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Abstract

In this work we perform a generic derivation on how collective excitations emerge from a many-body system

of interacting particles within a time-dependent Hartree-Fock mean-field theory at zero-temperature. To

this end, we study the linear response of the system’s reduced density matrix in a many-body perturbation

theory and demonstrate that it can be expressed in terms of a generalized eigen-problem of the effective

two-particle Hamiltonian of the electron-hole interaction. We then specify this formalism for the case of a

crystal system and an atomistic electron-electron interaction, structuring the generalized eigen-problem in

terms of the Bloch momentum and spin degrees of freedom. At last, we apply this theory to the case of

hexagon boron nitride structures in a nearest-neighbor tight-binding model for the electronic Bloch states.

We then solve the generalized eigen-problem numerically and obtain the excitonic states energies and wave-

functions. Also, we comment on the role of screening in the Hartree and Fock interaction, on the numerical

details of the generalized eigen-problem and on the reliability of the Tamm-Dancoff approximation.

Keywords time-dependent, mean-field approximation, Hartree-Fock, screening, reduced density matrix,

zero temperature, linear response, effective two-particle Hamiltonian, generalized eigen-problem, crystal,

tight-binding model, exciton, hexagonal boron nitride
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Resumo

Neste trabalho realizamos uma derivação genérica sobre como excitações colectivas emergem de um

sistema de muitos-corpos de partículas interactuantes numa teoria de Hartree-Fock de campo médio

dependente do tempo a temperatura zero. Para tal, estudamos a resposta linear da matriz de densidade

reduzida do sistema numa teoria de perturbação de muitos-corpos e demonstramos que esta pode ser

expressa em termos de um problema generalizado aos valores próprios do Hamiltoniano efetivo de duas

partículas da interação eletrão-buraco. Em seguida, especificamos este formalismo para o caso de um

sistema cristalino e de uma interação eletrão-eletrão atomística, estruturando o problema generalizado aos

valores próprios em termos dos graus de liberdade do momento de Bloch e do spin. Por fim, aplicamos

esta teoria ao caso de estruturas de nitreto de boro hexagonal num modelo de tight-binding ao vizinho

mais próximo para os estados de Bloch electrónicos. Em seguida, resolvemos numericamente o problema

generalizado aos valores próprios e obtemos as energias e as funções de onda dos estados excitónicos.

Para além disso, comentamos também no papel da blindagem na interação de Hartree e de Fock, nos

pormenores numéricos do problema aos valores próprios e na fiabilidade da aproximação de Tamm-

Dancoff.

Palavras-chave dependente do tempo, aproximação de campo médio, Hartree-Fock, blindagem, ma-

triz de densidade reduzida, temperatura zero, resposta linear, Hamiltonian efetivo de dois-partículas,

model de tight-binding, problema generalizado aos valores próprios, cristais excitão, nitreto de boro hexag-

onal

vi



Contents

1 Introduction 1

1.1 Exciton basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Definition and characterization . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Excitons in 2D materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Exciton coupling to light . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Collective excitations in a many-body system . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Excitonic generalized eigen-problem in a crystal 8

2.1 Introduction to Linear Response Theory . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Time-dependent Hartree-Fock mean-field theory . . . . . . . . . . . . . . . . . . . . 9

2.3 Linear response theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Zero temperature regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Excitonic generalized eigen-problem in a crystal 19

3.1 Electron-electron atomistic interaction in the Bloch basis . . . . . . . . . . . . . . . . 19

3.1.1 General electron-electron interaction . . . . . . . . . . . . . . . . . . . . . 21

3.2 Structure of eigen-problem in the Bloch momentum degree of freedom . . . . . . . . . 22

3.3 Structure of eigen-problem in the spin degree of freedom . . . . . . . . . . . . . . . . 24

3.4 Screening in the Hartree and Fock terms . . . . . . . . . . . . . . . . . . . . . . . 26

4 Numerical Implementation 30

4.1 Discretization of the eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 k-point sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 Regularization of interaction for small momentum . . . . . . . . . . . . . . . 32

