
Ziad Kassam

Beyond Distributed Transactions

through Exactly-once Exchanges

Universidade do Minho
Escola de Engenharia

April 2024

Zi
ad

 K
as

sa
m

B
ey

o
n

d
 D

is
tr

ib
u

te
d

 T
ra

n
sa

ct
io

n
s

th
ro

u
g

h
 E

xa
ct

ly
-o

n
ce

 E
xc

h
a

n
g

e
s

M
in

ho
 |

 2
02

4
U

Programa de Doutoramento em Informática (MAP-i)
das Universidades do Minho, de Aveiro e do Porto

Universidade do Minho

2

Universidade do Minho
Escola de Engenharia

Ziad Kassam

Beyond Distributed Transactions
through Exactly-once Exchanges

Tese de Doutoramento
Programa de Doutoramento em Informática
das Universidades do Minho, de Aveiro e do Porto

Trabalho Efetuado sob a orientação de
Dr. Ali Shoker
e de
Prof. Paulo Sérgio Almeida

April 2024

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and

good practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Attribution 4.0 International

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.0) [1].

i

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://github.com/joaomlourenco/novathesis

Acknowledgements

I would like to begin by expressing my deepest appreciation to my two dedicated advisors, Ali Shoker and

Paulo Sérgio Almeida, who have played a pivotal role in my academic journey. I am immensely grateful

to them, who have consistently stood by my side, offering guidance, unwavering support, and remarkable

patience throughout these past years. Without their guidance, this thesis would not exist.

I extend my sincere thanks to INESC TEC for generously covering my tuition fees over the last two years

and for their support in handling papers submission payments.

I am grateful to my cousin Bassem Kheireddine, who was the initial inspiration for starting on this PhD jour-

ney. His unwavering assistance, along with his generous hospitality in providing me with accommodation,

has been a tremendous blessing.

I also want to acknowledge my colleague and dear friend, Houssam Yactine. From the first day, we have

started on this incredible journey together, experiencing both the highs and lows, offering each other unwa-

vering encouragement, and sharing countless memorable moments during our travels, accommodations,

meals, airport adventures, and more.

Last but certainly not least, I want to express my heartfelt gratitude to my family, father, mother, brothers

and sisters, for their continous support.

Above all, my profound thanks go to my wife, Wafaa, whose support, encouragement, patience, under-

standing, assistance, and love have been the cornerstones of my success. To my children, Majd and

Angela.

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do Minho.

,
(Place) (Date)

(Ziad A. Kassam)

iii

Braga 19 April 2024

Resumo

Além das Transações Distribuídas por meio de trocas exatamente uma vez

As aplicações modernas estão cada vez mais interligadas e distribuídas, sendo a sua semântica muitas

vezes garantida através de alguma forma de coordenação. Transações distribuídas e consenso podem

levar à indisponibilidade perante partições de rede e sofrer elevada latência em redes de grande escala.

Pat Helland, em “Life Beyond Distributed Transactions” propôs uma abordagem inspiradora, prometendo

escalabilidade. Mas ao assumir at-least-once, dificulta a escrita de aplicações, forçando a lidar com ques-

tões de idempotência. A semântica de exactly-once é desejável em geral, mas difícil de obter de maneira

correta e escalável. Abordagens correntes têm estado permanente relativo a cada peer, dificultando a

escalabilidade, ou fazem assunções temporais para a correção.

Esta tese, inicialmente motivada pela melhoria da aplicabilidade da visão de Helland, introduz o protocolo

Exon, que é simultaneamente 1) correto, garantindo exactly-once num modelo de sistema distribuído

assíncrono, sem assunções relativas a tempo para correção; 2) oblívio, sem armazenar permanentemente

estado relativo a um peer quando não existem mensagens pendentes para esse peer, tendo um inteiro

como único estado permanente; 3) eficiente, conforme demonstrado por uma biblioteca implementada

sobre UDP (Exon-lib) e respetiva avaliação, que mostrou desempenho quase igual a TCP em cenários

normais sem falhas e melhor desempenho sob perda de pacotes.

A técnica base do Exon é um novo protocolo de quatro passos por mensagem, baseado na criação de

slots únicos que dão a capacidade de consumir tokens únicos correspondentes, para garantir exactly-

once de um modo oblívio. O núcleo é aumentado com “soft half-connections” a nível do protocolo,

que são estabelecidas automaticamente quando necessário e descartadas com segurança, alcançando

desempenho através da fusão e encadeamento das mensagens do protocolo de base.

A tese também estende o Exon para permitir a obtenção de exactly-once quando, perante uma partição,

o destino não é alcançável e o nó remetente deseja suspender a execução. Isto é conseguido delegando

a responsabilidade para outro nó intermediário, e funciona mesmo que o destino fique não alcançável

com o envio já em curso. Finalmente, a tese apresenta um estudo de viabilidade de aplicações modernas

relevantes em vários domínios, incluindo reservas online, internet de veículos e middleware para mensa-

gens, para os quais Exon é um possível candidato, revisita a visão de Pat Helland assumindo o suporte

de Exon, e conclui com um estudo de caso detalhado sobre agregação de dados.

Palavras-chave Exactly-once, protocolo oblívio, fiabilidade, escalabilidade

iv

Abstract

Beyond Distributed Transactions through Exactly-once Exchanges

Modern applications are becoming increasingly interconnected and distributed. Their semantics are often

guaranteed through some form of coordination. Distributed transactions and consensus may lead to

unavailability under network partitions and suffer from high latency in wide area. Pat Helland, in “Life

Beyond Distributed Transactions” proposed an inspiring approach, promising to be highly scalable. But by

only counting on at-least-once messaging, it makes writing applications difficult, as the programmer has

to deal with non-idempotency. Exactly-once messaging semantics is desirable in general, but difficult to

achieve in a correct and scalable way. Current approaches need permanent peer-specific state, hindering

scalability, or make timing assumptions for correctness.

This thesis, initially motivated by improving the applicability of Helland’s vision, but going beyond it, intro-

duces the Exon messaging protocol, which is simultaneously 1) correct, ensuring exactly-once under an

asynchronous distributed system model, with no timing assumption for correctness; 2) oblivious, without

permanently storing peer-related state when no pending messages to the peer remain, having a single in-

teger as the only permanent state; 3) practically efficient, as demonstrated by an implemented lightweight

library over UDP (Exon-lib) and its evaluation, showing it to have minimal overhead over TCP in normal

fault-free scenarios and better performance under packet loss.

The core technique for Exon is a novel per-message four-way protocol, based on creating unique slots

that give the ability to consume corresponding unique tokens, to ensure oblivious exactly-once messaging.

The core is augmented with on-demand protocol-level “soft half-connections”, that are established when

needed and safely discarded, achieving performance through merging and pipelining the core protocol

messages.

The thesis also extends Exon to allow exactly-once to be obtained when, under a partition, there is no path

to the destination and the sending node wants to suspend for some time. This is achieved by delegating

the responsibility to another node, working even if the final destination becomes suddenly unreachable

while message sending was already in progress. Finally, the thesis presents feasibility studies of relevant

modern applications in various domains, including online booking, automotive andmessaging middleware,

for which Exon is a possible suitable candidate, revisits Pat Helland’s vision under Exon support, and

concludes by a detailed case study of data aggregation.

Keywords Exactly-once messaging, oblivious protocol, reliability, scalability

v

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Main Contributions . 3

1.3 Bibliographic Note . 4

2 Literature Review 6

2.1 Introduction . 7

2.2 Life Beyond Distributed Transactions . 8

2.2.1 Motivation . 8

2.2.2 Key Concepts of Pat Helland’s Model 10

2.3 Challenges with Message Delivery Semantics in Applications 14

2.3.1 Distributed Aggregation Applications 15

2.3.2 Edge Computing and Fog Networks . 15

2.3.3 Online Booking Distributed Systems . 16

2.3.4 Automotive Domain . 17

2.3.5 Messaging Support for Distributed Middleware 19

2.3.6 Achieving Reliability with Exactly-Once Delivery Semantics 19

2.4 Distributed Transactions and Consensus . 20

2.4.1 Distributed Transactions . 21

2.4.2 Consensus Protocols . 22

2.4.3 Challenges of Distributed Transactions and Consensus 23

2.5 Transport-level Protocols . 23

vi

2.5.1 TCP . 25

2.5.2 TCP Connection Recovery Solutions . 28

2.5.3 TCP Connection Fail-over Protocols . 30

2.5.4 UDP Based Protocols . 30

2.5.5 Logging in Message Delivery . 34

2.6 Message-oriented Middleware . 36

2.6.1 Apache Kafka . 36

2.6.2 ZeroMQ . 37

2.6.3 MQTT . 38

2.7 Oblivious Transport-level Messaging . 38

2.8 Discussion . 39

3 Exon Protocol 41

3.1 Introduction . 41

3.2 System Model . 42

3.3 Overview . 43

3.4 The Algorithm . 44

3.4.1 Notations and Definitions . 44

3.4.2 Messaging Steps . 46

3.4.3 The “periodically” in the protocol . 54

3.5 Delving into the Intuition behind Key Aspects . 56

3.5.1 Requesting Slots, and Envelopes on Standby 56

3.5.2 Incrementing Global Clock ck . 57

3.5.3 Closing Connection reqslots Message Loss 59

3.6 Advanced Properties . 60

3.6.1 Soft Half-connections . 60

3.6.2 Obliviousness . 61

3.7 Correctness Proofs . 65

3.7.1 At-most-once . 65

3.7.2 At-least-once . 67

4 Exon-lib: an Exactly-Once oblivious library for lightweight messaging 68

4.1 Introduction . 68

4.2 Overview . 68

4.3 Choice of Java for Implementation . 69

4.4 Understanding the API . 70

4.4.1 Why Use an API? . 70

4.4.2 API Overview . 70

vii

4.4.3 API Example . 71

4.4.4 Simplicity from a Developer’s Perspective 72

4.5 Node State . 73

4.5.1 Sender and Receiver Connections Maps 73

4.5.2 Half-connection Records . 73

4.6 Multi-Threaded Architecture . 74

4.6.1 Threads . 75

4.6.2 Message Types . 76

4.7 Flow Control . 77

4.8 Retransmission and Timeout . 79

4.8.1 Events . 80

4.9 Conclusion . 81

4.9.1 Architectural Complexity . 81

4.9.2 Learning and Growth . 82

4.9.3 Language Choice . 82

4.9.4 Remaining Challenges . 82

5 Exon Evaluation 83

5.1 Experimental Setup . 83

5.2 Evaluation Methodology . 83

5.3 Results . 85

5.3.1 Tolerance to Packet Loss . 85

5.3.2 Overhead under Normal Conditions . 87

5.4 Conclusion . 90

6 Partition Tolerance through Delegation 91

6.1 Motivation . 91

6.1.1 Messaging Protocols Limitations, Including Exon 92

6.2 Alternative approaches for achieving delegation 93

6.2.1 Extended API . 93

6.2.2 Modifying the Exon Distributed Protocol 93

6.2.3 Basic Exon Algorithm with Structured Messages 93

6.3 Extensible Exon Architecture . 94

6.4 Basic Delegation . 96

6.4.1 Possibility of dlv Oblivious Delegation 96

6.4.2 Impossibility of token Oblivious Delegation 97

6.4.3 Delegating Messages Scenarios - Messaging Steps 97

6.5 Avoiding Nesting Along Delegation Chains . 101

viii

6.6 Receiver-side Oblivious Delegation . 101

6.7 Discarding State at the Sender . 103

6.8 Summary . 104

7 Applications 106

7.1 Distributed Aggregation . 106

7.2 Pat Helland’s Vision using Exon . 107

7.2.1 Remembering Messages as State . 107

7.2.2 Activities: Managing State for Each Partner 108

7.2.3 Ensuring At-Most-Once Acceptance via Activities 109

7.2.4 Conclusion . 109

7.3 Enhancing Online Booking Distributed Systems with Exon 110

7.3.1 Introduction . 110

7.3.2 Challenges in Online Booking Distributed Systems 110

7.3.3 Partitioned State Systems . 111

7.4 Automotive Domain . 112

7.4.1 Challenges . 113

7.4.2 Addressing Challenges using Exon . 113

7.4.3 A Potential Problem with Exon . 114

7.5 Messaging Support for Distributed Middleware 115

7.5.1 Distributed Actor Systems . 115

7.5.2 Brokerless Messaging Middleware . 115

7.5.3 Broker-based Messaging Middleware 116

7.6 Conclusion . 116

8 Case study: Distributed Aggregation 118

8.1 Introduction . 119

8.2 Background and Related Works . 120

8.3 The Technique Adopted . 120

8.4 Evaluation . 121

8.4.1 Experimental Setup . 121

8.4.2 Convergence speed in a fault-free network 122

8.4.3 Convergence speed under loss and duplication 123

8.4.4 The impact of network partitions . 124

8.4.5 The messaging overhead . 125

8.5 Conclusion . 126

9 Conclusions 127

ix

9.1 Limitations . 127

9.2 Future Research Directions . 128

Bibliography 130

Appendices

A Full-Package Exon 138

x

List of Figures

1 E-commerce platform scenario that uses two distributed databases 9

2 Two-phase commit protocol failure scenario . 10

3 Two Layered Application . 11

4 Data for an Application Comprises Many Entities . 12

5 Entities interaction in an e-commerce model. 13

6 V2X Safety Message Dissemination System overview. [32] 18

7 The layers of the ISO/OSI model and their purposes in the ISO/IEC EN 14908 standard.

. [39] . 24

9 TCP packet received/lost uncertainty . 28

10 FT-TCP architecture [40] . 29

11 Zero RTT connection establishment with QUIC . 32

12 Multiplexing in QUIC, avoiding Head-of-Line Blocking. [55] 33

13 Fault-free communication scenario. 43

14 Exon step-by-step example for node A communicating with node B. 47

15 Assigns values to the S-record elements, calculates “n”, and sends a reqslots message. 48

16 . 49

17 Assigns values to the R-record elements, modifies the clocks, creates slots, and sends a

slots message. 50

18 Modifies the clocks, creates envelopes, creates a token from the envelopes, associates the

message “m” to it, and sends a token message. 52

19 Removes the slot, delivers “m”, and sends an ack message. 53

20 Removes the token. 53

21 Node A sending messages to node B . 60

22 Node A and node B exchanging messages . 60

23 Node A requesting slots from node B, telling it to remove slots below 𝑙=51 62

24 Node A requesting slots from node B, telling it to remove slots below 𝑙=53 63

xi

25 Exon-lib Architecture . 76

26 Message Types . 77

27 Flow-control, at the sender . 78

28 Flow-control, at the receiver . 79

29 Algorithm events . 80

30 One-way throughput under packet loss (Setting: RTT=10ms, Bandwidth=100 Mbps) . . . 85

31 RPC latency under packet loss (Setting: RTT=10ms, Bandwidth=100 Mbps) 86

32 RPC throughput under packet loss (Setting: RTT=10ms, Bandwidth=100 Mbps) 87

33 One-way throughput as bandwidth and RTT varies . 88

34 RPC throughput as bandwidth and RTT varies-log. scale 89

35 RPC Latency - same machine (Setting: RTT=0.04ms, Bandwidth=40 Gbps) 90

36 Delegating 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 . 98

37 Delegating token - One Forwarding Node. 99

38 Delegating token - Multiple Forwarding Nodes. 100

39 If an entity works with many partners, it will have many activities. These are one per partner. 108

40 Entities using Exon . 109

41 State-machine replication using consensus . 111

42 Partitioned state system . 112

43 V2X Domain. Source: [83] . 112

44 Vehicles forming a platoon. Source: [87] . 114

45 Convergence speed in fault-free scenario. 122

46 Estimated convergence speed under 20% message loss. 123

47 Root Mean Square Error under 10% network partition size and degree 10. 125

xii

List of Tables

1 Delivery semantics summary . 15

2 Estimated message’s header size of FU, DRG, PS, and two fault tolerant piggy-backing pat-

terns of PS. 125

xiii

List of Algorithms

1 Exon Algorithm . 45

2 The Extensible Exon . 95

3 The delegateConnection procedure added to the Exon algorithm 96

4 Avoiding Nesting Mechanism . 102

5 Receiver-side Oblivious Delegation Mechanism 102

6 Discarding State Mechanism . 104

7 Full-Package Exon . 138

xiv

List of Listings

4.1 Server.java . 71

4.2 Client.java . 72

xv

1

Introduction

As modern applications are becoming more networked and distributed, there is an increasing interest

in reliable messaging protocols to ensure data integrity, fault tolerance, scalability, and real-time respon-

siveness. Distributed systems aim to provide seamless operation in the face of network partitions and

varying conditions. However, achieving these goals is not easy, and traditional methods, such as dis-

tributed transactions, often struggle with the complexities of consistency and availability in the presence

of network partitions. This has proven to be a daunting task if not powered by a reliable communication

layer that provides the fundamental guarantees, as the exactly-once guarantee raised by Pat Helland in

his famous visionary paper “Life beyond distributed transactions: an apostate’s opinion” [2].

This thesis delves into the realms of messaging protocols, obliviousness, and scalability to address the

hurdles that have constrained the distributed systems. Through this exploration, we aim to shed light on

the path toward more efficient and reliable distributed computing, not only in alignment with visionary

ideals but also in practical applications that extend beyond their initial inspiration.

In this section, we lay the foundation for our motivation by examining the current landscape of distributed

computing and the challenges it presents, setting the stage for our thesis’s core objectives and contribu-

tions.

1.1 Motivation

In the evolving landscape of distributed systems, the need for achieving fault tolerance, scalability, and re-

liability is very important. Attaining reliability and consistency between nodes is primarily achieved through

the utilization of distributed transactions and consensus protocols. However, the use of distributed trans-

actions may clash with the principles of the CAP theorem [3]. Emphasizing strong consistency through

distributed transactions could compromise the system’s ability to handle network partitions and ensure

high availability, which are essential aspects of many messaging systems designed to handle large-scale

data streams and real-time events.

1

CHAPTER 1. INTRODUCTION

To address the inherent limitations of distributed systems, Pat Helland, in his paper “Life beyond dis-

tributed transactions: an apostate’s opinion” [2], provides an approach, striving for “infinite scaling”, aim-

ing to tackle the traditional challenges in distributed systems. Pat Helland’s visionary solution introduces

the concept of entities, focusing on a single scope of serializability without transactions between different

entities. This approach relies on utilizing at-least-once messaging guarantees and message idempotency

at the application layer. While promising, this approach places a significant burden and complexities on

programmers, hindering the seamless realization of this visionary approach.

Exactly-once messaging semantics is desirable in general, but difficult to achieve in a correct and scalable

way. TCP often emerges as the preferred choice due to its perceived reliability, even in scenarios involving

message-oriented middleware, such as ZeroMQ, and inter-actor communication, exemplified by distributed

Erlang. However, TCP can fail with network issues, when the connection breaks, e.g. when switching

between networks, necessitating the implementation of at-least-once and at-most-once delivery guarantees

within the middleware layer above TCP. Moreover, the utilization of TCP in highly concurrent systems

can lead to performance degradation. This degradation stems from the demand for TCP connection

multiplexing, which can result in head-of-line blocking issues, hindering smooth data transmission.

Traditionally, achieving exactly-once messaging has involved the indefinite storage of messages sequence

numbers for each source-destination pair. While this approach provides reliability, it falls short in terms

of scalability, presenting a limitation in modern, large-scale distributed systems.

Therefore, “Exon” protocol was developed to enable oblivious exactly-once messaging, that achieves

exactly-once messaging while maintaining an oblivious approach and preserving efficiency. Obliviousness,

refers to the protocol’s ability to function effectively without requiring continuous awareness (knowledge,

information) of each source-destination combination, specially in the context of infinite scaling systems.

The novelty of Exon is simultaneously achieving EO delivery, obliviousness, efficiency and no dependence

on timing assumptions for correctness.

Moreover, we strive to alleviate the burden on programmers, freeing them from the complexities of ensur-

ing reliable communication in their applications, and keep them concentrated on the core functionalities

of their distributed applications.

Exon algorithm then entailed by the development of an open-source library named “Exon-lib”, designed

to implement the Exon protocol over UDP, offering a generic API that serves as a foundational building

block for distributed applications. Subsequently, the empirical evaluation of Exon demonstrates signifi-

cant improvements (40%) in throughput and latency under packet loss, while maintaining a negligible (8%)

overhead over TCP in healthy networks.

Furthermore, the extended forwarding feature of Exon has emerged as a key addition to a broader applica-

bility. Exon has been extended to enable exactly-once delivery even in scenarios where there is no direct

2

1.2. MAIN CONTRIBUTIONS

path to the destination due to network partitions or when the sending node needs to temporarily pause or

disable its network connection. This achievement is realized by transferring the responsibility to another

node, which continues to function, even if the ultimate destination unexpectedly becomes unreachable

during an ongoing message transmission.

The thesis wraps up with feasibility study of relevant modern applications in various domains, including

data aggregation, Pat Helland’s vision under Exon support, online booking, automotive systems, and

messaging middlewares, all of which offer interesting avenues for future exploration and validation. At the

end, the thesis concludes with a detailed case study of data aggregation.

1.2 Main Contributions

In this section, I present the main contributions of this thesis:

The first major contribution, presented in Chapter 3, and published in [4], is a novel general-purpose pro-

tocol, referred to as Exon, was developed to enable oblivious exactly-once messaging. This protocol stands

out due to its distinctive feature of remaining oblivious throughout its operation, ensuring that no connec-

tion information about the nodes communicated with is retained after closing connection. Moreover, this

protocol has undergone rigorous analysis, demonstrating its robust safety and liveness properties, solidi-

fying its capability to achieve exactly-once message delivery within distributed systems.

A second major contribution, presented in Chapters 4 and 5, and published in [4], encompasses the

development and empirical evaluation of an open-source library named “Exon-lib”, designed to imple-

ment the Exon protocol over UDP, offering a generic API that serves as a foundational building block for

distributed applications. Its multithreaded design architecture ensures efficient thread management, facil-

itating concurrent and responsive message processing in distributed systems. Furthermore, the inclusion

of sophisticated flow control mechanisms guarantee the orderly transmission of messages, preventing

congestion and optimizing system performance. Additionally, Exon-lib incorporates robust retransmission

and timeout handling strategies, enhancing message reliability even in the presence of network disruptions

or delays. The abstract distributed algorithm of Exon just has “periodically” specified for these operations.

However, during the implementation, careful consideration was given to the management of retransmis-

sions and timeouts. This carefully designed library empowers developers with a potent toolset to create

robust and high-performing distributed applications.

Subsequently, the experiments and empirical evaluations carried out in various network settings offer

valuable insights into Exon’s performance and effectiveness. These results assure its practical efficiency,

where it can replace TCP as a transport layer in terms of efficiency, while retaining the good theoretical

3

CHAPTER 1. INTRODUCTION

properties. Notably, the empirical evaluation we conducted shows up to 40% throughput and latency im-

provements over TCP under packet loss, while posing minimal 8% overhead compared to TCP in stable

networks.

The third major contribution is an extension of the Exon protocol, enabling nodes to delegate messages to

intermediary nodes when direct communication with the final destination is temporarily interrupted due to

network partitions. This capability allows for greater resilience in the face of network disruptions, enabling

nodes and applications to suspend their operations gracefully during such partitions, confident that their

messages will eventually reach their intended destinations once connectivity is restored. Detailed insights

into this essential extension can be found in Chapter 6.

The fourth contribution, presented in Chapters 7 and 8, involves a feasibility study on relevant applica-

tions, and Data Aggregation case study. Chapter 7 revolves about the effective resolution of communica-

tion failures at the communication layer and the seamless integration of Exon into several applications.

This approach significantly reduces the overhead associated with employing alternative fault tolerance

techniques at higher system layers. Applications that benefits from this advancement include: Data Ag-

gregation, that benefit from Exon to achieve reliability for protocols like PS and DRG. Pat Helland’s Vision

using Exon, offering “infinite scaling” and exactly-once messaging without application-level idempotency.

In Online Booking Distributed Systems, Exon achieves message reliability between servers as data par-

titioned in order to enhance resilience and reduces errors. In the Automotive Domain, Exon’s extended

forwarding ensures information delivery in the presence of intermittent connectivity. Messaging Support

for Distributed Middleware, including Distributed Actor Systems and Brokerless/Broker-based Messaging

Middleware, Exon elevates reliability and efficiency.

Chapter 8 revolves about a detailed examination of Data Aggregation performance and the impact of

Exon on protocol performance. This contribution is thoroughly discussed in Chapter 8 and has been

published [5], providing valuable insights into the practical implications of Exon in the context of data

aggregation.

1.3 Bibliographic Note

Parts of the work of this thesis have already been published in international conferences and workshops.

A comprehensive list of these publications is provided below:

Kassam, Z., Almeida, P. S., & Shoker, A. (2022, July).

Exon: An Oblivious Exactly-Once Messaging Protocol.

In 2022 International Conference on Computer Communications and Networks (ICCCN) (pp. 1-10).

IEEE. [4]

4

1.3. BIBLIOGRAPHIC NOTE

This paper presents Exon, an innovative oblivious exactly-once messaging protocol and a lightweight li-

brary implementation. It addresses the limitations of TCP in highly concurrent systems by ensuring both

at-least-once and at-most-once delivery at the middleware layer. Exon achieves this through a unique

per-message four-way protocol and on-demand protocol-level “soft half-connections” leading to improved

performance, correctness, and obliviousness. Empirical evaluations show significant enhancements in

throughput and latency under packet loss, with minimal overhead compared to TCP in stable network

conditions.

Kassam, Z., Shoker, A., Almeida, P. S., & Baquero, C. (2017, October).

Aggregation protocols in light of reliable communication.

In 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA) (pp. 1-4).

IEEE. [5]

This paper examines aggregation protocols deployed in ad-hoc networks, where communication is often

disrupted due to wireless technology. The study focuses on how these protocols behave when faced with

communication failures like message loss, duplication, and network partitions. The research demonstrates

that addressing communication failures at the communication layer through a reliable communication ap-

proach reduces the need for complex fault tolerance techniques at higher layers, while maintaining protocol

accuracy and simplicity. The empirical study reveals that various aggregation protocols have trade-offs,

and there is no universally suitable protocol for all scenarios.

Shoker, A., Kassam, Z., Almeida, P. S., & Baquero, C. (2016, December).

Life Beyond Distributed Transactions on the Edge.

In Proceedings of the 1st Workshop on Middleware for Edge Clouds & Cloudlets (pp. 1-3) [6].

The paper discusses Edge/Fog Computing, an extension of Cloud Computing designed to shift some of

the workload from cloud data centers closer to the network’s edge. While this model holds promise, there’s

a need for clearer foundations and ongoing exploration of new ideas. The paper references Pat Helland’s

vision presented in “Life beyond Distributed Transactions: an Apostate’s Opinion”, which proposes an

approach to building highly scalable applications by treating data state as independent “Entities” with

separate serialization scopes. This allows efficient local transactions within an entity but limits transactions

involving different entities. The paper explores how Helland’s vision aligns with the Edge Computing Model

in terms of scalability, applications, and assumptions, while also discussing potential challenges.

5

2

Literature Review

In the realm of distributed computing, where interconnected networks power the backbone of modern

applications and services, state-of-the-art technologies continue to shape the way data is exchanged,

transactions are managed, and consensus is achieved. In the middle of these advancements, however,

there exist many challenges related to message delivery semantics. This chapter not only delves into

the cutting-edge advancements that have redefined the foundations of distributed systems, but also ac-

knowledges the difficulties posed by ensuring reliable message delivery. Thus, it offers a comprehensive

glimpse into the current state-of-the-art in this dynamic field.

We begin by Pat Helland’s vision in his paper “Life beyond Distributed Transactions: an Apostate’s Opin-

ion” [2], discovering how it addresses the difficulties posed by traditional approaches and offers a new

path towards enhanced distributed computing paradigms. This initiates an exploration into the complex

realm of Message Delivery Semantics in Applications, shedding light on the challenges that underlie their

implementation.

Next, we transition to exploring the solutions for ensuring reliable communication through the utilization

of various tools and techniques. Our exploration starts by delving into the complications of Distributed

Transactions. Subsequently, we delve into the foundational basics of communication within distributed

environments – the transport-level protocols. These protocols lay the essential groundwork for data trans-

mission among nodes.

Then, we delve into the realm of message-oriented middleware, a crucial component in facilitating asyn-

chronous communication between distributed applications. By providing a decoupled and flexible ap-

proach to message exchange. Message-oriented middleware has revolutionized the scalability and re-

silience of distributed architectures.

Finally, we delve into the concept of oblivious transport-level messaging, a paradigm that focuses on nodes’

ability to interact without maintaining connection-specific information about the nodes they communicate

with.

As we dive deeper into these emerging techniques, we gain valuable insights into how the landscape of

6

2.1. INTRODUCTION

distributed systems continues to evolve to meet the demands of an interconnected world.

With each section contributing a unique perspective on the advancements and challenges in distributed

computing, this chapter offers a comprehensive exploration of the state-of-the-art technologies that drive

the next generation of distributed systems. Through a deeper understanding of these innovations, we can

forge a path toward building more robust, adaptable, and secure distributed solutions that stand at the

forefront of modern computing.

2.1 Introduction

In the ongoing work of achieving almost-infinite scalable distributed systems, one brilliant idea has emerged

in the form of a position paper by Pat Helland [2]. This paper not only encapsulates an idea for scalable

systems, but also encourage us to rethink the foundations of exactly-once (EO) message delivery which

serves as a cornerstone of reliable communication in scalable distributed systems.

The work on reliable communications, to provide both exactly-once (EO) delivery and good performance,

date back to the early days of the ARPA network [7]. In particular, the research on the transport layer [8,

9] lead to the foundation of the Internet Protocol (IP) that results in two mainstream transport protocols:

TCP and UDP. UDP [10] is a basic datagram protocol that provides no reliability guarantees, but stands

as a communication primitive to support building other protocols as needed. The TCP protocol [11] is a

stream- and connection-based protocol that provides reliability guarantees like exactly-once, FIFO ordering,

and performance (e.g., congestion and flow control). This makes it the protocol of choice for most reliable

IP applications today.

While these protocols stand as cornerstones of network communication today, it is worth noting that their

development was significantly influenced by the OSI (Open Systems Interconnection) model [12], a con-

ceptual framework formulated by the International Organization for Standardization (ISO). The OSI model,

characterized by its division into seven distinct layers, each serving specific functions in the communication

process, introduced a structured approach to understanding and standardizing network protocols.

The Transport layer, occupying a pivotal position in this model, resides above the Network layer and as-

sumes responsibility for end-to-end communication and data flow management. As such, the evolution of

the Transport layer, encompassing the research and design of protocols like TCP and UDP, played a vital

role in shaping the dependable and high-performance networking applications we rely on today.

Nevertheless, the EO (Exactly-Once message delivery) guarantees in TCP only hold within a connec-

tion/session; when the connection fails (likely to occur in current WAN environments and long-lived

communications), it either allows for message loss or duplication, as Belsnes [13] shows for any single-

message communication. Attiya et al. [14] proved that when state information is not saved between

7

CHAPTER 2. LITERATURE REVIEW

incarnations, the problem is solvable if and only if the network is FIFO—which is not the case for most

networks. Therefore, to ensure EO, it is necessary to retain inter-connection information, e.g., at an upper

layer. This requires using a “wrapper” fail-over protocol [15–18]. The alternative is to have the architects

and developers develop some ad-hoc strategy to cope with the cumbersome delivery uncertainty of the

last segment(s)— that may have been lost. (Note that modifying TCP is not desired due to standardization

and compatibility reasons).

In this chapter, we delve through the solutions devised to achieve the goal of exactly-once message delivery.

Each of these solutions is a response to the need of ensuring reliable communication while maintaining a

lightweight nature, in line with the expansive distributed systems envisioned by Pat Helland. Despite this

exploration, it becomes evident that no single solution offers a perfect resolution to the challenge. It was

precisely this realization that gives me the motivation to delve into this realm, forming the foundation for

my thesis — an exploration into ensuring reliable message delivery within the constraints of lightweight

protocols that harmonize seamlessly with the visionary almost-infinite distributed systems envisioned by

Pat Helland.

2.2 Life Beyond Distributed Transactions

2.2.1 Motivation

Numerous decades have been dedicated to the study of distributed transactions, encompassing protocols

like 2PC [19], Paxos [20], and various quorum methodologies. These protocols create the perception

among developers that they can attain global serializability in their applications. However, in practice,

developers often refrain from implementing extensive and scalable applications that rely on distributed

transactions. This is primarily due to the significant performance overhead [21] and inherent fragility as-

sociated with such transactions, leading many projects to flounder.

Cloud Computing [22] is an attractive computing model due to its pay-per-use business approach and

seamless resource management. However, the surge in data from sources like the Internet of Things

and social networks has challenged the model, leading to bottlenecks at cloud data centers [23]. To

address this, Edge Computing [24] was introduced, aiming to alleviate cloud center load by performing

data storage and computation closer to users. This offers benefits like improved user experience, load

balancing, enhanced security, and optimized network usage [25]. Despite challenges in the distributed

systems, will delve into them in the subsequent section, a model proposed by Pat Helland [2] suggests

using separate data abstractions called “entities” to enable scalable and distributed applications. This

approach aligns well with Edge Computing [6], emphasizing local data access and efficient communication

channels.

8

2.2. LIFE BEYOND DISTRIBUTED TRANSACTIONS

UPDATE Orders
SET Status = 4
WHERE Id = 123

UPDATE Inventory
SET Quantity = Quantity - 3
WHERE ProductId = 456

Sales
Database

Stock
Database

The App

Figure 1: E-commerce platform scenario that uses two distributed databases

2.2.1.1 Distributed Systems Limitations

The increasing scale and complexity of modern distributed systems have exposed several significant limi-

tations and challenges associated with traditional distributed transactions. One of the primary challenges

lies in the geographic distribution of data and services, where nodes may span different regions, data cen-

ters, or even continents. As data and services are replicated and distributed to improve performance and

fault tolerance, ensuring transactional consistency across these geographically dispersed nodes becomes

a massive task [26][27].

Another critical limitation of distributed transactions is their impact on system performance and scala-

bility [28]. As the number of participating nodes increases, the time required to coordinate and reach

a consensus on a transaction’s outcome also grows. The two-phase commit protocol, a widely used

technique for coordinating distributed transactions, introduces latency and overhead that can significantly

degrade system performance, leading to bottlenecks and reduced throughput [29].

Furthermore, distributed transactions are susceptible to various failure scenarios, such as network par-

titions, node failures, or software errors. In the face of such failures, ensuring the correctness and re-

coverability of distributed transactions becomes challenging. The need for error handling and recovery

mechanisms further complicates the already complicated design of distributed systems.

2.2.1.2 Distributed Transactions Failures

We will explore the challenges of distributed transactions in the context of two databases: sales and stock.

Imagine a scenario where an e-commerce platform uses distributed transactions to maintain consistency

between these two databases during the process of fulfilling an order.

When a customer places an order, as shown in figure 1, the system needs to deduct the purchased items

from the stock database and record the sale in the sales database. In a non-distributed system, this would

be a straightforward process since both operations can be executed atomically within a single transaction.

However, in a distributed environment where the sales and stock databases reside on different nodes or

even in different data centers, ensuring the correctness and recoverability of this transaction becomes

much more complicated.

9

CHAPTER 2. LITERATURE REVIEW

feedback Sales
Database

feedback Stock
Database

prepare

prepare

commit

commit

The App

Figure 2: Two-phase commit protocol failure scenario

Several failure scenarios can occur during this process, such as network partition, node failure, and soft-

ware errors. To address these challenges, developers need to implement extensive error handling and

recovery mechanisms. They may need to design compensating transactions that can revert changes in

case of failure. However, even with careful planning and recovery mechanisms, distributed transactions

can introduce additional complexities, impacting system performance and potentially causing bottlenecks.

A notable issue with distributed transactions arises when utilizing the two-phase commit protocol. This

protocol, while intended to ensure transactional consistency across distributed nodes, becomes a bot-

tleneck in large-scale systems due to its reliance on synchronous coordination and blocking behavior.

Figure 2 illustrates how the two-phase commit protocol can fail.

In light of these limitations and challenges, Pat Helland, in his paper “Life beyond distributed transactions:

an apostate’s opinion”, proposes an innovative approach to tackle the complexities of distributed systems

while maintaining data consistency and availability. The paper introduces novel concepts and techniques

that empower developers to design and implement distributed systems that are more resilient, scalable,

and efficient.

2.2.2 Key Concepts of Pat Helland’s Model

Helland introduces a principle which is alternative to the traditional ACID (Atomicity, Consistency, Isola-

tion, Durability) properties provided by distributed transactions. In distributed systems, maintaining strict

consistency at all times may hinder scalability and availability. Instead, it advocates for a more relaxed

consistency model where availability and partition tolerance are prioritized over immediate consistency.

This is in line with the idea of the CAP theorem [3], which emphasizes that it is often impossible to si-

multaneously achieve strong consistency, high availability, and partition tolerance in a distributed system.

According to the CAP theorem [3], when a distributed system experiences a network partition (P), you are

faced with a trade-off between maintaining either consistency (C) or availability (A).

10

2.2. LIFE BEYOND DISTRIBUTED TRANSACTIONS

Delving into Pat Helland’s concepts, we uncover fundamental assumptions and key opinions that underpin

distributed computing. These principles serve as the foundation for his ideas.

Assumptions:

• Scalable Applications with Layered Architecture: Helland assumes that scalable applications are

structured with at least two layers, as shown in figure 3. The lower layer manages the scaling

process and provides a scale-agnostic programming abstraction to the upper layer. This abstraction

allows the upper layer to write application code without concerning itself with scaling issues.

Scale Agnostic Code

Scale Agnostic API

Scale Aware Code

Application

Figure 3: Two Layered Application

• Transaction Scopes: Helland addresses the challenges of achieving strongly consistent transactions

over distributed systems and acknowledges that applications may often span multiple separate

transaction scopes. This means that atomic transactions cannot cross entity boundaries, and

developers must work within the scope of a single entity for each transaction.

• At-Least-Once Messaging: Helland highlights that most applications use at-least-once messaging,

where messages can be delivered redundantly, leading to message retries and out-of-order delivery.

As a consequence, applications must be designed to tolerate and handle such behaviors.

Opinions:

• Entities: The article advocates for scalable applications to utilize uniquely identified entities, each

with a unique identifier or key, as shown in figure 4, representing disjoint sets of data. Atomic

transactions should be limited to a single entity, and ensuring transactional consistency across

multiple entities is not a viable approach in scalable designs.

11

CHAPTER 2. LITERATURE REVIEW

entity

Application

entity

entity

entity

key = "ABC"

key = "WPB"

key = "QLA"

key = "UNB"

Figure 4: Data for an Application Comprises Many Entities

• Activities: Messages in messaging systems should be addressed to entities using their entity keys.

Entities should manage per-partner state using activities, enabling fine-grained workflow-style so-

lutions in a scalable environment. Activities store the state needed for handling messaging and

loosely coupled agreements between entities.

2.2.2.1 Entities and Activities in Action: Sales and Stock Management Example

The process of handling distributed transactions is different from the traditional approaches like the two-

phase commit protocol. Let us explore how this works in the context of the sales and stock example.

