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3. ABSTRACT 

Design and Optimization of Microbial Communities 

Microbial communities directly affect surrounding environments and are an important biological 

process, with potential applications in a variety of fields, such as biotechnology, environmental, and 

human health. However, the overall understanding of interactions and dynamics in microbial communities 

remains a challenge. Synergies between computational methods and genome-scale metabolic models 

have been explored in the last years, as a way to unravel community interactions and behavior, as 

demonstrated by the numerous simulation methods developed for application in the context of microbial 

communities. The available simulation methods, with application to microbial communities, were here 

evaluated and revealed good predictions for phenotypic behavior. However, few studies are available in 

terms of optimization tools in the community context. Hence, this work describes the implementation of 

algorithms for the optimization of minimal medium composition, as well as genes/reactions for the 

production of target compounds. These tools were implemented in MEWpy to transform it into an 

integrative Python workbench for metabolic engineering to explore constraint-based models of microbial 

communities.  

Five hydrothermal samples from the São Miguel Island, Azores, were analyzed to determine 

prokaryotic community composition to further reconstruct individual and community genome-scale 

metabolic models, and through simulation and design methods try to unveil possible routes to produce 

compounds with industrial interest. The first manually curated genome-scale metabolic model for the 

thermophilic bacterium Sulfurihydrogenibium azorense Az-Fu1 was developed, uncovering the details of 

its metabolic capabilities and suggesting for the first time that S. azorense Az-Fu1 may have metabolic 

potential for bacterial cellulose production. Moreover, the microbial communities of the different samples 

were modeled, and co-culture optimization was performed using the implemented methods. Among other 

results, it was shown that S. azorense Az-Fu1 can enhance its cellulose production capabilities when fed 

with acetate produced by another organism. 

 

 

Keywords: Design, extremophile environments, genome-scale metabolic modeling, microbial 

communities, optimization. 
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4. RESUMO 

Design e Optimização de Comunidades Microbianas 

As comunidades microbianas afetam diretamente os ambientes circundantes e são um processo 

biológico de enorme relevância, com aplicações potenciais em vários campos, como biotecnologia, meio 

ambiente e saúde humana. No entanto, a compreensão geral das interações e dinâmicas nas 

comunidades microbianas continua um desafio. Têm sido exploradas nos últimos anos diversas sinergias 

entre métodos computacionais e modelos metabólicos à escala genómica como forma de desvendar 

interações e comportamentos de comunidades, tal como demonstrado pelos inúmeros métodos de 

simulação desenvolvidos para aplicação neste contexto. Os métodos de simulação disponíveis com 

aplicação a comunidades microbianas foram avaliados e revelaram boa capacidade preditiva do 

comportamento fenotípico. No entanto, poucos estudos estão disponíveis em termos de ferramentas de 

otimização no contexto de comunidades microbianas. Assim, este trabalho descreve a implementação 

de algoritmos para a otimização da composição mínima do meio, bem como genes/reações para a 

produção de compostos alvo. Essas ferramentas foram implementadas no MEWpy de forma a 

transformá-lo em um ambiente de trabalho Python integrado para engenharia metabólica de 

comunidades microbianas. 

Cinco amostras hidrotermais da ilha de São Miguel, Açores, foram analisadas para determinar a 

composição das comunidades procarióticas de forma a reconstruir modelos metabólicos individuais e 

comunitários à escala genómica e, através de métodos de simulação e design, tentar desvendar possíveis 

formas de produzir compostos com interesse industrial. Foi desenvolvido o primeiro modelo metabólico 

à escala genómica manualmente curado para a bactéria termofílica Sulfurihydrogenibium azorense Az-

Fu1, revelando detalhes das suas capacidades metabólicas e sugerindo, pela primeira vez, que S. 

azorense Az-Fu1 pode ter potencial metabólico para produção de celulose bacteriana. Além disso, foram 

modeladas as comunidades microbianas das diferentes amostras e a otimização de co-culturas foi 

realizada usando os métodos implementados. Entre outros resultados, foi demonstrado que S. azorense 

Az-Fu1 pode aumentar a sua capacidade de produção de celulose quando suplementado com acetato 

produzido por outro organism. 

Palavras-chave: Ambientes extremófilos, comunidades microbianas, modelação metabólica à escala 

genómica, otimização. 
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Introduction 

Chapter 0 Motivation, Objectives, and Thesis Outline 

 

 

 

“Our unity is our strength, and diversity is our power” 

Kamala Harris 

 

 

 

 

Microbial communities are widespread in nature and have been recognized to be more adequate 

in industrial settings than pure cultures, especially regarding the robustness towards contaminations. 

Moreover, the metabolic capabilities can be greatly extended when compared with individual species. 

However, very few applications have been described besides the production of food products using natural 

communities. In order to use fully the industrial potential of microbial communities it is important to be 

able to customize their behavior by optimizing the composition both in terms of species and genes, as 

well as optimizing the environmental conditions. 

This thesis aims to contribute to developing optimized microbial communities for the production of 

a target compound by improving both modeling and simulation methods and developing metabolic 

engineering tools. The in silico results will be applied to the optimization of the production of cellulose by 

Sulfuhydrogenibium azorense Az-Fu in a co-culture system. 
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Context and Motivation 

Microbial communities play pivotal roles throughout all environments showing unique biological 

properties in maintaining Earth’s biosphere (Fierer, 2017; Gilbert et al., 2018; Sunagawa et al., 2015). 

Microbial communities in environments that once were described as unhabitable (Rothschild et al., 2001) 

are the ones that nowadays are gaining huge interest due to their remarkable diversity of morphology, 

biochemistry, genomics, and biosynthesis of many adaptive compounds (Durvasula et al., 2018). 

Moreover, microbial communities in high-temperature environments are generally less diverse (Inskeep 

et al., 2013), making hydrothermal habitats an ideal model system for studying principles of community 

structure and function (Sahm et al., 2013). 

Genome-scale metabolic models (GSMM) are a relevant example with proven results in accurately 

predicting metabolic states for an increasing number of single organisms (Feist et al., 2009)  as well as 

for microbial communities (Colarusso et al., 2021), reducing the time and cost implicated in experimental 

tasks.  Together with the growing availability of ‘omics’ data and multiple algorithms to process and make 

knowledge from metagenomic raw data, these metabolic models are an indispensable systems biology 

tool to try to understand function, interaction, and dynamics within these microbial consortia (Zaramela 

et al., 2021). 

GSMMs are usually used to compute metabolic phenotypes of an organism in response to 

environmental and genetic perturbations (Feist et al., 2010; Rocha et al., 2008) most commonly through 

simulation methods, such as Flux Balance Analysis (FBA) (Varma & Palsson, 1994). However, the 

construction of GSMMs with good phenotypic predictions needs manual curation and experimental 

validation (Lieven et al., 2020), which is still a laborious task even with available semi-automatic 

reconstruction pipelines (Arkin et al., 2018; Machado et al., 2018).  But more challenging than that is 

trying to define biologically relevant objective functions (García-Jiménez et al., 2021) in a microbial 

community context. 

A myriad of extension methods for FBA with application to community GSMMs is available (Chan 

et al., 2017; Gomez et al., 2014; Mahadevan et al., 2002; Zelezniak et al., 2015), with proven reliability 

when predicting growth, response to nutrients, and gene essentiality in single organisms and even 

microbial communities (Chng et al., 2020; Machado et al., 2021; Nayfach et al., 2020). However, not 

much research has been made on computational optimization methods to rationally design microbial 
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communities using GSMMs, which is one of the most promising features for the use of community models 

for the production of desired compounds in industrially relevant amounts (García-Jiménez et al., 2021; 

Tsoi et al., 2019; Zaramela et al., 2021). This is particularly relevant given that microbial communities 

are often easier to use than pure cultures in industrial settings. 

 

Research Aims 

The present thesis aims at reconstructing extremophilic microbial communities' metabolic models 

and performing simulations with the ultimate objective of using those models to design communities 

better fitted for industrial aims. Microbial communities are often more adequate than pure cultures for 

industrial applications and have, at the same time, great potential in terms of metabolic capabilities by 

combining individual capacities of single strains. 

The specific objectives are: 

- Identifying, through metagenomic taxonomic profiling approaches, extremophile organisms on 

hydrothermal samples from São Miguel, Azores; 

- Developing genome-scale metabolic models of the extremophile organisms identified to further 

combine individual models to obtain an accurate representation of the capabilities of a microbial 

community; 

- Evaluating existing tools and methods with an emphasis on Flux Balance Analysis based 

techniques, and using the most promising ones to perform simulations using as a case study the 

well-established nitrification bioprocess catalyzed by Nitrosomonas euroapaea and Nitrobacter 

vulgaris. 

- Adapting metaheuristics algorithms previously developed at the Biosystems group to be applied 

to the design of improved communities for industrial aims, by allowing the manipulation of the 

genome of untargeted and target species, and the environmental conditions; 

- Use the selected simulation tools and methods and metaheuristics algorithms developed to find 

design strategies for the production of cellulose, using extremophile community models. 
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Outline of the Thesis 

To address the above-mentioned objectives, this thesis has been structured into 7 Chapters: 

▪ In Chapter 1 a comprehensive review of systems biology approaches on microbial communities 

was conducted, trying to give an overall view of the metagenomic analysis process and how 

systems biology using genome-scale metabolic reconstruction, simulation, and optimization can 

improve knowledge on function, interaction, and dynamics within these microbial consortia. 

▪ In Chapter 2 a metagenomic study of five hydrothermal samples from São Miguel, Azores, was 

performed to determine their prokaryotic community compositions. Taxonomic profiling using 

assembly-based and read-based analysis was combined and the most abundant organisms were 

predicted for each sample. Sulfurihydrogenibium azorense Az-Fu1 was one of the most abundant 

predicted organisms found in two of the hydrothermal samples. 

▪ In Chapter 3 the first manually curated genome-scale metabolic model for the thermophilic 

bacterium Sulfurihydrogenibium azorense Az-Fu1 is presented. The reconstruction revealed the 

presence of the main components of the bacterial cellulose operon and its regulators, suggesting 

that Sulfurihydrogenibium azorense Az-Fu1 may have metabolic potential for cellulose 

production.  

▪ In Chapter 4 a systematic evaluation of different steady-state simulation methods applied to 

microbial communities has been used to model the well-established nitrification bioprocess 

catalyzed by Nitrosomonas euroapaea and Nitrobacter vulgaris. Methods performances were 

compared to assess which ones should be used in a specific community-level context. 

▪ In Chapter 5 The implementation of metabolic engineering methods in MEWPy to explore 

constraint-based models of microbial communities allowing the optimization of microbial 

communities using Evolutionary Algorithms is described. MEWpy also allows the use of the 

simulation methods for microbial communities included in the REFRAMED library. 

▪ In Chapter 6 the microbial communities of the different samples were modeled and both 

untargeted and targeted co-culture optimization was performed using the methods described in 

the previous chapter to evaluate Sulfurihydrogenibium azorense Az-Fu1 capabilities of cellulose 

production. 

▪ Finally, in Chapter 7 the main conclusions of this thesis are summarized and some perspectives 

on future work based on the questions raised throughout this work are presented. 
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Scientific Output 

The main scientific outputs of this thesis are listed below and include peer-reviewed publications 

and oral presentations at international conferences. 

 

Peer-reviewed Publications 

Santos, S., Dias, O., Rocha, I. Genome-scale metabolic model of thermophilic bacterium 

Sulfurihydrogenibium azorense Az-Fu1 (in preparation). 

Santos, S., Pereira, V., Dias, O., Rocha, M., Rocha, I. Optimization of Microbial Communities 

using MEWpy (in preparation). 

Santos, S., Dias, O., Rocha, I. Modeling and Design of Microbial Communities from Extremophilic 

Environments in the Azores (in preparation). 

van den Berg, N.I., Machado, D., Santos, S. et al. Ecological modelling approaches for predicting 

emergent properties in microbial communities. Nat Ecol Evol (2022). 

 

Oral Presentations 

S. Santos, S. Correia, I. Rocha. Inferring optimal minimal medium on genome-scale metabolic 

models using evolutionary algorithms. – Metabolic Pathway Analysis Conference, Riga, Latvia, 12-16 

August 2019. 
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Chapter 1 

Chapter 1 Systems Biology in Microbial Communities 

 

“Coming together is a beginning. Keeping together is progress. 

Working together is success” 

Henry Ford 

 

 

 

 

Microbial communities are widespread in nature and have been recognized to be more adequate 

in industrial settings than pure cultures, especially regarding the robustness towards contaminations. 

Moreover, the metabolic capabilities can be greatly extended when compared with individual species. 

However, very few applications have been described besides the production of food products using natural 

communities. It is important to be able to customize the microbial communities’ behavior by optimizing 

the composition both in terms of species and genes, as well as optimizing the environmental conditions 

to use fully the industrial potential. 

This chapter will review systems biology approaches applied to microbial communities giving 

insights into how can genome-scale metabolic reconstruction, simulation, and optimization improve 

knowledge of function, interaction, and dynamics within these microbial consortia. 
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1.1 Introduction 

Microbial communities serve as integrated systems in many natural processes playing important 

roles in a wide range of areas such as industrial (Park et al., 2018), environmental biotechnology (Zhou 

et al., 2011), and human health (Jansma et al., 2021). Moreover, the use of microbial communities has 

been largely promoted as an alternative to improve limitations of rational design of single organisms to 

produce target chemicals (Sgobba et al., 2020; Wang et al., 2020). However, regardless of the growing 

availability of ‘omics’ data, it is still difficult to fully understand the function, interaction, and dynamics 

within these microbial consortia (Zaramela et al., 2021) essentially due to the lack of experimental studies. 

Genome-scale metabolic models (GSMM) have become a key and valuable tool for the study of 

metabolic systems biology from biomedical to industrial research (Gu et al., 2019). Since the publication 

of the first metabolic model (Schilling et al., 2000) more than twenty years ago, others are becoming 

available for an increasing number of single organisms (Feist et al., 2009) and more recently also for 

microbial communities (Colarusso et al., 2021). The main purpose of metabolic models is to predict 

cellular behavior under different genetic and environmental conditions (Woolston et al., 2013) reducing 

the time and cost implicated in experimental tasks. 

The construction of GSMM for microbial communities, as for single organisms, can be a laborious 

task. In general, the exact composition of a community is not known, and even when ‘omics’ data are 

available, manual curation and experimental validation are needed to create a GSMM with good 

phenotypic predictions (Lieven et al., 2020). Considering these difficulties in having reliable data, several 

community models include only the central carbon metabolism (Stolyar et al., 2007), use semi-automatic 

reconstruction pipelines (Arkin et al., 2018; Machado et al., 2018), or represent artificial communities of 

very well-characterized organisms for which detailed individual models are already, such as Escherichia 

coli and Saccharomyces cerevisiae (Brenner et al., 2008; Hanly et al., 2011). 

GSMMs are usually used to compute metabolic phenotypes of an organism in response to 

environmental and genetic perturbations (Feist et al., 2010; Rocha et al., 2008). The most commonly 

used simulation methods are Flux Balance Analysis (FBA) (Varma et al., 1994) or FBA extensions (Chan 

et al., 2017; Gomez et al., 2014; Mahadevan et al., 2002; Zelezniak et al., 2015). These same simulation 

methods developed for single-organism GSMMs have been adapted and employed for the simulation with 

community GSMMs. However, the major challenge for the use of FBA-based methods with community 
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models is the selection of biologically relevant objective functions (García-Jiménez et al., 2021). In fact, 

while for individual microbes, the assumption of growth maximization applies, an abstraction of the aim 

of a community is difficult to devise. Also, although the use of these approaches has given good 

phenotypic predictions using relatively large-scale community models, problems may arise with the 

increased complexity of the metabolic network or a higher number of organisms within the communities 

(Zomorrodi et al., 2016). Thus, the development of efficient predictive mathematical modeling 

approaches and scalable tools that give good phenotypic predictions, as well as the improvement of 

community GSMM and the subsequent experimental validation is mandatory such that these modeling 

frameworks can be applied to real communities that often have a high degree of complexity. 

Moreover, one of the most promising features for the use of community models is the rational 

design of microbial communities that could turn them capable of producing desired compounds in 

industrially relevant amounts (García-Jiménez et al., 2021; Tsoi et al., 2019; Zaramela et al., 2021). This 

is particularly relevant given that microbial communities are often easier to use than pure cultures in 

industrial settings. Also, it would be possible in principle to optimise the production of specific compounds 

using simple substrates taking advantage of the unique metabolic capabilities of a community that single 

organisms are not capable of covering. The metabolic engineering or design problem could be simply 

formulated as the maximization of the production of a target compound by manipulating either 

environmental conditions, community composition in terms of species, or by performing genetic 

manipulations in targeted organisms of the community. However, not much research has been performed 

on extremophiles in this direction and many details still need to be further investigated for the successful 

implementation of such an approach. 

 

1.2 Systems Biology 

The huge development of molecular biology and technology was the basis for the appearance of 

the fields of study known as omics. Despite the large amount of data that these approaches generate 

every day, living systems are complex and their behavior is thus difficult to predict over time under various 

conditions. Systems biology is an interdisciplinary field that studies complex interactions over all omics 

levels of a biological system. Systems biology aims to understand the cell as a whole instead of the 

individual parts, studying its structure, dynamics, control, and design methods (Kitano, 2002). Integrating 
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computational tools and theoretical approaches with experimental efforts enabled the development of 

predictive and quantitative models to understand how the different parts of a biological system interact 

with each other. The goal of such models is to predict the behavior of the cells under various genetic and 

environmental conditions rather than mimicking cell behavior (Isalan, 2012). The increase in high-

throughput data led to the development of new algorithms that integrate omics data into models, some 

of them use machine learning approaches (Antonakoudis et al., 2020), which improve (Ramon et al., 

2018) or reduce the model’s network (Singh et al., 2020). 

Strain design has been given special attention in the past years due to the increasing demand for 

the biological production of chemicals, pharmaceuticals, food ingredients, and enzymes (Stephanopoulos, 

1999). In the early days, strain development was carried out by random mutagenesis, phenotype 

screening, and selection, or target modifications. All of these methods have a high degree of failure and 

are time-consuming and expensive (Woolston et al., 2013). Metabolic models allied with bioinformatics 

tools have been used successfully to identify genetic targets towards improved phenotypes, rationally 

guiding laboratory experiments (Maia et al., 2016). However, the production of high-valued compounds 

is not always cost-effective and great efforts must be made to improve yield and productivity (García-

Jiménez et al., 2021). 

Recently, advances in the big data areas of metagenomics, metatranscriptomics, and 

metaproteomics, led to engineering of natural and synthetic microbial communities. These are described 

as better platforms gaining from their heterogeneity, division of labor, and feedstock utilization (Sgobba 

et al., 2020). Hence, the use of metabolic models in a microbial community context has become the new 

frontier in systems biology to generate testable hypotheses (Colarusso et al., 2021). 

 

1.3 Genome-Scale Metabolic Modelling 

GSMMs are mathematical representations of the complete set of biochemical reactions encoded 

in the genome of an organism. They can be used to simulate the metabolic phenotype of an organism 

under different experimental conditions and its response to multiple environmental and genetic 

perturbations (Feist et al., 2010; Rocha et al., 2008). Hence, these models have become widely adopted 

in silico tools in the context of biotechnological applications such as microbial strain design, drug 

discovery, and more recently understanding microbial community interactions (Fang et al., 2020). 
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Figure 1.1. General overview of genome-scale metabolic model reconstruction process (A) This is an iterative process that 
needs a FASTA file with the organism genes sequences. Information from functional annotation and reactions are retrieved 
from databases and/or web services to assembly a metabolic network. Then the metabolic network is transformed into a 
stoichiometric model when constraints are added. Finally, in silico results are compared with experimental data. Once 
predictions comply with experimental data the model is exported in a standard format (SBML) to be used in further applications 
(B) In a bottom-up reconstruction approach new reactions are iteratively added to the network for gap-filling purposes. (C) In 
a top-down reconstruction, gapless pathways are inferred from genetic evidence, and the ones with low evidence are removed 
from the pre-existent universal model. 

 

1.3.1 Genome-Scale Metabolic Models Reconstruction 

Genome-scale metabolic reconstructions are usually arduous (Figure 1.1) and time-consuming, as 

demonstrated by a detailed protocol published in 2010 (Thiele et al., 2010), with 96 steps. Since then, 
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several tools have been published that assist and automate most of the steps of the reconstruction 

process (Mendoza et al., 2019).  

Most of the published tools follow a bottom-up approach consisting of the following main steps: 

genome annotation, assembling of a metabolic network from the genome, conversion of the network to 

a stoichiometric model, and validation of the metabolic model. CarveMe (Machado et al., 2018) has a 

unique top-down approach that involves the creation of models from a BiGG-based (King et al., 2016a) 

manually curated universal template. However, the output model obtained from all these tools must be, 

to some extent, manually curated to be able to predict accurately phenotypic behavior (Lieven et al., 

2020). To facilitate the reconstruction process, online databases are essential to retrieve information or 

assist during manual curation. The main databases usually used throughout the GSMM reconstruction 

process are presented in Table 1.1. The main steps of a GSMM reconstruction including the main 

databases used for each step are concisely described next. 

 

Table 1.1 Main online data sources used for the reconstruction of genome-scale metabolic models. 

 
Database 

 
Description 

 
Reference 

BioCyc 

 
BioCyc is a collection of Pathways/Genome Databases (PGDBs) for a 
vast number of prokaryotes and eukaryotes. It also includes software 

tools for exploring each PGDBs. 
 

(Karp et al., 
2019) 

BIGG 

 
Biochemical, Genetic, and Genomic (BIGG) is a knowledge base of 

genome-scale metabolic models. Contains information about genes, 
reactions, and metabolites included in published manually curated 

models. All information is mapped to external databases (NCBI, 
KEGG, and others) 

 

(King et al., 
2016a) 

BRENDA 

 
BRaunschweig ENzyme Database (BRENDA) is a database with 

enzyme functional data. Contains functional and molecular 
information of enzymes, based on primary literature. 

 

(A. Chang et al., 
2021) 

ExPASy 

 
Expert Protein Analysis System (ExPASy) is the Swiss Institute of 

Bioinformatics Resource Portal in different areas of the life sciences 
including genomics, proteomics, and structural biology. 

 

(Ison et al., 
2013) 
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GOLD 

 
Genomes OnLine Database (GOLD) is a manually curated collection 

of genome projects and their metadata. 
 

(Mukherjee et al., 
2021) 

KEGG 

 
Kyoto Encyclopedia of Genes and Genomes (KEGG) is an online 
public repository that is a combined collection of information on 

genes, metabolites, reactions, and pathways. 
 

(Kanehisa et al., 
2016) 

MetaCyc 

 
MetaCyc is a database of non-redundant metabolic pathways. 
MetaCyc is curated from the scientific literature and contains 

pathways involved in primary and secondary metabolism, as well as 
associated compounds, enzymes, and genes. 

 

(Caspi et al., 
2014) 

ModelSEED 

 
ModelSEED is a resource for the reconstruction, exploration, 

comparison, and analysis of metabolic models. Contains information 
about genes, reactions, and metabolites included in GSMMs and 
links for external databases (BiGG, KEGG, MetaCyc, and others). 

 

(Seaver et al., 
2021) 

NCBI 

 
The National Center for Biotechnology Information (NCBI) 
is a repository of several databases that provide analysis, 

visualization and retrieval resources for biomedical, 
genomic and other biological data made available through 

the NCBI website. 
 

(NCBI Resource 
Coordinators, 

2018) 

TCDB 

 
Transporter Classification Database (TCDB) comprehends 
a classification system for membrane transporter proteins 

known as the Transporter Classification system. 
 

(Saier et al., 
2021) 

UniProt 

 
Universal Protein Resource Knowledgebase (UniProtKB) is 

the central hub for the collection of accurate, rich and 
consistent functional information on proteins. 

 

(Consortium et 
al., 2021) 

 

1.3.1.1 Genome Annotation 

Genome-scale models’ reconstructions start with the genome annotation process of the target 

organism. This is a crucial step as the assignment of an incorrect gene or enzymatic function can greatly 

impact the model performance. Metabolic gene products are assigned with functions and, if available, 
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unique identifiers such as Enzyme Commission (EC) (Barrett, 1997) and Transporter Classification (TC) 

(Saier et al., 2021) numbers. Genes involved in regulatory or signaling processes are not included in 

GSMM reconstructions. Public repositories of genomic data have available annotated genomes, such as 

NCBI and KEGG. However, in specific cases annotation of genes may be incorrect or even missing; 

therefore, a re-annotation is always recommended. Information from phylogenetically closely related 

organisms can also be used to improve genome annotation. 

 

1.3.1.2 Assembling the Metabolic Network 

The assembly of a metabolic network begins with the identification and collection of all reactions 

present in the organism in study, from biological databases such as KEGG and BiGG. All reactions 

catalyzed by enzymes encoded by genes annotated with EC numbers in the previous step must be 

incorporated into the model, as well as spontaneous reactions. Reactions should also be balanced 

(generic metabolites and/or metabolites without formula must be curated), and reversibility must be 

confirmed to avoid mispredictions. Although these steps are automated in most reconstruction tools, 

manual curation based on curated information from literature or databases, such as MetaCyc, BRENDA, 

and KEGG is highly recommended. 

 

Compartmentalization 

The next step in the reconstruction process is the compartmentation of the reactions, identifying 

all the organelles in which enzymes can operate. In prokaryotic organisms, compartments are typically 

limited to extracellular space, cytosol, and periplasm (in gram-negative bacteria). However, for instance, 

in Fungi, reactions can occur in up to sixteen compartments (Lu et al., 2019), and, for higher eukaryotes, 

reactions should be differentiated between tissues. Information on the location of reactions is available in 

the literature, but several bioinformatics tools have been developed to predict enzymatic location from 

protein sequences (Jiang et al., 2021) 

Genes, Proteins, and Reactions 

A high-quality GSMM should include curated Gene-Proetin-Reactions relationships (GPRs), which 

allows the accurate prediction of the effect of genetic modifications. These associations are usually 

defined according to databases and literature (Rocha et al., 2008; Thiele et al., 2010). Most GSMM 
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reconstruction tools, such as merlin (Capela et al., 2021), ModelSEED (Seaver et al., 2021), and CarveMe 

(Machado et al., 2018) do automatically include GPRs rules in the model. 

 

Transport Reactions 

After compartmentalization, reactions that transport metabolites across the inner and outer 

membranes must be added to the model. Again, literature information and databases contain these 

reactions. However, tools such as TranSyT (Lagoa et al., 2021) can use genome information, to generate 

predicted system-specific transport reactions, providing the associated gene-protein-reaction (GPR) rule. 

 

1.3.1.3 Converting the Metabolic Network to a Stoichiometric Model 

In this step, the metabolic reaction set is converted into a stoichiometric matrix, and other 

constraints are added to the model. These constraints include the definition of an abstraction of the 

biomass in the form of a mathematical equation that represents the drain of macromolecules to generate 

a new unit (gram) of biomass, energetic requirements through the inclusion of equations that represent 

the depletion of ATP for cell growth and maintenance, and constraints that represent the environmental 

conditions. 

 

Biomass Composition 

The composition of the biomass should be experimentally determined through chemostat 

experiments, or alternatively during the log phase of the cell’s growth. However, in the absence of 

organism-specific experimental information, data from genome information (particularly nucleotides, 

deoxynucleotides, and amino acids) can be used or adapted from phylogenetically related organisms. The 

importance of an accurate biomass composition determination has been reported (Santos et al., 2016), 

showing that even small differences in biomass content coefficients may considerably impact GSMMs’ 

predictions. Therefore, a well-defined biomass equation is a crucial step of the GSMM reconstruction 

process. 
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For n biomass constituents, the biomass equation can be formulated as: 

 

∑ 𝑐𝑖𝑋𝑖 → 𝐵𝑖𝑜𝑚𝑎𝑠𝑠

𝑛

𝑖=1

 

 

where 𝑐𝑖 is the coefficient of each macromolecule or building block, 𝑋𝑖, considered in the biomass. The 

units of all the coefficients are defined in mmol per gram of dry weight (mmol/gDW) and the biomass 

units are defined per hour (h-1). 

The formulation of the biomass objective function can be obtained at different levels of detail: basic 

level (define the macromolecular content on the cell, i.e., protein, RNA, DNA, lipids), intermediate level 

(calculate the necessary biosynthetic energy), and advanced level (detailing the necessary vitamins, 

elements, and cofactors) (Feist et al., 2010). If a biomass precursor is not considered in the biomass 

reaction, synthesis reactions may not be required for growth, as well as associated genes, which play an 

important role in in silico gene deletion experiments (Thiele et al., 2010). 

 

Growth and Maintenance ATP Requirements 

Growth-associated ATP maintenance (GAM) reaction accounts for the energy required to replicate 

a cell, including the synthesis of macromolecules (e.g., Proteins, DNA, and RNA). GAM should be 

experimentally determined through chemostat experiments. When no experimental data is available, GAM 

can be estimated by calculating the number of phosphate bonds for macromolecular synthesis (Neidhardt 

et al., 1990).  

Non-growth associated ATP (NGAM) maintenance reaction represents the ATP requirements to the 

cell to maintain for example its membrane leakage (Feist et al., 2007), represented by n ATP hydrolysis 

reaction, which transforms ATP into ADP and phosphate. The following reaction should then be included 

in the model’s reaction set: 

𝑥 𝐴𝑇𝑃 + 𝑥 𝐻2𝑂 → 𝑥 𝐴𝐷𝑃 + 𝑥 𝑃𝑖 + 𝑥 𝐻+ 

where x is the number of phosphate bounds and the NGAM value is set as its reaction rate. As for GAM, 

the value for the NGAM reaction rate should be experimentally determined or can either be found in 

literature or estimated by fitting the mode results to experimental data (Rocha et al., 2008). 
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Medium Constraints 

Transport fluxes for nutrients in the medium should be constrained between zero and infinity. These 

constraints allow replicating the organism’s physiological behavior under limited substrate availability or 

maximal uptake rates. The limiting substrate must be constrained to a specific rate value while the 

remaining ones are usually left unconstrained. Nutrients not available in the medium should be 

constrained to zero (Rocha et al., 2008). 

 

1.3.1.4 Metabolic Model Curation and Validation 

The model curation step is an iterative process that continues until simulation results match 

experimental data in the literature. Tools, such as merlin (Dias, Rocha, Ferreira, & Rocha, 2018), provide 

a graphical user interface that allows to easily perform re-annotation, correct reactions stoichiometric 

balance and directionality, include and/or exclude a reaction from the model, and ultimately to export the 

model in a standard and computational friendly format, such as in Systems Biology Markup Language 

(SMBL) format. 

 

Gap-filling 

The metabolic network must be screened for possible gaps. The presence of gaps can compromise 

the synthesis of biomass components and therefore the predictability of the model. Literature and 

databases (KEGG, MetaCyc, BRENDA, for instance) information should be used to assist the gap-filling 

process. Several tools can automate the network gap-filling (Mendoza et al., 2019). However, manual 

curation should follow such procedure. This is an iterative process that is repeated until all biomass 

precursors and other relevant compounds can be synthesized, and a feasible model is obtained. 

 

Metabolic Model Consistency Tests and Comparison to Experimental Data 

Once gap-filling is performed, consistency tests can verify the actual phenotypic prediction accuracy 

of the GSMM. Firstly, the metabolic model must be able to compute growth under specific conditions and 

the predicted rates assessed to published characterization studies (including growth, secretion, and 

uptake rates). Growth under a defined growth medium is strongly advised whenever possible (Feist et al., 
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2008). Specific growth conditions can include growth in limiting substrates, aerobic and anaerobic 

conditions, and different growth conditions reported in the literature. Also, the analysis of active pathways 

under specific growth conditions can be performed for model validation. If GSMM predictions are not in 

accordance with the experimental results, the model should be examined, potentially missing reactions 

included, and incorrect reactions removed. Another approach for validating GSMMs is assessing the 

simulation results of experiments performed with deletion mutants. This approach can provide valuable 

insights into the predictive capabilities of the model and a good training set may be of great value for 

model debugging. 

After this validation step, the high-quality GSMM should be exported in a standard format, such as 

Systems Biology Markup Language (SBML) to be used on GSMM simulation platforms. A high-quality 

standardized test of a GSMM can be accessed using the MEMOTE test suit (Lieven et al., 2020), which 

tests fundamental SBML semantic and conceptual requirements. A variety of platforms for simulation 

with GSMMs are available, such as the user-friendly java tool Optflux (Rocha et al., 2010), Matlab® 

through the COBRA toolbox (Heirendt et al., 2019)), and Python through COBRApy (Ebrahim et al., 2013) 

or Reframed packages. 

 

1.3.2 Simulation with Genome-Scale Metabolic Models  

The most common GSMM simulation approach, Flux Balance Analysis (FBA) (Varma & Palsson, 

1994), calculates intracellular reaction rates (also known as flux distributions), under a steady-state 

assumption (no accumulation of internal metabolites), along with nutrient uptake and secretion, and the 

cellular growth rate (Orth et al., 2010). Since the mathematical representation of a GSMM forms an 

underdetermined system of linear equations, the determination of the most biologically plausible solution 

requires the specification of an objective function. The metabolic network can be represented by a 

stoichiometric matrix 𝑆 , of dimensions 𝑚 × 𝑛, where 𝑚 corresponds to the total number of metabolites 

and 𝑛 to the total number of reactions in the network. The coefficients of the 𝑆 matrix define the 

relationship between the reactions and compounds of the metabolic network. An optimal solution, 

consistent with the known constraints and the maximization or minimization of a given objective function 

( 𝑍 ), can be obtained by solving the linear problem: 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝑍 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑆𝑣 = 0 

∝𝑗≤ 𝑣𝑗 ≤ 𝛽𝑗 ,        𝑗 = 1, … 𝑁 

 

where 𝑣 is a vector of fluxes of each reaction, and  ∝𝑗  and  𝛽𝑗  are the lower and upper limits for the 

fluxes, respectively. These limits are used to set the reversibility of the reactions, to limit uptake and 

secretion rates, and eventually to specify measured fluxes (Rocha et al., 2008). The solution to a FBA 

problem with respect to a given objective function is a set of optimal metabolic flux distributions. Although 

the objective value found is unique, flux distributions rarely are. To tackle this problem a second 

optimization criterion can be added such as found in the FBA variants of Parsimonious enzyme usage 

Flux Balance Analysis (pFBA) (Lewis et al., 2010), which attempts to find a more biologically viable flux 

distribution, by trying to minimize the absolute value of the sum of all fluxes through all reaction in the 

network while maintaining the reached optimum or Flux Variability Analysis (FVA) (Mahadevan et al., 

2003), which sets a constraint that requires the objective flux to be equal to its optimal value, and assess 

the robustness of a flux distribution regarding its production capability of the target compounds. 

Robustness is analyzed by maximizing and minimizing each reaction flux. High robustness is verified 

when the predicted maximum and minimum flux values differ slightly. 