4.1.3 Cutoff of the interaction for large momentum . . . . . . . . . . . . . . . . . 34

vii



4.2 Eigen-solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Convergence with sampling and cutoff . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Excitons on hBN structures 39

5.1 Tight-binding model for the single-particle Bloch states . . . . . . . . . . . . . . . . . 39

5.2 Isolated hBN excitonic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Bright exciton: singlet state for Q = 0 . . . . . . . . . . . . . . . . . . . . 43

5.2.2 Excitonic band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 hBN-metal hetero-structure excitonic properties . . . . . . . . . . . . . . . . . . . . 52

6 Conclusions and future work 55

Appendices 61

A Details on the theoretical description of excitons 62

A.1 Symmetry properties of the interaction matrix elements . . . . . . . . . . . . . . . . 62

A.2 Commutators and Anti-commutator properties . . . . . . . . . . . . . . . . . . . . . 62

A.3 Symmetry properties of the two-particle Hamiltonian blocks . . . . . . . . . . . . . . 65

B Electron-electron interaction in quasi-2D systems 66

B.1 Rytova-Keldysh Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.2 Screened Rytova-Keldysh Potential (2D dielectric-metal interface ) . . . . . . . . . . . 68

viii



Chapter 1

Introduction

1.1 Exciton basics

1.1.1 Definition and characterization

An exciton is a bound state of an electron and a hole, which are attracted to each other by the electrostatic

force. Consider the semi-classical picture of an electron transitioning from a filled valence band to a

vacant conduction band, either through the absorption of a photon or some another excitation method, in

a two-band model of semiconductor crystal. After the electron is promoted, it leaves behind in the valence

band a hole, an abstraction for the location from which the electron was moved, which all the remaining

electrons will see as a positive charge. The negatively-charged electron in the conduction band and the

positively-charged hole in the valence band are then electrostatically attracted to each other forming a

neutral bound state [(1)]. Furthermore, the presence of the positively-charged hole in the electron filled

valence band causes all of the electrons to begin to swarm the hole. However, since all these valence

electrons will also interact with each other, the attraction felt for each individually electron to the hole will

actually be screened. The electron in the conduction band is then less attracted to this hole due to the

repulsive electric forces from large numbers of electrons surrounding the hole. These repulsive forces

provide a stabilizing energy balance. Consequently, the exciton has slightly less energy than the unbound

electron and hole pair [(2)].

Concerning the value of the binding energy and the spread of the wavefunction, excitons in condensed

matter can be classified under different regimes, Wannier-Mott and Frenkel [(3)]. Wannier-Mott excitons

capture the hydrogen-like nature of the electron–hole interaction in semiconductors where the coupling

is delocalized over several unit cells of the real space lattice due to the high dielectric constant reducing

the screening of the Coulomb interaction. It’s description can be obtained through the Wannier equation

which is essentially a Schrödinger equation with an effectively reduced mass of the electron-hole pair and

1



a modified (screened) potential. The other extreme is represented by Frenkel excitons, which correspond

to a correlated electron-hole pair localized on a single lattice site and mostly prevail in organic materials.

1.1.2 Excitons in 2D materials

Exciton physics are especially relevant in two-dimensional (2D) materials, such as transition metal dichalco-

genide (TMD) semiconductors or hexagonal boron nitrite (hBN). Their 2D nature leads to a reduced screen-

ing effect and thus to an enhanced Coulomb interaction, following the formation of more strongly bound

excitons. In a cruder explanation, the screening is reduced because the electrostatic field lines that bound

the electron and the hole are, for the most of it, within the vacuum outside the 2D semiconductor, re-

sulting in a more weakly screened interaction compared to that of a bulk system. The suitable choice

of the electrostatic potential to describe this 2D screening is known as the Rytova-Keldish potential [(4),

(5)]. Although 2D material excitons cannot be genuinely described as either in the Wannier-Mott or Frenkel

limit, being understood as an intermediate nature of both regimes, the Wannier-Mott description in the

effective mass approximation appears to be largely appropriate even for quantitative prediction [(6)]. Fur-

thermore, despite being a rather young research field, there is extensive research on exciton 2D physics

and its application in optics and optoelectronics such as more efficient photo-voltaic cells, photo-detectors,

valley-dependent optoelectronics and novel quantum coherent phases [(7), (8)]. Seek the articles [(9),

(10)] for an in-deep review on 2D exciton physics and its applications.