• Entities represent collections of named (keyed) data that can be atomically updated within the entity

itself but not across multiple entities simultaneously. In our example, the SalesDB and StockDB

databases would each be an entity, containing sales transactions and products information, re-

spectively.

• Activities keep track of messages between entities. In our example, the activity acts as intermediary

that manage the exchange of messages between the application and the SalesDB and StockDB

entities.

As shown in figure 5, the process begins when a customer places an order through the application. The

application initiates the sale process and the stock update activities. The stock update activity passes the

ProductId and the Quantity to the StockDB, and the sale process activity passes the order Id to the SalesDB.

These passings are done asynchronously, without waiting for one another, which stands in contrast to the

traditional Two-Phase Commit (2PC) protocol. In the entities and activities model, the application initiates

both the stock update activity and the sale process activity independently. This decoupled approach

enables each activity to handle its responsibilities autonomously and asynchronously, without the need

for synchronous coordination or waiting for the other activity’s completion. This eliminates the blocking

12

2.2. LIFE BEYOND DISTRIBUTED TRANSACTIONS

SalesDB

The App

data

UPDATE Orders
SET Status = 4
WHERE Id = 123

UPDATE Inventory
SET Quantity = Quantity - 3
WHERE ProductId = 456

in out

data

in out 1 2

1

StockDB

data

in out2

Figure 5: Entities interaction in an e-commerce model.

behavior and communication overhead often associated with traditional distributed transactions, thus

enabling a more adaptable and resilient architecture for real-time data processing and messaging systems.

However, a notable challenge in this decoupled approach is ensuring the reliable delivery of messages

between these activities, as the absence of synchronous communication introduces the potential for mes-

sage loss or duplication.

2.2.2.2 Idempotent Messaging

Messages exchanged between the application, the SalesDB and the StockDB, are designed to be idempo-

tent. If message delivery fails, the activities can safely retry the messages without causing inconsistencies.

The critical point to emphasize is that the idempotence mechanism for messages is currently not available.

«The scale-agnostic (higher-level) portion of the application must implement mechanisms

to ensure that the incoming message is idempotent. This is not essential to the nature of

the problem. Duplicate elimination could certainly be built into the scale-aware parts of the

application. So far, this is not yet available.» Pat Helland [2].

Consequently, developers of scale-agnostic applications are left with the task of implementing mecha-

nisms to ensure the idempotency of incoming messages, which adds complexity and demands careful

consideration to maintain data integrity and correctness.

In the following section, I will explore the challenges associated with message delivery semantics in appli-

cations and the pivotal role they play in shaping the reliability and consistency of distributed systems.

13

CHAPTER 2. LITERATURE REVIEW

2.3 Challenges with Message Delivery Semantics in

Applications

Message delivery semantics are important concepts in distributed systems and messaging protocols. They

define how messages are delivered between components or nodes in a system. There are three common

types of message delivery semantics: at-least-once, at-most-once, and exactly-once.

At-Least-Once delivery semantic ensures that a message will be delivered to the recipient at least

once. This means that the sender will keep retrying to send the message until it receives a confirmation

from the receiver that the message has been successfully received. If no acknowledgment is received,

the sender will continue retransmitting the message until it receives confirmation. However, there is a

possibility that a message might be delivered multiple times.

At-Most-Once delivery semantic, the message is delivered either once or not at all. If there is a

communication error or disruption, consumers might not receive the message, resulting in non-delivery.

This approach is well-suited for applications that prioritize high throughput and low latency, given its fire-

and-forget nature.

The relatively low cost and implementation overhead make at-most-once delivery appealing. However, its

drawback lies in potential data loss, which can be a concern for data-sensitive applications.

Exactly-Once delivery semantic ensures that a message is delivered exactly once to the recipient. It

means that the message will not be lost, and it will not be duplicated during the delivery process. Achieving

exactly-once delivery is more complex compared to the other two semantics and often requires additional

mechanisms to guarantee it.

One of its key strengths lies in its ability to guarantee both the successful delivery of messages and the

prevention of duplicates, ensuring data integrity and accuracy. By eliminating the possibility of message

duplication, it ensures correctness and consistency in message processing, making it highly suitable for

critical applications.

However, the implementation of exactly-once delivery can be more challenging compared to the other

delivery semantics, as it demands additional mechanisms to track and manage message state. These

complexities can make it harder to set up and maintain. Moreover, the pursuit of guaranteeing exactly-once

delivery might come at the cost of higher overhead, potentially impacting system performance compared

to simpler delivery models. Table 1 summarizes the behavior of all delivery semantics.

In the following, I will discuss the implications of the need for reliable message delivery semantics on

certain applications.

14

2.3. CHALLENGES WITH MESSAGE DELIVERY SEMANTICS IN APPLICATIONS

at-most-once at-least-once exactly-once
duplicates No Yes No
data loss Yes No No

Table 1: Delivery semantics summary

2.3.1 Distributed Aggregation Applications

Distributed data aggregation stands as a crucial task, enabling the decentralized determination of mean-

ingful global properties, subsequently utilized to guide the operation of diverse applications. The outcomes

are achieved through distributed computation of functions such as COUNT, SUM, and AVERAGE. Some

application examples deal with the determination of the network size, total storage capacity, average load,

majorities and many others [30].

Aggregation protocols allow for distributed lightweight computations deployed on ad-hoc networks in a

peer-to-peer fashion. The utilization of wireless technology in such networks, however, introduces chal-

lenges, as the communication medium is frequently unpredictable. As a result, these protocols become

vulnerable to issues concerning accuracy, consistency, and performance.

Message duplication or loss disrupts information flow between nodes, leading to inconsistencies: dupli-

cation inflates data importance, while loss causes inaccurate results due to missing input, blasting the

protocol’s reliability [5].

In chapter 8 , I will delve into this topic in details. Through experiments, I will demonstrate how message

loss and duplication can significantly impact the overall correctness of aggregation protocols. By examining

real-world scenarios, we will uncover the implications of these challenges on the practical deployment of

aggregation protocols in various contexts.

2.3.2 Edge Computing and Fog Networks

Edge/Fog Computing [24] emerges as an expansion of the Cloud Computing [22] paradigm, primarily

designed to carry a portion of the workload from centralized cloud data centers and distribute it towards

the network’s edge, closer to the clients.

However, message delivery semantics, specifically message loss or duplication, can impact the perfor-

mance of edge computing applications in the contexts of IoT, Smart Cities, Industrial Automation, Health-

care, Military Operations, etc., potentially leading to critical scenarios:

• Internet of Things (IoT): In IoT applications, devices often generate streams of data that require

timely processing. If message loss occurs due to unreliable communication links at the edge,

vital sensor data might not reach the central system. This could lead to incomplete situational

awareness, that may hinder the decision-making processes. For instance, in a smart home security

15

CHAPTER 2. LITERATURE REVIEW

system, lost messages frommotion sensors could result in delayed alerts about potential intrusions,

compromising the safety of residents.

• Smart Cities: Smart city systems rely on real-time data from various sources to manage traffic,

waste, and energy. In scenarios where message duplication happens, redundant data could over-

whelm processing systems, leading to inaccurate insights and resource allocation. For example,

if traffic sensor data is duplicated, traffic management algorithms might misinterpret congestion

levels, causing incorrect adjustments to traffic signal timings and increase congestion issues.

• Industrial Automation: In industrial automation, edge computing is pivotal for maintaining efficient

operations. If messages are duplicated, it could trigger redundant actions, causing equipment to

operate incorrectly or out of sync. Conversely, if messages are lost, critical information for real-

time control might not reach the edge controllers, leading to production delays or even equipment

damage. For instance, in a manufacturing plant, duplicated messages to robotic arms could cause

them to perform unnecessary actions, potentially damaging products or machinery.

• Healthcare: In healthcare applications, edge computing aids in monitoring patients’ vital signs and

providing timely interventions. Message loss could lead to delayed alerts about critical conditions,

threatening patients’ health. For instance, if messages from wearable heart rate monitors are lost,

medical staff might not be alerted promptly to dangerous spikes or drops in heart rate, potentially

resulting in severe consequences such as jeopardizing patient lives.

• Military Operations: In the context of military operations, the consequences of unreliable message

delivery can be particularly terrible. When orchestrating crucial tasks like missile launches, any

message loss or duplication could lead to catastrophic outcomes. If launch command messages

are lost, delayed, or duplicated, it could result in the incorrect launch of missiles, compromising

strategic objectives and causing unintended collateral damage.

In all these scenarios and not limited to, unreliable message delivery can result in catastrophic outcomes.

Loss of critical data due to message loss could lead to delayed responses or incorrect decisions. On the

other hand, message duplication can create confusion and waste computational resources, potentially

causing unintended actions. Ensuring robust and reliable communication protocols at the edge becomes

essential to prevent these scenarios and maintain the integrity and efficiency of these applications.

2.3.3 Online Booking Distributed Systems

2.3.3.1 Introduction

Online booking distributed systems, such as those for flights or hotel rooms, play a pivotal role within the

travel and hospitality industry. These systems facilitate real-time booking, availability checks, and reserva-

tions through a network of brokers, agents, and service providers. However, coordinating various aspects

16

2.3. CHALLENGES WITH MESSAGE DELIVERY SEMANTICS IN APPLICATIONS

of these systems can be complex and challenging, often resulting in issues like duplicate bookings, data

inconsistency, and inefficient communication. These challenges not only disrupt the operational efficiency

of the system but can also have significant implications for the business model, potentially leading to fi-

nancial losses and liabilities.

Online booking distributed systems, spanning reservations for flights, hotel rooms, and more, serve as

the lifeblood of the travel and hospitality industry. These systems offer customers the convenience of

real-time bookings, but behind the scenes, they grapple with a multitude of complex challenges.

The following are the key challenges faced by these systems:

• Distributed Architecture: Online booking systems inherently possess a distributed architecture in-

volving multiple brokers, agents, and data sources. Coordinating communication and ensuring

data consistency across these distributed components can present significant challenges.

• Message Reliability: Booking systems necessitate reliable message delivery to prevent issues like

double bookings or reservation conflicts. Ensuring that messages are processed exactly once is

crucial for maintaining system integrity.

• Scalability: With an increasing number of bookings and users, scalability becomes a critical con-

cern. Systems must scale to handle a high volume of requests without compromising performance.

• Fault Tolerance: To maintain uninterrupted service, online booking systems must exhibit resilience

to network failures, encompassing challenges such as message loss, duplication, and network

partitions.

In the realm of booking systems for flights or hotels, the consequences of message unreliability can signifi-

cantly affect businesses. Such unreliability can result in customer dissatisfaction, leading to inconvenience

and potential revenue loss as customers seek alternatives. The operational impact includes resource

wastage and added complexities in handling duplicate messages. Moreover, the legal and liability risks

arising from incorrect bookings can result in financial losses and damage to the business’s reputation. In

a competitive industry, unreliable messaging can shrink a business’s competitive advantage. To mitigate

these consequences and ensure the integrity of operations, robust and dependable messaging protocols

are of high importance in this domain.

2.3.4 Automotive Domain

The V2X (Vehicle-to-Everything) [31] domain in the automotive industry stands at the forefront of innovation,

bringing about significant transformation. With the rising integration of connectivity and autonomous

capabilities in vehicles, the V2X landscape encompasses a sophisticated system where vehicles engage

in interactions that extend beyond their own kind.

17

CHAPTER 2. LITERATURE REVIEW

Figure 6: V2X Safety Message Dissemination System overview. [32]

In this domain, vehicles not only communicate with each other (V2V) but also establish connections with

various entities. These encompass interactions with infrastructure (V2I), facilitating seamless communi-

cation between vehicles and the surrounding road systems (Road Side Units). Furthermore, V2X involves

engagement with pedestrians (V2P), ensuring safety and efficient movement in shared spaces. Even inter-

actions with cyclists and the broader transportation network (V2N) are encompassed within this complex

web of connectivity and communication.

Message delivery semantics, specifically message loss or duplication, can impact the performance of V2X

(Vehicle-to-Everything) applications, potentially leading to critical scenarios:

• V2V (Vehicle-to-Vehicle) Communication: Message loss or duplication in V2V communication can

have dangerous consequences. For instance, in a scenario where a message about sudden braking

or an obstacle ahead is lost, neighboring vehicles might not receive timely warnings, increasing the

risk of collisions. On the other hand, duplicated messages could lead to unnecessary actions,

causing confusion among drivers and potentially triggering accidents.

• V2I (Vehicle-to-Infrastructure) Communication: In V2I communication, where vehicles interact with

infrastructure like traffic lights and road side units, as we can see in figure 6, message loss could

result in vehicles being unaware of changing traffic conditions. This could lead to instances where

vehicles fail to receive information about traffic signal changes, potentially causing congestion or

even accidents. Message duplication could lead to redundant actions, such as unnecessary stops

at intersections.

• V2P (Vehicle-to-Pedestrian) Communication: In V2P interactions, lost messages could mean that

pedestrians do not receive warnings from nearby vehicles about their proximity. This could lead to

accidents, especially in situations where pedestrians are crossing the road. Conversely, message

duplication might cause pedestrians to misjudge the intentions of vehicles, leading to hesitation or

risky actions.

18

2.3. CHALLENGES WITH MESSAGE DELIVERY SEMANTICS IN APPLICATIONS

• V2N (Vehicle-to-Network) Communication: In V2N scenarios, where vehicles communicate with the

broader transportation network, message loss could affect the real-time traffic flow data collected

by vehicles. This could lead to inaccurate traffic predictions and inefficient route recommendations,

affecting overall traffic management. Duplicated messages might lead to misleading traffic data,

causing unnecessary changing paths and increased congestion.

Given the safety-critical nature of V2X applications, ensuring reliable communication protocol is crucial to

prevent these catastrophic scenarios and to maintain the integrity of the transportation ecosystem.

2.3.5 Messaging Support for Distributed Middleware

In the domain of distributed middleware, messaging support is of high importance for enabling efficient

and dependable communication.

Distributed actor systems, exemplified by technologies like Erlang and Akka, are well-suited for constructing

online applications with dynamically interacting entities, such as social networks, online games, and IoT

applications. These systems simplify design by mapping application objects onto lightweight actors that

encapsulate object state and logic, communicating asynchronously via messages. However, challenges

arise, including TCP stream multiplexing and Head-of-Line (HoL) blocking.

Brokerless messaging systems, exemplified by technologies like ZeroMQ and Nanomsg/NNG, employ TCP

as the transport layer protocol and aim to recover from temporary communication disruptions. However,

a challenge arises concerning the potential loss of queued messages upon disconnection.

Broker-based messaging middleware employs central intermediaries (brokers) to manage message rout-

ing, distribution, and coordination between producers and consumers. In contexts like IoT, systems like

MQTT have gained popularity for their efficiency and scalability. Recent developments seek to replace

traditional transport mechanisms like TLS+TCP with advanced alternatives like QUIC, as seen in MQTT

over QUIC [33].

Ensuring message reliability is paramount to prevent data loss, maintain system integrity, and deliver

consistent performance. In this evolving landscape, a robust and dependable messaging protocol is

crucial to ensure the seamless functioning of these diverse middleware approaches.

2.3.6 Achieving Reliability with Exactly-Once Delivery Semantics

Across an array of domains such as distributed aggregation, edge/fog computing, and the automotive sec-

tor, the assurance of reliability and accuracy in aggregated data and interactions is of high significance.

While messaging delivery semantics like at-most-once and at-least-once provide certain guarantees, they

also introduce vulnerabilities that can lead to inconsistencies and catastrophic scenarios. The potential for

message loss due to at-most-once semantics, as well as message duplication resulted from at-least-once

19

CHAPTER 2. LITERATURE REVIEW

semantics, holds the potential to disrupt critical operations and compromise safety.

To address these challenges, exactly-once message delivery semantics is the solution. By ensuring that

messages are neither lost nor duplicated, exactly-once semantics provide a crucial foundation for main-

taining data integrity and guaranteeing accurate aggregation results. In applications where precision,

reliability, and safety are crucial, transitioning to exactly-once message delivery becomes essential.

However, it is important to acknowledge that achieving a universally accessible exactly-once message de-

livery remains a complex challenge. The complications of distributed systems, varying network conditions,

and the need to handle failures can introduce complexities that hinder the implementation of exactly-once

semantics. Additionally, even when exactly-once delivery mechanisms are devised, they may come with

certain drawbacks. These include increased processing overhead, which can impact system performance,

as well as the challenges posed by the memory-limited or constrained devices, where the management

of state for tracking messages could strain available resources.

It is worth noting that even with non-constrained resource devices like vehicles, a unique challenge arises.

For instance, vehicles might intermittently disconnect and reconnect, even over longer intervals like weeks

or months. As a result, preserving complete communication histories with all previously connected vehi-

cles, which is needed to ensure non duplicating messages, becomes a notably complex endeavor.

Thus, while exactly-once message delivery offers a promising solution, its practical implementation de-

mands careful consideration of these challenges and trade-offs to strike the right balance between reliability

and performance.

In the subsequent sections, I will delve into the strategies and techniques aimed at realizing exactly-

once message delivery, however accompanied by trade-offs and additional challenges. Additionally, I will

explore situations in which ensuring exactly-once semantics could be challenging due to the limitations

and complexities.

2.4 Distributed Transactions and Consensus

A transaction is a logical unit of work that represents a sequence of operations performed on a database

or a system. It is an essential concept in database management systems and plays a crucial role in

maintaining data integrity and consistency [34].

Key Characteristics of a Transaction:

• Atomicity: Atomicity ensures that a transaction is treated as a single, indivisible unit of work. Either

all the operations within the transaction are successfully completed, or none of them take effect.

If any operation fails or encounters an error, the entire transaction is rolled back, and the database

returns to its original state before the transaction started.

20

2.4. DISTRIBUTED TRANSACTIONS AND CONSENSUS

• Consistency: Consistency guarantees that a transaction brings the database from one consistent

state to another consistent state. It ensures that all database constraints, such as integrity rules

and data validations, are maintained throughout the transaction’s execution. In other words, a

transaction should preserve the overall correctness and validity of the data.

• Isolation: Isolation ensures that each transaction is isolated from the effects of other concurrent

transactions. Concurrent execution of multiple transactions can lead to various concurrency-related

issues, such as data inconsistency, lost updates, and dirty reads. Isolation mechanisms, like

locking or concurrency control algorithms, prevent interference between concurrent transactions,

maintaining data integrity.

• Durability: Durability guarantees that once a transaction commits and its changes are written to

the database, they will persist even in the event of subsequent failures, such as system crashes

or power outages. The changes made by committed transactions are considered permanent and

should survive any system or hardware failures.

Transactions are widely used in various applications, especially in database management systems, where

data integrity and consistency are critical. Transactions allow multiple operations to be grouped together,

ensuring data reliability and recoverability.

In addition to databases, transactions are also employed in other systems and domains, such as dis-

tributed systems, financial systems, e-commerce platforms, and more. They provide a reliable mecha-

nism for managing complex operations and ensuring the integrity of data and system state.

Distributed systems often involve multiple nodes or processes that need to coordinate and work together to

achieve a common goal. However, ensuring consistency and reliability in such systems can be challenging

due to factors like network failures, node failures, and concurrent updates. Distributed transactions and

consensus protocols are two fundamental concepts used to address these challenges and provide reliability

and correctness guarantees in distributed systems.

2.4.1 Distributed Transactions

A distributed transaction is a transaction that spans multiple nodes or processes in a distributed system.

It involves a set of operations that need to be executed atomically, ensuring either the success of all op-

erations or their complete rollback.

Key Concepts:

• ACID Properties: Distributed transactions aim to maintain ACID (Atomicity, Consistency, Isolation,

Durability) properties, similar to transactions in a single-node database. Atomicity guarantees that

either all operations within a transaction are successfully completed, or none of them take effect.

21

CHAPTER 2. LITERATURE REVIEW

Consistency ensures that the system remains in a valid state before and after the transaction.

Isolation provides concurrency control, ensuring that transactions do not interfere with each other.

Durability guarantees that the effects of a committed transaction persist even in the event of failures.

• Two-Phase Commit (2PC) [35]: Two-Phase Commit is a widely used protocol for coordinating dis-

tributed transactions. It involves a coordinator node that interacts with participant nodes to ensure

that all participants agree on committing or aborting the transaction. The protocol proceeds in

two phases: prepare phase and commit/abort phase. The coordinator communicates with par-

ticipants to determine if they can commit or need to abort the transaction. Once all participants

agree, the coordinator issues a commit command, and participants apply the transaction changes.

If any participant fails or disagrees during the process, the coordinator triggers an abort, ensuring

consistency.

2.4.2 Consensus Protocols

Consensus protocols enable a set of nodes in a distributed system to agree on a single value or decision,

even in the presence of failures or malicious behavior [36]. These protocols play a vital role in achieving

consistency and coordination among distributed nodes.

Main Consensus Protocols:

• Paxos [20]: Paxos is a widely known consensus protocol that provides fault-tolerant consensus

in a distributed system. It uses a leader-based approach, where a single node acts as a leader

responsible for proposing values. The protocol proceeds through a series of phases, including

proposal, acceptance, and learning, to reach a consensus on a proposed value. Paxos can handle

failures and network partitions, ensuring safety and liveness properties.

• Raft [37]: Raft is another consensus protocol that simplifies the understanding and implementation

of consensus compared to Paxos. It follows a leader-based approach similar to Paxos but introduces

additional mechanisms like leader election, log replication, and safety properties to ensure fault-

tolerant consensus. Raft divides time into terms, and a leader is elected for each term to coordinate

the replication of log entries across the nodes.

• Practical Byzantine Fault Tolerance (PBFT) [38]: PBFT is a consensus protocol designed to tolerate

arbitrary faults, including Byzantine faults, where nodes can behave maliciously. It achieves con-

sensus through a series of message exchanges and relies on a threshold of correct nodes to make

progress. PBFT provides a high level of fault tolerance at the cost of increased message complexity

and communication overhead.

22

2.5. TRANSPORT-LEVEL PROTOCOLS

Consensus protocols are crucial in distributed systems that require strong consistency guarantees and fault

tolerance. They are used in various applications, such as distributed databases, blockchain networks, and

distributed file systems, to ensure agreement and consistency among multiple nodes.

2.4.3 Challenges of Distributed Transactions and Consensus

However, while distributed transactions offer strong consistency guarantees, they come with certain dis-

advantages, particularly in the context of messaging systems. One major drawback is their heavyweight

nature, which can introduce performance overhead and limit scalability. Distributed transactions often re-

quire coordination and consensus among multiple nodes, involving communication and synchronization

overhead. This can impact the throughput and latency of messaging systems, hindering their ability to

handle high volumes of messages and real-time data feeds. Furthermore, the need for distributed trans-

action managers or protocols adds complexity to the system architecture and increases the likelihood of

failures or bottlenecks.

Moreover, the use of distributed transactions may also clash with the principles of the CAP theorem [3],

where the trade-offs between consistency, availability, and partition tolerance become more pronounced

in distributed messaging systems. Emphasizing strong consistency through distributed transactions could

compromise the system’s ability to handle network partitions and ensure high availability, which are essen-

tial aspects of many messaging systems designed to handle large-scale data streams and real-time events.

As a result, in scenarios where high throughput and low latency are crucial, such as real-time data process-

ing or event-driven systems, the use of distributed transactions may not be ideal. Alternative approaches,

such as event sourcing, idempotent processing, and eventual consistency models, are often favored to

achieve scalability, fault tolerance, and performance in messaging systems.

2.5 Transport-level Protocols

Networks operate based on a structured framework called the OSI (Open Systems Interconnection) model [12],

which outlines a hierarchical arrangement of seven layers, as depicted in figure 7. As we ascend through

the layers from the foundational Physical layer to the Transport layer, the focus shifts from basic signal

transmission to higher-level aspects like message reliability and error correction.

• Physical Layer: At the bottom of the OSI model, the Physical layer deals with the actual transmis-

sion and reception of raw data bits over a physical medium, such as cables or wireless signals. It

ensures that electrical, optical, or radio signals representing binary data are successfully transmit-

ted between devices. While the Physical layer is responsible for the basic connectivity, it does not

inherently guarantee message reliability or error correction.

23

CHAPTER 2. LITERATURE REVIEW

Figure 7: The layers of the ISO/OSI model and their purposes in the ISO/IEC EN 14908 standard. . [39]

• Data Link Layer: Moving up to the Data Link layer, protocols here are concerned with framing data

into frames, addressing, and error detection. Error detection mechanisms, like cyclic redundancy

check (CRC), are employed to identify errors during transmission. While these mechanisms can

detect errors, they do not necessarily ensure full message reliability or correction.

• Network Layer: The Network layer is responsible for routing data packets from source to destination

across a network. Routers use logical addressing (IP addresses) to determine the best path for

data delivery. However, while routing enhances efficiency, this layer does not inherently address

the issue of message reliability.

• Transport Layer: As we ascend to the Transport layer, the focus shifts towards achieving message

reliability and integrity. This layer ensures end-to-end communication between applications running

on different devices.

Two primary transport protocols, TCP and UDP, offer different trade-offs in this context:

– TCP (Transmission Control Protocol): TCP provides reliable, connection-oriented communi-

cation.

– UDP (User Datagram Protocol): UDP is a connectionless protocol that does not provide the

same level of reliability as TCP. It is suitable for scenarios where low overhead and reduced

latency are priorities, but without the guarantee of delivery or order.

24

2.5. TRANSPORT-LEVEL PROTOCOLS

Node A Node B

send(pk0) pk0
rcv(pk0)

send(ack1)ack1

rcv(ack1)

send(pk1) pk1
rcv(pk1)

send(ack2)

rcv(ack2)

ack2

(a) Failure free scenario

Node A Node B

send(pk0) pk0

send(pk0) pk0 rcv(pk0)
send(ack1)rcv(ack1)

ack1

loss

Timeout
resend

send(pk1) pk1
rcv(pk1)

send(ack2)
rcv(ack2)

ack2

...

(b) Packet loss scenario

Node A Node B

send(pk0) pk0
rcv(pk0)

send(ack1)ack1loss

send(pk0)

Timeout
resend

pk0
dicard(pk0)

send(ack1)ack1

rcv(ak1)

(c) Packet duplication scenario

Achieving message reliability evolves as we progress from the Physical layer to the Transport layer in the

OSI model. While the lower layers ensure data transmission and error detection, it is the Transport layer’s

TCP protocol that introduces features like acknowledgment, retransmission, flow control, and ordered

delivery, all working together to enhance the reliability and integrity of message communication across

distributed systems.

By exploring protocols such as TCP and UDP, as well as addressing topics like connection recovery, fail-

over strategies, and the role of logging in message delivery, this section sheds light on the communication

protocols that play a pivotal role in maintaining the stability and resilience of distributed systems. Through

an exploration of these transport-level protocols, this section delves into the heart of network communica-

tion, offering insights into both the challenges and solutions inherent in achieving reliable data exchange

across distributed nodes.

2.5.1 TCP

TCP (Transmission Control Protocol) [11] is a widely adopted transport-level protocol that provides reliable,

connection-oriented communication between devices in computer networks. It offers several key features

and mechanisms to ensure accurate and ordered message delivery.

2.5.1.1 Features of TCP

Reliable Data Transfer TCP guarantees reliable data delivery by implementing mechanisms such

as sequence numbers, acknowledgments, and retransmissions. Sequence numbers allow the receiver

to reorder out-of-sequence segments, and acknowledgments ensure the sender is aware of successfully

received data. In the event of packet loss, TCP retransmits the missing segments, ensuring reliable data

transfer.

Figure 8a depicts a failure free scenario. In this scenario, Node A sends a packet pk0, which is assigned a

sequence number of “0”. Upon reception, Node B sends an acknowledgment (ack1) for node A, by this,

25

CHAPTER 2. LITERATURE REVIEW

node B informs Node A that the reception of pk0 was successful and that it is clear to transmit pk1.

Figure 8b shows a scenario where pk0 encounters a loss during its journey. As a result of not receiving

an acknowledgment, Node A waits for a predetermined timeout period before deciding to retransmit pk0.

Upon reaching the timeout, Node A retransmits packet pk0, ensuring its delivery to Node B. This retrans-

mission is accompanied by the original sequence number “0”. Upon receiving this retransmitted packet,

Node B responds with an acknowledgment (ack1), signifying the reception of pk0 and the readiness to

proceed.

Figure 8c depicts the duplication of packet pk0. In this situation, Node A sends packet pk0, which has

the sequence number “0”. Upon its reception, Node B acknowledges the successful receipt of pk0 by

sending an acknowledgment (ack1) to Node A. However, due to unstable network or other factors, the

acknowledgment (ack1) sent by Node B gets lost. Upon reaching the timeout, Node A retransmits packet

pk0, ensuring its delivery to Node B. This retransmission is accompanied by the original sequence number

“0”. Upon receiving this retransmitted packet, Node B recognizes the packet as a duplication, thus,

discards it. Node B proceeds to reissue acknowledgment (ack1) to acknowledge the correct reception of

packet pk0.

Flow Control TCP incorporates flow control mechanisms to manage the rate of data transmission. It

utilizes a sliding window technique, where the sender and receiver agree upon a window size that indicates

the number of unacknowledged segments allowed at any given time. This ensures that the receiver can

handle incoming data without being overwhelmed, thereby optimizing network performance.

Connection-Oriented Communication TCP establishes a connection between the sender and re-

ceiver before data transmission. This connection-oriented approach provides several benefits, including

error detection and recovery, orderly data transfer, and congestion control. It also allows for the estab-

lishment of virtual circuits and enables bidirectional communication.

2.5.1.2 Message Delivery in TCP

TCP employs various mechanisms to ensure reliable message delivery, addressing challenges such as

message loss and duplication. By utilizing sequence numbers, acknowledgments, and retransmissions,

TCP effectively mitigates these issues.

Message Loss TCP encounters message loss when one or more segments fail to reach the receiver.

Several factors can contribute to message loss, including network congestion, hardware failures, or trans-

mission errors. To address this problem, TCP employs the following strategies:

• Positive Acknowledgment with Retransmission (PAR): When the sender transmits segments, it ex-

pects to receive acknowledgments (ACKs) from the receiver. If the sender does not receive an ACK

26

2.5. TRANSPORT-LEVEL PROTOCOLS

within a specified timeout period, it assumes that the segment was lost and retransmits it. This

retransmission process continues until the sender receives the expected ACK.

• Timeout and Retransmission: TCP utilizes a timeout mechanism to detect segment loss. If an

ACK is not received within a certain period, the sender assumes the segment was lost and re-

transmits it. The timeout duration is dynamically adjusted based on network conditions to optimize

retransmission and minimize unnecessary delays.

Message Duplication occurs when a segment is unintentionally copied, resulting in multiple identical

segments being received by the receiver. TCP implements mechanisms to detect and handle duplicates

to ensure the integrity of the message:

• Sequence Number Comparison: TCP assigns a unique sequence number to each segment it trans-

mits. The receiver checks the sequence number of incoming segments to identify duplicates. If a

segment with the same sequence number is detected, it is considered a duplicate and discarded.

This prevents the duplication of data within the reconstructed message.

• Acknowledgment Mechanism: TCP employs an acknowledgment (ACK) mechanism where the re-

ceiver sends ACK packets to the sender to confirm successful receipt of segments. This ensures

that data sent from the sender is successfully received by the receiver.

2.5.1.3 Message Delivery Uncertainty in TCP Communication

While TCP ensures reliable message delivery within an established connection, it does not provide recovery

options for long-term network outages. In the event of a connection breakdown, packets lost or duplicated

during the outage are not recognized or recovered by TCP. This limitation poses a challenge for developers,

as they must develop ad hoc strategies to cope with the uncertainty surrounding message delivery after

a TCP connection failure. The last segment(s) of data transmitted before the failure may have been

lost, and there is no built-in mechanism in TCP to handle this situation. Consequently, it becomes the

responsibility of application developers to implement appropriate strategies for handling such cases, such

as retransmission schemes, checkpointing, or alternative communication protocols.

Uncertainty Scenario Consider a scenario where a client and a server are communicating over a

TCP connection. The client sends a series of messages to the server, and the server acknowledges each

message upon successful receipt. However, due to a sudden network outage, the connection between

the client and the server is lost.

In this situation, as depicted in figure 9, the client is unaware of whether the last message it sent was

successfully received by the server. Since TCP does not provide recovery options for long-term network

outages, the client cannot rely on the automatic retransmission of the last message. It becomes necessary

for the client to develop an ad-hoc strategy to handle the uncertainty surrounding the delivery of the last

27

CHAPTER 2. LITERATURE REVIEW

Client Server

send(pk0) pk0 loss

Timeout
resend Connection

breaks down

Figure 9: TCP packet received/lost uncertainty

segment.

One possible solution to address this uncertainty is for the sender and the receiver to maintain logs or

records of each delivered message. The sender can add each sent message to the log and label them

as “delivered” once an acknowledgment is received from the receiver. Similarly, the receiver can append

each received message to its log and mark them as “delivered”. In the event of a connection failure,

the sender can refer to the log to determine the last successfully delivered message, while the receiver

can examine each message to avoid duplicates. This log can serve as a reference point for resuming

communication once the connection is reestablished.

By maintaining a message delivery log, developers can have a record of the messages that have been

successfully transmitted and acknowledged by the receiver. This provides a mechanism to recover from

a connection failure and continue communication from the point of interruption.

2.5.1.4 TCP Summary

In summary, while TCP does not offer built-in recovery options for long-term network outages, developers

can implement solutions such as message delivery logs to handle the uncertainty surrounding the delivery

of the last segment. These logs serve as a reference point for resuming communication and provide a

means to track the status of message delivery even in the event of a connection failure.

2.5.2 TCP Connection Recovery Solutions

2.5.2.1 FT-TCP (fault-tolerant TCP)

FT-TCP [40] is a protocol designed to handle broken TCP sessions and mitigate the impact of connection

failures. As figure 10 shows, this approach utilizes a logger to conceal these failures and maintains the

logs in a stable storage located at the server.

28

2.5. TRANSPORT-LEVEL PROTOCOLS

Application

TCP

IP

Logger

North Side Wrap

South Side Wrap

Figure 10: FT-TCP architecture [40]

The primary objective of FT-TCP is to provide fault tolerance in TCP connections. By employing the logger,

FT-TCP masks connection failures, allowing the protocol to recover from interruptions and resume com-

munication seamlessly. The logger plays a crucial role in recording the status of ongoing TCP sessions

and the progression of data transmission.

One notable limitation of FT-TCP is its inability to recover from network failures. While it effectively ad-

dresses connection failures, it cannot handle scenarios where the network itself experiences disruptions.

Consequently, the protocol can only guarantee at-most-once delivery of data in such cases. Also, the

properties of the communication between the logger and the server in FT-TCP have a large and complex

influence on the overhead [40].

Nevertheless, FT-TCP presents a valuable solution for maintaining robustness and reliability in TCP ses-

sions by leveraging a logger to handle connection failures. It provides a mechanism to recover from

common interruptions, ensuring that communication can resume smoothly. However, developers should

be aware that network failures are outside the scope of this protocol’s capabilities, and additional measures

may be required to address such situations effectively.

2.5.2.2 RSocket

RSocket [17] is a solution that overcomes the recovery problems of TCP. It is implemented on top of TCP

and ensures reconnection, transparently supporting network crashes by using control messages over a

separate UDP channel, freeing the programmer from manually re-synchronizing. RSocket uses a unique

connection identifier (CID) in order to distinguish between different incarnations. This means that it is not

29

CHAPTER 2. LITERATURE REVIEW

oblivious: exactly-once can be ensured only by retaining node IDs for all peers ever involved in message

exchanges.

As well as, iSAGA [41] is a protocol that uses the logging technique by saving each request to a stable

storage to recover from node crashes. However, there is no guarantee that the recovered state is the same

as the state before the crash.

Also, EOS [42] uses the logging mechanism on the client and the server sides, for the web based services

in order to ensure exactly-once service.

Exactly-Once Middleware [43] is a solution that builds on RSocket and implements the exactly-once

request-response interaction pattern using the logging technique combined with identified requests and

message retransmission. This mechanism only supports the request-response pattern, and is not lightweight

due to the persistent storage requirements.

2.5.3 TCP Connection Fail-over Protocols

To address the limitations of TCP in ensuring exactly-once delivery between connections, several fail-

over protocols have been developed, which provide the necessary inter-connection information to achieve

exactly-once guarantees.

Among the TCP fail-over protocols, Zandy et al. [15] used the idea of Persistent Connections to preserve

the endpoint of a failed connection in a suspended state for an arbitrary period of time. Then, the protocol

automatically reconnects using session fail-over to another process transparently. However, no guaran-

tees are made beyond the defined time.

Similarly, Snoeren [16] used Connection Migration to migrate a connection session to another endpoint.

Both Robust TCP (RTCP) and Exactly-Once Middleware used a similar technique, called Connection Per-

sistence, when a TCP connection breaks [17, 43]. They used an out-of-band UDP connection recovery

for exactly-once and FIFO. RTCP retains unique connection identifier (CID) in order to distinguish between

different incarnations; this makes it non-oblivious, unlike Exon. FT-TCP [40] used a wrapper that saves the

states in a logger (another process) to mask and recover the TCP connection, even under node failures.

In general, all these fail-over protocols suffer from additional meta-data across connections, additional

nodes, or their correctness is time-dependent.

2.5.4 UDP Based Protocols

Alternatively, there exist several UDP-based exactly-once protocols that provide exactly-once guarantees

without the need for a connection-oriented approach. Since TCP is optimized for the general use, it

30

2.5. TRANSPORT-LEVEL PROTOCOLS

exhibits limitations in scenarios like bulk transfer, multicast, concurrent systems, computational grids,

fast networks, etc. [44–49]. This motivated the foundation of reliable transport-level alternatives on top

of UDP. Nevertheless, although these protocols managed to solve the ordering and performance reliability

(congestion control) issues of TCP, they partially solved the exactly-once delivery. The reason is that they

embraced the connection-based approach, which eventually led to the same TCP issues discussed above.

2.5.4.1 Reliable UDP

In particular, Reliable UDP (RUDP) [50] uses redundant connections over UDP. A connection failure is

solved by signaling a timed state transfer to an upper layer protocol. If the latter does not transfer the

state before the timer expires (after one second), the connection state is lost, and its buffers are freed—thus

not ensuring exactly-once.

2.5.4.2 RTP

The RTP (Real-time Transport Protocol) [51] has the same issues as it provides UDP connections without

exactly-once guarantees; but it relies on an RTP Control Protocol (RTCP) to maintain reliability through

storing a lot of meta-data sessions with timeouts. The same holds for RBUDP [52] that must keep a tally

of the packets to determine which packets must be retransmitted at the end of a bulk transmission under

failure.

2.5.4.3 SCTP

SCTP (Stream Control Transmission Protocol) [44] is a transport layer protocol that provides reliable,

message-oriented communication between two endpoints over an IP network. It was initially developed to

address certain limitations of TCP and UDP in specific use cases.

SCTP is a transport protocol over IP, similar to TCP or UDP, although it is possible to tunnel it over UDP.

Consequently, SCTP’s utilization can be challenging due to limited support by routers, firewalls, and other

network infrastructure elements.

SCTP employs a mechanism to detect and discard duplicate messages. The receiving endpoint keeps

track of the sequence numbers of previously received messages. If a duplicate message is received, it

can be identified and discarded to prevent duplicate delivery to the application layer.