The major challenge in FBA is the definition of an objective function, with biological relevance 

(Gianchandani et al., 2010). A variety of objective functions have been used to define an FBA problem. 

However, in the case of microbes, the maximization of growth rate is the most commonly used 

assumption based on selection pressure (Feist et al., 2010). Other objective functions can be used, such 

as minimizing ATP production or maximizing the desired compound. FBA has a wide range of applications, 

such as the optimization of bio-processes in industries or the identification of drug targets (Raman et al., 

2009). 

 

1.3.3 Optimization using Genome-Scale Metabolic Models  

Genetic manipulation of microbes for industrial purposes is nowadays widely used to produce bio-

based, sustainable, environmentally friendly, and viable compounds (Stephanopoulos, 1999). GSMMs 

are in that matter a commonly used tool for rational strain design by biotechnology companies with 
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successful applications (Jullesson et al., 2015) aided by the development of computational strain 

optimization methods. These methods try to identify a set of possible genetic modifications towards a 

desired phenotypical trait. Typically, the objective is to optimize the production of the desired compound, 

maintaining cell viability. Based on this bi-level objective, OptKnock (Burgard et al., 2003) established the 

foundation for the development of many other computational strain optimization methods. A variety of 

computational strain design optimization methods have been developed to search for non-intuitive genetic 

designs in more efficient and scalable ways. Today over 30 different computational strain optimization 

methods are published and can be divided into 3 main branches: bi-level mixed-integer programming, 

metaheuristics, and elementary-mode analysis-based methods. These methods can use different options 

for optimization targets (genes, reactions) or tasks (deletions, insertions, up/down-regulation) (Maia et 

al., 2016). Most of the mixed-integer programming and elementary-mode analysis methods guarantee to 

reach a global optimal solution. However, such approaches do not scale well with larger models or a high 

number of perturbations. Alternatively, metaheuristic-based methods, such as Evolutionary Algorithms 

and Simulated Annealing, not only usually have good scalability but are more flexible to the specification 

of objective functions (Rocha et al., 2008). However, these methods do not guarantee that a globally 

optimal solution is found. 

Accessing and using these methods is not always straightforward as the implementation of some 

methods is not available (Maia et al., 2016). Platforms such as Opflux (Rocha et al., 2010), and CAMEO 

(Cardoso et al., 2018) incorporate metaheuristic (OptGene (Patil et al., 2005) family methods) and 

deterministic methods (OptKnock) (Burgard et al., 2003), but are currently restricted to the use of GSMM 

containing only metabolic information. The recently developed python package MEWpy (Pereira et al., 

2021), offers a practical interface to several optimization heuristics allowing to model and optimize 

microbial production on GSMMs with metabolic, transcriptional, and translational information. 

 

1.4 Microbial communities 

Microbial communities are immensely abundant throughout all environments and their 

composition is equally diverse. Microorganisms within their community share not only the same 

ecosystem but also the same resources. From extreme environments to host symbionts, these 

communities play pivotal roles in a multitude of processes and have unique biological properties 
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maintaining Earth’s biosphere and contributing to plant and animal physiology and health (Fierer, 2017; 

Gilbert et al., 2018; Sunagawa et al., 2015). Thus, the possibility of controlling and engineering natural 

and synthetic microbial communities would be of huge interest to the environmental, health, and 

industrial processes (García-Jiménez et al., 2021). 

 

1.4.1 Historical Perspective 

The first attempt to “measure the invisible” microorganisms was made by Antoine Van 

Leeuwenhoek in 1676, using an indigenous microscope to observe the oral microbiome (Hamarneh, 

1960). But only in the late 1800s, Robert Koch was able to isolate and cultivate microorganisms in a 

solid phase. His studies not only helped to understand microbial physiology but also to establish causality 

between microorganisms and disease (Blevins & Bronze, 2010). Since then, and until the emergence of 

the microbial ecology concept, based on Winogradsky's works in the 1920s and 1930s to foment the 

growth of symbiotic microbes (Dworkin & Gutnick, 2012), studies were focused on pure cultures.  

In fact, the study of microorganisms and their environmental roles within communities, initiated by 

Winogradsky, revolutionized microbiology and these culture-based approaches were widely applied to 

microbial communities from all environments (Ackert, 2013). Identification of microorganisms was the 

next step in microbiological history, and indeed a vast number of methods were developed over time, 

such as the gram-staining technique, the agar selective and differential media, and biochemical tests. 

However, these culture-dependent methods besides being time-consuming and labor-intensive are also 

inadequate for identifying phenotypically similar species (Buszewski et al., 2017). 

Perhaps the breakthroughs in these almost 400 years of history (Figure 1.2) were the works of 

Carl Woese, Fred Sanger, and Kary Mullis. The emergence of 16s rRNA subunits as molecular taxonomy 

markers (Woese et al., 1977) and the development of automated DNA sequencing methods (Sanger et 

al., 1977) and techniques, such as polymerase chain reaction (PCR) (Mullis et al., 1986) allowed not only 

the identification and classification of microorganisms but also to unveiled microbial communities 

unculturable species. 

Supported by the development of these techniques, metagenomics as a research field surfaced at 

the beginning of the 1990s, with the first description of a method for the identification of species in a 

natural microbial community using 16s rRNA libraries (Ward et al., 1990). However, the term 
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“Metagenomics” was only proposed later that decade, disclosing all the industrial potential of accessing 

genomes of unculturable organisms (Handelsman et al., 1998). Although the amount of data that was 

generated by these techniques and instruments was already vast, limited throughput and the high costs 

of sequencing were still barriers identified by the Human Genome Project development (Goodwin et al., 

2016). Next-generation sequencing, presented in the mid-2000s, is a truly high-throughput sequencing 

platform, greatly reducing the necessary reaction volume while dramatically extending the number of 

sequencing reactions, and reducing the time, costs, and complexity required to sequence large amounts 

of DNA (Schuster, 2007).  

 

 

 

 

 

 

Figure 1.2. Metagenomics timeline and milestones. Timeline showing advances in microbial communities’ studies. Adapted 
from (Escobar-Zepeda et al., 2015) 

 

These new achievements contributed to the exponential growth in the size of sequencing 

repositories and launched metagenomics as a new scientific field. Since then, a global effort has been 
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made to catalog the uncultured microbial diversity through the Global Ocean Sampling Expedition (Rusch 

et al., 2007), the Human Microbiome Project (Turnbaugh et al., 2007), and more recently the Earth 

Microbiome Project (Gilbert et al., 2014). Metagenomics has reshaped our view of the tree of life (Hug et 

al., 2016; Parks et al., 2018), led to the identification of deeply rooted and metabolically diverse 

organisms (Jaffe et al., 2020; Wilson et al., 2014), and leveraged the characterization of new biosynthetic 

pathways and products (Crits-Christoph et al., 2018; Freeman et al., 2017). 

 

1.4.2 Microbial Community Organisms’ Identification 

One of the primary objectives of studying microbial communities is determining their composition 

at the species or strain level, ideally with quantitative information on occurrences (Frioux et al., 2020). 

The emergence of high-throughput sequencing technologies and new computational pipelines, combined 

with shotgun metagenomics methods allowed exploring genomic information of all organisms in a 

microbial community, not only the culturable ones (Zorrilla et al., 2021). In fact, metagenomics has 

enabled large-scale investigation of complex microbiomes and unveiled species that carry out complete 

nitrification of ammonia (Daims et al., 2015), or the widespread presence of antibiotic genes in 

commensal gut bacteria (Donia et al., 2014), for instance. However, the process of identifying 

microorganisms has some limitations due to the yet large amount of unculturable organisms without a 

reference genome available (Zorrilla et al., 2021). 

The identification of organisms and extraction of microbial abundances from the raw data is usually 

a complex and multiple-step procedure. The process can be summarized in four steps: (i) Experimental 

pipeline; (ii) Pre-processing analysis; (iii) Sequence analysis and (iv) Post-processing analysis (Quince et 

al., 2017). For each of these steps, numerous experimental and computational approaches are available, 

each of which with limitations and challenges. A short description of each step is available below. 

 

1.4.2.1 Experimental pipeline 

The experimental pipeline consists of collecting, processing, and sequencing the metagenome 

samples. The importance of this step is often underestimated in metagenomics. Sample collection and 

preservation protocols are extremely important steps once any miscalculation can affect both the quality 

and the accuracy of metagenomics data. Moreover, careful preliminary work is often required to ensure 
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that the best collection and storage methods are being applied to the sample as different samples may 

have different optimal methods. 

For metagenomic DNA extraction, the key objectives are to collect sufficient biomass and minimize 

the contamination of samples. A variety of DNA enrichment protocols are currently available (Quince et 

al., 2017). However, these procedures can introduce bias into sequence data (Probst et al., 2015). DNA 

extraction methods should be used according to the microbial diversity in the sample (easy and hard to 

lyse microbes) (Yuan et al., 2012), the possibility of DNA loss during vigorous extraction techniques 

(Kennedy et al., 2014) and contamination (essentially on low-biomass samples) (Tanner et al., 1998). 

Library preparation and sequencing methods are essentially selected considering the availability of 

materials and services, cost, ease of automation, and DNA sample quantification. However, it is still 

expensive to sequence and analyze large numbers of metagenomes without access to sequencing 

facilities (Quince et al., 2017). In shotgun metagenomics studies, the Illumina platform is the most used 

due to its wide availability, very high outputs, and high accuracy (Slatko et al., 2018). 

 

1.4.2.2 Pre-processing analysis 

Metagenome de novo assembly is a crucial analytical step, in which ideally full microorganism 

genomes are formed from shorter reads. However, contigs generated from the de novo assembly are 

usually very fragmented and are rarely longer than a few kilobase pairs (Deng et al., 2021). The first step 

in this process is to identify and remove low-quality sequences and contaminants, running a variety of 

computational tools for quality control, such as FastQC (Andrews, 2010). After quality control, the reads 

can either pass directly to taxonomic identifiers (see section 1.4.2.3) or be assembled into contigs, as 

described hereafter. The most popular metagenome assembly approach method is the Bruijn graph 

approach (Pevzner et. al, 2001), in which each read is broken into kmers of the same length (k), and a 

graph is formed using the kmers as vertices. Contigs are built by walking the graph from edges to nodes 

(Aylin et al., 2020). 

Metagenome assembly presents unique challenges. Unlike single genomes, sequence coverage 

along different genomes is usually different as different species are present in communities in different 

abundancies. Low-abundance genomes can be ignored when the overall sequencing depth for graph 

formation is big. To assist in the recovery of low-abundant genomes, sequencing depth can be shortened, 
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though accurate contigs of high-abundant genomes can be difficult to obtain (Quince et al., 2017). 

Metagenome-specific assembly tools, such as Meta-IDBA (Peng et al., 2011), MetaSpades (Nurk et al., 

2017), and MEGAHIT (Li et al., 2015), have been developed to overcome these challenges. MEGAHIT 

can be considered one of the top three metagenomics assembly tools, according to the Critical 

Assessment of Metagenomic Interpretation (CAMI) challenge (Sczyrba et al., 2017). Whichever assembly 

tool is used, the result will be potentially millions of contigs that need to be linked to the respective 

genomes. 

 

1.4.2.3 Sequence analysis 

Sequence analysis consists of trying to profile taxonomic, functional, and genomic features of the 

microbiome. In this primary analysis of metagenomic data, two approaches can be used: assembly-based 

analysis (binning) and read-based analysis. Both have strengths and weaknesses, and the success of 

either approach depends on the microbial community composition and complexity. Whenever possible, 

recommendations for using both approaches for sequence analysis have been performed (Quince et al., 

2017), as these complete and validate each other. 

 

Assembly-based metagenomic profiling 

The first step of sequence analysis is to group the contigs obtained in the last step into species. 

However, metagenome assemblies are highly fragmented, making it impossible to know which contigs 

belong to a genome, or even how many genomes are present. Binning aims to group contigs into species. 

For that, supervised and unsupervised methods may be used. Whereas the first method assigns contigs 

to taxonomic classes through sequenced genome databases, the second seeks natural groups according 

to the data or statistical properties, using clustering. Both use a metric to define similarity between contigs 

allocated to a bin, and an algorithm to convert similarities into assignments (Quince et al., 2017). Unlike 

supervised methods that are based on contig homology to known genomes, unsupervised methods do 

not require prior knowledge about genomes in a sample. In fact, most microbial species have not been 

sequenced yet, making it impossible to map most fragments to reference genomes. Unsupervised 

methods rely on features, such as GC content or di- and higher-order nucleotide frequencies, that usually 

vary between taxonomic lineages. Clustering can then be used, and the sequence of new candidate phyla 
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be unveiled (Hug et al., 2016). Several recent methods, such as CONCOCT (Alneberg et al., 2014), use 

a combination of these two features. 

A validation step should always be performed after binning, as each bin can contain more than a 

taxonomic group, which is not ideal. Completeness, as well as contamination, are two of the most tested 

features. For instance, when marker genes are missing, the genome is probably incomplete and when 

marker genes appear multiple times, the genome is eventually contaminated (Breitwieser et al., 2019). 

 

Assembly-free metagenomic profiling 

Besides identifying microbial species in a metagenome, taxonomic profiling of metagenomes 

estimates their abundance. Based on simply mapping reads to reference genomes and environmental-

specific assemblies, published in databases (Nielsen et al., 2014), this method can mitigate assembly 

problems, speed up computational time, and enable profiling low abundance organisms that cannot be 

assembled de novo. The main limitation of this approach is the profiling of uncharacterized organisms 

essentially in samples from soil and ocean environments, which are hampered by a lack of representative 

reference genomes. In these cases, the use of assembly methods is generally advisable (Breitwieser et 

al., 2019). However, the number of available reference genomes is increasing every day, even for difficult-

to-grow species, assisted by the development of new cultivation methods, and single-cell sequencing 

methods (Rinke et al., 2013). Also, the vast number of metagenomics studies of human gut samples, led 

to the extensive availability of reference genomes for this environment, allowing to use of assembly-free 

metagenomic profiling as an efficient and successful strategy, even for low-abundant microbes (Nelson 

et al., 2010). 

 

1.4.2.4 Post-processing analysis 

Post-processing analysis consists of using statistical tools to interpret the outputs of the methods 

described above. These outputs comprise data matrices of samples and/or microbial features, such as 

species, taxa, genes, and pathways. Most of the statistical approaches are not specific to metagenomic 

studies, including unsupervised and supervised methods. Unsupervised methods are used to infer 

ecological relationships within the community (Faust et al., 2012), by applying clustering, correlation, and 

visualization techniques, such as heat maps and ordinations (e.g. principal component analysis (PCA)). 
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Supervised methods include statistical methods, such as multivariate analysis of variance (ANOVA) or 

machine learning classifiers (Pasolli et al., 2016). Multivariate analysis is usually applied for direct 

hypothesis testing of differences between groups, whereas machine learning is used to train models that 

label groups of samples. These methods treat the community as a whole. For more precise testing of 

specific taxa or functional genes, the complexity, and the huge amount of data of metagenomic datasets 

may be a burden. To address that, methods of correction for multiple comparisons (White et al., 2009) 

or effect size estimation (Segata et al., 2011) are commonly used. 

 

1.4.3 Microbial interactions 

The microbial community’s structure and function rely on complex microbe-microbe or microbe-

environment interactions. The increasing attention that microbial communities have had in the last years 

is potentiated by the need to identify, understand, and enhance these interactions (Faust, 2018). In fact, 

various studies have been published revealing the impact of these interactions on our health, e.g., via our 

microbiome (Glowacki et al., 2020; Shi, 2019), our planet, e.g., via biogeochemical cycles (Nazaries et 

al., 2013), and even our food (Bokulich et al., 2016). Although a huge effort to understand metabolic 

interactions in these communities is undergoing, a great deal is still unknown (Zelezniak et al., 2015). 

Microbial interactions can be classified as positive (cooperative metabolite exchange), negative 

(competition for resources), or neutral (no effect on the interacting species) (Figure 1.3). The possible 

combinations of positive, negative, and neutral outcomes for two interaction partners allow the 

classification of various interaction types (Faust et al., 2012).  

Mutualism is characterized by a win-win relationship, in the case of bacterial cooperation to build 

a biofilm or in cases of cross-feeding (syntrophy). Commensalism is labeled as a win-neutral relationship 

in which commensals cross-feed on compounds that are produced by other community members. 

Parasitism is a classical host-parasite situation, where one wins on the loss of the other (e.g., bacteria-

bacteriophage interaction). When the production of one species by-product influences the environment 

and harms other species (e.g. lowering the pH of the environment), characterized by a loss-neutral 

relationship, it is considered amensalism. In competition, a loss-loss relationship is established, where 

the growth of both organisms is affected in the presence of each other. 
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Figure 1.3. Summary of possible microbe-microbe interactions. For each interaction partner, there are three possible 
outcomes: positive (+), negative (–), and neutral (0). Adapted from (Faust et al., 2012). 

 

Identifying and classifying these interactions is a difficult task, as metabolites cannot be easily 

attributed to a particular species or even to the environment. Moreover, species may excrete a large 

number of metabolites, interfering with the disclosure of metabolite excretion (Zelezniak et al., 2015). 

Tools have been developed to predict these microbe-microbe and host-microbe interactions, such as 

SMETANA (Zelezniak et al., 2015) and MICOM (Diener et al., 2020), where GSMMs are used as input 

and with demonstrated applicability (Machado et al., 2021).  

 

1.4.4 Extremophiles 

Over the last few years, the scientific community has been intrigued by finding life in environments 

that once were described as unhabitable (Rothschild et al., 2001). Metagenomic studies on extreme 

environments such as Antarctic ecosystems, saline lakes, geothermal springs, or deep-sea hydrothermal 
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vents, revealed a large number of organisms known as extremophiles (Nicolaus et al., 2010). 

Extremophiles are capable of sustaining biological life under extreme environmental stressors and are 

known for their remarkable diversity of morphology, biochemistry, genomics, and biosynthesis of adaptive 

compounds (Durvasula et al., 2018).  

 

Table 1.2. Types of extremophiles based on their habitat. Adapted from (Durvasula et al., 2018). 

Environmental 

Variable 
Type Characteristic Example Reference 

Temperature 

Hyperthermophile 
Growth > 80ºC 

Upper limit 130ºC 
Geogemma barossii 

(Kashefi et al., 

2003) 

Thermophile 
Growth > 45ºC 

Upper limit 80ºC 

Sulfurihydrogenibium 

azorense 

(Aguiar et al., 

2004) 

Mesophile 
Growth > 20ºC  

Upper limit 45ºC 
Escherichia coli 

(Rudolph et al., 

2010) 

Psychrophile Growth <20ºC Polaribacter gangjinensis 
(Lee et al., 

2011) 

Radiation  
Gamma > 15 kGy 

UV > 600 J m−2 
Deinococcus radiodurans 

(Bauermeister 

et al., 2011) 

Pressure Piezophile 
Growth > 10 MPa 

Upper limit 130 MPa 

Thermococcus 

piezophilus. 

(Dalmasso et 

al., 2016) 

Salinity Halophile 
Growth > 0.2 M salt 

Upper limit 5.5 M 

Haloterrigena 

thermotolerans 

(Montalvo-

Rodríguez et al., 

2000) 

pH 

Alkaliphile 
Growth > pH 9 

Upper limit pH 13 
Natronococcus occultus 

(Jones et al., 

1998) 

Acidophile Growth < pH 5 Picrophilus oshimae 
(Schleper et al., 

1995) 

 

The tree main branches of the tree of life (Bacteria, Archaea, and Eukarya) are represented in all 

of Earth’s extreme environments, showing the remarkable and wide adaptability of these organisms. 

Known growth conditions’ limits range from negative 12ºC to positive 130ºC for temperature, pH around 

0 to 13, pressure of over 100Mpa, beyond saturation conditions of NaCl and KCl, and high levels of 

ultraviolet and gamma radiation (Table 1.2). Harsh environmental conditions urged microorganisms to 
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evolve, including structural and biochemical adaptations, which allowed growth and survival under 

conditions that imposed a lack of nutrients and energy (Ando et al., 2021). Often these adaptations are 

a consequence of key changes in the organism’s enzymes amino acid sequences, which are translated 

into variations in the structure, flexibility, charge, and/or hydrophobicity (Sarmiento et al., 2015). 

Therefore, extremozymes can offer exciting industrial opportunities when compared with organic 

synthesis and even mesophilic biocatalysts, allying better chemical precision, sustainability, and cost-

effectiveness, to harsh enzymatic conditions capable of withstanding industrial demands (Van den Burg, 

2003). Indeed, extremophiles' enzymes that have been isolated and functionally characterized, led to the 

identification of the thermostable DNA polymerase used in the polymerase chain reaction (PCR) (Ishino 

et al., 2014) and enzymes used in the biofuel (Barnard et al., 2010), food, paper and cosmetic industries 

(Sarmiento et al., 2015), for instance. 

Until now, hyperthermophilic and thermophilic extremophiles/extremozymes have attracted the 

most attention. Prokaryotic diversity in hydrothermal ecosystems has been extensively studied (Ando et 

al., 2021). Moreover, the temperature endured by thermophilic enzymes, besides increasing reaction 

rates during high-temperature processing, reduces microbial contamination, lowers substrate viscosity, 

and increases the solubility of many polymeric substrates (Van den Burg, 2003). 

 

1.4.5 Genome-scale Metabolic Modelling of Microbial Communities 

The increased interest in studying microbial communities due to their key roles in human and 

environmental health was highly supported by the recent advances in high-throughput multi-omic 

technologies (metagenomics, metatranscriptomics, metaproteomics) (Zaramela et al., 2021). However, 

the use of these techniques to understand the individual role of microbes and their interactions, with each 

other and the community, is still a challenge. The use of GSMMs through computational and mathematical 

modeling approaches is nowadays a widely used platform to generate testable hypotheses on microbial 

community behavior at the taxon and community levels (Colarusso et al., 2021). Here a brief description 

of the current existent methods and tools for reconstruction, simulation, and optimization of microbial 

communities using GSMMs will be performed, including an assessment and a discussion of current 

limitations and challenges. 
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1.4.5.1 Microbial Community Genome-Scale Metabolic Model Reconstruction 

Microbial community GSMMs’ reconstruction is based on the reconstruction process of a single 

species. Two main approaches are used for these reconstructions: the mixed-bag and the 

compartmentalized network approaches (Faria et al., 2017). 

The mixed-bag network approach considers the microbial community a single supra-organism 

(Abubucker et al., 2012), constructing a model composed of one cytosolic and one extracellular 

compartment, ignoring species boundaries. In this case, the resulting model will be analogous to a single-

species prokaryotic network. Species-level resolution is ignored, and these networks are usually used to 

analyze community—environment interactions (Henry et al., 2016). The reconstruction of a mixed-bag 

network requires either the annotated genome sequences of all species present in the community or the 

whole deep metagenome sequence with annotated reads. From this stage, the network reconstruction is 

performed similarly to a single species network (see section 1.3.1). In the final model, redundant reactions 

(reactions included in at least two of the community species) are ignored. 

The compartmentalized network approach considers the different species of the community in 

distinct compartments. For each organism in the community, a single species metabolic model is 

constructed based on its genome sequence. The community model will be composed of as many 

compartments as the number of organisms in the community, plus an extracellular pool to allow 

metabolite exchange. Species-level resolution is obtained and therefore cross-species metabolic 

interactions can be predicted and optimized. Metabolic capabilities can be associated with the respective 

species within the community, which will allow microbial community design (Faust, 2018). However, in 

this approach, microbial community composition in terms of species must be known. Hence, 

reconstructing models from metagenomic samples, with undefined composition, demands an initial step 

of species identification from the metagenome(see section 1.4.2). 

The selection of an approach to reconstruct a microbial community network will depend on data 

and resource availability, as well as on the purpose. The limitations and challenges of each approach will 

be detailed in section 1.4.5.4. 
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1.4.5.2 Simulation of Microbial Communities using Genome-Scale Metabolic Models  

The application of GSMMs to the simulation of microbial communities was pioneered by Stolyar et 

al, who have applied them in the simulation of a two-species methanogenic community (Stolyar et al., 

2007). Several other simulation methods have since been published, but a comprehensive and 

systematic analysis will be detailed in Chapter 4 of this thesis. Here, pioneering methods for microbial 

community simulation will be discussed. As demonstrated before, multiple GSMMs can be easily merged 

into a compartmentalized multi-species GSMM, where organisms are allowed to exchange compounds 

through a common extracellular pool. However, formulating a biologically and ecologically meaningful 

objective function for a microbial community model is not trivial, and is one of the main differentiating 

features of different simulation methods. Two other main differentiating features are the inclusion of 

temporal and spatial components. 

The simplest class of methods is used for the simulation of steady-state flux distributions in 

microbial communities, allowing the prediction of individual growth rates and cross-feeding interactions 

in community equilibrium. OptCom (Zomorrodi et al., 2012) implements a bi-level objective function 

where the inner objective is to maximize the growth rate of individual species, and the outer objective is 

to maximize the total community biomass. The underlying assumption is that the community will optimize 

the management of available resources while still considering the individualistic objectives of its members. 

Other methods, such as cFBA (Khandelwal et al., 2013), SteadyCom (Chan et al., 2017), and MICOM 

(Diener et al., 2020), implement different objective functions following similar assumptions. One 

advantage of steady-state methods is that they do not require parameterization. However, they are 

characterized by a large uncertainty in the space of optimal solutions. 

The second class of methods considers the temporal component when performing time-course 

simulations. These are generally implemented as multi-species extensions of dynamic FBA (dFBA) 

(Zhuang et al., 2011), where time is divided into discrete steps and an FBA simulation is performed for 

each species at each time step. The d-OptCom (Zomorrodi et al.,  2014) method combines dFBA with 

OptCom to implement dynamic multi-objective optimization. Recently, a faster implementation of multi-

species dFBA, µbialSim (Popp et al., 2020), was able to scale up to communities with hundreds of 

species. These methods account for the temporal variation in metabolite concentrations and species 

abundance, which can play a role in community assembly, due to sequential species colonization, and 

allow simulating the response to changes in initial conditions and other environmental perturbations. 
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However, every organism requires the characterization of the substrate’s uptake kinetics for all 

metabolites that are consumed (either from the growth medium or through cross-feeding). The impractical 

nature of such a massive in vitro characterization results in the adoption of default parameter values for 

all species and compounds, which limits the predictive ability of these methods. 

The third class of methods adds the spatial component as well, resulting in spatiotemporal 

simulations. These methods are especially relevant in situations of heterogeneous or spatially segregated 

environments, such as biofilm colonies or the tract along the human gut, where nutrient diffusion and 

access to resources play a role in community assembly and the potential for cross-feeding interactions. 

The implementation of spatiotemporal methods mostly differs in the way the spatial component is 

modeled. COMETS (Harcombe et al., 2014) extends dFBA with a 2D-grid where each square represents 

a population of cells at a given point in time. BacArena (Bauer et al., 2017) also uses a 2D-grid structure 

but follows an individual-based modeling (IBM) approach, where each cell represents one individual, 

allowing for a more fine-grained resolution of inter and intra-species interactions. IndiMeSH (Borer et al., 

2019) also uses an IBM approach, but the spatial structure is based on angular pore networks, which 

allows the creation of more complex structured environments. In addition to the parameters on uptake 

kinetics mentioned before, these methods also require the specification of diffusion rates for cells and 

metabolites. 

These three main classes of methods represent increasing levels of simulation detail but also 

require more experimental data for model setup and, naturally, more computational power. Therefore, 

the selection of the most suitable kind of method depends on the complexity of the microbial community 

under study, as well as the amount of available experimental data. Regardless of this choice, GSMM-

based simulation allows for a mechanistic interpretation of observed community phenotypes and of the 

competitive and cooperative behaviors contained therein. Multi-omics data (transcriptomics, proteomics, 

metabolomics) can be used to constrain the solution space of metabolic models further highlighting the 

metabolic pathways active in each condition, and analyzing how different kinds of perturbations will elicit 

a coordinated response comprising the molecular, cellular, and population levels. 

 

1.4.5.3 Microbial Community Genome-Scale Metabolic Model Optimization 

The biological properties of microbial communities are closely related to the organisms present 

within them and resource availability (Johns et al., 2016). If the community composition (species or 
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medium) is disturbed, its functional capabilities can be affected. Such findings challenged the scientific 

community to manipulate microbiomes to improve crop productivity (O’Connell et al., 1996), to deal with 

contaminated groundwater (Löffler et al., 2006), or even to recover valuable resources from wastewater 

(McCarty et al., 2011), showing the huge potential of engineering microbial communities. Two main 

approaches have been currently used for engineering microbial communities: the top-down approach 

(Widder et al., 2016), which aims to control metabolic processes for stabilizing complex and natural 

communities; and the bottom-up approach (Lindemann et al., 2016), which aims at designing defined, 

synthetic communities with desired functionalities (Zerfaß et al., 2018). When combined, these 

approaches can offer complementary strategies to design defined, synthetic communities used to impact 

and engineer the behavior of complex communities (Lawson et al., 2019). 

Given the success of computational strain optimization methods to rationally design single 

organisms using GSMMs, already addressed in section 1.3.3, it is reasonable to assume that the same 

strategies may lead to success using microbial communities. Microbes rarely live in isolation, thus 

engineering microbial communities is a strategy closer to natural and physiologic behavior, than for 

isolated organisms. Moreover, the engineered product will be a cooperative effort from a structured 

community able to carry out complex interactions and synthesize complex molecules (Bosi et al., 2017; 

García-Jiménez et al., 2021). 

Until now, the number of studies that aim at developing algorithms for designing microbial 

communities using GSMMs has been low. Most of the tools developed use strategies to optimize medium 

composition and/or best community configuration for a given objective. Among them, the SIM algorithm 

(Klitgord et al., 2010), developed over the MATLAB® platform, uses a mixed-integer linear programming 

approach, to optimize a medium composition that supports the growth of multispecies co-cultures in a 

specific condition. An initial minimal set of potential exchanged metabolites that allows a positive growth 

rate of both organisms is identified. The core function of the SIM algorithm identifies all potential 

metabolites that can be switched in such a medium and the initially available source for a given element 

(carbon, nitrogen, sulfur, or phosphate). Hence, the chemical formula of each metabolite present in the 

GSMMs must be available. The algorithm is based on the identification of a symbiosis-inducing media, 

assuming that each species will secrete what the other needs. 

Similarly, FLYCOP (García-Jiménez et al., 2018), supports the design and engineering of microbial 

communities by selecting a consortium configuration that optimizes a given goal (community growth rate, 
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stability, medium composition, etc). Hence, FLYCOP selects and evaluates candidate consortium 

configurations, through an iterated local search algorithm (SMAC (Hutter et al., 2011)). For strain design, 

individual strain engineering must be performed beforehand, optimizing only the conditions for 

fermentation. 

Using a different approach, DOLMN (Thommes et al., 2019) explores the space of feasible single-

strain or multistrain metabolic networks, by systematically limiting the number of intracellular and 

transport reactions (performing reaction knockouts) in each metabolic model, using a MILP formulation. 

However, optimal solutions result in deleting a large number of reactions, which is not applicable for 

practical purposes. 

The increasing interest in designing microbial communities demands that model-guided microbial 

community engineering should trend toward the development of technologies capable of predicting 

potential genetic modifications at the community level, like individual-level design platforms, such as 

OptKnock. These new implementations of microbial community design methods may focus not only on 

optimizing exchange reactions (species cross-feeding interactions, medium composition) but also on 

untargeted and targeted (directed to specific species in the community) genes/reactions, as well as 

identifying the best community composition for a given objective, using top-down and bottom-up 

approaches. 

 

1.4.5.4 Genome-Scale Metabolic Modelling of Microbial Communities - Limitations and 

Challenges 

Although microbial community modeling is widely established, there are known limitations and 

challenges. A good GSMM must be manually curated and validated with experimental data to accurately 

predict phenotypic behavior. The process of reconstructing a community GSMM can be similar to that of 

a single metabolic model. In this approach, one would start by annotating all genes in a metagenomics 

sample (mixed bag approach). Alternatively, one could initially perform the identification of all organisms 

present in the community and then reconstruct the corresponding GSMMs (compartmentalized approach) 

(Frioux et al., 2020). In the latter approach, depending on the number of organisms and the availability 

of curated GSMMs in databases, such as the BiGG knowledgebase (King et al., 2016a), the time it takes 

to process, collect, and eventually reconstruct GSMMs can increase exponentially. 
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In the last years, pipelines that semi-automatically reconstruct prokaryotic organisms’ GSMMs in a 

matter of minutes, such as KBase (Arkin et al., 2018), the python package CarveMe (Machado et al., 

2018) or the AGORA knowledgebase which is focused in studying the human microbiota or host-pathogen 

interactions (Almut Heinken et al., 2020), have been published. These models have already shown their 

reliability in predicting growth, response to nutrients, and gene essentiality in single organisms and 

microbial communities (Chng et al., 2020; Machado et al., 2021; Nayfach et al., 2020). However, when 

the objective is the rational design of microbial communities, these models should be used with caution, 

as they often have some inaccuracies (Lieven et al., 2020), requiring further manual curation. 

To accurately study a microbial community, it is essential to correctly identify the available species. 

Besides wet-lab limitations, the lack of a complete reference genome and missing functional annotation 

of microbial genes in current databases (Bharti et al., 2021; Quince et al., 2017) impair the reconstruction 

of community GSMM. 

When reconstructing microbial community’s GSMMs, the struggle starts with how to compare 

simulation results. Several methods for simulating microbial communities using GSMMs have been 

published lately, although the full potential of those methods has not been achieved. The current 

experimental techniques are designed for individual organisms, with still limited applicability to microbial 

communities, as not enough experimental data on abiotic and biotic interactions, and perturbations is yet 

available (Machado et al., 2018). 

Although one of the main objectives of studying microbial communities is the possibility of 

controlling and engineering natural and synthetic microbial communities, few studies are available in 

terms of optimization tools capable of predicting potential genetic modifications at the community level 

(García-Jiménez et al., 2021). The challenge here is the development of sophisticated and integrative 

platforms that support different levels of community optimization (e.g. medium, interactions, community 

composition, targeted organism design within the community) to unveil the full potential of microbial 

communities (Eng et al., 2019). 
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Chapter 2 Metagenomic study of thermophilic and 

hyperthermophilic environments from Azores 

 

 

“You are never alone.  

You are externally connected with everyone” 

Amit Ray 

 

 

 

Five hydrothermal samples from hydrothermal vents at São Miguel, Azores, were analyzed to 

determine prokaryotic community composition. Taxonomic profiling of all samples was performed using 

assembly-based and read-based analysis showing combined results specifically for the predicted most 

abundant organisms in each sample. Samples showed to be abundant in members of the Aquificales and 

Crenarchaeota orders, in specific, Sulfurihydrogenibium azorense Az-Fu1, Desulfurococcus amylolyticus 

DSM 16532, Pyrobaculum islandicum DSM 4184/Pyrobaculum aerophilum str. IM2 and Thermofilum 

adornatus 1505.  

