
Eleventh International Conference on Civil, Structural and Environmental Engineering Computing 
CC2007 

SPECIAL LECTURE 
 

Abstract 

The mechanics of masonry structures have been for long underdeveloped in 
comparison with other fields of knowledge. Presently, non-linear analysis is a 
popular field in masonry research and homogenization techniques play a major role, 
despite the mathematical and conceptual difficulties inherent to the approach. 
Here, a simple micro-mechanical model for the homogenized limit analysis of 
masonry is reviewed. Assuming brickwork under plane stress condition and 
adopting a polynomial expansion for the stress field, a linear optimization problem 
is derived on the elementary cell in order to recover the homogenized failure surface 
of the brickwork. The implementation of the homogenized failure surfaces for in-
plane and out-of-plane behaviour in a finite element limit analysis code is addressed. 
Relevant structural examples are treated with particular emphasis on the upper 
bound method, and are compared with competing approaches. Finally, the aspects of 
reliability and safety of masonry structures are discussed using the proposed 
modelling strategy. 
 
Keywords: Masonry, Limit analysis, Constitutive behaviour, Homogenization 
techniques. 
 
1  Introduction 
 
Masonry is a composite material constituted by units jointed together with mortar. 
Units are such as bricks, blocks, ashlars, adobes, irregular stones and others. Mortar 
can be clay, bitumen, chalk, lime/cement based mortar, glue or other. The huge 
number of possible combinations generated by the geometry, nature and 
arrangement of units as well as the characteristics of mortars raises doubts about the 
accuracy of the term “masonry”. Still, much information can be gained from the 
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study of regular masonry structures, in which a periodic repetition of the 
microstructure occurs due to a constant arrangement of the units (or constant bond). 

The difficulties in performing advanced testing of this type of structures are quite 
large due to the innumerable variations of masonry, the large scatter of in situ 
material properties and the impossibility of reproducing it all in a specimen. 
Therefore, most of the advanced experimental research carried out in the last 
decades concentrated in brick / block masonry and its relevance for design. Accurate 
modelling requires a comprehensive experimental description of the material, which 
seems mostly available at the present state of knowledge, see Lourenço [1] [2] for a 
review. 

Another important aspect that deserves particular consideration in the study of 
brickwork structures is related to the fact that historical city centers are often 
constituted by ancient masonry buildings. Many efforts have been done by 
researchers in order to better understand their behavior to horizontal seismic actions. 
For instance, earthquake surveys have demonstrated that the low tensile strength of 
masonry elements combined with an insufficient connection between perpendicular 
walls leads to overturning premature collapses of the perimeter walls under seismic 
horizontal acceleration and combined in- and out-of-plane failures [3].  

Therefore, the evaluation of the ultimate load bearing capacity of masonry 
buildings subjected to horizontal loads is a fundamental task in their design and 
safety assessment. Simplified limit analysis methods are usually adopted by 
practitioners for safety analyses and design of strengthening [4], but codes of 
practice, as for instance the recent Italian O.P.C.M. 3431 [5] [6], require a static non 
linear analysis for existing masonry buildings, in which a limited ductile behavior of 
the elements is taken into account, featuring failure mechanisms such as rocking, 
shear and diagonal cracking of the walls. 

In this framework, many researchers tried to propose a number of different 
numerical approaches (see [2] for a comprehensive review), all based on micro-
modeling, macro-modeling or homogenisation, with the aim of obtaining reliable 
tools to predict masonry behaviour at failure. 

The present paper focuses exclusively on the analysis of masonry structures 
making use of homogenization techniques, which has been receiving a growing 
interest from the scientific community. 

In particular, the approach based on the use of averaged constitutive equations 
seems to be the only one suitable to be employed in a large scale finite element 
analysis [7]. In fact, heterogeneous approaches based on a distinct representation of 
bricks and joints seem to be limited to the study of panels of small dimensions, due 
to the large number of variables involved in a non linear finite element analysis. On 
the other hand, alternative strategies based on macro-modeling (see Lourenço et al. 
[8]) have the drawback of requiring a preliminary mechanical characterization of the 
model, which usually is obtained from experimental data fitting [9]. 

In this framework, homogenization techniques can be used for the analysis of 
large scale structures. Such techniques take into account at a cell level the 
mechanical properties of constituent materials and the geometry of the elementary 
cell, allowing the analysis of entire buildings through standard finite element codes. 
Furthermore, the application of homogenization theory to the rigid-plastic case [10] 
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is particularly indicated for a simple but reliable structural analysis, requiring only a 
reduced number of material parameters and providing significant information at 
failure, such as limit multipliers, collapse mechanisms and, at least on critical 
sections, the stress distribution [11]. 

In this paper, the micro-mechanical model presented by the authors in [11] [12] 
and [13] for the limit analysis of respectively in- and out-of-plane loaded masonry 
walls is extended and utilized in presence of coupled membrane and flexural effects 
(see also [14]). In the model, the elementary cell is subdivided along its thickness in 
several layers. For each layer, fully equilibrated stress fields are assumed, adopting 
polynomial expressions for the stress tensor components in a finite number of sub-
domains. The continuity of the stress vector on the interfaces between adjacent sub-
domains and suitable anti-periodicity conditions on the boundary surface are further 
imposed. In this way, linearized homogenized surfaces in six dimensions (polytopes) 
for masonry in- and out-of-plane loaded are obtained. Such surfaces are then 
implemented in a FE limit analysis code for the analysis at collapse of entire 3D 
structures and meaningful examples of technical relevance are discussed in detail. 