2.5.4.4 UDT

UDT (UDP-based Data Transfer) [45] is a protocol specifically designed for high-speed data transfer over

wide area networks (WANs). UDT is built on top of UDP (User Datagram Protocol) and aims to provide

reliable, congestion-controlled, and high-throughput data transmission.

UDT offers reliable data delivery by implementing its own error detection and retransmission mechanisms

on top of UDP. It uses acknowledgments and selective repeat techniques to ensure that all data packets

31

CHAPTER 2. LITERATURE REVIEW

Figure 11: Zero RTT connection establishment with QUIC

are received correctly. UDT’s reliability mechanisms provide end-to-end error recovery and retransmission,

similar to TCP.

2.5.4.5 ENet

ENet [53] is a reliable, high-performance networking library designed for game development and real-time

communication applications. It provides a simple and efficient API for sending and receiving data over

unreliable UDP (User Datagram Protocol) connections.

ENet provides a reliable packet delivery mechanism over unreliable UDP connections. It divides the mes-

sage data into smaller packets and sends them to the destination. ENet keeps track of each packet and

ensures that all packets are received successfully by the recipient.

2.5.4.6 QUIC

QUIC [54] is a UDP-based application layer transport mechanism introduced by Google. QUIC was de-

signed to be easily deployable and secure, and to reduce handshake and head-of-line blocking delays.

Security and deployability are both helped by one of the key QUIC decisions – to base on top of UDP. As

shown in figure 11, QUIC combines the cryptographic and transport handshake into one round trip when

setting up a secure transport connection.

QUIC enables congestion and flow control, allows multiple data connections over the same UDP connec-

tion without HoL blocking, as depicted in figure 12 and also reducing the handshake delay at the beginning

of a connection. QUIC’s packet header carries information that help both loss recovery, where each QUIC

32

2.5. TRANSPORT-LEVEL PROTOCOLS

Figure 12: Multiplexing in QUIC, avoiding Head-of-Line Blocking. [55]

packet carries a new unique packet number that increases monotonically. Lost packets are then put into

new outgoing packets that assigned new packet numbers.

In order to leverage the 0-RTT feature in QUIC, it is necessary to keep track of the identity of each commu-

nicating node. This can involve maintaining session IDs or other identifiers that can be used to establish

trust between the client and server during subsequent communications.

The need to keep track of session IDs or other identifiers for each communicating node in order to use the

0-RTT feature in QUIC may be seen as a trade-off between performance and obliviousness. While QUIC

is designed to provide better performance and security than traditional transport protocols, the need for

session IDs means that the protocol may not be completely oblivious, as some information is required to

be maintained and used for subsequent communications.

2.5.4.7 UDP Based Protocols Summary

Same as in TCP reliability optimizations, all the above UDP-based protocols tried to use a connection

concept to maintain timed EO guarantees at the high price of storing significant amounts of meta-data.

This makes them non-oblivious, contrary to what we present in Exon.

33

CHAPTER 2. LITERATURE REVIEW

2.5.5 Logging in Message Delivery

Message logging refers to the practice of recording events, actions, and information related to the process-

ing and delivery of messages within nodes on the network. In the context of message delivery, such as

email servers, chat applications, and notification services, message logging involves keeping a record of

various stages of message handling, including sending, receiving, processing, and any associated errors

or exceptions.

Here is a basic process for message delivery between two nodes (Node A and Node B) in a distributed

system, where logging plays a crucial role.

• Sending the Message: Node A composes and sends message M to Node B. Before sending, Node

A creates a log entry in its local message log, indicating the intent to send message M. This log

entry may include information like the timestamp, message ID, recipient (Node B), and the content

of the message.

• Receiving and Acknowledging: Node B receives message M from Node A. Upon successful recep-

tion, Node B creates a log entry in its local message log, indicating the receipt of message M. This

log entry contains details such as the timestamp, sender (Node A), message ID, and message

content. Node B then sends an acknowledgment (ack) back to Node A to confirm the successful

receipt of message M.

• Updating Message Status: Node A, upon receiving the acknowledgment from Node B, knows that

message M has been successfully delivered. Node A can now update the status of message

M in its local message log. This update could include marking the message as “delivered” or

“acknowledged.” By marking the message as delivered, Node A ensures that it will not attempt to

resend the same message to Node B in the future.

Throughout these steps, both Node A and Node B maintain local message logs that record the events

and actions related to message delivery. These logs capture crucial information about the communica-

tion process, including timestamps, participants, message content, and acknowledgments. The logging

process helps maintain the reliability and consistency of message delivery. In case of any issues, failures,

or the need for auditing, the logs can be reviewed to understand the sequence of events, identify potential

errors, and ensure that messages are being correctly processed and delivered.

Implementing a message delivery log introduces certain costs in terms of processing and memory over-

head [56]. The logging mechanism plays a crucial role in maintaining a record of delivered messages,

aiding in recovery from connection failures and ensuring message reliability. However, it is important to

consider the impact of logging on system performance and resource consumption. Another challenge

associated with message logging is the potential necessity for intricate and resource-intensive protocols

34

2.5. TRANSPORT-LEVEL PROTOCOLS

aimed at ensuring accurate recovery. These protocols are designed to eliminate any inconsistencies

among processes, safeguarding the integrity of the recovered data. [55].

2.5.5.1 Processing Overhead

Processing overhead associated with message logging arises from the frequent comparisons required

between incoming messages and the log to identify duplicates. As the number of messages and the size

of the log increase, this comparison process can become computationally intensive, potentially affecting

the overall system performance [57]. In scenarios involving a large number of nodes, the processing

overhead of duplicate detection can significantly impact the system’s efficiency.

2.5.5.2 Memory Consumption

Implementing amessage delivery log also incurs memory consumption. The log needs to store information

about delivered messages, including unique identifiers and delivery status. As the number of messages

and the size of the log grow, the memory requirements increase accordingly. In distributed systems

with a high message throughput and a substantial number of nodes, the memory usage associated with

maintaining a comprehensive log can become significant.

When dealing with a large volume of messages and numerous nodes, careful consideration is required

to manage the memory usage of the message delivery log effectively. Balancing the need for accurate

message tracking with the available memory resources is crucial to ensure optimal system performance

and prevent potential memory-related issues.

2.5.5.3 Considerations in Message Logging

The concerns mentioned are not limited to resource-constrained devices; but extend to server environ-

ments as well. The efficient management of memory usage in message logging is a common challenge

faced across various computing platforms.

By understanding the processing and memory implications of logging in message delivery, developers

can make informed decisions regarding the implementation and optimization of the logging mechanism.

These considerations are particularly important in scenarios involving high message volumes, large-scale

distributed systems, and resource-constrained environments.

Even when checkpointing is combined with logging, it introduces challenges, particularly as the system

scales with an increasing number of nodes and messages. The use of checkpointing imposes additional

overhead in terms of processing and storage demands [56].

35

CHAPTER 2. LITERATURE REVIEW

2.6 Message-oriented Middleware

There is a recent trend of providing exactly-once guarantees via using message queue (MQs) brokers such

as Apache Kafka [58], AMQP [59], RabbitMQ [60], ActiveMQ [61], ZeroMQ [62], etc. However, these

protocols are very heavy-weight as they stand as middlewares that support many underlying protocols

like TCP, UDP, MQTT [63], and PGM [64]; and they implement several messaging patterns. Many of

these middlewares make use of huge infrastructure to provide the so-called “effective exactly-once” to

the application through using node fault tolerance and distributed commit log [65], as a cluster to offer

high scalability. ZeroMQ is exceptionally broker-less, but it may drop queued messages upon disconnects,

although it attempts TCP reconnections.

Another way to ensure reliable message delivery is by using a message broker [66]: an intermediate be-

tween sender and receiver that stores and orders messages until the consuming application can process

them. Brokers can become a single point of failure, although it can recover from its own crashes by storing

the messages in stable storage. Many queue-based messaging brokers were developed, such as Apache

Kafka [58], AMQP [59], RabbitMQ [60], ActiveMQ [61], ZeroMQ [62], MQTT [63].

2.6.1 Apache Kafka

Apache Kafka [58] is an open-source distributed streaming platform developed by the Apache Software

Foundation. It is designed to handle high-volume, real-time data feeds and offers scalable, fault-tolerant,

and high-performance messaging capabilities. Kafka provides a publish-subscribe model where producers

publish streams of records to topics, and consumers subscribe to those topics to process the data.

The core abstraction in Kafka is the commit log, which is a distributed, fault-tolerant, and append-only data

structure. Records published by producers are appended to the commit log and organized into topics,

which can be partitioned across multiple Kafka brokers. Each partition is replicated across a configurable

number of brokers, ensuring high availability and fault tolerance.

Kafka allows for both real-time stream processing and event-driven architectures. It enables applications to

consume data in real-time as it arrives, process it, and produce derived data streams. This makes Kafka

well-suited for use cases such as log aggregation, stream processing, event sourcing, data integration,

and messaging systems.

Key features of Apache Kafka include:

• Scalability: Kafka is designed to handle high-throughput, high-volume data streams by allowing

horizontal scaling across multiple brokers and partitions.

• Fault Tolerance: Kafka provides built-in replication and leader election mechanisms to ensure data

36

2.6. MESSAGE-ORIENTED MIDDLEWARE

durability and fault tolerance. If a broker fails, another broker automatically takes over as the leader

for the affected partitions.

• Durability: Kafka retains published records for a configurable period of time, allowing consumers

to rewind and read historical data. This durability makes Kafka suitable for use cases requiring

data replay and recovery.

• Exactly-Once Semantics: While Kafka guarantees at-least-once message delivery by default, it also

provides mechanisms such as transactional writes and consumer offsets management to achieve

exactly-once semantics.

Apache Kafka, one of the most widely used systems, is designed around a distributed commit log [65]

as a cluster to offer high scalability. It offers high throughput and low latency for both publishing and

subscribing, which is essential to support real-time data feeds. However, the inventors themselves said

that Kafka does not guarantee exactly-once delivery: “Kafka only guarantees at-least-once delivery. Exactly-

once delivery typically requires two-phase commits and is not necessary for our applications.” [58].

2.6.2 ZeroMQ

ZeroMQ [62] is a lightweight messaging library aimed for scalable distributed applications. Unlike most

other queue-based messaging systems, ZeroMQ is broker-less. It expands the concept of socket with

built-in messaging patterns: Request/Reply, Publish/Subscribe, Pipeline and Exclusive pair. However,

regarding message delivery guarantees, even though ZeroMQ attempts TCP reconnections, it may drop

queued messages upon disconnects.

ZeroMQ [62], is an open-source messaging library that provides high-performance, asynchronous com-

munication between applications. It offers a socket-based API and supports various messaging patterns

such as publish-subscribe, request-reply, and push-pull.

When it comes to message delivery guarantees, ZeroMQ provides different levels of reliability based on

the chosen messaging pattern and socket type:

Best Effort (Fire-and-Forget):

• PUB/SUB Pattern: In the publish-subscribe pattern, ZeroMQ operates on a “best-effort” basis.

Publishers send messages to subscribers, but there is no built-in mechanism to ensure delivery or

guarantee that every subscriber receives every message. Subscribers join the pattern and receive

messages that publishers send after they have subscribed.

• PUSH/PULL Pattern: Similarly, in the push-pull pattern, ZeroMQ employs a best-effort approach.

Messages are pushed from the sender (PUSH socket) to one or more receivers (PULL sockets), but

there is no built-in mechanism to guarantee that every message will be delivered to every receiver.

37

CHAPTER 2. LITERATURE REVIEW

Reliable Delivery (At-Least-Once):

• REQ/REP Pattern: The request-reply pattern in ZeroMQ offers at-least-once delivery semantics.

When a request is sent from a REQ socket to a REP socket, ZeroMQ ensures that the request is

delivered to the REP socket and a reply is received. However, due to the underlying network and

system conditions, it is possible to encounter message loss or duplicate replies. Application-level

coordination is required to handle potential duplicates or lost messages.

It’s important to note that ZeroMQ is designed to be a lightweight messaging library, optimized for high

throughput and low latency, rather than focusing on complex reliability guarantees. It provides building

blocks for building distributed systems and applications, and the responsibility of achieving higher reliability

or delivery guarantees often lies with the application developers.

In summary, ZeroMQ provides various message delivery guarantees depending on the chosen messaging

pattern and socket type. It offers best-effort delivery for publish-subscribe and push-pull patterns, at-least-

once delivery for request-reply pattern, and basic one-to-one messaging without built-in reliability for the

exclusive pair socket type. Developers need to consider their application requirements and implement any

necessary reliability mechanisms on top of ZeroMQ if stronger guarantees are needed.

2.6.3 MQTT

MQTT [67] is lightweight messaging protocol developed by IBM, supporting the publish-subscribe pattern.

MQTT offers three reliability modes, including exactly-once, by a Packet Identifier in its Variable Header.

In this mode, the receiver of a PUBLISH packet acknowledges receipt with a two-step acknowledgement

process. However, the receiver stores a reference to the packet identifier in order to avoid processing the

message a second time.

However, this technique generally requires total table storage proportional to𝑁 2 for N inter-communicating

nodes [68], since a node, especially the receiver, has to keep all the IDs of the nodes contacted with, in or-

der to avoid message duplication, and are therefore ineffectively suited to large distributed shared-memory

machines. On the other hand, TCP does not address link failures properly, it breaks the connection if con-

nectivity is lost for some duration, which may lead to message loss and duplication, and consequently it

need a way to recover from broken TCP connections.

2.7 Oblivious Transport-level Messaging

Most of the messaging techniques and protocols mentioned above are heavyweight and/or ensure at-

most-once or at-least-once message delivery. The few that ensure exactly-once are not oblivious: they

require message identifiers or peer/connection specific information that needs to be kept to ensure de-

duplication. This hurts scalability to many hosts because this information grows over time, as each host

communicates with new hosts. As a result, for this de-duplication technique to work properly, “some

38

2.8. DISCUSSION

state” is needed (e.g. counter) between different connection incarnations [14].

Traditionally, exactly-once delivery has been achieved by keeping track of delivered messages. However,

this approach incurs high storage and time overhead, particularly as logs grow larger. In edge environ-

ments with thousands of devices, this overhead becomes even more problematic. Furthermore, relying

solely on TCP for exactly-once delivery is not recommended in hostile environments, as TCP does not

provide guaranteed exactly-once delivery under failure conditions.

Indeed, Attiya et al. [69] proved that if the nodes have unbounded memory, a three-way handshake obliv-

ious protocol exists, whereas a two-way handshake oblivious protocol does not exist. The same paper

proved also that if a bound on maximum packet lifetime (MPL) exists and is known, then a two-way hand-

shake oblivious protocol is possible, but at least MPL must elapse between the time two consecutive

incarnations are established—which is impractical in most networked applications. Therefore, most reli-

able and efficient protocols are three-way handshake based, but they expose full-duplex connections in

the API, and depend on timing assumptions for obliviousness.

Although Attiya’s three-way handshake oblivious unbounded memory protocol [69] is only require a single

integer as node state between incarnations, however, Attiya’s protocol is classically connection based,

with API visible full-duplex connections, which prevents safely ensuring exactly-once message delivery, as

the receiving side can concurrently close the connection, preventing delivery.

Therefore, in large scale systems (millions and billions of machines), this become a harsh condition to be

fulfilled, especially in IoT and edge systems that have bounded memory, where no incarnation manage-

ment protocol exists. However, an oblivious protocol is possible with no need to retain connection specific

information between incarnations, but just keeping a single unbounded clock for the whole node [69].

2.8 Discussion

Pat Helland’s visionary perspective on activities and entities highlights the huge complexity of building

reliable and scalable distributed systems. In the pursuit of creating systems that handle massive number

of nodes, the importance of a protocol that not only ensures reliability but also scales gracefully becomes

evident. As systems grow to encompass millions of nodes, such as in telecommunications, IoT, and au-

tomotive networks, the challenges increase.

Distributed transactions, a cornerstone of ensuring data integrity across distributed environments, en-

counter challenges caused by network partitions, latency, and node failures. A significant downside lies

39

CHAPTER 2. LITERATURE REVIEW

in their substantial nature, which has the potential to introduce performance overhead and limit scalabil-

ity. Distributed transactions frequently necessitate coordination and consensus across numerous nodes,

which leads to overhead from communication and synchronization processes.

The need to guarantee data consistency, even in the face of unreliable nodes and network failures, has

driven the exploration of various protocols. Existing transport-level protocols, including TCP, address reli-

ability concerns to a certain extent. However, their inability to offer liveness guarantees and exactly-once

message delivery in a fragile environment poses limitations.

Message-oriented middleware, such as AMQP, MQTT, and CoAP, introduces strategies to ensure mes-

sage delivery in different ways. Commonly, a log-based approach is employed to track sent and received

message IDs. However this method has some caveats, as connection breakdowns can lead to message

loss or duplication. The challenge becomes even more pronounced in scenarios where maintaining a

history of node IDs is essential to prevent message duplication. This work is done by the programmers,

or there are some protocols the programmers can use and integrate them with their protocols to do what

TCP cannot do it, e.g. reconnect with the same connection ID, save log to a durable memory...

Existing research, do not fully address the need for an oblivious, exactly-once message delivery protocol

in highly scalable systems. This inspired the initiation of our research journey, aimed at bridging this gap.

Our approach, rooted in a message-based four-way protocol, sets the foundation for exactly-once delivery

and obliviousness. Augmenting this approach with on-demand half-duplex soft-connections, enhances

efficiency without compromising on reliability, obliviousness, or exactly-once guarantees.

In summary, our work represents an advancement towards Pat Helland’s vision of scalable and reliable

systems. With a focus on achieving an efficient, oblivious, and exactly-once messaging protocol, we

contribute to the evolving landscape of distributed systems, enabling the creation of powerful networked

applications with high levels of reliability and scalability.

40

3

Exon Protocol

In the realm of messaging protocols, ensuring exactly-once message delivery has long been a big chal-

lenge. As explored in Chapter 2, existing solutions present trade-offs that hinder their seamless integration

into large and scalable systems.

Logging, a method often used, introduces processing and memory overhead, impeding the efficiency

of such systems. On the other hand, distributed transactions, while effective, exhibit the drawback of

inducing blocking in distributed environments. Significantly, message-oriented middleware such as AMQP,

MQTT, Kafka, etc., relies on a similar logging technique and maintains per-peer connection data to forestall

message duplication. However, these approaches still unable to adapt in the extensive scalable distributed

systems.

This chapter comprehensively introduces the Exon protocol, a pioneering solution addressing the chal-

lenges of messaging in large-scale distributed systems, that aligns with Pat Helland’s vision [2] of the

need for reliable messaging protocol in large scale systems, and embraces with Attiya’s notion that an

oblivious protocol is possible with no need to retain connection specific information between incarnations,

but just keeping a single unbounded clock for the whole node [69].

It begins by presenting the System Model, then the Overview section follows, that provides a glimpse into

the operational mechanics and functioning of the protocol. After that we delve to the Algorithm, providing

an in-depth understanding of its inner workings. Rigorous Correctness Proofs reinforce the protocol’s

reliability and accuracy guarantees. The chapter then delves further into the underlying intuition behind

pivotal aspects, enhancing the reader’s grasp of Exon’s mechanisms. Lastly, Advanced Properties of Exon

are unveiled, such as the soft- half-connections and obliviousness, showcasing the protocol’s capabilities.

3.1 Introduction

Exon is a host-to-host message-based protocol that is optimized to guarantee the exactly-once (EO) deliv-

ery of these messages. The core idea revolves around employing slots and tokens. Visualize a slot as a

virtual placeholder. When the need arises to transmit a particular item to an individual, a request is made

41

CHAPTER 3. EXON PROTOCOL

for a placeholder. Upon receiving the request, the recipient generates the necessary placeholder dedi-

cated to that specific item and conveys its identification back to the requester. Subsequently, numbered

with this placeholder’s ID, the requester creates a container/box designed solely for accommodating the

placeholder. By this concept, items cannot be transmitted without being encapsulated within a container.

Furthermore, a container cannot be received unless a corresponding placeholder is pre-established, ready

and waiting to accommodate it.

In a nutshell, Exon has a combination of components which allows ensuring EO while being network and

memory efficient, namely:

Soft- half-connections: connections are useful to group identifiers like sequence numbers and achieve

performance. We have what we call soft- half-connections (s-connection), that group messages from the

same sender-receiver pair, created on-demand if messages are requested to be sent. For performance, the

s-connection can be discarded if there are no pending unacknowledged messages, after some non-short

timeout. EO correctness is ensured without timeouts though (e.g., no TIME_WAIT as in TCP).

Oblivious: Exon achieves EO correctness without the need to keep s-connection-related information forever,

keeping only a single integer per node as permanent state, when no s-connections are present.

Order-less: to be more generic, Exon is deprived from unnecessary ordering restrictions of messages.

Message ordering (e.g., FIFO) can be implemented on top of Exon if required.

In the following, we emphasize Exon in more detail.

3.2 System Model

We consider a networked or distributed system of any number of nodes. A node can have wide or con-

strained capacities, but a local memory is required. Nodes can be long-lived sticky members of some

service or transient ones (e.g., vehicular networks, mobile, IoT...). Nodes can crash but will eventually

recover with the content of the last state prior to the crash. In this case, a stable persistent storage is

assumed.

In our system model, we intentionally narrow our focus to the aspects of messaging protocol design and

reliability, specifically omitting the complex domain of node crashes and their associated recovery mech-

anisms. This decision comes from the reality that the realm of crash recovery constitutes a distinct and

complex domain in itself. Developers have introduced sophisticated crash recovery mechanisms within

large-scale distributed systems. These mechanisms are precisely designed to counter the challenges

posed by node crashes and ensure data integrity and system stability.

On the network side, any node can communicate with any other node via a network (e.g., Local Area

Network, Wide Area Network, Wireless Sensor Network...). The network is asynchronous, with no global

42

3.3. OVERVIEW

reqslots

slots

token

acks

Node A Node B

payload
create

slot
- create token
- associate payload
to token

- remove slot
- deliver payload

remove
token

Figure 13: Fault-free communication scenario.

clock, no bound neither on the time it takes for a message to arrive, nor on the processing speeds. The

network is unreliable, messages can be lost, duplicated, or reordered (but are not corrupted). The net-

work may have long partitions, but these will eventually heal. Exon assumes the existence of an underlying

transport-level communication channel—or any equivalent non-IP abstraction—to send messages in any

form (bytes, datagrams, etc.); although our current Exon-lib is implemented on top of UDP.

The decision to implement Exon over the UDP protocol, rather than TCP, comes from strategic consid-

eration of the unique characteristics and requirements of our reliable messaging protocol. One of the

significant factors influencing this choice is the desire to avoid the potential Head of Line (HoL) blocking

issue in TCP. Furthermore, Exon itself is designed to provide a robust mechanism for ensuring reliable

message delivery, integrating TCP’s inherent reliability with Exon’s designed reliability could result in un-

necessary time overhead, given that both mechanisms would strive to accomplish similar goals. By opting

for UDP, we strike a harmonious balance. UDP’s lightweight and connectionless nature mitigates the HoL

blocking concern, while Exon’s inherent reliability negates UDP stands as an abstract protocol catering to

upper-layer protocols that can function effectively without requiring the specific reliability features associ-

ated with TCP.

3.3 Overview

Assume that node A intends to transmit a message to node B. In a fault-free scenario, this intention would

trigger the initiation of a communication between the two nodes, as depicted in figure 13:

(1) Node A starts the communication where it has a message to send to Node B, it sends a reqslots

message, (2) Node B creates a slot, i.e., a placeholder that allows sent message to be accepted, and

sends a slots message to Node A. Then, (3) Node A receives the slots message, and creates a token, i.e.,

a container that associates a specific “payload”, sends a token message that contains an encapsulated

“payload” to Node B. This “payload” is associated with this specific token. After that, (4) when Node B

receives the token message, it removes the slot specific to this token, delivers the “payload” to the specific

43

CHAPTER 3. EXON PROTOCOL

upper layer application, and sends an acknowledgment “ack” to Node A, where Node A can safely remove

the token.

In order to optimize the slot-at-a-time request overhead, Node A can request a window of slots in advance

using empty message place-holders, we call envelopes. Node A can associate message to these ready

envelopes with reserved slots when needed.

Thus, we call it as slots message, since it represents many slots. Furthermore, it is worth noting that

the term “Token” is not pluralized as “Tokens” intentionally, this is because each Token inherently corre-

sponds to a unique payload, rather than merely representing an identification marker.

A crucial distinction exists between a slot and a slots message, as well as between a token and a token

message. Notably, a slot itself is not transmitted from node B to node A. Instead, when node B creates

a slot in response to a reqslots from node A, only the ID of that slot is conveyed to node A, encapsulated

within a message categorized as a slots message.

Similarly, a token is not directly transmitted; rather, the ID of the token, along with its associated “payload”,

is dispatched to node B as part of a token message.

3.4 The Algorithm

We now describe the algorithm details of Exon. To simplify the presentation, we refer to the corresponding

lines in Algorithm 1. We also exemplify the algorithm with a simple instance, which we walk through to

clarify how the state is changing at each step.

Algorithm 1 is the protocol for a generic node 𝑖. It conveys the node state, the types used in defining

it, the atomic actions (both for when a send is requested locally and when messages arrive), and the

called auxiliary procedures. The algorithm also presents a procedure that runs periodically, to show in

a minimal way how to cope with message loss (an actual implementation could have, e.g., timeouts per

half-connection to trigger these sends).

3.4.1 Notations and Definitions

Each node 𝑖 has an Exon state. The state is a node-wide clock (𝑐𝑘𝑖) keeping a monotonically increasing

integer, and a pair of maps: 𝑆𝑖 keeping sender-side half-connection records of type S and 𝑅𝑖 keeping

receiver-side half-connection records of type R. We use an 𝑖 subscript to denote node state variables or

actions and unsubscripted names for local temporary variables; we use := for assignment, typically to a

state variable, and = for a let binding which binds a name to a value.

While in abstract, and for correctness, we use the concepts of slots, envelopes and tokens as globally

unique entities, which are kept in the node state grouped in the sender-side or receiver-side half-connection

records. We now define these concepts and describe how they are stored in nodes.

44

3.4. THE ALGORITHM

1 types
2 I, node identifiers
3 M, message payloads
4 S : record {
5 sck : N, sender clock
6 rck : N, receiver clock
7 msg : M∗, messages queued to send
8 env : N∗, list of available envelopes
9 tok : N ↩→M, tokens with messages

10 }, sender-side connection record
11 R : record {
12 sck : N, sender clock
13 rck : N, receiver clock
14 slt : P(N), set of available slots
15 }, receiver-side connection record
16 parameters
17 𝑁 : N, number of slots requested in advance
18 state:
19 𝑐𝑘𝑖 : N = 0, node clock
20 𝑆𝑖 : I ↩→ S = ∅, map of sender-side records
21 𝑅𝑖 : I ↩→ R = ∅, map of receiver-side records
22 on EOsend𝑖 (𝑗,𝑚)
23 if 𝑗 ∉ dom(𝑆𝑖) then
24 𝑆𝑖 [𝑗] := S{sck : 𝑐𝑘𝑖 , rck : 0,msg : [𝑚],env : [], tok : ∅}
25 requestSlots𝑖 (𝑗)
26 else
27 𝑐 = 𝑆𝑖 [𝑗]
28 if 𝑐.env ≠ [] then
29 𝑒 = 𝑐.env. dequeue()
30 𝑐.tok[𝑒] :=𝑚
31 send𝑖, 𝑗 (token, 𝑒, 𝑐 .rck,𝑚)
32 if |𝑐.env| = 𝑁 − 1 then
33 requestSlots𝑖 (𝑗)
34 else
35 𝑐.msg. enqueue(𝑚)
36 proc requestSlots𝑖 (𝑗)
37 𝑐 = 𝑆𝑖 [𝑗]
38 𝑛 = 𝑁 +

��𝑐.msg�� − |𝑐.env|
39 if 𝑛 > 0 then
40 𝑙 = if 𝑐.tok ≠ ∅ then min(dom(𝑐.tok))
41 else if 𝑐.env ≠ [] then 𝑐.env[0]
42 else 𝑐.sck
43 send𝑖, 𝑗 (reqslots, 𝑐 .sck, 𝑛, 𝑙)
44 else if 𝑐.tok = ∅ and 𝑐.msg = [] then
45 send𝑖, 𝑗 (reqslots, 𝑐 .sck, 0, 𝑐 .sck)
46 𝑐𝑘𝑖 := max(𝑐𝑘𝑖 , 𝑐 .sck)
47 𝑆𝑖 . remove(𝑗)

48 on receive𝑗,𝑖 (reqslots, 𝑠, 𝑛, 𝑙)
49 if 𝑗 ∉ dom(𝑅𝑖) then
50 𝑅𝑖 [𝑗] := R{sck : 𝑠, rck : 𝑐𝑘𝑖 , slt : ∅}
51 𝑐𝑘𝑖 := 𝑐𝑘𝑖 + 1
52 𝑐 = 𝑅𝑖 [𝑗]
53 𝑐.slt := {𝑚 ∈ 𝑐.slt|𝑚 ≥ 𝑙}
54 if 𝑛 > 0 then
55 if 𝑠 + 𝑛 > 𝑐.sck then
56 𝑐.slt. union({𝑐.sck, . . . , 𝑠 + 𝑛 − 1})
57 𝑐.sck := 𝑠 + 𝑛
58 send𝑖, 𝑗 (slots, 𝑠, 𝑐 .rck, 𝑛)
59 if 𝑐.slt = ∅ then
60 𝑅𝑖 . remove(𝑗)
61 on receive𝑗,𝑖 (slots, 𝑠, 𝑟 , 𝑛)
62 if 𝑗 ∉ dom(𝑆𝑖) then
63 send𝑖, 𝑗 (reqslots, 𝑐𝑘𝑖 , 0, 𝑐𝑘𝑖)
64 else if 𝑠 = 𝑆𝑖 [𝑗] .sck then
65 𝑐 = 𝑆𝑖 [𝑗]
66 𝑐.rck := 𝑟
67 𝑐.env. append([𝑠, . . . , 𝑠 + 𝑛 − 1])
68 𝑐.sck := 𝑠 + 𝑛
69 while 𝑐.env ≠ [] and 𝑐.msg ≠ [] do
70 𝑒 = 𝑐.env. dequeue()
71 𝑚 = 𝑐.msg. dequeue()
72 𝑐.tok[𝑒] :=𝑚
73 send𝑖, 𝑗 (token, 𝑒, 𝑐 .rck,𝑚)
74 requestSlots𝑖 (𝑗)
75 on receive𝑗,𝑖 (token, 𝑠, 𝑟 ,𝑚)
76 if 𝑗 ∈ dom(𝑅𝑖) then
77 𝑐 = 𝑅𝑖 [𝑗]
78 if 𝑟 = 𝑐.rck and 𝑠 ∈ 𝑐.slt then
79 𝑐.slt. remove(𝑠)
80 deliver𝑖 (𝑚)
81 send𝑖, 𝑗 (ack, 𝑠, 𝑟)
82 on receive𝑗,𝑖 (ack, 𝑠, 𝑟)
83 if 𝑗 ∈ dom(𝑆𝑖) then
84 𝑐 = 𝑆𝑖 [𝑗]
85 if 𝑟 = 𝑐.rck and 𝑠 ∈ dom(𝑐.tok) then
86 𝑐.tok. remove(𝑠)
87 periodically
88 for (𝑗, 𝑐) in 𝑆𝑖 do
89 for (𝑠,𝑚) in 𝑐.tok do
90 send𝑖, 𝑗 (token, 𝑠, 𝑐 .rck,𝑚)
91 requestSlots𝑖 (𝑗)
92 for (𝑗, 𝑐) in 𝑅𝑖 do
93 send𝑖, 𝑗 (slots, 𝑐 .sck, 𝑐 .rck, 0)

Algorithm 1: Exon Algorithm
45

CHAPTER 3. EXON PROTOCOL

Definition 1 (Slot). A slot with id (𝑗, 𝑖, 𝑠, 𝑟) represents the obligation of node 𝑖 to deliver a message from
𝑗 tagged by this id, or for node 𝑗 to explicitly waive this obligation.

A (𝑗, 𝑖, 𝑠, 𝑟) slot is kept at node 𝑖 as a 𝑗 entry in the 𝑅𝑖 map, having rck = 𝑟 and slt containing 𝑠.
Definition 2 (Envelope). An envelope with id (𝑖, 𝑗, 𝑠, 𝑟) represents the option (but not the obligation)

of node 𝑖 to generate a token with this same id (consuming the envelope) to which a user message is

associated

An (𝑖, 𝑗, 𝑠, 𝑟) envelope is kept at node 𝑖 as a 𝑗 entry in the 𝑆𝑖 map, having rck = 𝑟 and env containing
𝑠. For uniformity and compactness of presentation, this env field is a list of integers, when an actual

implementation would need only a pair of integers, as this list always contains a contiguous sequence.

Definition 3 (Token). A token with id (𝑖, 𝑗, 𝑠, 𝑟) associated with user message𝑚, created from an enve-

lope of this same id, represents the obligation of node 𝑖 to request 𝑗 to deliver message𝑚 until acknowl-

edged.

An (𝑖, 𝑗, 𝑠, 𝑟) token associated with user message𝑚 is kept at node 𝑖 as a 𝑗 entry in the 𝑆𝑖 map, havingrck = 𝑟 and tok mapping 𝑠 to𝑚.

3.4.2 Messaging Steps

We now present the four main messaging steps of Exon by referring to Algorithm 1. For simplicity, we

assume the communication is occurring between a sender node “𝐴” and a receiver node “𝐵”. To ease

tracking the steps of Algorithm 1, we added Figure 14.

Suppose that node 𝐴 and node 𝐵 are already in communication with other nodes, and as a result, their

clocks (𝑐𝑘) are 30 and 20, respectively. Therefore, there is a formula must be calculated to know how

many slots should be requested. The formula is as follows:

𝑛 = 𝑁 +
��msg�� − |env|

• 𝑁 , is the number of standby slots that should be presented in Node A.

•
��msg��, is the number of messages in the message queue that needs slots.

• |env|, is the number of available envelopes that could be used to create tokens for the queued

messages.

Furthermore, assume that the number of slots in advance is 𝑁 = 4. Additionally, there is only one

message in the message queue (msg), and no envelopes have been created at node 𝐴 yet, therefore,

𝑛 = 𝑁 +
��msg�� − |env| = 4 + 1 − 0 = 5 , window 𝑛 = 5.

46

3.4. THE ALGORITHM

Node A, ck=30 Node B, ck=20

EOSend𝐴 (𝐵,𝑚)
𝑆𝐴 [𝐵] .msg = [𝑚]

𝑆𝐴 [𝐵] {sck = 30, rck = 0}
(reqslots, 30, 5, 30)

𝑆𝐵 [𝐴] .slt = (30, 31, 32, 33, 34)
𝑆𝐵 [𝐴] {sck = 35, rck = 20}(slots, 30, 20, 5)

𝑆𝐴 [𝐵] .env = (30, 31, 32, 33, 34)
𝑆𝐴 [𝐵] .env = (, 31, 32, 33, 34)

𝑆𝐴 [𝐵] .msg = []

𝑆𝐴 [𝐵] .tok[30] = [𝑚]
𝑆𝐴 [𝐵] {sck = 35, rck = 20}

(token, 30, 20,𝑚)

𝑆𝐵 [𝐴] .slt. remove(30)
deliver𝐵 (𝑚)(ack, 30, 20)

𝑆𝐴 [𝐵] .tok. remove(30)
time

Figure 14: Exon step-by-step example for node A communicating with node B.

3.4.2.1 Step 1 - Requesting Slots 15

Step 1. Requesting Slots: Sender node 𝐴 does not hold a previous S-record for receiver node 𝐵.

Consequently, the former creates an S-record for 𝐵 and requests “𝑛” slots from 𝐵 via reqslots.

The function EOSend𝐴 (𝐵,𝑚) is initially invoked at node 𝐴 to initiate a payload transmission to node

𝐵. Subsequently, node 𝐴 generates an S-record (sender-side half-connection) (line 24: 𝑆𝑖 [𝑗] := S{sck :
𝑐𝑘𝑖, rck : 0,msg : [𝑚], env : [], tok : ∅}) for node 𝐵 as it is the first time the former is sending

data to the latter. The message content, i.e., the payload “m”, is enqueued in a message queue msg.
Subsequently, node A invokes the function requestSlots at line 25.
In the requestSlots function, the value of the variable “n” is determined by subtracting the number of
available envelopes from the sum of N (the number of envelopes in advance) and the number of messages

in the message queue “msg”. If n is greater than zero, a reqslots message is sent with certain values.

However, if there are no tokens or messages in the message queue, a different set of values is sent in the

reqslots message:

47

CHAPTER 3. EXON PROTOCOL

Figure 15: Assigns values to the S-record elements, calculates “n”, and sends a reqslots message.

• In the first case, when “n” is greater than zero, the reqslots message includes the variables sck
(sender clock), “n” (number of slots), and “l” (the Garbage Collection frontier, which guides node

𝐵 in removing old slots that node 𝐴 has no tokens for).

The value of “l” is determined based on one out of three conditions. The first condition where “l”

is assigned the lowest token number if there exist tokens for node 𝐵. The second condition where

“l” is set to the number of the first envelope if there are no tokens for node 𝐵. The third condition

where “l” equal to sck. The three conditions will be detailed and illustrated late in section 3.6.2.1.
• In the second case, when “n” is not greater than zero and there are no tokens or messages in

the message queue, this occurs “periodically” (line 87) when node 𝐴 dispatches all its tokens and

already possesses N envelopes. The purpose is for node 𝐵 to remove the R-record of node 𝐴 after

a given amount of time. In this case, a reqslots message is sent with sck, “n” set to zero, indicating
that the node is not requesting slots, but this is for garbage collection purposes, and “l” is set to

sck. When the reqslots message reaches node 𝐵, all of the slots will be removed based on sck
(line 53: 𝑐.slt := {𝑚 ∈ 𝑐.slt|𝑚 ≥ 𝑙}), and now that there are no slots, node 𝐵 can remove the

R-record of node 𝐴 safely.

Message Loss/Duplication Message loss and duplication can occur due to various factors and con-

ditions within a communication system. These issues may arise from network congestion, hardware

failures, software glitches, or other unforeseen circumstances.

Assuming that the reqslots message is lost, the protocol incorporates a retransmission mechanism during

the “periodically” phase to mitigate such occurrences. In this process, the protocol checks each node to

determine if there are any pending tokens to be sent. Subsequently, it invokes the requestSlots function
(lines 88-91), as seen below:

Within the requestSlots function, if there are new messages enqueued for transmission, a new reqslots

message is generated. It is important to note that this retransmission does not impact the correctness of

the previous reqslots message. This is because, at the receiving end, the creation of slots is performed

using the union operation, which is associative.