S. azorense Az-Fu1 was first isolated at São Miguel, Azores but in a different location (Furnas). 

Thus, the metabolic capabilities of S. azorense Az-Fu1 in isolation and within its microbial community, 

hence a systems biology approach, is worthy to be investigated.  
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2.1 Introduction 

From extreme environments to host-symbionts, microbial communities play pivotal roles in a 

multitude of processes and have unique biological properties maintaining Earth’s biosphere, contributing 

to plant and animal physiology, as well as human health (Fierer, 2017; Gilbert et al., 2018; Sunagawa et 

al., 2015). The appearance of Metagenomics as a field of study has transformed the way these microbial 

communities are perceived, being nowadays possible to control and engineer natural and synthetic 

microbial communities, with applications on environmental, health, and industrial processes (García-

Jiménez et al., 2021).  

The study of microbial communities in environments that once were described as unhabitable 

(Rothschild et al., 2001) – extremophiles – which are capable of sustaining biological life under one or 

more environmental stressors and are known for their remarkable diversity of morphology, biochemistry, 

genomics, and biosynthesis of many adaptive compounds (Durvasula et al., 2018) has nowadays gained 

huge importance. In harsh environmental conditions, microorganisms evolved several structural and 

biochemical adaptations that allowed them to grow and survive under conditions that impose, among 

others, a lack of nutrients and energy (Ando et al., 2021; Sarmiento et al., 2015). Therefore, the study of 

extreme microorganisms through their outstanding metabolic capabilities or their extremozymes can offer 

exciting industrial opportunities (Van den Burg, 2003). 

When studying microbiomes via metagenomics, one of the primary objectives is the identification 

of the microorganisms, ideally with quantitative information on their occurrences (Frioux et al., 2020). 

Despite the existence of multiple algorithms, the identification of organisms and extraction of microbial 

abundances from the raw data is still a complex and challenging procedure. However, microbial 

communities in high-temperature environments are generally less diverse (Inskeep et al., 2013) making 

hydrothermal habitats an ideal model system to study principles of community structure and function 

(Sahm et al., 2013). In fact, prokaryotic diversity in hydrothermal ecosystems has been extensively 

studied at hydrothermal sites, such as Yellowstone National Park (Inskeep et al., 2013; Jay et al., 2016), 

repeatedly revealing characteristic taxonomic groups, like the main presence of Aquificales and 

Crenarcheota members (Strazzulli et al., 2017). Being widespread in nature, in marine and terrestrial 

geothermal systems, members of both phyla are essentially thermophilic and hyperthermophilic 

microorganisms, almost exclusively obligate or facultative autotrophs (Hedlund et al., 2015) and are also 
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capable of using a wide range of energy sources, such as H2, elemental sulfur, and thiosulfate (Takacs-

Vesbach et al., 2013, Yamanaka, 2008). 

This work aims to characterize samples in the hydrothermal sites at São Miguel, Azores. Azores 

archipelago, composed of nine isolated islands almost exclusively of volcanic origin, is geographically 

situated in the Atlantic Ocean. In the Azores, namely at Furnas Valley, valuable research has been made 

on the search for thermophilic microorganisms and thermostable enzymes with biotechnological 

applications (Albuquerque et al., 2012; Albuquerque et al., 2010; França et al., 2006; Riessen et al., 

2001). However, little data is available on other Azorean volcanic sites and overall diversity (Hamamura 

et al., 2013). 

Applying metagenomic approaches, this work intends to provide an in-depth study of bacterial and 

archaeal diversity as a quantitative basis for understanding individual metabolic capabilities and metabolic 

interactions within the prokaryotic community present in extreme environments. 

 

2.2 Methods 

2.2.1 Sample collection 

Samples were collected inside and at different hydrothermal springs sites, at São Miguel, Azores. 

A description of the different sampling sites is provided in Table 2.1. 

 

Table 2.1 Physical and chemical characteristics of Azorean hydrothermal springs sample sites. 

Location Sample Temperature (ºC) pH 

Caldeira Velha CV 93.7 2.23 

Nascente da Ponte NP 95.8 6.88 

Esguicho de Maio ESG 98 7.29 

Fumarola Caldeiras da Ribeira Grande FCRG 49.4 2.2 

Piscina Caldeiras da Ribeira Grande PCRG 40 3.53 

 

As for other well-studied hydrothermal sites, São Miguel’s hotspots have a huge diversity of thermal 

features that cover a wide range in pH (2–8) and temperature (40–98°C) sites. Water samples were 



Chapter 2  

 

40|  PhD Thesis | Sophia Santos 

collected using glass bottles of a 1-liter beaker with a lid. For each sample temperature and pH were 

recorded at the sampling site. The samples were placed in a thermal box to prevent the descent of 

temperature. 

 

2.2.2 DNA extraction 

Water samples were passed through Miracloth filtration material (Calbiochem) to remove large 

debris and then filtered through a 0.22µm Millipore® Sterivex™ filter unit. The membranes were 

processed at Instituto Gulbenkian de Ciência (IGC) (Oeiras, Portugal). Genomic DNA was extracted from 

the individual filters using PowerWater Sterivex DNA Isolation Kit (MO BIO, Carlsbad, CA, USA) following 

the manufacturer’s protocol. The amount of the DNA extracted was later quantified using a NanoDrop 

1000 spectrophotometer (Thermo-Fisher Scientific, Wilmington, DE, USA) measuring the UV absorption 

at 260 nm and 280 nm wavelengths. DNA integrity was evaluated by agarose gel electrophoresis.  

 

2.2.3 Bacterial and Archaeal Diversity: 16S rRNA Gene Amplicon Sequencing 

To assess the bacterial and archaeal diversity in the São Miguel - Azores reservoirs, the 16S rRNA 

gene was used as a marker for biodiversity. The extracted environmental DNA was amplified using primers 

targeting the V3 and V4 hypervariable regions of the 16S rRNA gene and V9 region for the 18S (Caporaso 

et al., 2012). Whole genome libraries were produced using the Nextera XT DNA Library Preparation Kit 

according to the manufacturer’s instructions. The purified DNA was sequenced with Illumina NextSeq 

using a 150 bp paired-end DNA library (Illumina, San Diego, CA, USA) to generate at least 240 million 

reads per sample sequenced. PCR amplification of the 464 bp fragments was performed with the general 

bacterial primer pair 341F/785R and the general archaeal primer pair 340F–1000R (Klindworth et al., 

2013). Ribosomal RNA gene amplicon sequencing was performed by IGC, Gene Expression Facility 

(Oeiras, Portugal). 

 

2.2.4 Metagenomics and Bioinformatics Pipeline 

Based on the features of the obtained reads and the software available, a semi-automatic pipeline 

(Figure 2.1) was designed and implemented at IGC (by Ana Alão Freitas and Ricardo Leite) to identify and 
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“make meaning” of the sequenced short reads. Some of the software used was executed using the Linux 

command line while others were used online directly on the respective websites. 

 

 

Figure 2.1. Metagenomics and bioinformatics semi-automatic pipeline implemented. Each step of the process is labeled with 
a different color. Tools are shown in boxes and data is shown as a multi-document flowchart. The read-based taxonomic 
profiling was exclusively done for this work. 

 

2.2.4.1 Quality Control and Assembly 

As illustrated in Figure 2.1, the whole pipeline starts from the short reads obtained from the 

metagenomic sequencing step. The reads from each sample were submitted to this pipeline separately. 

Sequencing resulting FASTQ files with short-reads were submitted to a quality check using FastQC 

software version v0.11.5 (Andrews, 2010). A pre-processing and filtering process of unqualified bases 

was performed using the FastP software version v0.23.2 (Chen et al., 2018), using the following 

parameters: -q 20, -u 40.  

Reads were afterward assembled via SPAdes genome assembler v3.14.1 (Bankevich et al., 2012) 

using the options “--pe -1” for the file with left reads and “-- pe -2” for the file with right reads. Values for 

the k-mer sizes used in the Bruijn graphs application were chosen based on the values advised for the 
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size of the obtained short-reads (option “-k” 21,33,55,77,99,127). Both contigs and scaffolds quality was 

evaluated with Quast Version: 5.0.2 option Meta (Mikheenko et al., 2016). 

 

2.2.4.2 Taxonomic profiling 

Taxonomic profiling was obtained by performing the assembly-based analysis (binning) and read-

based analysis (operational taxonomic units). When analyzing environmental samples, the lack of 

available representative reference genomes is a drawback, so the use of both approaches for sequence 

analysis is recommended (Quince et al., 2017). 

 

Assembly-based analysis (binning) 

Binning of the pre-processed scaffolds was carried out by the BinSanity v0.3.1 (Graham et al., 

2017) algorithm. The pre-processing was performed by Bowtie2 v2.4.4 (Langmead et al., 2012) and 

SAMtools v1.16.1 (Danecek et al., 2021). Taxonomic assignment was conducted by Kraken 2 (Wood et. 

al, 2014), using as the default library the Nacional Center for Biotechnology Information’s (NCBI) RefSeq 

database (NCBI Resource Coordinators, 2018). 

 

Operational taxonomic units (OTUs) 

OTUs were generated with the mOTUs profiler v.2.0.0 (Milanese et al., 2019) using the following 

parameters: -l 75; -g 2; and -c. Profiles were filtered to focus on a set of species that were confidently 

detectable. Specifically, microbial species that did not exceed a maximum relative abundance of 1 × 10−2 

(1%) were excluded from further analysis, together with the fraction of unmapped metagenomic reads. 

 

2.3 Results and Discussion 

2.3.1 Bacterial and Archaeal diversity 

Samples were collected from five sites inside and near hydrothermal springs at São Miguel, Azores. 

In situ, temperatures ranged from 40 to 98°C, whereas pH values varied between 2 and 8 (Table 2.1). 
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Hot springs are considered low-diversity habitats due to their extreme physicochemical parameters. 

Regarding temperature, no correlation has yet been found on its effect on prokaryotic diversity showing 

even contradictory results (Sahm et al., 2013) that also depend on other factors, such as sulfide 

concentration (Skirnisdottir et al., 2000), pH values (Yim et al., 2006) and prokaryotic organisms with 

specific metabolism (Miller et al., 2009).  

When analyzing all samples collected at São Miguel’s hydrothermal springs (Table 2.2), results 

show that bacterial diversity is essentially affected at high temperatures and neutral pH (ESG sample – 

98 ºC, pH 7.29), maintaining a big diversity at all other temperatures and pH ranges. However, archaeal 

diversity seems to be more affected by changes in temperature and pH, showing higher diversity at 

temperatures between 40 and 50 ºC and acidic pH (2 – 3.5) – PCRG and FCRG samples. 

 

Table 2.2. Bacterial and Archaeal 16s rRNA sample detection. Low - +, Medium - ++, and High - +++. Samples CV – Caldeira 
Velha, NP – Nascente Poente, ESG – Esguicho de Maio, FCRG – Fumarola Caldeira da Ribeira Grande, PCRG – Piscina 
Caldeira da Ribeira Grande. 

Sample 
Bacterial  
16s rRNA 

Archaeal  
16s rRNA 

DNA 
(ng/µL) 

CV +++ + 10.6 

NP +++ + 9.7 

ESG + + 24 

FCRG +++ +++ 28.1 

PCRG +++ ++ 22.7 

 

Nevertheless, a chemical analysis of the sampling sites was not made, which, as stated before, 

can at some level explain the prokaryotic diversity results obtained. 

 

2.3.2 Metagenome Assembly 

The metagenomics and bioinformatics pipeline performed at IGC and described in section 2.2.4, 

was applied to all five samples (CV, NP, ESG, FCRG, and PCRG). Quality check of reads, contigs, and 

scaffolds obtained by the FASQC, FastP, and MetaQuast tools are summarized in Supplementary Tables 
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S1, S2, and S3. The total number of reads, contigs, and scaffolds obtained by the implemented pipeline 

is presented in Table 2.3. 

 

Table 2.3. Obtained number of reads, contigs, and scaffolds for each sample analyzed. Samples CV – Caldeira Velha, NP – 
Nascente Poente, ESG – Esguicho de Maio, FCRG – Fumarola Caldeira da Ribeira Grande, PCRG – Piscina Caldeira da Ribeira 
Grande. 

Sample 
No. of Reads 

(R1=R1; nx2) 
No. of Contigs No. of Scaffolds 

CV 47663521 198245 196495 

NP 30793369 53856 52145 

ESG 31628129 35828 35466 

FCRG 19960245 46840 45594 

PCRG 15123250 17474 17019 

 

2.3.3 Taxonomic profile 

The taxonomic profile of all samples was performed using two approaches: assembly-based 

analysis and read-based analysis. Recommendations for the use of both approaches for sequence 

analysis whenever possible have been made (Quince et al., 2017), once they complement and validate 

each other. 

 

2.3.3.1 Assembly-based analysis - Binning 

Assembly-based analysis was performed by applying the Binsanity v0.3.1 binning algorithm to the 

Scaffolds files. Results were then checked for quality, analyzing completeness and contamination. 

BinSanity results are presented in Table 2.4 which also includes the Kraken taxonomic identification of 

the bins that achieved values for completeness and contamination higher than 97% and lower than 10%, 

respectively. Complete results of the BinSanity and Kraken algorithms are presented in Supplementary 

Tables S4 and S5. 

Although binning results add little information on species identification (around 9% to 20%), some 

conclusions can be made that corroborate sample bacterial and archaeal diversity shown in section 2.3.1. 
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In fact, all samples appear to have high prokaryotic diversity, as shown by the total number of bins 

predicted for each sample. However, Kraken results are hugely dependent on the availability of marker 

genes and reference genomes in databases, making it difficult to profile organisms present in low 

quantities in samples, as well as uncharacterized organisms that are typically present in the soil, marine, 

and freshwater environments (Breitwieser et al., 2019), such as the ones being analyzed in this work. 

 

Table 2.4. Binning algorithm prediction results. Number of total predicted bins, bins with high completeness (>97%) and low 
contamination (<10%) values, and respective species identification. Samples CV – Caldeira Velha, NP – Nascente Poente, ESG 
– Esguicho de Maio, FCRG – Fumarola Caldeira da Ribeira Grande, PCRG – Piscina Caldeira da Ribeira Grande. 

Sample 
Number of bins 

Species Identification Domain 
Total 

High Completeness 
Low Contamination 

CV 17 2 
Sulfurihydrogenibium azorense Az-Fu1 

Thiomonas intermedia K12 

Bacteria 

Bacteria 

NP 12 2 
Pyrobaculum islandicum DSM 4184 

Thermus scotoductus SA-01 

Archaea 

Bacteria 

ESG 10 2 
Sulfurihydrogenibium azorense Az-Fu1 

Pyrobaculum islandicum DSM 4184 

Bacteria 

Archaea 

FCRG 11 1 Thermoplasma acidophilum DSM 1728 Archaea 

PCRG 10 2 
Acidithiobacillus caldus SM-1 

Acidimicrobium ferrooxidans DSM 10331 

Bacteria 

Bacteria 

 

As mentioned before, only a small number of genomes could be identified using this approach. 

Given the methodology of this taxonomic profiling approach, the identified genomes have a fair probability 

of being the most abundant in each sample (Hug et al., 2016). Indeed, all samples except sample FCRG, 

which is also one of the samples that revealed higher archaeal diversity, show bacterial diversity in 

accordance with the results obtained by 16S rRNA gene amplicon sequencing (section 2.3.1). Binning 

was not able to predict any species identification of archaeal diversity in CV and PCRG samples, although 

species identification of around 80% of the predicted bins remains inconclusive in both samples. 

Moreover, the results are also in accordance with previous studies that report the high abundance of 

Aquificales (Sulfurihydrogenibium azorense Az-Fu1) and Crenarchaeota members (Pyrobaculum 

islandicum DSM 4184) in hydrothermal sites (Strazzulli et al., 2017). 
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2.3.3.2  Read-based analysis - Operational taxonomic units (OTUs) 

Read-base taxonomic profiling of metagenomes more than identifying microbial species in a 

metagenome also estimates their abundance. Based on simply mapping reads to reference genomes, 

these methods are ideal for profiling low-abundance organisms (Nielsen et al., 2014). OTUs generated 

with the mOTUs profiler v.2.0.0 (Milanese et al., 2019) for each sample are presented in Table 2.5. 

Abundance percentage values presented were normalized for the species with an abundance percentage 

higher than 1%. Complete mOTUs results are presented in Supplementary Table S6. Accounting for all 

samples, a total of 12 organisms were identified. 

 

 

 

 

Figure 2.2. Domain-level composition of microbial communities based on mOTUs algorithm organism identification and 
respective abundance prediction. 

 

The obtained results agree with the ones obtained in section 2.3.3.1, for both prokaryotic diversity 

and organism identification. As predicted by assembly-based analysis, all samples seem to have bacterial 

and archaeal diversity, exception made again for sample PCRG that is composed only of bacteria (Figure 

2.2). Although mOTUs algorithm only predicted the presence of two organisms in the PCRG sample, the 
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binning algorithm predicted 10 bins, that can or not be mapped to actual different genomes (Hug et al., 

2016). The identification procedure in the taxonomic profile process of both approaches is highly 

dependent on reference genomes in databases, so archaeal diversity detected using 16S rRNA gene 

amplicon sequencing (section 2.3.1) could be resultant of unknown archaeal organisms (Zorrilla et al., 

2021). CV reveals to be the sample with higher prokaryotic diversity (composed of 9 different 

microorganisms), showing higher bacterial diversity than archaeal, which is in accordance with all 

previous results. 

Considering organism identification, all samples show that the most abundant organisms 

identified by the read-based approach are also the ones identified by the binning approach. However, 

Thiomonas intermedia K12 and Thermus scotoductus SA-01 in samples CV and NP, respectively, were 

predicted by both approaches but are not included in the most abundant by the mOTUs algorithm. 

Moreover, results for both approaches exhibit remarkable similarity for samples with lower prokaryotic 

diversity (ESG, FCRG, and PCRG), showing that indeed read-based and assembly-based analysis 

approaches validate and complement each other. A unique divergence in the results has been spotted: 

the two approaches have identified in samples CV and ESG a different member of the Pyrobaculum genus, 

Pyrobaculum islandicum DSM 4184 by the binning approach and Pyrobaculum aerophilum str. IM2 by 

the read-based approach. In fact, the two organisms are genetically and metabolically similar (Feinberg 

et al., 2008) so these differences can be due to the use of different reference genome databases (mOTUs 

uses an internal reference genomes database while BinSanity uses NCBI RefSeq database) or even to 

incorrect fragment assignment which can prevent achieving accurate contigs of high-abundant genomes, 

before organism identification (Breitwieser et al., 2019). 
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Table 2.5. Operational Taxonomic Units algorithm results. For each sample only organisms with respective abundance higher than 1% are presented. Shaded organisms belong to the Domain 
Bacteria, and non-shaded organisms belong to the Domain Archaea. Samples CV – Caldeira Velha, NP – Nascente Poente, ESG – Esguicho de Maio, FCRG – Fumarola Caldeira da Ribeira 
Grande, PCRG – Piscina Caldeira da Ribeira Grande. Organisms: Acidimicrobium ferrooxidans DSM 10331 (A. ferrooxidans DSM 10331), Acidithiobacillus caldus SM-1 (A. caldus SM-1), 
Desulfurococcus amylolyticus DSM 16532 (D. amylolyticus DSM 16532), Pyrobaculum aerophilum str. IM2 (P. aerophilum str. IM2), Sulfurihydrogenibium azorense Az-Fu1 (S. azorense Az-Fu1), 
Thermodesulfovibrio yellowstonii DSM 11347 (T. yellowstonii DSM 11347), Thermofilum adornatus 1505 (T. adornatus 1505), Thermoplasma acidophilum DSM 1728 (T. acidophilum DSM 
1728), Thermorudis peleae (T. peleae), Thermus antranikianii DSM 12462 (T. antranikianii DSM 12462), Thermus scotoductus SA-01 (T. scotoductus SA-01), Thiomonas intermedia K12 (T. 
intermedia K12). 

CV NP ESG FCRG PCRG 

Organism % Organism % Organism % Organism % Organism % 

S. azorense Az-Fu1 58.6 P. aerophilum str. IM2 79.9 P. aerophilum str. IM2 96.0 T. acidophilum DSM 1728 98.7 A. caldus SM-1 64.9 

T. adornatus 1505 9.9 T. antranikianii DSM 12462 12.4 S. azorense Az-Fu1 1.8 A. caldus SM-1 1.1 A. ferrooxidans DSM 10331 35.1 

T. yellowstonii DSM 11347 7.2 T. scotoductus SA-01 5.3 D. amylolyticus DSM 16532 1.3     

A. caldus SM-1 7.0 D. amylolyticus DSM 16532 1.3       

A. ferrooxidans DSM 10331 4.9 T. adornatus 1505 1.1       

T. acidophilum DSM 1728 4.8         

P. aerophilum str. IM2 2.9         

T. peleae 2.5         

T. intermedia K12 2.1         
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Once more, mTOUs algorithm, in accordance with the binning algorithm, revealed a high 

abundance of the hydrothermal characteristic taxonomic groups Aquificales (Sulfurihydrogenibium 

azorense Az-Fu1) and Crenarchaeota (Desulfurococcus amylolyticus DSM 16532, Pyrobaculum 

aerophilum str. IM2 and Thermofilum adornatus 1505) members (Strazzulli et al., 2017). In particular, 

Sulfurihydrogenibium azorense Az-Fu1 was identified in the samples CV and ESG, being the most 

abundant organism in the CV sample. Curiously, S. azorense Az-Fu1 was first isolated in Furnas, São 

Miguel, Azores (Aguiar et al., 2004) and observed in other metagenomics studies of the same site (Sahm 

et al., 2013). Therefore, the prediction of the presence of this bacterium on other hydrothermal sites 

suggests that this bacterium is well adapted to the physical and chemical environmental conditions of 

São Miguel Island. Being a representative of the Aquificales order, the metabolic capabilities of S. 

azorense Az-Fu1 in isolation, as well as within its microbial communities is therefore of huge interest. 
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2.4 Conclusions 

Since the mid-2000s, with the genesis of next-generation sequencing, metagenomic studies have 

transformed the understanding of microbial communities' function and dynamics through the global effort 

to catalog the uncultured microbial diversity throughout the most diverse environments (Gilbert et al., 

2014; Rusch et al., 2007; Turnbaugh et al., 2007). More recently, the scientific community has focused 

on the study of environments that once were described as unhabitable (Rothschild et al., 2001) where a 

large number of organisms, known as extremophiles (Nicolaus et al., 2010) were revealed, presenting 

remarkable genomic and metabolic attributes (Durvasula et al., 2018) with industrial applications. 

In this work, the prokaryotic diversity of five samples from hydrothermal vents at São Miguel, 

Azores, was characterized, using metagenomic approaches. The taxonomic profiling of all samples was 

performed using assembly-based and read-based analysis algorithms. Although both approaches are 

usually used separately and selected depending on the origin of the sample in the study, the use of both 

is usually recommended (Quince et al., 2017) whenever possible. Indeed, both taxonomic profiling 

approaches presented very similar results demonstrating that the two approaches validate and 

complement each other. Differences were only spotted on the assignment of different members of the 

Pyrobaculum genus depending on the profiling algorithm, which can be justified by the use of different 

reference genome databases. 

High abundant organisms were identified in all samples and domain-level composition was also 

predicted. The results of both taxonomic profiling approaches showed a similar profile to the experimental 

16S rRNA gene amplicon sequencing profile obtained. Differences were only encountered in sample 

PCRG, which showed a considerable detection of archaeal 16s RNA, however, no archaeal organisms 

were predicted to be present when applying the taxonomic profiling algorithms. No conclusion can be 

made on the presence or absence of archaeal diversity in the PCRG sample, since the taxonomic profiling 

algorithms available have indeed some limitations, due to the still big amount of unculturable organisms 

without a reference genome available in databases (Zorrilla, Patil, et al., 2021). 

Aquificales and Crenarchaeota members, regularly present in hydrothermal sites (Strazzulli et al., 

2017), were predicted to be present in high abundance in samples CV, NP, and ESG, by both taxonomic 

profiling approaches. Specifically, Sulfurihydrogenibium azorense Az-Fu1 and Pyrobaculum islandicum 
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DSM 4184/Pyrobaculum aerophlium str. IM2, Aquificales, and Crenarchaeota members, respectively, 

appear to be abundantly present in various samples.  

Environments rich in Aquificales members have recently received scientific interest for being 

believed to be the earliest lineage within the domain Bacteria (Takacs-Vesbach et al., 2013) and for being 

a common presence in thermophilic and hyperthermophilic environments. Curiously, S. azorense Az-Fu1 

was first isolated in January 2001 from terrestrial hot springs at Furnas, São Miguel Island, Azores, 

Portugal (Aguiar et al., 2004) and its re-occurrence at different sites with similar environmental conditions 

is worthy to be investigated. A systems biology approach to study S. azorense Az-Fu1 metabolic 

capabilities in isolation, as well as part of these communities, is suggested. 
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2.5 Supplemental Material 

 

Additional file in Excel format: Chapter2_Supplementary_Material.xlsx 

Link: DesignOptimizationMicrobialCommunities/Data 

 

Table S1 FastQC Report Summary 

Table S2 FastP Report Summary 

Table S3 MetaQuast Quality Results 

Table S4 BinSanity Complete Results 

Table S5 Kraken Results for the bins with high completeness (>97%) and low contamination 

(<10%) values and respective species identification 

Table S6 mOTUs Complete Results

https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/Data


 

 

PhD Thesis | Sophia Santos   |53 

 

 

Chapter 3 

Chapter 3 Genome-scale metabolic model of thermophilic 

bacterium Sulfurihydrogenibium azorense Az-Fu1 

 

 

“All for one, one for all” 

Alexandre Dumas 

 

 

 

 

 

iSS352 is the first manually curated genome-scale metabolic model for the thermophilic bacterium 

S. azorense Az-Fu1, comprising 352 genes and 772 reactions. The construction of this model involved 

performing a reannotation, which revealed the presence of the main components of the bacterial cellulose 

operon and its regulators, suggesting that S. azorense Az-Fu1 may have the metabolic potential for 

cellulose production. The model also clarifies this chemolithoautotrophic organism's carbon fixation route, 

central carbon, and sulfur metabolisms. The iSS352 metabolic model will serve the ongoing fundamental 

research of chemolithoautotrophic metabolism in extreme environments, provide clues regarding new 

extremophilic enzymes, and studies of interactions with the identified environmental microbial community 

in which it was discovered. 
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3.1 Introduction 

The Aquilicales order is of significant interest as it is believed to be the earliest-lineage within the 

domain Bacteria (Takacs-Vesbach et al., 2013). Being widespread in marine and terrestrial geothermal 

systems, members of Aquificales are thermophilic and hyperthermophilic bacteria almost exclusively 

obligate or facultative autotrophs (Hedlund et al., 2015). Considered to be primary producers, members 

of this order can also use a wide range of energy sources, such as H2, elemental sulfur, and thiosulfate 

(Takacs-Vesbach et al., 2013, Yamanaka, 2008). Moreover, the study of extremophiles and their enzymes 

has increased in the last years (Counts et al., 2017; Han et al., 2019; Kumar et al., 2019) due to the 

need for the industry to have more stable biocatalysts at higher temperatures and pressures or extreme 

pHs to resist to harsh industrial settings (Atalah et al., 2019) and also for using less costly purification 

technologies, such as heat treatment that does not involve chemical reagents, protein tags, nor 

adsorbents (Sun et al., 2012). 

Sulfurihydrogenibium azorense Az-Fu1, a representative of the Aquificales order, commonly found 

as dominant taxa in hot spring vent communities, is a gram-negative, thermophilic, 

chemolithoautotrophic, and microaerophilic bacterium (Lalonde et al., 2005). The bacterium was isolated 

in January 2001 from terrestrial hot springs at Furnas, São Miguel Island, Azores, Portugal (Aguiar et al., 

2004). S. azorense grows optimally at 68ºC, pH 6, and at low concentrations of NaCl and can also grow 

heterotrophically (Nakagawa et al., 2005) and use elemental sulfur, thiosulfate, hydrogen, and ferrous 

iron as energy sources (Aguiar et al., 2004). As an Aquificales member, S. azorense is believed to fix CO2 

via reductive Tricarboxylic Acid Cycle (rTCA) (Hügler et al., 2007) to generate acetyl-CoA as an end product 

(Gupta et al., 2013), like its closely related relative Sulfurihydrogenibium subterraneum. In fact, the rTCA 

is reported to be the most plausible candidate for the first autotrophic metabolism in the earliest life 

(Kitadai et al., 2017). Also, (Lalonde et al., 2005) reported that, under stress conditions, this bacterium 

produces chemolithoautotrophically sufficient amounts of exopolysaccharides (EPS). 

EPS are polymeric structures of repeated sugar units of the same or different types that 

microorganisms usually produce under unfavorable growth conditions. These structures have a high 

range of physiological roles, such as preventing the entering of harmful substances within the cell, 

contributing to providing nutrients and/or water or promoting adherence to surfaces (biofilm formation) 

(Rana & Upadhyay, 2020). In extremophiles, EPS accumulation functions as a relevant adaptation 

strategy of cell protection and membrane stabilization (Kambourova et al., 2016). Due to their adaptation 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-tag
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to extreme environmental conditions, EPS produced by extremophiles is usually more stable under a wide 

range of temperatures, pH, and saline conditions. Moreover, these EPS have novel physical and chemical 

properties, making these polymers good candidates for use in food, cosmetic, and pharmaceutical 

industries, and novel biomedicine areas (Nicolaus et al., 2010). Hence, the possibility of S. azorense's 

chemolithotrophic and thermophilic production of EPS suggests that the study of its metabolism is of 

significant interest. 

One of the most used tools to capture the complex physiological characteristics, behavior, and 

metabolic capabilities of a cell as an integrated system is genome-scale metabolic models (GSMMs). 

These models are mathematical representations describing an organism, cell, tissue, or microbial 

community metabolism that can fully explore metabolic relationships between genotype and phenotype 

(Bordbar et al., 2014; Kim et al., 2008). These mathematical models are a valuable platform for the rapid 

testing of hypotheses. Since the publication of the first GSMM (Edwards et al., 1999), these models have 

received increasing interest, as shown by the increasing list of applications: metabolic engineering 

strategies, identification of gene functions, identification of drug targets in pathogens, and more recently 

the integration of multi-omics data to study metabolic rewiring of human cells or tissues, and the 

prediction of microbe-microbe/host-microbe interactions within microbial communities (Kim et al., 2017). 

The number of published GSMMs is increasing and is available in several databases, such as BioModels 

(Malik-Sheriff et al., 2020) and BiGG Models (King et al., 2016). Most of those models represent 

prokaryotic organisms; however, when related to chemolithoautotrophic organisms, little is still known 

about their metabolism, and consequently, few are published as GSMMs, as seen in Table 3.1. 

High-quality GSMMs must be manually curated and validated with experimental data to predict a 

given phenotype, a process that, even with available tools to automate most of the reconstruction tasks, 

is still laborious and time-consuming (Thiele et al., 2010). Workflows that semi-automatically construct a 

GSMM of a prokaryotic organism in a matter of minutes and decrease the time spent in these 

reconstructions, such as the platform KBase (Arkin et al., 2018), or the python package CarveMe 

(Machado et al., 2018), have been published in the last years. 

These models have already shown their reliability when predicting growth, response to nutrients, 

and gene essentiality in single organisms and even microbial communities (Chng et al., 2020; Machado 

et al., 2021; Nayfach et al., 2020). However, if the organism has particular nutritional requirements and 
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metabolism, and if the objective is the rational design, these models should be used with caution, as 

results may be inaccurate (Lieven et al., 2020), needing further manual curation.  

 

Table 3.1. Chemolithoautotrophic organisms with published genome-scale metabolic models. CBB - Calvin-Benson-Bassham 
cycle, rTCA – reverse Tricarboxylic acid cycle, 3-HP/4-HB - 3-hydroxypropionate/4-hydroxybutyrate cycle, DC/4-HB - 
dicarboxylate/4-hydroxybutyrate cycle, WL - Wood-Ljungdahl pathway. 

Organism Domain 
Bioenergetic 

process 

Electron 

donor 

Electron 

acceptor 

Carbon 

fixation 
Reference 

Acidithiobacillus 

ferrooxidans 
Bacteria 

Sulfur and 

Iron Oxidizing 
S, S2O3

2-, Fe2+ O2 CBB 
(Campodonico 

et al., 2016) 

Methanococcus 

maripaludis S2 
Archaea Methanogen H2 CO2 WL 

(Goyal et al., 

2014) 

Methanosarcina 

barkeri 
Archaea Methanogen H2 CO2 WL 

(Feist et al., 

2006) 

Nitrobacter 

winogradskyi 
Bacteria 

Nitrate 

Oxidizing 
NO2 O2 CBB 

(B L Mellbye et 

al., 2018) 

Nitrosomonas 

europaea 
Bacteria 

Ammonia 

Oxidizing 
NH3 O2 CBB 

(B L Mellbye et 

al., 2018) 

Nitrosopumilus 

maritimus SCM1 
Archaea 

Ammonia 

Oxidizing 
NH3 O2 3-HP/4-HB 

(F. Li et al., 

2018) 

Nitrospira 

moscoviensis 
Bacteria 

Nitrate 

Oxidizing 
NO2

- O2 rTCA 
(Lawson et al., 

2021) 

Sulfolobus 

solfataricus P2 
Archaea 

Sulfur 

Oxidizing 
S, S2O3

2- O2 3-HP/4-HB 
(Ulas et al., 

2012) 

 

Here we present a manually curated and validated GSMM of the sulfur and hydrogen oxidizing 

thermophilic bacterium S. azorense Az-Fu1. The key metabolic capabilities were analyzed to give insights 

into the chemolithoautotrophic CO2 fixation process and to elucidate the potential of this bacterium to 

produce extracellular polymeric substances. 
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3.2 Methods 

3.2.1 Online Databases 

Different online databases were used in each stage of this work, most of them through merlin’s 

framework. The National Center for Biotechnology Information (NCBI) (NCBI Resource Coordinators, 

2018), was used to retrieve the genome sequence of S. azorense Az-Fu1 (assembly accession number 

ASM2154v1), and all genome files were imported by merlin. Universal Protein Resource Knowledgebase 

(UniProtKB) (Consortium, 2021) and BRENDA (A. Chang et al., 2021) were used to obtain enzyme 

functional information through merlin’s re-annotation pipeline, Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) (Kanehisa et al., 2016) was used to obtain reactions based on the enzyme commission 

numbers (EC numbers) of the annotated genome into merlin, and also to perform pathway analysis. 

MetaCyc (Caspi et al., 2014) and BiGG models (King et al., 2016) were used for network curation. 

ModelSEED (Seaver et al., 2021) was used for merlin’s workflow for correct reversibility of reactions. 

