32800 ppm (74.56 % LEL), 36900 ppm (83.88 % LEL), and 41000 ppm (93.2 % LEL)

(LEL refers to Lower Explosive Limit). These values were decided because the maximum value of ��4
allowed to release into the controlled environment is 41000 ppm. Each concentration reading took about

7 minutes, resulting in a total of 77 minutes to collect the dataset needed for the regressors.

Following ��4 dataset collection, a thorough study was conducted to assess its behaviour with the

BME688 sensor. Figure 4 displays the relationship between concentration and internal resistance for a

randomly selected sensor (sensor number 5) from the BME688 development kit, observed during heater

step 9 (320 °C) at minute 5:53 (it allows the gas under study to settle inside the chamber). The figure 82

demonstrates the non-linear behavior of the sensor and the non-uniqueness of the internal resistance/-

concentration function. Consequently, it is challenging to accurately determine the ��4 concentration

77

CHAPTER 5. IMPLEMENTATION

based on individual resistance values.

0 10000 20000 30000 40000
Concentration (ppm)

100

200

300

400

500

600

Re
sis

ta
nc

e
(k

)

CH4
Sensor 5

Figure 82: Concentration/Resistance relation of sensor 5 at heater step 9

A potential approach to avoid the challenge of identifying the concentration of a gas sample based on

identical resistance values is to aggregate measurements obtained at different temperatures from a single

sensor. Figure 83 displays the results obtained from the last three heater steps for each temperature

point in the heater profile. Notably, the three graphs never intersect, indicating that the internal temper-

ature variation of the sensor only accelerates the response time of the sensor, and does not impact the

accuracy of concentration measurements. A logarithmic scale was adopted to facilitate visualization. This

phenomenon was also visible in the classifier dataset, since the resistance scale between temperatures

was too different.

0 10000 20000 30000 40000
Concentration (ppm)

105

106

107

108

Re
sis

ta
nc

e
(

)

CH4

Heater Step3
Heater Step 6
Heater Step 9

Figure 83: Concentration/Resistance relation of sensor 5 at heater step 3, 6 and 9

An alternative approach to addressing the issue of ambiguity is to combine data collected at a spe-

cific temperature (320°C, which has the highest sensitivity) from multiple BME688 sensors. Figure 84

illustrates the data acquired from the six BME688 sensors (Two of them had a much longer working time,

which led to different behaviors) in the development kit at heater step 9 at minute 5:53, where it is possible

78

CHAPTER 5. IMPLEMENTATION

to verify some crossing points. This characteristic can be used to address the ambiguity problem by using

multiple sensors to determine a unique ��4 concentration value based on the combination of different

sensors’ resistance.

0 10000 20000 30000 40000
Concentration (ppm)

100

200

300

400

500

600
Re

sis
ta

nc
e

(k
)

CH4

Sensor 0
Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5

Figure 84: Concentration/Resistance relation of 6 sensors at heater step 9

5.10.1 Training and Test set

The training and test dataset creation for the regressors was done the same way as for the classifiers.

The test set corresponds to 20% of the original dataset (sum of all concentrations), and the training set is

the remaining 80%. The test set will help the evaluation process of the model trained with the training set.

This division is frequent in machine learning, as it helps in the process of developing a model [17].

5.11 Artificial Neural Network (ANN)

This subsection will show several approaches to predict the ��4 concentration in a specific environ-

ment, using ANNs as the prediction model. The model that will serve as the basis for the various ANNs is

represented in figure 85, where it is possible to observe that the model input parameters are the internal

resistances of 6 BME688 sensors. Still, within this subsection, several models will also be developed

with different numbers of hidden layers, always having as input parameters 6 BME688 sensors. The

selection of neural networks as an algorithm for ��4 detection was based on the fact that, in general,

they have a reasonable execution time and complexity level, which makes their implementation relatively

easy in resource-constrained systems. To ensure the performance of the artificial neural networks (ANNs),

a normalization procedure was applied to the training dataset. This ensured that all input values fell within

the range of 0 and 1, thereby mitigating any issues related to scale sensitivity. Furthermore, an important

factor that was not depicted in figures 85 is that all neurons within the ANN were activated using the

rectified linear unit (ReLU) function.