48

3.4. THE ALGORITHM

88 for (𝑗, 𝑐) in 𝑆𝑖 do
89 for (𝑠,𝑚) in 𝑐.tok do
90 send𝑖, 𝑗 (token, 𝑠, 𝑐 .rck,𝑚) ;
91 requestSlots𝑖 (𝑗) ;

reqSlots(30, 5, 30) N=4, sck=30, rck=20
 msg { m1 }
 env { }
 tok { }

Node A

N=4, sck=35, rck=20

 slt { 30, 31, 32, 33, 34 }

Node B

slots(30, 20, 5)

reqSlots(30, 6, 30) N=4, sck=30, rck=20
 msg { m1, m2 }
 env { 30, 31, 32, 33, 34, 35 }
 tok { }

N=4, sck=35, rck=20

 slt { 30, 31, 32, 33, 34, 35 }
slots(30, 20, 6)

Time

Figure 16

To illustrate this point clearly, as shown in the figure 16, let us consider a scenario where node A needs to

send a message, denoted as m1, to node B for the first time. At this point, neither envelopes nor tokens

exist. Message m1 is queued in the message queue “msg”.

Subsequently, node A initiates a request for n=5 slots from node B. Node B responds by creating the

requested 5 slots. However, the slots message gets lost in transit.

Simultaneously, another message, m2, is added to the message queue. As time progresses, periodically

(as indicated in line 91 by requestSlots𝑖 (𝑗)), the requestSlots function is invoked. In this instance,

the calculation of n results in a value of 6. Consequently, the reqslots message, indicating the need for 6

slots, is dispatched to node B.

Now, since node B had already created 5 slots for node A previously, upon receiving another reqslots

message specifying n=6, the “union” abstract operation will simply append the sixth slot to the slt queue.
In the event of duplicate reqslots messages, where slots with the same sequence are already present, the

condition at line 55 (𝑠 +𝑛 > 𝑐.sck) will not hold true since the sck is already incremented. Consequently,
no new slots will be created. Instead, the protocol will simply send the previously generated slots with the

same sequence (line 58: send𝑖, 𝑗 (slots, 𝑠, 𝑐 .rck, 𝑛)). This is done to prevent the occurrence of duplicate
reqslots messages. However, if the slots message is lost, this mechanism allows for the possibility of

resending the slots message.

49

CHAPTER 3. EXON PROTOCOL

Figure 17: Assigns values to the R-record elements, modifies the clocks, creates slots, and sends a slots
message.

3.4.2.2 Step 2 - Sending Slots 17

Step 2. Sending Slots: Node 𝐵 creates the requested slots and sends them back to 𝐴. If 𝐵 has a

prior record for 𝐴 with outdated or consumed slots, it checks if garbage collection can be done.

Upon receiving the reqslots message (line 48: receive 𝑗,𝑖 (reqslots, 𝑠, 𝑛, 𝑙)), node 𝐵 first checks if there

exists a receiving record R-record (receiver-side half-connection) for node 𝐴 from a prior communication.

If not, node 𝐵 proceeds to instantiate the R-record for node 𝐴 (line 50: 𝑅𝑖 [𝑗] := R{sck : 𝑠, rck :

𝑐𝑘𝑖, slt : ∅}). In the R-record at node 𝐵, the variable sck is assigned the received clock “s” from node 𝐴.

Furthermore, the variable rck is assigned the global clock ck as an incarnation number, and subsequently
the global clock ck incremented. And of course, an empty slots (slt) set is created.
The assignment of the variable rck to the global clock ck as an incarnation number serves the purpose

of uniquely identifying the current incarnation or version of the system. By setting rck to ck, we establish
a clear link between the incarnation number and the global clock, making it easier to track and manage

different versions or states of the system.

Subsequently incrementing the global clock ck is done to ensure that each incarnation of the system has

a distinct identifier. This incrementation signifies a transition to a new state or version of the system,

where ck reflects the most up-to-date incarnation. In essence, it helps maintain chronological order and
provides a basis for recognizing when changes or updates occur in the system.

If node 𝐵 is already has a previous communication with node 𝐴 and has an R-record for it, therefore, it

needs to verify whether any slots are still available and not yet removed for that node. This situation may

arise if node 𝐴 had requested slots in the past but did not utilize them and it removes the envelopes of

those slots and advanced the clock.

This scenario occurs when node𝐴 intends to retire/quit. At that time, it sends all available tokens (if any)

and invokes the requestSlots function (lines 88-91).
In this particular situation, within the requestSlots function, the value of “n” will be zero since there are
no queued messages, but there are “N” envelopes available. Thus, we have 𝑛 = 𝑁 − 𝑁 (as there are

N standby envelopes were requested in advance). As mentioned earlier, a reqslots message will be sent

with 𝑛 = 0. Subsequently, the clock 𝑐𝑘 advances, and the S-record of node 𝐵 is removed from node 𝐴,

50

3.4. THE ALGORITHM

88 for (𝑗, 𝑐) in 𝑆𝑖 do
89 for (𝑠,𝑚) in 𝑐.tok do
90 send𝑖, 𝑗 (token, 𝑠, 𝑐 .rck,𝑚) ;
91 requestSlots𝑖 (𝑗) ;

this will be explained in detail at section 3.5.2.2. However, due to a network failure, this reqslots message

might get lost on its way to node 𝐵. In such a scenario, the slots will be retained at node 𝐵 for future

communication with node 𝐴.

Considering the aforementioned information, the slots below the frontier “l” will be removed (line 53:

𝑐.slt := {𝑚 ∈ 𝑐.slt|𝑚 ≥ 𝑙}, keep the slots greater than or equal to l). This action helps streamline the
slot management process, ensuring that only relevant slots are retained for potential future communica-

tion.

Next, node 𝐵 evaluates whether the summation of the received sck (𝑠) and the requested number of slots
(𝑛) is greater than its local sck, in order to determine whether the message is a duplicate or intended for
garbage collection purposes. Node 𝐵 creates the requested slots (line 56: 𝑐.slt. union({𝑐.sck, . . . , 𝑠 +
𝑛 − 1})) and sets the lower limit for the next range of slots to be created (line 57: 𝑐.sck := 𝑠 + 𝑛). The
creation of slots involves adding a range of numbers starting from the current clock sck up to 𝑠 + 𝑛 − 1.
Once the slots are created, node 𝐵 sends them (line 58: send𝑖, 𝑗 (slots, 𝑠, 𝑐 .rck, 𝑛)) by transmitting one
message:

• the sender clock “𝑠” received from node 𝐴, thereby enabling node 𝐴 to verify that the requested

slots are based on its sck,
• the incarnation number rck (node 𝐵 receiver clock), and

• the variable 𝑛, denoting the number of created slots.

Message Loss/Duplication In the case of a lost slots message, the protocol includes a mechanism

to address this scenario. The sender will retransmit a reqslots message at a later time, triggering the

receiver to send the corresponding slots message.

On the other hand, if a slots message is duplicated, it will be discarded to prevent unnecessary duplication.

This is achieved through the use of the condition 𝑠 = 𝑆𝑖 [𝑗] .sck (line 64) which ensures that the duplication
is avoided. The reason for this is that the sck has already been incremented from the previous slots

message. By checking if the slot sequence number (s) matches the sck, the protocol can identify and

discard duplicate slots messages effectively.

51

CHAPTER 3. EXON PROTOCOL

Figure 18: Modifies the clocks, creates envelopes, creates a token from the envelopes, associates the
message “m” to it, and sends a token message.

3.4.2.3 Step 3 - Sending Token 18

Step 3. Sending Token (a payload𝑚 encapsulated in it): Node 𝐴 creates a token from an envelope,

associates a message𝑚 to it, and sends it.

Subsequently, node 𝐴 receives the slots message (line 61: receive 𝑗,𝑖 (slots, 𝑠, 𝑟 , 𝑛)) comprising the base
sender clock 𝑠, the receiver clock 𝑟 denoting the incarnation number, and the number of created slots

𝑛. Node 𝐴 then verifies whether the received slots message is based on the sender clock (sck) (line 64:
𝑠 = 𝑆𝑖 [𝑗] .sck) to avoid duplicates. Next, node 𝐴 synchronizes the local receiver clock rck by assigning
the received 𝑟 to it (this step is essential so that both nodes has the same incarnation number), creates

envelopes (line 67: 𝑐.env. append([𝑠, . . . , 𝑠 + 𝑛 − 1]), as for the slots, adding a range of numbers

starting from the current clock sck up to 𝑠 + 𝑛 − 1), and advances the sender clock sck by 𝑛.
At this time, it checks if there are any messages in the message queue and an available envelope (line 69:

𝑐.env ≠ [] and 𝑐.msg ≠ []), node𝐴 dequeues an envelope (from env), dequeues a message from the

message queue (msg), creates a token by adding the envelope number to tok and then encapsulates the
message𝑚. After that it can send a token message (line 73: send𝑖, 𝑗 (token, 𝑒, 𝑐 .rck,𝑚)) that comprises
the envelope number “𝑒”, the incarnation number rck, and the encapsulated message “𝑚”.

During this stage, node 𝐴 performs a series of checks and operations. Firstly, it verifies if there are any

messages in the message queue and an available envelope (line 69: 𝑐.env ≠ [] and 𝑐.msg ≠ []).
If both conditions are met, node 𝐴 dequeues an envelope from env and retrieves a message from the

message queue, stored in msg. Subsequently, it generates a token by combining the envelope number
with tok and encapsulates the message𝑚. Once these steps are completed, node 𝐴 transmits a token

message (line 73: send𝑖, 𝑗 (token, 𝑒, 𝑐 .rck,𝑚)). This token message consists of the envelope number 𝑒,
the incarnation number rck, and the encapsulated message𝑚.

If the sender exhausts all available envelopes while messages remain in the queue, it requests additional

slots. Moreover, if the message queue becomes empty, the requestSlots function is invoked (line 74:

requestSlots𝑖 (𝑗)) to request additional slots in advance and ensure that 𝑁 envelopes are available for

52

3.4. THE ALGORITHM

Figure 19: Removes the slot, delivers “m”, and sends an ack message.

Figure 20: Removes the token.

future EOSends.
Message Loss/Duplication Token loss is addressed through the retransmission of tokens during the

“periodically” operation. If a token message is lost, it will be resent in subsequent periodic cycles, ensuring

its delivery to the intended recipient.

Token duplication is addressed in a different manner. Since each token corresponds to a single slot, and

the slot associated with the duplicate token has already been removed due to the previous token, the

duplicate token itself is discarded. However, an ack message is sent to the sender that has no effect since

the token is already removed from the previous ack.

3.4.2.4 Step 4 - Processing token and Sending ack 19

Step 4. Receiving a token message, payload delivery and sending ack: Node 𝐵 receives a token

message from node 𝐴, delivers its payload if there is a corresponding slot, and deletes the slot.

Node 𝐵 then sends an ack to 𝐴.

Upon receipt of the token message (line 75: receive 𝑗,𝑖 (token, 𝑠, 𝑟 ,𝑚)), node 𝐵 receives three pieces of

information: 𝑠 (the token number), 𝑟 (the rck of node 𝐴), and the payload 𝑚. Subsequently, node 𝐵

verifies that the received token message is not from a previous incarnation (has the same incarnation

number as the rck), and that it has a corresponding slot in slt. If these conditions are met, the slot can be
safely removed from node 𝐵, and the payload𝑚 can be successfully delivered to its intended destination

layer.

53

CHAPTER 3. EXON PROTOCOL

Following this, an ack message is sent to node𝐴 (line 81: send𝑖, 𝑗 (ack, 𝑠, 𝑟)) to instruct it to safely remove
the token (line 86: 𝑐.tok. remove(𝑠)) 20.
Message Loss/Duplication ACK duplication is not significant as the token associated with the du-

plicated ACK has already been removed. Therefore, the duplicated ACK is discarded without any impact.

However, in the event of an ACK message loss, the ACK itself is not retransmitted. Instead, the cor-

responding token is retransmitted by the sender. Upon receiving the retransmitted token, the receiver

generates and sends an ACK message back to the sender.

3.4.3 The “periodically” in the protocol

In addition to the aforementioned operations, there is the retransmission part that is essential in our

protocol, represented in the “periodically” (lines 87-93):

87 periodically
88 for (𝑗, 𝑐) in 𝑆𝑖 do
89 for (𝑠,𝑚) in 𝑐.tok do
90 send𝑖, 𝑗 (token, 𝑠, 𝑐 .rck,𝑚)
91 requestSlots𝑖 (𝑗)
92 for (𝑗, 𝑐) in 𝑅𝑖 do
93 send𝑖, 𝑗 (slots, 𝑐 .sck, 𝑐 .rck, 0)
This section in the algorithm indicates that, after a specific period of time, depends on the message type

(e.g. reqslots, slots, token, ack), a specific action takes place. In this case, the action involves node 𝐴

sending all the tokens it has accumulated and calling the requestSlots function, towards all the nodes it
has communicated with. Along with the tokens, node 𝐴 also transmits the slots that have been allocated

for future communication.

However, it is important to note that this phase holds greater importance beyond message retransmission

alone. It is a crucial component that helps ensure eventual communication and stabilization among the

nodes in the system. The “periodically” feature in the Exon protocol plays a vital role in promoting stability,

synchronization, and the eventual achievement of node obliviousness, enabling the protocol to function

effectively even in the face of network challenges and uncertainties.

In detail, a reqslots message could be lost, after a specific time (the time amount discussed in chapter 4),

the requestSlots function will be called, in order to re-send a reqslots message that may contain the same
values as the previous reqslots, or other values, and this could happen if new messages queued to be sent.

If the slots message get lost, however, the retransmission of the slots message at line 93 send𝑖, 𝑗 (slots, 𝑐 .sck, 𝑐 .rck, 0)
is not designed to retransmit the lost slots message, but for garbage collection and closing connection

54

3.4. THE ALGORITHM

purposes. However, if a slots message get lost, the sender, after a specific timeout, will retransmit the

reqslots message, which in turn resend the updated slots (if the values of the reqslots message changed)

in a slots message (line 58).

The lost token messages will be sent again, for each node, lines 88-90. Also, the practical timeout for

resending the token messages will be discussed in chapter 4.

For the sending slots messages (lines 92-93),

for (𝑗, 𝑐) in 𝑅𝑖 dosend𝑖, 𝑗 (slots, 𝑐 .sck, 𝑐 .rck, 0)
as mentioned previously, is not designed to resend the lost slots message, but for closing connection

purposes. This process occurs at regular intervals, but it takes a significant amount of time to initiate,

especially when there has been a period of inactivity between nodes. In such cases, the receiving node,

which has allocated slots for a particular node, instructs that node to terminate the connection (specifically,

the half connections) if it has no messages to send. The initial content of the slots message includes the

sck value as the first element and the rck value as the second element. These values serve the purpose
of synchronization, indicating to the sender the most up-to-date clock information.

However, the final value in the message is deliberately set to zero. This serves as a signal to the sender

node, indicating that this is not the lost slots message. In this case, the sender node will not generate

new envelopes. Instead, the requestSlots function will be invoked at line 74. This action subsequently
calculates ‘𝑛’, resulting in a value of zero. If the sender node possesses neither tokens nor messages

in its message queue (line 44: 𝑐.tok = ∅ and 𝑐.msg = []), it proceeds to remove the S-record from

the node. This is done after sending a reqslots message with the intention of closing the half-connection

(thus removing the R-record). The reqslots message contains three values: the first being sck, the second
being ’𝑛 = 0’, and the third being another sck. This third value serves to instruct the receiving node to
clear all the slots below the specified ‘𝑙 ’ (line 53: 𝑐.slt := {𝑚 ∈ 𝑐.slt|𝑚 ≥ 𝑙}). It also checks whether
the slots are empty, and if so, it removes the R-record (as indicated in lines 59-60):

if 𝑐.slt = ∅ then
𝑅𝑖 . remove(𝑗) ;

.

It is crucial to highlight that the “periodically” mechanism plays a pivotal role in ensuring stability within

the protocol. The synchronization of clocks, as embedded in these communication exchanges, serves as

a vital step in assessing the feasibility of removing half-connections. Removing half-connections, in turn,

play a significant role in maintaining the node’s obliviousness.

55

CHAPTER 3. EXON PROTOCOL

3.5 Delving into the Intuition behind Key Aspects

3.5.1 Requesting Slots, and Envelopes on Standby

It is essential to highlight the significance of requesting slots from other nodes in advance and maintaining

envelopes as standby resources. By pro-actively requesting envelopes, nodes can ensure a continuous

supply of tokens, enabling smooth communication and message propagation throughout the system.

This approach minimizes the risk of message transmission delays or disruptions caused by insufficient

envelope availability.

By keeping a standby pool of envelopes, nodes can rapidly respond to message requests without waiting

for the creation or allocation of new envelopes. This proactive approach enhances the efficiency and relia-

bility of the system, as nodes can quickly access and utilize envelopes as needed, eliminating unnecessary

waiting periods or potential bottlenecks, and ensuring a smooth and uninterrupted flow of messages be-

tween nodes, unless standby envelopes are utilized, therefore the system would be subject to unavoidable

waiting periods.

The allocation of standby envelopes and the determination of the number of requested slots can be de-

scribed by the formula 𝑛 = 𝑁 +
��𝑐.msg�� − |𝑐.env|. In this equation, n represents the total number of

requested slots that equals to, N corresponds to the number of standby envelopes available, plus
��𝑐.msg��

denotes the count of messages currently queued, minus |𝑐.env| signifies the number of available en-

velopes.

The process of requesting slots for message transmission follows a specific pattern. Initially, when an

EOsend command is issued to send a message, a request for slots is initiated. However, it is important

to note that this slot request (line 25: requestSlots𝑖 (𝑗)) is made only if the sending node has no S-record
for the receiving node. After that, when additional messages are to be sent, the request for slots is not

repeated.

Once the initial request for slots is made (line 25: requestSlots𝑖 (𝑗)), the subsequent messages are not
immediately sent. Instead, they are enqueued in the message queue, awaiting the arrival of the requested

slots. The message queue serves as a temporary storage space for messages until the required slots

are received. Once the slots arrive, the corresponding envelopes are created, and tokens are generated.

These tokens are then associated with the respective messages.

By adopting this approach, nodes can optimize the efficiency of slot allocation. Rather than requesting

slots for each individual message, the system minimizes the frequency of slot requests, reducing unneces-

sary overhead. Instead, messages are enqueued and sent as soon as the requested slots arrive, allowing

for a streamlined and efficient transmission process.

56

3.5. DELVING INTO THE INTUITION BEHIND KEY ASPECTS

3.5.1.1 Successive Requesting of Slots

The process of requesting slots follows a specific condition. Initially, when there are no available envelopes,

slots are requested (line 25: requestSlots𝑖 (𝑗)). However, if envelopes are already accessible, the request
for slots will occur when the number of available envelopes is one less than the standby envelopes number

N (|𝑐.env| = 𝑁 −1) (line 33: requestSlots𝑖 (𝑗)). Importantly, this request for slots operates in a passive
manner and does not hinder the sending of messages when envelopes are readily available.

By requesting slots only when the number of available envelopes reach a specific threshold, the system

optimizes efficiency and minimizes unnecessary slot requests. This approach ensures that the system

remains responsive while avoiding excessive overhead.

It is worth noting that the request for slots is triggered when the number of available envelopes reaches

N - 1, rather than when it is simply less than N. This design ensures that the EOsend command is not

issued for every message sent, optimizing the efficiency of the system. For instance, if the number of avail-

able envelopes is 1000 and EOsend is called 500 times, the request for slots will be made only once at

that point when |𝑐.env| reaches 999 (N - 1), and this will maintain the availability of N standby envelopes.

The algorithm has the capability to function without this feature, but its overall significance and benefits lie

in its ability to avoid one round-trip time (1 RTT). By pro-actively requesting slots, even when envelopes are

present, the system ensures a continuous and uninterrupted flow of messages. This avoids the potential

delay caused by the need to request slots separately when they are eventually required.

By incorporating this feature, the algorithm optimizes message transmission efficiency by eliminating the

need for additional round trips solely for slot requests. It streamlines the process, reducing potential

latency and enhancing the overall performance of the system.

3.5.2 Incrementing Global Clock ck
The global clock, represented as ck, serves a crucial purpose in preventing message duplication by as-

signing it to two different clocks: rck as the incarnation number in the receiving half-connection, and sck
as the starting point for requested slots.

By utilizing the incarnation number rck in the receiving half-connection, nodes can distinguish between

different instances or incarnations. This ensures that duplicate messages from previous incarnations are

detected and discarded, maintaining message integrity and avoiding redundant processing.

The clock sck acts as a reference point for requesting slots. When nodes need to request slots for message
transmission, they use sck as the starting point. This helps in managing the allocation of slots effectively
and avoiding conflicts or overlaps.

57

CHAPTER 3. EXON PROTOCOL

This distinctive approach of utilizing one global clock per node sets our protocol apart from others. Un-

like other protocols that require maintaining extensive logs or complex synchronization mechanisms, our

protocol simplifies the process by relying on a single global clock for each node.

By utilizing a single global clock, the need for maintaining exhaustive log entries or complex synchronization

mechanisms are eliminated. The incorporation of incarnation numbers and slot request clocks derived

from the global clock ensures effective message duplication prevention and resource allocation without

the overhead of additional log management.

This approach not only simplifies the implementation and maintenance of our protocol but also enhances

its efficiency and performance. The reliance on a single global clock per node reduces complexity, mini-

mizes resource consumption, and ensures a more streamlined and reliable communication process.

3.5.2.1 Receiving a New Connection

When a new connection arrives from another node, the receiving node increments its clock, signifying the

start of a new state or incarnation. This incrementation is done by incrementing the global clock, denoted

as 𝑐𝑘 , by one.

The incrementation by one serves a specific purpose in maintaining a consistent and monotonically in-

creasing clock value across the network. Each time a new connection is established, incrementing the

clock by one ensures that the new state or incarnation is assigned a unique and higher clock value com-

pared to the previous state.

By incrementing the clock by one, the receiving node effectively differentiates the new connection from

the previous ones and ensures that subsequent messages or events associated with the new connection

is assigned a higher clock value.

3.5.2.2 Closing Connection

Closing a connection initiated from the sender, as the receiver is the one that makes itself “available”, and

will typically have slots, that cannot decide to throw away. If at a moment, the sender has no messages are

pending (in the message queue) nor inside tokens, then it decides to close the sender side connection for

the other node. Hence, the invocation of the requestSlots function at line 91, which occurs periodically,
serves the purpose of checking if there are any pending messages or tokens. If no messages or tokens

are present, it sends a reqslots message with a value of n=0 (line 45).

By requesting slots with a value of n = 0, the sender node effectively communicates its intention to close the

connection to the receiving node. This request signifies that the sender no longer requires any additional

slots for message transmission. Additionally, the sender instructs the receiving node to remove all slots

below the current slot clock (sck) indicated in the request.

Once the reqslots is sent, the sending node proceeds to increment its clock, signifying the transition to a

new state or incarnation. This incrementation is based on the following formula: 𝑐𝑘 = max(𝑐𝑘, 𝑠𝑐𝑘).
58

3.5. DELVING INTO THE INTUITION BEHIND KEY ASPECTS

The formula ensures that the sending node’s clock value is updated to the maximum value between its

current clock value (𝑐𝑘) and the sender clock value (𝑠𝑐𝑘) specified in the reqslots message. By taking

the maximum of these two values, the sending node ensures that its clock is always set to a value that is

at least as high as the sender clock. Using the max function instead of simply adding 𝑠𝑐𝑘 to 𝑐𝑘 allows

the sender node to handle scenarios where it may be communicating with multiple nodes simultaneously,

rather than just the current receiving node. By taking the maximum value between 𝑐𝑘 and 𝑠𝑐𝑘 , the sender

node ensures that its clock is set to the highest value seen across all incoming slot clocks.

This mechanism guarantees proper differentiation and synchronization between nodes, as subsequent

messages or connections from the sender will be associated with a higher clock value.

It is important to note that envelopes, as they do not contain any payload, can be discarded without impact.

Only token entries need to be retained until acknowledgment is received.

3.5.3 Closing Connection reqslots Message Loss

In the event of a Closing Connection reqslots message loss, the protocol handles it differently compared

to regular message losses. When a regular message is lost, it is resent periodically until it reaches

the intended recipient. However, in the case of a reqslots message that is lost during the closing of a

connection (as indicated in lines 45-47), there is no retransmission of the lost message.

As a result, the S-record (sender-side half-connection record) associated with that connection is removed

at the sender node (line 47). On the other hand, the R-record (receiver-side half-connection record) at the

receiving node is still maintained, preserving the slots. However, the receiving node will initiate periodic

resending of the slots.

When the sender node receives a slots message from the receiving node, it realizes that it no longer has

an S-record for that specific node (line 62). In response, the sender node sends a new reqslots message

to the receiving node. This new reqslots message contains the current clock value 𝑐𝑘 as the slot clock

(𝑠 = 𝑐𝑘), a request for zero slots (𝑛 = 0), and the last clock value 𝑐𝑘 as the value of 𝑙 (line 53). By

specifying 𝑙 = 𝑐𝑘 , the sender node signals to the receiving node to remove all slots below this clock value.

As a result of this process, the receiving node removes the slots below 𝑙 = 𝑐𝑘 (line 53), leading to an

empty slot configuration. Subsequently, the sender node’s R-record is removed from the receiving node

(lines 59-60), finalizing the closure of the connection.

In summary, when a Closing Connection reqslots message is lost, there is no retransmission. The receiving

node periodically resends the slots, prompting the sender node to send a new reqslots message with

specific parameters. This ensures the removal of slots below a certain clock value, ultimately leading to

the removal of the sender node’s R-record at the receiving node, closing the connection.

59

CHAPTER 3. EXON PROTOCOL

ck = 50

 env { 51, 52, 53, 54 }
 tok { }

Node A

ck = 61

Node B

N=4, sck=55, rck=60
S-record[B]

N=4, sck=55, rck=60
R-record[A]

 slt { 51, 52, 53, 54 }

Time

Figure 21: Node A sending messages to node B

ck = 51

 env { 51, 52, 53, 54 }
 tok { }

Node A

ck = 61

Node B

N=4, sck=55, rck=60
S-record[B]

N=4, sck=55, rck=60
R-record[A]

 slt { 51, 52, 53, 54 }

 env { 62, 63, 64, 65 }
 tok { }

N=4, sck=61, rck=50

S-record[A]
N=4, sck=61, rck=50
R-record[B]

 slt { 62, 63, 64, 65 }

Time

Figure 22: Node A and node B exchanging messages

3.6 Advanced Properties

3.6.1 Soft Half-connections

In the Exon protocol, connections play a crucial role in organizing message communication and achieving

performance optimizations. Typically, connections are established between sender and receiver pairs to

group messages and facilitate efficient delivery. However, the Exon protocol introduces the concept of

“soft half-connections” (s-connection), which provides a flexible approach to handling message grouping.

We have what we call soft- half-connections (s-connection), that group messages from the same sender-

receiver pair, created on-demand if messages are requested to be sent. This means that if node A wants

to send a message to node B, node A only needs to create an S-record for node B without the need for an

R-record for it. Similarly, if node B is receiving a message from node A, it creates an R-record for node A

without the need for an R-record for it.

60

3.6. ADVANCED PROPERTIES

As illustrated in Figure 21, when Node A transmits messages to Node B, only an S-record for Node B exists

at Node A, while Node B maintains only an R-record for Node A. However, as demonstrated in Figure 22,

when Node B initiates message transmission to Node A, it generates an S-record for Node A, and Node A

in its turn establishes an R-record for Node B.

The s-connection offers performance benefits by dynamically managing message grouping without the

overhead of establishing and maintaining full connections. It allows for efficient organization and pro-

cessing of messages while avoiding unnecessary connection-related operations. Moreover, it is essential

to emphasize that the s-connection can be intelligently discarded when it is no longer needed, a feature

crucial for optimizing resource usage.

Furthermore, to optimize resource usage, the s-connection can be discarded if there are no pending

unacknowledged messages associated with it, after a certain non-short timeout. This approach ensures

that resources are released when they are no longer needed, contributing to the protocol’s efficiency.

3.6.2 Obliviousness

In a general context, “obliviousness” refers to a state of being unaware, forgetful, or inattentive to certain

details, events, or information. It implies a lack of consciousness or knowledge about specific aspects or

occurrences.

In the context of messaging protocols, “obliviousness” refers to a property wherein nodes within the pro-

tocol are designed to operate without retaining or relying on specific information about other nodes for an

extended period. This means that nodes can remove or discard information associated with other nodes

without adversely affecting the correctness or functionality of the protocol.

Exon protocol achieves exactly-once correctness without the need to retain connection-related information

indefinitely. Instead, it only maintains a single integer per node as permanent state when no connections

are present. The “integer” in this context does not necessarily imply the standard integer data type; it can

be any increasing numerical value, such as a long integer or a big integer.

In the following, we delve deeper into the core mechanisms that make Exon protocol a robust and efficient

messaging solution. We will discuss key aspects such as “Removing Unused Slots”, where we explore how

Exon optimizes resource utilization by eliminating unnecessary slots; “Efficient Connection Removal and

Clock Incrementation”, which outlines the protocol’s streamlined approach to connection management

and clock synchronization; “Obliviousness Despite Message Loss”, where we discuss how Exon maintains

node obliviousness while handling message loss scenarios; and “Self-Stabilizing Against Old Duplicates”,

where we unveil Exon’s techniques for ensuring stability even in the presence of older duplicate messages.

Each of these aspects contributes to the protocol’s remarkable capabilities and reliability.

61

CHAPTER 3. EXON PROTOCOL

ck = 50

 env { 52, 53, 54 }
 tok { 51 }

Node A

ck = 61

Node B

N=4, sck=55, rck=60
S-record[B]

N=4, sck=55, rck=60
R-record[A]

 slt { 51, 52, 53, 54 }

(REQSLOTS, 55, 1, 51)

Figure 23: Node A requesting slots from node B, telling it to remove slots below 𝑙=51

3.6.2.1 Removing Unused Slots

One aspect of the protocol is that it requests more slots than the actual number of user messages. While

it may initially seem wasteful to have unused slots, this design choice is not problematic. The reason lies

in how the protocol handles the creation of tokens. Tokens, which are associated with message payloads,

are created from envelopes. However, the protocol does not create tokens until a message payload exists.

As a result, the envelopes themselves, which are not associated with any message, can be safely removed,

if the sender wants to quit.

Each time a sender node requests slots, it conveys to the receiving node the safe frontier of slots, where

slots below than that frontier can be removed safely. The value of “𝑙” is determined based on one out of

three conditions.

Condition 1 (Line 40: 𝑙 = if 𝑐.tok ≠ ∅ then min(dom(𝑐.tok))): If tokens are present for node
𝐵, then “𝑙” is assigned the lowest token number, signifying that node 𝐵 can safely remove slots that has

no tokens for them at node 𝐴.

As illustrated in figure 23, a specific condition arises when there is a message payload to be transmitted

to node 𝐵. At this point, there are a total of 𝑁 envelopes available. The EOsend function is responsible

for dequeuing one envelope from this set to create a token, numbered as 51. This action aligns with

the condition described in line 32 (|𝑐.env| = 𝑁 − 1). Consequently, the requestSlots𝑖 (𝑗) function is

invoked (line 33).

As a result, at line 38, where the variable 𝑛 is calculated as 𝑁 +
��𝑐.msg�� − |𝑐.env|, its value becomes

one. Now, since a token with the identifier 51 exists, this sets the variable “𝑙” to 51. This informs node 𝐵

that it is safe to remove slots that are below 51 where these slots for some reason still exists.

Furthermore, this scenario may happen when receiving slots, the node enters a loop, generating tokens

and sending token messages (lines 70-73). In cases where all messages have been processed from the

message queue but envelopes still exist, the requestSlots𝑖 (𝑗) function will be invoked (line 74).
62

3.6. ADVANCED PROPERTIES

 env { 53, 54 }
 tok { }

Node A Node B

S-record[B] R-record[A]

 slt { 53, 54 }
(REQSLOTS, _ , _ , 53)

Figure 24: Node A requesting slots from node B, telling it to remove slots below 𝑙=53

Condition 2 (Line 41: else if 𝑐.env ≠ [] then 𝑐.env[0]): If there are no tokens but there are

envelopes, in this case “𝑙” is set to the lowest envelope in the sequence. Here, node 𝐴 informs node 𝐵

that it can safely remove slots below “𝑙”. A visual representation of this process is illustrated in figure 24.

Condition 3 (Line 42: else 𝑐.sck): is where there are no tokens nor envelopes, therefore “𝑙” will be
equal to sck, the receiver then can delete old slots based on this sck value.

3.6.2.2 Efficient Connection Removal and Clock Incrementation

Additionally, to ensure that the removal of a connection does not have any adverse effects on future com-

munication with the same node, and to avoid the need for keeping connections open indefinitely, the

protocol allows for the removal of connections. This removal process is achieved by incrementing the

global clock, as mentioned previously.

By incrementing the global clock when removing a connection, the protocol effectively transitions to a new

state or incarnation. This incrementation ensures that any subsequent messages or connections from the

sender to the same node will be associated with a higher clock value. As a result, the receiving node can

differentiate between messages from different incarnations and avoid any potential duplication.

This approach allows the protocol to manage connections efficiently without the need to maintain a sepa-

rate connection state for each node indefinitely. Instead, by incrementing the global clock upon connection

removal, the protocol can safely discard connection-related information while still guaranteeing the cor-

rectness of message delivery.

3.6.2.3 Obliviousness Despite Message Loss

In the Exon protocol, achieving obliviousness even in the presence of message loss is a key feature. While

there are four types of protocol messages - reqslots, slots, token, and ack - it is the loss of ack messages

63

CHAPTER 3. EXON PROTOCOL

that can impact the removal of tokens and ultimately make the protocol oblivious.

It is important to note that all four types of messages can potentially get lost in the network. However, the

protocol handles the retransmission of reqslots, slots, and token messages through the periodic execution

of the appropriate mechanisms.

However, when an ack message is lost, there is no retransmission of the ack itself. Nevertheless, the token

associated with the lost ack will be retransmitted, triggering the receiver to send an ack message back to

the sender. This ensures that all tokens can be eventually removed if the network remains available. The

removal of tokens is a critical step towards achieving obliviousness in the Exon protocol.

By designing the protocol to handle message loss and the retransmission of necessary messages, the Exon

protocol ensures that even in the face of network challenges, such as lost ack messages, the state removal

process can still be accomplished. This robustness allows the protocol to maintain its obliviousness

property and continue operating reliably in dynamic network environments.

3.6.2.4 Self-Stabilizing Against Old Duplicates

After achieving obliviousness in the Exon protocol, there is a possibility of encountering an old duplicate

message. This can lead to the creation of state elements, such as slots, that may persist for a certain

duration. However, it is important to note that the protocol exhibits a self-stabilizing behavior, gradually

returning to a state where no unnecessary or obsolete state remains.

There are four types of duplicates in the Exon protocol: reqslots, slots, token, and ack. Among these,

token and ack are easily discarded without any state creation. However, reqslots and slots can lead to the

creation of new state elements.

reqslots Duplication In the case of reqslots duplicates, the receiver node will create a new R-record

for the sending node, creating slots that are not needed. Since the sender does not have any queued

messages to send, these slots will remain unused. However, as the protocol continues to operate period-

ically, the sending of slots will eventually occur at the receiver. When the sender node receives the slots,

it will check that there is no record for that particular node since it had removed it in the past. As a result,

a reqslots message with n=0 will be sent to the receiver, instructing it to remove the unnecessary slots

and subsequently discard the associated state.

slots Duplication In the case of slots duplicates, the sender node may receive duplicate slots mes-

sages that were not requested. Upon receiving such duplicates, the sender node (that receives this

duplicate) checks if there is a record for that specific node (line 62). If no record exists, the receiver node

sends a reqslots message to the sender node with 𝑛 = 0, indicating the removal of slots

64

3.7. CORRECTNESS PROOFS

if 𝑗 ∉ dom(𝑆𝑖) thensend𝑖, 𝑗 (reqslots, 𝑐𝑘𝑖, 0, 𝑐𝑘𝑖)
.

At the receiver node, upon receiving the reqslots message, it checks if there is a record for the node

that sent the reqslots message. If no record exists, the receiver node creates an R-record for that node.

However, since 𝑛 = 0 and the “slt” is still empty, the record for that node is directly removed.

This mechanism ensures that in the case of slot duplicates, unnecessary state elements are promptly

detected and removed. By efficiently handling slot duplicates and dynamically managing the state records,

the Exon protocol achieves the obliviousness efficiently.

3.7 Correctness Proofs

In this section, we provide a proof sketch of Exon exactly-once correctness, referring to Algorithm 1. In

particular, we prove at-most-once which represents the safety property, and at-least-once, representing the

liveness property. We analyze these properties under potential message failures, i.e., loss and duplication,

demonstrating how Exon guarantees exactly-once despite such situations.

3.7.1 At-most-once

Exon is optimized for the at-most-once case by design. It achieves this through booking a slot for each

message token to be sent. As long as this association is unique, the message will be delivered at-most-

once. Consequently, the following should be proven correct: (1) Slots and tokens are unique, which

requires an increasing clock across soft-connection (a.k.a., s-connection or incarnation). This is proven

in Lemma 3.7.1. (2) Within an incarnation, the combination slot-envelope is unique. This means a slot

is created at most once at the receiver, and the corresponding envelope at the sender is created at most

once. These are proven in Lemmas 3.7.2 and 3.7.3. (3) A message payload is associated to at most one

token and one envelope (Lemma 3.7.4); and a slot is consumed once by the receiver (Prop. 1).

Lemma 3.7.1. For each node 𝑖, each receiver-side s-connection identifier rck is instantiated at most

once, whether for the same or different senders.

Proof. When a receiver-side’s s-connection record is created (upon a first message receipt), the s-connection’s

identifier rck gets assigned the node’s clock 𝑐𝑘𝑖 , that is then incremented (lines 50, 51). Since 𝑐𝑘𝑖 is al-
ways incremented across s-connections (line 46), then rck can be instantiated at most once. Under

duplication, any subsequent (duplicate or new) message will belong to this incarnation (notice that no

incarnation request exist). If the incarnation is deleted (e.g., after a long silence period), a new rck′ > rck
is assigned to the new incarnation. □

Lemma 3.7.2. Each slot (𝑗, 𝑖, 𝑠, 𝑟) is created at most once.

65

CHAPTER 3. EXON PROTOCOL

Proof. For each node 𝑖, from Lemma 3.7.1, slots created at 𝑖 for different incarnations will have different

rck values. For each incarnation with a given 𝑟 , for some sender 𝑗 , each slot (𝑗, 𝑖, 𝑠, 𝑟) is created in a range
with 𝑠 starting from the sck in the connection record, which is incremented to become one past the last
value in the range created (lines 56, 57). This makes the subsequent creations in the same incarnation

to have non-overlapping ranges and no duplicate slots are created under retransmissions. □

Lemma 3.7.3. Each envelope (𝑖, 𝑗, 𝑠, 𝑟) is created at most once.

Proof. For each node 𝑖, for each incarnation with a given 𝑟 , for some receiver 𝑗 , each envelope (𝑖, 𝑗, 𝑠, 𝑟)
is created in a range with 𝑠 starting from the sck in the connection record, which is incremented to become
one past the last value in the range created (lines 67, 68). This makes the subsequent creations in the

same incarnation have non-overlapping ranges. When an incarnation terminates (e.g., not being used for

long time, since Exon has no notion of closing connections), the node’s clock 𝑐𝑘𝑖 is made to be at least

as large as the sck in the incarnation being discarded (line 46), making subsequent incarnations have

larger starting sck value, non-overlapping with previous incarnations to the same receiver. Therefore, no
duplicate envelopes are created under retransmissions. □

Remark: different co-existing sending-side half-connection incarnations can have at some point overlap-

ping values of sck, but as they are to different receivers, the uniqueness of each envelope created is

maintained.