PSORTb 3.0 (Yu et al., 2010) was used to predict reactions compartments, while the Transporters 

Classification Database (TCDB) (Saier et al., 2021) was used to predict the model transport reactions 

through merlin’s TranSyT plug-in. 

 

3.2.2 Metabolic Model Reconstruction 

merlin (Dias et al., 2018) is a user-friendly framework that allows performing several steps of the 

reconstruction process semi-automatically, downloading relevant information from several databases (see 

section 3.2.1) and was used to assist the reconstruction of the S. azorense GSMM. Moreover, it has a 

graphical interface that facilitates GSMM information reviewing and manual curation. The main steps of 

the GSMM model reconstruction process are hereafter described. 

 

3.2.2.1 Genome Annotation 

merlin allows performing the functional annotation of a genome, using as similarity search engines 

the Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990) and Diamond (Buchfink et al., 

2021) against databases that contain reviewed (such as UniProt/Swiss-Prot) and unreviewed (such as 

UniProt/TrEMBL) enzyme information. The EC numbers and enzymatic functions assigned to each gene 
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are scored based on the taxonomy and frequency of similar sequences, as described elsewhere (Dias et 

al., 2018). The genome annotation is a crucial step of the GSMM reconstruction process, as incorrect EC 

numbers and enzymatic function assignments can significantly impact the model performance. Once the 

similarity search is complete, merlin’s automatic annotation workflow feature (Capela et al., 2021) can 

prioritize gene products and EC numbers obtained. This operation considers a list of organisms ordered 

by phylogenetic similarity provided by the user and defines a confidence level (A to I) for each gene 

annotation when a match is found. In the case of S. azorense, due to the lack of available information on 

the (closely related) organism(s) and to maximize retrieval of reviewed information, the automatic 

workflow feature was configured to use genus instead of species as input. The ranked list of the closely 

related phylogenetic genus to S. azorense is presented below (Table 3.2). The phylogenetic tree 

(Supplementary Figure 3.1) was constructed from 16S RNA sequences reference organisms of each 

genus using EMBL-EBI Clustal OMEGA multiple sequence alignment tool (Sievers et al., 2011). 

 

Table 3.2. List of phylogenetic similar organisms/genus to S. azorense given to the automatic workflow feature in merlin. 

Organism Confidence level 

Sulfurihydrogenibium azorense Az-Fu1 A 

genus Sulfurihydrogenibium B 

genus Persephonella C 

genus Aquifex  D 

genus Hydrogenobaculum E 

genus Thermus  F 

genus Thermotoga G 

genus Deinococcus H 

genus Desulfobacterium I 
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3.2.2.2 Assembling the Metabolic Network 

The assembly of a metabolic network starts with gathering all reactions present in the organism. 

merlin was used to retrieve those reactions by importing them from the KEGG database, based on the 

annotated EC numbers from the previous step, and spontaneous reactions. Reactions should also be 

balanced (generic metabolites and metabolites without formula must be curated), and reversibility must 

be confirmed to avoid mispredictions of the model. To assist these steps, merlin tools to check whether 

a reaction is balanced and to correct the reactions’ reversibility were used. Although these steps are 

automated in merlin, manual curation was performed based on curated information from literature and 

databases, such as MetaCyc (Caspi et al., 2014). 

 

Compartmentalization 

The compartmentalization of the model was based on results obtained from PSORTb 3.0 (Yu et 

al., 2010). The “Long format” report generated was imported, and merlin’s compartments feature 

assigned each reaction to its specific compartment (Capela et al., 2021). 

 

Transport Reactions 

With the model compartmentalized, transport reactions between them must be defined. merlin’s 

TranSyT (Lagoa et al., 2021) was used to generate system-specific transport reactions associated with 

Gene-Protein-Reactions (GPRs) rules that were automatically integrated into the model. 

 

Genes, proteins, and reactions 

A high-quality GSMM requires GPRs’ rules to predict genetic modifications accurately. These 

associations are usually defined according to databases and literature (Rocha et al., 2008; Thiele et al., 

2010). merlin’s “Gene-Protein-Reaction rules” feature was used to automatically add GPRs’ rules to the 

model. The algorithm used by merlin to implement these rules is described elsewhere (Dias et al., 2015). 
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3.2.2.3 Converting the Metabolic Network to a Stoichiometric Model 

Biomass equation 

Biomass composition must be experimentally determined in cells growing in the log phase before 

being included in the model. However, in the absence of organism-specific experimental information, data 

from genome information (particularly nucleotides, deoxynucleotides, and amino acids) can be used or 

adapted from phylogenetically related organisms.  

For S. azorense, little information was found in the literature regarding biomass composition. The 

macromolecular composition was adapted from the gram-negative bacterium Escherichia coli (E. coli ) 

(Feist et al., 2007). The composition of amino acids, nucleotides, and deoxynucleotides was estimated 

from S. azorense Az-Fu1 genome information through merlin’s “e-Biomass Equation” feature. This feature 

also automatically includes cofactor composition based on a study of universal essential cofactors in 

prokaryotes (Xavier et al., 2017). The fatty acids composition was adopted from the closely related 

organism Sulfurihydrogenibium subterraneum (Takai et al., 2003). The lipids composition was adapted 

from the closely related organism Hydrogenobacter thermophilus (Yoshino et al., 2001), while cell wall 

components and carbohydrates were adapted from E. coli, considering enzyme annotation to include or 

exclude specific elements. When required, new coefficients were calculated, maintaining the relative 

abundances of the original data. 

An alternative biomass equation was defined for simulations under anaerobic conditions, 

mimicking the environmental conditions where Heme is not required. Hence, this compound was 

removed from the Cofactor composition, and all other coefficients were recalculated as mentioned before. 

 

Growth and maintenance ATP requirements 

No information was found for S. azorense on growth and maintenance ATP. Therefore, such data 

was adapted from experimental data for E. coli (Feist et al., 2007; Neidhardt et al., 1990). 

 

3.2.2.4 Metabolic Model Curation and Validation  

The model curation is an iterative process that stops when simulation results match experimental 

data in the literature. merlin’s interface was used to efficiently perform re-annotations, correct reactions 
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stoichiometric balance and directionality, include or exclude reactions from the model, and finally, export 

models in Systems Biology Markup Language (SMBL) format to be used in simulation using platforms 

such as Optflux (I. Rocha et al., 2010), Matlab® or python (COBRApy (Ebrahim et al., 2013), REFRAMED 

- https://github.com/cdanielmachado/reframed) 

 

Gap-filling 

Before being ready for simulations, the metabolic network must be screened for possible gaps. The 

presence of gaps can deeply compromise the synthesis of biomass components and other relevant 

compounds. To assist in this process, merlin’s “BioISO” (Capela et al., 2021) was used to trace back the 

network to identify gaps that can be originated from errors in genome annotation, absence of enzymatic, 

transport, or exchange reactions, or incorrect reaction irreversibility or direction. Other features included 

in merlin, such “Blocked reactions”, which identifies reactions that contain dead-end metabolites, and 

“Draw in Browser” which opens on a web browser a selected KEGG pathway, showing specifically 

highlighted enzymes and reactions present in the model, were used to facilitate the detection of gaps in 

the network (Capela et al., 2021). Literature and databases (KEGG, MetaCyc, BRENDA, for instance) were 

also used to assist the gap-filling process. This is an iterative process that is repeated until all biomass 

precursors, and other essential compounds, can be synthesized, and a feasible model is obtained. 

 

Microaerobic and anaerobic metabolism 

S. azorense is a facultative chemolithoautotrophic (Nakagawa et al., 2005), microaerophilic 

bacterium (Aguiar et al., 2004). Unlike plants, cyanobacteria, and other chemolithoautotrophic 

Proteobacteria that fix CO2 through the Calvin-Benson-Bassham cycle, S. azorense metabolism was 

assessed to determine if it fixates CO2 through the rTCA, such as its closely related organism S. 

subterraneum (Hügler et al., 2007) and most of Aquificales members. Anaerobic and microaerobic 

growth (specific growth rate of 0.28 h-1) was also tested as reported in the literature (Aguiar et al., 2004; 

Nakagawa et al., 2005). EPS production (Lalonde et al., 2005) was also screened. 
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Carbon source utilization 

S. azorense can grow heterotrophically using yeast extract, bactopeptone, trypticase peptone, and 

casamino acids (Nakagawa et al., 2005). Except for casamino acids, all other medium components 

reported as carbon sources are not chemically defined; thus, only casamino acids were tested for 

heterotrophic growth. 

 

3.2.2.5 Simulations 

Software 

All simulations were performed using the python package REFRAMED, version 1.1.0, using CPLEX 

12.8.0 as a solver, through the PyCharm Integrated Development Environment (IDE). REFRAMED 

provides tools for phenotype simulation such as Flux Balance Analysis (FBA) (Varma & Palsson, 1994) 

 

Flux variability analysis 

Quantitative evaluation of the model was performed using FVA (Mahadevan et al., 2003) to 

understand S. azorense EPS production capabilities. The analysis included setting the specific growth 

rate to at least 10% of the specific growth rate obtained with pFBA (Lewis et al., 2010) in the respective 

reference flux distribution. 

 

 

3.3 Results and Discussion 

3.3.1 Genome annotation 

Assisted on the phylogenic tree developed in section 3.2.2.1 and merlin’s feature automatic 

workflow, genome re-annotation identified 774 metabolic genes (Table 3.3) out of 1657 candidates (Table 

3.5), representing 47% of the whole S. azorense Az-Fu1 genome. The complete list of genes reviewed is 

available in Supplementary Table S1. 
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Manual curation was performed and the number of genes in the model decreased to 352 (21%) 

due, for instance, to the removal of pseudo and truncated genes, incomplete EC numbers, and blocked 

reactions with encoded genes.  

 

Table 3.3. S. azorense genome annotation automatic workflow results taking into account phylogenetically related genus. 

Organism Gene count 

Sulfurihydrogenibium azorense Az-Fu1 6 

genus Sulfurihydrogenibium 101 

genus Persephonella 13 

genus Aquifex  202 

genus Hydrogenobaculum 25 

genus Thermus  21 

genus Thermotoga 5 

genus Deinococcus 12 

genus Desulfobacterium 3 

Default annotation 385 

 

The analysis of the annotation results shows the presence of bacterial cellulose synthase (Bcs) 

subunits A (BcsA – SULAZ_1378) and B (BcsB – SULAZ_1376). As described elsewhere (Lalonde et al., 

2005), S. azorense Az-Fu1 can produce sufficient amounts of EPS, whose composition is still unknown, 

under stress conditions. Hence, the presence of annotated subunits of cellulose synthase suggests that 

cellulose can be a part of S. azorense EPS. However, cellulose production is dependent not only on the 

catalytic subunits BcsA and BcsB but also on several additional BCS components and gene regulators 

(Krasteva et al., 2017; Römling, 2002). Hence, S. azorense‘s genome was screened to identify other 

cellulose operon subunits missing from the current annotation. 
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The cellulose operon has three main types (Römling et al., 2015), as shown in Figure 3.1. All 

contain the catalytic subunits BcsA (cytosol) and BcsB (periplasm). These two subunits are essential for 

in vitro cellulose production. Subunits BcsC, present in type I and II operons, and BcsK, in type III are 

involved in cellulose transport, whereas subunit BcsD is present only in type I operon and is required for 

the Bcs complex arrangement. In type II and III operons, the BcsZ subunit regulates cellulose production. 

In type II operon, subunits BcsE and bcsG are required for optimal cellulose production, and subunit 

BcsQ seems to determine the cellular localization of the respective Bcs complexes (Römling et al., 2015). 

Other Bcs subunits have already been identified, but their function has not yet been unveiled. The 

regulation of the cellulose production process has also been described (Chang et al., 2001; Romling et 

al., 2013), showing the importance of bis-(3’,5’) cyclic diguanylic acid (c-di-GMP) molecule as an allosteric 

activator of subunit BcsA. In Escherichia coli, c-di-GMP is produced by GGDEF domain proteins such as 

AdrA or YedQ, and its degradation and shut-off of cellulose biosynthesis is achieved by specific 

phosphodiesterases, such as YhjH (Monteiro et al., 2009). 

 

 

Figure 3.1. Comparison of cellulose operon types I, II, and III, respectively, (A), (B), and (C), with (D) - predicted S. azorense 
Az-Fu1 cellulose operon. Colors indicate that a match was found as a result of NCBI tblastn searches. Red – BcsA unit, Dark 
gray – BcsB unit, Dark blue – BcsZ, Green – BcsC, Yellow – BcsQ. (C) – coverage; (I) – identity. 

 

As no information was found reporting the presence of any type of cellulose operon in S. azorense, 

gene accession numbers of all known units of the different BCS types and their regulators (Supplementary 
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Table 3.1) were analyzed. This analysis involved performing BLAST searches (NCBI tblastn) against S. 

azorense Az-Fu1’s whole genome to identify the presence of BCS units and the respective BCS type, if 

possible. As a result, besides the already described presence of BcsA and BcsB, the BcsC and BcsZ units 

were found in the same order type II BCS operon, suggesting that if present, S. azorense’s cellulose 

operon will be a type II. Although all units were found to have adequate identity percentages (Figure 3.1), 

BcsB and BcsC show low coverage values. A gene sequence similar to the BcsQ unit was also found but 

not at the same position as in type II operons, which renders its identification inconclusive. Nevertheless, 

the re-annotation of genes SULAZ_1375 and SULAZ_1374 should be updated as bacterial cellulose 

synthase Z unit and bacterial cellulose synthase C unit, respectively. Regulators AdrA, YedQ, and YhjH 

were also identified with acceptable coverage and identity percentages (AdrA - C.50.3%, I. 35.2%; YedQ - 

C.42%, I.35.9%; YhjH – C.64.0%, I.28:7%). Although the main Bcs units and regulator factors were 

identified in the S. azorense Az-Fu1 genome, the bacterium's actual capability of producing cellulose must 

be in vivo experimentally assessed. 

 

3.3.2 Biomass Composition 

The biomass macromolecular composition, adapted from E. coli (Feist et al., 2007) is presented 

in Table 3.4. The detailed biomass composition is available in Supplementary Table S2. As mentioned 

before, the amino acid, deoxynucleotide, and nucleotide composition were calculated based on S. 

azorense Az-Fu1 genome’s information using the e-Biomass feature in merlin. 

This feature also automatically includes cofactor composition based on the study of universal 

essential cofactors in prokaryotes (Xavier et al., 2017). Usually, ubiquinone is included in the cofactors 

pool. However, most enzymes required for ubiquinone biosynthesis are not available in the genome 

annotation, and the defined medium (Aguiar et al., 2004) does not include ubiquinone; thus, this cofactor 

was omitted in the biomass formulation. 

The lipids composition was adapted from the phylogenetically closely related organism H. 

thermophilus (Yoshino et al., 2001). However, S. azorense Az-Fu1 does not exhibit the enzymes 

responsible for producing phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine in the 

model. Hence, these compounds were excluded from biomass composition. The coefficients of the 

remaining compounds were recalculated, maintaining the relative abundances of the original data. The 
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average fatty acid composition was adopted from S. subterraneum (Takai et al., 2003) (Supplementary 

Table S3). 

Table 3.4. Biomass macromolecular composition of the S. azorense Az-Fu1 model. 

Biomass Composition 

 g gDW-1 (%) 

Protein 53.3 

DNA 2.7 

RNA 13.6 

Lipids 2.9 

Carbohydrates 10.7 

Cell Wall 6.8 

Cofactors 10 

Total 100 

 

Cell wall and carbohydrate components were adapted from E. coli (Feist et al., 2007). Specifically 

for cell wall components, E. coli’s composition was reconciled between the KEGG reactions assigned 

through merlin’s annotation to its biosynthesis pathway (Supplementary Table S4). 

The growth-associated energy (GAM) and non-growth-associated energy (NGAM) requirements for 

S. azorense are not been experimentally determined yet. Therefore the GAM requirements of 56.64 mmol 

ATP gDW−1 h−1 were estimated according to (Thiele et al., 2010) and based on data for E.coli (Neidhardt et 

al., 1990). The NGAM requirements of 8.39 mmol ATP gDW−1 h−1 were adopted from E. coli (Feist et al., 

2007). 

 

3.3.3 Metabolic Model 

The genome-scale metabolic reconstruction of S. azorense Az-Fu1, iSS352, was generated through 

a bottom-up approach. The final reconstruction contains 352 genes, 772 reactions (62 exchange, 141 
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transport, and 25 gap-fill reactions), and 642 metabolites (Table 3.6), distributed over 70 subsystems 

and three compartments: extracellular, periplasm, and cytoplasm (Supplementary Tables S6, S7, and 

S8). The gene ratio is about 21%, a value in accordance with other published GSMMs for 

chemolithoautotrophic organisms (Supplementary Table S5), and 70% of all reactions have a GPR 

associated (Table 3.6). Reactions without GPR associations include spontaneous, exchange, outer 

membrane transport, and diffusion transport reactions of metabolites, such as CO2, water, or O2. The final 

GSMM, identified as iSS352, is included in Supplementary Material (iSS352.xml) in the SBML level 3 

version 2 format. The model was able to score over 97% on all consistency tests on the MEMOTE (Lieven 

et al., 2020) test suit. 

 

Table 3.5. S. azorense Az-Fu1 genome information 

Genome Information 

Genome length (bp) 1640877 

G+C content (%) 32.8 

No. of ORFs 1657 

 

 Table 3.6. iSS352 metabolic model information 

Metabolic Model 

Reactions 772 

Metabolites 642 

Genes 352 

Gene Rules 546 

 

 

 

3.3.4 Metabolism of S. azorense as represented in the iSS352 model  

3.3.4.1 Carbon metabolism 

Autotrophic CO2 fixation is one of the most critical biosynthetic processes in nature. The Calvin-

Benson-Bassham cycle is one of the most recognized pathways, mainly used by plants and cyanobacteria. 

Additional CO2 fixation mechanisms that motivate the scientific community to explore possible alternative 

CO2 fixation routes for reducing the human carbon footprint (Bar-Even et al., 2010; Liu et al., 2020) 

include five natural autotrophic pathways, namely the rTCA, dicarboxylate/4-hydroxybutyrate cycle, 3-

hydroxypropionate cycle, 3-hydroxypropionate/4-hydroxybutyrate, and Wood-Ljungdahl cycles. 
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Figure 3.2. Sulfurihydrogenibium azorense Az-Fu1 proposed central carbon metabolism under chemolithoautotrophic growth 
and a potential route for cellulose production. rTCA – reverse Tricarboxylic Citrate Acid cycle; PPP – Pentose Phosphate 
Pathway; EMP - Embden-Meyerhof-Parnas (EMP) glycolytic pathway. 
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As reported for the closely related organism S. subterraneum (Hügler et al., 2007) and as most 

members of the Aquificales order (Gupta et al., 2013), S. azorense Az-Fu1 seems to fix CO2 through the 

rTCA and produce all biomass components (Figure 3.2). The presence of three specific enzymes 

characterizes this fixation pathway: fumarate reductase (SULAZ_0630/R00408), ferredoxin-dependent 

2-oxoglutarate synthase (SULAZ_0641/R01197), and ATP-citrate lyase (SULAZ_0527/R00352), all 

present in the S. azorense Az-Fu1 genome. Other CO2 fixation pathways have been screened. However, 

several vital enzymes were missing from the organism’s genome. Moreover, given the fact that S. 

azorense Az-Fu1 is a thermophilic organism that grows under microaerobic conditions, which is an energy-

limiting environment, it makes sense that the rTCA cycle is the preferred route of CO2 fixation for this 

organism. Compared to the Calvin-Benson-Bassham cycle, the rTCA cycle requires significantly less 

energy as ATP and fewer reducing equivalents to synthesize a three-carbon unit (Dahl et al., 2008). 

Surprisingly, S. azorense has a reduced central carbon metabolism, lacking all the oxidative part of the 

Pentose Phosphate Pathway (PPP) and the enzyme fructose-bisphosphate aldolase, originating an 

incomplete Embden-Meyerhof-Parnas (EMP) glycolytic pathway (Figure 3.2). 

Initially described as an obligate chemolithoautotroph (Aguiar et al., 2004), able to use a variety of 

electron donors and acceptors, S. azorense Az-Fu1 was later considered a bacterium with the ability to 

grow heterotrophically in yeast extract, bactopeptone, trypticase peptone, and casamino acids (Nakagawa 

et al., 2005). In fact, amino acid transporters were predicted to be present in S. azorense Az-Fu1’s 

genome, suggesting these as the only carbon source besides CO2. Moreover, no sugar transporters other 

than cellulose were predicted in this work. As mentioned in section 3.2.2.1, S. azorense Az-Fu1 has the 

main cellulose biosynthesis operon subunits and respective regulators in its genome, suggesting that 

cellulose production seems metabolically plausible. 

 

3.3.4.2 Sulfur metabolism 

As a sulfur-oxidizing bacterium, the study of S. azorense Az-Fu1 sulfur metabolism is of significant 

interest. Sulfur chemolithotrophy is regarded as the earliest self-sustaining metabolism, as it is found in 

several extremophiles of the deepest phylogenetic branches of Archaea and Bacteria (Ghosh et al., 2009). 

In fact, sulfur occurs in nature in oxidation states ranging from +2 to -6, and is thus used by prokaryotes 

to build cell constituents and as an energy source (Dahl et al., 2008). Over the last years, several studies 

have attempted to identify the sulfur-oxidizing pathways. Neutrophilic sulfur-oxidizing bacteria, such as S. 
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azorense, seem to use two pathways for sulfur oxidation: the multienzyme complex catalyzing the 

complete oxidation of reduced sulfur compound to sulfate (Sox pathway) and a pathway having sulfite 

and sulfur as important intermediates (via sulfide:quinone reductase) (Friedrich et al., 2001). According 

to the annotation, S. azorense Az-Fu1 seems to have the Sox enzyme system. This system is present in 

the periplasm and is responsible for the oxidation of thiosulfate to sulfate. When other sulfur sources are 

used a first step of conversion into thiosulfate is needed. The Sox gene cluster soxXYZABCD encodes four 

periplasmic proteins, SoxXA, SoxYZ, SoxB, and Sox(CD)2 (sulfur dehydrogenase). In S. azorense Az-Fu1 

the protein Sox(CD)2 is absent, indicating that this bacterium is likely to have a truncated Sox system, 

similar to the closely related organism Aquifex aeolicus (Friedrich et al., 2005). 

 

 

Figure 3.3. Sulfurihydrogenibium azorense Az-Fu1 proposed sulfur metabolism through a truncated sulfur-oxidizing (Sox) 
system. Here elemental sulfur is being used as the main sulfur source. The proposed process is similar when hydrogen sulfide, 
sulfite, or thiosulfate are used as a sulfur source. 

 

Studies in the purple sulfur bacterium Allochromatium vinosum, which also has a truncated Sox 

system lacking Sox(CD)2, indicate that elemental sulfur is produced from thiosulfate throughout the sulfur-

oxidizing process and transferred to the cytoplasm (Figure 3.3) or growing sulfur globules. The 

mechanism for this process is still unresolved, although it may involve a rhodanese-like enzyme (SoxL) 

(Dahl & Friedrich, 2008). The truncated Sox enzyme system is less energy efficient once it yields only two 
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mol electrons per mol of thiosulfate while eight mol are yielded in the complete Sox system (Figure 3.3). 

As there is no report in literature corroborating the production or accumulation of sulfur globules by S. 

azorense Az-Fu1, the elemental sulfur produced in the periplasm by the truncated Sox system was 

modeled as being transferred to the cytoplasm.  

 

3.3.5 Model Validation 

3.3.5.1 Environmental conditions 

The validation of the model involved using a minimal medium for each condition: 

chemolithoautotrophic (Aguiar et al., 2004) and heterotrophic growth (Nakagawa et al., 2005), both under 

microaerophilic and anaerobic conditions (Table 3.7). 

 

Table 3.7. Minimal medium composition for each condition tested: chemolithoautotrophic and heterotrophic growth. Oxygen 
and Ferrous iron (highlighted in grey) were only supplied under microaerophilic conditions. 

Chemolithoautotrophic 

Component 
Uptake value 
(mmol gDW

-1 h-1) 

CO2 12 

Sulfur 1000 

Fe2+ 1000 

Ammonia 1000 

O2 2 

H3PO4
- 1000 

H2O 1000 
 

 

Heterotrophic 

Component Uptake value 
(mmol gDW

-1 h-1) 

Casamino Acids 0.6 

Sulfur 1000 

Fe2+ 1000 

Ammonia 1000 

O2 2 

H3PO4
- 1000 

H2O 1000 

 

Heterotrophic growth was tested for casamino acids, the only chemically defined carbon source 

described in the literature. All medium components were allowed to enter the system unconstrained, 

except for carbon sources and oxygen, at microaerobic conditions. Two different biomass equations were 

included in the model to better evaluate growth under microaerobic and anaerobic conditions, as 

mentioned above. These reactions, “R_Biomass__cytop” and “R_Biomass_anaerobic__cytop”, differ in 
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the presence or absence of heme in the Cofactor composition respectively. Oxygen (O2) and ferrous iron 

(Fe2+) were supplied under microaerophilic conditions. Growth using different electron donors and 

acceptors was also tested. Unless otherwise stated, the uptake rate value for these compounds was set 

to the maximum of 5 mmol gDW
-1 h-1. 

 

3.3.5.2 Modeling simulations 

The validation process of the iSS352 model involved comparing simulation results to the works of 

(Aguiar et al., 2004) and (Nakagawa et al., 2005). Due to the lack of quantitative data, most assessments 

were performed qualitatively (Table 3.8). 

 

Table 3.8. iSS352 model validation against experimental conditions from literature. 

Growth condition 
 

Predicted growth rate 
(h-1) 

Observed growth rate 
(h-1) 

Carbon source   

CO2 (microaerophilic) 0.2651 0.281 

Casamino acids (microaerophilic) 0.6734 Growth 

Energetic metabolism   

CO2 + Thiosulfate + Fe3+ 0.1266 Growth 

CO2 + Fe2+ + Oxygen No growth Growth 

CO2 + Hydrogen + Sulfur 0.2532 Growth 

CO2 + Hydrogen + Sulfite 0.06336 Growth 

CO2 + Sulfite + Oxygen 0.06147 Growth 

1 Converted from doubling time [h-1] (Aguiar et al., 2004). 

 

The specific growth rate of 0.28 h-1 for S. azorense Az-Fu1 under chemolithoautotrophic and 

microaerophilic conditions was measured by Aguiar (2004). Simulations using the iSS352 model yielded 

0.26 h-1 and predicted the production of sulfate when elemental sulfur was added to the medium, as 

reported by Nakagawa (2005) (Supplementary Table 3.2). No other byproducts were predicted, which 

was expected as no information was found in the literature on the production of other metabolites. The 
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model agrees with the report from Nakagawa (2005), which determines that S. azorense Az-Fu1 can grow 

using casamino acids as carbon sources under microaerophilic and anaerobic conditions (Supplementary 

Table 3.3). 

The energetic metabolism was also evaluated using the different electron donors and acceptors 

reported in the literature (Aguiar et al., 2004). Simulations predicted that elemental sulfur enhances 

growth under hydrogen oxidizing conditions, as reported for the Hydrogenobacter genus (Bonjour et al., 

1986) and low growth rates were obtained when the pairs hydrogen + sulfite and sulfite + oxygen were 

used as electron donors and acceptors (Table 3.8). Growth was not predicted using ferrous iron and 

oxygen as electron donors and acceptors, respectively, while, under these conditions, the observed 

experimental growth was acknowledged to be very low (Aguiar et al., 2004). 

 

Analysis of the potential for EPS production  

As already stated, S. azorense Az-Fu1 can produce chemolithoautotrophically EPS under stress 

conditions (Lalonde et al., 2005). Although no information about EPS composition was found in the 

literature, genome annotation analysis suggests that this EPS can have in its composition cellulose (see 

section 3.3.1). Bacterial cellulose operons and production have been extensively studied (Römling, 2002; 

Kawano et al., 2011; Romling et al., 2013; Römling et al., 2015; Cacicedo et al., 2016; Hernández-

Arriaga et al., 2019; Blanco et al., 2020) due to its unique characteristics and applicability. However, its 

production by a thermophilic organism has not been yet described. For this reason, allied to the fact that 

this production can be made chemolithoautotrophically, this discovery is of significant interest. 

In order to better understand the metabolic capabilities of cellulose production under 

chemolithoautotrophic conditions, a metabolic engineering optimization supported by evolutionary 

algorithms was performed. The optimization process did not return any reaction or gene knock-out 

solution robust enough to increase cellulose production. An FVA analysis was then performed to 

understand the model solution space regarding cellulose production in different stress conditions 

(nitrogen, sulfur, and iron limitation conditions) (Table 3.9). 

For each condition, the total consumption of the carbon source was imposed, and the specific 

growth rate was set to at least 10% of the specific growth rate obtained with pFBA simulation under 

chemolithoautotrophic conditions. Results showed that the highest value of cellulose production was 
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achieved at nitrogen limitation conditions. However, none of the tested conditions revealed a mandatory 

cellulose production coupled with biomass.  

 

Table 3.9. FVA analysis of iSS352 model cellulose production capabilities. Total consumption of the carbon source was 
imposed, and the specific growth rate was set to at least 10% of the specific growth rate obtained with pFBA simulation under 
chemolithoautotrophic conditions. Uptake values are represented as negative and production values are presented as positive 
values. 

Compound 
Carbon  

Limitation 
Nitrogen  

Limitation 
Sulfur 

Limitation 
Iron 

Limitation 

CO2 

(mmol gDW
-1 h-1) 

-12.00 -12.00 -12.00 -12.00 

Cellulose 
(mmol gDW

-1 h-1) 
[0.0, 0.4500] [0.0, 0.4950] [0.0, 0.4189] [0.0, 0.4500] 

µ (10%) 
(h-1) 

0.2650 0.02650 0.02650 0.02650 

 

When nitrogen limitation conditions were imposed on a pFBA analysis, the byproducts of the 

simulation predicted the secretion of acetate and/or bicarbonate (Table 3.10). Since no information was 

found in the literature on the production of side carbon components, the secretion of these metabolites 

was constrained. Cellulose was then predicted to be excreted in nitrogen-limited conditions when the flux 

of bicarbonate was restricted and almost reached the maximum production value when no bicarbonate 

was allowed to be produced. These results show the metabolic capability of S. azorense Az-Fu1 to produce 

cellulose under nitrogen-limiting conditions (stress). Nevertheless, these results should be experimentally 

validated. 

 

Table 3.10. iSS352 prediction of byproduct production under N-limiting conditions and restriction of bicarbonate production. 

Byproduct Production under N-limiting Conditions 

(mmol gDW
-1 h-1) 

HCO3
- restriction 100% 50% 0% 

Bicarbonate 0.000 5.400 10.80 

Acetate 0.001983 0.001983 0.000 

Cellulose 0.4499 0.2249 0.000 
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3.4 Conclusions 

The main objective of this study was to reconstruct the first GSMM of the chemolithoautotrophic 

organism S. azorense Az-Fu1 to have insights into its metabolism, genetic adaptation to extreme 

environments, and to be capable of predicting and optimizing the production of relevant compounds with 

industrial interest. S. azorense Az-Fu1 genome annotation and metabolic analysis revealed the CO2 fixation 

route being the rTCA, as for the majority of Aquificales members (Hügler & Sievert, 2010), and also 

incomplete PPP and EMP pathways. Sulfur metabolism was analyzed as well and the S. azorense Az-Fu1 

genome showed the presence of a truncated Sox system, able to oxidize elemental sulfur, thiosulfate, 

and sulfite to sulfate, as indicated in literature (Aguiar et al., 2004). 

iSS352 performed well on all studies to validate carbon source utilization under microaerophilic 

and anaerobic conditions, as well as on electron donor and acceptor utilization. The capability of S. 

azorense Az-Fu1 to use different electron donors and acceptors was validated by GSMM simulations and 

highlighted its metabolic versability as being capable of adapting to highly dynamic environmental 

conditions, such as extreme environments. 

Further analysis of S. azorense Az-Fu1 genome functional annotation also revealed the presence 

of the main subunits of the bacterial cellulose operon and their regulators and the GSMM simulations 

showed the organism's metabolic capability to produce cellulose under nitrogen-limiting conditions. Some 

studies (Lalonde et al., 2005) have shown that S. azorense Az-Fu1 produces sufficient amounts of 

exopolysaccharides under stress conditions, although experimental validation must be performed to 

confirm whether cellulose production is naturally viable.  

The lack of experimental quantitative data limits the spectrum of application of this model. 

However, given that S. azorense Az-Fu1 was identified within a natural microbial community (Sahm et al., 

2013), and the fact that iSS352 is the first curated model for this species, it will be pivotal to study the 

organism's metabolic role in the microbial community, as well as using the huge potential of microbial 

community design in industrial biotechnology and discovery of new extremophilic enzymes. 
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3.5 Supplementary Material 

 

Additional file in SBML format: iSS352.xml 

Link: DesignOptimizationMicrobialCommunities/models/ 

 

Additional file in Excel format: Chapter3_Supplementary_Material.xlsx 

Link: DesignOptimizationMicrobialCommunities/Data 

 

Table S1 Annotation of the genes present in S. azorense Az-Fu1 model 

Table S2 Biomass composition in mmol of molecules per gram of biomass. Molecular weight in 

green background cells was calculated using the fatty-acyl Coa as the R group in lipids. Amino acid's 

molecular weight does not include a water molecule. Nucleotides' molecular weight does not include 

diphosphate molecules. 

Table S3 Average lipid and fatty acid compositions. 

Table S4 Cell wall composition. 

Table S5 Genes included in the model 

Table S6 Reactions included in the model, including Gene-Protein-Reaction associations. 

Table S7 Metabolites included in the model 

 

  

mailto:https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/models
https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/Data
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Supplementary Figure 3.1. Phylogenetic tree of Sulfurihydrogenibium azorense related genus. This tree was built using 
the EMBL-EBI Clustal OMEGA multiple sequence alignment tool. Numbers in front of each genus represent the branch lengths 
to each node generated automatically by the tool using the Neighbour-joining method. 

 

 

Supplementary Table 3.1. Cellulose operon units for each main type and respective gene accession numbers. 

 

 

 

 

 

 

 
Gene 

 

Type I 
Komagataeibacter xylinus 

Type II 
Escherichia coli 

Type III 
Methylobacterium extorquens  

bcsA / YhjO AAA21884.1 NP_417990.4 WP_080518407.1 
bscB / YhjN AAA21885.1 NP_417989.1 WP_012252997.1 
bcsC/ YhjL AAA21886.1 YP_026226.4 --------- 

bcsD AAA21887.1 --------- --------- 
bcsQ/ YhjQ --------- WP_011310329.1 --------- 
bcsZ / YhjM --------- NP_417988.1 WP_012252998.1 
bcsE/ YhjS --------- NP_417993.1 --------- 
bcsF/ YhjT --------- NP_417994.2 --------- 
bcsG/ YhjU --------- NP_417995.1 --------- 
bcsR/ YhjR --------- NP_417992.1 --------- 
bcsH/ CcpA AAA16970.1 --------- --------- 

bcsK --------- --------- WP_012252999.1 
bcsN --------- --------- WP_012253000.1 
bcsS --------- --------- WP_003606498.1 
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Supplementary Table 3.2. Simulation results under chemolithoautotrophic and microaerophilic conditions. 