In Section 2, a micro-mechanical model for obtaining masonry homogenized in- 
and out-of-plane failure surfaces is presented, whereas in Section 3 a 3D FE upper 
bound approach suitable for the analysis at collapse of entire buildings is presented. 
The method is based on a triangular discretization of the structure, so that the 
velocity field interpolation is linear inside each element. Plastic dissipation can 
occur for in-plane actions both in continuum and in interfaces. Being the velocity 
interpolation linear inside each element, the curvature rate tensor is equal to zero for 
each triangle and out-of-plane dissipation can take place only at the interfaces 
between adjoining triangles. 

In Section 4, a large scale masonry building subjected to seismic loads is 
numerically analyzed with the model proposed. Then, a sensitivity analysis is 
conducted, varying in a wide range mortar cohesion and friction angle. 

Finally, in Section 5, some basic aspects connected to reliability and safety 
concepts are discussed using the proposed modeling strategy for a masonry shear 
wall in which the mechanical properties of joints are assumed as stochastic 
variables. 

 
2  In- and out-of-plane homogenized failure surfaces 

 
Let us consider a masonry wall Ω  constituted by a periodic arrangement of bricks 
and mortar disposed in running bond, as shown in Figure 1-a.  

As pointed out by Suquet in [10] for a general rigid-plastic heterogeneous 
material, homogenization techniques combined with limit analysis can be applied 
for the evaluation of the homogenized in- and out-of-plane strength domain homS , 
being masonry only a particular case of interest.  

In the framework of perfect plasticity and associated flow rule for the constituent 
materials, and by means of the lower bound limit analysis theorem, homS  can be 
derived by means of the following (non-linear) optimization problem (see also 
Figure 1): 
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where: 
- N  and M  are the macroscopic in-plane (membrane forces) and out-of-plane 
(bending moments and torsion) tensors; 
- σ  denotes the microscopic stress tensor; 
- n  is the outward versor of lY∂  surface, see Figure 1-a; 
- [ ][ ]σ  is the jump of micro-stresses across any discontinuity surface of normal intn , 
Figure 1-c; 
- mS  and bS  denote respectively the strength domains of mortar and bricks; 
- Y  is the cross section of the 3D elementary cell with 03 =y  (see Figure 1), Y  is 
its area, V  is the elementary cell volume, h  represents the wall thickness and 

( )321 yyy=y  are the assumed material axes; 
- mY  and bY  represent mortar joints and bricks respectively, see Figure 1. 
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Figure 1: Proposed micro-mechanical model. -a: elementary cell. -b: subdivision in 
layers along thickness and subdivision of each layer in sub-domains. -c: imposition 

of internal equilibrium, equilibrium on interfaces and anti-periodicity. 
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It is worth noting that condition ( 1-c ) imposes the micro-equilibrium with zero 
body forces, usually neglected in the framework of the homogenization theory and 
that anti-periodicity condition ( 1-e ) requires that that stress vectors σn are opposite 
on opposite sides of lY∂ , Figure 1-c, i.e. 2

)(
1

)( nn nm σσ −=  
In order to solve Eqs. ( 1 ) numerically, the simple admissible and equilibrated 

micro-mechanical model proposed in [12] and [14] is adopted. The unit cell is 
subdivided into a fixed number of layers along its thickness, as shown in Figure 1-b. 
For each layer out-of-plane components 3iσ  ( 3,2,1=i ) of the micro-stress tensor σ  
are set to zero, so that only in-plane components ijσ  ( 2,1, =ji ) are considered 
active. Furthermore, ijσ  ( 2,1, =ji ) are kept constant along the L∆  thickness of 
each layer, i.e. in each layer ),( 21 yyijij σσ = . For each layer in the wall thickness 
direction, one-fourth of the representative volume element is sub-divided into nine 
geometrical elementary entities (sub-domains), so that the entire elementary cell is 
sub-divided into 36 sub-domains (see [12] for further details and Figure 1-b). 

For each sub-domain )(k  and layer )(L , polynomial distributions of degree ( )m  
in the variables ( )21 , yy  are a priori assumed for the stress components. Since 
stresses are polynomial expressions, the generic ij th component can be written as 
follows: 

( ) ),(),(),( LkTLk
ij

Lk
ij Yσ ∈= ySyX  ( 2 )

where: 
- ( ) [ ]K2

221
2
1211 yyyyyy=yX ; 

- [ ]K)6)(,()5)(,()4)(,()3)(,()2)(,()1)(,(),( Lk
ij

Lk
ij

Lk
ij

Lk
ij

Lk
ij

Lk
ij

Lk
ij SSSSSS=S  is a vector 

representing the unknown stress parameters of sub-domain )(k  of layer )(L ; 
- ),( LkY  represents the k th sub-domain of layer )(L . 

The imposition of equilibrium inside each sub-domain, the continuity of the stress 
vector on interfaces and the anti-periodicity of σn  permit a reduction in the number 
of independent stress parameters. For the sake of conciseness, the reader is referred 
to [12] for further details. 