Lemma 3.7.4. A message payload𝑚 to be sent to 𝑗 is associated into some token (𝑖, 𝑗, 𝑠, 𝑟) at most
once.

Proof. A message payload 𝑚 is associated either immediately (lines 29-33) or later (lines 70-73) after

being queued for some time to a uniquely created envelope that is immediately consumed. In addition, a

token, associated to a single envelope and a message payload𝑚, is deleted after message delivery (line

86), which makes it impossible to associate any message to that token (including the duplicated message

itself). □

Proposition 1. A sent message payload𝑚 to receiver node 𝑗 is delivered at 𝑗 at most once.

Proof. From Lemmas 3.7.3 and 3.7.4, a message is associated to at most one token before it gets deleted.

On the other hand, Lemmas 3.7.2 and 3.7.3 prove that at most one slot is created for an envelope

(associated to a token). The proposition holds since a message is only delivered by consuming the slot

corresponding to the token holding the message (lines 79, 80). A duplicate token message will not have

a corresponding slot and will results in discarding it or sending an ACK if retained (line 81). □

Remark: in principle, deleting a token and delivering the message in lines 79 and 80 should be atomic.

Since we do not assume node crashes, we exclude this from the algorithm.

66

3.7. CORRECTNESS PROOFS

3.7.2 At-least-once

To guarantee at-least-once message delivery, we need to prove the following: (1) A sender having a buffered

message 𝑚 will not give up until receiving a corresponding slot (Lemma 3.7.5). (2) A sender having

received a slot will not give up retransmitting the corresponding token until the messages is delivered and

ACKed (Lemma 3.7.6).

Lemma 3.7.5. A sender node of message payload𝑚 will eventually receive a slots message, to send a

corresponding token.

Proof. The sender having a message to send will send a reqslots message to receive a SLOT. It however

does not know if a reqslots message is lost or delayed. Therefore, it may send the same or a new reqslots

message based on different cases: either some slots may have been received, or some EOSends are
invoked (lines 87-93). In either case, a different slot range is calculated (line 38). Notice that the protocol

will not block even if some tokens have been lost since a receiver node can still create new slots without

limits. □

Lemma 3.7.6. A receiver node of message payload𝑚 will eventually receive a token message delivering

𝑚.

Proof. The sender having a message token to send will send a token message until it receives an ACK.

The sender does not know whether a token or ack message is lost. Therefore it keeps retransmitting the

token message (lines 89,90) until an ack is received. A duplicate token will have no effect because a slot

has been already deleted at the receiver; however, the latter will resend the ack (lines 78,81). A duplicate

ack will not have effect on the sender because the first ack deletes the corresponding token at the sender

and the duplicated acks are just discarded. □

Therefore, Lemmas 3.7.5 and 3.7.6 ensure at-least-once message delivery under network loss and dupli-

cation.

We make two final notes on correctness. The first is that Exon is not blocking if a node is communicating

with many nodes since each node has its specific independent record either for sending (S record) or in

receiving (R record). The second is that the algorithm does not keep any garbage meta-data throughout

the different phases. In particular, sending the ack messages in the end is important not only to stop the

senders’ retransmissions of token messages, but also to garbage collect these delivered message tokens.

67

4

Exon-lib: an Exactly-Once oblivious library for

lightweight messaging

4.1 Introduction

Our study and experience throughout this work demonstrates the daunting task of designing for EO. This

makes it more cumbersome for developers to get the implementation right. To make the developers’ life

easier, we have introduced Exon-lib, a self contained library that implements Exon efficiently, and provides

a well defined API. To ensure correctness and efficiency, we faced many challenges that we solved through

using both fundamental as well as state of the art engineering best practices. This manifests mainly in

the implementation of modules related to Multi-Threaded Architecture, Flow Control, and Retransmission

and Timeout mechanisms.

In explaining the Exon-lib library, I will provide a comprehensive overview of its key components and why

we chose Java as the default programming language. Then, I will delve into “Node State”, explaining how

it manages and represents the state of network nodes within the system. After that, I will discuss the

“Multi-Threaded Architecture” employed by Exon-lib, highlighting its approach to concurrent processing

and resource management. Following this, I will explore “Flow Control”, explaining the mechanisms it

employs to regulate data flow and ensure efficient communication. Finally, I will delve into “Retransmission

and Timeout”, describing how Exon-lib handles message retransmissions and timeout management to

enhance the reliability of data transmission in networked environments.

4.2 Overview

The Exon-lib architecture is multi-threaded, with a main algorithm thread and a network reader thread.

Communication between threads is facilitated through the use of BlockingQueue data structures.

The Exon-lib is implemented as a Java library, it is available on GitHub [70], and it consists of approximately

68

4.3. CHOICE OF JAVA FOR IMPLEMENTATION

1245 lines of code. It consists of a node state with a clock and two maps for sender-side and receiver-side

half-connection records, a multi-threaded system with one thread for algorithm code and sending on the

network, and another thread for reading from the network. In addition to flow control mechanisms to

handle message overload scenarios. In terms of retransmission and timeout strategy, a PriorityQueue is

used to schedule events for retransmitting protocol messages, such as reqslots, slots, and token, where

each event has a specific timeout, and the PriorityQueue schedules events to be triggered in the future.

An important point to mention is that the current implementation of the middleware uses UDP for the

entire message transport and leaves message fragmentation and merging as potential areas for future

work. Also, we use IP addresses as node IDs, and all nodes use the same fixed port for receiving UDP

datagrams.

4.3 Choice of Java for Implementation

Java was selected as the primary programming language for implementing this project for several com-

pelling reasons.

Advantages:

• Widely Used: Java is one of the most widely adopted programming languages in the software

industry, top 5 based on TIOBE Index [71]. Its extensive usage signifies a robust and reliable

choice for developing a library of this nature.

• Modern Abstractions: Java offers modern and powerful abstractions that expedite the implemen-

tation process. Features such as object-oriented programming, well-defined libraries, and compre-

hensive APIs significantly contribute to faster development.

• Developer Familiarity: A substantial portion of software developers is proficient in Java. This

widespread familiarity serves as a valuable asset, facilitating collaboration and potentially enabling

future reimplementation efforts in different languages using Java as a template.

• Optimized JVM: While the Java Virtual Machine (JVM) has historically been criticized for its high

memory consumption and slower startup times, modern JVM implementations have made signifi-

cant strides in optimization [72].

One potential drawback of Java is its reputation for high resource consumption, particularly in terms of

memory usage. However, it is essential to acknowledge that with advancements in JVM technologies and

efficient memory management strategies, this concern is mitigated in modern JVM implementations.

69

CHAPTER 4. EXON-LIB: AN EXACTLY-ONCE OBLIVIOUS LIBRARY FOR LIGHTWEIGHT MESSAGING

4.4 Understanding the API

The Application Programming Interface (API) is a vital component of the Exon-lib library, designed with the

aim of simplifying communication between nodes and enhancing the developer’s experience. This section

explains the key aspects of the API, emphasizing its purpose, usage, and the developer-centric approach

adopted.

4.4.1 Why Use an API?

The Exon-lib API serves as the interface through which developers interact with the library’s functionali-

ties. It abstracts the underlying complexities of network communication and message passing, enabling

developers to focus on the core logic of their applications. By providing a standardized set of methods

and procedures, the API streamlines the development process, promotes code reusability, and ensures

consistency across applications.

4.4.2 API Overview

The Exon-lib API consists of two main components: the receiving side API and the sending side API, each

tailored to specific use cases.

4.4.2.1 Receiving side API:

EOMiddleware Initialization: Developers can initiate the EOMiddleware by calling EOMiddleware.start(PORT).

This step establishes the receiving side communication channel and sets the port for incoming connec-

tions.

Message Reception and Forwarding: The receiving side listens for incoming messages using

eom.receive().

4.4.2.2 Sending side API

EOMiddleware Initialization: Similar to the receiving side, developers can initialize the EOMiddle-

ware using EOMiddleware.start(PORT). This step ensures consistency between the sending side and the

receiving side configurations.

Message Sending: Developers can use eom.send(dstNode, msg) to transmit messages to the speci-

fied destination node. This functionality streamlines the process of sending messages across the network.

70

4.4. UNDERSTANDING THE API

4.4.3 API Example

To illustrate the simplicity and effectiveness of the Exon-lib API, consider the following code snippets

demonstrating its usage in a basic Echo client-server interaction.

In this server-side example (Server.java), the following steps are highlighted:

EOMiddleware Initialization: The server initializes the EOMiddleware using EOMiddleware.start(PORT),

specifying the communication port.

Message Reception and Forwarding: Within an infinite loop, the server continuously receives incoming

messages with eom.receive(). When amessage is received, it can be forwarded to the specified destination

node using eom.send(dstNode, request.msg).

Listing 4.1: Server.java

package haslab.eo;

import haslab.eo.msgs.ClientMsg;

public class Server {
private static final int PORT = 3456;

public static void main(String[] args) throws Exception {
String dstHost = "PC-A";
int dstPort = 1234;

EOMiddleware eom = EOMiddleware.start(PORT);
NodeId dstNode = new NodeId(dstHost, dstPort);

while (true) {
ClientMsg request = eom.receive(); //receiving request
eom.send(dstNode, request.msg); //sending response

}
}

}

In the client-side example (Client.java), the following actions are demonstrated:

EOMiddleware Initialization: The client initializes its EOMiddleware instance similarly to the server with

EOMiddleware.start(PORT) to ensure consistent configurations.

Message Sending: Inside a loop, the client sends messages to the designated destination node using

eom.send(dstNode, msg). This straightforward method streamlines the process of transmitting messages

across the network.

71

CHAPTER 4. EXON-LIB: AN EXACTLY-ONCE OBLIVIOUS LIBRARY FOR LIGHTWEIGHT MESSAGING

Message Reception and Handling: The client can efficiently receive responses from the server through

eom.receive(). This synchronous communication pattern simplifies the handling of real-time responses.

These examples showcase how the Exon-lib API enables developers to create client-server interactions

with minimal code complexity.

Listing 4.2: Client.java

package haslab.eo;

import haslab.eo.msgs.ClientMsg;

public class Client {
private static final int PORT = 1234;

public static void main(String[] args) throws Exception {
String dstHost = "PC-A";
int dstPort = 3456;

String m = "Hello Exon!";

EOMiddleware eom = EOMiddleware.start(PORT);
NodeId dstNode = new NodeId(dstHost, dstPort);

for (int i = 0; i < 10; i++) {
eom.send(dstNode, m.getBytes()); //sending request
ClientMsg reply = eom.receive(); //receiving response

}
}

}

4.4.4 Simplicity from a Developer’s Perspective

The Exon-lib API prioritizes simplicity and ease of use. By offering straightforward methods for initializing

middleware, sending, and receiving messages, developers can focus on the application’s logic without

being burdened by low-level networking complexities. This developer-centric approach aims to enhance

productivity and accelerate the development cycle.

The Exon-lib API plays a pivotal role in abstracting network communication complexities, offering a user-

friendly interface for developers to build robust and efficient applications.

72

4.5. NODE STATE

4.5 Node State

Each node has an Exon state. The state is a node-wide clock 𝑐𝑘 keeping a monotonically increasing integer

(Long), and a pair of maps:

• ConcurrentHashMap (sr) keeping sender-side half-connection records of type SendRecord

• HashMap (rr) keeping receiver-side half-connection records of type ReceiveRecord.

4.5.1 Sender and Receiver Connections Maps

We used a ConcurrentHashMap (sr) for the sender-side connection records, that maps node (destination)

ids to sender-side connection records “SendRecord”, and a regular HashMap (rr) for the receiver-side

connection records, that maps node (source) ids to receiver-side connection records “ReceiveRecord”.

During the implementation of the “send()” procedure, it became necessary to access the map in order to

check the semaphore (the semaphore discussed later in the flow-control section). Simultaneously, other

thread (algoThread) is also accessing the same map. To address this concurrent access requirement, I

decided to utilize a ConcurrentHashMap. It is crucial to understand that the sole purpose of using this Con-

currentHashMap is to ensure efficient access for the sender specifically to the corresponding Semaphore.

Importantly, there is no involvement of shared protocol state in this process. The map functions solely as

a mechanism for the sender to retrieve the relevant semaphore, allowing for effective control over concur-

rent access to specific resources or operations.

One potential improvement could involve utilizing a separate ConcurrentHashMap solely dedicated to stor-

ing the Semaphores. By doing so, the sender records could be stored in a regular map, uncontended by

concurrent access concerns. This separation of responsibilities between storing Semaphores and sender

records could potentially lead to enhanced efficiency.

ConcurrentHashMap in Java provides thread-safety while performing concurrent operations on a map. It

is a highly optimized implementation of the Map interface, which allows multiple threads to access and

modify the map concurrently, without causing any data inconsistencies or concurrency issues.

4.5.2 Half-connection Records

The half-connection records (S-record and R-record from the algorithm) are: SendRecord and ReceiveRe-

cord, which are implemented as data structures encapsulating various fields such as sender and receiver

clocks, message payloads, and Interval and Bitmap data structures.

73

CHAPTER 4. EXON-LIB: AN EXACTLY-ONCE OBLIVIOUS LIBRARY FOR LIGHTWEIGHT MESSAGING

• The SendRecord is implemented as a SendRecord data structure, which defines a class encapsu-

lating the sender clock (sck: long), the receiver clock (rck: long), the env and the tok fields.

– The env (envelopes) field is implemented as an Interval data structure, which contains a

pair of integers representing an interval [from, to), including the starting point but excluding

the ending point. This is possible, without the need for storing an explicit list, because

operations on envelopes consist in either appending a contiguous range next to the current

largest envelope, or dequeuing the lowest envelope.

– The tok (tokens) field is implemented as a TreeMap, with sck as the key and a TokenRecord

as the value, where the TokenRecord contains the message payload and other associated

information. To facilitate the process of requesting slots in the algorithm, the sender needs

to inform the receiver about the base or first token that is still at the sender side. This

information is crucial for the receiver to remove the oldest slots below this token. In order

to achieve this functionality effectively, A TreeMap data structure is employed. The choice

of TreeMap was driven by its ability to provide a method called firstKey(), which serves the

same purpose as the base or first token.

• The ReceiveRecord is implemented as a ReceiveRecord data structure, which defines a class encap-

sulating the sender clock (sck: long) and the receiver clock (rck: long). In addition to these fields,

the ReceiveRecord also includes a slots set (slt) implemented as a SlidingBitmap data structure.

– The slots set, denoted as slt, is implemented as a SlidingBitmap data structure. The decision

to use a SlidingBitmap is driven by the requirement to remove slots as tokens arrive, even if

they are out of order. Therefore, the Interval as in the envelopes is not enough. A Sliding-

Bitmap is a resizable bitmap suitable for representing a set of elements in a sliding window.

Elements are added as ranges of new elements contiguous to the previous range. Elements

can be removed or tested for presence, but can only be added within the current window.

The representation grows as needed and discards memory corresponding to elements before

the smallest element still present (start of sliding window).

4.6 Multi-Threaded Architecture

Exon-lib is a multi-threaded middleware, with one middleware thread running all algorithm code and send-

ing on the network, and a second thread for reading from the network. Clients doing sends or receives

are other independent threads. Communication between threads is facilitated primarily through the use

of BlockingQueue data structures.

The system’s global state, which is visible to all threads, includes two primary data structures:

74

4.6. MULTI-THREADED ARCHITECTURE

• a BlockingQueue algoQueue represents the main algorithmic queue that stores all protocol mes-

sages received from the network or from the client EOsend requests,

• a BlockingQueue deliveryQueue is responsible for delivering EO messages to the local node; the

local node can use any client thread to deliver messages.

BlockingQueue is a Java class in the concurrent package that facilitates efficient communication and

synchronization between sending and receiving threads in a multi-threaded environment. Acting as a

bounded container, it holds a fixed number of elements and allows threads to add or retrieve elements.

When the queue is full or empty, threads are automatically blocked, ensuring synchronized actions and

avoiding race conditions or resource contention. This mechanism is commonly utilized in multi-threaded

applications to enable safe and synchronized data exchange between producers and consumers.

4.6.1 Threads

As illustrated in figure 25, the system comprises two distinct threads, namely the main algorithm thread

(AlgoThread) and the network reader thread (ReaderThread), which are responsible for executing different

tasks.

The AlgoThread is responsible for running the bulk of the algorithm. Meanwhile, the ReaderThread is

specifically dedicated to reading and deserializing protocol messages from the network. As for event

related information, whether it related to the reception of protocol messages from the network or a client

initiating a send operation, such information arrives to the AlgoThread through the algoQueue. This queue

serves as the “channel” through which the AlgoThread retrieves data, wherein both client threads and the

ReaderThread participate the enqueuing of this data.

Once a protocol message or a client EOsend request is obtained, the thread invokes the respective handler,

which may trigger the sending of UDP datagrams, the enqueueing of EO messages to the DeliveryQueue

(DQ), or the discarding of the protocol message due to overloading.

The remaining algorithm state is accessed exclusively by AlgoThread and does not require concurrency

control. This includes the node clock (ck) and the receiver-side connection records (rr).

On the other hand, the network reader thread (ReaderThread) continuously reads UDP datagrams from

other nodes using a single UDP socket, which is created but not connected at startup. The thread then

enqueues the corresponding protocol message to the algoQueue, which can block in case the rate of

incoming messages exceeds the rate at which AlgoThread dequeues them. The use of blocking queue as

the algoQueue is essential to prevent unbounded memory growth.

75

CHAPTER 4. EXON-LIB: AN EXACTLY-ONCE OBLIVIOUS LIBRARY FOR LIGHTWEIGHT MESSAGING

Algo Thread

UDP Send
(to another node)

Client threads

Reader Thread

UDP Receive
(from another node)

deliveryQueue

send()

receive()
take

put

offer

poll

put

algoQueue

EOMiddleware

Figure 25: Exon-lib Architecture

4.6.2 Message Types

The message types used in the middleware are represented in the diagram using a class hierarchy. At

the top level, there is a common superclass called Msg. This superclass serves as a generalized repre-

sentation of messages within the middleware. It has four subclasses: ClientMsg, AQMsg, DQMsg, and

NetMsg.

ClientMsg represents user messages, being created when a client thread invokes send. A ClientMsg con-

tains the destination node and message payload. The middleware then encapsulates the ClientMsg within

an AQMsg and queues it in the AlgoQueue for later processing.

The AQMsg is used in the middleware to encapsulate the ClientMsg before queuing it in the AlgoQueue

for later processing. This encapsulation serves a specific purpose within the middleware’s architecture.

The AlgoQueue is where the information about all events arrive at the AlgoThread, whether it comes from

client threads, or whether it comes from the network (after being deserialized); and that AQMsg is the type

of the AlgoQueue elements, encapsulating either ClientMsg or the different kinds of NetMsg.

The AQMsg associates additional metadata or information with the message, which can be useful for

processing and scheduling purposes. For example, the AQMsg may contain information about the the

timestamp, or any other relevant data that can influence the order and handling of messages within the

AlgoQueue.

The NetMsg class is responsible for sending messages over the network. It has four subclasses: ReqS-

lotsMsg, SlotsMsg, TokenMsg, and AcksMsg. These subclasses correspond to specific types of protocol

messages that need to be transmitted. For bandwidth optimization, multiple Acks are sent together in-

stead of individually.

76

4.7. FLOW CONTROL

Msg

ReqSlotsMsg

+ s : long
+ n : long
+ l : long

+ ReqSlotsMsg(NodeId
node, long s, long n, long l)

AQMsg

+ node: NodeID
+ msg: Msg

+ AQMsg(NodeId node,
Msg msg)

DQMsg

+ node: NodeID
+ msg: byte[]

+ DQMsg(NodeId node,
byte[] msg)

NetMsg

+ node: NodeID

+ NetMsg(NodeId node)

SlotsMsg

+ s : long
+ r : long
+ n : long

+ SlotsMsg(NodeId node,
long s, long r, long n)

TokenMsg

+ s : long
+ r : long
+ payload : byte[]

+ TokenMsg(NodeId node,
long s, long r, byte[]
payload)

AcksMsg

+ acks: ArrayList<Long>
+ r : long

+ AcksMsg(NodeId node,
ArrayList<Long> acks, long
r)

ClientMsg

+ node: NodeID
+ msg: byte[]

+ ClientMsg(NodeId node,
byte[] msg)

Figure 26: Message Types

On the other hand, the DQMsg class is used to store messages in the DeliveryQueue for eventual delivery

to the client application.

Overall, the UML diagram in figure 26 illustrates the relationships between the message types and how

they are used within the middleware. It provides a visual representation of the class hierarchy and the

inheritance relationships.

4.7 Flow Control

To ensure smooth operation of a message queue, it’s important to handle situations where the rate of

sending messages exceeds the system’s capacity to process them. Specifically, we look at two scenarios:

when the sender is sending messages too quickly, and when the receiver is processing messages too

slowly. In such cases, appropriate measures must be taken to prevent unbounded memory growth and

ensure that the sender eventually blocks.

At the Sender Side, when the rate of EOsend by local client threads exceeds the capacity of the

system to handle those requests, the send must be blocked. The issue is that blocking the send cannot

be done through the message queue, as the AlgoThread needs to continuously dequeue messages in

77

CHAPTER 4. EXON-LIB: AN EXACTLY-ONCE OBLIVIOUS LIBRARY FOR LIGHTWEIGHT MESSAGING

send(AQMsg)

SendRecord
exists

AlgoThread
- creates SendRecord
- initializes semaphore with
number of permits 'P'

- semaphore.acquire()
- algoQueue.put(AQMsg)

count > 0

client thread blocked
wait for next permit to
access the algoQueue

client thread attempts
to invoke

acquire() method
before putting the

AQMsg in the algoQueue

no

no

yes

- AcksMsg received
- release() method
invoked (count++)

yes

Figure 27: Flow-control, at the sender

order to receive protocol messages.

A solution to this problem is to use semaphores. Specifically, the SendRecord, will have an additional

semaphore field. When a SendRecord is created, which can only happen during an EOsend, the semaphore

is initialized to a parameter “P”, which is a configurable parameter that represents the number of mes-

sages that can be sent to a given node without having yet been acknowledged.

A send operation is split into two parts: the send function which runs in a client thread and the handler

that executes within AlgoThread. First, when a client thread executes a send(), it looks up the sr map,

decrements the semaphore (acquire()), and enqueues the send object (AQMsg) into the algoQueue.

As we can see in figure 27, if a client thread doing a send sees no SendRecord for that destination, it

means that there is no pending send, and no need to block. In this case, the client thread enqueues the

message in the algoQueue. The AlgoThread then checks if there is no SendRecord for the destination

node, it creates a SendRecord and instantiations a semaphore with initial value being one less than the

pending sends constant P and enqueues the send object.

The semaphore is incremented (release()) when a token is removed as result of an ack message. This

way, the message to be sent is correctly considered “pending”, from the moment it is sent, whether it is

78

4.8. RETRANSMISSION AND TIMEOUT

TokenMsg received

deliveryQueue.offer discard message

 - remove slot
 - send ack

false

true

Figure 28: Flow-control, at the receiver

in algoQueue, in a msg field in a SendRecord, or in a tok field, until the token is removed.

At the receiver Side, if the receiver is slow to process messages, we need to avoid unbounded

memory growth and propagate the knowledge to the sender, making it eventually block. This can be

achieved by ignoring token messages that arrive, and not ACKing them. As shown in figure 28, this

is done using the “offer” method, which attempts to insert the specified element into the queue and

immediately returns false if there is no space available. If the “offer” method returns false, the slot will

remain and consequently the ack message will not be sent to the sender.

This will make the sender keep the token, and eventually block when too many tokens exist. A retrans-

mission will be done after some time, hoping that by that time the queue at the receiver has space.

4.8 Retransmission and Timeout

In this section, we will discuss the strategy used in the algorithm to handle retransmissions and timeouts.

Specifically, we will focus on the “Periodically” procedure (in the algorithm) responsible for retransmitting

protocol messages such as reqslots, slots, and token. The goal is to avoid bursts of resends and spread

timeouts evenly to ensure efficient message delivery. Thus, in order to ensure efficient retransmissions

and timeouts, we used the PriorityQueue data structure.

PriorityQueue is a class in Java that represents a priority queue, which is a special kind of queue where

each element is assigned a priority, and elements with higher priorities are dequeued first.

79

CHAPTER 4. EXON-LIB: AN EXACTLY-ONCE OBLIVIOUS LIBRARY FOR LIGHTWEIGHT MESSAGING

ReqSlotsEvent SlotsEvent TokenEvent AcksEvent

requestSlots() send(SlotsMsg) send(TokenMsg) send(AckMsg)

Figure 29: Algorithm events

4.8.1 Events

In the AlgoThread, the java PriorityQueue is utilized, with the comparator based on time. The PriorityQueue

pq contains “events” (objects) with a time field used for comparison, which allows scheduling of “events”

to be triggered in the future after a certain amount of time has passed.

Individual events are added to the pq for each type of operation that occurs in the “periodically” within the

algorithm, such as requesting slots, sending slots, sending tokens, and sending acks (AcksMsg). These

events use individual timeouts specific to each type of event. To achieve this, we have four subclasses of

the Event class: ReqSlotsEvent, SlotsEvent, TokenEvent, and AcksEvent.

To provide a clearer visual representation of the retransmission’s execution, a helpful flowchart (Figure 29)

is available.

Within the AlgoThread context, a crucial loop fulfilled its purpose by retrieving messages from the algo-

Queue using the poll(timeout, unit) method. Following the execution of Exon protocol handlers, another

loop examines the priority queue for events whose scheduled time has arrived. It processes all the events

with elapsed time, ensuring that no message is left behind.

ReqSlotsEvent: The ReqSlotsEvent is responsible for handling the sending of reqslots messages.

When a reqslots message is sent in the requestSlots procedure, a new instance of ReqSlotsEvent is

created and added to the pq with a scheduled time equal to the current time plus the reqslots timeout.

We chose the reqslots timeout to be two times the RTT, which is a conservative estimate that provides a

balance between avoiding unnecessary retransmissions and minimizing the time spent waiting for reply.

The corresponding SendRecord object for the connection maintains an additional field to store the time of

the last reqslots message sent. The last reqslots send time will be checked if it is changed, and invokes

requestSlots if it is still the same, or does nothing if it changed (meaning that another reqslots was sent

meanwhile, scheduling another ReqSlotsEvent for the future).

80

4.9. CONCLUSION

SlotsEvent: The main purpose of the SlotsEvent is when a “closing” reqslots was lost, and later the

receiver wants to remove the connection, which was already closed at the sender side. So, to avoid

scheduling one event per slots message sent, an initial SlotsEvent added when the connection is opened,

and each time a slots sent, the lastSlotsSendTime at the ReceiveRecord is updated with the current time

without adding event to pq. When the event is handled, if the connection is already closed, no action is

taken. Otherwise, check if send time changed, if it did not change, send a slots message and schedule

another SlotsEvent for the future (add to pq) (regardless of change). The timeout for SlotsEvent is much

larger than any of the other protocol messages as it is only about garbage collection. We chose it as an

absolute number 50000ms.

TokenEvent: The TokenEvent is responsible for handling the sending of token messages. When a token

is sent, a TokenEvent is added to the pq with some TokenEvent timeout. When TokenEvent is dequeued,

if token does not exist (connection to receiver does not exit, or different connection (rck) or sck missing

from tok map) do nothing; otherwise, token is retransmitted and another TokenEvent will be added to the

pq. We chose the token timeout as the reqslots timeout, two times the RTT.

AcksEvent: The AcksEvent is responsible for handling the sending of acks messages. When an ack

is sent, an AcksEvent is added to the pq with some AcksEvent timeout. It is important to note that this

event differs from the rest in that, rather than sending each ack message separately, which could result

in increased traffic, the choice is made to bundle multiple acks together, thereby reducing the overall

transmission load, for this we name it acks message instead of ack message, which encompass one or

many acks collectively.

4.9 Conclusion

The journey of developing the Exon-lib library has been marked by significant learning experiences, iterative

design processes, and practical considerations. This concluding section aims to provide insights into the

development journey, the challenges encountered, and opportunities for future enhancements.

4.9.1 Architectural Complexity

The initial phase of development presented a substantial challenge. Collaborative efforts with my su-

pervisors were instrumental in designing a robust architecture, particularly the complexities of the multi-

threaded design, effective use of semaphores, and the overall middleware structure. Overcoming these

hurdles demanded careful planning and collaboration, setting the foundation for the library’s functionality.

81

CHAPTER 4. EXON-LIB: AN EXACTLY-ONCE OBLIVIOUS LIBRARY FOR LIGHTWEIGHT MESSAGING

4.9.2 Learning and Growth

Throughout the development process, a strong emphasis was placed on continuous learning. Gaining

insights into distributed systems, networking, and concurrent programming has been a rewarding experi-

ence, enhancing both technical knowledge and problem-solving skills.

4.9.3 Language Choice

Pragmatic Selection: Java was chosen as the initial programming language due to its prevalence in

the field and my familiarity with it. The decision was driven by the ability to envision efficient implemen-

tation strategies and leverage Java’s rich ecosystem of libraries and tools.

Library Utilization: The library’s development journey benefited from the utilization of existing li-

braries, such as the blocking array and priority queue.

4.9.4 Remaining Challenges

A notable challenge that remains is the “dynamic” calculation of Round-Trip Time (RTT) and bandwidth

during runtime. Implementing mechanisms to adaptively compute these metrics as the program runs

would enhance the library’s adaptability and real-time responsiveness.

In hindsight, the development of Exon-lib has been a fulfilling experience marked by growth and innovation.

Addressing the challenge of dynamically calculating RTT and bandwidth stands as a key area for future

improvement. As the project evolves, further refinements and optimizations will be explored, enhancing

the library’s utility and robustness in distributed systems.

82

5

Exon Evaluation

In this chapter, we evaluate the performance of Exon. Specifically, we focus on two aspects: (1) the

tolerance of Exon to packet loss, and (2) the overhead of Exon under normal communication conditions,

both in one-way messaging and remote procedure call (RPC) messaging scenarios. We describe the

experimental setup and evaluation methodology, and present the results of our experiments.

5.1 Experimental Setup

To evaluate the performance of our protocol we prepared experiments that reflect a real-world environment.

For this purpose, we used Emulab [73], an online network testbed that has a wide range of environments

in which researchers can develop, debug, and evaluate their systems. We used in the experiments two

machines, each with a 2.4 GHz 64-bit 8-Core Xeon E5-2630v3 processors, 64 GB DDR4 RAM and 20 MB

cache, and running Linux 16.04 64-bit Ubuntu OS, We configure the network as two hosts connected to a

router in between. The router is configured to induce delays and message loss, mimicking a real network.

5.2 Evaluation Methodology

We examine two common messaging patterns: a no-wait unidirectional pattern one-way without replies,

and Remote Procedure Call (RPC), a request/reply pattern where subsequent request is sent only after the

ACK of the preceding request is received. We do not use any application processing time at the receiver

in this case.

The evaluation focuses on throughput and latency, being the most relevant metrics in messaging proto-

cols. We send a sufficient number of messages (between 10K and 1M) per burst to stabilize the network

(in addition to warming up). We calculate the throughput, as messages per second, by dividing this num-

ber of messages by the measured time difference between the first and the last message delivered. As

for the latency, we measure it by recoding the time elapsed between sending a message request and the

delivery of the reply, and then computing the mean for all messages. We run as many runs as needed

83

CHAPTER 5. EXON EVALUATION

until we get stable average results. In general, since we have dedicated machines without interference

and without application overheads, we did not experience high variance across runs. Finally, we do not

measure the latency in the one-way message because it is less important in this pattern and it is hard to

measure in the lack of perfect synchronized clocks.

We compared Exon with TCP and UDT. We chose TCP as the most widely used reliable and efficient

transport protocol—discarding the inter-connection EO issues; and UDP-based Data Transfer (UDT) [45]

as a reliable messaging protocol on top of UDP. The UDT protocol version used for this testbed is the latest

version (v4) found at the time this work was done. We had performed minor changes on the sender and

receiver side in order to provide an easier way of sending number of packets with specified size.

The main idea of comparing with UDT (or any other reliable UDP) is just to show that any work/diligence

to make UDP more reliable (TCP like) results in performance worser than TCP.

To compare the three protocols with large scale or highly concurrent systems, where each node has many

objects/ processes/actors of unpredictable lifetimes, we perform RPC tests where a given number of

actors perform independent (concurrent) RPCs to a server. Such systems that use TCP (e.g., distributed

Erlang) normally use multiplexed TCP connections shared by many local actors. We run tests for differ-

ent numbers of actors, until we saturate the bandwidth. With respect to message size, we opted for 1

KB messages, to have relatively “full” datagrams, allowing good use of bandwidth, without risking UDP

fragmentation.

We run the experiments under two environments: fault-free environment, to test the performance of the

protocols under normal circumstances, under different network latencies and bandwidths; message loss

environment, to evaluate how well the protocols tolerate network faults. Thus, we tested the protocols

under three variables: bandwidth, network latency, and message loss rate. We tried to set the parameter’s

values to common network cases. For bandwidth tolerance, protocols were tested under a fixed latency

(RTT= 10ms) over different bandwidths: 1, 10, and 100 Mbps. For network latency tolerance, bandwidth

was set to 10 Mbps, and RTT taking the values 6, 10, and 100 ms. The reason for choosing 6 ms and

not 1ms is because it is the lowest achievable value on Emulab. For message loss tolerance, bandwidth

and latency were set to 100 Mbps and RTT=10 ms respectively, while using message loss rates of 0%, 1%,

and 5%. In each of these experiments, we tested the protocols using the two patterns described: one-way

messaging and RPC. In the one-way messaging pattern, we measured the throughput (msgs/s) while in

the RPC messaging pattern, we measured the throughput (requests/s) and response latency (ms).

84

5.3. RESULTS

0

2000

4000

6000

8000

10000

12000

0% 1% 5%

m
sg

s/s

Message loss rate

Exon
TCP
UDT

Figure 30: One-way throughput under packet loss (Setting: RTT=10ms, Bandwidth=100 Mbps)

5.3 Results

5.3.1 Tolerance to Packet Loss

In this experiment, we aim to compare the throughput and latency of Exon, TCP, and UDT under packet

loss. In all cases, no messages were lost or delivered in duplicate, despite packet loss and retransmissions.

We configured Emulab to induce packet loss, dropping packets at 1% and 5% rate. To assess packet loss

overhead, we also provide a baseline experiment with 0% loss. We used for network parameters RTT=10

ms, and bandwidth of 100 Mbps.

5.3.1.1 One-way messaging

Figure 30 shows the throughput results of the protocols under 0%, 1%, and 5% message loss. In these

scenarios the sender loops sending one million 1KB messages, as fast as possible (throttled only by flow

control).

The throughput of Exon and TCP are very close in the 0% loss case, delivering more than 11K mes-

sages/sec (i.e., around 88Mbps), which is close to the maximum bandwidth capacity. This means that

even though Exon is based on a four-way per-message exchange, it can pro-actively requests a batch of 𝑁

slots in advance (where 𝑁 is a parameter based on the BANDWIDTH*DELAY product), by the occasional

REQ-SLOTS message, which causes negligible overhead over TCP. However, the UDT throughput is much

worser than Exon and TCP. It is believed that being equipped with DAIMD has resulted in degrading the

throughput [74].

Nevertheless, with a 1% and 5% packet drop rate, Figure 30 shows a significant throughput drop, i.e.,

around 50% in Exon, 80% in UDT, and more than 90% in TCP. This is not surprising due to the delays

and network congestion caused by retransmissions of failed packets in the three protocols. The drop

was however sharper in the TCP and UDT cases because of the congestion control they use. Indeed,

following the retransmission timeout (RTO) degradation scheme [75] causes a faster drop in throughput

than Exon as shown in the 5% packet loss case. To the contrary, the retransmission timeout in Exon is

85

CHAPTER 5. EXON EVALUATION

0

50

100

150

200

250

Exon TCP UDT

R
es

po
ns

e
tim

e
(m

s)

message loss rate = 0%

1 actor
50 actors

100 actors
150 actors
200 actors

0

50

100

150

200

250

300

350

Exon TCP UDT

R
es

po
ns

e
tim

e
(m

s)
message loss rate = 1%

1 actor
50 actors

100 actors
150 actors
200 actors

0

200

400

600

800

1000

1200

Exon TCP UDT

R
es

po
ns

e
tim

e
(m

s)

message loss rate = 5%

1 actor
50 actors

100 actors
150 actors
200 actors

Figure 31: RPC latency under packet loss (Setting: RTT=10ms, Bandwidth=100 Mbps)

less pessimistic, i.e., proportional to the network RTT, which is possible given the protocol’s core resilience

to dropping and duplication. Also we can see that the dropping of UDT is lighter than that of TCP since

that the DAIMD in UDT does not overreact to packet loss as the AIMD in TCP. In the 5% packet loss rate,

Exon’s throughput is 8 times higher than TCP and UDT, which demonstrates its high resilience to hostile

networks with packet loss.

5.3.1.2 RPC messaging

Here we test the scenario in which a host (client) contains a given number of independent actors, each

actor performing RPCs to the other host (server) in a sequential loop. For TCP, a single connection is

shared by all actors, as is common in real general purpose distributed actor middleware, like Erlang. We

aim to see how many requests per second (in aggregate) can be achieved and RPC latency, increasing

the number of actors until we saturate the bandwidth.

Figures 31 and 32 convey the latency and throughput results for 0%, 1%, and 5% packet loss rate exper-

iments, in the same WAN setting as before (RTT=10ms, Bandwidth=100 Mbps). In general, the conclu-

sions are similar to the one-way, demonstrating the high resilience of Exon to packet loss, in terms of

performance, compared to TCP and UDT.

For the fault-free test, UDT has the worst performance compared with Exon and TCP where they have

similar performance, a little worse or better depending on the number of actors. It can be seen that as

we increase the number of actors, the RPC latency increases, first slowly, and then abruptly when the

number of client actors (200) saturates the available bandwidth; unlike the UDT case, where the RPC

latency increases rapidly as the number of actors increase. As in the one-way case, UDT has the worst

performance, where that of Exon and TCP increases roughly linearly with the number of actors, until

reaching network saturation, when it even decreases slightly.