1.1.3 Exciton coupling to light

Concerning the coupling of the excitons to light, we can classify the excitons as being either bright or

dark. Bright excitons are associated to optically permitted transitions while dark excitons are associated

to optically forbidden transitions. Bright excitons can form/recombine from a single photon absorption/e-

mission, while dark excitons must also have some additional scattering (with other excitons, electron,

phonons, defects, etc...) that can induce, for example, considerable changes in the exciton center of

mass momentum [referring to non-vertical transition, as illustrated in Fig.(1)(a)] and/or spin flips [refer-

ring to spin-forbidden transition, as illustrated in Fig.(1)(b)]. Since dark excitons cannot recombine via

direct emission of a photon, they have much longer radiative lifetimes than bright excitons. This highly

stable non-radiative nature of dark excitons makes them attractive for many applications such as optically

controlled information processing [(11), (12), (13)]. However, in order to eventually access the dark exci-

ton’s information, one needs first to make it respond to light. As compiled in the review article [(14)], some

studies have attempted to this “brightening” of dark excitons in various ways. Regarding the “brightening”
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of non-vertical transition dark excitons, the studies [(15), (16), (17), (18)] used near-field spectroscopy to

induce a coupling to surface plasmon-polaritons such that the light dispersion “opens up”, making optical

transitions at lower frequencies accessible for non-zero center of mass momentum excitons. On the other

hand, regarding the “brightening” of spin-forbidden transitions, the authors of [(19)] applied an in-plane

magnetic field that does not perturb the material’s electronic structure but can still alter the spin alignment

of the carries, which relaxes the spin-selections rule and makes dark excitons optically detectable. With

the dark exciton photoluminescence response effectively “switched” on, the probing of the (isolated) dark

excitons dynamics is made possible, for example, by using strain to funnel the long-living dark excitons to

the high-strain regions (while the bright excitons decay naturally during the funneling) such that they are

the principal participants in drift and diffusion, as discussed in [(20), (21), (22)].

Figure 1: Schematic illustration of the optically allowed and forbidden electronic transitions in a two-band

model for the bright and dark excitons concerning (a) the exciton center of mass momentum Q and (b)

the spin of the electron. The electron is depicted in red, the hole in blue and the light dispersion cone in

yellow. Note that, the occupied spin state in the valence band, corresponds to the spin of the electron that

originally occupied the state, the spin of the hole would be its negative.

1.2 Collective excitations in a many-body system

We now make a short overview of some of the commonly used approaches to theoretically study excitonic

physics and the main struggles of trying to account for the many-body electron interactions.

We start by mentioning the workhorse of ground-state mean-field electronic properties, known as

density-functional theory (DFT), belonging to the family of first principles (ab initio) methods. DFT provides

a way to map the many-body electron problem (where the electron-electron (e-e) interaction term couples

the single-particle equations together) onto a single-body problem. This is done by considering the ground-

state expectation value of some observable O as a function of the electron density n(r). A successful
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minimization of the energy functional will yield the ground-state density n(0)(r) and thus all others ground-

state observables. First, one considers an energy functional that does not explicitly have an e-e interaction

but has instead some other effective single-particle potential Vs that “bathes” the system and is felt by every

electron individually. The corresponding system of Schrodinger’s equations for the electrons wavefunction

φi (where i denotes the electron) is know as the Kohn-Sham (KS) equations. This effective potential is

generally composed of three terms: some applied external potential V , an Hartree term VH describing

the e-e Coulomb repulsion and an exchange-correlation potential Vxc introduced as mean to include all

the many-body interactions that are otherwise not accounted for. Of course, the exact form of Vxc is not

known and it must be approximated. Since both VH and Vxc depend on n(r), which depends on φi,

which in turn depend on Vs, the problem of solving the KS equation has to be done in a self-consistent,

iterative, way. Usually one starts with an initial guess for n(r), then calculates the corresponding Vs and

then solves the KS equations for the φi’s. From these, one can calculate a new density and start all over

again. This procedure is then repeated until convergence is reached.