Assemblage operations on the local variables allow to write the stress vector 
),(~ Lkσ  of layer L  inside each sub-domain as: 

( ) ( ) layersofno.,,1domainssubofno.,,1~~~ ),(),( KK =−== LkLLkLk SyXσ  ( 3 )

where ( )LS~  is a 1xNuk  ( =ukN number of unknowns per layer) vector of linearly 

independent unknown stress parameters of layer L  and ( )yX ),(~ Lk  is a ukxN3  matrix 
depending only on the geometry of the elementary cell and on the position y  of the 
point in which the micro-stress is evaluated. 

For out-of-plane actions the proposed model requires a subdivision ( Ln ) of the 
wall thickness into several layers (Figure 1-b), with a fixed constant thickness 
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LL nh /=∆  for each layer. This allows to derive the following simple (non) linear 
optimization problem: 
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where: 
- λ  is the load multiplier (ultimate moment, ultimate membrane action or a 
combination of moments and membrane actions) with fixed direction Σn  in the six 
dimensional space of membrane actions ( [ ]yyxyxx NNN=N~ ), together with bending 

and torsion moments ( [ ]yyxyxx MMM=M~ ). 

- ),( LkS  denotes the (non-linear) strength domain of the constituent material (mortar 
or brick) corresponding to the k th sub-domain and L -th layer. 
- S~  collects all the unknown polynomial coefficients (of each sub-domain of each 
layer). 

It is noted that the direction Σn  is fixed arbitrarily in the six dimensional space 
[ ]MN ~~ . As a rule, since [ ]621 ,,, ααα K=Σn  with 12 =Σ iα , the parameters iα  are 
chosen randomly between 0 to 1 satisfying the constraint 12 =Σ iα , so that a number 
of directions Σn  are selected.  

In what follows, wall thickness is subdivided into thirty layers. The authors 
experienced that more refined discretizations result in negligible changes in the 
homogenized failure surface. 
 
3  3D kinematic FE limit analysis: basic assumptions 
 
The upper bound approach developed in this paper is based both on the formulation 
presented in Sloan and Kleeman [15] for the in-plane case and on the formulation by 
Munro and Da Fonseca [16] for out-of-plane actions, also adopted in [17]. 

The formulation uses three noded triangular elements with linear interpolation of 
the velocity field inside each element, so that three velocity unknowns per node i , 
say i

xxw  , i
yyw  and i

zzw  (respectively 2 in-plane velocities and 1 out-of-plane 
velocity, see Figure 2-a) are introduced for each element E , meaning that the 
velocity field is linear inside an element, whereas the strain rate field is constant for 
in-plane actions. 
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For the sake of simplicity, it is assumed that jump of velocities on interfaces 
occurs only in the plane containing two contiguous and coplanar elements, with 
linear interpolation of the jump along the interface. Hence, for each interface 
between coplanar adjacent elements, four additional unknowns are introduced 
( [ ]TI uvuv 2211 ∆∆∆∆=∆u ), representing the normal ( iv∆ ) and tangential ( iu∆ ) 
jumps of velocities (with respect to the discontinuity direction) evaluated on nodes 

1=i  and 2=i  of the interface (see Figure 2-b). For the sake of simplicity, it is 
assumed in the model that, if two adjacent elements do not lay in the same plane, no 
discontinuity occurs between the velocities belonging to the elements, so a priori 
assuming a perfect interlocking between perpendicular walls. 

Hence, for any pair of nodes on the interface between two adjacent and coplanar 
triangles R  and K , the tangential and normal velocity jumps can be written in terms 
of the Cartesian nodal velocities of elements R - K  (see [15] for details), so that four 
linear equations in the following form can be written: 

0uAwAwA =∆++ IeqKeqReq
131211  ( 5 )

where Rw  and Kw  are the 19×  vectors that collect velocities of elements R  and 
K  respectively and eq

j1A  3,2,1=j  are matrices which depend only on the interface 

orientation IΩ  (Figure 2). 
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Figure 2: -a: Triangular plate and shell element used for the upper bound FE limit 
analysis. -b: discontinuity of the in-plane velocity field. -c: perfect interlocking and 

absence of connections between perpendicular walls. 
 
Under in-plane loads three equality constrains representing the plastic flow in 

continuum (obeying an associated flow rule) are introduced for each element in the 
form Σε ∂∂= /homSEE

pl λ&& , where E
plε&  is the plastic strain rate vector of element E , 

0≥Eλ&  is the plastic multiplier, homS  is the homogenized (non) linear failure 
polytope of masonry and Σ  is the vector of macroscopic variables 

),,,,,( 221211221211 MMMNNN=Σ . 
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We refer the reader to the previous section and to [11] for further details on the 
procedure used for obtaining a linear approximation (with m  hyper-planes) of the 
failure polytope in the form ininS bΣA ≤≡hom , where inA  is a 6×m  matrix of 
coefficients of each hyper-plane and inb  is a 1×m  vector of the right hand sides of 
the linear approximation. 

Here we only recall that three linear equality constraints per element can be 
written ( 0λAwA =+ EeqEeq &

1211 , where Ew  is the vector of element velocities and Eλ&  
is a 1×m  vector of plastic multiplier rates, one for each plane of the linearised 
failure surface). 

As stated by Munro and Da Fonseca [16], out-of-plane plastic dissipation occurs 
only along each interface I  between two adjacent triangles R  and K  or on a 
boundary side B  of an element Q  (see Figure 3). 