For scenarios with packet loss, even 1%, the performance of TCP and UDT drops drastically, compared

with Exon, even more than for the one-way tests. The reason is that, while for Exon each message is

delivered independently, not delaying other messages in case of packet loss, for TCP packet loss will delay

the whole stream, which must be delivered in order. This means that, for TCP, for a single packet loss,

all other concurrent actors will have their requests or responses delayed, increasing RPC latency, as can

86

5.3. RESULTS

0

2000

4000

6000

8000

10000

12000

Exon TCP UDT

re
qu

es
ts

/s

message loss rate= 0%

1 actor
50 actors

100 actors
150 actors
200 actors

0

1000

2000

3000

4000

5000

6000

7000

Exon TCP UDT

re
qu

es
ts

/s

message loss rate= 1%

1 actor
50 actors

100 actors
150 actors
200 actors

0

1000

2000

3000

4000

5000

6000

7000

Exon TCP UDT

re
qu

es
ts

/s

message loss rate= 5%

1 actor
50 actors

100 actors
150 actors
200 actors

Figure 32: RPC throughput under packet loss (Setting: RTT=10ms, Bandwidth=100 Mbps)

be seen in Figure 31, and delaying the issue of their next RPC. It can be seen in Figure 32, for both 1%

and 5% packet loss cases that, while for Exon throughput still scales linearly with the number of actors

(before saturating the network), for TCP and UDT throughput stops scaling much sooner. For 5% packet

loss, TCP throughput stops at around 500 requests/s, UDT at around 200 requests/s, while Exon reaches

around 6400 requests/s. This shows the serious impact of packet loss, due to HOL blocking, when using

multiplexed TCP connections in general purpose middleware, something which unfortunately is common.

5.3.2 Overhead under Normal Conditions

In this experiment, we aim to compare the throughput and latency of Exon, TCP, and UDT under different

bandwidths and latencies, in a fault-free scenario, for the two messaging patterns (one-way and RPC).

5.3.2.1 One-way messaging

Figure 33a shows the throughput of Exon, TCP, and UDT for RTT=10ms, and bandwidths of 1, 10, and

100Mbps. In the three cases, the three protocols make almost full bandwidth utilization except UDT

under the 100Mbps case. This is expected since the network is saturated with the successive one-way

1KB messages, where the RTT effect is negligible. Nevertheless, the overhead in Exon is 8% in the worst

case, and this is referred to the overhead of REQSLOT messages that asks for a window of N slots, as

mentioned above. This small overhead justifies the use of Exon in systems that require EO guarantees

and exhibit some packet loss.

Regarding UDT, its performance increases as bandwidth increases, however it does not reach the max-

imum bandwidth utilization with 100 Mbps, and it shows bad performance comparing with Exon and

TCP.

Figure 33b shows that the full bandwidth utilization remain the same with a fixed bandwidth and different

RTT (6, 10 and 100 ms) for the same reasons. However, UDT shows bad performance with high latency.

87

CHAPTER 5. EXON EVALUATION

64

128

256

512

1024

2048

4096

8192

16384

1 10 100

m
sg

s/s

Bandwidth (Mbps)

Exon
TCP
UDT

(a) RTT= 10 ms

128

256

512

1024

2048

6 10 100

m
sg

s/s

Latency (ms)

Exon
TCP
UDT

(b) Bandwidth=10Mbps

Figure 33: One-way throughput as bandwidth and RTT varies

5.3.2.2 RPC messaging

We aim to see how many requests per second (in aggregate) can be achieved, using several concurrent

actors, each performing RPCs in a loop, increasing the number of actors until we saturate the bandwidth.

Figure 34a conveys the throughput with varying bandwidth of 10 and 100 Mbps (with RTT=10ms). We

observe a max of 7% throughput overhead of Exon over TCP in the worst case. Both protocols hit the

bandwidth limits as the number of actors increase (which is higher for higher bandwidth) unlike with

UDT where as the number of actors increase, the performance got worse, and this is consistent with the

one-way case in sending burst of messages.

On the other hand, the throughput is negatively affected when RTT varies (between 10 and 100ms) as

shown in Figure 34b (with fixed bandwidth=10Mbps).

In the RPC pattern, the RTT is major factor since a successor message depends on the round-trip delay of

the previous one. However, as more actors are used, the channel gets more utilized and the protocols hit

the bandwidth limits (10Mbps). Also, UDT has the worst performance as the number of actors increase,

and this conforms with the result of the throughput experiment one-way which has a similar scenario

(sending one-way burst messages).

88

5.3. RESULTS

10

100

1000

10000

100000

1 10 100

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

s)

Number of Actors

Exon 10Mbps
TCP 10Mbps
UDT 10Mbps

Exon 100Mbps
TCP 100Mbps
UDT 100Mbps

(a) RTT=10ms

10

100

1000

1 10 100

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

s)

Number of Actors

Exon 10ms
TCP 10ms
UDT 10ms

Exon 100ms
TCP 100ms
UDT 100ms

(b) Bandwidth=10Mbps

Figure 34: RPC throughput as bandwidth and RTT varies-log. scale

A nice observation (in Figure 34b) is that as the RTT increases, the difference between Exon and TCP

protocols almost fades away (i.e., from 10% to 2%). The same is observed in Figure 34a where the

overhead degrades from 7% to 1% as the bandwidth increases.

This can be explained by the relative overhead of the REQSLOTS and SLOTS messages in these scenarios,

as the algorithm sends a new REQSLOTS message upon receiving a SLOT (as long as some TOKEN

messages where sent). This problem is easily fixed either by piggybacking REQSLOTSmessages in TOKEN,

and SLOTS in ACK, or by having a low-high watermark system for envelopes in reserve, so as to send

REQSLOTS less frequently. We leave this improvement for further work.

5.3.2.3 RPC messaging - On the Same Machine

We aim to isolate the algorithmic performance of Exon and TCP without the influence of network factors.

The experiments involved a client and server running on the same machine, eliminating network latency

and bandwidth constraints. Figure 35 presents the response time comparison between Exon and TCP in

the local machine scenario.

From the graph, we observe that TCP exhibits slightly better response times compared to Exon in this local

89

CHAPTER 5. EXON EVALUATION

0

50

100

150

200

250

300

Exon TCP

Re
sp

on
se

 ti
m

e
(m

ic
ro

s)

RTT=0.04 ms, Bandwidth=40 Gbps

1 actor
5 actors

10 actors
15 actors
20 actors
25 actors

Figure 35: RPC Latency - same machine (Setting: RTT=0.04ms, Bandwidth=40 Gbps)

machine setup. However, the difference in performance between the two protocols is not significant, and

almost fades away as the number of actors increases.

This can be explained by, as in the other experiments, the relative overhead of the protocol messages of

Exon (REQSLOTS and SLOTS messages).

5.4 Conclusion

We evaluated the performance of the three protocols: Exon, TCP, and UDT, under different network condi-

tions. We conducted experiments in a fault-free environment, as well as in a message loss environment,

testing the protocols under three variables: bandwidth, network latency, and message loss rate. We used

the one-way messaging and RPC messaging patterns to measure the throughput and response latency.

The results showed that, under normal circumstances, Exon and TCP had similar throughput. However,

under a 1% and 5% packet drop rate, Exon’s throughput was significantly higher than TCP and UDT,

demonstrating its high resilience to hostile networks with packet loss. We also found that the retransmis-

sion timeout in Exon is less pessimistic than TCP and UDT, resulting in less degradation of throughput.

Moreover, the evaluation shows that Exon imposes a negligible overhead over TCP in healthy networks,

which makes it a promising candidate for improving network performance in lossy and congested network

environments.

90

6

Partition Tolerance through Delegation

6.1 Motivation

The novelty of Exon is simultaneously achieving exactly-once message delivery, obliviousness, efficiency

and no dependence on timing assumptions for correctness. These features make Exon fits anywhere,

and a persistent need in many systems and applications. It fits in datacenters where thousands of micro-

services need to connect, replacing TCP or other protocols. Also, it fits in systems that need exactly-once

message delivery and having intermittent connections, such as mobile applications, V2X, and Peer-to-Peer

networks.

In these systems, where they have a high number of communicating nodes, they need short-lived connec-

tions in order to push some messages to a stable or moving unit and go away without keeping any state

information about that unit, and this is because these nodes are constrained devices, and even if they are

not constrained (e.g. have enough memory), they do not want to keep connection specific information

about other nodes, which can be accumulated over time and affect the performance, and if deleted may

lead to message duplication.

The Exon features, specially the obliviousness, where a node keeps only a single integer per node as

permanent state, are perfect for such applications and systems. However, in these systems, there is a

problem in that if a sending node needs to send messages to another node and they are partitioned at

the moment, and the sending node needs to go away (e.g. changing its location, draining battery, etc.),

how can the sending node behave, and what to do with the messages. Another scenario is when the

sending node is already communicating with another node and they become partitioned in the middle of

a message exchange, then the sending node has a problem in what to do with the messages left (both

payloads and/or tokens).

In general, systems with high number of nodes, are more exposed than others to the intermittent connec-

tions, for example and not limited to, the mobile applications, Automotive (V2X), etc.

In the Automotive domain, the vehicles are moving nodes, and a moving node may go online or offline

91

CHAPTER 6. PARTITION TOLERANCE THROUGH DELEGATION

suddenly with reference to another node. For example, two vehicles may be communicating with each

other, and each one goes suddenly from a different path, causing a connection break down.

Another example is mobile applications. Mobile devices are characterized by frequent disconnections

which affect how distributed network communication can occur. These disconnections can be due to a

number of reasons: out of range, device turned off, or application swapped away if an operating system

is single tasking, and specially if these applications are not running in the background, where the connec-

tions need to be completely re-established every time the application is opened.

Therefore, there is a need for a feature in the Exon protocol, or the Exon protocol should be extended,

where a sending node can send a message to an intermediate node in order to hand-off the message to

a final destination node reliably. The intermediate node in its turn, playing the role of the forwarder, can

hold the message and send it eventually to the destination as it sees it again.

6.1.1 Messaging Protocols Limitations, Including Exon

In many applications, nodes may become partitioned with respect to each other in a regular manner,

either before starting a message exchange, or in the middle of a message exchange. If an application

uses one of the message queues protocols, message reliability could be ensured between two “online”

nodes, beside that they are heavy weight applications. Exon is an appropriate protocol to use in such

applications. However, the protocol as it is, lacks the ability to deal with intermittent communications like

most of the messaging protocols.

Exon communication (message exchange) exposed to two scenarios,

• nodes are already partitioned when attempting to EOSend having no envelopes

• nodes become partitioned after having received envelopes

Scenario 1 - Nodes are already partitioned when attempting to EOSend having no envelope: Node 𝐴

wants to send a message to 𝐵, has currently no envelopes to 𝐵 and, therefore, sends a reqslots message,

but the two nodes are or become partitioned and no slots message arrives, node 𝐴 needs to quit tem-

porarily (become partitioned with respect to 𝐵), then, what to do with the queued messages.

Scenario 2 - nodes become partitioned after having received envelopes: In a node communication, inter-

mittent nodes can become partitioned at any moment without giving any signal for the sending node to

behave accordingly. For instance, node 𝐴 is sending messages to node 𝐵 by associating the upper layer

messages to tokens. However, node 𝐵 may become partitioned, and node 𝐴 needs to quit soon for some

reasons, either by changing its location, or the battery is going down, etc. In this scenario, node 𝐴 has

“some time” to hand-off the messages to another forwarding node. A forwarding node could be a regular

node (as node 𝐴 or node 𝐵), or a dedicated server that has a forwarding service for the other nodes.

92

6.2. ALTERNATIVE APPROACHES FOR ACHIEVING DELEGATION

The problem is what to do with the tokens of node 𝐵. tokens should not be removed before receiving an

ack message from the destination, in order not to affect EO message delivery.

6.2 Alternative approaches for achieving delegation

This section explores several alternative approaches for achieving delegation in the Exon protocol.

6.2.1 Extended API

The upper layer messages could be queued in the message queue, or associated with tokens. Those

messages could be delegated using an extended API, that can access the Exon node state, extract the

queued messages or the tokens, and EOSends them to another node.

This needs an extended API, which allowed to it to introspect inside the protocol state, e.g., to query if there

are messages in the queue, to dequeue messages, and then EOSend the messages to another available

forwarding node. However, for that Exon-lib API would have to be much extended, and it would be difficult

and burdensome to expose enough information for the client app to invoke appropriate commands (as

the client does not know details about the different elements of the node state).

Furthermore, another issue arises with messages that are already associated with tokens. In such case,

it may be challenging to retrieve the message from the token and send it with the extended API to another

forwarding node, as this could result in message duplication. Also, transmitting the token itself to another

node presents a more complex and challenging task.

6.2.2 Modifying the Exon Distributed Protocol

Extending or modifying the existing Exon distributed protocol to achieve delegation can be a challenging

task that requires a significant amount of effort. This is because any modifications to the protocol can have

significant implications on the protocol’s correctness and performance, and must be thoroughly validated

and tested to ensure that they do not introduce new bugs or issues.

In particular, extending or modifying the Exon protocol to support delegation would require the development

of a whole new algorithm, which would need to be formally proven to be correct. This can be a complex

and time-consuming process that involves analyzing the behavior of the protocol under different scenarios.

6.2.3 Basic Exon Algorithm with Structured Messages

One possible solution to address the issue in the aforementioned scenarios, and to avoid the difficulty

and the burden of the API, is to employ message delegation in the Exon algorithm. However, rather than

designing an extended protocol to enable delegation, which would require new proofs for a more complex

protocol, the proposal is to reuse the unmodified Exon protocol with the same protocol messages.

93

CHAPTER 6. PARTITION TOLERANCE THROUGH DELEGATION

However, the structure of the payload is extended to accommodate structured messages, which can be

handled in various ways within the middleware upon being EO received. These methods include triggering

delegating, forwarding, and other not yet conceived future usages.

The proposed approach allows for achieving delegation without requiring an extended API or significant

modifications to the existing Exon protocol. By extending the payload structure of the existing protocol,

message delegation can be enabled without introducing new complexities to the protocol that may affect

its correctness or performance. Additionally, this approach is less burdensome for the client application

as it does not require exposing detailed information about the node state or complex API calls. Moreover,

it provides flexibility in handling structured messages, which can be useful for future use cases beyond

delegation. Overall, this approach provides a simpler and more efficient solution for achieving delegation

in the Exon protocol.

6.3 Extensible Exon Architecture

The Extensible Exon Architecture is a concept that allows for the creation of pluggable handlers, enabling

the development of modular, extensible systems that can be easily customized to meet the needs of

specific use cases. This architecture is based on the idea of structured messages and message handling,

allowing the creation of complex message flows that can be easily managed and modified as needed.

With the Extensible Exon Architecture, it is possible to keep the existing Exon protocol without making any

modifications to it. Instead, the focus is on using this protocol to deliver “commands” to other nodes that

will be executed within the middleware and not only payloads.

In the following sections, I will provide an incremental presentation of the delegation process by defining

a progressively more sophisticated delegateConnection function.

The architecture includes four message types: dlv, fwd, tok, and rmvslots, where dlv can be used to send

simple payloads, fwd used to delegate messages to other nodes, and those delegated fwd messages could

encapsulate simple payloads dlv or tokens tok to another node. Also the rmvslots message type that is

used for Garbage Collection. However, it is important to note that other message types could be added in

the future to support even more use cases.

Algorithm 2 shows the modified parts only, the rest being the same as in Algorithm 1. The event

receive 𝑗,𝑖 (token, 𝑠, 𝑟 ,𝑚) triggers the execution of the procedure consumeToken𝑖 (𝑗, 𝑠, 𝑟 ,𝑚) that con-
tain the exact code as the previous handler for token messages, from Algorithm 1, except that the deliver
procedure has been replaced by a new handler procedure handle that handles each message based on
its type. If the message is a:

• dlv, the 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 will be delivered to the upper layer application

94

6.3. EXTENSIBLE EXON ARCHITECTURE

1 types
2 I : node id
3 P : payload
4 M : (dlv,P) | (fwd, I,M) | (tok, I,N,N,M) | (rmvslots, I,N,N)
5 on receive 𝑗,𝑖 (token, 𝑠, 𝑟 ,𝑚)
6 consumeToken𝑖 (𝑗, 𝑠, 𝑟 ,𝑚)
7 proc consumeToken𝑖 (𝑗, 𝑠, 𝑟 ,𝑚)
8 if 𝑗 ∈ dom(𝑅𝑖) then
9 𝑐 = 𝑅𝑖 [𝑗]

10 if 𝑟 = 𝑐.rck and 𝑠 ∈ 𝑐.slt then
11 𝑐.slt. remove(𝑠)
12 handle𝑖 (𝑚)
13 send𝑖, 𝑗 (ack, 𝑠, 𝑟)
14 proc handle𝑖 (𝑚)
15 case m of
16 (dlv, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑) then deliver𝑖 (𝑝𝑎𝑦𝑙𝑜𝑎𝑑)
17 (fwd, 𝑗,𝑚) then EOSend𝑖 (𝑗,𝑚)
18 (tok, 𝑗, 𝑠, 𝑟 ,𝑚) then consumeToken𝑖 (𝑗, 𝑠, 𝑟 ,𝑚)
19 (rmvslots, 𝑗, 𝑥,𝑦) then removeSlots𝑖 (𝑗, 𝑥,𝑦)
20 proc removeSlots𝑖 (𝑗, 𝑥,𝑦)
21 𝑐 = 𝑆𝑖 [𝑗]
22 for 𝑖 ← 𝑥 to (𝑦 − 1) do
23 𝑐.slt. remove(𝑠)
24 𝑐.sck := 𝑦
25 if 𝑐.slt = ∅ then
26 𝑅𝑖 . remove(𝑗)

Algorithm 2: The Extensible Exon

• fwd, the EOSend𝑖 (𝑗,𝑚) procedure is called in order to send/queue the message received to

another node; either to another forwarder node, or to the final destination node

• tok, the consumeToken𝑖 (𝑗, 𝑠, 𝑟 ,𝑚) procedure is called, and here the message is a token that is
arrived from the first initiating node through a forwarder node or nodes.

• rmvslots, the removeSlots procedure is called for Garbage Collection purposes. (will be discussed
in 6.6)

Themainmodificationmade to Exon involves altering themessage type and incorporating the consumeToken
procedure. This updated procedure uses the handle function instead of the previous deliver function to
manage the various types of messages encountered in the system.

95

CHAPTER 6. PARTITION TOLERANCE THROUGH DELEGATION

1 proc delegateConnection𝑖 (𝑗, 𝑘)
2 𝑐 = 𝑆𝑖 [𝑘]
3 while 𝑐.msg ≠ [] do
4 EOSend𝑖 (𝑗, (fwd, 𝑘, (dlv, 𝑐 .msg. dequeue())))
5 for (𝑠,𝑚) in 𝑐.tok do
6 EOSend𝑖 (𝑗, (fwd, 𝑘, (tok, 𝑖, 𝑠, 𝑐 .rck,𝑚)))

Algorithm 3: The delegateConnection procedure added to the Exon algorithm

6.4 Basic Delegation

The algorithm extension for basic delegation introduces a novel procedure, denoted as delegateConnection𝑖 (𝑗, 𝑘),
which allows a node to delegate the responsibility to a forwarder node to handoff messages to another

node (currently partitioned) by asking it to forward dlv or tok messages to other nodes.

The delegateConnection𝑖 (𝑗, 𝑘) procedure presented in Algorithm 3 is responsible for delegating a con-

nection for node 𝑘 to a forwarder node 𝑗 , and it accomplishes this by encapsulating messages and tokens

in appropriate types of messages. This procedure iterates over the messages queued in the connection,

either payloads or tokens. For each message that is not yet associated to a token, it encapsulates it in a

dlv message, and then the dlv in a fwd message. The message𝑚 encapsulated in the dlv message is

removed from the message queue.

For messages that are already associated to tokens, the procedure encapsulates them in a tok message,

which is also encapsulated in a fwd message, but the tokens themselves are kept in the originating node.

Therefore, the forwarder node is asked to forward the dlv or the tok message to another node.

Thus, why the 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 messages can be removed safely from the queue, but the tokens cannot.

6.4.1 Possibility of dlv Oblivious Delegation

If the destination node becomes partitioned with respect to the sending node, it means that the two nodes

are no longer able to communicate directly with each other. In this case, the sending node may want to

delegate the connection, where there are dlv messages in themsg queue, the sending node dequeues
the dlv messages from themsg queue, and EOSend them to the forwarder node. However, since there

are no corresponding slots for them at the destination, then the sending node can safely remove them

from themsg queue.
If the partitioned node becomes reachable to the sending node at a later time, the destination node may

send a slots message in response to a previously received REQSLOT message, and consequently create

envelopes that will be ready for any new messages, and this scenario would not affect the correctness of

message delivery, since the messages are already handed-off to another node.

96

6.4. BASIC DELEGATION

6.4.2 Impossibility of token Oblivious Delegation

If a token 𝑇𝐴→𝐵 is created at a sending node 𝐴, but 𝐵 becomes partitioned with respect to 𝐴, node 𝐴

would not know if the corresponding slot 𝑆 at 𝐵 is still available. Then, if the token forwarding mechanism

performs a complete garbage collection of the tokens and the connection record at 𝐴, and if 𝐵 becomes

connected to 𝐴 before 𝐹 (the forwarding node) forwards the token to 𝐵, node 𝐵 could check (in the

periodically) if the slots are still relevant trying to garbage collect the slots on the receiver-side connection.
If there is no information in 𝐴, then 𝐴 will send a reqslots with an advanced 𝑠𝑐𝑘 , effectively informing 𝐵

that there are no tokens for that old range of slots, and 𝐵 can garbage collect the receiver-side connection

record, including slot 𝑆 . Eventually, when the token𝑇 reaches 𝐵 through 𝐹 , node 𝐵 will discard the token

as slot 𝑆 was not present, which can result in a message loss.

6.4.3 Delegating Messages Scenarios - Messaging Steps

I now present some examples on how the extensible Exon works. For simplicity, I assume the communi-

cation is occurring between a sender node 𝐴 and a receiver node 𝐵, but if nodes 𝐴 and 𝐵 are partitioned

at the moment, and node 𝐴 needs to quit, therefore node 𝐴 can send the messages via a forwarding

node 𝐹 .

Message forwarding can take place when node A has

(a) a dlv message to node 𝐵, and it does not yet has an envelope for it, and this is because node 𝐴

requested some slots from node 𝐵 and did not get any reply. Then 𝐴 decides to handoff the dlv to

𝐹 , where 𝐹 can forward it to 𝐵 eventually;

(b) an already created token for 𝐵, and it decides to send the token encapsulated in a fwd message to

a forwarder node 𝐹 , where 𝐹 can send the token to 𝐵 eventually;

6.4.3.1 Delegating dlv

Delegating dlv messages occurs when Node 𝐴 intends to send a message to 𝐵, but has no available

envelopes to do so. Node 𝐴 sends a reqslots message to 𝐵 to request slots, but in cases where the two

nodes are partitioned or become partitioned, the slots message may not be received, resulting in a loss

of communication. In such cases, and since node 𝐴 needs to quit/suspend, it resorts to delegation.

Actions at node 𝐴: As depicted in Figure 36, node 𝐴 needs to send a message payload 𝑚 to node

𝐵 via the EOSend𝐴 (𝐵,𝑚) command. Node 𝐴 then proceeds to enqueue it in the message queue

𝑆 [𝐵] .msg = [(dlv,𝑚)], followed by requesting slots from node 𝐵 by sending a reqslots message. Due

to network partitioning, it is possible that either the reqslots𝐴→𝐵 or the slots𝐵→𝐴 may be lost in transit.

Therefore, no envelopes available at node 𝐴 for node 𝐵.

97

CHAPTER 6. PARTITION TOLERANCE THROUGH DELEGATION

Node A Node F Node B

reqslots𝐴→𝐵

token𝐴→𝐹

ack𝐹→𝐴 token𝐹→𝐵

ack𝐵→𝐹

EOSend𝐴 (𝐵, (dlv,𝑚))
𝑆𝐴 [𝐵] .msg = [(dlv,𝑚)]

delegateConnection𝐴 (𝐹, 𝐵)
𝑆𝐴 [𝐹] .tok[𝑥] = (fwd, 𝐵, (dlv,𝑚))

𝑆𝐴 [𝐹] .tok. remove(𝑥)
𝑆𝐹 [𝐵] .tok. remove(𝑦)

t

EOSend𝐹 (𝐵, (dlv,𝑚))
𝑆𝐹 [𝐵] .tok[𝑦] = (dlv,𝑚)

time

deliver𝐵 (𝑚)

Partition

Figure 36: Delegating 𝑝𝑎𝑦𝑙𝑜𝑎𝑑

After some time t, node𝐴makes the decision to delegate the message queued for node 𝐵 to the forwarder

node 𝐹 via the delegateConnection𝐴 (𝐹, 𝐵) command. This decision is due to that node 𝐴 wants to

quit or suspend.

In the delegateConnection procedure, the message (dlv,𝑚) will be dequeued from msg queue for

node 𝐵, and EOsent to node 𝐹 , in a fwd message (fwd, 𝐵, (dlv,𝑚)).

For simplicity, to keep the example small, this example assumes that node 𝐴 already has an envelope 𝑥

for node 𝐹 in order to avoid the reqslots − slots exchange with F.

Actions at node F: The received message will be handled, and given that it contains a fwd message, the

enclosed message is forwarded to node 𝐵 (EOSend𝐹 (𝐵, (dlv,𝑚))).
Also for simplicity, this example assumes that node 𝐹 already has an envelope 𝑦 for node 𝐵. Therefore,

as node 𝐹 can communicate with node 𝐵, it sends the queued message to it.

Actions at node B: Since the message received is a dlv message, then the payload 𝑚 will be extracted

and delivered to the specific upper layer application (deliver𝐵 (𝑚)).

6.4.3.2 Delegating token - One Forwarding Node

Actions at node A: In this scenario, as shown in figure 37, and for simplicity, this example assumes that

node 𝐴 already has an envelope 𝑥 for node 𝐵. Therefore, node 𝐴 sends a token message to node 𝐵

that contains (dlv,𝑚). Then, due to network partitioning, it is possible that either the token𝐴→𝐵 or the

ack𝐵→𝐴 may be lost in transit.

98

6.4. BASIC DELEGATION

Node A Node F Node B

token𝐴→𝐵

token𝐴→𝐹

ack𝐹→𝐴 token𝐹→𝐵

ack𝐵→𝐹

EOSend𝐴 (𝐵, (dlv,𝑚))
𝑆𝐴 [𝐵] .tok[𝑥] = (dlv,𝑚)

delegateConnection𝐴 (𝐹, 𝐵)
𝑆𝐴 [𝐹] .tok[𝑧] = (fwd, 𝐵, (tok, 𝐴, 𝑥, (dlv,𝑚)))

𝑆𝐴 [𝐹] .tok. remove(𝑧)
𝑆𝐹 [𝐵] .tok. remove(𝑦)

t

EOSend𝐹 (𝐵, (tok, 𝐴, 𝑥, (dlv,𝑚))
𝑆𝐹 [𝐵] .tok[𝑦] = (tok, 𝐴, 𝑥, (dlv,𝑚))

time

deliver𝐵 (𝑚)

Partition

ack𝐵→𝐴

𝑆𝐴 [𝐵] .tok. remove(𝑥)
Figure 37: Delegating token - One Forwarding Node.

After some time t, node 𝐴 makes the decision to delegate the token for node 𝐵 to the forwarder node

𝐹 via the delegateConnection𝐴 (𝐹, 𝐵) command. This example assumes that node 𝐴 already has an

envelope 𝑧 for node 𝐹 . Then, node 𝐴 EOsends the token𝐴→𝐵 to node 𝐹 in a fwd message

(EOSend𝐴 (𝐹, (fwd, 𝐵, (tok, 𝐴, 𝑥, (dlv,𝑚))))).
Actions at node F: The received message will be handled, and given that it contains a fwd message, the

enclosed message (with its content) is forwarded to node 𝐵 (EOSend𝐹 (𝐵, (tok, 𝐴, 𝑥, (dlv,𝑚))).
This example assumes that node 𝐹 already has an envelope 𝑦 for node 𝐵. Therefore, as node 𝐹 can

communicate with node 𝐵, it sends the queued message to it via the token𝐹→𝐵 .

Actions at node B: As the received message is of type tok, it will be processed by extracting the encapsu-

lated dlv message and delivering it to the relevant upper layer application (deliver𝐵 (𝑚)).

6.4.3.3 Delegating token - Multiple Forwarding Nodes

This scenario involves token delegation, where the originating node delegates messages to a forwarder

node, and the forwarder node can further delegate the messages to another forwarding node.

Figure 38 shows the scenario of four nodes, node 𝐴 sends a message to node 𝐵, but as node 𝐵 is parti-

tioned, node 𝐴 decides to delegates the messages to the forwarding node 𝐹 . However, node 𝐹 , and for

some reasons, may decide also to delegate the messages through another forwarding node 𝐺 , so that

eventually 𝐺 can send the messages to node 𝐵.

Actions at node𝐴: As in the previous scenario, node𝐴 already has an envelope 𝑥 for node 𝐵, and due to

network partitioning, node 𝐴 makes the decision to delegate the token for node 𝐵 to the forwarder node

𝐹 via the delegateConnection𝐴 (𝐹, 𝐵) command.
99

CHAPTER 6. PARTITION TOLERANCE THROUGH DELEGATION

Node A Node F Node G

token𝐴→𝐵

token𝐴→𝐹

ack𝐹→𝐴 token𝐹→𝐵

ack𝐵→𝐺

EOSend𝐴 (𝐵, (dlv,𝑚))
𝑆𝐴 [𝐵] .tok[𝑥] = (dlv,𝑚)

delegateConnection𝐴 (𝐹, 𝐵)
𝑆𝐴 [𝐹] .tok[𝑦] =
((fwd, 𝐵, (tok, 𝐴, 𝑥, (dlv,𝑚)))

𝑆𝐴 [𝐹] .tok. remove(𝑦)

𝑆𝐹 [𝐺] .tok. remove(𝑢)

t

EOSend𝐹 (𝐵, (tok, 𝐴, 𝑥, (dlv,𝑚)))
𝑆𝐹 [𝐵] .tok[𝑧] = (tok, 𝐴, 𝑥, (dlv,𝑚))

time

deliver𝐵 (𝑚)

Partition
between A
and B

ack𝐵→𝐹

𝑆𝐴 [𝐵] .tok. remove(𝑥)

Node B

token𝐹→𝐺

ack𝐺→𝐹 token𝐺→𝐵

ack𝐵→𝐴

𝑆𝐹 [𝐵] .tok. remove(𝑧)

delegateConnection𝐹 (𝐺, 𝐵)
𝑆𝐹 [𝐺] .tok[𝑢] =
(fwd, 𝐵, (tok, 𝐹 , 𝑧, (tok, 𝐴, 𝑥, (dlv,𝑚))))

𝑆𝐺 [𝐵] .tok. remove(𝑣)

EOSend𝐺 (𝐵, (tok, 𝐹 , 𝑧, (tok, 𝐴, 𝑥, (dlv,𝑚))))
𝑆𝐺 [𝐵] .tok[𝑣] = (tok, 𝐹 , 𝑧, (tok, 𝐴, 𝑥, (dlv,𝑚)))

t

Partition
between F and

B

Figure 38: Delegating token - Multiple Forwarding Nodes.

The delegateConnection procedure at node 𝐴 EOSends the token𝐴→𝐵 to node 𝐹 in a fwd message

(EOSend𝐴 (𝐹, (fwd, 𝐵, (tok, 𝐴, 𝑥, (dlv,𝑚))))). This example assumes that node 𝐴 already has an enve-

lope 𝑦 for node 𝐹 .

Actions at node 𝐹 : The received message will be handled, and given that it contains a fwd message, the

enclosed message (tok, 𝐴, 𝑥, (dlv,𝑚)) is forwarded to node 𝐵
(EOSend𝐹 (𝐵, (tok, 𝐴, 𝑥, (dlv,𝑚))).
This example assumes that node 𝐹 already has an envelope 𝑧 for node 𝐵. Therefore, it EOSends the
queued message to 𝐵 via a token𝐹→𝐵 . However, due to network partitioning, node 𝐹 makes the decision to

delegate the token for node 𝐵 to the forwarder node𝐺 via the delegateConnection𝐹 (𝐺, 𝐵) command.
This example assumes that node 𝐹 already has an envelope 𝑢 for node 𝐺 . The fwd message sent from

node 𝐹 to node𝐺 contains the token𝐹→𝐵 that contains the token𝐴→𝐵 (fwd, 𝐵, (tok, 𝐹 , 𝑧, (tok, 𝐴, 𝑥, (dlv,𝑚))))
Actions at node 𝐺 : Node 𝐺 behaves as node 𝐹 in the previous scenario. The received message will be

100

6.5. AVOIDING NESTING ALONG DELEGATION CHAINS

handled, and given that it contains a fwd message, the enclosed message (tok, 𝐹 , 𝑧, (tok, 𝐴, 𝑥, (dlv,𝑚)))
is forwarded to node 𝐵 (EOSend𝐹 (𝐵, (tok, 𝐹 , 𝑧, (tok, 𝐴, 𝑥, (dlv,𝑚)))), assuming that node 𝐺 already

has an envelope 𝑣 for node 𝐵.

Actions at node 𝐵: As the received message is of type tok (tok, 𝐹 , 𝑧, (tok, 𝐴, 𝑥, (dlv,𝑚))), it will be “con-
sumed” by extracting the encapsulated tok (tok, 𝐴, 𝑥, (dlv,𝑚)), which will be also “consumed” by ex-

tracting the encapsulated dlv message (dlv,𝑚) and delivering the payload𝑚 to the relevant upper layer

application (deliver𝐵 (𝑚)).

6.5 Avoiding Nesting Along Delegation Chains

The increase of nesting happens when an intermediary forwarding node 𝐹 is delegating to another for-

warding node 𝐺 the responsibility of forwarding to node 𝐵 a token that contains a tok command, as the

scenario in 6.4.3.3. The chain of the toks inside toks will grow as the number of forwarding nodes in-

creases where node 𝐵 is still partitioned with respect to those forwarding nodes, and they want to quit. In

this case, the forwarding nodes may have two scenarios, either they already have envelopes from node 𝐵,

or not. There will be no nesting in the latter case, however, in the first case, tokens will be created at the

forwarding nodes towards node 𝐵, and as the forwarding node delegate connection that includes tokens

to another forwarding node, the nesting will occur.

In other words, node 𝐴 delegates the connection of node 𝐵 to node 𝐹 by sending a tok message that

contains the information of the “token𝐴→𝐵”. Node 𝐹 then queue the received tok, creates a “token𝐹→𝐵”,

and encapsulates to it “token𝐴→𝐵”. However, node 𝐹 wants to quit and delegate the connection of node 𝐵

to another forwarding node𝐺 , in this case, node 𝐹 will have a “token𝐹→𝐺” that contains the “token𝐹→𝐵”,

where the latter contains the “token𝐴→𝐵”. This chain could grow as the number of forwarders.

A possible solution could be done, as in Algorithm 4, by checking if the queued message is not of type

dlv, which means that the message is a forwarded message. Therefore, instead of encapsulating in the

fwd message the “token𝐹→𝐵” that holds the “token𝐴→𝐵”, the “token𝐴→𝐵” only encapsulated.

Overall, the importance of this point is to ensure that delegation chains are efficient and do not lead to

unnecessary nesting, which can affect the performance of the system. The proposed solution can help

in reducing the nesting and improving the efficiency of delegation chains.

6.6 Receiver-side Oblivious Delegation

A receiver-side connection is only removed upon communicating with the sender, which only happens

when the sender already removed the sender side connection.

101

CHAPTER 6. PARTITION TOLERANCE THROUGH DELEGATION

1 proc delegateConnection𝑖 (𝑗, 𝑘)
2 𝑐 = 𝑆𝑖 [𝑘]
3 while 𝑐.msg ≠ [] do
4 EOSend𝑖 (𝑗, (fwd, 𝑘, (dlv, 𝑐 .msg. dequeue())))
5 for (𝑠,𝑚) in 𝑐.tok do
6 if𝑚 instanceOf dlv then
7 EOSend𝑖 (𝑗, (fwd, 𝑘, (tok, 𝑖, 𝑠, 𝑐 .rck,𝑚)))
8 else
9 EOSend𝑖 (𝑗, (fwd, 𝑘,𝑚))

10 𝑐.tok. remove(𝑠)
Algorithm 4: Avoiding Nesting Mechanism

1 proc consumeToken𝑖 (𝑗, 𝑠, 𝑟 ,𝑚)
2 if 𝑗 ∈ dom(𝑅𝑖) then
3 𝑐 = 𝑅𝑖 [𝑗]
4 if 𝑟 = 𝑐.rck and 𝑠 ∈ 𝑐.slt then
5 𝑐.slt. remove(𝑠)
6 if 𝑐.slt = ∅ then
7 𝑅𝑖 . remove(𝑗)
8 handle𝑖 (𝑚)
9 send𝑖, 𝑗 (ack, 𝑠, 𝑟)

10 proc delegateConnection𝑖 (𝑗, 𝑘)
11 𝑐 = 𝑆𝑖 [𝑘]
12 𝑥 = if 𝑐.env = [] then 𝑐.sck
13 else 𝑐.env[0]
14 𝑦 = 𝑐.sck + 𝑁 + ��𝑐.msg�� − |𝑐.env|
15 𝑐.env := []
16 𝑐.sck := 𝑦
17 while 𝑐.msg ≠ [] do
18 EOSend𝑖 (𝑗, (fwd, 𝑘, (dlv, 𝑐 .msg. dequeue())))
19 for (𝑠,𝑚) in 𝑐.tok do
20 EOSend𝑖 (𝑗, (fwd, 𝑘, (tok, 𝑖, 𝑠, 𝑐 .rck,𝑚)))
21 EOSend𝑖 (𝑗, (fwd, 𝑘, (rmvslots, 𝑖, 𝑥,𝑦)))

Algorithm 5: Receiver-side Oblivious Delegation Mechanism

To achieve a receiver-oblivious delegation that enables node𝐴 to retire or suspend without requiring future

communication with node 𝐵, a new mechanism is proposed. This mechanism involves a command that

removes the receiver-side connection (R-record of the source node). This approach would keep the original

Exon protocol messages intact.

The new “GC” command is rmvslots. It contains the source node and the range of slots to be removed,

102

6.7. DISCARDING STATE AT THE SENDER

that have no related tokens to them, to be carried in the forwarded messages as the dlv and tok, which

when handled at the receiver side, removes that range of slots created for that sender.

The sender has to send the range of slots to be removed based on the envelopes it has. However, the re-

ceiver node can have created more slots that the sending node does not know about (if the slots message is

lost). Therefore, the range will be between the oldest available envelope (sck if no envelopes exist) and the
most recent requested slot that can be calculated using the following formula: 𝑦 = sck+𝑁+��msg��−|env|.
Thus, as in Algorithm 5, when the sender 𝐴 wants to delegate the connection, in addition to delegat-

ing the dlvs and toks if exist, it delegates a rmvslots to the forwarded node, removes all the envelopes

(𝑐.env := []), and set the 𝑐.sck := 𝑦 where this has the effect of refusing to create envelopes below

𝑦 in case such slots were created and a slots message arrives later. As the rmvslots reaches the final

destination node, it removes any possible slots at it, that may have been created, for which there are no

tokens, i.e., between 𝑥 and 𝑦 when the rmvslots message is handled 2.

In certain cases, the rmvslots message may reach the destination before the tokens, which would result

in the R-record not being removed, except when receiving a reqslots with n=0. However, this delay in

garbage collection can be resolved by making a small adjustment to the consumeToken procedure.

The adjustment involves checking if the slot set is empty and removing the R-record. The system is not

adversely affected by this small adjustment, as removing a receiver-side connection (R-record) only occurs

when there are no slots.