79

CHAPTER 5. IMPLEMENTATION

X1

X2

X5

Input
Layer

G0

G1

G4

X7

Output
Layer

Y

X6G5

Figure 85: ANN with 6 sensors

Different types of ANNs were used in this approach, such as ANN without any hidden layer, with 1

hidden layer, 2 hidden layers, 3 hidden layers, and 4 hidden layers. Some ANNs used to predict the

concentration of ��4 are illustrated in figures 86a and 86b. The implementation of several ANNs was

intended to compare the performance of various machine learning models in the ��4 concentration

prediction process.

Hidden
Layer 1

X13

Output
Layer

Y

X1

X2

X5

Input
Layer

G0

G1

G4

X6G5

X7

X8

X11

X12

(a) ANN with 1 hidden layers

Hidden
Layer 1

X19

Output
Layer

Y

X1

X2

X5

Input
Layer

X6

X7

X8

X11

X12

Hidden
Layer 2

X13

X14

X17

X18

G0

G1

G4

G5

(b) ANN with 2 hidden layers

Figure 86: Different types of ANNs to predict ��4

To implement all these algorithms a deep learning API written in Python, and running on the top

of the machine learning platform TensorFlow, was used (Keras). This high-level API provides essential

abstractions and building blocks for developing and shipping machine learning solutions with high iteration

velocity. The code 10 demonstrates the model with 4 hidden layer implementation, responsible for de-

tecting various concentration levels of��4. In this implementation, it is possible to verify the presence of

4 hidden layers, and the activation functions used (ReLU function) to calculate the output of each neuron

in the ANN. This code was developed to promote the implementation of the two neural network models

illustrated in figure 86 since it is only necessary changing the number of hidden layers in the code to

80

CHAPTER 5. IMPLEMENTATION

obtain different models. The code also shows the compile method used to configure the model for the

training process and the fit method used to train the model for a fixed number of epochs (iterations on a

dataset). All these methods belong to the Keras API.

Listing 10: ANN with 4 hidden layers

1 class ANN(tf.keras.Model):

2

3 def __init__(self):

4 super().__init__()

5 self.inp = tf.keras.layers.Dense(units=6, input_shape=[6], use_bias=True, activation=”

↩→ relu”) # input layer

6 self.h1 = tf.keras.layers.Dense(units=6, input_shape=[6], use_bias=True, activation=”

↩→ relu”) # 1 hidden Layer

7 self.h2 = tf.keras.layers.Dense(units=6, input_shape=[6], use_bias=True, activation=”

↩→ relu”) # 2 hidden Layer

8 self.h3 = tf.keras.layers.Dense(units=6, input_shape=[6], use_bias=True, activation=”

↩→ relu”) # 3 hidden Layer

9 self.h4 = tf.keras.layers.Dense(units=6, input_shape=[6], use_bias=True, activation=”

↩→ relu”) # 4 hidden Layer

10

11 def call(self, inputs):

12 x = self.inp(inputs)

13 x = self.h1(x)

14 x = self.h2(x)

15 x = self.h3(x)

16 x = self.h4(x)

17 return self.out(x)

18

19 model = ANN()

20 model.compile(optimizer=”adam”, loss=”mean_squared_error”)

21 model.fit(X_train, y_train, epochs=1000)

The layers used in this implementation were the dense layers by Keras API, characterized by being

deeply connected neural network layers. The neurons in this type of layer receive the output of every

neuron of the preceding layer. This type of layers are commonly used in the artificial neural network world.

After training the various ANN models, it is necessary to evaluate their performance, allowing the

selection of which model is the best for predicting the concentration of ��4. The models’ performance

was calculated using the RMSE and AIC algorithms. Their implementation is represented in code 11. The

parameter in the AIC implementation will be different for each ANN, since this parameter will take as

a value the number of parameters of the model. In code 11, is equal to 217, which is the number of

parameters (weights + bias) that the ANN has with 4 hidden layers.