Simulation Results 

Specific growth rate (µ): 0.2636 h-1 

Consumption Production 

Metabolite  Uptake Value 
(mmol gDW

-1 h-1) 
Metabolite  Production Value 

(mmol gDW
-1 h-1) 

CO2 12.00 Sulfate 12.23 

H2O 4.286   

Sulfur 12.27   

Fe2+ 0.004437   

Ammonia 2.674   

O2 9.518   

H3PO4
- 18.90   

    
 

 

Supplementary Table 3.3. Simulation results under mixotrophic and anaerobic conditions. 

Simulation Results 

Specific growth rate (µ): 0.1069 h-1 

Consumption Production 

Metabolite Uptake Value 
(mmol gDW

-1 h-1) 
Metabolite Production Value 

(mmol gDW
-1 h-1) 

Amino Acids < 0.1 H+ 4.190 

Sulfur 0.001790 H2O 1.660 

Fe2+ 0.001790 Ammonia 0.4677 

H3PO4
- 0.1106   
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Chapter 4 

Chapter 4 Microbial Community Simulation Methods 

 

“The lone wolf dies but the pack survives.” 

George R. R. Martin 

 

 

Microbial communities directly affect surrounding environments and are an important part of all 

biological processes. Thus, the study of microbial communities’ behavior and composition has been 

proven to be useful in areas such as biotechnology, environmental, and human health. However, the 

overall understanding of microbial communities’ interactions and dynamics remains a challenge. 

Synergies between computational methods and genome-scale metabolic models have been 

explored in the last years, as a way to unravel community interactions and behavior, as demonstrated by 

the numerous simulation methods developed for application in the context of microbial communities. 

Here, different steady-state simulation methods applied to microbial communities have been used 

to model the well-established nitrification bioprocess catalyzed by Nitrosomonas euroapaea and 

Nitrobacter vulgaris. The different methods' performances were compared to assess which method(s) 

should be used in a specific community-level context. 

The available simulation methods, with application to microbial communities, revealed good 

phenotypic behavior predictions. Each of the simulation methods exhibited strengths and weaknesses. 

Hence, to better predict the communities’ behavior, it is recommended the use of various simulation 

methods, whenever possible.  
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4.1 Introduction 

During the last decades, genome-scale metabolic models (GSMMs) have proven to be a valuable tool 

in Systems Biology, with outstanding biotechnological applications (Gu et al., 2019), predicting cellular 

behavior under different genetic and environmental conditions (Woolston et al., 2013), and reducing time 

and costs implicated in experimental tasks. In the last decade, the development of high-throughput 

techniques and the scientific desire to understand microbial communities’ behavior and capabilities, 

through computational and mathematical modeling approaches, turned communities’ GSMMs into the 

new frontier in the field. The emergence of numerous simulation methods developed to be applied in a 

microbial community context (Colarusso et al., 2021), with proven applicability in industrial, 

environmental biotechnology, and human health environments (García-Jiménez et al., 2021) support this 

claim. The currently available simulation methods, developed to perform simulations with microbial 

communities GSMMs, can be classified as steady-state, time-course, and spatial-temporal (Figure 4.1). 

Steady-state methods allow for predicting individual growth rates and cross-feeding interactions in 

a situation of community equilibrium. These methods are based on the well-established Flux Balance 

Analysis (FBA) (Varma et al., 1994) method for individual species. This constraint-based approach is 

usually applied to biochemical networks, allowing the prediction of biological phenotypes. The steady-

state reaction flux distribution in a network is determined by Linear optimization of biologically and 

ecologically meaningful objective(s) function(s), subject to a set of underlying constraints (Raman et al., 

2009). However, these methods are characterized by a large uncertainty in the space of optimal solutions. 

Time-course methods, based on dynamic flux balance analysis (dFBA) (Mahadevan et al., 2002), 

account for the temporal variation in metabolite concentrations and species abundance, allowing for 

simulation of the response to changes over initial conditions and other environmental perturbations. 

However, this approach requires the characterization of the substrate uptake kinetics for consumed 

metabolites (either from the growth medium or through cross-feeding). The impractical nature of such a 

massive in vitro characterization results in the adoption of default parameter values for all species and 

compounds, which limits the predictive ability of these methods. 
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Figure 4.1 Summary of the main features of the current simulation methods with application to microbial communities. 

 

Spatiotemporal methods add a spatial component to the temporal one. These methods are especially 

relevant in situations of non-heterogeneous or spatially segregated environments such as biofilm colonies 

or the tract along the human gut, where nutrient diffusion and access to resources play a role in 

community assembly and potential for cross-feeding interactions. In addition to the parameters on uptake 

kinetics mentioned before, these methods also require the specification of diffusion rates for cells and 

metabolites. 

Besides having common grounds, as all are based on the FBA method for single organisms, these 

methods differ in the number and kind of inputs needed and have different levels of simulation detail and 
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objective functions. Hence, each method can produce a variety of output information, enabling the 

handling of microbial communities’ GSMMs under a wide range of different applications. However, the 

increasing level of simulation detail simultaneously requires more experimental data for model setup and, 

naturally, more computational power, which is only possible for small communities composed of well-

characterized microorganisms.  

Steady-state simulation methods benefit from not requiring parameterization, thus being scalable 

for large microbial communities. Also, they are compatible with flux variability analysis (FVA) 

(Gudmundsson et al., 2010), flux coupling analysis (David et al., 2011), and random flux sampling 

(Schellenberger et al., 2009). Hence, developing steady-state methods for the analysis of microbial 

communities (Figure 4.2) (Colarusso et al., 2021) has been the main focus of research. Having a great 

variety of methods, the most difficult task is understanding which method(s) should be applied in a 

specific context, considering available experimental data, microbial community complexity, and particular 

final purpose(s). Understanding the differentiating features allows selecting the best strategy for a specific 

microbial community. 

 

Figure 4.2. Lineage of steady-state simulation methods with application to microbial communities. Each branch of the tree 
represents different simulation method assumptions. 
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Here, a systematic analysis of the performance of the most used steady-state simulation tools for 

predicting microbial communities’ behavior is presented. This analysis will cover key features that allow 

properly selecting the best method, that fits not only the purpose of the analysis but also available 

experimental data. For that, the most promising simulation methods have been installed and applied to 

the well-known case of the biological nitrification process catalyzed by the symbiotic interaction between 

Nitrosomonas europaea and Nitrobacter vulgaris (Ilgrande et al., 2018). The GSMMs for these bacteria 

have been reconstructed and manually curated with experimental data within our research group (Cruz, 

2018; Raposo, 2017). 

 

4.1.1 Current state of steady-state simulation methods with application to microbial 

communities 

A brief description of the current steady-state simulation methods used in a microbial community 

context is presented hereafter, highlighting the main features of each one. 

 

Flux Balance Analysis 

Although its formulation was developed for predicting the phenotypic behavior of single organisms, 

Stolyar et al pioneered the use of FBA to simulate the behavior of microbial communities, namely in 

studying a community of two methanogenic species (Stolyar et al., 2007). The steady-state model must 

be created before the FBA simulation by merging the stoichiometric matrices of any number of individual 

organisms. FBA can determine steady-state flux distribution throughout the community network, restricted 

to a defined medium and corresponding uptake rates of the exchanged metabolites. Hence, by analyzing 

flux distribution across the network, community, and individual growth rates, as well as cross-feeding 

interactions in the community can be easily established. Although the definition of an objective function 

for microbial communities is still ambiguous, FBA and the variant parsimonious enzyme-usage flux 

balance analysis (pFBA) (Lewis et al., 2010) have been successfully used using growth maximization of 

the entire microbial community as the objective function. Examples of applications include understanding 

microbe-microbe and host-microbe interactions (Bordbar et al., 2010; Heinken et al., 2013) and the 

production of biocompounds in diverse settings, such as the production of vitamin C (Ye et al., 2014) or 

1,3-propanediol (Bizukojc et al., 2010). 
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FBA can be used under diverse platforms, such as MATLAB® through the COBRA toolbox (Heirendt 

et al., 2019), the python packages COBRApy (Ebrahim et al., 2013) and REFRAMED, or user-friendly 

frameworks such as Optflux (I. Rocha et al., 2010) or KBase (Arkin et al., 2018). 

 

OptCom 

OptCom (Zomorrodi et al., 2012) is an FBA framework that relies on a bi-level optimization 

structure. The inner level maximizes the growth of individual organisms, while the outer level maximizes 

total community fitness. The underlying assumption is that the community will optimize the usage of 

available resources while not compromising the individualistic objectives of its members. If more 

constraints are provided, OptCom is also able to compute cases where organisms do not present their 

maximum individual growth, exhibiting cooperative behavior instead. This approach can use any number 

of GSMMs and returns strain ratio, substrate uptakes, and secretion rates showing applicability in inferring 

the syntrophic association through hydrogen between Desulfovibrio vulgaris and Methanococcus 

maripaludis (Zomorrodi et al., 2012) and the production of butyrate for cancer prevention (El-Semman et 

al., 2014). OptCom has been implemented in the COBRA toolbox (Heirendt et al., 2019) and integrated 

into the MICOM Python framework (Diener et al., 2020). 

 

cFBA 

Community Flux Balance Analysis (cFBA) (Khandelwal et al., 2013) is a computational method 

whose primary focus is elucidating the metabolic capabilities of a community and understanding 

metabolic interactions. This approach is a direct translation of FBA to microbial communities requiring 

balanced growth and postulating a single objective. Balanced growth implies that the entire community 

is in steady-state and thereby all metabolites (intra- and extracellular) are at a steady-state level as well. 

Although the problem definition of cFBA is non-linear, when biomass fractions are considered a 

variable, by fixing the individual biomass values, a linear programming problem arises, thus providing a 

result that identifies the optimal specific flux values. Notice that the community growth rate may not 

match the maximum growth rate of any individual organism. However, when considering a mutualistic 

interaction between growing organisms, to preserve the cross-feeding metabolites production and 

consumption rates equilibrium, organisms must grow at an equal pace. Along with the abundance of all 
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species present in the community, cFBA predicts fluxes distribution, growth rates, and exchange fluxes 

between the microbes and the environment. Hence, the GSMMs of the organisms present in the 

community must be merged before simulation. The cFBA method is applied essentially to microbial 

communities exposed to constant environmental conditions, such as the ones involved in bioremediation, 

wastewater treatment, or in laboratory settings. 

 

SMETANA 

Species Metabolic Interaction Analysis (SMETANA) (Zelezniak et al., 2015), a Python-based 

command line tool, uses mixed-integer linear programming to estimate the interaction potential of the 

species in a microbial community and returns the probability of inter-species metabolite exchange 

capacity. SMETANA can be applied with few microbial community information, such as species identity 

and genome sequence. GSMMs for each species are automatically reconstructed and assembled into a 

community model. This step can be ignored if GSMMs of all species in the community are available. 

SMETANA calculates two scores to predict the species’ interaction potential: the Metabolic 

Resource Overlap (MRO) and the Metabolic Interaction Potential (MIP). The MRO is an intrinsic property 

of any community and is defined by the maximum possible overlap between the minimal nutritional 

requirements of all member species. MIP represents the tendency of community members to exchange 

metabolites and is given by the maximum number of essential nutritional components that a community 

can provide for itself, through the interspecies metabolic exchange. Thus, the higher its value, the higher 

the probability of community members benefiting from metabolite production from other members. MRO 

and MIP represent opposite circumstances. While the first indicates the predisposition to competition 

between the organisms, as both require the same metabolite(s) from the environment, MIP represents 

the tendency of the community’s organisms to rely on each other, not being able to grow on their own. 

SMETANA calculates three other scores to predict potential inter-species interactions, Species 

Coupling Score (SCS), Metabolic Uptake Score (MUS), and Metabolite Production Score (MPS). The SCS 

score measures the growing dependence of species A in the presence of species B, whereas the MUS 

score measures the growing dependence of species A in the presence of metabolite m, provided by the 

other members of the community. MPS is a binary score that reflects the ability of a given species to 

produce metabolite m. Finally, the SMETANA score that evaluates the growth dependency of species A 

on metabolite m produced by species B is calculated as a product of the scores SCS, MUS, and MPS. 
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SMETANA has been successfully applied to communities composed of a high number of species, 

spanning habitats as diverse as soil, water, and human gut (Machado et al., 2021; Zelezniak et al., 2015; 

Zorrilla et al., 2021) as well as in a three-species stable synthetic community, with nitrogen overflow 

capabilities (Ponomarova et al., 2017). 

 

OptDeg 

OptDeg (Koch et al., 2016), uses as input a community model for predicting growth and flux rates. 

This approach applies the previously described concept of balanced growth, in which all organisms in the 

community grow at the same growth rate. For predicting the community composition, a hierarchical 

optimization approach that consists of two objective functions is employed. Firstly, the maximization of 

the community’s growth rate is optimized, followed by the maximization of each organism's growth rate 

under optimal utilization of substrates, which is defined by the authors, as biomass yield. For the 

quantification of the overall biomass yield, an optimality degree constant (OptDeg) was introduced. This 

constant is calculated as the quotient of the maximal community growth rate and the individual minimal 

expected growth rate if the organism uses its substrates optimally. Thus, for OptDeg = 1, all the 

community species grow at the maximum specific growth rate and maximum biomass yields. OptDeg 

has been implemented in CellNetAnalyzer, a MATLAB package for structural and functional analysis of 

metabolic and signaling networks (Klamt et al., 2007). 

 

SteadyCom 

SteadyCom (Chan et al., 2017) is an FBA-based method that predicts the metabolic flux distribution 

and relative abundance of each species in a community, assuring that a steady state is imposed. The 

novelty of this implementation relies on the imposition of a time-average constant growth rate to ensure 

the co-existence and stability of all members of the community. For instance, when a single organism 

is considered, the biomass flux is normalized by the organism’s rates of consumption or production. 

However, when multiple organisms are growing, there is not a constant growth rate for all microbes. 

Therefore, the fastest-growing organism can outgrow the rest of the community members. To avoid 

such situations, SteadyCom imposes a steady-state condition, that includes a restriction to force zero 

flux through an organism with zero abundance. As the sub-problems to be solved are independent of 
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the number of organisms in the community, SteadyCom is highly scalable for large microbial 

communities, for instance predicting the varying gut microbiota composition (Chan et al., 2019). This 

algorithm is available in the COBRA toolbox (Heirendt et al., 2019) and the REFRAMED Python 

package. 

 

MO-FBA 

Multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA) 

(Budinich et al., 2017), analyze microbial communities by merging individual GSMMs in a 

compartmentalized community GSMM. Unlike OptCom, which relies on the maximization of the 

community growth or cFBA that assumes individual balanced growth, MO-FBA describes all optimal 

solutions, for each strain in the ecosystem, in the sense of the Pareto optimality (Nagrath et al., 2007). 

Therefore, all solutions can be comprised of system objectives for microbial communities, not requiring 

complementary restrictions, and maintaining the set of constraints linear, allowing the study of large 

natural ecosystems. Hence, optimal total growth can be achieved when all members of a community 

grow below their theoretical maximum individual rates, as when one of the microbial community members 

decreases its growth rate, more resources are available for other members. The use of the newly available 

resources can increase the value of the objective functions of the other guilds, increasing the global growth 

rate. 

This tool has a mixed MATLAB and Python implementation and uses BENSOLVE (Löhne & Weißing, 

2017) solver to compute a set of directions and points describing the image of the efficient points. 

 

RedCOM 

RedCom (Koch et al., 2019), such as SteadyCom, imposes a fixed community growth rate to a 

known constant value, ensuring that the optimization process is linear. The uniqueness of this approach 

relies on creating a reduced model of the microbial community, performed by calculating elementary flux 

vectors (EFVs), which are mandatory to consider constraints such as flux bounds and maintenance 

coefficients. Individual GSMMs are reduced by eliminating reactions irrelevant to the individual organism’s 

growth. If the single organisms’ exchange fluxes in the community models overcome an imposed 

minimality criterion, the solutions are discarded, and the respective reactions are removed. As the created 
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models are smaller, smaller ranges of feasible community compositions and exchange fluxes are 

calculated, ensuring that unrealistic solutions in the community model are excluded. 

 

MICOM 

MICOM (microbial communities) (Diener et al., 2020) has been developed as a COBRApy Python 

package (Ebrahim et al., 2013). MICOM’s mathematical formulation considers two different 

classifications for growth rates: individual growth rates, which estimate the growth rate of a single 

organism, and community growth rates, which represent the growth of the entire community. Unlike 

OptCom and SteadyCom, MICOM does not assume that all taxa in a community grow at the same rate, 

requiring taxa abundances as input. To represent the community, a particular abundance for each 

organism (in gDW) is considered and each organism is allocated to an external compartment that represents 

the community environment. Given a particular abundance of an organism, a sub-model in the whole 

community, MICOM scales the whole community’s internal exchange fluxes to the respective organism 

abundance. 

 

4.1.2 Case study: Nitrification bioprocess by Nitrosomonas europaea and Nitrobacter 

vulgaris 

The two-step nitrification process (Figure 4.3) can be accomplished by chemolithoautotrophic 

bacteria. In the first moment ammonia (NH3) is oxidized to nitrite (NO2
-) by ammonia-oxidizing bacteria, 

such as Nitrosomonas europaea, and NO2
- is subsequently oxidized to NO3

- by nitrite-oxidizing bacteria 

(NOB) (Fowler et al., 2013). 

The known AOB and NOB representatives are elements of Nitrosomonas spp. and Nitrobacter spp., 

respectively (Bagchi, Biswas, & Nandy, 2012). Indeed, some experimental (Grunditz et al., 2001) and 

modeling (Mellbye et al., 2018; Perez-Garcia et al., 2016) approaches have been pursued to understand 

the interaction of AOB and NOB organisms and their role in the nitrification process. As the role of each 

organism is well-established and, to a certain extent, validated, the GSMMs of N. europaea and N. vulgaris 

will be used to assess the abovementioned simulation methods with application to microbial communities. 
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Figure 4.3. Know interactions during the nitrification process catalyzed by the bacteria Nitrosomonas europaea and 
Nitrobacter vulgaris. In the first step, Nitrosomonas europaea consumes NH3

+ and excretes NO2
- that is, in the second step 

consumed by Nitrobacter vulgaris which excretes nitrogen in the form of NO3
-. 

 

4.2 Methods 

4.2.1 Genome-scale metabolic models 

GSMMs for both N. europaea and N. vulgaris were previously reconstructed and manually curated 

using experimental data (R. Cruz, 2018; Raposo et al., 2017). Steady-state simulation methods with 

application to microbial communities were used to predict growth and flux rates, community composition, 

and predict known and possible interactions. 

 

4.2.2 Simulations 

All steady-state simulation methods used in this assessment, as well as related information and 

main features, are summarized in Table 4.1. 

Most methods are implemented in various platforms, such as Matlab® or Python. For consistency, 

all simulation methods were applied using their Python (version 3.6) implementation and CPLEX v12.8 

(academic license) as the solver, under the PyCharm (Educational License) integrated development 

environment. Although FBA, and its variant pFBA, were not originally developed to simulate microbial 

communities, its successful application to various community case studies motivated its inclusion in this 

study. 
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Table 4.1. List of tools used for analyzing microbial community models and their main features. All tools were run under 
their Python implementation. 

Method Framework Output Method 
Implementation 

Assumptions References 

FBA 

(pFBA) 
REFRAMED 

Flux and 
Growth 

rates 

FBA with 
maximization of the 

total community 
rate 

Equal individual 
growth rate 

(Varma et al., 
1994) 

OptCom MICOM 
Flux and 
Growth 

rates 

Bilevel FBA with 
community-level 
multi-objective 

function 

Fixed 
community 
growth rate 

(Zomorrodi 
et al., 2012) 

SMETANA command line 
Probability 

of 
Interactions 

Iterated mixed 
integer linear 
problem with 

alternative solutions 

Growth coupling 
induced by 

medium 
minimization 

(Zelezniak et 
al., 2015) 

SteadyCom REFRAMED 
Flux rates 

and Biomass 
ratios 

FBA iterated with an 
outer loop to find the 

maximum growth 
rate 

Fixed 
community 
growth rate 

(Chan et al., 
2017) 

MICOM MICOM 

Flux and 
Growth 
rates; 

Interactions; 

Community 
Composition 

Maximization of the 
community growth 

rate and 
minimization of the 
sum of squares of 
individual growth 

rates at a fraction of 
the maximum 

community growth 
rate 

Different 
individual growth 

rate 

(taxa 
abundancies 
required as 

input) 

(Diener et al., 
2020) 

 

 A few of the tools described above exhibited problems associated with installation or execution 

rendering their evaluation infeasible. Although having been published, OptDeg and RedCom were not 

available for download. Likewise, OptCom’s Matlab® implementation was also not available, thus the 

Python implementation in MICOM’s framework was used. The cFBA method, which requires Python 2, 

exhibited compatibility issues and was consequently excluded from the assessment. Finally, the MO-FVA’s 

reliance on the BENSOLVE solver, which returned errors during installation, was also excluded from this 

assessment. 

All Python scripts, input/output auxiliary files, and GSMMs used in this work are available on GitHub 

at SophiaSantos/DesignOptimizationMicrobialCommunities. 

https://github.com/SophiaSantos
https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities
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4.3 Results and Discussion 

A qualitative evaluation was performed to assess tools able to simulate the behavior of microbial 

communities. A list of features considered relevant for assessing the method’s performance was created 

and a score was assigned to each method (1: unsatisfactory, 5: outstanding). These features are related 

to software performance, ease of use, and adherence to common data standards. Other features analyzed 

include the predicting capabilities when compared with available experimental data and the output 

information for each method, which is important for selecting the best for the desired community-specific 

application. The full discussion of this assessment is available in section 4.3.4 (Figure 4.4). 

The analysis of the nitrification process catalyzed by the bacteria N. europaea and N. vulgaris was 

selected for the case study, due to the availability of GSMMs manually curated and validated with 

experimental data (Cruz, 2018; Raposo, 2017). Additionally, the interactions associated with the 

nitrification process between these bacteria are well known (Figure 4.3), and therefore the prediction 

outputs from the simulation methods applied can be compared to experimental information. Basic 

validation of each GSMM was performed before applying the microbial community to these methods, 

using pFBA.  

 

4.3.1 Environmental conditions 

The validation of the single organism GSMMs was performed using a minimal medium, described 

elsewhere (Cruz, 2018; Raposo, 2017), and is presented in Table 4.2.  

 

Table 4.2. Minimal medium composition used to run single organism pFBA simulations using GSMMs of N. europaea and 
N. vulgaris, respectively. Uptake rates are shown in mmolgDW

-1h-1. 

Minimal Medium Constraints 

Nitrosomonas europaea Nitrobacter vulgaris 

Metabolite Lower bound Metabolite Lower bound 

CO2 0.3000 CO2 0.01000 
Orthophosphate 1000 Orthophosphate 1000 
SO4

2- 1000 SO4
2- 1000 

Ammonia 1000 NO2
- 1000 

O2 1000 O2 1000 
Fe2+ 1000 Fe2+ 1000 

  Ethanol 0.1000 
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All medium components were allowed to enter the system unconstrained, except for carbon 

sources. In the case of N. vulgaris growth experiments, CO2 was used as a carbon source and ethanol as 

a carbon source and energy source (R. Cruz, 2018), and therefore that medium was replicated for these 

simulations. N. vulgaris can grow using only CO2 or ethanol, however, biomass production is higher in the 

presence of ethanol (R. Cruz, 2018). The simulations were performed under aerobic conditions, thus O2 

and ferrous iron were supplemented in both cases. 

The minimal medium composition required for the microbial community simulations (Table 4.3) 

was adapted from the minimal medium of each organism. As for single organism simulations, all medium 

components were allowed to enter the system unconstrained, except for the carbon source, which in the 

case of the co-culture where the uptake rate value for CO2 was set to the sum of each organism's carbon 

source uptake rate, -0.4210 mmolgDW
-1h-1, (N. europaea - 0.31 mmolgDW

-1h-1 of CO2, N. vulgaris - 0.011 

mmolgDW
-1h-1 of CO2 and 0.1 mmolgDW

-1h-1 of ethanol), once N. vulgaris is able to grow using only CO2. 

 

Table 4.3. Minimal medium composition used to run microbial community simulations. Uptake rates are shown in mmolgDW
-

1h-1. 

Minimal Medium Constraints 

Metabolite Lower bound 

CO2 -0.4210 
Orthophosphate -1000 
SO4

2- -1000 
Ammonia -1000 
O2 -1000 
Fe2+ -1000 

 

4.3.2 Steady-state simulations of single-organisms  

The validation process of the GSMMs of N. europaea and N. vulgaris involved comparing simulation 

results to previous studies (Cruz, 2018; Raposo, 2017), to understand the nitrogen uptake and excretion 

processes. 

The validation step revealed an inaccurate flux distribution throughout the oxidative phosphorylation 

pathway of the N. vulgaris GSMM, which is a key pathway under aerobic conditions. After the manual 

curation of the pathway (Supplementary Table S1), the simulation results (Table 4.5) were in agreement 
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with the experimental data reported by Cruz (2018). Results of the simulation of N. europaea GSMMs 

(Table 4.4) were in agreement with the information available in the literature (Raposo, 2017). 

 

Table 4.4. N. europaea model validation using pFBA as simulation method. Specific growth rate (h-1), uptake (Consumption), 
and export (Production) rates (mmolgDW

-1h-1) are presented. 

Nitrosomonas europaea 

Specific growth rate: 0.007528 h-1 

Consumption Production 

CO2 0.3000 H+ 0.6654 
Orthophosphate 0.002598 H2O 1.182 
SO4

2- 0.001556 NO2
- 0.6606 

Ammonia 0.7265 Urea 0.001338 
O2 0.6624   
Fe2+ 0.00001359   

 

Table 4.5. N. vulgaris model validation using pFBA as simulation method, after manual curation of the oxidative 
phosphorylation pathway. Specific growth rate (h -1), uptake (Consumption), and export (Production) (mmolgDW

-1h-1) rates are 
presented.  

Nitrobacter vulgaris 

Specific growth rate: 0.03179 h-1 

Consumption Production 

CO2 0.0100 H+ 0.8133 
Orthophosphate 0.0005715 NO3

- 0.2612 
SO4

2-  0.0004815   
NO2

- 0.3134   
O2 0.06714   
Fe2+ 0.0002978   
Ethanol 0.250   

 

N. europaea was able to use ammonia and almost totally convert it into NO2
- (91% of nitrogen 

conversion) as reported in the literature, whereas N. vulgaris showed a slightly lower proportion of 

conversion of NO2
- into NO3

- (83% of nitrogen conversion), yet consistent with experimental results (Cruz, 

2018) when no ammonia is supplemented to the medium and NO2
- is also used as a nitrogen source for 

growth. 
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4.3.3 Steady-state simulations of community  

Each method's features were analyzed according to method-specific outputs. These outputs include 

1) the organism’s individual growth rate within the community; 2) carbon source and ammonia 

consumption; and 3) cross-feeding metabolites, namely NH3
+, NO2

-, and NO3
-. A summary of all simulations 

is provided in Table 4.6. 

 

4.3.3.1 FBA 

Initially, a community model was created using the REFRAMED Python package. When applying 

REFRAMED’s Community function, providing the individual GSMMs for each organism as input, a 

compartmentalized model is returned. Given the fact that the biomass equation on the community model 

is defined as the sum of the individual biomass equations at the same proportion when applying the FBA 

method to microbial communities, all organisms contribute equally to the community biomass. Thus, to 

maintain the steady-state balance, all specific growth rates are equal. In this specific case (Table 4.6), 

the results show that the specific growth rate of each organism in the co-culture (0.0077 h-1) mimics the 

slower-growing organism, N. europaea (0.007528 h-1).  
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Table 4.6. Microbial community, composed of N. europaea and N. vulgaris, simulation using pFBA, SMETANA, SteadyCom, MICOM, and OptCom as simulation methods. When available, specific growth rate (h-1), 
uptake (Consumption), export (Production) (mmolgDW-1h-1), and interaction rates are presented. Consumed metabolite rates are represented as negative and produced metabolite rates are represented as positive. 
N.vu. – Nitrobacter vulgaris, N.eu. – Nitrosomonas europaea, Com – Community. n.a. – Data not available. *Abundancy value used as input for the simulation method. 

  Experimental pFBA SMETANA SteadyCom MICOM OptCom 

  N.vu. N.eu. Com N.vu. N.eu. Com N.vu. N.eu. Com N.vu. N.eu. Com N.vu. N.eu. Com N.vu. N.eu. Com 

S
p

e
ci

fi
c 

G
ro

w
th

 R
a

te
 

 n.a. n.a. 0.0147 0.0077 0.0077 0.0154 n.a. n.a. n.a. 0.0243 0.000199 0.0244 0.0150 0.0075 0.0151 0.0138 0.0075 0.0139 

M
e

ta
b

o
li

te
 

C
o

n
su

m
p

ti
o

n
/P

ro
d

u
ct

io
n

 

CO2 n.a. n.a. n.a. -0.124 -0.297 -0.421   n.a. -0.403 -0.0177 n.a. -0.195 -0.0441 -0.245 n.a. n.a. -0.239 

NH4 n.a. n.a. n.a. -0.0308 - 1.22 -1.25 Producing Consuming n.a. -1.701 -0.100 n.a. -0.824 -0.236 -1.06 n.a. n.a. -1.06 

NO2
- Consuming Producing n.a. -1.15 1.15 0 Consuming Producing n.a. 1.700 -1.700 n.a. 0 0.999 0.999 n.a. n.a. 0.999 

Urea n.a. n.a. n.a. 0 0.00128 0.00128   n.a. 2.05 x 10-5 0 n.a. 0.145 0 0.145 n.a. n.a. 0.143 

NO3
- n.a. n.a. n.a. 1.15 0 1.15   n.a. 0 1.700 n.a. 0 0 0 n.a. n.a. 0 

A
b

u
n

d
a

n
cy

 

 n.a. n.a.  0.5* 0.5*  n.a. n.a. n.a. 0.99 0.01  0.99* 0.01*  0.99* 0.01*  
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The analysis of the simulation results for the exchange fluxes demonstrates that, as reported in the 

literature, the microbial community converts NH3
+ into NO3

-. Moreover, the proportion of conversion is 

similar to the individual organisms (92% of nitrogen conversion), using CO2 as a unique carbon source. 

Furthermore, the interacting reactions’ fluxes (Table 4.6), show that the uptake of CO2 is analogous 

to the uptake rate of carbon source for each organism, where N. europaea is consuming 0.31 mmolgDW
-

1h-1 of CO2 growing in isolation (Table 4.4) and -0.297 mmolgDW
-1h-1 of CO2 growing in co-culture with N. 

vulgaris (Table 4.6). Although the total CO2 uptake is similar, the growth rate of N. vulgaris within the 

community is 10-fold smaller, which was already reported in the literature (R. Cruz, 2018) which states 

that N. vulgaris has smaller growth rates when CO2 is the sole carbon source. 

 As shown in Table 4.6 and the literature (Cruz et al., 2018; Grunditz et al., 2001; Mellbye et al., 

2018), when NH3
+ is used by N. vulgaris as nitrogen source, all NO2

- excreted by N. europaea is consumed 

by N. vulgaris, demonstrating the biological efficiency of the nitrification process catalyzed by these 

organisms. 

 

4.3.3.2 SMETANA 

SMETANA estimates the interaction potential of the species in a microbial community and returns 

the probability of inter-species metabolite exchange. No growth and flux rates are directly obtained through 

SMETANA. 

For the case study of the community composed of N. europaea and N. vulgaris, a pre-simulation 

step was required. The individual GSMMs were reconstructed using merlin (Dias et al., 2018), which 

relies on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa et al., 2016), for 

metabolites and reactions identifiers. However, SMETANA requires BiGG metabolite identifiers, thus those 

exchange metabolites identifiers were converted. The SMETANA potential inter-species interactions are 

available in Supplementary Tables S2 and S3. Only inter-species interactions with values greater than 0.4 

were considered. 

While analyzing possible inter-species interactions, as expected, and reported by literature, N. 

europaea acts within the community as a donor of nitrogen sources. Surprisingly, NH3
+ seems to have a 

high probability of being the nitrogen source shared by the organisms. Indeed, when simulating individual 

growth, when NH3
+ is added to the medium, N. vulgaris rather uses it as a nitrogen source to produce 
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biomass components (R. Cruz, 2018). SMETANA also predicted a high dependence on glycine, with a 

SMETANA score of 0.68 (data not shown), which can act as a carbon source and has a relevant role in 

assimilating one-carbon compounds through the reductive glycine pathway of chemolithoautotrophic 

organisms, as discussed in previous studies (Sánchez-Andrea et al., 2020; Yishai et al., 2018). However, 

experimental validation is required to confirm this possibility. 

When analyzing the species interaction potential, SMETANA’s results show no growth dependence 

on each other, indicating that both organisms can grow independently (MIP score = N/A). However, the 

resulting MRO score of 0.6 indicates the tendency to competition between the organisms for the main 

elemental sources, namely the nitrogen sources. 

 

4.3.3.3 SteadyCom 

SteadyCom predicts the metabolic flux distribution and relative abundance of each species in a 

community. Using the same environmental conditions as before (Table 4.3), SteadyCom predicted the 

growth of the two organisms, with a community growth rate of 0.02441 h -1. As shown in Table 4.6, despite 

small numerical differences, the metabolites’ interaction profile and respective ratios are quite similar to 

the experimental data. Importantly, this prediction shows, as predicted by the pFBA method and as 

reported in the literature (Cruz et al., 2018; Grunditz et al., 2001; Mellbye et al., 2018), that all NO2
- 

excreted by N. europaea is consumed by N. vulgaris. 

SteadyCom also calculates relative abundances for all organisms in the microbial community. 

Regarding this case study, SteadyCom's results are corroborated by individual growth experiments, which 

show that N. europaea grows at a much lower rate than N. vulgaris resulting in relative abundancies of 

0.01 and 0.99, respectively. 

The predicted growth rates using this method are in the same range for N. vulgaris when compared 

with isolated growth, and for N. europaea 10-fold lower when compared to isolated growth under the 

same conditions. Within a community, microorganisms' growth rates’ perturbations are expected when 

organism abundances are significantly distinct, as seems to be the case for this community. However, 

these results cannot be assessed as additional experimental trials are required. 
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4.3.3.4 MICOM 

MICOM mathematical formulation also considers two different classifications for growth rates: 

individual growth rates and community growth rates. However, MICOM’s implementation does not 

assume a fixed community growth, thus requiring the community ‘s taxa abundance. 