There are, for example, several other ground-state mean-field approaches who use instead the (time-

orded) single-particle Green’s functions (GF) G as their building block, as apposed to the single-particle

density in DFT. In this perturbation theory formalism, the broad strokes are still very similar: one obtains

the non-interacting electron propagatorG0 in a mean field approximation and introduces a self-energy term

Σ as basically a black box that contains all the unaccounted many-body interactions. Then, through the

so called Hedin’s iterative scheme depicted in Fig.(2) and a series of approximations, one can calculate

G and, from there, obtain all the ground-state properties. Following Hedin’s equations in Fig.(2), one

of the most common approximations, known as the GW , makes the initial ansatz Σ ≈ 0 such that

G ≈ G0, leading to Γ ≈ 1 which circles back to the self energy becoming Σ = GW (hence the name).

The corresponding screened potential W contains some of the effects of the dielectric screening (or

polarization in a quantum chemist language) established by the rearrangement of the remaining electrons

as a response to the removal of one of the electrons. As a follow-up approximation, one usually considers

only a first-order perturbation theory with the self-energy reading Σ = G0W0.
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Figure 2: Hedin’s iterative method composed of five, connected, integro-differential equation for the sys-

tem’s Green’s function G, with G0 its non-interacting counterpart, the irreducible vertex function Γ, the

irreducible polarizability P , the screened Coulomb potentialW and the self-energy Σ. The path made of

black arrows shows the GW , process which bypasses the computation of Γ (gray arrows).

While DFT, GW and similar ground-state mean-field theories are extremely useful for ground-state prop-

erties they fail to attain the emergence of collective excitations from the residual interaction between the

excited electron and the remaining hole. This should not surprise us since a variational mean-field theory

is based on minimization [of the energy (at zero temperature) or of the free energy (at finite temperature)]

and therefore it can only give reliable results for the quantities which we are minimizing. Since we are ap-

proximating a system of interacting particle to a system of independent particles, one would naively expect

that a (mean-field) excited state could be obtained just by removing an electron from one of the occupied

states |o⟩ in the (mean-field) ground-state |0⟩mf, and promoting it to an empty state |e⟩. Such excited

state could then be written as |e, o⟩ = c†eco |0⟩mf and would have an energy equal to ϵmf
e − ϵmf

o +Emf
0 with

Emf
0 the (mean-field) ground-state energy. However this do not always apply since some states could have

their energies bellow the quasi-particle (mean-field) bandgap. This is the case for excitons in insulators

or plasmon-polaritons in metals. We emphasize that this inability in describing collective excitations is not

a breakdown of mean-field theory, only of ground-state mean-field theory. If one instead describes the

system using time-dependent mean-field theory this collective excitations do naturally emerge. Of course,

there are other well established equivalent ways to describe this kind of collective excitation, for example

via Configuration Interaction Singles (CIS), commonly employed in Quantum Chemistry, where we write

the excited state as a linear combination |X⟩ =
∑

eo Ψ
X
eoc

†
eco |0⟩mf where Ψ

X
eo are the coefficients to be

determined. As another example, one could obtain this kind of collective excitation via a time-dependent

many-body perturbation theory, by resuming an infinite series of ladder and bubble (Feynman) diagrams in

the two-particle propagator, which leads to the so called Bethe-Salpeter equation (BSE). Another possibility

is using time-dependent Density Functional Theory (TD-DFT). For a comprehensive guide on all this for-
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malism see [(23)]. In particular, if one is interested in pedagogical discussion of the BSE for a two-particle

Green’s function see also [(24)].