Denoting with [ ]TEk
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zzEzz www )()()(

, =w  the element E  out-of-plane nodal 

velocities and with [ ]TE
k

E
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E
iE ϑϑϑ &&&& =θ  the side normal rotation rates, it is 

possible to show that Eθ&  and Ezz ,w  are linked by the compatibility equation (Figure 

3) EzzEE ,wBθ =& , where EB  is a 3x3 matrix that depends only on the geometry of 
element E . 

The total internal power dissipated inP  is constituted by the power dissipated in 
continuum, in

EP , and the power dissipated on interfaces, in
IP . 

in
EP  can be evaluated for each triangle E  of area EA  taking into account that 

curvature rates xxχ& , xyχ& , yyχ&  are zero in continuum, so that the flexural part of the 
model does not dissipate power in the continuum. As the homogenized (linearised) 
failure surface is constituted by m  hyper-planes of equation 
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where )(q
Eλ&  is the plastic multiplier rate of the triangle E  associated to the q th 

hyper-plane of the linearised failure surface. 
For an interface I  of length Γ and orientation IΩ , a rotation operator is applied 

to the linearized homogenized failure surface in order to obtain with a few row 
operations m  equations (one for each hyper-plane) in the form 

+++ tn
q
tnnn

q
nntt

q
tt NANANA ++ nn

q
nntt

q
tt MBMB q

Itn
q
tn CMB =  representing the 

homogenized failure surface hom~S  in the tn −  interface frame of reference, Figure 
2. 



9 

Therefore, the power dissipated in
IP  along an interface I  of length Γ and with 

orientation IΩ  can be estimated as follows: 
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where: 
- ( )ξλ )(q

I
&  represents the q th plastic multiplier rate of a point ξ  of the interface I ; 

- I
ntϑ&  is the torsional rotation rate between R  and K  along I  assumed equal to zero 

in the model, i.e. assuming out-of-plane dissipation due only to flexion; 
- I

ttϑ&  is the bending rotation rate between R  and K  on I  along t , assumed equal to 
zero; 
- I

tt∆  represents the interface plastic strain rate of I  along t , integrated along the 
infinitesimal thickness of the interface; 
- MntΣ , MttΣ  and NttΣ  are the torsional moment on I  ( ntMnt M=Σ ), the bending 
moment perpendicular to t  direction ( ttMtt M=Σ ) and the in-plane action parallel to 
t  ( ttNtt N=Σ ) respectively; 
- I

nnϑ&  is the bending rotation rate between R  and K  on I  along n , i.e. Iϑ&  (Figure 
3). 

 

x

I

I

wzz
i(R)

w      =wzz             zz    
k(R)        k(K)

y Boundary side

w      =wzz             zz    
j(R)        i(K)

wzz wzz
j(Q)

(R) element

(K) element

(Q) element
nn
I

n
t

j(K)

 
Figure 3: Rotation along an interface between adjacent triangles or in 

correspondence of a boundary side. 
 
For what concerns external power dissipation, no differences occur with respect 

to classic FE limit analysis codes. External power dissipated can be written as 
( )wPP TTexP 10 λ+= , where 0P  is the vector of (equivalent lumped) permanent loads, 



10 

λ  is the load multiplier for the structure examined, T
1P  is the vector of (lumped) 

variable loads and w  is the vector of assembled nodal velocities. As the amplitude 
of the failure mechanism is arbitrary, a further normalization condition 11 =wPT  is 
usually introduced. Hence, the external power becomes linear in w  and λ , i.e. 

λ+= wPTexP 0 . 
After some assemblage operations (not reported here for the sake of conciseness), 

the following linear programming problem is obtained (analogous to that reported in 
[15], see also [18]-[20]), where the objective function consists in the minimization 
of the total internal power dissipated: 
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where: 
- U  is the vector of global unknowns and collects the vector of assembled nodal 
velocities ( w ), the vector of assembled element plastic multiplier rates ( assE ,λ& ), the 
vector of assembled jump of velocities on interfaces ( assI ,u∆ ), the vector of 
assembled interface plastic multiplier rates ( assI ,λ& ) and the vector of interface and 
boundary out-of-plane rotation angles assθ& ; 
- eqA  is the overall constraints matrix and collects normalization conditions, 
velocity boundary conditions, relations between velocity jumps on interfaces and 
elements velocities, constraints for plastic flow in velocity discontinuities and 
constraints for plastic flow in continuum. 
- En  and In  are the total number of elements and interfaces, respectively. 

 
4  3D limit analysis of a school located in Italy 

 
The example treated in this Section consists of the prediction of the horizontal 
failure load of a three storey masonry building located in Ferrara, Italy, see Figure 4. 
The building, erected at the end of 19th century, is a school (A.Varano school) 
standing in Via Ghiara, Ferrara (Italy), in an isolated position and consists of two 
structurally independent rectangular main bodies, as shown in the plan view reported 
in Figure 5. 

The main building, called here for the sake of simplicity Body A presents a 
rectangular shape with dimensions L1×L2=49.0×12.2 m and 3 storeys, whereas the 
secondary Body B has a rectangular shape L1×L2= 8×13 m and 3 storeys. All the 
walls are made with clay bricks, assumed of dimensions 250×120×55 mm (length × 
width × height) in absence of precise information. The first storey height is 4.85 m 
whereas the second and third storeys height is 4.65 m. 

 



11 

-a -b 
Figure 4: Varano School. -a: Mesh used for the limit analysis (1576 triangular 

elements) and (-b) mesh used in Strand 7 for an elastic-plastic analysis with Mohr-
Coulomb failure criterion (3152 plate elements). 