81

CHAPTER 5. IMPLEMENTATION

Listing 11: RMSE and AIC Implementation

1 y_pred = model(X_test)

2 rmse = np.sqrt(mean_squared_error(y_test, y_pred))

3 print(”RMSE : ”, rmse)

4

5 # AIC

6 K = 217

7 L = rmse

8 AIC = -2*np.log(L) + 2*K

9 print(”AIC : ”, AIC)

It is important to note that the training and test datasets correspond to the time range between 2

and 7 minutes (enough time for the sensor to react to different ��4 concentrations). During the training

process of the machine learning models (ANN) with the��4 dataset, the final two concentrations (41000

ppm and 36900 ppm) were excluded. This was because the ANOVA analysis revealed sensor saturation

for these concentrations, as evidenced by a p-value greater than 0.76 for the last three concentrations.

After training several ANNs, graphs were generated to depict the relationship between actual and

predicted values. Figures 87 and 88 illustrate this relationship for ANNs with 1 and 4 hidden layers,

respectively, alongside a linear regression line that indicates the model’s trend (a slope of 1 denotes an

ideal model).

0.0 0.2 0.4 0.6 0.8 1.0
Actual values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 v
al

ue
s

ANN
Slope: 0.988

Figure 87: ANN with 6 sensors and 1 hidden layer

82

CHAPTER 5. IMPLEMENTATION

0.0 0.2 0.4 0.6 0.8 1.0
Actual values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 v
al

ue
s

ANN
Slope: 1.045

Figure 88: ANN with 6 sensors and 4 hidden layers

5.12 Generalized Additive Models (GAM)

Python Generalized Additive Models (pyGam) is a Python library for fitting and analyzing generalized

additive models (GAMs). It is designed to make it easy to specify and fit GAMs in Python, providing several

tools to study the model’s results. This library provides several tools for evaluating the fit of a GAM, including

functions for computing residuals, predicted values, and computing models performance metrics such

as mean squared error and '2. These tools are supplied by the summary method in the class GAM. The

code 12 is responsible for the implementation of the GAM model in the��4 dataset collected previously.

The input space in this implementation is the same used in figure 85, which is characterized by having

all the input sensor’s values.

Listing 12: GAM Implementation

1 from BME688_Dataset import X_train, X_test, y_train, y_test, X_valid, y_valid

2 from pygam import LinearGAM, l, s

3

4 gam = LinearGAM(s(0) + s(1) + s(2) + s(3) + s(4) + s(5)).gridsearch(X_train, y_train)

5

6 print(gam.summary())

As can be seen, this implementation uses the LinearGAM class, which is a customized GAM class

version with the distribution and link parameters set to normal and identity, respectively (see more in [28]).

The distribution parameter was set to normal because the data collected to train this model presented

a normal distribution. The functional form of the LinearGAM class is built by 6 spline terms, each for a

unique feature (6 sensors resistance). Figure 89 shows the relation between actual and predicted values

for the GAM model.

83

CHAPTER 5. IMPLEMENTATION

0.0 0.2 0.4 0.6 0.8 1.0
Actual values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 v
al

ue
s

GAM
Slope: 1.031

Figure 89: GAM with 6 sensors

5.13 TensorFlow Lattice

As mentioned earlier in the theory chapter, TensorFlow provides tools to train Lattice-based machine

learning models. One of those tools is the lattice layer available in [31]. The code 13 shows the training

process implemented in the ��4 dataset used in previous subchapters with TensorFlow Lattice layers.