1.3 Thesis Structure

We perform a generic derivation on how the collective excitation of a many-body electron system are

captured within a time-dependent Hartree-Fock mean-field theory for the special case of insulators at zero-

temperature. We then apply this formalism to the case of a hBN isolated monolayer and a hBN-metal

hetero-structure.

Specifically, in Sec.II, we introduce a general theoretical description of excitons. We start by considering

a many-body system of electron described by an Hamiltonian expressed in second quantization containing

a single-particle term H0 and an interaction term Hint with a generic potential V αβ
γδ of symmetry V (r −

r′) = V (r′ − r). We then perturb this system with a external applied force such that the equilibrium

Hamiltonian is driven out-of-equilibrium. The perturbation Hamiltonian is described as a single-particle

term coupled to the external force through some linear operator as usually done in linear response theory.

From here, we study the time evolution of the system’s reduced density matrix within a time-dependent

Hartree-Fock mean-field scheme Then we expand the reduced density matrix in a power series and retain

only first order term in order to study the system’s linear response. This is done in the special case of an

insulator at zero temperature such that the single-particle states can be described as being either occupied

or empty. Finally, we show that the linear response can be obtained by solving instead a generalized

eigenvalue problem for the effective two-particle (electron-hole) Hamiltonian He-h.

Secondly, in Sec.III, we derive the specific form of He-h. We start by specifying the focus on crystals

systems and derive the explicit form of the potential V αβ
γδ for an atomistic e-e interaction written in a Bloch

basis assuming ultra-localized Wannier functions. Using those results we then show the structure of the

eigen-problem (still for an insulator at zero temperature) in the Bloch momentum degree of freedom and

in the spin degree of freedom, commenting on the role of screening on the Hartree and Fock terms.

In Sec.IV we give an example on how to solve the generalized eigen-problem numerically, giving the

broad strokes of said numerical implementation while discussing on some important details.

Finally, in Sec.V, we solve the generalized eigen-problem to the specific case of an isolated hBN mono-

layer and obtain its complete excitonic band structure and respective wave-functions. For this, we first

show how to obtain the electronic single-particle Bloch states in a nearest-neighbor tight-binding model.

We then consider the case of a hBN-metal hetero-structure in order to study the effects of (bulk) metal

6



screening on the excitonic energy levels.
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Chapter 2

Excitonic generalized eigen-problem in a crystal

2.1 Introduction to Linear Response Theory

All local physical measurements of a many-body system amount, in practice, to a process in which a

perturbation is created by an applied external force, in the neighborhood of some point r′ at some time

t′, and then the response of the system is measured at some other point r at some later time t > t′.

Consider the case of a many-body systemH which is weakly coupled to a one-particle external perturbation

Hext through some operator B such that the total system is described by H = H +Hext. In first order

perturbation theory, the expectation value of some local observable A(r, t) perturbed by the external

force/source F (r, t) can be written as

⟨A(r, t)⟩ = ⟨A(r, t)⟩0 −
∫
dr′
∫
dt′χAB (r, t; r′, t′)F (r′, t′) , (2.1)

where ⟨A(r, t)⟩0 is the initial equilibrium expectation value and the “coefficient” of proportionality be-

tween the change in the expectation value and the force is the so called generalized susceptibility. On the

other hand, the expectation value of A(r, t) in a given initial state |α⟩ ofH , under the action of the weak

perturbationHext is modified as ⟨A⟩ ≡ ⟨α|A |α⟩ → ⟨α|U−1AU |α⟩ where U(t) is the evolution oper-

ator in the interaction representation of Htot. By expanding U(t) to first (linear) order in the perturbation

Hext, the change in the expectation value yields

δ ⟨A(r, t)⟩ = i

ℏ

∫ t

−∞
dt′ ⟨[Hext(r, t

′), A(r, t)]⟩ . (2.2)

This expression is known as the generalized Kubo formula. From here we find that the general expression

for the generalized susceptibility reads as

χAB (r, t; r′, t′) = − i

ℏ
Θ(t− t′) ⟨[A(r, t), B(r′, t′)]⟩ , (2.3)