 
In the intervention executed during the 1980’s a 20 mm separation joint was 

introduced between Body A and B. Therefore, only Body A is taken here into 
consideration for the structural analysis. 

 

 
Figure 5: First floor plan view, Varano school. 

 
Body A is geometrically regular with equally distributed mass, except for the 

large openings at the center of the first floor of the three walls parallel to x direction, 
which are part of a corridor giving access to the building. A main corridor of access 
to classrooms is located between walls x-1 and x-2, Figure 5. Walls thickness is 
reported in Table I. 
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Table I: Walls thickness (cm), Varano building. 
storey x-1 x-2 x-3 y-1 y-2 y-3 

1 60 45 60 60 45 - 
2 50 45 50 50 45 45 
3 45 30 45 45 30 30 

 
A FE model consisting of 1576 triangular elements is used for performing the 

homogenized limit analysis proposed (Figure 4-a) under a static equivalent seismic 
load directed along x-direction. The results obtained with the homogenized FE limit 
analysis model (i.e. failure shear at the base and failure mechanism) are compared 
with a standard FE elastic-perfectly plastic analysis conducted by means of a 
standard FE model (Strand 7). The analysis is performed using a mesh of 3152 four 
noded shell elements supposing masonry isotropic with a pure Mohr-Coulomb 
failure criterion.  

For masonry, a cohesion c  equal to 2/12.0 mmN  and friction angle 
)4.0(tan 1−=Φ  are adopted for the simulations, in agreement with the Italian code 

[5] [6]. In order to compare the homogenized limit analysis procedure proposed with 
the standard FE model, a linearized Lourenço-Rots [21] [22] failure criterion for 
joints is adopted for the homogenization approach, whereas for units a cut-off failure 
criterion in compression is assumed, see Table II. 
 

Figure 6: Varano school. Standard FE elastic plastic approach. –a: shear at the base - 
node N displacement curve. -b: deformed shape at collapse. 

 
Table II: Mechanical characteristics assumed for joints and bricks, Varano 
building. Here, tf  is the tensile strength, cf  is the compressive strength 
(compressive cut-off both for joints and bricks) c  is the cohesion and 1Φ  is the 
friction angle. 

Joint Brick 
[ ]2/ mmNc  [ ]2/ mmNft  [ ]2/ mmNf c  1Φ  [ ]2/ mmNf c  

0.12 0.12 5 35° 30 
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In both models, the seismic load is applied in correspondence of floor i  by means 
of a horizontal distributed load of intensity λ̂ik ( ik  non-dimensional constant), 

where λ̂  is the collapse load and ik  is taken, in agreement with the Italian code [5]-

[23], equal to ⎟
⎠

⎞
⎜
⎝

⎛∑ i

n

i
iii WzWz / , where iW  is the i th floor vertical load, iz is the i th 

floor distance to the ground and n  is the total number of floors. 
Floors, constituted by small vaults made of clay bricks and supported by a 

framework of steel girders, are disposed parallel to y-direction in correspondence to 
the first and second floors and distribute vertical loads uniformly on x-directed 
walls. At a first attempt, floors stiffness is not taken into account in the numerical 
model and vertical loads, which are independent from the load multiplier, are 
applied directly on masonry walls in correspondence to the floors. In 
correspondence of the third floor, a timber truss structure supports an inclined roof 
covering. For the sake of simplicity, self weight of masonry is supposed 
concentrated in correspondence to the floors and added to the remaining dead loads, 
which are defined according to the Italian code [23] (see also [24] and [25]). 
 

 

y 
x 

z

y x 

z  

Figure 7: Varano school. Failure mechanism A and concentration of plastic 
dissipation for the entire building, homogenization FE limit analysis approach. NP  

is the in-plane plastic dissipation evaluated at node N and N  is the node of 
maximum dissipation. 

 
The kinematic FE homogenized limit analysis gives a total shear at the base of 

the building of kN3520 , in good agreement with the results obtained with the 
standard FE procedure. In this case, in fact, the capacity curve of the building, 
Figure 6-a, reaches its maximum at approximately kN3800 . Finally, the deformed 
shape at collapse of both models, compare Figure 6-b and Figure 7, demonstrates 
that a combined in- and out-of-plane failure takes place and that failure is mainly 
concentrated along walls x-2 and x-3. 

A sensitivity analysis is finally conducted, assuming for joints a classic Mohr-
Coulomb failure criterion with tension cut-off tf  equal to 
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{ }Φtan//05.0min 2 cmmN , compressive cut-off 2/5 mmNft =  and varying 
cohesion c  and friction angle Φ  in the range 0.01-0.5 2/ mmN  and 5-35°. For bricks 
a limited compressive strength equal to 30 2/ mmN  is also assumed. 
 

 
Figure 8: Varano school. Sensitivity analysis varying mortar cohesion and mortar 

friction angle and failure mechanisms patch. 
 
 

x 

z 

y x 

z 

y 

Failure mechanism B, view 1 Failure mechanism B, view 2. 
-a 

 

-b 
Figure 9: Varano school. Failure mechanisms B. NP  is the in-plane plastic 

dissipation evaluated at node N and N  is the node of maximum dissipation. 
 