Listing 13: TensorFlow Lattice Implementation

1 lattice_sizes = [2, 2, 2, 2, 2, 2]

2

3 class TFL(tf.keras.Model):

4

5 def __init__(self):

6 super().__init__()

7 self.out = tfl.layers.Lattice(lattice_sizes=lattice_sizes, monotonicities=[”none”, ”none

↩→ ”, ”none”, ”none”, ”none”, ”none”], output_min=0.0, output_max=1.0)

8

9 def call(self, inputs):

10 return self.out(inputs)

11

12 model = TFL()

13

14 model.compile(optimizer=”adam”, loss=”mean_squared_error”)

15 model.fit(X_train, y_train, epochs=1000)

In this implementation, it is possible to see that the model is built with one layer, characterized by a

null monotonicity for all the input sensor’s values. The monotonicity specifies if the output (concentration

level) should increase/decrease for the inputs (figure 83 show that relation between concentration and

84

CHAPTER 5. IMPLEMENTATION

resistance is non-monotonic). The resulted lattice-based ML model has the shape of a 6-dimensional

hypercube, whose orthographic projection is shown in figure 90.

Figure 90: Six-dimensional hypercube with orthographic projection (based on [1])

This model has 64 parameters since it is built with ten features (The timestamp, the eight sensor’s

resistance, and the heater step). The number 64 results from the operation 26. Figure 91 shows the

relation between actual and predicted values for the lattice model.

0.0 0.2 0.4 0.6 0.8 1.0
Actual values

0.3

0.4

0.5

0.6

0.7

Pr
ed

ict
ed

 v
al

ue
s

Lattice
Slope: 0.431

Figure 91: Lattice with 6 sensors

5.14 Regressors Tests and Results

After training all the regressors mentioned earlier, it is necessary to perform some performance tests on

these, to be able to select the model that best fits the user’s needs. Therefore, the next section will describe

all test procedures performed in the developed models and their respective results. As mentioned before,

after the dataset was collected, it was split into two subsets: The train set and the test set. The last one was

used to evaluate the model performance. Since the classifiers and regressors were trained on different

types of datasets (For classifiers, ambient air and �$2 samples were taken, while for regressors, ��4
samples in different concentration levels were taken), it does not make sense to execute the performance

comparison between classifiers and regressors.

85

CHAPTER 5. IMPLEMENTATION

After performing performance measurements and comparisons on the classifiers, it is necessary to

evaluate the regressors. Since classifiers and regressors behave differently, the methods used for the

regressors will be the RMSE and the AIC. Table 8 shows the RMSE and AIC scores, performed in the test

set, of all the regressors.

Table 8: Regressor’s performance results

Regressors RMSE AIC

ANNs

Zero hidden layers 0.189 101.320

One hidden layer 0.093 186.734

Two hidden layers 0.078 271.082

Three hidden layers 0.050 355.967

Four hidden layers 0.038 440.496

GAM 0.043 184952.834

Lattice-based Model 0.220 129.509

In addition to analyzing the results obtained from calculating the RMSE and AIC, it is necessary to

also study the real/predicted value relationship graphs, in order to select a model that is better capable

of detecting ��4. Figure 92 displays the results of the last three regressors from table 8.

0.0 0.2 0.4 0.6 0.8 1.0
Actual values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 v
al

ue
s

ANN
Slope: 1.045

(a) ANN with 4 hidden layers

0.0 0.2 0.4 0.6 0.8 1.0
Actual values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 v
al

ue
s

GAM
Slope: 1.031

(b) GAM

0.0 0.2 0.4 0.6 0.8 1.0
Actual values

0.3

0.4

0.5

0.6

0.7

Pr
ed

ict
ed

 v
al

ue
s

Lattice
Slope: 0.431

(c) Lattice

Figure 92: Different types of regressors to predict ��4

86

C
h
a
p
t
e
r

6
Conclusion

Machine learning (ML) models have become more widely used to increase the precision and effec-

tiveness of gas detection systems. Gas detection systems are constantly used in industry to monitor the

levels of gases potentially harmful to the atmosphere and humans.

One commonly used ML model in the gas detection field is the artificial neural network (ANN). These

ANNs can be trained with data collected from gas sensors to recognize patterns in some specific gases.

Once trained, these models can be used to analyze some systems. Another popular ML model used in gas

detection systems is the support vector machine (SVM). This technique is a supervised learning algorithm

that can be used for classification and regression. This model can also be trained with the help of gas

sensor data to identify specific gases. Other techniques can be used to improve the accuracy and efficiency

of gas detection systems, such as Random Forests, Decision Trees, or Lattice-based models. All these

models were implemented and study in this dissertation.