The first analysis was performed using the same environmental conditions as before and setting 

identical abundancies for both organisms, such as defined to run the pFBA simulation. MICOM’s 

simulation results showed that in these conditions N. europaea is unable to grow (data not shown). 

MICOM predicts a given microbial community’s growth by fixing the minimum for all community 

members (equal or different for each community member). Therefore, when fixing the minimum growth 

rate to the slowest-growing organism in this community (N. europaea - a growth rate of 0.0075 h-1), 

MICOM predicts the growth of both organisms (data not shown). However, the growth rates, as well as 

uptake and withdrawal rates, are 10-fold and 100-fold greater than the ones predicted with the previous 

methods. These results are probably associated with the fact that MICOM implementation scales the 

whole community’s internal exchange fluxes to the respective organism’s abundance. 

To prove this hypothesis, the organism's input abundances were adjusted to the abundance values 

predicted by SteadyCom (0.01 for N. europaea and 0.99 for N. vulgaris). The results corroborate the 

suggested hypothesis, as the growth rates and uptake/production rates are in the same range of the 

pFBA and SteadyCom methods’ predictions (Table 4.6) 

However, in both predictions, the nitrogen flow through the networks (Supplementary Table S4) 

does not match the previous predictions, nor the literature on the nitrification process. Although NH3
+ is 

consumed and NO2
- is produced by N. europaea, N. vulgaris does not consume the produced NO2

- and 

consequently no NO3
- conversion is achieved by the community. 

 

4.3.3.5 OptCom 

As mentioned in section 4.2.2 the Python implementation within the MICOM framework was used 

for assessing OptCom. Hence, taxa abundancies were a mandatory input for simulations. The organism 

abundances predicted by SteadyCom were used (0.01 for N. europaea and 0.99 for N. vulgaris) and a 

minimal growth rate of 0.0075 h-1 for both organisms was also fixed. 
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Growth and uptake/production rates differ slightly from the ones obtained using the MICOM 

simulation method, although are in the same range of values. Likewise, the nitrogen flow prediction does 

not match the previous predictions, showing that NH3
+ is consumed and NO2

- is produced by N. europaea, 

but no conversion of NO2
- to NO3

- is achieved by the community. No interspecies metabolite interactions 

were obtained.  

 

4.3.4 General assessment overview 

All simulation methods assessed showed different capabilities, exhibiting strengths and 

weaknesses, as shown in Figure 4.4. For instance, on one hand, SteadyCom allowed the prediction of 

Organisms Abundancies, while such abundancies are not predicted on any other method, being instead 

an obligatory input parameter for all other methods.  

 

Feature 
Simulation Methods 

FBA SMETANA SteadyCom MICOM 
OptCom 
(MICOM) 

Software availability      

Scalable for large communities      

Customizable      

Fast      

Individual Growth Rate      

Community Growth Rate      

Flux Rates      

Species Interactions      

Organisms Abundances      

 

Unsatisfactory Poor Satisfactory Good Outstanding 
     

 

Figure 4.4. Qualitative assessment of the studied steady-state simulation methods, with application to microbial 
communities. We evaluated each method from an unsatisfactory (red) to an outstanding performance (dark green). 



Chapter 4 

 

100|  PhD Thesis | Sophia Santos 

The evaluation of poor and satisfactory in the FBA and MICOM methods, respectively, are 

associated with the option of adjusting initial taxa abundances (altering the SBML file or as required input, 

respectively) to perform simulations. 

FBA, SteadyCom, and MICOM are all methods that allowed to inspect Individual and Community 

Growth and Flux Rates. 

 

 

 

Figure 4.5. Summary of the main output capabilities of each simulation method with application to microbial communities. 

 

SMETANA performed unsatisfactorily in Individual Growth Rate, Community Growth Rate and Flux 

Rates features and poor on the Customizable feature because of its interface's inability to adjust organism 

abundances and to provide access to growth or flux rates. On the other hand, SMETANA performed as 

outstanding when checking the ability to predict metabolite Species Interactions between organisms. 

Although FBA and SteadyCom allow inspecting intra-organisms metabolic flux rates easily, and correctly 
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predict the nitrogen flow throughout the network, no tool other than SMETANA provided insights on 

potential metabolite exchanges. MICOM does not allow to easily obtain exchange flux distributions. The 

retrieval of internal Flux Rates is not straightforward, needing a conversion step taking into account 

species abundancies, resulting in an evaluation of this feature of good. 

OptCom’s original Matlab® version was not available for download (thus evaluated as poor). 

However, all Python methods evaluated are freely available for download, with straightforward information 

for installation and scalable for large communities. 

As a summary of the main capabilities of simulation methods with application to microbial 

communities (Figure 4.5) and taking into account the strengths and weaknesses of the respective method, 

SMETANA should be used in case of screening a microbial community for pairwise interspecies 

interactions and species interaction potential, and SteadyCom should be used in case of the 

determination of species abundancies in a community, although in this case, no experimental data is 

available to validate the abundance predictions obtained. Exception made for SMETANA, all other 

methods can predict, to some extent, flux and growth rates. According to the results using the case study 

of the interaction of N. europaea and N. vulgaris, FBA was the method with prediction values closer to 

the experimental ones reported in the literature. 
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4.4 Conclusions 

In this work, the performances of different steady-state simulation methods with application to 

microbial communities were analyzed. A quantitative comparison between simulation methods was not 

performed due to differences in method-specific definitions of objective functions, which by itself 

contributes to differences in flux distributions (Santos et al., 2016; Schuetz et al., 2007). 

Comparing the simulation methods' performance to predict the nitrification process catalyzed by 

the bacteria N. europaea and N. vulgaris, pFBA, and SteadyCom seem to provide the best results. 

SteadyCom only overcame pFBA by providing more information on the optimum organism abundances, 

regarding the specific environmental conditions defined. Thus, although its formulation has been 

developed for predicting single-organism phenotypic behavior, pFBA seems relevant for understanding 

microbial community interactions. 

SMETANA proved to be outstanding at identifying known interactions that are characteristic of the 

nitrification process and potential interactions between both organisms. However, no information on 

growth and uptake/withdrawal rates is obtained. 

MICOM, and the MICOM implementation version of OptCom, revealed limitations regarding the 

correct prediction of interactions between the organisms in the nitrification process, as well as the range 

of flux distribution when an equal organism abundance was assumed. However, when more accurate 

organism abundances are provided, the obtained fluxes’ distribution is comparable to the pFBA and 

SteadyCom methods. 

To summarize, the available simulation methods with application to microbial communities could, 

to some extent, predict the phenotypic behavior that characterizes the nitrification process catalyzed by 

N. europaea and N. vulgaris. Each one of the simulation methods showed strengths and weaknesses and 

the success of either approach depends on the microbial community composition and complexity. 

Consequently, the use of more than one simulation method is recommended whenever possible as these 

showed to complement and validate each other. 

Systems biology approaches allow to understand how different species interact and affect their 

environment. However, these methods are limited to Matlab or Python, which restricts their manipulation 

to bioinformaticians or other expert researchers. Hence, the implementation of these simulation methods 

in frameworks with user-friendly interfaces such as Kbase (Arkin et al., 2018) or Optflux (I. Rocha et al., 
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2010) should shorten the gap between research in community-based modeling algorithms and wet lab 

experiments.  
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4.5 Supplementary Material 

 

Additional file in SBML format: neuropaea.xml 

Additional file in SBML format: nvulgaris.xml 

Link: DesignOptimizationMicrobialCommunities/models/models_nitro 

 

Additional file in Excel format: Chapter4_Supplementary_Material.xlsx 

Link: DesignOptimizationMicrobialCommunities/Data 

Table S1 Manual Curation of Oxidative Phosphorylation Pathway - N. europaea GSMM 

Table S2 SMETANA detailed results 

Table S3 SMETANA global results 

Table S4 MICOM_fluxes 

  

mailto:https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/models/models_nitro
https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/Data
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Chapter 5 

Chapter 5 Designing Microbial Communities with MEWpy 

 

“We are only as strong as we are united, as weak as we are divided” 

J. K. Rowling 

 

 

In the last years, microbial communities have gained interest for their huge potential to replace 

engineered single strains throughout the biotechnology, pharmaceutical, and chemical trades. Large 

amounts of metagenomic high-throughput data are becoming available every day, while Genome-Scale 

Metabolic Models of microbial communities are also becoming common. However, few studies are 

available in terms of optimization tools capable of predicting optimal potential genetic modifications at 

the community level. 

Here MEWpy is presented as an integrative Python workbench for metabolic engineering, with 

methods to explore constraint-based models of microbial communities, allowing the optimization of 

microbial communities using Evolutionary Algorithms. In specific for microbial community optimization, 

MEWpy presents multi-objective methods and evaluation functions for the optimization of species cross-

feeding interactions, determination of minimal medium composition, as well as untargeted and targeted 

(directed to specific species in the community) genes/reactions for optimal modifications.  

MEWpy can be installed from PyPi (pip install mewpy), the source code being available at 

https://github.com/BioSystemsUM/mewpy under the GPL license.  

https://github.com/BioSystemsUM/mewpy
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5.1 Introduction 

Microbial communities' biological functions are hugely affected by small perturbations linked to the 

organisms present within them and resource availability (Johns et al., 2016). The manipulation of 

microbiomes has been successfully implemented (Löffler et al., 2006; McCarty et al., 2011; O’Connell 

et al., 1996), suggesting that this can be an alternative to improve rational design of single organisms to 

produce target compounds (Sgobba et al., 2020; Wang et al., 2020). 

The possibility of controlling and engineering natural and synthetic microbial communities is one 

of the main reasons to study microbial communities (García-Jiménez et al., 2021) and, given the success 

of computational strain optimization methods to rationally design single organisms using GSMMs 

(Jullesson et al., 2015), it is reasonable to assume that the same strategy can also lead to successful 

cases using microbial communities. A target product of a microbial community will be a cooperative effort 

from a structured group of organisms already used to carry out complex interactions and synthesize 

complex molecules (Bosi et al., 2017; García-Jiménez et al., 2021). However, few optimization tools 

capable of predicting potential genetic modifications at the community level to unveil the full potential of 

microbial communities (Eng et al., 2019) are currently available. Most of these tools use strategies to 

optimize medium composition (Klitgord et al., 2010; Pacheco et al., 2021), intra-species interactions 

(Thommes et al., 2019), or community configuration (García-Jiménez et al., 2018) for a given objective. 

The challenge of performing optimization of microbial communities is the urgent need for the 

development of more sophisticated and integrative platforms that support different levels of community 

optimization, focusing not only on optimizing exchange reactions (species cross-feeding interactions, 

medium composition) but also on the identification of untargeted and targeted (directed to specific species 

in the community) genes/reactions for deletion/up-/down-regulation, as well as identifying the best 

community composition for a given objective, using top-down and bottom-up approaches. 

In the case of microbial communities, where the complexity of the metabolic network increases 

per organism included in the community, the use of computational strain optimization metaheuristics, 

such as Evolutionary Algorithms (EAs), can be a breakthrough (M. Rocha et al., 2008) due to their 

scalability and flexibility in the definition of objective functions. EAs are stochastic algorithms inspired by 

nature. Mimicking the Darwinian evolutionary principles, they aim to find sets of modifications whose 

phenotype best addresses the optimization problem. At each generation, mating and mutation operators 



Chapter 5  

 

108|  PhD Thesis | Sophia Santos 

produce a new solution set, from which the fittest are selected to integrate the next population. EAs can 

be applied using a single optimization objective or using multiple optimization objectives. The use of a 

single optimization objective, despite being frequently applied in metabolic engineering, is more likely to 

get caught in a local optimum, evidencing premature convergence, as they manifest more difficulty in 

preserving high diversity within the populations (Pandey et al., 2014). On the other hand, multi-objective 

EAs can deliver in a single optimization run a set of solutions with different trade-offs between more than 

one objective (for example, product rate, growth rate, biomass product coupled yield, number of 

modifications). Using this approach, a broader set of possible perturbations for analysis can be achieved. 

Among the platforms that offer the possibility of the use of EAs for strain optimization, MEWpy 

(Pereira et al., 2021) offers a practical interface to several strain optimization heuristics, including a set 

of multi-objective methods driving the optimization towards the best set of enzymes, genes, or reactions, 

to under/over-express or delete to maximize the production of a target compound on GSMMs defining 

gene–protein-reaction associations. Moreover, MEWpy allows for phenotype simulation using constraint-

based methods provided by COBRApy (Ebrahim et al., 2013) and REFRAMED libraries, such as 

SteadyCom (Chan et al., 2017), specific for simulating microbial communities. 

Here we propose methods for the optimization of microbial communities, using EAs under the 

MEWPy framework. These methods allow the optimization of species cross-feeding interactions, minimal 

medium composition as well as untargeted and targeted (directed to specific species in the community) 

genes/reactions. 

 

5.2 Implementation 

MEWpy is fully implemented in the Python programming language, which is being increasingly 

used by the scientific community. The conceptual architecture of MEWpy comprises three layers: problem 

definition, phenotype simulation, and optimization. The basis of the MEWpy architecture was fully 

maintained including only some specific features related to the handling of microbial communities. 

In the problem definition layer, during the definition of modification targets, besides the selection 

of reactions, genes, proteins, or regulatory variables present in the model, it is also possible to target the 

compartment where those are assigned to, being now possible to select to perform modifications on 

selected organisms in a microbial community. This layer also includes the selection of the modeling 
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framework, the modification strategy (deletion, under/overexpression) as well as the target product and 

the environmental conditions. 

In the phenotype simulation layer all the constraint-based methods already used to evaluate wild-

type and mutant strains such as Flux Balance Analysis (FBA) (Varma & Palsson, 1994) or Minimization 

of Metabolic Adjustment (MOMA) (Segrè et al., 2002), as well as Flux Variability Analysis (FVA), can be 

selected. The different phenotype simulation methods are provided by COBRApy (Ebrahim et al., 2013) 

and REFRAMED libraries. 

In the optimization layer, all the optimization heuristics used for strain design and respective 

objective functions can be found. The candidate solution fitness of each optimization iteration is evaluated 

by running the respective phenotype simulation required by the objective function. Here an objective 

function was included to minimize the molecular weight of the compounds of exchange reactions when 

using the minimal medium optimization. The EAs in MEWpy are implemented by the Inspyred (Tonda, 

2020) and JMetalPy (Benítez-Hidalgo et al., 2019) Python libraries. MEWpy requires a compatible linear 

programming solver (CPLEX, GUROBI, or GLPK), with installed Python dependencies. 

Currently, in specific for microbial communities, MEWpy allows the optimization of 4 different 

scenarios from a community perspective (Figure 5.1):  

(i) Minimal medium optimization, including the objective function of minimizing the molecular 

weights (MolecularWeight fitness evaluation function) of the exchange reactions 

compounds (possible when chemical formulas of compounds are included in GSMMs); 

(ii) Interactions of metabolites among species; 

(iii) Identification of reactions/enzymes/genes in the community to manipulate targeting the 

production of desired compounds, and  

(iv) Identification of organism-specific reactions/enzymes/genes to manipulate targeting the 

production of desired compounds. 

MEWpy can be installed from PyPi (pip install mewpy) and the source code is available at 

https://github.com/BioSystemsUM/mewpy under the GPL license. 

 

https://github.com/BioSystemsUM/mewpy
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Figure 5.1 Summary of the different strategies to optimize and design microbial communities using MEWpy. A – Medium 
optimization. B – Intraspecies metabolite exchange optimization. C – Community reaction/gene optimization. D – Organism-
specific reaction/gene optimization. 

 

5.3 Usage examples 

To illustrate the applicability of the evolutionary algorithms to GSMMs of microbial communities, 

only two specific cases were tested, namely regarding Minimal Medium Optimization and Organism 

Specific Reaction Optimization due to the difficulty of finding suitable case studies for the other 

optimization scenarios. For each scenario, different case studies were evaluated. All simulations were 

performed using CPLEX 12.8.0 as a solver, through the PyCharm Integrated Development Environment 

(IDE).  

All scripts, input/output auxiliary files, and GSMMs used in this work are available on GitHub at 

SophiaSantos/DesignOptimizationMicrobialCommunities. 

 

5.3.1 Optimization of target compound production through reaction manipulation  

5.3.1.1 Case study 

The selected case study shown here considers a synergistic co-culture of model organisms 

Escherichia coli (E. coli) and Saccharomyces cerevisiae (S. cerevisiae) developed for the heterologous 

https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities
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production of the high-value flavonoid naringenin from xylose, by performing further genetic manipulation 

in only one of the co-culture organisms, in this case, E. coli (Zhang et al., 2017). The genetic manipulation 

performed used gene deletions (Δpyk and ΔpheA) and gene over-expressions (tktA, ppsA aroGfbr, aroE, 

and tyrAfbr) as represented in Figure 5.2. Naringenin is widely produced by citrus plants, especially in 

grapefruit and bitter orange. The heterologous route to produce naringenin was introduced in S. 

cerevisiae, which is more suitable than prokaryotic organisms to express compounds produced by plants. 

 

 

 

 

Figure 5.2. Schematic representation of the metabolic pathway for biosynthesis of naringenin via the co-culture of S. 
cerevisiae and E. coli with the experimental metabolic engineering strategy used. Gene deletions of Δpyk and ΔpheA; Gene 

over-expression of tktA, ppsA aroGfbr, aroE, and tyrAfbr. Adapted from (Zhang et al., 2017). The heterologous pathway for the 
synthesis of naringenin from L-tyrosine is composed of four enzymes (in yellow). Abbreviations: PEP - phosphoenolpyruvate, 
E4P - erythrose-4-phosphate, DAHP - 3-deoxy-D-arabino-heptulosonate-7-phosphate, DHS - 3-dehydroshikimic acid, SHK - 
shikimic acid, CHA - chorismic acid, 4HPP - 4-hydroxyphenylpyruvic acid, L-Phe - L-phenylalanine, L-Tyr - L- tyrosine, EPSP - 
5-enolpyruvylshikimate-3-phosphate, p-CA - p-coumaric acid, p-CA-CoA - p-coumaroyl-CoA, NC - naringenin chalcone. 
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5.3.1.2 GSMMs and parameter definition 

For the validation of Reaction Optimization by MEWpy, the GSMMs for E. coli (iAF1260) developed 

by (Feist et al., 2007) and for S. cerevisiae (iMM904) developed by (Mo et al., 2009) were used. Both 

models were retrieved from the BiGG database (Schellenberger et al., 2010), having the same metabolite 

identifiers, which is required for the construction of the community model. Biomass equations identifiers 

of both GSMMs were switched to match the same identifier (‘R_BIOMASS’) for community model 

construction purposes. The defined medium was inferred from information in the literature (Zhang et al., 

2017). Xylose was set as E. coli’s carbon source and acetate produced by E. coli was set as S. cerevisiae's 

carbon source using reaction community identifiers. As shown in Figure 5.2 the metabolic engineering 

strategy in this case study includes overexpression and deletion of E. coli genes. Both strategies were 

tested for reactions (ROUProblem and RKOProblem), using MEWpy. Target reactions for the deletion or 

under-over expression optimization were defined as the reactions assigned with iAF1260 (E. coli GSMM 

identifier), removing from those all the essential and exchange reactions. Although the case study 

objective is the production of naringenin by S. cerevisiae, all the metabolic engineering performed in E. 

coli had the objective to produce L – tyrosine, and for that reason, the objective of all optimizations will 

be the production of L – tyrosine by E. coli.  All optimizations were run using 100 as the maximum 

number of generations and the candidate maximum size of two was used for the RKOProblem (maximum 

number of reaction knock-outs) and five for the ROUProblem (maximum number of over/under-expression 

of reactions), as shown in the case study culture (Zhang et al., 2017). A Jupyter Notebook with the whole 

process is available in Supplementary Material – naringenin_optimization.ipynb. 

 

Table 5.1 FVA analysis of the co-culture composed by E. coli and S. cerevisiae L-tyrosine production capabilities. The specific 
growth rate was set to at least 10% of the specific growth rate obtained with the pFBA simulation. 

L – tyrosine Production 

(mmol gDW
-1 h-1) 

E. coli [-0.0572, 0.463] 

S. cerevisiae [-0.463, 0.0572] 

 

An FVA was performed before the optimization process to try to verify the community model's ability 

to produce L-tyrosine (Table 5.1). The FVA analysis showed that under the environmental conditions 

defined, L–tyrosine is being exchanged between the two organisms. Moreover, higher production of L–

tyrosine is obtained by E. coli (0.463 mmol gDW
-1 h-1). 
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5.3.1.3 Reaction Deletion Optimization (RKOProblem) 

When performing the reaction deletion optimization (RKOProblem), although a maximum of two 

modifications was set, the best solutions included only 1 modification, Δpyk which is one of the two 

deletions tested in the case study (Figure 5.3).  

 

 

 

Figure 5.3. Schematic representation of the metabolic pathway for biosynthesis of naringenin via the co-culture of S. 
cerevisiae and E. coli with the results of MEWpy reaction knock-out optimization and the pFBA prediction values of the effect 
of deletion of the Δpyk corresponding reaction. Adapted from (Zhang et al., 2017). The heterologous pathway for the synthesis 

of naringenin from L-tyrosine is composed of four enzymes (in yellow). Abbreviations: PEP - phosphoenolpyruvate, E4P - 
erythrose-4-phosphate, DAHP - 3-deoxy-D-arabino-heptulosonate-7-phosphate, DHS - 3-dehydroshikimic acid, SHK - shikimic 
acid, CHA - chorismic acid, 4HPP - 4-hydroxyphenylpyruvic acid, L-Phe - L-phenylalanine, L-Tyr - L- tyrosine, EPSP - 5-
enolpyruvylshikimate-3-phosphate, p-CA - p-coumaric acid, p-CA-CoA - p-coumaroyl-CoA, NC - naringenin chalcone. 

 

Even in solutions with two modifications, Δpyk is included in all of them. ΔpheA appears in 

solutions when the number of modifications is higher than 2 jointly with the deletion of reactions in the 
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L–serine biosynthesis and in mannose metabolism (Supplementary Material – 

naringenin_optimization.ipynb) but never together with Δpyk. When performing a pFBA simulation using 

the knock-out of pyk and pheA, the predicted value for the production of L-tyrosine by E. coli and 

consequent consumption by S. cerevisiae is very similar to the sole deletion of pyk (Table 5.2). In 

summary, the results of the reaction deletion optimization suggest that indeed Δpyk seems to have a 

relevant role in silico for the E. coli production of L-tyrosine under the co-culture with S. cerevisiae, showing 

also the MEWpy applicability on reaction deletion optimization in the context of microbial communities. 

 

5.3.1.4 Reaction Over/Under expression Optimization (ROUProblem) 

When performing the reaction over/under expression optimization (ROUProblem), although a 

maximum of five modifications was set, the best solutions included only one modification, a 2-fold over-

expression of tktA which is one of the five over-expression genes used in the case study (Figure 5.2). Even 

in solutions with more modifications, tktA is included in all of them jointly with over-expressions in 

reactions on sugar metabolism (Supplementary Material – naringenin_optimization.ipynb). 

 

Table 5.2. pFBA analysis of the co-culture composed by E. coli and S. cerevisiae for L-tyrosine production using the MEWpy 
deletion and/or overexpression reactions predictions. Consumed metabolite rates are represented as negative and produced 
metabolite rates are represented as positive. 

E. coli L–tyrosine Production in co-culture 

(mmol gDW
-1 h-1) 

Wild-type -0.0571 

Δpyk  0.0416 

Δpyk and ΔpheA  0.0415 

tktA 2-fold overexpression 0.0419 

Δpyk and tktA 2-fold overexpression 0.0415 

 

Indeed, when performing a pFBA simulation constraining the tktA reaction to a 2-fold flux value, L-

tyrosine is predicted to be produced by E. coli (Table 5.2) in the same range as with pyk knock-out. 

However, when adding to the pFBA simulation constraints the knock-out of Δpyk, there is no effect on 

the production of L-tyrosine. Nevertheless, MEWpy over/under expression optimization showed significant 
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information on which reactions to try to over/under express for this co-culture showing once more, its 

applicability in optimizing microbial communities. 

 

5.3.2 Minimal Medium Optimization 

For the validation of the Minimal Medium Optimization by MEWpy, eight published and manually 

curated GSMMs of single prokaryotic and eukaryotic organisms were used that are part of one or more 

of the five selected natural and synthetic microbial communities (Table 5.3).  

Table 5.3. Microbial community case studies used for the Minimal Medium Optimization and information on the published 
and manually curated GSMMs used for each community case study. 

Genome-scale Metabolic Models Microbial Community 

ID Organism Reference ID Reference 

iAO358 Lactococcus lactis (Oliveira et al., 2005) 

1 
(Ponomarova et al., 

2017) 
iBT721 Lactobacillus plantarum (Teusink et al., 2006) 

iMM904 Saccharomyces cerevisiae (Mo et al., 2009) 

iBif452 Bifidobacterium adolescentis  
(El-Semman et al., 

2014) 
2 (El-Semman et al., 2014) 

iFap484 Faecalibacterium prausnitzii  
(El-Semman et al., 

2014) 

iJN1411 Pseudomonas putida (Nogales et al., 2017) 
3 (Sgobba et al., 2018) 

iAF1260 Escherichia coli (Feist et al., 2007) 

iYS432 
Corynebacterium 

glutamicum  
(Shinfuku et al., 2009) 

4 (Sgobba et al., 2018) 

iAF1260 Escherichia coli (Feist et al., 2007) 

iAF1260 Escherichia coli (Feist et al., 2007) 
5 (Zhang et al., 2017) 

iMM904 Saccharomyces cerevisiae (Mo et al., 2009) 

 

GSMMs were screened for the same external metabolite identifiers, and the BiGG (Schellenberger 

et al., 2010) annotation was adopted when different annotations were found. Biomass equations 
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identifiers of all GSMMs were switched to match the same identifier (‘R_BIOMASS’) for community model 

construction purposes, and compound chemical formulas were included in all GSMMs that lacked that 

information. The experimentally defined medium of each microbial community was determined by 

information in the literature (Table 5.3) - Supplementary Material – Table S1.  

 

 

Figure 5.4. Number of exchange reactions defined on the Experimental medium (green line), on the optimized medium by 
MEWpy (blue line) without using Molecular Weight minimization, and the number of exchange reactions that are common in 
both mediums (pink line). 

 

For the optimization of the minimal medium for each microbial community, a carbon source, 

defined in the literature, was set as a constraint, as well as all exchange reactions that are essential for 

each community GSMM have growth. Minimal Medium Optimization was tested with and without 

minimizing exchange compound Molecular Weight. The best results were compared and validated with 
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experimental data from literature (Figure 5.4) - Supplementary Material – Table S2, Table S3, Table S4, 

Table S5, Table S6. 

When analyzing the obtained results, major differences are exhibited in communities ID 1 (co-

culture Lactococcus lactis, Lactobacillus plantarum, and S. cerevisiae) and ID 2 (co-culture 

Bifidobacterium adolescentis and Faecalibacterium prausnitzii). Indeed, in these two cases, a rich 

medium is used in the experimental setup, which resulted in an Experimental defined medium with a 

high number of metabolites. In community ID 1 most of the Experimental medium components are ions, 

vitamins, and cofactors, as well as amino acids which are essential to Lactococcus lactis. Whereas in 

community ID 2 Experimental medium components are mainly amino acids, which are an important part 

of the gut ecosystem. In both cases, the majority of the amino acids in the Experimental medium were 

not included in the Optimized medium, indicating that individual amino acid auxotrophies are being 

bridged by other organisms within the community. 

Importantly, a large part of the Optimized medium components is similar to the Experimental 

medium. Differences between experimental and predicted mediums are higher in the community ID 3 

composed of Pseudomonas putida and E. coli (Sgobba et al., 2018), where the predictions revealed that 

vitamins (for instance, riboflavin, thymidine, and pantothenate) are not required for the community 

growth. These differences cannot be directly translated for the definition of a new experimental minimal 

medium because most of them are associated with the lack of metabolite requirement information 

included in the GSMM. In all other cases, the differences happen because MEWpy often selects complex 

molecules that can, at the same time, be nitrogen, phosphate, and/or sulfur sources (e. g. guanosine 3-

phosphate, adenosine 3, 5–biphosphate or L-cysteine), as the objective is to determine a minimal number 

of exchange reactions that allow the growth of a specific community. Also, the best solutions generally 

differed among them on the nitrogen, phosphate, sulfur, or iron sources when the GSMMs included more 

than one suitable replacement (for instance, sulfate, thiosulfate, hydrogen sulfide, or L-cysteine). These 

results suggest that in cases where the exchange metabolite chemical formula is available in the GSMM, 

the minimization of the sum of the Molecular Weight of the metabolites in the solution would be helpful 

to eliminate mainly complex molecules that can function as nitrogen, phosphate, and/or sulfur sources. 

This hypothesis was corroborated in part using the minimization of exchange metabolite Molecular 

Weight, which eliminated the best solutions that had complex molecules, such as the replacement of 
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sulfate (molecular weight of 96.06 g mol-1) for hydrogen sulfide (molecular weight of 34.08 g mol-1). 

However, in none of the case studies the number of metabolites in the best solutions changed. 

Overall, the results obtained for Minimal Medium Optimization using MEWpy showed biological 

significance, correctly predicting a minimal medium for each community. However, results should be 

carefully analyzed considering differences between the information included in each organism GSMM 

within the community and the experimental data available. 
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5.4 Conclusions 

Here methods using EAs were developed and implemented in MEWpy for the in silico design of 

microbial communities using GSMMs, allowing, depending on the individual GSMMs detail, (i) minimal 

medium optimization, (ii) species metabolite interactions, (iii) community reaction/gene/enzyme 

optimization (iv) organism specific reaction/gene/enzyme optimization for a given objective 

(maximize/minimize growth or production of target compounds). MEWpy already offers a practical 

interface to use strain optimization metaheuristics, including multi-objective methods that are suitable for 

application in GSMMs of microbial communities. Results on organism-specific reaction optimization and 

minimal medium optimization showed good approximations to experimental designs, showing the 

applicability of the implemented methods for the design of microbial communities. 

MEWpy also allows simulating microbial communities, as it offers all phenotype simulation 

methods from the COBRApy (Ebrahim et al., 2013) and REFRAMED libraries, this last one with 

implemented methods specific for the application in microbial communities, such as the construction of 

community models from individual GSMMs or the SteadyCom (Chan et al., 2017) simulation method. 

In conclusion, MEWpy aims at being a reference tool for the metabolic engineering community 

trying to make available a diverse catalog of simulation and optimization heuristics and functions appliable 

not only to GSMMs of individual organisms and microbial communities but also GECKO (Sánchez et al., 

2017) and Metabolism Expression and Thermodynamics Flux (ETFL) (Salvy & Hatzimanikatis, 2020) 

models as well as kinetic models. However, there is still room for new implementations on MEWpy 

concerning microbial communities’ optimization. Current efforts are focused on optimizing the best 

community composition for a given objective, using top-down and bottom-up approaches. 
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5.5 Supplementary Material 

 

Additional file in IPYNB format: naringenin_optimization.ipynb 

Link: DesignOptimizationMicrobialCommunities/JupyterNootbooks/ 

 

Additional files in SBML format: iAO358.xml, iBT721.xml, iMM904.xml, iBif452.xml, iFap484.xml, 

iJN1411.xml, iAF1260.xml, iYS432.xml. 

Link: DesignOptimizationMicrobialCommunities/models/models/ 

 

Additional files in SBML format: community_bif_fab.xml, community_eco_ppu.xml, 

community_eco_sce.xml, community_eco_cgl.xml, community_sce_lla_lpl.xml. 

Link: DesignOptimizationMicrobialCommunities/models/community_models/ 

 

Additional file in Excel format: Chapter5_Supplementary_Material.xlsx 

Link: DesignOptimizationMicrobialCommunities/Data 

 

Table S1 Experimental Medium defined for each Microbial Community 

Table S2 Minimal Medium Optimization results for Community ID 1 

Table S3 Minimal Medium Optimization results for Community ID 2 

Table S4 Minimal Medium Optimization results for Community ID 3 

Table S5 Minimal Medium Optimization results for Community ID 4 

Table S6 Minimal Medium Optimization results for Community ID 5 

 

https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/JupyterNootbooks
https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/models/models/
https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/models/community_models/
https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/Data/
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Chapter 6 

Chapter 6 Modeling and Design of Microbial Communities from 

Extremophilic Environments in the Azores 

“Alone we can do little, together we can do so much.” 

Helen Keller 

 

 

 

Genome-scale metabolic models of nine extremophilic organisms expected to be present in the 

hydrothermal sites in São Miguel, Azores, are here presented. The metabolic models can be used 

independently or taken together to investigate the extraordinary microbial metabolism and co-metabolism 

in extreme environments. These reconstructions, together with simulation tools used in a community 

context, allowed us to elucidate the roles of specific organisms. In particular, Pyrobaculum aerophilum 

was predicted to have an important role in producing amino acids in the presence of other extremophile 

organisms. Furthermore, S. azorense seems to have all the required metabolic traits to produce cellulose 

in the presence of T. adornatus. 

Untargeted and targeted (directed to specific species in the community) co-culture optimization 

was performed using the MEWpy framework, to evaluate S. azorense's cellulose production capabilities. 

Results demonstrated acetate's important role in the metabolic cellulose production route by S. azorense. 
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6.1 Introduction 

Microorganisms rarely grow in isolation but rather in complex and diverse communities, interacting 

with other microorganisms competing for available resources, or cooperating through metabolite 

exchanges (Zelezniak et al., 2015). The capability of microorganisms to adapt to different ecosystems 

and available resources is remarkable, especially in extreme environments where conditions impose a 

lack of nutrients and energy (Ando et al., 2021; Sarmiento et al., 2015). Often, these adaptations are a 

consequence of key changes in the organism enzymes’ amino acid sequences, which are translated into 

variations in the structure, flexibility, charge, and/or hydrophobicity (Sarmiento et al., 2015). Also, 

biocompounds produced by extremophiles are usually more stable under a wide range of temperatures, 

pH, and saline conditions. Thus, the possibility of controlling and engineering extremophile communities 

is of huge interest due to their exceptional metabolic capabilities and the exciting industrial opportunities 

that their extremozymes and added-value products can offer ( Van den Burg, 2003). 

Mathematical modeling of these complex biological systems, through the use of genome-scale 

metabolic models (GSMMs), is nowadays an indispensable tool, allowing faster and more systematic 

predictions of the phenotypic behavior, under different environmental conditions (Chan et al., 2017; 

García-Jiménez et al., 2018; Zelezniak et al., 2015; Zorrilla et al., 2021). The list of applications of GSMMs 

in a microbial community context is increasing every day, with emphasis on the prediction of microbe-

microbe/host-microbe interactions (Almut Heinken et al., 2020; Zelezniak et al., 2015) as well as the 

design and engineering of microbial communities (García-Jiménez et al., 2018; Pacheco & Segrè, 2021), 

which is being used as an alternative to improve limitations of rational design of pure cultures (Sgobba et 

al., 2020; Wang et al., 2020). 