Fourier−→ χAB (p, ω) =
⟨A(p, ω)⟩
F (p, ω)

=
”response”
”force”

. (2.4)
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Therefore, if one can express and calculate the commutator [A(r, t), B(r′, t′)], the susceptibility in

know and consequently the expectation value of A. However, this is not always such an easy task. In an

alternative approach, one can always write a one-particle observable as

A =
∑
ab

Aabcac
†
b (2.5)

and consequently its expectation value as ⟨A⟩ =
∑

abAab

〈
ca(t)c

†
b(t)
〉
. The last term is nothing more

that the system’s time-dependent one-particle reduced density matrix,

ρba(t) =
〈
ca(t)c

†
b(t)
〉
, (2.6)

which can be obtained by solving its equation of motion in the Heisenberg picture of quantum mechanics.

This is exactly the topic of this work. We show how formulate a time-dependent Hartree-Fock theory with

the reduced density matrix as the central object.

2.2 Time-dependent Hartree-Fock mean-field theory

Consider a many-body system of electrons whose equilibrium state is described by the Hamiltonian H ,

written in an arbitrary electronic basis {ϕα}, as

H = H0 +Hint =
∑
αβ

hαβc
†
αcβ +

1

2

∑
αβγδ

V αβ
γδ c

†
αc

†
βcγcδ, (2.7)

where the operators c†α (cα) create (annihilate) an electron in the state described by the wavefunction

ϕα(r) with r the electron’s positions vectors, and the greek indices are generic degrees of freedom that

the system might have (momentum k, band λ, spin σ, etc...). Also hαβ describes the single-particle

matrix elements,

hαβ =

∫
d3rϕ∗

α(r)

[
p2

2m
+ U(r)

]
ϕβ(r), (2.8)

with U(r) a generic static potential (for example a crystal lattice potential) and V αβ
γδ describes the two-

particle interaction matrix elements,

V αβ
γδ =

∫
d3rd3r′ϕ∗

α (r)ϕ
∗
β(r

′)V (r − r′)ϕγ(r
′)ϕδ(r), (2.9)

with V (r) a generic electrostatic potential. As usual in electrostatic potentials, we assume that V (r)

has the symmetry V (r − r′) = V (r′ − r) and consequently the interaction matrix elements obey the

symmetries

V αβ
γδ = V βα

δγ , (2.10)(
V αβ
γδ

)∗
= V γδ

αβ , (2.11)
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as shown in Appendix A.1. Consider now that we add a time-dependent perturbation to the system’s

equilibrium Hamiltonian, switched on at t = t0, which is generally described by a one-particle term,

Hext =
∑
αβ

Bαβc
†
αcβF (t), (2.12)

where Bαβ are matrix elements of a one-particle operator which couples to the time-dependent external

(force) field F (t). This term will drive the system out-of-equilibrium by inducing transitions from a given

state denoted by the degree of freedom β to another state α. Examples of perturbations can be the charge

density coupled to a scalar potential, the current density coupled to a vector potential or the dipole moment

coupled to an electric field. The Hamiltonian of the perturbed system reads

H(t) =
∑
αβ

(
hαβ +Bi

αβF
i(t)
)
c†αcβ +

1

2

∑
αβγδ

V αβ
γδ c

†
αc

†
βcγcδ. (2.13)

As discussed previously, in order to determine a specific property of a material, we can study its linear

response to a given external perturbation by monitoring the time-evolution of the expectation value of a

related one-particle observable,

A =
∑
ab

Aabcac
†
b, (2.14)

which in turn can be written in terms of the system’s time-dependent reduced density matrix (rDM),

ρba(t) =
〈
ca(t)c

†
b(t)
〉
. (2.15)

Our work is thus to study the time-evolution of the rDM, specifically in a time-dependent Hartree-Fock

scheme. We start by its equation of motions written as

d

dt
ρab(t) =

i

ℏ

〈
dc†b(t)

dt
ca(t)