In Figure 8, the failure load of the structure is reported varying mortar cohesion 

and friction angle. Two different failure mechanisms can be distinguished, labelled 
as failure mechanism A and B. The intervals in which they take place are indicated 
in Figure 8. In particular, mechanisms A, reported in Figure 7, corresponds to an in-
plane failure of walls x-2 and x-3 combined with an out-of-plane failure of walls y-



15 

1. On the other hand, Mechanism B, reported in Figure 9, combines a shear failure 
of wall x-2 concentrated on the second storey and overturning of walls y-1. 
 

5  Limit analysis of a shear masonry wall with stochastic 
mortar mechanical properties 
 
As a matter of fact, experimental laboratory tests reveal that the determination of 
mechanical properties of bricks and mortar are affected by large uncertainties. This 
implies that different masonry structures, even if constructed under the same 
nominal conditions, could show quite different ultimate strength. 

In this section, a homogenized limit analysis stochastic approach based on Latin-
Hypercube sampling (LHS) with small population and response surface 
approximation (RSA) is used instead of expensive large scale Monte Carlo (MCS) 
simulations with the aim of reproducing buildings ultimate strength empirical 
cumulative distribution function (ECDF). 

The method (-a) gives results in terms of collapse load in good agreement with 
large scale MCS results and (-b) allows a strong reduction of the total computational 
numerical effort, since only few FE limit analysis simulations are required. 

When a fixed structural geometry and a given set of applied external loads is 
considered, the collapse load is only a function of the material mechanical properties 
at failure, mathematically formalized as: 

)(xg=λ  (9)

where ),...,,( 21 mxxx=x  is the set of material input variables (e.g. cohesion, 
friction angle, masonry compressive strength, etc.). 

Function )(−g  thus represents the mathematical model of the input-output 
relationship established by a limit state analysis of a given building. It should be 
emphasized that this relationship, even it might be non-linear, is strictly 
deterministic, since replicates the same output collapse loads when the same 
material input parameters are assumed. As the above equation show, the collapse 
load of a given structure strictly depends on the strength parameters chosen as input 
variables. As a consequence, when a homogenized limit analysis for a masonry 
building is performed, the material strength properties, as well as the resulting 
collapse load, should be treated as random quantities. This implies that it is 
necessary to account for all uncertainties, in material strength data, as well as in the 
calculated collapse load. In particular, we need appropriate probabilistic 
methodologies to estimate the probability distribution of the calculated random limit 
load of an existing building, to determine the resultant failure probability and the 
safety levels for each loading condition. 

On the other hand, FE limit analyses of complex buildings are usually 
computationally very demanding even for a single run and may require many hours 
for a full sensitivity analysis. Therefore, it appears clear that large sample sizes 
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required in the classical Monte Carlo with random sampling become 
computationally too expensive for practical applications. 

Therefore, practitioners need strategies alternative to the pure Monte Carlo 
method, which would be capable both to reduce the overall computational time and 
to give the required statistical accuracy. 

 
MCS  RSM 

 
Figure 10: Schematic representation of direct Monte Carlo method and response 

surface method. 
 
A possibility is to improve the sampling scheme by adopting other techniques, 

able to provide the same statistical convergence with smaller sample sizes. Among 
the existing techniques, the Latin Hypercube sampling has received in the last 
decades an increasing attention and application in many different research areas, 
when large samples are not computationally practicable. 

In any case, even if improved sampling techniques, as the Latin Hypercube 
method (LH), can drastically reduce the total number of simulation runs required, in 
many cases of technical interest, the total time spent in computer simulations still 
remains very high. To further overcome this limitation, other methodologies have to 
be explored and applied in combination with LH sampling. In this framework, a 
promising approach is to use response surface methods (RSM) to approximate the 
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input/output relationship in a time-consuming FEM analysis (formalized here by 
function ( )−g ), with a less-expensive suitable mathematical approximation. 

In response surface methods (see Figure 10 and [26]-[28]) the true, but unknown, 
function ( )−g  is replaced by an appropriate approximation ( )−ĝ , which will be used 
as an inexpensive surrogate (or metamodel) of real FEM calculations in all 
input/output analysis computations. The surrogate model ( )−ĝ  is calibrated on 
observed analysis outputs, resulting from calculations on a set of optimally selected 
input values. 

Several studies, see for instance [26][27], have systematically investigated the 
capabilities of such methods and tried to establish what combination of sampling 
technique and response surface approximation would give the best level of accuracy. 

 

0
p

H

L

-a -b 
Figure 11: -a: Shear wall with random input mechanical properties; mesh used for the 

limit analysis FE Monte Carlo simulations. -b: Typical deformed shape at collapse 
obtained with the limit analysis FE model. 

 
Assuming that the approximation error is small and technically acceptable, the 

crucial advantage of this approach is that the minimum sample sizes required for a 
sufficiently accurate calibration can be very small, and drastically lower than those 
required by classical Monte Carlo analysis or alternative Latin Hypercube sampling. 