Throughout this dissertation, all these algorithms were trained using readout data from the BME688

gas sensor. The choice of this sensor was, according to BOSCH Sensortec, developed to perform reading

functions with low power consumption. This power consumption is one of the main objectives in the gas

detection field, since gas systems must be able to operate with little or no maintenance (i.e., they must

have a very significant lifetime). This goal should be considered, always keeping in mind the quality and

accuracy factor that the gas detection system has in monitoring the surrounding gases. This dissertation

has always sought to analyze the performance of various ML algorithms trained on low-power gas sensors.

One of the challenges in this dissertation was to understand the BME688 gas sensor to be able to

analyze its readings and thus train algorithms capable of detecting the presence of certain gases. The

first approach of this dissertation was to develop a classifier that could distinguish two types of gases,

followed by the development and study of regressors responsible for predicting the concentration level of

87

CHAPTER 6. CONCLUSION

a specific gas. In the end, each model was evaluated regarding its performance, allowing the selection of

the model which best suited for gas detection with this type of sensor. A crucial feature that allows the

collection of distinct responses from very similar gases was combining the response of several BME688

sensors. In other words, the presence of several BME688 sensors allows the creation of a unique pattern

that characterizes a particular gas. Another important aspect to take away from all the work conducted is

the contribution of a heating profile in accelerating the response of the BME688 sensor. After studying the

BME688 sensor, the classifiers and regressors were trained to select the best model for gas detection.

Regarding the classifiers, according to the performance tests, the models with the best results were the

decision tree and random forest, while the regressors it was the ANN with 4 hidden layers.

6.1 Future Work

Within the scope of this dissertation, one of the future works that would be important to perform

corresponds to the exploration of more classifiers than those implemented. This work would allow studying

and selecting with more certainty the classifier that performs best when it comes to gas detection. The

same procedure should also be performed concerning the regressors. In this case, an interesting idea

could be to study a model that consists of the junction between a neural network with lattice-based models,

in which lattices would replace neurons in a neural network. The tests performed should be improved

to explore and study the runtime and the spatial cost of the models. One way to accomplish this would

be to implement the various models on various processors, followed by a detailed analysis of energy

consumption and time. Another aspect that would also be important to evaluate is another approach to the

choice of sensor used for the development of the models (exploring other sensor operating technologies

that could provide reduced power consumption or even better quality data collection).

88

References

[1] 6-cube - Wikipedia. url: https://en.wikipedia.org/wiki/6-cube (visited on 10/08/2022).

[2] S. Asiri. Machine Learning Classifiers. What is classification? | by Sidath Asiri | Towards Data

Science. url: https://towardsdatascience.com/machine-learning-classifiers-

a5cc4e1b0623 (visited on 10/11/2022).

[3] G. Brain. TensorFlow basics | TensorFlow Core. url: https://www.tensorflow.org/guide/

basics (visited on 10/09/2022).

[4] Components101. What is a Gas Sensor? Construction, Types & Working of Gas Sensors. 2021.

url: https://components101.com/articles/introduction-to-gas-sensors-types-

working-andapplications (visited on 06/06/2022).

[5] M. Developers. Matplotlib — Visualization with Python. url: https://matplotlib.org/ (visited

on 08/09/2022).

[6] N. Developers. NumPy documentation — NumPy v1.23 Manual. url: https://numpy.org/doc/

stable/ (visited on 10/09/2022).

[7] P. Developers. pandas - Python Data Analysis Library. url: https://pandas.pydata.org/

(visited on 08/09/2022).

[8] S.-L. Developers. Getting Started — scikit-learn 1.1.2 documentation. url: https://scikit-

learn.org/stable/getting_started.html (visited on 10/09/2022).

[9] S. Developers. Welcome to Spyder’s Documentation — Spyder 5 documentation. url: https:

//docs.spyder-ide.org/current/index.html (visited on 10/09/2022).