〉
+
i

ℏ

〈
c†b(t)

dca(t)

dt

〉
, (2.16)

where, in the Heisenberg picture of quantum mechanics, the fermionic operators evolve accordingly to the

Heisenberg equation
d

dt
Ô(t) =

i

ℏ
[H, Ô(t)]. (2.17)

Therefore the rDM equation of motion reads

d

dt
ρab(t) =

i

ℏ

〈
[H, c†b(t)]ca(t)

〉
+
i

ℏ

〈
c†b(t)[H, ca(t)]

〉
. (2.18)

As shown in Appendix A.2, given the equal-time fermionic anti-commutator properties
{
ca, c

†
b

}
=
{
c†b, ca

}
=

δab and {ca, cb} =
{
c†b, c

†
a

}
= 0, each of the commutators are evaluated to

[H, c†b] =
(
hαb +Bi

αbF
i(t)
)
c†α +

1

2
V αβ
γb c

†
αc

†
βcγ −

1

2
V αβ
bδ c

†
αc

†
βcδ, (2.19)

[H, ca] = −
(
haβ +Bi

aβF
i(t)
)
cβ +

1

2
V αa
γδ c

†
αcγcδ −

1

2
V aβ
γδ c

†
βcγcδ, (2.20)
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where we have hidden the summations on repeated indices using Einstein’s notation and omitted the time

dependency in the fermionic operators for compactness. This practice is done throughout the remaining

work with no further mention. Substituting Eqs.(2.19) and (2.20) back into Eq.(2.18) yields

−iℏ d
dt
ρab(t) = ρaα(t)

(
hαb +Bi

αbF
i(t)
)
−
(
haβ +Bi

aβF
i(t)
)
ρβb(t)

+
1

2
V αβ
γb

〈
c†αc

†
βcγca

〉
− 1

2
V αβ
bδ

〈
c†αc

†
βcδca

〉
+

1

2
V αa
γδ

〈
c†bc

†
αcγcδ

〉
− 1

2
V aβ
γδ

〈
c†bc

†
βcγcδ

〉
, (2.21)

where we came back to the definition of the rDM in Eq.(2.15) for the first two terms. Notice, however, that

the remaining interaction terms correspond to the expectation values of four-operators. Dealing with such

terms is no easy task and thus, to simplify our model, we introduce a mean-field approximation where we

assume the two-particle expectation value to simply behave as a product of two one-particle expectation

values. From this mean-field decoupling we can then make use of Wick’s theorem. This is done for the

first term of Eq.(2.21) and then we just show the results for the other three. We start by making all the

possible two operator contractions from the four operators:〈
c†αc

†
βcγca

〉
=
〈
c†αc

†
βcγca

〉
+
〈
c†αc

†
βcγca

〉
+
〈
c†αc

†
βcγca

〉
(2.22)

with 〈
c†αc

†
βcγca

〉
=
〈
c†αc

†
β

〉
⟨cγca⟩ , (2.23)〈

c†αc
†
βcγca

〉
= −

〈
c†αcγ

〉 〈
c†βca

〉
, (2.24)〈

c†αc
†
βcγca

〉
=
〈
c†αca

〉 〈
c†βcγ

〉
, (2.25)

where the minus sign in the second contraction appears directly from the anti-commutation of the fermionic

operators (one could also check for the a minus sign by counting the n times the Wick’s contraction line

intersects: if n is odd number then there will be a negative sign). Notice that the first term is actually

zero since, for non-superconducting systems, we must have that
〈
c†c†
〉
= ⟨cc⟩ = 0. Coming back once

more to the definition of the rDM in Eq.(2.15), the first four-operator expectation value in Eq.(2.21) within

the mean-field approximation read〈
c†αc

†
βcγca

〉
= −ργα(t)ρaβ(t) + ρaα(t)ργβ(t). (2.26)
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Following the same treatment, once can easily see that the remaining terms read〈
c†αc