As a structural example, let the shear wall of Figure 11 be considered, with 
dimensions LxHxt =600×300×45 cm (length x height x thickness) and vertical load 
equal to 45 KN/m, corresponding to a low average compressive stress equal to 
0.1 2/ mmN . For the sake of simplicity, the wall is assumed build in stretcher bond 
with common Italian bricks of dimensions 250×120×55 mm infinitely resistant and 
joints reduced to interfaces with cohesive frictional behaviour and limited tensile 
strength tf , see Figure 12. Mortar tensile strength ( tf ), cohesion ( c ) and friction 
angle ( ( )Φtan ) are assumed as random variables. While for cohesion c  and ( )Φtan  
normal distributions are adopted in agreement with experimental data reported in 
[29], for tf  a typical limitation ( )Φ≤ tan/cft , Figure 12, should be introduced, 
hence precluding the utilization of normal distributions. As a rule, a thi −  input 
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point ( )( )i
tii fc ,tan, Φ  randomly generated (supposing variables normally 

distributed), could result physically inadmissible, being the case ( )ii
i

t cf Φ> tan/  
possible. 

In order to avoid such a possible inadmissibility of sampled values during large 
MC simulations, we assume that tensile strength depends both on c  and ( )Φtan  via 
an a  pivot random variable, according to the following relation: 

( )Φ⋅= tan/caft  (10)
where a  is normally distributed with mean value equal to 0.5. 
It is worth noting that a  standard deviation is calibrated in order to obtain an 

output distribution for tf  through equation (10) reproducing typical experimental 
data available in the literature. 

 
Table III: Mean value and standard deviation for cohesion c , ( )Φtan  and a . 

 Cohesion 
[ ]2/ mmNc  

Friction angle 
)tan(Φ  

Variable 
a  

Mean value µ  0.1419 0.7515 0.5 
Standard 

deviation σ  0.0361 0.0469 0.036 

COV [ µσ /100 ] 25.44 6.24 7.21 
 
Following equation (10), mean values and standard deviations summarized in 

Table III for a , c  and ( )Φtan  stochastic variables are adopted. In Figure 13, the 
corresponding histograms for tf , c  and Φ  are reported. In particular, tf  
distribution (although obtained numerically) results in good agreement with 
consolidated experimental data available and with a typical Gaussian distribution. 
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Figure 12: Probability distribution of stochastic variables c , )tan(Φ  and a . 
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Four large scale Monte Carlo simulations with 1000 points are performed in order 
to reproduce the output distribution of collapse load obtained by means of limit 
analysis. A refined mesh with 400 triangular three-noded elements is used for the 
simulations, as shown in Figure 11.  

Normal probability plots, useful for graphical normality testing, of the collapse 
load for each MC simulation are shown in  

Figure 14. The Gaussian behaviour also for low values of the collapse load 
(corresponding to low values of tf  and c ) is worth noting. In particular, values of 
kurtosis for the collapse load distributions is around 3 for each MC simulation, 
demonstrating that the output stochastic variable is almost Gaussian. 

 

 

-a 

 

-b 

 

-c 

Figure 13: Histograms of c  (-a), Φ  (-b) and tf  variables (-c). 
 



20 

It is worth noting that each of the 1000 points MC simulations required 
approximately 12 hours to be performed on a Intel Pentium 3 GHz PC equipped 
with 1Gb RAM.  

In order to reduce drastically computational costs, a number of different response 
surface methods (RSM) available in the literature for complex deterministic analysis 
systems can be used to design surrogate models. The difference among all the 
existing techniques (e.g. polynomial regression, kriging, multivariate adaptive 
regression splines, etc.) relies in their relative accuracy and complexity. Among all, 
the most popular surrogate model is probably the polynomial regression method, 
being calculations trivial and the resulting approximation expressed in closed-form. 

Let )(xgy =  the true response corresponding to a given sample 
),...,,( 21 mxxx=x  of input random variables. A second order polynomial 

approximation is written as:  

∑∑∑∑
== +==

+++=
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i
iii

m

i
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ii xcxxcxccy
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2

1 11
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where m  is the total number of design variables (i.e. number of random material 
parameters), ix  is the i -th design variable (random material property) and ic  is the 
set of unknown coefficients. 

Let [ ])()2()1( ,,, nyyy K=y  the vector of n  observed values, corresponding to the 
n  samples of the input random variables x . The unique lest-squares solution is 
given as: 

( ) yXXXc TT 1ˆ −
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is the matrix constructed from the sample of design variables. 
Even if the use of polynomial approximation is quite simple, it is worth noting 

that in the fitting procedure of the model in (12), all observed values are equally 
weighted, hence the prediction at an unsampled location depends "globally" on all 
observed values. 

For the problem at hand, a quadratic polynomial approximation ( )−ĝ  of the true 
complex system response )(xgy =  is constructed based on calibration points 
generated by either random or Latin Hypercube sampling. Variability in metamodel 
generation is evaluated by constructing 8 independent replicates (that is, 8 
independent surrogate functions ( )−ĝ ). 

For each MC or LH input points ( )( )i
tii fc ,tan, Φ , a 3D homogenized limit 

analysis is performed, obtaining each time an output value of the collapse load λ . 
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Monte Carlo simulation 1 (kurtosis 
collapse load λ =3.14; kurtosis c =3.10; 
kurtosis ( )Φtan =3.01; kurtosis tf =2.77, 
time required for the 1000 points 
simulations 12 hours 15 minutes) 

Monte Carlo simulation 2 (kurtosis 
collapse load λ =2.85; kurtosis c =2.88; 
kurtosis ( )Φtan =3.07; kurtosis tf =2.95, 
time required for the 1000 points 
simulations 13 hours 1 minutes) 

 
Monte Carlo simulation 3 (kurtosis 
collapse load λ =3.06; kurtosis c =2.80; 
kurtosis ( )Φtan =3.14; kurtosis tf =2.86, 
time required for the 1000 points 
simulations 12 hours 00 minutes) 

Monte Carlo simulation 4 (kurtosis 
collapse load λ =3.12; kurtosis c =2.98; 
kurtosis ( )Φtan =3.25; kurtosis tf =3.01, 
time required for the 1000 points 
simulations 13 hours 43 minutes) 

 
Figure 14: Results from four Monte Carlo simulations with 1000 elements. 