[10] E. Eichhammer. Qt Plotting Widget QCustomPlot - Introduction. 2022. url: https : / / www .

qcustomplot.com/index.php/introduction (visited on 10/06/2022).

[11] Espressif. SPI Master Driver - ESP32 - — ESP-IDF Programming Guide latest documentation. 2022.

url: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-

reference/peripherals/spi_master.html (visited on 10/09/2022).

89

https://en.wikipedia.org/wiki/6-cube
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://www.tensorflow.org/guide/basics
https://www.tensorflow.org/guide/basics
https://components101.com/articles/introduction-to-gas-sensors-types-working-and applications
https://components101.com/articles/introduction-to-gas-sensors-types-working-and applications
https://matplotlib.org/
https://numpy.org/doc/stable/
https://numpy.org/doc/stable/
https://pandas.pydata.org/
https://scikit-learn.org/stable/getting_started.html
https://scikit-learn.org/stable/getting_started.html
https://docs.spyder-ide.org/current/index.html
https://docs.spyder-ide.org/current/index.html
https://www.qcustomplot.com/index.php/introduction
https://www.qcustomplot.com/index.php/introduction
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/spi_master.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/spi_master.html

REFERENCES

[12] S. Feng, F. Farha, Q. Li, Y. Wan, Y. Xu, T. Zhang, and H. Ning. “Review on Smart Gas Sensing

Technology.” In: Sensors 2019, Vol. 19, Page 3760 19 (17 Aug. 2019), p. 3760. issn: 1424-

8220. doi: 10.3390/S19173760. url: https://www.mdpi.com/1424-8220/19/17/3760/

htmhttps://www.mdpi.com/1424-8220/19/17/3760.

[13] A. F. Gad and F. E. Jarmouni. Introduction to Deep Learning and Neural Networks with Python.

2021, pp. i–ii. doi: 10.1016/b978-0-323-90933-4.09993-9.

[14] J. B. Gomes, J. J. Rodrigues, R. A. Rabêlo, N. Kumar, and S. Kozlov. “IoT-Enabled Gas Sensors:

Technologies, Applications, and Opportunities.” In: Journal of Sensor and Actuator Networks 2019,

Vol. 8, Page 57 8 (4 Dec. 2019), p. 57. issn: 2224-2708. doi: 10.3390/JSAN8040057. url:

https://www.mdpi.com/2224-2708/8/4/57.

[15] A. Géron. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and

Techniques to Build Intelligent Systems. 2017. url: http://oreilly.com/safari.

[16] HYDROGEN | CAMEO Chemicals | NOAA. url: https : / / cameochemicals . noaa . gov /

chemical/8729 (visited on 04/05/2022).

[17] IBM. What are Neural Networks? | IBM. url: https://www.ibm.com/cloud/learn/neural-

networks (visited on 10/06/2022).

[18] javapoint. Artificial Neural Network Tutorial - Javatpoint. url: https://www.javatpoint.com/

artificial-neural-network (visited on 11/05/2022).

[19] L. Klibanov and P. Bold. Preliminary analysis of Bosch BME688 4-in-1 environmental sensor with AI.

2021. url: https://www.linkedin.com/pulse/preliminary-analysis-bosch-bme688-

4-in-1-sensor-ai-lev-klibanov (visited on 03/06/2022).

[20] R. Kwiatkowski. Gradient Descent Algorithm — a deep dive | by Robert Kwiatkowski | Towards Data

Science. 2021. url: https://towardsdatascience.com/gradient-descent-algorithm-

a-deep-dive-cf04e8115f21 (visited on 11/06/2022).

[21] K. LARSEN. GAM: The Predictive Modeling Silver Bullet | Stitch Fix Technology – Multithreaded.

2015. url: https://multithreaded.stitchfix.com/blog/2015/07/30/gam/ (visited on

11/06/2022).

[22] METHANE | CAMEO Chemicals | NOAA. url: https://cameochemicals.noaa.gov/chemical/

8823 (visited on 04/05/2022).

[23] Microsoft. Documentation for Visual Studio Code. url: https://code.visualstudio.com/docs

(visited on 10/09/2022).