High-quality GSMMs’ offer more reliable predictions of the phenotypic behavior (Lieven et al., 

2020). However, such GSMMs must be manually curated and validated with experimental data, a process 

that, even with tools that automate most of the reconstruction tasks, is still laborious and time-consuming 

(Thiele et al., 2010). This issue worsens for microbial communities, which often include dozens of 

organisms. Workflows that semi-automatically construct a GSMM of a prokaryotic organism in a matter 

of minutes and decrease the time spent in these reconstructions have been developed (Arkin et al., 2018; 

Heinken et al., 2020; Machado et al., 2018). Moreover, these models have already shown their reliability 

when predicting growth, response to nutrients, and gene essentiality in single organisms and even 

microbial communities (Chng et al., 2020; Machado et al., 2021; Nayfach et al., 2020). However, in the 
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case of extremophiles (which have particular metabolic pathways), and from a rational design perspective, 

these models should be used with caution, as these tools are based on model organisms’ templates (e.g., 

Escherichia coli) and the returned models may be inaccurate (Lieven et al., 2020), and need further 

manual curation. 

Microbial communities in high-temperature environments are generally less diverse (Inskeep et al., 

2013) making hydrothermal habitats an ideal model system to study principles of community structure 

and function (Sahm et al., 2013) using GSMMs. Hydrothermal sites have generally a high number of 

members of the Aquificales (Strazzulli et al., 2017), which have recently received scientific interest for 

being believed to be the earliest lineage within the domain Bacteria (Takacs-vesbach et al., 2013). The 

hydrothermal sites in São Miguel, Azores, is an example of an Aquificales’ highly populated environment 

as detailed in Chapter 2. The most abundant Aquificales member expected to be present in samples from 

the analyzed Azorean hydrothermal sites is Sulfurihydrogenibium azorense Az-Fu1, which curiously was 

first isolated in January 2001 from terrestrial hot springs at Furnas, in the same Azorean island (Aguiar 

et al., 2004). The GSMM reconstruction of S. azorense Az-Fu1, analyzed in Chapter 3, revealed the 

metabolic potential for this organism to produce cellulose under nitrogen-limiting conditions. However, 

the metabolic engineering optimization, supported by evolutionary algorithms, performed for this work, 

did not return a solution robust enough to increase cellulose production. S. azorense Az-Fu1 was projected 

to be part of two microbial communities’ samples in the hydrothermal area explored. Thus, the organism's 

metabolic role within each microbial community and whether the co-occurrence of different organisms 

influences S. azorense’s ability to produce cellulose must be studied. 

In this chapter, we present the GSMMs of nine extremophile microorganisms likely to be present 

in the hydrothermal sites in São Miguel, Azores. Community-based computational strain simulations and 

optimizations were performed to investigate whether S. azorense Az-Fu1’s ability to produce cellulose can 

be indeed enhanced by a microbial community. 

Lastly, these reconstructions can be used independently or taken together to investigate the 

extraordinary microbial metabolism and co-metabolism in extreme environments. 
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6.2 Methods 

6.2.1 Selection of the extremophile microorganisms and retrieval of whole-genome 

sequences 

Five hydrothermal samples were analyzed to determine prokaryotic community composition, using 

metagenomic approaches. Taxonomic profiling of all samples was performed using assembly-based and 

read-based analysis algorithms as recommended (Quince et al., 2017). Based on the taxonomic profiling 

methods applied, 12 organisms were predicted to be part of one or multiple of the analyzed samples. 

Results (see Chapter 2) showed a high presence of Aquificales and Crenarchaeota members, regularly 

present in hydrothermal sites (Strazzulli et al., 2017). Based on literature and single-organism growth 

information, nine of these organisms were selected for the genome-scale metabolic reconstruction step. 

Sulfurihydrogenibium azorense Az-Fu1 was isolated in January 2001 from terrestrial hot springs at 

Furnas, São Miguel Island, Azores, Portugal (Aguiar et al., 2004) and was predicted to be one of the most 

abundant organisms present in two of the five samples analyzed. Hence, a manually curated GSMM was 

reconstructed and presented in Chapter 3. Acidimicrobium ferrooxidans DSM 10331 and Acidithiobacillus 

caldus SM-1 have been reportedly used in bioleaching experiments (Oyama et al., 2018), and their 

interaction was evaluated using GSMMs of both organisms, which were reconstructed as part of a Master 

Thesis (Nunes, 2021) developed at our research group. The remaining GSMMs were reconstructed in 

this work. 

 

6.2.2 Online Databases 

Different online databases were used in each stage of this work, most of them through merlin’s 

framework. The National Center for Biotechnology Information (NCBI) (NCBI Resource Coordinators, 

2018), was used to retrieve the genome sequences and all genome files (Table 6.1) were imported by 

merlin, Universal Protein Resource Knowledgebase (UniProtKB) (Consortium, 2021) and BRENDA (A. 

Chang et al., 2021) were used to obtain enzyme functional information through merlin’s re-annotation 

pipeline, Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa et al., 2016) was used to obtain 

reactions based on the enzyme commission numbers (EC numbers) of the annotated genome into merlin, 

and also to perform pathway analysis, MetaCyc (Caspi et al., 2014) and BiGG models (King et al., 2016) 

were used for network curation, ModelSEED (Seaver et al., 2021) was used for merlin’s correct 
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reversibility of reactions workflow, PSORTb 3.0 (Yu et al., 2010) was used to predict reactions 

compartments, the Transporters Classification Database (TCDB) (Saier et al., 2021) was used to predict 

the model transport reactions through merlin’s plug-in TranSyT. 

 

Table 6.1. Genome’s information used to import genome files into merlin. 

Organism Taxonomy ID Assembly Accession Number 

Desulfurococcus amylolyticus DSM 16532 NCBI: txid768672 ASM23101v3 

Pyrobaculum aerophilum str. IM2 NCBI: txid178306 ASM722v1 

Thermodesulfovibrio yellowstonii DSM 11347 NCBI: txid289376 ASM2098v1 

Thermofilum adornatus 1910b NCBI: txid697581 ASM81324v1 

Thermoplasma acidophilum DSM 1728 NCBI: txid273075 ASM19591v1 

Thermus scotoductus SA-01 NCBI: txid743525 ASM18700v1 

 

6.2.3 Metabolic Models Reconstruction 

merlin (Capela et al., 2021) is a user-friendly framework that allows performing several steps of 

the reconstruction process semi-automatically, downloading relevant information from several databases, 

and was used to assist in the reconstruction of all GSMMs. Moreover, it has a graphical interface that 

facilitates GSMM information reviewing and manual curation. The main steps of each GSMM model 

reconstruction process are hereafter described. 

 

6.2.3.1 Genome Annotation 

merlin allows performing the functional annotation of a genome, using as similarity search engines 

the Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990) and Diamond (Buchfink et al., 

2021) against databases that contain reviewed (such as UniProt/Swiss-Prot) and unreviewed (such as 

UniProt/TrEMBL) enzyme information. The EC numbers and enzymatic functions assigned to each gene 
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are scored based on the taxonomy and frequency of similar sequences, as described elsewhere (Dias et 

al., 2018). The genome annotation is a crucial step of the GSMM reconstruction process, as incorrect EC 

numbers and enzymatic function assignments can significantly impact the model performance. Once the 

similarity search is complete, merlin’s automatic annotation workflow feature (Capela et al., 2021) can 

prioritize the obtained gene products and EC numbers annotations. This operation considers a list of 

organisms ordered by phylogenetic similarity provided by the user and defines a confidence level (A to I) 

for each gene annotation when a match is found. For all organisms within this study, due to the lack of 

available information on closely related organisms and to maximize retrieval of reviewed information, the 

automatic workflow feature was configured to use genus instead of species as input. The ranked list of 

the closely related phylogenetic genus of all organisms and the associated phylogenetic trees 

(Supplementary Material) were constructed from 16S RNA sequences reference organisms of each genus 

using the EMBL-EBI Clustal OMEGA multiple sequence alignment tool (Sievers et al., 2011). 

 

6.2.3.2 Assembling the Metabolic Network 

The assembly of a metabolic network starts with gathering all reactions present in the organism. 

merlin retrieves reactions by importing them from KEGG, based on the annotated EC numbers from the 

previous step and spontaneous reactions. Reactions should also be balanced (generic and metabolites 

without formula must be curated), and reversibility must be confirmed to avoid mispredictions of the 

model. To assist these steps, merlin checks whether a reaction is balanced and also corrects the 

reactions’ reversibility. Although these steps are automated in merlin, we performed manual curation 

based on curated information from literature or databases, such as MetaCyc (Caspi et al., 2014), as this 

step is strongly encouraged. 

 

Compartmentalization 

The compartmentalization of each model was based on results obtained from PSORTb 3.0 (Yu et 

al., 2010) choosing the specific organism type and gram stain before online submission. The “Long 

format” report generated was imported, and merlin’s compartments feature assigned each reaction to its 

specific compartment (Capela et al., 2021). 
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Transport Reactions 

After compartmentalizing the model, we defined transport reactions between compartments and 

also with the exterior. merlin’s TranSyT (Lagoa et al., 2021) was used to generate system-specific 

transport reactions associated with Gene-Protein-Reactions (GPRs) rules that are automatically integrated 

into each model. 

 

Genes, proteins, and reactions 

A high-quality GSMM requires GPRs’ rules to predict genetic modifications accurately. These 

associations are usually defined according to databases and literature (Rocha et al., 2008; Thiele et al., 

2010). merlin’s “Gene-Protein-Reaction rules” feature automatically adds GPRs rules to the model. The 

algorithm used by merlin to implement these rules is described elsewhere (Dias et al., 2015). 

 

6.2.3.3 Converting the Metabolic Network to a Stoichiometric Model 

Biomass equation 

Biomass composition must be experimentally determined in cells growing in the log phase before 

being included in the model. However, in the absence of experimental information organism-specific, data 

from genome information (particularly nucleotides, deoxynucleotides, and amino acids) can be used or 

adapted from phylogenetically related organisms. The importance of an accurate biomass composition 

determination has been reported (Santos et al., 2016), showing that even minor differences in biomass 

component coefficients can significantly impact simulations’ predictions. Therefore, a well-defined 

biomass equation is crucial for the GSMM reconstruction process. 

Information regarding the biomass composition of the organisms present in this study is scarce in 

the literature. Hence, for organisms of the domain Bacteria, the macromolecular composition was 

adapted from the gram-negative bacterium Escherichia coli (E. coli ) (Feist et al., 2007) or the gram-

positive bacterium Bacillus subtilis (B. subtilis) (Dauner & Sauer, 2001). For organisms for the domain 

Archaea, the macromolecular composition was adapted from the archaeon Methanosarcina fusaro (M. 

fusaro) (Goyal et al., 2014). The composition of amino acids, nucleotides, and deoxynucleotides was 

estimated from genome information through merlin’s “e-Biomass Equation” feature. This feature also 



Chapter 6  

 

128|   PhD Thesis | Sophia Santos 

automatically includes cofactor composition based on a study of universal essential cofactors in 

prokaryotes (Xavier et al., 2017). The fatty acids composition was taken from experimental data from the 

literature for all organisms. The lipid, carbohydrates, and cell wall composition (when required) 

compositions were adapted from the information of reference organisms considering enzyme annotation 

to include or exclude specific elements. When required, new coefficients were calculated, maintaining the 

relative abundances of the original data. 

Alternative biomass equations were defined for simulations under aerobic and anaerobic 

conditions. Since in the latter environmental conditions, Heme is not required, the compound was 

removed from the Cofactor composition, and all other coefficients were recalculated as mentioned before. 

 

Growth and maintenance ATP requirements 

No information was found for any of these organisms for growth and ATP maintenance. Therefore, 

such data was adapted from experimental data for E. coli (Feist et al., 2007; Neidhardt et al., 1990). 

 

6.2.3.4 Metabolic Model Curation and Validation  

The model curation is an iterative process that stops when simulation results match experimental 

data in the literature. merlin’s interface allows the user to efficiently perform re-annotations, correct 

reactions stoichiometric balance and directionality, include or exclude reactions from the model, and 

finally, export models in Systems Biology Markup Language (SMBL) format to be used in simulation using 

platforms such as Optflux (I. Rocha et al., 2010), Matlab®’s COBRA toolbox (Heirendt et al., 2019), 

COBRApy (Ebrahim et al., 2013) or REFRAMED. 

 

Gap-filling 

Before being ready for simulations, the metabolic network must be screened for possible gaps. The 

presence of gaps can deeply compromise the synthesis of biomass components and other relevant 

compounds. To assist in this process, merlin’s “BioISO” (Cruz et al., 2021) helps trace back the network 

to identify gaps that can be originated from errors in genome annotation, absence of enzymatic, transport, 

or exchange reactions, or incorrect reaction irreversibility or direction. Other features included in merlin, 
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such “find Blocked reactions”, which identifies reactions that contain dead-end metabolites, and “Draw 

in Browser” which opens on a web browser a selected KEGG pathway, showing specifically highlighted 

enzymes and reactions present in the model, facilitate the detection of gaps in the network (Capela et al., 

2021). Literature and databases (KEGG, MetaCyc, BRENDA, for instance) should be used to assist the 

gap-filling process. This is an iterative process, repeated until all biomass precursors, and other essential 

compounds, can be synthesized, and a feasible model is obtained. 

 

Aerobic and anaerobic metabolism and Carbon Source utilization 

Experimental data from the literature was consulted to identify the growth conditions for each 

organism. A defined minimal medium was favored when available. Whenever an organism was reported 

to have aerobic and anaerobic growth, both conditions were tested. Growth under different carbon sources 

was also tested and the presence of the specific transport reactions was screened. 

 

6.2.3.5 Simulations and Strain Optimizations 

Software 

SMETANA (Zelezniak et al., 2015) was used to predict pairwise interactions. All other simulations 

and community strain optimizations were performed using the Python package MEWpy (Pereira et al., 

2021) version 0.1.28, CPLEX 12.8.0 as a solver, through the PyCharm Integrated Development 

Environment (IDE). MEWpy allows for phenotype simulation using constraint-based methods provided by 

COBRApy (Ebrahim et al., 2013) and REFRAMED libraries, such as Flux Balance Analysis (FBA) (Varma 

& Palsson, 1994), or SteadyCom (Chan et al., 2017), specific for simulating microbial communities. 

Quantitative evaluation of the model was performed using Flux Variability Analysis (FVA) 

(Mahadevan et al., 2003) to determine S. azorense’s cellulose production capabilities in co-culture. The 

analysis included setting the specific growth rate to at least 10% of the specific growth rate obtained with 

parsimonious FBA (pFBA) (Lewis et al., 2010) in the respective reference flux distribution. 

All Python scripts, input/output auxiliary files, and GSMMs used in this work are available on GitHub 

at SophiaSantos/DesignOptimizationMicrobialCommunities. 

 

https://github.com/SophiaSantos
https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities
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6.3 Results and Discussion 

6.3.1 Samples Characterization 

Taxonomic profiling of all samples from hydrothermal vents in São Miguel, Azores was performed 

using assembly-based and read-based analysis algorithms (Chapter 2). Joint information from both 

approaches revealed the potential presence of 12 different microorganisms. Several of these organisms 

were predicted to be present in various samples. Physiological and metabolic characteristics of all 

identified organisms were screened to determine if their presence in such environments is known or 

viable, based on each sample site's physiochemical properties. Two of the five samples, FCRG and PCRG, 

were excluded from this characterization, as both are composed of only two organisms present in the CV 

sample and therefore their interactions will be screened in that sample. 

From all organisms identified through the profiling algorithms nine were selected for the GSMM 

reconstruction process: 

 

Acidithiobacillus caldus SM-1 

Acidithiobacillus caldus SM-1 (A. caldus) is a gram-negative, moderately thermophilic, acidophilic 

(pH range 1.0 - 3.5), chemolithoautotrophic bacterium. Growth temperature ranges between 32 and 

52ºC. Mixotrophic growth is obtained with tetrathionate and glucose or yeast extract (Hallberg et al., 

1994). A. caldus is capable of oxidizing elemental sulfur and other reduced inorganic sulfur compounds 

(Hallberg et al., 1996) and therefore is one of the dominant sulfur-oxidizing bacteria in bioleaching 

reactors together with iron-oxidizing bacteria (L. Chen et al., 2012; Watkin et al., 2009; Watling et al., 

2014). The GSMM of this organism was reconstructed as part of the master thesis entitled “Genome-

scale metabolic modeling of an extremophile microbial community” by Rui Barros Nunes. 

Acidimicrobium ferrooxidans DSM 10331 

Acidimicrobium ferrooxidans DSM 10331 (A. ferrooxidans) is a gram-positive, moderately 

thermophilic, acidophilic bacterium. Growth has been observed between temperatures of 45 and 50ºC 

of temperature and 1 and 3.5 pH values. Autotrophic growth is possible on ferrous iron and heterotrophic 

growth is possible on yeast extract (Cleaver et al., 2007). A. ferrooxidans is usually found in mixed cultures 

of thermophilic microorganisms in bioleaching processes, to enhance metal extraction in heaps (Watling 
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et al., 2014). The GSMM of this organism was reconstructed as part of the master thesis entitled 

“Genome-scale metabolic modeling of an extremophile microbial community” by Rui Barros Nunes. 

 

Desulfurococcus amylolyticus DSM 16532 

Desulfurococcus amylolyticus DSM 16532 (D. amylolyticus) is an obligately anaerobic and 

hyperthermophilic archaeon. Growth is optimal at pH values between 6.0 and 6.5 and temperature values 

between 80 and 92ºC (Perevalova et al., 2016). Can grow on a broad range of carbon sources (sugars, 

polysaccharides, and amino acids) but is one of the few Crenarchaeota able to grow in cellulose (Reischl 

et al., 2018).  

 

Pyrobaculum aerophilum str. IM2 

Pyrobaculum aerophilum str. IM2 (P. aerophilum), in contrast with most species of the genus 

Pyrobaculum, is an aerobic, hyperthermophilic archaeon. Organic and inorganic compounds serve as 

substrates under both aerobic and anaerobic respiration. Growth temperatures range between 75 and 

105ºC and pH values between 5.8 and 9.0. Autotrophic growth is achieved by the oxidation of hydrogen 

or thiosulfate (Volkl et al., 1993). 

 

Sulfurihydrogenibium azorense Az-Fu1 

Sulfurihydrogenibium azorense Az-Fu1 (S. azorense) is a gram-negative, thermophilic, 

chemolithoautotrophic, and microaerophilic bacterium (Lalonde et al., 2005). The bacterium grows 

optimally at 68ºC, pH 6, and at low concentrations of NaCl and can also grow heterotrophically (Nakagawa 

et al., 2005) and use elemental sulfur, thiosulfate, hydrogen, and ferrous iron as energy sources (Aguiar 

et al., 2004). As an Aquificales member, S. azorense fixes CO2 via reductive Tricarboxylic Acid Cycle (rTCA) 

(Hügler et al., 2007) to generate acetyl-CoA as an end product (Gupta et al., 2013). The GSMM of this 

organism was reconstructed in Chapter 3 of this thesis. 
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Thermodesulfovibrio yellowstonii DSM 11347 

Thermodesulfovibrio yellowstonii DSM 11347 (T. yellowstonii) is a thermophilic sulfate-reducing, 

strictly anaerobic gram-negative bacterium. Growth was observed for temperatures between 40ºC and 

70ºC and pH between 5.5 and 8.5.T. yellowstonii can use sulfate, thiosulfate, and sulfite terminal electron 

acceptors (Bhatnagar et al., 2015). In the presence of sulfate, growth was only observed with lactate, 

pyruvate, hydrogen plus acetate, or formate plus acetate. Pyruvate and lactate are oxidized to acetate 

(Henry et al., 1994). 

 

Thermofilum adornatus strain 1910b 

Thermofilum adornatus strain 1910b (T. adornatus) is a strict anaerobe archaeon. As moderately 

acidophilic and hyperthermophilic crenarchaea, T. adornatus requires various components of cells or 

culture broths of other Crenarchaeota, specifically culture broth filtrate of Desulfurococcus and 

Pyrobaculum. Growth was observed for temperatures between 50ºC and 95ºC, and pH between 5.3 and 

8.5. Peptone, yeast extract, cellulose, starch, glucose, lactose, mannose, and pyruvate can be used as 

carbon sources. However, T. adornatus can utilize cellulose as the sole carbon and energy source 

(Zayulina et al., 2020). 

 

Thermoplasma acidophilum DSM 1728 

Thermoplasma acidophilum DSM 1728 (T. acidophilum) is a thermophilic, acidophilic archaeon 

lacking a cell wall. Growth takes place over a range of temperatures from 45ºC to 62ºC and a pH between 

1 and 3.5 (Darland et al., 1970). Anaerobic growth is highly supported by the addition of sulfur which 

results in the accumulation of thiosulfate. Under fully aerobic conditions, sulfur compounds show no 

influence on growth. Yeast extract is required for growth in all conditions (Segerer et al., 1988). 

 

Thermus scotoductus SA-01 

Thermus scotoductus SA-01 (T. scotoductus) is a gram-negative aerobic thermophilic bacterium, 

which can grow at temperatures between 42ºC and 73ºC and pH values between 5.0 and 11. Is a 
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facultative anaerobe, reducing nitrate to nitrite anaerobically. Growth was observed in proline, glutamate, 

pyruvate, and sucrose (Kristjánsson et al., 1994). 

 

6.3.1.1 Caldeira Velha (CV) 

The metagenomic approaches used to determine the microbial composition predicted that nine 

microorganisms were present in this sample. However, there was experimental evidence of the presence 

of the genus (Sahm et al., 2013) of only seven of such microorganisms, which were therefore selected 

to proceed to the GSMM reconstruction process (Table 6.2). Nevertheless, it should be noted that 

inconsistencies in terms of optimal growth temperatures and pH values can be spotted concerning the 

sample global physicochemical properties for some of the predicted organisms. 

 

Table 6.2. Caldeira Velha microbial community composition and organism physicochemical properties. Organisms’ 
abundances were recalculated maintaining the relative abundances of the original data. 

Organism Domain Temperature (ºC) pH Abundance 

Ambiental conditions  98 2.23  

S. azorense Az-Fu1 Bacteria (Gram -) 50 - 73°C 5.8 - 9.0 61.4% 

T. adornatus 1910b Archaea 70 - 90°C 5.5 - 7.0 10.4% 

T. yellowstonii DSM 11347 Bacteria (Gram -) 40 - 70°C 5.5 - 8.5 7.6% 

A. caldus SM-1 Bacteria (Gram -) 32 - 52°C 1.0 - 3.5 7.3% 

A. ferrooxidans DSM 10331 Bacteria (Gram +) 45 - 50°C 1.0 - 3.5 5.1% 

T. acidophilum DSM 1728 Archaea 45 - 63°C 0.8 - 4.0 5.0% 

P. aerophilum str. IM2 Archaea 75 - 104°C 5.0 - 7.0 3.1% 

 

The taxonomic profiling algorithms varied only on the assignment of different members of the 

Pyrobaculum genus (Pyrobaculum aerophlilum str. IM2 and Pyrobaculum islandicus DSM 4184). These 

differences can be justified by the different reference genome databases in each approach. However, 

Pyrobaculum aerophlilum str. IM2, besides having more growth and metabolic information available (188 
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versus 64 hits on the Web of Science database), has more predicted genes (2518 versus 2043) and 

therefore it was selected for the GSMM reconstruction process. Thermorodis peleae and Thiomonas 

intermedia K12 were excluded from the study, as there is no evidence of neither being present in such 

environments (Sahm et al., 2013). 

 

6.3.1.2 Nascente Poente (NP) 

The taxonomic profiling approaches predicted the presence of five microorganisms for this sample. 

Among them, are two different Thermus strains, Thermus antranikianii DSM 12462 and Thermus 

scotoductus SA-01. The two strains are phylogenetically very close (Chung et al., 2000; Lapierre et al., 

2006), and therefore only one was selected for the GSMM reconstruction process. Thermus scotoductus 

SA-01 was selected (Table 6.3) to proceed with this study because it is reported to be one of the Thermus 

species isolated in the hot springs of the Azores (Santos et al., 1989). 

 

Table 6.3. Nascente Poente microbial community composition and organism physicochemical properties. Organisms’ 
abundances were recalculated maintaining the relative abundances of the original data. 

Organism Domain Temperature (ºC) pH Abundance 

Ambiental conditions  95.8 6.88  

P. aerophilum str. IM2 Archaea 75 - 104°C 5.0 - 7.0 79.9% 

T. scotoductus SA-01 Bacteria (Gram -) 65 - 80°C 5.0 - 11 17.7% 

D. amylolyticus DSM 16532 Archaea 68 - 97°C 5.7 - 7.5 1.28% 

T. adornatus 1910b Archaea 70 - 90°C 5.5 - 7.0 1.14% 

 

Note that T. adornatus is characterized by a growth dependence on various components of cells 

or culture broths of other Crenarchaeota, specifically, culture broth filtrate of Desulfurococcus and 

Pyrobaculum species (Zayulina et al., 2020), which curiously were also predicted as present in this 

samples. 
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6.3.1.3 Esguicho de Maio (ESG) 

Taxonomic profiling algorithms have predicted the presence of three microorganisms in this sample 

(Table 6.4). As stated for the CV sample, Pyrobaculum aerophlilum str. IM2, predicted by the read-based 

metagenomic approach was selected for the GSMM reconstruction process instead of Pyrobaculum 

islandicus DSM 4184, predicted by the assembly-based metagenomic approach. 

 

Table 6.4. Esguicho de Maio microbial community composition and organism physicochemical properties. Organisms’ 
abundances were recalculated maintaining the relative abundances of the original data. 

Organism Domain Temperature (ºC) pH Abundance 

Ambiental conditions 
 

98 7.29  

P. aerophilum str. IM2 Archaea 75-104°C 5.0-7.0 97% 

S. azorense Az-Fu1 Bacteria (Gram -) 50-73°C 5.8-9.0 1.7% 

D. amylolyticus DSM 16532 Archaea 68-97°C 5.7-7.5 1.3% 

 

 

6.3.2 Genome Annotation 

All GSMM reconstructions started with a genome re-annotation step, supported by the phylogenic 

trees developed for each organism (Supplementary Figure 6.1 - 6.6) and merlin’s feature automatic 

workflow (Supplementary Table 6.1 - 6.6). The complete list of genes reviewed for each organism is 

available in Supplementary Table S1. Manual curation was performed and the number of genes in each 

model decreased in general by about 20% of the total metabolic genes due, for instance, to the removal 

of pseudo and truncated genes, incomplete EC numbers, and blocked reactions with encoded genes. 

 

 

6.3.3 Biomass composition 

The biomass macromolecular composition according to the domain and gram staining of each 

organism is presented in Table 6.5. The detailed biomass composition for each organism is available in 

Supplementary Table S2. When no experimental data were available for a given organism, the biomass 
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composition of the reference organisms Escherichia coli (E. coli ) (Feist et al., 2007) for gram-negative 

bacteria, Bacillus subtilis (B. subtilis) (Dauner & Sauer, 2001) for gram-positive bacteria or 

Methanosarcina fusaro (M. fusaro) (Goyal et al., 2014) for archaea, was adapted. If the organism did not 

exhibit the enzymes responsible for producing one or more of the respective adapted compositions, the 

compounds were excluded from the biomass equation. The coefficients of the remaining compounds 

were recalculated, maintaining the relative abundances of the original data. 

 

Table 6.5. Biomass macromolecular composition according to the organism domain and gram staining. 

Biomass Composition (g gDW-1 (%)) 

 Bacteria Archaea 

 Gram-negative Gram-positive  

Protein 53.3 52.8 61.0 

DNA 2.7 2.6 3.4 

RNA 13.6 6.6 27.7 

Lipids 2.9 7.6 5.3 

Carbohydrates 10.7 3.1 1.0 

Cell Wall 6.8 22.4 ----- 

Cofactors 10 4.9 6.6 

Total 100 100 100 

Reference (Feist et al., 2007) (Dauner & Sauer, 2001) (Goyal et al., 2014) 

 

Amino acid, deoxynucleotide, and nucleotide composition were calculated based on the genome’s 

information for each organism using the e-Biomass feature in merlin. 

The lipid and carbohydrate compositions were adapted from the gram-negative bacterium 

Escherichia coli (E. coli ) (Feist et al., 2007), the gram-negative bacterium Bacillus subtilis (B. subtilis) 

(Dauner & Sauer, 2001) or the archaeon Methanosarcina fusaro (M. fusaro) (Goyal et al., 2014) 

depending on the organism domain and gram staining. 

The average fatty acid composition for organisms of the domain bacteria was retrieved from 

experimental data available for each organism (Supplementary Table S3). 
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Exception made for the archaeon Thermoplasma acidophilum, which has a unique cellular 

membrane (Smith et al., 1973), cell wall compositions were reconciled between the KEGG reactions 

assigned through merlin’s annotation to its biosynthesis pathway (Supplementary Table S4) and the cell 

wall compositions of the respective domain and gram staining. 

Cofactor composition was based on the study of universal essential cofactors in prokaryotes (Xavier 

et al., 2017). 

The growth-associated energy (GAM) and non-growth-associated energy (NGAM) requirements have 

not been experimentally determined yet for any of the organisms present in this study. Therefore, for all 

organisms, the GAM requirements were estimated according to (Thiele et al., 2010) and based on data 

for E.coli (Neidhardt et al., 1990). The NGAM requirements of 8.39 mmol ATP gDW−1 h−1 were adopted from 

E. coli (Feist et al., 2007). 

 

6.3.4 Metabolic Models 

All genome-scale metabolic reconstructions were generated through a bottom-up approach. A 

summary of the final metabolic reconstructions is presented in Table 6.6. 

 

Table 6.6. Metabolic information of the final Genome-Scale Metabolic Reconstructions. Compartments are divided into c – 
cytosol, p – periplasm, and e – extracellular. Archaea organisms include a pseudo-compartment to simulate the proton motive 
force (PMF). 

Organism Genes Reactions Metabolites Subsystems Compartments Gene Ratio 
(%) 

D. amylolyticus 188 494 417 81 
2 

(c, e) 
13 

P. aerophilum 284 646 508 88 
2 

(c, e) 
12 

T. yellowstonii 326 727 656 88 
3 

(c, p, e) 
 

17 

T. adornatus 225 555 436 76 
2 

(c, e) 
12 

T. acidophilum 292 691 543 89 
2 

(c, e) 
19 

T. scotoductus 412 979 766 96 
3 

(c, p, e) 
17 
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Some reactions without GPR associations were included in the reconstructions and those comprise 

spontaneous, exchange, outer membrane transport, and diffusion transport reactions of metabolites, 

such as CO2, water, or O2. Final GSMMs are available as an SBML version 3 file, and all detailed metabolic 

information is included on the GitHub repository 

SophiaSantos/DesignOptimizationMicrobialCommunities/models/models_azores/. 

 

6.3.5 Models’ validation 

6.3.5.1 Environmental Conditions 

The validation of each model involved using a defined minimal medium. In the cases of 

microorganisms that require a rich medium to grow, a minimal defined medium was set according to the 

physiological and metabolic information (Table 6.7). 

When relevant aerobic and anaerobic conditions were tested. All medium components were 

allowed to enter the system unconstrained, except for carbon sources and amino acids, which were 

constrained according to literature data for each organism. Carbon sources present in Table 6.7 were all 

tested. For the microorganisms able to grow aerobically and anaerobically two different biomass equations 

were included in the model to better evaluate growth under both conditions. These reactions, 

“R_Biomass__cytop” and “R_Biomass_anaerobic__cytop”, differ in the presence or absence of heme 

in the Cofactor composition respectively. Oxygen (O2) and ferrous iron (Fe2+) were supplied under aerobic 

conditions. 

For microbial community simulations, the environmental conditions applied for each community 

were defined by a gathering of the compounds set for individual organisms present in the specific 

community. No amino acids were included in the defined environmental conditions. When possible 

glucose was the carbon source preferred. Medium components were allowed to enter the system 

unconstrained, except for carbon sources, which were constrained according to literature data for each 

organism. 

 

 

 

 

https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/models/models_azores
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Table 6.7. Minimal medium composition for each condition tested: chemolithoautotrophic and heterotrophic growth. Oxygen 
and Ferrous iron (highlighted in grey) were only supplied under aerophilic conditions. 

Organism Defined Medium Carbon sources Aerobic/Anaerobic 

D. amylolyticus 
Ammonia, Sulfur, 

Orthophosphate, Folate, 
Nicotinate, and Hydrogen 

Cellulose, Glucose, 
Fructose, and CO2 

Anaerobic 

P. aerophilum 

Ammonia, Sulfate, 
Orthophosphate, Folate, 

Nicotinate, Cyanide ion, and 
Hydrogen 

CO2, acetate, and 
Casaminoacids 

Oxygen and Fe2+ 

T. yellowstonii 
Ammonia, Sulfate, 

Orthophosphate, Hydrogen, 
Cyanide ion 

Lactate, Pyruvate, 
Acetate 

Anaerobic 

T. adornatus 

Ammonia, Sulfate, 
Orthophosphate, Nicotinate, 

Thymine, Coenzyme A, Riboflavin, 
Folate, Pyridoxal Phosphate, GTP, 

L-Arginine, L-Histidine, L-
Isoleucine, L-Leucine, L-Lysine, L-
Phenylalanine, L-Tryptophane, L-

Tyrosine, L-Valine 

Glucose, Cellulose Anaerobic 

T. acidophilum 

Ammonia, Sulfur, 
Orthophosphate, Riboflavin, 

Nicotinate, L-Histidine, L-Leucine, 
L-Lysine, L-Valine 

Glucose Oxygen and Fe2+ 

T. scotoductus Nitrate, Sulfate, Orthophosphate 
Glucose, Proline, 

Glutamate, Maltose 
Oxygen and Fe2+ 

 

 

6.3.5.2 Modeling Simulations 

Growth under the different carbon sources reported in the literature was simulated and in silico 

growth was compared to data in the literature. Whenever possible, growth under aerobic and anaerobic 

conditions was simulated. Simulation under different electron acceptors was not screened.  

Overall, the results of the pFBA predictions match the data retrieved from the literature specific for 

each organism in the different conditions tested, showing, when available, a predicted specific growth 

rate in the same range as reported in the literature. The organisms T. acidophilum, T. scotoductus, and 

P. aerophilum are aerobic but able to grow under anaerobic conditions. The predictions also showed the 
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ability of those organisms to grow in the absence of oxygen. Simulation under different sulfur and nitrogen 

sources or byproduct predictions were not screened due to the lack of information in the literature for 

most of the organisms. 

 

6.3.6 Community Simulation 

Samples of CV, ESG, and NP were selected to proceed into a community simulation process. 