 
In particular, with the data collected from the simulations, 16 different surrogate 

surfaces for the collapse load are obtained, respectively 8 surfaces from direct MC 
simulations with 30 replicates and 8 surfaces from LH simulations with 30 
replicates. 

As already mentioned, no information is available on the actual ( )( )tfc ,tan, Φλ  
relationship, meaning that the true cumulative distribution is approximated by 
pooling the observed values corresponding to the four sets of large scale Monte 
Carlo simulations. 
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In Figure 15-a, a comparison between the mean absolute relative error (called 

here “MARE indicator” and defined as ∑
=

−
=

n

i i

ii

y
yy

n
MARE

1

ˆ1 , where 8=n  is the 

number of metamodels replicates and iŷ  is the collapse load evaluated on the 
surrogate function), obtained from 8 LH and 8 MC metamodels is shown. As it is 
possible to note, metamodels constructed from LH samples are more accurate with 
respect to MC ones, especially for low probability values. Furthermore, it is clearly 
evident the increasing trend of the error for both models reducing collapse load from 
300 to 120 kN. 

 

Figure 15: Comparison between metamodels from LH sampling and MC sampling 
with 30 points on large MC simulation 1 (1000 points). LH sampling gives a CDF 

more accurate with respect to MC for low probability values. 
 
In Figure 15-b, a comparison among CDF obtained with LH metamodels, MC 

metamodels and empirical CDF from a large MC simulation with 1000 points is 
reported. Cumulative distributions confirm MARE indicator predictions of Figure 
15-a, i.e. that LH metamodels fit quite accurately large MC simulation results for 
low values of probability. On the other hand, Figure 15 results underline that the 
quality of the surrogate functions near the boundary of the domain sensibly 
deteriorates. Such a behaviour is due to the fact that least square polynomial 
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approach fits data well in the range where input variables are randomly generated. 
As a rule, random small populations do not cover sufficiently regions corresponding 
to small values of the output variable. Consequently, LH sampling generally is more 
accurate than MC, being input variables suitably selected on sub-regions with equal 
probabilities.  

Finally, it is worth noting that the approach based on surrogate functions could be 
attractive from an engineering point of view when reliability analyses on complex 
structures are required. The use of surrogate functions, in fact, allows to have at 
disposal output quantities quickly and with a very limited computational effort if 
compared with direct large MC simulations. In combination with LH sampling on 
input variables, the surrogate surfaces method is also able to reduce inaccuracies of 
the output response at low probability values. On the other hand, the quality of the 
results obtained is in any case affected by increasing errors at low probabilities. 
Furthermore, it is worth mentioning that the actual distribution of the collapse load 
for real structures is usually unknown. Therefore, no information on the error 
committed using metamodels is at disposal. 
 
6  Conclusions 
 
In the present paper, a homogenization limit analysis model based on a plate and 
shell upper bound FE formulation has been presented. In the model, the elementary 
cell is subdivided along its thickness into several layers. For each layer, fully 
equilibrated stress fields are assumed, adopting polynomial expressions for the stress 
tensor components in a finite number of sub-domains. The continuity of the stress 
vector on the interfaces between adjacent sub-domains and suitable anti-periodicity 
conditions on the boundary surface are further imposed. In this way, linearized 
homogenized surfaces in six dimensions (polytopes) for masonry in- and out-of-
plane loaded are obtained. Such surfaces are then implemented in a FE limit analysis 
code for the analysis at collapse of entire 3D structures and meaningful examples of 
technical relevance are discussed in detail. 

The micro-mechanical model presented competes favorably with more traditional 
approaches, such as for instance full 3D heterogeneous techniques and “at hand” 
calculations based on the assumption of zero resistance of masonry in tension. In 
fact, full 3D analyses performed on entire buildings by means of the homogenization 
model presented, require a reduced computational cost (less than 150 seconds for a 
single optimization reported in Section 4), do not require an a-priori evaluation of 
the collapse mechanisms and can take into account important features of masonry at 
failure. Furthermore, limit analysis is able to give important information at failure, 
such as failure mechanisms, collapse loads, stress distribution, plastic dissipation 
zones, etc.. Therefore, the model presented results a valuable tool for practitioners 
involved in advanced analyses of full 3D masonry structures subjected to seismic 
actions. 

The limited computational effort of the optimization problems obtained in this 
framework allows to tackle interesting engineering problems, such as for instance 
the evaluation of collapse loads stochastic distribution of masonry structures when 
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mortar mechanical properties (i.e. input parameters) are assumed as random 
variables. 

The combination of homogenization, limit analysis and response surface 
approximation allows to obtain reliable predictions of failure loads distribution when 
metamodels are built starting from few points sampled randomly and making use of 
both traditional Monte Carlo approaches and Latin Hypercube sampling. In this 
way, a reliable estimation of output collapse loads distribution can be obtained 
avoiding to perform expensive Monte Carlo simulations with several points. 
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