90

https://doi.org/10.3390/S19173760
https://www.mdpi.com/1424-8220/19/17/3760/htm https://www.mdpi.com/1424-8220/19/17/3760
https://www.mdpi.com/1424-8220/19/17/3760/htm https://www.mdpi.com/1424-8220/19/17/3760
https://doi.org/10.1016/b978-0-323-90933-4.09993-9
https://doi.org/10.3390/JSAN8040057
https://www.mdpi.com/2224-2708/8/4/57
http://oreilly.com/safari
https://cameochemicals.noaa.gov/chemical/8729
https://cameochemicals.noaa.gov/chemical/8729
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://www.javatpoint.com/artificial-neural-network
https://www.javatpoint.com/artificial-neural-network
https://www.linkedin.com/pulse/preliminary-analysis-bosch-bme688-4-in-1-sensor-ai-lev-klibanov
https://www.linkedin.com/pulse/preliminary-analysis-bosch-bme688-4-in-1-sensor-ai-lev-klibanov
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://multithreaded.stitchfix.com/blog/2015/07/30/gam/
https://cameochemicals.noaa.gov/chemical/8823
https://cameochemicals.noaa.gov/chemical/8823
https://code.visualstudio.com/docs

REFERENCES

[24] Prashant. Computational Complexity of ML algorithms | by Prashant | Analytics Vidhya | Medium.

url: https://medium.com/analytics-vidhya/computational-complexity-of-ml-

algorithms-1bdc88af1c7a (visited on 11/10/2022).

[25] R. Pupale. Support Vector Machines(SVM) — An Overview | by Rushikesh Pupale | Towards

Data Science. 2018. url: https : / / towardsdatascience . com / https - medium - com -

pupalerushikesh-svm-f4b42800e989 (visited on 06/12/2022).

[26] B. Sensortec. BME688 Datasheet. 2022. url: https : / / www . bosch - sensortec . com /

media/boschsensortec/downloads/datasheets/bst-bme688-ds000.pdf (visited on

03/06/2022).

[27] B. Sensortec. GitHub - BoschSensortec/BME68x-Sensor-API: Common Sensor API for the BME680

and BME688 sensors. 2022. url: https://github.com/BoschSensortec/BME68x-Sensor-

API (visited on 10/06/2022).

[28] D. Servén. A Tour of pyGAM— pyGAM documentation. 2018. url: https://pygam.readthedocs.

io/en/latest/notebooks/tour_of_pygam.html (visited on 10/09/2022).

[29] TechBlog. Artificial Neural Network | Types | Feed Forward | Feedback | Structure | Perceptron

| Machine Learning | Applications - Tech Blog. 2021. url: https://msatechnosoft.in/

blog/artificial-neural-network-types-feed-forward-feedback-structure-

perceptron-machine-learning-applications/ (visited on 06/05/2022).

[30] TensorFlow. TensorFlow Lattice (TFL). url: https : / / www . tensorflow . org / lattice /

overview (visited on 10/05/2022).

[31] TensorFlow. tfl.layers.Lattice | TensorFlow Lattice. url: https://www.tensorflow.org/

lattice/api_docs/python/tfl/layers/Lattice (visited on 03/09/2022).

[32] I. F. USA. Operating principle Catalytic-type gas sensor. 2018. url: https://www.figarosensor.

com/technicalinfo/principle/catalytic-type.html (visited on 06/06/2022).

[33] I. F. USA. Operating principle Electrochemical-type gas sensor. 2018. url: https : / / www .

figarosensor.com/technicalinfo/principle/electrochemical-type.html (visited

on 03/06/2022).

[34] I. F. USA. Operating principle MOS-type gas sensor. 2018. url: https://www.figarosensor.

com/technicalinfo/principle/mos-type.html (visited on 06/06/2022).

[35] D. Wilimitis. The Kernel Trick in Support Vector Classification | by DrewWilimitis | Towards Data Sci-

ence. 2018. url: https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f

(visited on 10/07/2022).