6.7 Discarding State at the Sender

The sending node keeps the tokens (with its payload) of the destination node even if it delegates to

other nodes the responsibility of delivering the tokens to the destination node, which could increase the

memory consumption at the sender as well as the forwarding nodes. Removing the tokens at the sender

is impossible as discussed in 6.4.2. However, an improvement could be made here by having a “null”

payload at a token. I.e., using a token as placeholder with empty payload, to avoid the destination node

from wrongly removing slots.

This could happen, as in Algorithm 6, when the sender node is delegating a token to a forwarder node, it

then sets the token payload to null (tok[𝑠] := 𝑛𝑢𝑙𝑙).

The receiver side should check, in the consumeToken procedure, if the received message is not null, it

removes the slot, “handle”s the payload, and send the ack, otherwise, it just ignores it without sending

an ack.

103

CHAPTER 6. PARTITION TOLERANCE THROUGH DELEGATION

1 proc delegateConnection𝑖 (𝑗, 𝑘)
2 𝑐 = 𝑆𝑖 [𝑘]
3 while 𝑐.msg ≠ [] do
4 EOSend𝑖 (𝑗, (fwd, 𝑘, (dlv, 𝑐 .msg. dequeue())))
5 for (𝑠,𝑚) in 𝑐.tok do
6 if𝑚 instanceOf dlv then
7 EOSend𝑖 (𝑗, (fwd, 𝑘, (tok, 𝑖, 𝑠, 𝑐 .rck,𝑚)))
8 𝑐.tok[𝑠] := 𝑛𝑢𝑙𝑙

9 else
10 EOSend𝑖 (𝑗, (fwd, 𝑘,𝑚))
11 𝑐.tok. remove(𝑠)
12 proc consumeToken𝑖 (𝑗, 𝑠, 𝑟 ,𝑚)
13 if 𝑗 ∈ dom(𝑅𝑖) then
14 𝑐 = 𝑅𝑖 [𝑗]
15 if 𝑟 = 𝑐.rck and 𝑠 ∈ 𝑐.slt then
16 if𝑚 ≠ 𝑛𝑢𝑙𝑙 then
17 𝑐.slt. remove(𝑠)
18 handle𝑖 (𝑚)
19 send𝑖, 𝑗 (ack, 𝑠, 𝑟)
20 else
21 send𝑖, 𝑗 (ack, 𝑠, 𝑟)
22 else
23 send𝑖, 𝑗 (ack, 𝑠, 𝑟)

Algorithm 6: Discarding State Mechanism

6.8 Summary

In this chapter, I introduce the need for a reliable message hand-off feature in the Exon protocol, which

allows a sending node to delegate a message to an intermediate node for eventual delivery to the final

destination node. The chapter presents three alternative approaches for achieving delegation, including ex-

tended API, modifying the Exon Distributed Protocol, and using the Basic Exon Algorithm with Structured

Messages. The chapter then focuses on the Basic Delegation approach and discusses the Extensible

Exon Architecture, Receiver-side Oblivious Delegation, and Discarding State at the Sender. Additionally,

the chapter covers the issue of avoiding nesting along delegation chains.

The modifications presented, which involve adding only the necessary parts for each feature in relation to

the original algorithm, are not a change in the Exon protocol itself because they do not alter the fundamen-

tal rules or principles of the protocol. The modifications are related to the implementation of the protocol

rather than the protocol itself. These modifications do not affect the underlying principles or rules of the

protocol. Instead, it is an optimization to improve the performance or efficiency of the implementation.

104

6.8. SUMMARY

All the features discussed in this chapter are implemented together in one package, you can refer to the

full-package Exon implementation in the Appendix A.

105

7

Applications

In the evolving realm of modern communication systems, the need for scalability, efficiency, and reliability

remains a persistent motivation. As networks expand and more devices interconnected increase, innova-

tive solutions are required to meet the demands of applications.

In this chapter we describe how Exon fits several applications, application domains, or approaches to

building applications, such as, Distributed Aggregation, Pat Helland’s innovative approach to structuring

applications, Enhancements in Online Booking Distributed Systems, the landscape of the Automotive

Domain, and the critical role of Messaging Support for Distributed Middleware.

7.1 Distributed Aggregation

Data aggregation is a technique used to manipulate distributed data, control the network, and perform

lightweight computations (like max, sum, count…) [76–78]. Aggregation protocols enable the deployment

of distributed, lightweight computations within ad-hoc networks, following a peer-to-peer approach. How-

ever, most of these protocols do not tolerate message loss, whose occurence leads to computing a wrong

aggregation result.

While these protocols are characterized by their simplicity, this simplicity comes with the trade-off of ne-

cessitating specialized fault tolerance techniques to address issues such as message loss and duplication.

The solutions to these challenges can sometimes incur significant costs, as noted in the reference [79].

The Flow-Updating (FU) [80] protocol, unlike the others, is an aggregation protocol that relies on the

concept of “flows”. Each node maintains a record of the flow to each of its neighbors, and when a node

sends a message to its neighbor, it carries the flow information. Then, each node calculates the average

using contributions from in/out flows of neighboring edges and its initial value. Messages exchange serves

the purpose of updating the flows, where the value conveyed in a subsequent message replaces the

previous one, rather than adding to it. Message semantics are thus idempotent, and make the algorithm

resilient to message loss or duplication.

106

7.2. PAT HELLAND’S VISION USING EXON

On the other hand, PS [78] and DRG [77] are prone to communication issues. Using a robust messag-

ing layer as Exon solves their mass conservation problem under unreliable networks, while keeping their

simplicity and performance advantages in networks with high node degrees.

In Chapter 8, I will focus on the aggregation protocol as a case study. This involves a comprehensive

examination of aggregation protocols and conducting evaluations to gain insights into howmessage failures

might impact mass conservation.

7.2 Pat Helland’s Vision using Exon

In his paper “Life beyond Distributed Transactions: an Apostate’s Opinion” [2], Pat Helland envisions

the construction of highly scalable (almost-infinite) applications by departing from traditional Distributed

Transactions, which become impractical at scale due to their complexity and performance limitations.

Helland’s proposed paradigm involves structuring application data into “entities” with independent serial-

ization scopes, facilitating efficient local transactions within each entity to ensure consistency and reliabil-

ity. However, this model does not support transactions spanning multiple entities. Instead, remote data

access is achieved through separate communication channels, adopting a message-oriented approach.

In such approach, achieving reliability necessitates a programmatic abstraction similar to a long-lived

TCP connection. Such capabilities are “rarely available” to developers tasked with constructing scalable

applications. Therefore, in most scenarios, we need to work with the “at-least-once” message delivery.

However, to avoid message delivery duplicates, the scale-agnostic (higher-level) portion of the application

must implement mechanisms to ensure that the incoming message is idempotent. “Duplicate elimination

could certainly be built into the scale-aware parts of the application. So far, this is not yet available. Hence,

we consider what the poor developer of the scale-agnostic application must implement”, Pat Helland.

In other words, ensuring reliability by assuming at-least-once message delivery, together with implement-

ing message idempotency at the higher layer, makes writing applications becomes complicated. While

using Exon, with its exactly-once message delivery will simplify the process of writing applications, mak-

ing the approach more widely applicable. This abstraction allows developers to focus more on the core

functionality of their applications.

7.2.1 Remembering Messages as State

To achieve idempotent processing for messages that lack natural idempotence, the entity must retain

a record of their processing status. This record, essentially a form of state, accumulates as messages

undergo processing.

Storing messages as state serves as a technique to establish idempotence in message processing. While

this approach is effective, it introduces a challenge related to the potentially infinite expansion of state.

107

CHAPTER 7. APPLICATIONS

Entity-BEntity-A

Activity-with-B
Activity-with-C
Activity-with-D
Activity-with-E

...

Activity-with-A

Entity-C

Activity-with-A

Entity-D

Activity-with-A

Entity-E

Activity-with-A

Figure 39: If an entity works with many partners, it will have many activities. These are one per partner.

With the incorporation of Exon, there is no necessity to maintain in the application state the information

that a message has been processed. This is because the risk of duplicates is eliminated, and there is also

no requirement to store a response message for potential resending in the event of loss, as message loss

is no longer a concern.

7.2.2 Activities: Managing State for Each Partner

Managing state information for each partner can become a significant operational challenge. This often

arises when there is a necessity to retain partner-specific data, as depicted in figure 39, that cannot be

efficiently merged into a common state. A practical example of this is the storage of a distinct flow for

every neighbor node, a common requirement in protocols like Flow Updating [80].

For instance, as illustrated in Figure 40a, we can envision a scenario where entities utilize Exon to ex-

change information with other entities. In this scenario, “Entity-A” engages in sending messages to enti-

ties “Entity-B”, “Entity-C”, “Entity-D” and “Entity-E”. Notably, for each entity, there exists an s-connection

(S-record), and on the other side, each of these entities maintains an s-connection (R-record) specifically

for interactions with “Entity-A”.

Moving forward to Figure 40b, after the interaction done between entities, entities remove the unused

slots, ensuring that resources are optimized. Consequently, the only state information retained on the

entities is the integer “ck”.

The distinction between using classical messaging protocols or using Exon with Pat Helland’s model, lies

in the fact that, when using Exon, after the interaction done between entities, it leaves only an integer be-

hind, whereas using an at-least-once messaging protocol and application activities, a similar outcome is

possible if the activities are designed to be cleaned up by garbage collection once the interaction between

108

7.2. PAT HELLAND’S VISION USING EXON

Entity-B
ck=200

Entity-A
ck=10

S-Record-B
sck=15, rck=199
S-Record-C
sck=15, rck=20
S-Record-D
sck=15, rck=54
S-Record-E
sck=15, rck=299

R-Record-A
sck=15, rck=199

Entity-C
ck=21

R-Record-A
sck=15, rck=20

R-Record-A
sck=15, rck=54

R-Record-A
sck=15, rck=299

Entity-C
ck=55

Entity-D
ck=300

(a) Exchange between Entities, keeping s-connection
records

Entity-B
ck=200Entity-A

ck=15

Entity-C
ck=21

Entity-C
ck=55

Entity-D
ck=300

(b) Entities states after a specific time of inactivity, keep-
ing only one integer “ck”

Figure 40: Entities using Exon

entities/partners concludes. However, using the classical method is challenging and would an ad hoc

garbage collection approach for each application. Exon, on the other hand, aims to eliminate this need by

transparently handling library-per-partner state garbage collection within the library, diminishing the need

for explicit application level activities.

This becomes particularly crucial in the context of resource-constrained environments, where the scala-

bility of systems is often limited. The traditional approach of preserving connection-specific information

for each node becomes increasingly impractical and resource-intensive in such domains. Exon’s abil-

ity to alleviate this burden is especially valuable, enabling efficient communication management even in

resource-constrained devices.

7.2.3 Ensuring At-Most-Once Acceptance via Activities

In the realm of communication systems, dealing with messages that lack natural idempotence neces-

sitates the assurance of processing each message at-most-once. This requirement often involves the

implementation of mechanisms that maintain a unique characteristic of the message, ensuring it is not

mistakenly processed multiple times. Notably, Exon ensures exactly-once, providing a robust solution to

this challenge.

7.2.4 Conclusion

Helland’s proposal of at-least-once messaging semantics, coupled with the obligation to design idempo-

tency into application logic, highlights the trade-off between reliability and application complexity. However,

Exon offers a transformative solution, it achieves “infinite scaling” with providing exactly-once messaging

without the need for designing idempotent messaging at the application level. This significantly simplifies

109

CHAPTER 7. APPLICATIONS

application development, liberating developers from the constraints of idempotency design.

7.3 Enhancing Online Booking Distributed Systems with Exon

7.3.1 Introduction

Online booking distributed systems, whether for flights or hotel rooms, play a pivotal role in the travel

and hospitality industry. These systems facilitate real-time bookings, availability checks, and reservations

through a network of brokers, agents, and service providers. However, coordination between various parts

of these systems can be complex and challenging, often leading to issues such as duplicate bookings,

data inconsistencies, and inefficient communication. These challenges not only disrupt the operational

efficiency of the system but can also have significant implications for the business model, potentially

resulting in financial losses and liabilities.

This section explores the challenges associated with messaging in online booking distributed systems,

and how what we call a state partitioned system approach using Exon, can address these challenges

effectively.

7.3.2 Challenges in Online Booking Distributed Systems

Online booking distributed systems, encompassing reservations for flights, hotel rooms, and more, are

the lifeline of the travel and hospitality industry. These systems provide customers with the convenience

of making bookings in real-time, but behind the scenes, they face many complex challenges.

Here are the key challenges that these systems face:

• Distributed Architecture: Online booking systems are distributed by nature, involving multiple bro-

kers, agents, and data sources. Coordinating communication and ensuring data consistency across

these distributed components can be a significant challenge.

• Message Reliability: Booking systems demand reliable message delivery to prevent issues like

double bookings or reservation conflicts. Ensuring that messages are processed exactly once is

essential to maintaining system integrity.

• Scalability: As the number of bookings and users increases, scalability becomes a critical con-

cern. Systems must scale to accommodate a high number of requests without compromising

performance.

• Fault Tolerance: To maintain uninterrupted service, online booking systems must be resilient to

network failures, including message loss/duplication, and network partitions.

110

7.3. ENHANCING ONLINE BOOKING DISTRIBUTED SYSTEMS WITH EXON

Server A
ABC Hotel rooms = 9

Server B
ABC Hotel rooms = 9

Server C
ABC Hotel rooms = 9

Customer

partition
quorum

requests
a room

No quorum,
service unavailable

Figure 41: State-machine replication using consensus

7.3.3 Partitioned State Systems

In the realm of online booking distributed systems, where numerous agents and nodes interact, we pro-

pose a solution to tackle the complex challenges that often burden such systems. Our proposal centers

around the concept of “partitioned state systems”, which introduces an approach to managing distributed

state and optimizing message coordination.

State-Machine Replication, is an approach, where state is replicated among all nodes contributing in the

system. The main problem with this approach is that when a partition happens between servers, the

service will become unavailable on the side where the servers do not form a quorum, as depicted in

figure 41.

However, rather than replicating identical state information across all servers, where the cost implications

can be substantial, especially in the presence of network partitions between servers, Partitioned State Sys-

tems is the solution, where the state partitioned among the servers involved. Each server independently

maintains its own self-reliant state, as depicted in figure 42. However, within this partitioned state, the

quantities are associated with values that can be updated locally. Partitioning can achieve availability by

guaranteeing that in the event of one partition’s failure, the remaining partitions can still respond to local

requests [81].

This approach becomes especially valuable in the presence of a large number of nodes within a scalable

distributed system, as it substantially reduces coordination overhead and associated costs. Additionally,

this partitioned state system allows for efficient and instant booking confirmations, as each server directly

manages and controls its allocated rooms, eliminating the necessity for coordination with other servers,

and significantly increases the availability of the system.

However, in the partitioned state system, servers have the ability to request rooms from each other once

they have finished with their own rooms. Towards this, having an exactly-once message delivery protocol

111

CHAPTER 7. APPLICATIONS

Server A
ABC Hotel rooms = 5

Server B
ABC Hotel rooms = 1

Server C
ABC Hotel rooms = 3
ABC Hotel rooms = 2

Customer

partition

requests
a roomconfirm

Figure 42: Partitioned state system

Figure 43: V2X Domain. Source: [83]

like Exon is essential to be able to get away with not using distributed transactions/consensus.

7.4 Automotive Domain

The V2X (Vehicle-to-Everything) automotive domain represents a cutting-edge and transformative realm

within the automotive industry. As vehicles become increasingly connected and autonomous, the V2X

domain consists of a system where vehicles interact not only with each other (V2V) but also with different

entities including infrastructure (V2I), pedestrians (V2P), cyclists, and even the broader transportation

network (V2N).

V2X communication can establish communication in one of two ways [82]: (i) through direct connections,

such as using 802.11p-based technologies or LTE PC5/Sidelink interface, or (ii) by utilizing the LTE inter-

face, which supports both uplink and downlink communication.

V2X encompasses various communication scenarios as shown in figure 43, each contributing to enhanced

112

7.4. AUTOMOTIVE DOMAIN

safety and efficiency. V2V communication enables vehicles to broadcast their positions, speeds, and

intentions, enabling nearby vehicles to expect movements and mitigate collisions. V2I communication

allows vehicles to communicate with traffic lights, road signs, and infrastructure elements, road side units

(RSU), enabling optimized traffic signal timing and smoother navigation. V2P communication enables

vehicles to detect and respond to pedestrians, enhancing pedestrian safety.

Moreover, V2X plays a crucial role in advancing the development and deployment of autonomous vehicles,

as real-time communication among vehicles and their surroundings is essential for safe and coordinated

self-driving operations.

7.4.1 Challenges

In the V2X (Vehicle-to-Everything) domain, which encompasses communication among vehicles and var-

ious entities to enhance road safety and efficiency, several challenges related to node communication

exist. These challenges include intermittent connectivity [84], often caused by factors like signal block-

age, high mobility, battery draining, and network congestion. The dynamic network topology [85], which

rapidly changes as vehicles and entities move in and out of range, makes it challenging to establish and

sustain communication links, potentially leading to data exchange disruptions. Additionally, managing

communication between a growing number of V2X nodes is complex, necessitating scalable communi-

cation infrastructure. In safety-critical scenarios, ensuring reliability and redundancy in communication

mechanisms is crucial to mitigate severe consequences of communication failures [86].

Addressing these challenges requires innovative solutions in communication protocols. Exon, emerges as

a promising approach to tackle these challenges and establish a robust V2X ecosystem.

7.4.2 Addressing Challenges using Exon

7.4.2.1 Forwarding Messages

In the realm of the Automotive domain, vehicles act as mobile nodes, and the status of a mobile node

can transition suddenly between reachable and non-reachable states in relation to other nodes.

While messages between nodes in V2X communication often follow a broadcasting approach and may not

necessarily insist on exactly-once message delivery, there are specific scenarios where message reliability

becomes essential.

The platooning concept entails a group of vehicles traveling together in a coordinated formation, illustrated

in Figure 44. Anticipated benefits of platooning encompass enhanced fuel and traffic efficiency, as well

as safety and driver comfort [88].

Implementing vehicle platooning in intelligent transportation systems involves equipping vehicles with

communication hardware and algorithms to enable coordination between vehicles. Ensuring the pla-

toon’s safety necessitates the reliability of V2V communication, such as verifying that all trailing vehicles

113

CHAPTER 7. APPLICATIONS

Figure 44: Vehicles forming a platoon. Source: [87]

maintain consistent contact with the lead vehicle and receive identical information [87].

To enhance message reliability, the integration of Exon is a viable solution. Additionally, in this scenario,

vehicles must relay messages reliably from one vehicle to another, and the Exon extended forwarding

feature can effectively address this need.

7.4.2.2 Obliviousness

In terms of achieving message reliability, preserving connection-specific information for future communi-

cation has been normally the practice. This avoids message duplication, particularly in scenarios where

vehicles may not encounter each other for extended periods, possibly spanning months or years. Here,

Exon’s obliviousness feature becomes invaluable, providing a solution to this challenge by allowing for the

efficient management of connection-specific data without compromising scalability.

Furthermore, in the context of scalability, Exon’s design, coupled with its inherent oblivious feature, makes

it an ideal choice for scalable applications, unlike approaches where nodes retain connection-specific

information about all previously contacted nodes. It maintains only a single integer as permanent state

per node when no connections are active, significantly reducing the overhead associated with maintaining

extensive connection records.

7.4.3 A Potential Problem with Exon

In the context of Exon’s communication model, a potential concern arises. In scenarios where two vehicles

have a brief encounter and subsequently may never cross paths again, any undelivered messages or

unused communication slots would lead to an accumulation of state. In the case where there are not

anymore pending messages, Exon needs some time window to achieve oblivousness, which may not

happen if the communication window is too brief.

However, a potential solution to this challenge involves incorporating periodic use of “global internet ac-

cess”, such as LTE connectivity. Vehicles can intermittently access this global network, allowing them

114

7.5. MESSAGING SUPPORT FOR DISTRIBUTED MIDDLEWARE

to establish connections with permanent nodes or other relevant vehicles that also utilize global access.

During these intermittent connections, the accumulated garbage can be effectively garbage collected.

7.5 Messaging Support for Distributed Middleware

In the realm of distributed middleware, messaging support plays a pivotal role in enabling efficient and

reliable communication. In this section, we explore two aspects of messaging support within the context

of distributed middleware, specifically focusing on how Exon can enhance existing systems and pave the

way for novel approaches.

7.5.1 Distributed Actor Systems

Distributed actor systems (e.g. Erlang [89], akka [90]) are a natural choice for constructing online appli-

cations characterized by a multitude of dynamically interacting entities, such as social networks, online

games, and Internet of Things (IoT) applications. In modern actor systems, the design is simplified by

mapping application objects onto lightweight actors which encapsulate object state and logic, and dynam-

ically interact via asynchronous messages. For instance, within an online chat service, each user and chat

room can be conceptualized as individual actors. In Distributed, Erlang a TCP connection is established

between each pair of VMs, multiplexed by all communication between them.

Within this domain, certain challenges arise, particularly concerning TCP stream multiplexing and the

possibility of Head-of-Line (HoL) blocking. Exon presents a solution for implementing distributed actor

systems, such as Distributed Erlang, with a focus on mitigating these challenges.

In chapter 5, we showed how TCP stream multiplexing that leads to Head-of-Line (HoL) blocking can im-

pacting the overall performance of the TCP protocol. Exon can be used between VMs, that allow designing

more fine grained ordering constraints (e.g. FIFO per actor) on top of Exon, which itself does not impose

ordering.

7.5.2 Brokerless Messaging Middleware

One notable category of distributed middleware involves brokerless messaging systems, exemplified by

technologies like ZeroMQ [62] and Nanomsg/NNG [91]. Indeed, both ZeroMQ and Nanomsg, which use

TCP as the transport layer protocol, do their best to recover from TCP reconnections when communication

is temporarily disrupted. However, one notable challenge with these systems is the potential loss of queued

messages upon disconnection. In other words, the challenge arises when the connection is disconnected.

While the messaging systems can often reestablish the connection, any messages that were queued but

not yet delivered at the time of disconnection may be lost. This is because TCP itself does not provide

any guarantees about the delivery of queued data upon reconnection, either the data that was lost due to

115

CHAPTER 7. APPLICATIONS

TCP abnormal disconnection, or the messages in the middleware queues (e.g., ZMQ) that have not been

handed to TCP, but will be discarded by the middleware upon disconnection.

In contrast, Exon emerges as an alternative to TCP, offering a solution that ensures message reliability even

when under network intermittent connectivity. A new design can be achieved, that combines the strengths

of ZeroMQ messaging patterns and flexibility with Exon’s robustness in ensuring message reliability. The

synergy between ZeroMQ and Exon can provide a powerful and dependable foundation for distributed

applications, offering both the messaging patterns and the reliability necessary for various communication

scenarios.

7.5.3 Broker-based Messaging Middleware

Broker-based messaging middlewares are a type of communication infrastructure used in computer soft-

ware and distributed systems to facilitate the exchange of data and messages between different compo-

nents or applications. These systems employ a central intermediary, known as a broker, that manages the

routing, distribution, and coordination of messages between producers and consumers. It is important to

note that “broker-based” does not inherently imply heaviness or persistence (e.g. IoT implementations us-

ing the MQTT protocol). In the world of IoT, broker-based systems like MQTT [67] have gained widespread

adoption due to their efficiency and scalability.

Recent developments in this domain demonstrate the drive to replace traditional transport mechanisms

like TLS+TCP with more advanced alternatives such as QUIC, as exemplified in the case of MQTT over

QUIC [33]. This shift underscores the industry’s recognition of the need for improved transport protocols

to enhance the performance of broker-based systems.

Implementing MQTT over Exon becomes a realistic. The potential to replace TCP with Exon as a transport

layer introduces opportunities for enhancing the reliability and efficiency of broker-based systems, partic-

ularly in scenarios like IoT, where message delivery and latency are critical factors.

This evolving trend of replacing TCP with superior transport mechanisms underscores the proposition that

we can indeed surpass the limitations of TCP, and Exon emerges as a viable candidate for fulfilling this

need. This shift toward advanced transport protocols demonstrates the relevance of Exon as a potential

replacement and enhancement for existing communication frameworks. The implementation of MQTT

over Exon can be referred to as a concrete topic to be done in the future.

7.6 Conclusion

The evolving landscape of modern communication systems continually demands scalability, efficiency, and

reliability. In this chapter, we have explored a spectrum of applications, including Distributed Aggregation,

Pat Helland’s innovative application structuring approach, enhancements in Online Booking Distributed

116

7.6. CONCLUSION

Systems, insights into the Automotive Domain, and the pivotal role of Messaging Support for Distributed

Middleware. Throughout our exploration, we showed how Exon seamlessly integrates into and enhances

these diverse applications.

117

8

Case study: Distributed Aggregation

Aggregation protocols allow for distributed lightweight computations deployed on ad-hoc networks in a

peer-to-peer fashion. Due to reliance on wireless technology, the communication medium is often hostile

which makes such protocols susceptible to correctness and performance issues. In this chapter, we study

the behavior of aggregation protocols when subject to communication failures: message loss, duplication,

and network partitions. We show that resolving communication failures at the messaging layer, through

a reliable messaging layer, reduces the overhead of using alternative fault tolerance techniques at upper

layers, and also preserves the original accuracy and simplicity of protocols. The empirical study we drive

shows that tradeoffs exist across various aggregation protocols, and there is no one-size-fits-all protocol.

This work was carried out in a early stage of the Exon protocol implementation. We utilized an initial prim-

itive implementation of Exon, we refer to it as “Basic-Exon”, that incorporates the fundamental concepts

of Slots and Tokens, lacking some of the optimizations such as the multithreading, requesting Slots in

advance, closing connection, etc.

The study focused on understanding how aggregation protocols perform when subjected to various com-

munication issues such as message loss, duplication, and network partitions.

One key finding of this research was that resolving communication failures at the messaging layer, through

the implementation of a reliable messaging layer, can significantly reduce the overhead associated with

alternative fault tolerance techniques at higher layers. Additionally, this approach preserves the original

accuracy and simplicity of the protocols under study.

It is worth emphasizing that this research laid the groundwork for further advancements in the field, includ-

ing the development of the Exon protocol as it is now. The insights gained from studying communication

failures and their impact on aggregation protocols have contributed to the ongoing efforts to design more

efficient and robust protocols for distributed lightweight computations in ad-hoc networks.

118

8.1. INTRODUCTION

8.1 Introduction

With the prominence of the Internet of Things (IoT), Mobile Computing (MC), and Wireless Sensor Networks

(WSN), data aggregation is becoming a de-facto technique to manipulate distributed data, control the net-

work, and perform lightweight computations (like max, sum, count…) [76–78]. In such systems, resource

constrained devices are usually deployed over ad-hoc networks, mainly using wireless communication

media (WIFI, Blue-tooth, Zig-bee [92]), in a Peer-to-Peer (P2P) fashion to avoid the usual bottlenecks of

centralized solutions and communication failures. Consequently, the underlying messaging layer is often

hostile and can compromise the correctness and performance of aggregation protocols; therefore, fault

tolerance techniques are still being advocated to make these protocols more reliable and practical [76,

77, 80, 93, 94].

Specifically, convergence — to a correct common value across nodes — is considered the prime challenging

correctness measure of aggregation protocols since it can easily be adapted to abstract other computa-

tions (like sum, count, max, etc.) [78, 80]. Convergence becomes more challenging when subject to

environmental impacting factors like the number of nodes in the system, the topology of the network, the

reliability of communication medium, the available resources of devices, etc. This leads to several trade-

offs between simplicity, correctness, and performance. Among these protocols, gossip-based aggregation

protocols are often considered more robust under such factors [95, 96].

In particular, there are two categories of gossip-based aggregation protocols in literature. The first, is

simple, in which an (mutable) estimate of the average value is computed locally and then propagated

to other nodes either in a completely distributed way, e.g., Push-Sum [78], or in a clustered way as in

DRG [77]. This simplicity however comes at the price of dedicated fault tolerance techniques, required to

handle message loss and duplication, whose solutions are sometimes costly [79].

Another category, like Flow-Updating (FU) [80], is immune to message loss and duplication by nature due

to the concept of flows: idempotent averaging estimates are locally computed based on average flows

received from other nodes in an immutable way. As the authors show in [80, 97], FU is not prone to

transient communication failures, but as showed later, it exhibits some instability under long-lived com-

munication failure and when the average degree (i.e., number of neighbors of a node) is high.

To take advantage of idempotency, several “hybrid” protocols [98, 99] tried to integrate the idea of flows

and node backups with the Push-Sum protocol in an attempt to introduce a simple and fault tolerant aggre-

gation protocol; unfortunately, this yielded other accuracy and performance issues [96]: (1) performance

was significantly impacted by communication issues, and (2) some accuracy in convergence is detected.

In this chapter, an empirical study is presented that compares the above variants of gossip-based protocols

leading to the following conclusion: once simple classical protocols, like Push-Sum [78], are supported

119

CHAPTER 8. CASE STUDY: DISTRIBUTED AGGREGATION

by a robust exactly-once underlying messaging layer, Basic-Exon in our case, they can outperform other

protocols [80, 98, 99], and importantly, maintain the original convergence accuracy. A simulation is done

to the above classes of protocols once subject to message loss, duplication, and network partitions.

8.2 Background and Related Works

In this section, a concise background is presented on three variants of aggregation protocols: Push-Sum

(PS), Flow Update (FU), and Distributed Random Grouping (DRG). Despite the diverse data aggregation

protocols introduced in literature [77, 98–100], we opt for the aforementioned protocols being well-known

and most other protocols are variants using their core concepts.

Push-sum protocol [78] is a simple gossip-based protocol where each node divides its local value by half

and propagates it to other peers until convergence is achieved. PS protocol converges faster when degree

increases, however the algorithm correctness relies on “mass” conservation [78] where any kind of sys-

tem failure violates mass conservation. Consequently, several variants like [79, 98, 99] were introduced

to withstand network and node failures, which resulted in accuracy and performance overheads [96].

Flow-Updating (FU) [80], is based on the concept of idempotent computation through “flows”. The idea

is that each node calculates the average based on all the contributions of the in/out flows along the edges

of the neighbors and its initial value. Since this depends on the direct flows (and the initial intact value),

there is no need to retain corresponding mutable variables. This makes the algorithm natively tolerant to

message loss and duplication, but suffers some instability period upon recovery from network partitions

(as flows are missing).

LiMoSense [79], Push-Flow [98] and Push-Cancel-Flow [99] followed a hybrid model by using concepts

from PS and FU through using flows for data exchange and mutable local histories to compute the esti-

mates. However, these protocols induced correctness problems as accuracy and division by zero [95, 99].

DRG [77] is an aggregation protocol that essentially consists in the continuous random creation of groups

across the network, in which messages are broadcast and aggregates are successively computed (aver-

aged). In DRG, message loss between coordinators and neighbors may happen; and thus, partial fixes to

avoid deadlock of nodes waiting forever may result in violating mass conservation [80].

8.3 The Technique Adopted

In this chapter, a technique inspired from the paper titled “Exactly-once quantity transfer” [101]. The foun-

dation of this paper’s concept is rooted in the principles of Handoff Counters [102], wherein the authors

120

8.4. EVALUATION

engineered scalable eventually consistent counter CRDTs. These CRDTs are designed to operate accu-

rately even in the presence of network partitions while mitigating identity explosion issues encountered in

previous CRDTs such as G-Counters [103]. However, the paper [102] takes this concept a step further

by extending it to encompass quantity transfers in any “splittable” datatype and expanding its applications.

To investigate the behavior of aggregation protocols, a locally developed simulator was utilized. The simu-

lator was modified to integrate the concept of slots and tokens, aligning with the aforementioned technique.

Before sending a regular message, the simulator was adapted to initiate a message requesting slots. Upon

receiving a response and reserving a slot at the receiver, the sender could then proceed to send the actual

messages.

As I said, we used a primitive version of Exon (Basic-Exon), and employed it within the simulator. The

research aimed to evaluate the benefits of using an exactly-once message technique in the context of

aggregation protocols. These findings contributed to the subsequent development of the Exon protocol,

which further refined and expanded upon these concepts to address a wider range of scenarios and

requirements.

8.4 Evaluation

8.4.1 Experimental Setup

To perform the experiments, the simulator is used that runs on a single machine, where message loss/du-

plication, network partition, network topology, number of nodes and the degree can be customized to serve

my purpose. The experiments considered four network topologies with random generation of links: Bus,

Ring, 2D Mesh, and random graph of several dimensions, i.e., different degrees (from 3 to 20). The usage

of four network topologies aim to comprehensively assess the performance and adaptability of the Basic-

Exon protocol across a spectrum of real-world network scenarios. However, I present those of random

graph since it allows for a wide range of degrees, and more realistically represents wireless settings.

As mentioned earlier, we opted for the protocols PS, FU and DRG protocols being well-known and repre-

sent the state-of-the-art of gossip-based aggregation protocols. FTPS and FTDRG refer to the fault-tolerant

versions of PS and FU where they used over the Basic-Exon protocol.

Finally, the protocols are evaluated through two main metrics: accuracy and speed, considering message

loss and duplication under different graph degrees. Accuracy is expressed by the normalized Root Mean

Square Error (RMSE) of the estimate in contrast to the target value, and the speed expressed by the

number of iterations to reach this accuracy. An estimation of the messaging overhead with and without

Basic-Exon is also presented at the end.

121

CHAPTER 8. CASE STUDY: DISTRIBUTED AGGREGATION

0

200

400

600

800

1000

1200

4 8 12 16 20

Ite
ra

tio
ns

Degree (nodes)

PS
FTPS

FU
DRG

FTDRG

Figure 45: Convergence speed in fault-free scenario.

For the sake of completeness, I tried to implement and experiment the Push-Flow protocol, and I noticed

that the accuracy is significantly lost with 1000 nodes. Indeed, this result is consistent with those in [96]

that shows the accuracy problem starting with 60 nodes up.

8.4.2 Convergence speed in a fault-free network

Convergence speed is experimented as the degree increases from 3 to 20, using random graph of 1000

nodes. I present the number of iterations required by each protocol to achieve convergence in a fault-free

scenario, where convergence is considered achieved once the 𝑅𝑀𝑆𝐸 = 10−11.

Figure 45 interestingly shows that the convergence speed of FU improves until reaching degree 7, beyond

which more iterations are needed to converge. The results look surprising for the first glance, however,

they are consistent with the results in the original paper of FU [80] for degree 10. This behavior is referred

to the direct dependence of FU on the in/out flows of direct neighbors in calculating the 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 of the

average. As the degree increases, the number of flows per node increases, thus significantly modifying

the 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒. Indeed, this conforms with the analysis in [80] that shows FU under link failures converges

faster than healthy network as the number of links drops.

To the contrary, PS and DRG converge much faster (log-scale is shown) with higher degrees and they

significantly outperform FU starting at degree 7 and 12, respectively. (Notice that PS and DRG are con-

founded with FTPS and FTDRG, respectively, given that no faults occur.) This behavior is expected as the

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 in DRG and PS is computed and spread to neighboring nodes, thus as the network is more

connected, the information propagates faster.

Finally, the figure (Figure 45) shows that PS converges faster than DRG, especially, when the degree is low

122

8.4. EVALUATION

 0

 100

 200

 300

 400

 500

 600

 4 8 12 16 20

PS -No convergence
DRG -No convergence

It
e
ra

ti
o
n
s

Degree (nodes)

FU
FTPS

FTDRG

Figure 46: Estimated convergence speed under 20% message loss.

since DRG cannot create large groups in this case, and this broadcast to all system nodes takes longer,

contrary to large groups (with large degree).

8.4.3 Convergence speed under loss and duplication

Under message loss, the behavior changes as shown in Fig 46. I performed experiments using different

percentages of message loss, i.e., from 10% to 50%, and noticed that the patterns are very similar, and

thus I only convey the 20% results in Fig. 46.

The convergence speed of FU under message loss remains equivalent as in the fault-free scenario (Fig. 45),

or even better, which is also demonstrated in [80], where the number of flows is small and the computa-

tion of the estimate depends directly on it. Thus, no need to integrate the reliable messaging layer with

FU. In contrast, PS and DRG cannot converge at all due to violating mass conservation.

Using Basic-Exon, the fault tolerant messaging layer, the variants of PS and DRG, i.e., FTPS and FTDRG,

are again able to operate, however at an additional communication overhead. Since the messaging layer

is transparent to the protocols’ logic, this overhead does not manifest on the number of iterations needed.

Counting an additional iteration per retransmitted message is unfair, since not the entire system is actually

delayed, whereas discarding the retransmission time and overhead is biased to PS.

To handle this, I estimated the number of extra iterations needed through dividing the extra messages

propagated due to failures, by the average number of messages exchanged per iteration in the fault-free

case. This estimation turned out to be a polynomial equation of the form: 𝑓 (𝑥) = Σ4
𝑖=1𝑥

𝑖 ; where 𝑥 is

the retransmission ratio. In the case of 20%, 𝑓 (0.2) ≈ 0.25. Using this estimation, the convergence

speed of FTPS and FTDRG is roughly 25% lower than that of PS and DRG in the fault-free case (Fig. 45),

respectively. Therefore, FTPS only overtakes FU starting from degree 10 (instead of 7 in the fault-free

case). The overhead is higher for FTDRG which overtakes FU starting from degree 16 and up, and thus I

123

CHAPTER 8. CASE STUDY: DISTRIBUTED AGGREGATION

believe it is not worth using DRG instead of FU in this case.

As for message duplication, FU and DRG are not affected since computing the aggregate is idempotent;

and therefore, the convergence speed remains as shown in Fig. 45. To the contrary, PS suffers from

message duplication and thus cannot converge at all — thus I do not plot the corresponding curve. The

use of the fault tolerant messaging layer in FTPS overcomes the duplication problems as expected without

significant changes in convergence speed to this presented in Fig 45.

Note that, though not manifested in the experiments, the overhead of Basic-Exon in this case will be very

low [101] as compared to classical deduplication methods that depend on retaining logs — which is not

tolerable in resource constrained devices.

8.4.4 The impact of network partitions

To experiment the protocols under network partitions, I used a random network of 1000 nodes, and man-

ually identified some links that when broken can lead to network partition. Following this process, I have

studied the time needed by the three protocols PS, FU, and DRG to converge under different settings:

changing the partition size (to 10%, 25%, and 50%) and time of partitioning occurs (i.e., 20-200 iterations

and 200-500 iterations) with degree ≈ 10. In particular, I studied the time needed to converge to a very

small RMSE.

I only convey the important part of my results in Figure 47 which correspond to 10% partition size and

partition time 20-200 iterations. This graph is chosen due to the following reasons. Changing the partition

size to 25% and 50% lead to very similar patterns to those in Figure 47 with a slight difference that the

impact of partitioning is a bit lower on the two partitions. This reason is referred to the fact that initial

values are quickly propagated to most of the nodes in the two partitions, leading to faster averaging be-

fore partitioning occurs. This very reason lead me to omit the experiments of partitioning time 200-500

iterations. Indeed, the three protocols reached an almost stable state after 200 iterations which absorbs

the impact of partitioning.