SMETANA, FBA/pFBA, and SteadyCom were used to simulate all three samples. These tools have distinct 

outputs, which together complement and validate each other (as shown in Chapter 4 of this thesis). Thus, 

when possible, the use of different tools is recommended. SMETANA proved to predict possible pairwise 

interactions, FBA/pFBA and SteadyCom showed to provide good results on predicting individual and 

community-specific growth rate, as well as interspecies flux distributions. SteadyCom also adds 

information on species abundances within the community, which is relevant to the communities studied 

here. 

 

6.3.6.1 SteadyCom 

SteadyCom (Chan et al., 2017) predicts the metabolic flux distribution and relative abundance of 

each species in a community. However, when multiple organisms are growing, there is not a constant 

growth rate for all microbes and therefore the fastest-growing organism can outgrow the rest of the 

community members. Although SteadyCom imposes a steady-state condition, that includes a restriction 

to force zero flux through an organism with zero abundance to avoid such situations. In these cases, the 

fast-growing organism achieves the maximum abundance percentage of 1, and fluxes are computed for 

that organism, while other organisms’ abundance is set to 0, and no fluxes are computed.  
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Table 6.8. Models’ validation against experimental conditions from literature. 

Organisms 
 

D. amylolyticus P. aerophilum T. yellowstonii T. adornatus T. acidophilum T. scotoductus 

Carbon Source 
Observed 
Growth 

(h-1) 

Predicted 
Growth 

(h-1) 

Observed 
Growth 

(h-1) 

Predicted 
Growth 

(h-1) 

Observed 
Growth 

(h-1) 

Predicted 
Growth 

(h-1) 

Observed 
Growth 

(h-1) 

Predicted 
Growth 

(h-1) 

Observed 
Growth 

(h-1) 

Predicted 
Growth 

(h-1) 

Observed 
Growth 

(h-1) 

Predicted 
Growth 

(h-1) 

Glucose 0.059 0.064 ----------- ----------- ----------- ----------- 0.139 0.219 0.062 0.069 0.415 0.447 

CO2 0.004 0.005 0.102 0.145 ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- 

Cellulose 0.059 0.100 ----------- ----------- ----------- ----------- Growth 0.487 ----------- ----------- ----------- ----------- 

Acetate ----------- ----------- 0.187 0.201 Growth 0.019 ----------- ----------- ----------- ----------- ----------- ----------- 

Fructose 0.038 0.024 ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- 

Maltose ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- Growth 0.894 

Lactate ----------- ----------- ----------- ----------- 0.029 0.031 ----------- ----------- ----------- ----------- ----------- ----------- 

Pyruvate ----------- ----------- ----------- ----------- Growth 0.042 ----------- ----------- ----------- ----------- ----------- ----------- 

Casaminoacids ----------- ----------- 0.258 0.398 ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- 

L-Proline ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- Growth 0.373 

L-Glutamate ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- Growth 0.373 

Aerobic/Anaerobic       

Aerobic No growth No growth   No growth No growth No growth No growth     

Anaerobic   Growth 0.058     Growth 0.114 Growth 0.151 



Chapter 6  

 

142|       PhD Thesis | Sophia Santos 

For our case studies, the organisms indeed show different growth rate ranges (from 0.059 to 0.415 

h-1 (Table 6.8)), which impairs the prediction of species abundancies and consequent flux distribution on 

these samples using SteadyCom. 

 

6.3.6.2 SMETANA 

SMETANA estimates the interaction potential of the species in a microbial community and returns 

the probability of inter-species metabolite exchange. No growth and flux rates are directly obtained through 

SMETANA. 

SMETANA calculates two scores to predict the species’ interaction potential: the Metabolic 

Resource Overlap (MRO) and the Metabolic Interaction Potential (MIP), and a SMETANA score that 

evaluates the growth dependency of species A on metabolite m produced by species B. 

MRO and MIP represent opposite circumstances. While the first indicates the predisposition to 

competition between the organisms, as both require the same metabolite(s) from the environment, MIP 

represents the tendency of the community’s organisms to depend on each other, not being able to grow 

on their own. Results showed that for the three samples, SMETANA’s MIP score was not available and 

the MRO score was about 0.14, both indicating that, for samples, all organisms barely depend on the 

others to grow. 

SMETANA score identifies pairwise interactions, independent of the other organisms in the 

community. All individual GSMMs were reconstructed using merlin (Dias et al., 2018), which relies on 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa et al., 2016), for metabolites 

and reactions identifiers. However, SMETANA requires BiGG metabolite identifiers, thus these exchange 

metabolites identifiers were converted. The SMETANA species interaction potential and potential inter-

species interactions are available in Table 6.9. Only inter-species interactions with values greater than 

0.5 were considered. While analyzing possible inter-species interactions patterns emerged. A. 

ferrooxidans acts as a Fe2+ donor while A. caldus acts mainly as a sulfur donor. These results compare 

with information from the literature that reports the roles of A. caldus as one of the dominant sulfur-

oxidizing bacteria in bioleaching reactors, together with A. ferrooxidans as an iron-oxidizing bacterium 

(Watkin et al., 2009; Watling et al., 2014). 
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Table 6.9. Pairwise interactions predicted by the SMETANA simulation method. Only inter-species interactions with values 
greater than 0.5 were considered. 

Receiver Metabolites Donnor 

A. caldus Fe3+ A. ferrooxidans 

A. ferrooxidans Hydrogen Sulfide A. caldus 

P. aerophilum 
L-Cysteine A. caldus 

CO2, Ammonia T. scotoductus 

D. amylolyticus 
L-Cysteine P. aerophilum 

Riboflavin, CO2, Ammonia T. scotoductus 

S. azorense 

Fe3+, Thiosulfate A. caldus 

Fe3+ A. ferrooxidans 

Hydrogen sulfide D. amylolyticus 

T. acidophilum 

Sulfur A. caldus 

L-Histidine, L- Isoleucine, L-Leucine, L-Lysine, 

L-Valine 
P. aerophilum 

T. adornatus 

L-Cysteine, Thiosulfate A. caldus 

L-Histidine, L- Isoleucine, L-Leucine, L-Lysine, 

L-Phenylalanine, L-Tryptophane, L-Tyrosine, L-

Valine 

P. aerophilum 

Cellulose S. azorense 

Riboflavin T. scotoductus 

T. yellowstonii 

Hydrogen sulfide, Ammonia A. caldus 

Hydrogen sulfide 

Ammonia 
A. ferrooxidans 

 

Regardless of no literature evidence, SMETANA’s predictions show the relevant role of P. 

aerophilum as an amino acid donor for organisms with amino acid auxotrophies such as T. adornatus 

(Zayulina et al., 2020) and T. acidophilum (Segerer et al., 1988). P. aerophilum has the metabolic 
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capability to produce all amino acids, corroborating these findings. Also, results show that T. scotoductus 

is the only organism with a donor character, with a specific riboflavin production role in the presence of 

the archaeons T. adornatus and D. amylolyticus. SMETANA predicts T. adornatus as a receiver organism, 

which is supported by experimental evidence demonstrating its growth dependence on culture broth 

filtrate of Desulfurococcus and Pyrobaculum (Zayulina et al., 2020). 

Notably, the presence of T. adornatus, which uses cellulose as a carbon source (Zayulina et al., 

2020), seems to trigger S. azorense to produce cellulose. These results show a possible route of cellulose 

production by S. azorense that should be further investigated using other simulation and optimization 

methods. 

 

6.3.6.3 FBA 

Initially, a community model was created using the REFRAMED Python package, using the 

Community function, providing the individual GSMMs as input and getting a compartmentalized model 

as output. 

As no experimental data from the literature was found on specific growth rates for community 

growth, only intraspecies interactions were analyzed. Driven by SMETANA’s predictions, samples CV and 

ESG were essentially screened for the potential production of cellulose by S. azorense, while sample NP 

was screened for the potential production of amino acids by P. aerophilum. No amino acids were included 

in the environmental constraints to test the hypothesis of P. aerophilum amino acid production for the 

other organisms in the community. 

ESG’s sample is composed of three organisms, D. amylolyticus, P. aerophilum, and S. azorense. 

Of the three organisms present in this sample, D. amylolyticus is the more demanding, being auxotrophic 

for some amino acids (Perevalova et al., 2016). Moreover, D. amylolyticus uses cellulose as a carbon 

source, which might trigger S. azorense to produce cellulose. Analyzing the pFBA results (Figure 6.1), P. 

aerophilum is indeed producing the essential amino acids for D. amylolyticus’ growth, as well as amino 

acids for S. azorense’s growth. However, D. amylolyticus uses glucose as a carbon source, and no 

cellulose is produced by S. azorense. Even in nitrogen-limiting conditions, which trigger S. azorense to 

produce cellulose when growing in isolation, no cellulose is predicted to be produced. These results 
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corroborate SMETANA’s predictions showing P. aerophilum's capacity to produce amino acids and the 

inability of D. amylolyticus to trigger S. azorense to produce cellulose. 

 

 

Figure 6.1. Schematic representation of the main metabolite interactions, predicted by the pFBA simulation method, between 
the organisms present in the three analyzed samples. Dashed lines correspond to known metabolite exchange routes; Solid 
line correspond to unknown metabolite exchange routes. 

 

NP sample is composed of 4 organisms, P. aerophilum, D. amylolyticus, T. adornatus, and T. 

scotoductus. The pFBA results once more showed that P. aerophilum has an essential role in the 

production of amino acids when growing in the community, not only acting as an amino acid donor to the 

organism D. amylolyticus, as identified in the ESG sample but also an amino acid donor for T. adornatus 

that is reported to be highly dependent on culture broth filtrate of Desulfurococcus and Pyrobaculum 

(Zayulina et al., 2020) species (Figure 6.1). As predicted by SMETANA, the pFBA results show that T. 

scotoductus seems to have a neutral role in the community, not predicting any possible interactions with 

the rest of the organisms in this sample. 
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The pFBA interspecies interactions predictions obtained for the CV sample (Figure 6.1), which is 

composed of S. azorense, T. adornatus, T. yellowstonii, A. caldus, A. ferrooxidans, T. acidophilum, and 

P. aerophilum, follow the same pattern of the predictions for other samples, in which P. aerophilum is 

the main donor, producing amino acids for all other organisms. A. caldus is also producing high amounts 

of sulfur compounds (Watling et al., 2014).  However, the consuming route is not easy to follow. Notably, 

in the pFBA analysis of this sample, cellulose is produced by S. azorense. The ability to produce cellulose 

seems to be triggered by the presence of T. adornatus, as it consumes all cellulose produced by S. 

azorense, which also supports SMETANA’s predictions. 

More importantly, predictions of SMETANA and pFBA methods for these communities showed 

accordance with the possible path for cellulose production by S. azorense, so these results will be 

screened using community optimization tools. 

 

6.3.7  Community Optimization 

In Chapter 3 of this thesis, the individual metabolic capability of S. azorense cellulose production 

was screened using a metabolic engineering optimization supported by evolutionary algorithms. This 

analysis did not return solutions robust enough to increase cellulose production. Here, with the 

information gathered from the simulation predictions, a community metabolic engineering optimization 

using MEWpy was tested. The simulation results showed the potential production of cellulose by S. 

azorense when co-cultured with T. adornatus, thus such a hypothesis was further investigated. A second 

hypothesis was tested using a co-culture of S. azorense and Escherichia coli K-12 MG1655 (E. coli), using 

the iAF1260 GSMM (Feist et al., 2007), as E. coli is one of the most studied organisms and one of the 

best suitable metabolic engineering platforms (Chen et al., 2013). Therefore, the optimization process in 

this co-culture case was restricted to E. coli reactions. 

An FVA analysis was performed, before the optimization, to understand the community models 

solution space regarding cellulose production under stress conditions (nitrogen limitation conditions) 

(Table 3.10). Under these conditions, S. azorense exhibited cellulose production capability when growing 

in isolation. For each co-culture, the total consumption of the carbon source was imposed, and the specific 

growth rate was set to at least 10% of the specific growth rate obtained with pFBA simulation under 

nitrogen-limiting conditions. FVA results of the individual growth of S. azorense showed that none of the 



Modeling and Design of Microbial Communities from Extremophilic Environments in the Azores 

 

PhD Thesis | Sophia Santos   |147 

tested co-cultures required mandatory cellulose production. However, a high amount of cellulose might 

be produced using the S. azorense and E. coli co-culture. 

 

Table 6.10. FVA analysis of S. azorense cellulose production capabilities using a 2 organisms community. Total consumption 
of the carbon source by S. azorense was imposed, and the specific growth rate was set to at least 10% of the specific growth 
rate obtained with pFBA simulation under nitrogen-limiting conditions. 

Cellulose Production under N-limiting Conditions 

(mmol gDW
-1 h-1) 

Community  

S. azorense and T. adornatus [0.0, 0.013] 

S. azorense and E. coli [0.0, 1.119] 

 

MEWpy was used for the validation of both co-culture cellulose optimization. All reactions in the 

co-culture of S. azorense and T. adornatus community model were defined as targets. Whereas, for the 

S. azorense and E. coli co-culture, iAF1260 reactions (E. coli GSMM identifier) were defined as a target. 

In both cases, essential and exchange reactions were removed. All optimizations were run for a maximum 

of 100 generations and a maximum size of two for the candidate, through an RKOProblem (maximum 

number of reaction deletions). Jupyter Notebooks with the whole process are available in Supplementary 

Material – saz_tac_optimization.ipynb and saz_eco_optimization.ipynb. 

When performing the reaction deletion optimization, although a maximum of two modifications was 

set, the best solutions in the S. azorense and T. adornatus co-culture included only one modification. All 

best solutions, in this case, were evaluated by a pFBA simulation, showing that indeed S. azorense 

produces cellulose, but all cellulose produced is consumed by T. adornatus, raising doubt about the 

effectiveness of this co-culture to produce cellulose in high amounts. 

In the case of the community formed by S. azorense and E. coli (Figure 6.2) when reaction deletions 

are performed in E. coli, a set of two modifications was always obtained, although when performing a 

pFBA evaluation of the modifications cellulose production by S. azorense was achieved using only one of 

the modifications. 
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Figure 6.2. Schematic representation of E. coli K12 MG1655 Glycolisis Pathway deletions predicted using MEWpy to improve 
S. azorense Az-Fu1 cellulose production when growing in a co-culture system. For each one of the predicted deletions (orange), 
acetate is produced by E. coli K12 MG1655. ACALD - acetaldehyde dehydrogenase (acetylating), HEX7 – hexokinase, PGI - 
glucose-6-phosphate isomerase, PYK - pyruvate kinase, TPI - triose-phosphate isomerase. 
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All reaction deletions are predicted to belong to E. coli’s central carbon metabolism (Table 6.11), 

which directly influences a higher production of acetate. Acetate is then consumed by S. azorense, 

resulting in cellulose production. 

 

Table 6.11. Reaction KO analysis of the community formed by S. azorense and E. coli for cellulose production capabilities. 
Total consumption of the carbon source by S. azorense was imposed, and the specific growth rate was set to at least 10% of 
the specific growth rate obtained with pFBA simulation under nitrogen-limiting conditions. pFBA simulations were performed 
under nitrogen-limiting conditions. ACALD - acetaldehyde dehydrogenase (acetylating), HEX7 – hexokinase, PGI - glucose-6-
phosphate isomerase, PYK - pyruvate kinase, TPI - triose-phosphate isomerase. 

Cellulose Production under N-limiting Conditions 

(mmol gDW
-1 h-1) 

Reaction Knock-Out Cellulose production 

PYK 0.492 

ACALD 0.536 

PGI 0.492 

HEX7 0.561 

TPI 0.580 

 

Considering these results, a new pFBA analysis was performed to test the S. azorense cellulose 

production in the presence of acetate. When growing in isolation, S. azorense cellulose production 

capabilities improve when acetate consumption is forced, suggesting that the cellulose production 

mechanism is highly dependent on unknown factors. 

Although the optimization results show cellulose production potential, experimental validation is 

still required. In this specific case, the validation of these results can face some difficulties as E. coli and 

S. azorense have distinct optimal growth temperature ranges (23-40ºC and 50-73ºC, respectively). 

Studies have already tried to adapt E. coli to high temperatures (Rudolph et al., 2010), which can be a 

route for the experimental validation of the hypotheses here suggested the optimization of S. azorense 

cellulose production. 

  



Chapter 6  

 

150|       PhD Thesis | Sophia Santos 

6.4 Conclusions 

A microbial community study of extreme environments from the hydrothermal sites in São Miguel, 

Azores, using GSMM reconstructions was performed. Three of the five hydrothermal samples analyzed in 

Chapter 2 were characterized in terms of predicted organisms and the GSMM for each of the present 

organisms was reconstructed and validated with data available in the literature. The reconstructed GSMMs 

can be used independently for investigating the extraordinary microbial metabolism in extreme 

environments. 

Simulation methods with validated applications to microbial communities, such as FBA/pFBA 

(Stolyar et al., 2007) and SMETANA (Zelezniak et al., 2015) were used to predict the possible interactions 

between the organisms in such environments. Simulations considered the co-occurrence in the samples 

ESG, NP, and CV. The predictions have elucidated two main metabolic roles within the specific 

communities: P. aerophilum as an amino acid donor and T. adornatus as a trigger for S. azorense 

cellulose production. S. azorense has been reported to produce sufficient amounts of exopolysaccharides 

under stress conditions (Lalonde et al., 2005), and the metabolic capabilities of S. azorense production 

of cellulose presented by its GSMM, under nitrogen-limiting conditions, were described in Chapter 3 of 

this thesis. Although optimization of cellulose production using evolutionary algorithms did not return 

robust solutions when S. azorense was growing in isolation, results of the simulations in a community 

context showed some testable hypotheses. 

Using MEWpy for the in silico design of microbial communities using GSMMs and evolutionary 

algorithms, the strain optimization of the co-cultures S. azorense with T. adornatus and S. azorense with 

E. coli was performed. The co-culture of S. azorense and E. coli was tested since E. coli is one of the 

most studied organisms and one of the best suitable metabolic engineering platforms (Chen et al., 2013), 

and MEWpy allows performing optimization in a specific organism within a community, as described in 

Chapter 5. 

The community optimization results showed that indeed T. adornatus triggers S. azorense to 

produce cellulose. However, the cellulose is consumed by T. adornatus, raising doubt about the 

effectiveness of this co-culture to produce cellulose in high amounts. Moreover, when reaction deletions 

are performed in E. coli within its co-culture with S. azorense, cellulose production by S. azorense is 
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achieved. The deleted E. coli reactions have a specific role in increasing acetate production, which then 

is consumed by S. azorense, revealing a significant part of the metabolic cellulose production route. 

Although the optimization results here reported using MEWpy demonstrate its applicability in the 

design of microbial communities and S. azorense as a possible cellulose producer, experimental 

validation is still required. 
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6.5 Supplementary Material 

 

Additional file in IPYNB format: saz_tac_optimization.ipynb and saz_eco_optimization.ipynb 

Link: DesignOptimizationMicrobialCommunities/JupyterNootbooks/ 

 

Additional files in SBML format: acaldus.xml, aferrooxidans.xml, damylolyticus.xml, 

paerophilum.xml, sazorense.xml, tacidophilum.xml, tadornatus.xml, tscotoductus.xml and 

tyellowstonii.xml 

Link: DesignOptimizationMicrobialCommunities/models/models_azores/ 

 

Additional files in SBML format: community_CV.xml, community_NP.xml and community_ESG.xml 

Link: DesignOptimizationMicrobialCommunities/models/community_models/ 

 

Additional file in Excel format: Chapter6_Supplementary_Material.xlsx 

Link: DesignOptimizationMicrobialCommunities/Data 

 

Table S1 Annotation of the genes present in each model 

Table S2 Biomass composition in mmol of molecules per gram of biomass. Molecular weight in 

green background cells was calculated using the fatty-acyl Coa as the R group in lipids. Amino acids' 

molecular weight does not include a water molecule. Nucleotides' molecular weight does not include 

diphosphate molecule. 

Table S3 Average lipid and fatty acid compositions for each organism. 

Table S4 Cell wall composition for each organism. 

Table S5 Genes included in each model. 

Table S6 Reactions included in each model, including Gene-Protein-Reaction associations. 

Table S7 Metabolites included in each model 

https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/JupyterNootbooks
https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/models/models_azores
https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/models/community_models/
https://github.com/SophiaSantos/DesignOptimizationMicrobialCommunities/tree/main/Data/


Modeling and Design of Microbial Communities from Extremophilic Environments in the Azores 

 

PhD Thesis | Sophia Santos   |153 

Thermodesulfovibrio yellowstonii 

 

Supplementary Figure 6.1. Phylogenetic tree of Thermodesulfovibrio yellowstonii relative genus. This tree was built using 
the EMBL-EBI Clustal OMEGA multiple sequence alignment tool. Numbers in front of each genus represent the branch lengths 
to each node generated automatically by the tool using the Neighbor-joining method. 

 

Supplementary Table 6.1 List of phylogenetic similar organisms/genus to Thermodesulfovibrio yellowstonii given to the 
automatic workflow feature in merlin. 

Organism Confidence level 

Thermodesulfovibrio yellowstonii 

(strain ATCC 51303 / DSM 11347 / 

YP87) 

A 

genus Thermodesulfovibrio B 

genus Geobacter C 

genus Leptospirillum  D 

genus Desulfovibrio E 

genus Nitrospira  F 

 

Thermus scotoductus 

 

Supplementary Figure 6.2. Phylogenetic tree of Thermus scotoductus relative genus. This tree was built using the EMBL-
EBI Clustal OMEGA multiple sequence alignment tool. Numbers in front of each genus represent the branch lengths to each 
node generated automatically by the tool using the Neighbor-joining method. 
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Supplementary Table 6.2. List of phylogenetic similar organisms/genus to Thermus scotoductus given to the automatic 
workflow feature in merlin. 

Organism Confidence level 

Thermus scotoductus (strain ATCC 

700910 / SA-01) 
A 

genus Thermus B 

genus Deinococcus C 

genus Thermodesulfovibrio  D 

genus Thermomicrobium E 

genus Chloroflexus F 

genus Nitrospira G 

 

 

Thermoplasma acidophilum 

 

 

Supplementary Figure 6.3. Phylogenetic tree of Thermoplasma acidophilum relative genus. This tree was built using the 
EMBL-EBI Clustal OMEGA multiple sequence alignment tool. Numbers in front of each genus represent the branch lengths to 
each node generated automatically by the tool using the Neighbor-joining method. 
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Supplementary Table 6.3. List of phylogenetic similar organisms/genus to Thermoplasma acidophilum given to the 
automatic workflow feature in merlin. 

Organism 
Confidence 

level 

Thermoplasma acidophilum  A 

genus Thermoplasma B 

genus Picrophilus C 

genus Archaeoglobus  D 

genus Methanocaldococcus E 

genus Methanococcus F 

genus Methanosarcina G 

genus Halobacterium H 

genus Haloferax I 

 

 

 

Desulfurococcus amylolyticus 

 

 

 Supplementary Figure 6.4. Phylogenetic tree of Desulfurococcus amylolyticus relative genus. This tree was built using the 
EMBL-EBI Clustal OMEGA multiple sequence alignment tool. Numbers in front of each genus represent the branch lengths to 
each node generated automatically by the tool using the Neighbor-joining method. 
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Supplementary Table 6.4. List of phylogenetic similar organisms/genus to Desulfurococcus amylolyticus given to the 
automatic workflow feature in merlin. 

Organism 
Confidence 

level 

Desulfurococcus amylolyticus (strain 

DSM 18924 / JCM 16383 / VKM B-

2413 / 1221n) 

A 

genus Desulfurococcus B 

genus Thermococcus C 

genus Pyrococcus  D 

genus Archaeoglobus E 

genus Sulfolobus  F 

genus Aeropyrum G 

genus Methanococcus H 

genus Methanocaldococcus I 

 

 

Pyrobaculum aerophilum  

 

 

Supplementary Figure 6.5. Phylogenetic tree of Pyrobaculum aerophilum relative genus. This tree was built using the 
EMBL-EBI Clustal OMEGA multiple sequence alignment tool. Numbers in front of each genus represent the branch lengths to 
each node generated automatically by the tool using the Neighbor-joining method. 
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Supplementary Table 6.5. List of phylogenetic similar organisms/genus to Pyrobaculum aerophilum given to the automatic 
workflow feature in merlin. 

Organism 
Confidence 

level 

Pyrobaculum aerophilum A 

genus Pyrobaculum B 

genus Thermoproteus C 

genus Methanocaldococcus D 

genus Methanococcus E 

genus Aeropyrum F 

genus Sulfolobus G 

genus Desulfurococcus H 

genus Thermofilum I 

 

 

Thermofilum adornatus  

 

 

Supplementary Figure 6.6. Phylogenetic tree of Thermofilum adornatus relative genus. This tree was built using the EMBL-
EBI Clustal OMEGA multiple sequence alignment tool. Numbers in front of each genus represent the branch lengths to each 
node generated automatically by the tool using the Neighbor-joining method. 
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Supplementary Table 6.6. List of phylogenetic similar organisms/genus to Thermofilum adornatus given to the automatic 
workflow feature in merlin. 

Organism 
Confidence 

level 

Thermofilum adornatus 1505 A 

genus Thermofilum B 

genus Saccharolobus C 

genus Sulfolobus  D 

genus Aeropyrum E 

genus Thermoproteus  F 

genus Methanocaldococcus G 

genus Methanococcus H 
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Chapter 7 

Chapter 7 Conclusions and Future Perspectives 

 

 

 

 

 

 

This final chapter includes the overall conclusions achieved by the research conducted in this thesis, 

as well as some perspectives on future research to address unanswered and new questions raised 

throughout this work. 
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7.1 Overall outcomes 

This thesis had as a major objective to give insights into the use of computational methods for the 

rational design of microbial communities, using extremophilic microbial communities from hydrothermal 

sites in the Azores as a case study. Overall, the main goals were achieved and the main conclusions 

obtained throughout the developed work are as follows: 

▪ The review of the literature has shown the crucial role of microbial communities throughout Earth’ 

biosphere(Gilbert et al., 2014; Rusch et al., 2007; Turnbaugh et al., 2007), especially the ones in 

extremophilic environments, due to their remarkable genomic and metabolic attributes (Durvasula et 

al., 2018) and industrial applications. To support the understanding of functions and interactions 

within these complex systems, the applications of metabolic modeling throughout the use of GSMMs 

in a microbial community context are increasing every day, with emphasis on the prediction of 

microbe-microbe/host-microbe interactions (Almut Heinken et al., 2020; Zelezniak et al., 2015), as 

well as some studies on the design and engineering of microbial communities (García-Jiménez et al., 

2018; Pacheco & Segrè, 2021). However, some limitations and challenges are known, such as the 

accurate identification of organisms in a microbial community, reconstruction of GSMMs with good 

phenotypic predictions, and the availability of experimental data for the validation of simulation and 

optimization methods. 

▪ The prokaryotic diversity of five samples from hydrothermal vents at São Miguel, Azores, was 

characterized using assembly-based and read-based taxonomic profiling algorithms. Both taxonomic 

profiling approaches presented very similar results, demonstrating that the two approaches validate 

and complement each other and indeed both should be applied whenever possible (Quince et al., 

2017). Differences spotted on the assignment of different members of the Pyrobaculum genus, 

depending on the profiling algorithm, are justified by the use of different reference genome databases. 

However, results showed that a significant part of the prokaryotic diversity present in the five samples 

was not identified due to the still large amount of unculturable organisms without a reference genome 

available in databases (Zorrilla et al., 2021). 

▪ Taxonomic profiling algorithms predicted a high abundance of Aquificales and Crenarchaeota 

members in three of the five samples analyzed (Caldeira Velha, Esguicho de Maio, and Nascente 

Poente), which are regularly present in hydrothermal sites (Strazzulli et al., 2017). Specifically, S. 
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azorense Az-Fu1 was one of the most abundant organisms predicted. It was first isolated in January 

2001 from terrestrial hot springs at Furnas, São Miguel Island, Azores, Portugal (Aguiar et al., 2004).  

▪ The GSMM of the chemolithoautotrophic organism S. azorense Az-Fu1 was reconstructed to try to 

get insights into its metabolism, and genetic adaptation to extreme environments, and investigate its 

capability to produce compounds with industrial interest. In fact, genome annotation and metabolic 

analysis revealed important carbon and sulfur metabolism routes. In specific, the CO2 fixation route 

appears to be through the rTCA (Hügler & Sievert, 2010), there are incomplete Pentose Phosphate 

and Embden-Meyerhof-Parnas pathways, and the presence of a truncated SOX system, as indicated 

in literature (Aguiar et al., 2004), was confirmed. 

▪ Moreover, during the genome re-annotation of S. azorense Az-Fu1, the presence of the main subunits 

of the bacterial cellulose operon and their regulators were found, and model simulations showed the 

organism's metabolic capability to produce cellulose under nitrogen-limiting conditions. These results 

are in line with reports from literature (Lalonde et al., 2005) that have shown S. azorense Az-Fu1 

produces exopolysaccharides under stress conditions. Optimization of cellulose production using 

evolutionary algorithms was tested; however, no robust enough solutions were returned. Also, 

experimental validation must be performed to confirm whether cellulose production is naturally viable. 

▪ The lack of experimental data on quantitative matter limits the spectrum of application of S. azorense 

Az-Fu1 GSMM; however, given the fact that S. azorense Az-Fu1 was identified in natural microbial 

communities, the qualitative study of the organism's metabolic role through computational simulation 

and optimization within a microbial community is of huge importance. 

▪ Different steady-state simulation methods with application to microbial communities were analyzed 

to try to understand their potential phenotypic behavior prediction performances. The analyzed 

methods showed, to some extent, to predict the phenotypic behavior that characterizes the 

nitrification process catalyzed by N. europaea and N. vulgaris. Each one of the simulation methods 

showed strengths and weaknesses and the success of either approach depends on the microbial 

community composition and complexity. Consequently, the use of more than one simulation method 

is recommended whenever possible as these showed to complement and validate each other. 

▪ To complement existing algorithms for the study and manipulation of microbial communities, several 

tools were also developed and implemented in MEWpy, aiming to make available a suitable tool for 

the in silico design of microbial communities using GSMMs. This allows, depending on the individual 

GSMMs detail, to perform (i) minimal medium optimization, (ii) species metabolite interactions, (iii) 



Chapter 7 

 

162|  PhD Thesis | Sophia Santos 

untargeted, and (iv) targeted reaction/gene/enzyme optimization for a given objective 

(maximize/minimize growth or production of target compounds). MEWpy already allowed the 

simulation of microbial communities, once it includes phenotype simulation methods for individual 

or community GSMMs from the COBRApy (Ebrahim et al., 2013) and REFRAMED libraries. It also 

offers a practical interface to strain optimization metaheuristics, such as EAs, including multi-objective 

methods that are suitable for application in GSMMs of microbial communities. 

▪ A microbial community study of extreme environments from the hydrothermal sites in São Miguel, 

Azores, using GSMM reconstructions was performed. Three of the five hydrothermal samples 

analyzed in Chapter 2 were characterized in terms of predicted organisms and the GSMM for each 

of the present organisms was reconstructed and validated with available data in the literature. Overall, 

9 organisms were selected to proceed with the GSMM reconstruction process. The reconstructed 

GSMMs can also be used independently for investigating the extraordinary microbial metabolism in 

extreme environments. 

▪ Simulation methods with validated applications to microbial communities were used to predict the 

possible interactions between the organisms in the sampled environments. Predictions have 

elucidated two main metabolic roles within the specific communities: P. aerophilum str. IM2 acts as 

an amino acid donor and T. adornatus strain 1910b acts as a trigger for S. azorense Az-Fu1 cellulose 

production.  

▪ Untargeted and targeted co-culture optimization was performed using the new features of MEWpy as 

a microbial community optimization framework to evaluate S. azorense Az-Fu1 capabilities of 

cellulose production.  

▪ Untargeted in silico design of the co-culture S. azorense Az-Fu1 and T. adornatus strain 1910b 

showed that indeed S. azorense Az-Fu1 produces cellulose; however, that production is totally 

consumed by T. adornatus strain 1910b, raising doubts about the effectiveness of this co-culture to 

produce cellulose in high amounts.  

▪ Targeted in silico design co-culture of S. azorense Az-Fu1 and E. coli K12 MG1655 showed that 

acetate produced by E. coli K12 MG1655 is consumed by S. azorense Az-Fu1, being a significant 

part of the cellulose production route. 

▪ Although the optimization results here reported using MEWpy demonstrate the framework 

applicability in the design of microbial communities, there is still room for new implementations on 

MEWpy concerning microbial communities’ optimization. 
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7.2 Future Work 

The present thesis contributed to developing an optimized co-culture for the production of cellulose 

by the extremophile S. azorense Az-Fu1 present in samples of hydrothermal vents in São Miguel, Azores, 

using reconstruction and simulation methods and developing metabolic engineering tools using MEWpy. 

However, additional research is recommended either to improve and expand the obtained results or to 

address other questions: 

▪ Although the GSMMs of the extremophilic organisms here presented have some experimental 

validation, manual curation, and further validation are still needed, essentially on carbon and sulfur 

metabolisms, as well as under different electron donors and acceptors, due to the adapted nutrient-

limiting environments. 

▪ Organism-specific metabolic routes should be investigated, aided by these GSMMs, to find, similarly 

to what was done for S. azorense Az-Fu1, individual genomic, metabolic, or enzymatic traits that can 

result in a possible production of compounds with industrial interest. 

▪ MEWpy aims to be a reference tool for the metabolic engineering of communities, making available 

a diverse catalog of simulation and optimization heuristics and functions applicable in a microbial 

community context. However, there is still room for new implementations on MEWpy concerning 

microbial communities’ optimization. Current efforts are focused on:  

(i) implementing optimization of the best community composition for a given objective, 

using top-down and bottom-up approaches,  

(ii) implementing additional constraints to improve SteadyCom simulation predictions in 

cases of the presence of fast-growing organisms. These constraints can be made by 

trying to restrict organism-specific exchange reactions lower and/or upper bounds, 

limiting the organism's growth in the same range as others present in the community. 

▪ Although the simulation and optimization methods applied showed possible routes for the 

production of cellulose by S. azorense Az-Fu1 in nitrogen limitation and in a co-culture with E. coli 

K12 MG1655, experimental validation is still needed. Limitations will be found once E. coli K12 

MG1655 and S. azorense Az-Fu1 have distinct optimal growth temperature ranges. Possible 

alternatives can range from the adaptation of an E. coli strain to high temperatures or finding a 

thermophilic organism with the potential of E. coli K12 MG1655 to trigger S. azorense Az-Fu1 to 

produce cellulose. 



Chapter 7 

 

164|  PhD Thesis | Sophia Santos 

▪ In this work, simulation and optimization methods showed a possible path for the optimization of 

a co-culture product. Questions are raised if these methods using GSMMs are in fact scalable for a 

number of organisms in the range of dozens, not due to the implementation of the methods per se 

but essentially by the actual possibility of experimental validation.  
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