91

https://medium.com/analytics-vidhya/computational-complexity-of-ml-algorithms-1bdc88af1c7a
https://medium.com/analytics-vidhya/computational-complexity-of-ml-algorithms-1bdc88af1c7a
https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989
https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme688-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme688-ds000.pdf
https://github.com/BoschSensortec/BME68x-Sensor-API
https://github.com/BoschSensortec/BME68x-Sensor-API
https://pygam.readthedocs.io/en/latest/notebooks/tour_of_pygam.html
https://pygam.readthedocs.io/en/latest/notebooks/tour_of_pygam.html
https://msatechnosoft.in/blog/artificial-neural-network-types-feed-forward-feedback-structure-perceptron-machine-learning-applications/
https://msatechnosoft.in/blog/artificial-neural-network-types-feed-forward-feedback-structure-perceptron-machine-learning-applications/
https://msatechnosoft.in/blog/artificial-neural-network-types-feed-forward-feedback-structure-perceptron-machine-learning-applications/
https://www.tensorflow.org/lattice/overview
https://www.tensorflow.org/lattice/overview
https://www.tensorflow.org/lattice/api_docs/python/tfl/layers/Lattice
https://www.tensorflow.org/lattice/api_docs/python/tfl/layers/Lattice
https://www.figarosensor.com/technicalinfo/principle/catalytic-type.html
https://www.figarosensor.com/technicalinfo/principle/catalytic-type.html
https://www.figarosensor.com/technicalinfo/principle/electrochemical-type.html
https://www.figarosensor.com/technicalinfo/principle/electrochemical-type.html
https://www.figarosensor.com/technicalinfo/principle/mos-type.html
https://www.figarosensor.com/technicalinfo/principle/mos-type.html
https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f

REFERENCES

[36] S. Yale. Linear Regression. url: http://www.stat.yale.edu/Courses/1997-98/101/

linreg.htm (visited on 10/06/2022).

[37] A. Zajic. Introduction to AIC — Akaike Information Criterion | by Alexandre Zajic | Towards Data

Science. 2019. url: https://towardsdatascience.com/introduction-to-aic-akaike-

information-criterion-9c9ba1c96ced (visited on 09/05/2022).

92

http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm
http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm
https://towardsdatascience.com/introduction-to-aic-akaike-information-criterion-9c9ba1c96ced
https://towardsdatascience.com/introduction-to-aic-akaike-information-criterion-9c9ba1c96ced

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Contextualization
	General Motivations
	Objective
	Methodology
	Dissertation Structure

	Literature Review
	Background on Environmental Gases
	Sensing Technologies
	Background on gas sensors
	MQ gas sensors
	Bosch BME688 gas sensor

	Machine learning applied to gas detection
	Selection Criteria
	Root Mean Square Error (RMSE)
	Akaike Information Criterion (AIC)

	Theory
	Training Models
	Linear Regression
	Gradient Descent
	Polynomial Regression
	Logistic Regression

	Classification
	Performance measures

	Machine Learning Models Background
	Support Vector Machine Classifier
	Decision Tree Classifier
	Ensemble Learning and Random Forests
	Artificial Neural Network (ANN)
	Generalized Additive Models (GAM)
	Lattice-based ML models

	System Specifications
	System Overview
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Hardware
	Software
	Tools
	Software Tools Used
	Software Architecture
	Software Class Diagrams
	Software Flowcharts
	Sequence Diagram

	Implementation
	BME688 Development Kit
	BME688 Graphical User Interface
	Data Structure
	BME688 Sensor Behavior
	Dataset for the Classifiers
	Training and Test set

	SVM Classifier
	Decision Tree Classifier
	Random Forest Classifier
	Classifiers Tests and Results
	Accuracy
	Confusion matrix
	Precision and Recall
	ROC Curve
	Computational Complexity

	Dataset for the Regressors
	Training and Test set

	Artificial Neural Network (ANN)
	Generalized Additive Models (GAM)
	TensorFlow Lattice
	Regressors Tests and Results

	Conclusion
	Future Work

	References