Considering Figure 47, the first observation is that, at the instant partitioning starts (i.e., 20 iterations), the

two partitions continue to converge through tens of iterations before stabilizing almost at 100 iterations

in all protocols. This was expected as the three protocols are completely decentralized and can operate

as long as peers are reachable. The second observation shows that FU shows some fluctuation when the

network heals from partition as shown by the spike at the iteration 200 in Figure 47.

To further understand this behavior, I tried to compute the value that each partition converged to before

and after healing. My experiments show that FU tried to converge to different values on each partition

124

8.4. EVALUATION

4e-06

0.002

1

500

1 10 100 1000

R
M

S
E

Iterations

PS

FU

DRG

Figure 47: Root Mean Square Error under 10% network partition size and degree 10.

Table 2: Estimated message’s header size of FU, DRG, PS, and two fault tolerant piggy-backing patterns
of PS.

FU DRG PS FTPSPB1 FTPSPB2

76 36 (max) 74 32 92

which is far from the optimal average. To the contrary, the values of PS and DRG keep getting closer to

the optimal average, though slowly. This is referred to the high impact of using immutable flows in FU,

which is consistent with the results in [99], and which is considered the major drawback in flow based

protocols.

8.4.5 The messaging overhead

As for message’s header size, Table 2 presents the average size of the three protocols FU, PS, and DRG:

76, 74, and 36, respectively. Despite this slight difference among protocols, it has no impact in a real

network. In fact, given that the payload in aggregation applications is often small (e.g., few Bytes), the

header and the payload can both fit in a single UDP datagram. (TCP is not recommended in such hostile

settings.) To tolerate message loss and duplication, FTPS should also be considered. According to the

Basic-Exon I used with PS, FTPS requires four different message types, in two round-trip delays, to deliver a

single aggregation message and a corresponding ACK. The size of each message header ranges between

16 and 74 Bytes. However, under congestion, messages can be piggy-backed in two patterns depicted

as FTPSPB1 and FTPSPB2 in Table 2. Therefore, the messaging overhead of the Basic-Exon layer is

negligible as well.

125

CHAPTER 8. CASE STUDY: DISTRIBUTED AGGREGATION

8.5 Conclusion

Complementary to state-of-the-art studies on aggregation protocols, the study focused on taking failure

prone protocols as PS and DRG, and integrate a reliable messaging layer that can preserve the simplicity

of the classical protocols to overcome mass conservation risks.

By incorporating Basic-Exon into the network simulator, the research aimed to assess the effectiveness

of ensuring reliability in order to overcome the limitations and vulnerabilities of failure-prone aggregation

protocols. This approach allowed for an exploration of the trade-offs between reliability and protocol sim-

plicity, providing insights into the potential improvements that can be made to enhance the performance

of aggregation protocols in the presence of communication failures.

In conclusion, the Flow-Updating protocol [80] is natively robust to loss and duplication but not to network

partitions which incur some temporary perturbation in the values. Since network partitions are more likely

to occur once the degree is small (e.g., 3), it is recommended to avoid using FU unless the perturbation

in the values is tolerable by the application; the alternative is to use other Flow-Updating variants like [98,

99] only if high accuracy is not a matter.

On the other hand, PS and DRG are prone to communication issues, and thus using a reliable messaging

layer is crucial for mass conservation. The experiments conveyed show that providing a reliable messaging

layer comes at a cost, which is not worth it in the case of DRG. To the contrary, PS protocol is more accurate

and outperforms the other protocols when the 𝑑𝑒𝑔𝑟𝑒𝑒 > 10 despite the overhead of using Basic-Exon.

126

9

Conclusions

In conclusion, this thesis has made significant contributions to the field of distributed messaging and com-

munication protocols. A novel protocol, named Exon, has been introduced, offering a robust solution for

achieving oblivious exactly-once messaging. Its safety and liveness properties have been formally proven,

providing a solid foundation for reliable message delivery. The development of the Exon-lib open-source

library, implementing Exon over UDP, further enhances the practical applicability of the protocol by pro-

viding a flexible API for building distributed applications.

Empirical evaluations conducted across diverse network scenarios have shed light on the performance and

effectiveness of the proposed solutions, offering valuable insights into their real-world viability. The perfor-

mance evaluation showed Exon to have similar performance to TCP in normal conditions but considerably

better performance under message loss.

The presented extension to Exon, enabling message delegation through intermediary nodes, contributes

to the adaptability of the protocol suite.

Integrating Exon into various applications reduces overhead in fault tolerance, benefiting data aggrega-

tion, Pat Helland’s Vision, Online Booking Distributed Systems, the Automotive Domain, and Messaging

Support for Distributed Middleware.

These contributions collectively advance the understanding and capabilities of distributed messaging pro-

tocols, offering innovative solutions to challenges in achieving reliable and efficient communication in

various network contexts. The theoretical foundations, practical implementations, and empirical insights

presented in this thesis pave the way for further research and applications in the realm of distributed

systems and networking.

9.1 Limitations

While Exon demonstrates several strengths, there are a few limitations worth noting:

127

CHAPTER 9. CONCLUSIONS

• Exon’s current prototype performs similarly to TCP under normal fault-free conditions and exhibits

improved performance under small packet loss rates. However, we have identified a slight perfor-

mance degradation under low bandwidth and low network latency. To address this limitation, we

have devised a solution that will be implemented in the next library version.

• The evaluation of Exon’s performance and robustness has been conducted in controlled environ-

ments, and further real-world testing is necessary to assess its behavior in diverse network condi-

tions and under various types of workloads.

• Security considerations for Exon are needed to conduct a comprehensive security analysis, includ-

ing vulnerability assessments and threat modeling. The focus will be on developing and imple-

menting robust security mechanisms to enhance the secure messaging capabilities of Exon.

9.2 Future Research Directions

Based on the findings and limitations identified in this thesis, several directions for future research can be

explored:

Further performance optimization: Investigate additional techniques to enhance Exon’s performance un-

der low bandwidth and low network latency conditions, e.g. message piggybacking, ensuring that it re-

mains efficient and robust across a wide range of network scenarios.

Real-world deployment and evaluation: Conduct extensive real-world testing and evaluation of Exon, con-

sidering various network topologies, traffic patterns, and workload distributions. This will provide a more

comprehensive understanding of its behavior, performance, and scalability.

Security analysis and enhancements: Conduct a thorough security analysis of Exon, including vulnerability

assessments, threat modeling, and formal verification. Based on the findings, develop and implement

additional security measures to ensure the protocol’s resilience against potential attacks. There are sev-

eral approaches can be considered to ensure the security of the middleware. These approaches could

be whether through underlying layers, off-the-shelf solutions, or custom implementations, that will help

safeguard the confidentiality, integrity, and availability of Exon protocol.

Extended use cases and applications: Explore additional use cases and applications where Exon can pro-

vide significant benefits, such as distributed computing, Internet of Things (IoT) systems, and blockchain

networks. Investigate the integration of Exon with existing frameworks and protocols to leverage its advan-

tages in various domains.

By addressing these research directions, we can further advance the understanding and applicability of

Exon in practical distributed systems, contributing to the broader field of network protocols and commu-

nication technologies.

In conclusion, Exon offers a promising solution for achieving efficient and reliable message-based com-

munication in distributed systems. Through its lightweight design, exactly-once delivery guarantees, and

128

9.2. FUTURE RESEARCH DIRECTIONS

support for partition tolerance through delegation, Exon demonstrates its potential as a robust transport-

level protocol. The contributions of this thesis, including the development of Exon, and the evaluation of

its performance, lay the foundation for future research and advancements in this area. By addressing the

identified limitations and pursuing future research directions, Exon can further mature as a practical and

effective protocol for a wide range of distributed applications, contributing to the advancement of network

protocols and communication technologies.

As I am concluding this stage and bringing this dissertation to a close, I am filled with the sense that

numerous new research opportunities are emerging. This journey has taught me that every ending is also

a beginning, and with each closed door, there are multiple others waiting to be opened.

129

Bibliography

[1] João M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021.

url: https://github.com/joaomlourenco/novathesis/raw/master/template.
pdf (cit. on p. i).

[2] Pat Helland. “Life beyond distributed transactions: an apostate’s opinion”. In: Queue 14.5 (2016),

pp. 69–98 (cit. on pp. 1, 2, 6–8, 13, 41, 107).

[3] Eric A Brewer. “Towards robust distributed systems”. In: PODC. Vol. 7. Portland, OR. 2000,

pp. 343477–343502 (cit. on pp. 1, 10, 23).

[4] Ziad Kassam, Paulo Sérgio Almeida, and Ali Shoker. “Exon: An Oblivious Exactly-Once Messag-

ing Protocol”. In: 2022 International Conference on Computer Communications and Networks

(ICCCN). IEEE. 2022, pp. 1–10 (cit. on pp. 3, 4).

[5] Ziad Kassam et al. “Aggregation protocols in light of reliable communication”. In: 2017 IEEE 16th

International Symposium on Network Computing and Applications (NCA). IEEE. 2017, pp. 1–4

(cit. on pp. 4, 5, 15).

[6] Ali Shoker et al. “Life Beyond Distributed Transactions on the Edge”. In: Proceedings of the 1st

Workshop on Middleware for Edge Clouds & Cloudlets. 2016, pp. 1–3 (cit. on pp. 5, 8).

[7] C. Carr, S. Crocker, and V. Cerf. “HOST-HOST communication protocol in the ARPA network”. In:

AFIPS ’70 (Spring). 1970 (cit. on p. 7).

[8] C. Sunshine and Yogen K. Dalal. “Connection Management in Transport Protocols”. In: Comput.

Networks 2 (1978), pp. 454–473 (cit. on p. 7).

[9] Vinton Cerf and Robert Kahn. “A protocol for packet network intercommunication”. In: IEEE Trans-

actions on communications 22.5 (1974), pp. 637–648 (cit. on p. 7).

[10] Jon Postel et al. User datagram protocol. 1980 (cit. on p. 7).

[11] Jon Postel. Rfc0793: Transmission control protocol. 1981 (cit. on pp. 7, 25).

130

https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

BIBLIOGRAPHY

[12] William Stallings. Handbook of computer-communications standards; Vol. 1: the open systems

interconnection (OSI) model and OSI-related standards. Macmillan Publishing Co., Inc., 1987 (cit.

on pp. 7, 23).

[13] Dag Belsnes. “Single-message communication”. In: IEEE Transactions on Communications 24.2

(1976), pp. 190–194 (cit. on p. 7).

[14] Hagit Attiya, Shlomi Dolev, and Jennifer L Welch. “Connection management without retaining

information”. In: Information and Computation 123.2 (1995), pp. 155–171 (cit. on pp. 7, 39).

[15] Victor C Zandy and Barton P Miller. “Reliable network connections”. In: Proceedings of the 8th

annual International Conference on Mobile Computing and Networking. 2002, pp. 95–106 (cit. on

pp. 8, 30).

[16] Alex C Snoeren, David G Andersen, and Hari Balakrishnan. “Fine-Grained Failover Using Connec-

tion Migration.” In: USITS. Vol. 1. 2001, pp. 19–19 (cit. on pp. 8, 30).

[17] Richard Ekwall, Péter Urbán, and André Schiper. “Robust TCP connections for fault tolerant com-

puting”. In: Ninth International Conference on Parallel and Distributed Systems, 2002. Proceed-

ings. IEEE. 2002, pp. 501–508 (cit. on pp. 8, 29, 30).

[18] Randall Stewart and Christopher Metz. “SCTP: new transport protocol for TCP/IP”. In: IEEE Inter-

net Computing 5.6 (2001), pp. 64–69 (cit. on p. 8).

[19] James N Gray. “Notes on data base operating systems”. In: Operating systems: An advanced

course (2005), pp. 393–481 (cit. on p. 8).

[20] Leslie Lamport. “Paxos made simple”. In: ACM SIGACT News (Distributed Computing Column)

32, 4 (Whole Number 121, December 2001) (2001), pp. 51–58 (cit. on pp. 8, 22).

[21] Daniel Peng and Frank Dabek. “Large-scale incremental processing using distributed transactions

and notifications”. In: 9th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 10). 2010 (cit. on p. 8).

[22] Ling Qian et al. “Cloud computing: An overview”. In: Cloud Computing: First International Con-

ference, CloudCom 2009, Beijing, China, December 1-4, 2009. Proceedings 1. Springer. 2009,

pp. 626–631 (cit. on pp. 8, 15).

[23] Chaowei Yang et al. “Big Data and cloud computing: innovation opportunities and challenges”.

In: International Journal of Digital Earth 10.1 (2017), pp. 13–53 (cit. on p. 8).

[24] Weisong Shi et al. “Edge computing: Vision and challenges”. In: IEEE internet of things journal

3.5 (2016), pp. 637–646 (cit. on pp. 8, 15).

[25] Flavio Bonomi et al. “Fog computing and its role in the internet of things”. In: Proceedings of the

first edition of the MCC workshop on Mobile cloud computing. 2012, pp. 13–16 (cit. on p. 8).

131

BIBLIOGRAPHY

[26] C Mohan, Bruce Lindsay, and Ron Obermarck. “Transaction management in the R* distributed

database management system”. In: ACM Transactions on Database Systems (TODS) 11.4 (1986),

pp. 378–396 (cit. on p. 9).

[27] Alexander Thomson et al. “Calvin: fast distributed transactions for partitioned database systems”.

In: Proceedings of the 2012 ACM SIGMOD international conference onmanagement of data. 2012,

pp. 1–12 (cit. on p. 9).

[28] Erfan Zamanian et al. “The end of a myth: Distributed transactions can scale”. In: arXiv preprint

arXiv:1607.00655 (2016) (cit. on p. 9).

[29] Mei-Ling Liu, Divyakant Agrawal, and Amr El Abbadi. “The performance of two phase commit pro-

tocols in the presence of site failures”. In: Distributed and Parallel Databases 6 (1998), pp. 157–

182 (cit. on p. 9).

[30] Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. “A survey of distributed data aggregation

algorithms”. In: IEEE Communications Surveys & Tutorials 17.1 (2014), pp. 381–404 (cit. on

p. 15).

[31] Jian Wang et al. “A survey of vehicle to everything (V2X) testing”. In: Sensors 19.2 (2019), p. 334

(cit. on p. 17).

[32] Hantao Li et al. “Effective safety message dissemination with vehicle trajectory predictions in V2X

networks”. In: Sensors 22.7 (2022), p. 2686 (cit. on p. 18).

[33] EMQX. https://www.emqx.com/en/blog/mqtt-over-quic (cit. on pp. 19, 116).

[34] Jim Gray and Andreas Reuter. Transaction processing: concepts and techniques. Elsevier, 1992

(cit. on p. 20).

[35] Philip A Bernstein, Vassos Hadzilacos, Nathan Goodman, et al. Concurrency control and recovery

in database systems. Vol. 370. Addison-wesley Reading, 1987 (cit. on p. 22).

[36] Yang Xiao et al. “Distributed consensus protocols and algorithms”. In: Blockchain for Distributed

Systems Security 25 (2019), p. 40 (cit. on p. 22).

[37] Diego Ongaro and John Ousterhout. “In search of an understandable consensus algorithm”. In:

2014 USENIX annual technical conference (USENIX ATC 14). 2014, pp. 305–319 (cit. on p. 22).

[38] Miguel Castro, Barbara Liskov, et al. “Practical byzantine fault tolerance”. In: OsDI. Vol. 99. 1999,

pp. 173–186 (cit. on p. 22).

[39] Andrzej Oz�adowicz and Jakub Grela. “The street lighting control system application and case

study”. In: 2015 International Conference on Event-based Control, Communication, and Signal

Processing (EBCCSP). IEEE. 2015, pp. 1–8 (cit. on p. 24).

132

https://www.emqx.com/en/blog/mqtt-over-quic

BIBLIOGRAPHY

[40] Lorenzo Alvisi et al. “Wrapping server-side TCP to mask connection failures”. In: Proceedings IEEE

INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference

of the IEEE Computer and Communications Society (Cat. No. 01CH37213). Vol. 1. IEEE. 2001,

pp. 329–337 (cit. on pp. 28–30).

[41] Kaushik Dutta et al. “User action recovery in internet sagas (isagas)”. In: International Workshop

on Technologies for E-Services. Springer. 2001, pp. 132–146 (cit. on p. 30).

[42] German Shegalov et al. “EOS: Exactly-Once E-Service Middleware”. In: VLDB’02: Proceedings of

the 28th International Conference on Very Large Databases. Elsevier. 2002, pp. 1043–1046 (cit.

on p. 30).

[43] Naghmeh Ivaki, Filipe Araujo, and Raul Barbosa. “A middleware for exactly-once semantics in

request-response interactions”. In: 2012 IEEE 18th Pacific Rim International Symposium on De-

pendable Computing. IEEE. 2012, pp. 31–40 (cit. on p. 30).

[44] Randall R. Stewart. Stream Control Transmission Protocol. RFC 4960. Sept. 2007. doi: 10.174
87/RFC4960. url: https://rfc-editor.org/rfc/rfc4960.txt (cit. on p. 31).

[45] Yunhong Gu and Robert L Grossman. “UDT: UDP-based data transfer for high-speed wide area

networks”. In: Computer Networks 51.7 (2007), pp. 1777–1799 (cit. on pp. 31, 84).

[46] Adam Lindberg, Sébastien Merle, and Peer Stritzinger. “Scaling Erlang distribution: going beyond

the fully connected mesh”. In: Proceedings of the 18th ACM SIGPLAN International Workshop on

Erlang. 2019, pp. 48–55 (cit. on p. 31).

[47] Inc. Lightbend. Apache Akka: Message Delivery Reliability. https://doc.akka.io/docs/
akka/current/general/message-delivery-reliability.html. Accessed: 2021-
08-09. 2021 (cit. on p. 31).

[48] Cheng Jin, David X Wei, and Steven H Low. “FAST TCP: motivation, architecture, algorithms,

performance”. In: IEEE INFOCOM 2004. Vol. 4. IEEE. 2004, pp. 2490–2501 (cit. on p. 31).

[49] Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC: a new TCP-friendly high-speed TCP variant”.

In: ACM SIGOPS operating systems review 42.5 (2008), pp. 64–74 (cit. on p. 31).

[50] Tom Bova and Ted Krivoruchka. Reliable UDP Protocol. Internet-Draft. Internet Engineering Task

Force, Feb. 1999. 15 pp. url: https://datatracker.ietf.org/doc/html/draft-
ietf-sigtran-reliable-udp-00 (cit. on p. 31).

[51] Henning Schulzrinne et al. RTP: A transport protocol for real-time applications. 1996 (cit. on p. 31).

[52] Eric He et al. “Reliable blast UDP: Predictable high performance bulk data transfer”. In: Pro-

ceedings. IEEE International Conference on Cluster Computing. IEEE. 2002, pp. 317–324 (cit. on

p. 31).

[53] Lee Salzman. ENet v1.3.17: Reliable UDP networking library. http://enet.bespin.org/
Features.html. Accessed: 2021-08-09. 2020 (cit. on p. 32).

133

https://doi.org/10.17487/RFC4960
https://doi.org/10.17487/RFC4960
https://rfc-editor.org/rfc/rfc4960.txt
https://doc.akka.io/docs/akka/current/general/message-delivery-reliability.html
https://doc.akka.io/docs/akka/current/general/message-delivery-reliability.html
https://datatracker.ietf.org/doc/html/draft-ietf-sigtran-reliable-udp-00
https://datatracker.ietf.org/doc/html/draft-ietf-sigtran-reliable-udp-00
http://enet.bespin.org/Features.html
http://enet.bespin.org/Features.html

BIBLIOGRAPHY

[54] Adam Langley et al. “The quic transport protocol: Design and internet-scale deployment”. In:

Proceedings of the conference of the ACM special interest group on data communication. 2017,

pp. 183–196 (cit. on p. 32).

[55] Esteban Meneses, Celso L. Mendes, and Laxmikant V. Kalé. “Team-Based Message Logging:

Preliminary Results”. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and

Grid Computing. 2010, pp. 697–702. doi: 10.1109/CCGRID.2010.110 (cit. on pp. 33, 35).

[56] Y-M Wang. “Reducing message logging overhead for log-based recovery”. In: 1993 IEEE Interna-

tional Symposium on Circuits and Systems. IEEE. 1993, pp. 1925–1928 (cit. on pp. 34, 35).

[57] Yi-Min Wang and W Kent Fuchs. “Optimistic Message Logging for Independent Checkpointing in

Message-Passing Systems.” In: SRDS. 1992, pp. 147–154 (cit. on p. 35).

[58] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A distributed messaging system for log pro-

cessing”. In: Proceedings of the NetDB. Vol. 11. 2011, pp. 1–7 (cit. on pp. 36, 37).

[59] Steve Vinoski. “Advanced message queuing protocol”. In: IEEE Internet Computing 10.6 (2006),

pp. 87–89 (cit. on p. 36).

[60] RabbitMQ. https://www.rabbitmq.com/ (cit. on p. 36).

[61] Bruce Snyder, Dejan Bosanac, and Rob Davies. “Introduction to apache activemq”. In: Active MQ

in action (2017), pp. 6–16 (cit. on p. 36).

[62] Pieter Hintjens. ZeroMQ: messaging for many applications. ”O’Reilly Media, Inc.”, 2013 (cit. on

pp. 36, 37, 115).

[63] Benjamin Aziz. “A formal model and analysis of the MQ telemetry transport protocol”. In: 2014

Ninth International Conference on Availability, Reliability and Security. IEEE. 2014, pp. 59–68 (cit.

on p. 36).

[64] Tony Speakman et al. PGM Reliable Transport Protocol Specification. RFC 3208. Dec. 2001. doi:

10.17487/RFC3208. url: https://rfc-editor.org/rfc/rfc3208.txt (cit. on p. 36).

[65] Guozhang Wang et al. “Building a replicated logging system with Apache Kafka”. In: Proceedings

of the VLDB Endowment 8.12 (2015), pp. 1654–1655 (cit. on pp. 36, 37).

[66] Guruduth Banavar et al. “A case for message oriented middleware”. In: International Symposium

on Distributed Computing. Springer. 1999, pp. 1–17 (cit. on p. 36).

[67] OASIS Standard. “MQTT version 3.1. 1”. In: URL http://docs. oasis-open. org/mqtt/mqtt/v3 1

(2014) (cit. on pp. 38, 116).

[68] Larry R Dennison. “Reliable interconnection networks for parallel computers”. In: (1991) (cit. on

p. 38).

[69] Hagit Attiya and Rinat Rappoport. “The level of handshake required for managing a connection”.

In: Distributed Computing 11.1 (1997), pp. 41–57 (cit. on pp. 39, 41).

134

https://doi.org/10.1109/CCGRID.2010.110
https://doi.org/10.17487/RFC3208
https://rfc-editor.org/rfc/rfc3208.txt

BIBLIOGRAPHY

[70] Ziad Kassam, Paulo Sergio Almeida, and Ali Shoker. Exon Exactly-Once Oblivious Messaging Li-

brary. https://github.com/ziadkassam/Exon. Accessed: 2021-08-09. 2021 (cit. on

p. 68).

[71] TIOBE Index. TIOBE Index for Programming Languages. https://www.tiobe.com/tiobe-
index/. Accessed: 2023-09-03 (cit. on p. 69).

[72] Oracle. Oracle. https://www.oracle.com/. Accessed: 2023-09-03 (cit. on p. 69).

[73] Brian White et al. “An integrated experimental environment for distributed systems and networks”.

In: ACM SIGOPS Operating Systems Review 36.SI (2002), pp. 255–270 (cit. on p. 83).

[74] Madzirin Masirap et al. “Evaluation of reliable UDP-based transport protocols for Internet of Things

(IoT)”. In: 2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). IEEE.

2016, pp. 200–205 (cit. on p. 85).

[75] Bishwaroop Ganguly et al. “Loss-Tolerant TCP (LT-TCP): Implementation and experimental evalu-

ation”. In: MILCOM 2012 - 2012 IEEE Military Communications Conference. 2012, pp. 1–6. doi:

10.1109/MILCOM.2012.6415694 (cit. on p. 85).

[76] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. “Gossip-based aggregation in large dy-

namic networks”. In: ACM Transactions on Computer Systems (TOCS) 23.3 (2005), pp. 219–

252 (cit. on pp. 106, 119).

[77] Jen-Yeu Chen, Gopal Pandurangan, and Dongyan Xu. “Robust computation of aggregates in wire-

less sensor networks: distributed randomized algorithms and analysis”. In: IEEE Transactions on

Parallel and Distributed Systems 17.9 (2006), pp. 987–1000 (cit. on pp. 106, 107, 119, 120).

[78] David Kempe, Alin Dobra, and Johannes Gehrke. “Gossip-based computation of aggregate infor-

mation”. In: Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium

on. IEEE. 2003, pp. 482–491 (cit. on pp. 106, 107, 119, 120).

[79] Ittay Eyal, Idit Keidar, and Raphael Rom. “LiMoSense: live monitoring in dynamic sensor net-

works”. In: Distributed computing 27.5 (2014), pp. 313–328 (cit. on pp. 106, 119, 120).

[80] Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. “Fault-Tolerant Aggregation by Flow Up-

dating.” In: DAIS. Springer. 2009, pp. 73–86 (cit. on pp. 106, 108, 119, 120, 122, 123, 126).

[81] Carlo Curino et al. “Schism: a workload-driven approach to database replication and partitioning”.

In: (2010) (cit. on p. 111).

[82] Monowar Hasan et al. “Securing vehicle-to-everything (V2X) communication platforms”. In: IEEE

Transactions on Intelligent Vehicles 5.4 (2020), pp. 693–713 (cit. on p. 112).

[83] Khandaker Foysal Haque et al. “Lora architecture for v2x communication: An experimental eval-

uation with vehicles on the move”. In: Sensors 20.23 (2020), p. 6876 (cit. on p. 112).

135

https://github.com/ziadkassam/Exon
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.oracle.com/
https://doi.org/10.1109/MILCOM.2012.6415694

BIBLIOGRAPHY

[84] Khadige Abboud, Hassan Aboubakr Omar, and Weihua Zhuang. “Interworking of DSRC and cel-

lular network technologies for V2X communications: A survey”. In: IEEE transactions on vehicular

technology 65.12 (2016), pp. 9457–9470 (cit. on p. 113).

[85] Sohan Gyawali et al. “Challenges and solutions for cellular based V2X communications”. In: IEEE

Communications Surveys & Tutorials 23.1 (2020), pp. 222–255 (cit. on p. 113).

[86] Muhammad Awais Khan et al. “Robust, resilient and reliable architecture for v2x communica-

tions”. In: IEEE Transactions on Intelligent Transportation Systems 22.7 (2021), pp. 4414–4430

(cit. on p. 113).

[87] Carl Bergenhem, Erik Hedin, and Daniel Skarin. “Vehicle-to-vehicle communication for a platoon-

ing system”. In: Procedia-Social and Behavioral Sciences 48 (2012), pp. 1222–1233 (cit. on

p. 114).

[88] Carl Bergenhem et al. “Overview of platooning systems”. In: Proceedings of the 19th ITS World

Congress, Oct 22-26, Vienna, Austria (2012). 2012 (cit. on p. 113).

[89] Robert Virding, Claes Wikström, and Mike Williams. Concurrent programming in ERLANG. Prentice

Hall International (UK) Ltd., 1996 (cit. on p. 115).

[90] akka. https://akka.io/ (cit. on p. 115).

[91] Nanomsg-ZeroMQ. Differences between nanomsg and ZeroMQ. http : / / nanomsg . org /
documentation-zeromq.html (cit. on p. 115).

[92] Jin-Shyan Lee, Yu-Wei Su, and Chung-Chou Shen. “A comparative study of wireless protocols:

Bluetooth, UWB, ZigBee, and Wi-Fi”. In: Industrial Electronics Society, 2007. IECON 2007. 33rd

Annual Conference of the IEEE. Ieee. 2007, pp. 46–51 (cit. on p. 119).

[93] Stephen Boyd et al. “Gossip algorithms: Design, analysis and applications”. In: INFOCOM 2005.

24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings

IEEE. Vol. 3. IEEE. 2005, pp. 1653–1664 (cit. on p. 119).

[94] Carlos Baquero, Paulo Sérgio Almeida, and Raquel Menezes. “Fast estimation of aggregates in

unstructured networks”. In: Autonomic and Autonomous Systems, 2009. ICAS’09. Fifth Interna-

tional Conference on. IEEE. 2009, pp. 88–93 (cit. on p. 119).

[95] Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. “A survey of distributed data aggregation

algorithms”. In: IEEE Communications Surveys & Tutorials 17.1 (2015), pp. 381–404 (cit. on

pp. 119, 120).

[96] Gerhard Niederbrucker and Wilfried N Gansterer. “Robust gossip-based aggregation: A practical

point of view”. In: 2013 Proceedings of the Fifteenth Workshop on Algorithm Engineering and

Experiments (ALENEX). SIAM. 2013, pp. 133–147 (cit. on pp. 119, 120, 122).

136

https://akka.io/
http://nanomsg.org/documentation-zeromq.html
http://nanomsg.org/documentation-zeromq.html

BIBLIOGRAPHY

[97] Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. “Flow updating: Fault-tolerant aggrega-

tion for dynamic networks”. In: Journal of Parallel and Distributed Computing 78 (2015), pp. 53–

64 (cit. on p. 119).

[98] Wilfried N Gansterer et al. “Robust distributed orthogonalization based on randomized aggrega-

tion”. In: Proceedings of the second workshop on Scalable algorithms for large-scale systems.

ACM. 2011, pp. 7–10 (cit. on pp. 119, 120, 126).

[99] Gerhard Niederbrucker, Hana Straková, and Wilfried N Gansterer. “Improving fault tolerance and

accuracy of a distributed reduction algorithm”. In: High Performance Computing, Networking,

Storage and Analysis (SCC), 2012 SC Companion: IEEE. 2012, pp. 643–651 (cit. on pp. 119,

120, 125, 126).

[100] Ding Liu and Manoj Prabhakaran. “On randomized broadcasting and gossiping in radio networks”.

In: Computing and Combinatorics (2002), pp. 643–654 (cit. on p. 120).

[101] Ali Shoker, Paulo Sérgio Almeida, and Carlos Baquero. “Exactly-Once Quantity Transfer”. In: 2015

IEEE 34th Symposium on Reliable Distributed Systems Workshop (SRDSW). IEEE. 2015, pp. 68–

73 (cit. on pp. 120, 124).

[102] Paulo Sérgio Almeida and Carlos Baquero. “Scalable eventually consistent counters over unreli-

able networks”. In: arXiv preprint arXiv:1307.3207 (2013) (cit. on pp. 120, 121).

[103] Marc Shapiro et al. “Conflict-free replicated data types”. In: Stabilization, Safety, and Security of

Distributed Systems: 13th International Symposium, SSS 2011, Grenoble, France, October 10-12,

2011. Proceedings 13. Springer. 2011, pp. 386–400 (cit. on p. 121).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.0) [novathesis-manual].

137

https://github.com/joaomlourenco/novathesis

A

Full-Package Exon

1 types
2 I : node id
3 P : payload
4 M : (dlv,P) | (fwd, I,M) | (tok, I,N,N,M)

| (rmvslots, I,N,N)
5 S : record {
6 sck : N, sender clock
7 rck : N, receiver clock
8 msg : M∗, messages queued to send
9 env : N∗, list of available envelopes

10 tok : N ↩→M, tokens with messages
11 }, sender-side connection record
12 R : record {
13 sck : N, sender clock
14 rck : N, receiver clock
15 slt : P(N), set of available slots
16 }, receiver-side connection record
17 parameters
18 𝑁 : N, number of slots requested in advance
19 state:
20 𝑐𝑘𝑖 : N = 0, node clock
21 𝑆𝑖 : I ↩→ S = ∅, map of sender-side records
22 𝑅𝑖 : I ↩→ R = ∅, map of receiver-side records

23 on EOSend𝑖 (𝑗,𝑚)
24 if 𝑗 ∉ dom(𝑆𝑖) then
25 𝑆𝑖 [𝑗] := S{sck : 𝑐𝑘𝑖, rck : 0,msg : [𝑚],env : [], tok : ∅}
26 requestSlots𝑖 (𝑗)
27 else
28 𝑐 = 𝑆𝑖 [𝑗]
29 if 𝑐.env ≠ [] then
30 𝑒 = 𝑐.env. dequeue()
31 𝑐.tok[𝑒] :=𝑚
32 send𝑖, 𝑗 (token, 𝑒, 𝑐 .rck,𝑚)
33 if |𝑐.env| = 𝑁 − 1 then
34 requestSlots𝑖 (𝑗)
35 else
36 𝑐.msg. enqueue(𝑚)
37 periodically
38 for (𝑗, 𝑐) in 𝑆𝑖 do
39 for (𝑠,𝑚) in 𝑐.tok do
40 send𝑖, 𝑗 (token, 𝑠, 𝑐 .rck,𝑚)
41 requestSlots𝑖 (𝑗)
42 for (𝑗, 𝑐) in 𝑅𝑖 do
43 send𝑖, 𝑗 (slots, 𝑐 .sck, 𝑐 .rck, 0)

Algorithm 7: Full-Package Exon

138

71 proc requestSlots𝑖 (𝑗)
72 𝑐 = 𝑆𝑖 [𝑗]
73 𝑛 = 𝑁 +

��𝑐.msg�� − |𝑐.env|
74 if 𝑛 > 0 then
75 𝑙 = if 𝑐.tok ≠ ∅ thenmin(dom(𝑐.tok))
76 else if 𝑐.env ≠ [] then 𝑐.env[0]
77 else 𝑐.sck
78 send𝑖, 𝑗 (reqslots, 𝑐 .sck, 𝑛, 𝑙)
79 else if 𝑐.tok = ∅ and 𝑐.msg = [] then
80 send𝑖, 𝑗 (reqslots, 𝑐 .sck, 0, 𝑐 .sck)
81 𝑐𝑘𝑖 := max(𝑐𝑘𝑖, 𝑐 .sck)
82 𝑆𝑖 . remove(𝑗)
83 proc delegateConnection𝑖 (𝑗, 𝑘)
84 𝑐 = 𝑆𝑖 [𝑘]
85 𝑥 = if 𝑐.env = [] then 𝑐.sck
86 else 𝑐.env[0]
87 𝑦 = 𝑐.sck + 𝑁 + ��𝑐.msg�� − |𝑐.env|
88 𝑐.env := []
89 𝑐.sck := 𝑦
90 while 𝑐.msg ≠ [] do
91 EOSend𝑖 (𝑗, (fwd, 𝑘,

(dlv, 𝑐 .msg. dequeue())))
92 for (𝑠,𝑚) in 𝑐.tok do
93 if𝑚 instanceOf dlv then
94 EOSend𝑖 (𝑗, (fwd, 𝑘, (tok, 𝑖, 𝑠, 𝑐 .rck,𝑚)))
95 𝑐.tok[𝑠] := 𝑛𝑢𝑙𝑙

96 else
97 EOSend𝑖 (𝑗, (fwd, 𝑘,𝑚))
98 𝑐.tok. remove(𝑠)
99 EOSend𝑖 (𝑗, (fwd, 𝑘, (rmvslots, 𝑖, 𝑥,𝑦)))

100 proc handle𝑖 (𝑚)
101 case m of
102 (dlv, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑) thendeliver𝑖 (𝑝𝑎𝑦𝑙𝑜𝑎𝑑)
103 (fwd, 𝑗,𝑚) thenEOSend𝑖 (𝑗,𝑚)
104 (tok, 𝑗, 𝑠, 𝑟 ,𝑚) thenconsumeToken𝑖 (𝑗, 𝑠, 𝑟 ,𝑚)
105 (rmvslots, 𝑗, 𝑥,𝑦) thenremoveSlots𝑖 (𝑗, 𝑥,𝑦)
106 proc removeSlots𝑖 (𝑗, 𝑥,𝑦)
107 𝑐 = 𝑆𝑖 [𝑗]
108 for 𝑖 ← 𝑥 to (𝑦 − 1) do
109 𝑐.slt. remove(𝑠)
110 𝑐.sck := 𝑦
111 if 𝑐.slt = ∅ then
112 𝑅𝑖 . remove(𝑗)

113 proc consumeToken𝑖 (𝑗, 𝑠, 𝑟 ,𝑚)
114 if 𝑗 ∈ dom(𝑅𝑖) then
115 𝑐 = 𝑅𝑖 [𝑗]
116 if 𝑟 = 𝑐.rck and 𝑠 ∈ 𝑐.slt then
117 if𝑚 ≠ 𝑛𝑢𝑙𝑙 then
118 𝑐.slt. remove(𝑠)
119 handle𝑖 (𝑚)
120 send𝑖, 𝑗 (ack, 𝑠, 𝑟)
121 else
122 send𝑖, 𝑗 (ack, 𝑠, 𝑟)
123 else
124 send𝑖, 𝑗 (ack, 𝑠, 𝑟)
125 on receive 𝑗,𝑖 (reqslots, 𝑠, 𝑛, 𝑙)
126 if 𝑗 ∉ dom(𝑅𝑖) then
127 𝑅𝑖 [𝑗] := R{sck : 𝑠, rck : 𝑐𝑘𝑖, slt : ∅}
128 𝑐𝑘𝑖 := 𝑐𝑘𝑖 + 1
129 𝑐 = 𝑅𝑖 [𝑗]
130 𝑐.slt := {𝑚 ∈ 𝑐.slt|𝑚 ≥ 𝑙}
131 if 𝑛 > 0 then
132 if 𝑠 + 𝑛 > 𝑐.sck then
133 𝑐.slt. union({𝑐.sck, . . . , 𝑠 + 𝑛 − 1})
134 𝑐.sck := 𝑠 + 𝑛
135 send𝑖, 𝑗 (slots, 𝑠, 𝑐 .rck, 𝑛)
136 if 𝑐.slt = ∅ then
137 𝑅𝑖 . remove(𝑗)
138 on receive 𝑗,𝑖 (slots, 𝑠, 𝑟 , 𝑛)
139 if 𝑗 ∉ dom(𝑆𝑖) then
140 send𝑖, 𝑗 (reqslots, 𝑐𝑘𝑖, 0, 𝑐𝑘𝑖)
141 else if 𝑠 = 𝑆𝑖 [𝑗] .sck then
142 𝑐 = 𝑆𝑖 [𝑗]
143 𝑐.rck := 𝑟
144 𝑐.env. append([𝑠, . . . , 𝑠 + 𝑛 − 1])
145 𝑐.sck := 𝑠 + 𝑛
146 while 𝑐.env ≠ [] and 𝑐.msg ≠ [] do
147 𝑒 = 𝑐.env. dequeue()
148 𝑚 = 𝑐.msg. dequeue()
149 𝑐.tok[𝑒] :=𝑚
150 send𝑖, 𝑗 (token, 𝑒, 𝑐 .rck,𝑚)
151 requestSlots𝑖 (𝑗)
152 on receive 𝑗,𝑖 (token, 𝑠, 𝑟 ,𝑚)
153 consumeToken𝑖 (𝑗, 𝑠, 𝑟 ,𝑚)
154 on receive 𝑗,𝑖 (ack, 𝑠, 𝑟)
155 if 𝑗 ∈ dom(𝑆𝑖) then
156 𝑐 = 𝑆𝑖 [𝑗]
157 if 𝑟 = 𝑐.rck and 𝑠 ∈ dom(𝑐.tok) then
158 𝑐.tok. remove(𝑠)

139