†
βcδca

〉
= −ρδα(t)ρaβ(t) + ρaα(t)ρδβ(t), (2.27)〈

c†bc
†
αcγcδ

〉
= −ργb(t)ρδα(t) + ρδb(t)ργα(t), (2.28)〈

c†bc
†
βcγcδ

〉
= −ργb(t)ρδβ(t) + ρδb(t)ργβ(t). (2.29)

Putting these terms back together into Eq.(2.21), playing around with mute indices and using the symmetry

properties of the potential in Eqs.(2.10) and (2.11), we can rewrite the expression more compactly as

iℏ
d

dt
ρab(t) =

(
haβ +Bi

aβF
i(t)
)
ρβb(t)− ρaα(t)

(
hαb +Bi

αbF
i(t)
)

+
(
V aα
δγ − V aα

γδ

)
ρδα(t)ργb(t)− ρaβ(t)

(
V βα
δb − V αβ

δb

)
ρδα(t). (2.30)

We now identify the Hartree and Fock self-energy terms respectively as

ΣH
aγ [ρ(t)] = V aα

δγ ρδα(t), (2.31)

ΣF
aγ [ρ(t)] = −W aα

γδ ρδα(t), (2.32)

such that the rDM equation of motion can be written in a time-dependent Hartree-Fock scheme as

iℏ
d

dt
ρab(t) =

(
haβ +Bi

aβF
i(t)
)
ρβb(t)− ρaα(t)

(
hαb +Bi

αbF
i(t)
)

+
(
ΣH

aγ [ρ(t)] + ΣF
aγ [ρ(t)]

)
ργb(t)− ρaβ(t)

(
ΣH

βb[ρ(t)] + ΣF
βb[ρ(t)]

)
. (2.33)

This can be written in a more compact and elegant manner as

iℏ
d

dt
ρ(t) = [HHF,ρ(t)] (2.34)

with HHF = h+B · F (t) +ΣH [ρ(t)] +ΣF [ρ(t)] (2.35)

where HHF is defined as the Hartree-Fock Hamiltonian.

Notice that we purposely defined the Fock self-energy term in Eq.(2.32) as an attractive interaction

(by inserting the negative sign) such that it lower the total energy of the system enabling the formation of

bound electron-hole states. Conversely, the Hartree self-energy term will control details of the excitation

spectrum, such as spin-splitting (which will be discussed further in the text). Furthermore, while there is no

apparent distinction between this two terms in the time-dependent density matrix Hartree-Fock formalism,

in many-body perturbation theory the Hartree and Fock interactions are actually screened in different

manners. Thus, forecasting this result, we write Eq.(2.32) instead with an W , symbolizing a screened

interaction instead of the bare interaction denoted by V . Further ahead, when discussing two-particle
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interactions in a many-body perturbation theory, we explain in more detail as to why this is the case. For

now, and to put it vaguely, we do not also screen the Hartree interaction (as one would naively expect)

because we would be accounting for the screening twice, in the sense that the Hartree interaction already

“naturally” screens itself.

On another subject, in general, the Hamiltonian h already contains interaction at some kind of mean-

field level. Therefore, it is reasonable to subtract this contribution for the self-energy terms,

ΣH/F [ρ(t)] → ΣH/F [ρ(t)− ρ(0)]. (2.36)

This would be equivalent to start from the Hamiltonian with the interacting part subtracted by the equilib-

rium mean field contribution from the interaction,

V αβ
γδ c

†
αc

†
βcγcδ → V αβ

γδ c
†
αc

†
βcγcδ − (ΣH

βγ

[
ρ(0)
]
c†βcγ − ΣF

βδ

[
ρ(0)
]
c†βcδ. (2.37)

2.3 Linear response theory

The rDM equation of motion as written in Eq.(2.33) would gives us the full response of the system to

the external perturbation F (t). However, very frequently, one is only interested in the case where the

perturbation is weak and the system responds linearly to it. This is the so-called linear response regime.

In linear response theory, as the name indicates, we only account for first (linear) order perturbations.

Therefore, we start by expanding the rDM in a power series, ρ(t) = ρ(0) + ρ(1)(t) + ρ(2)(t) + ..., and

retain terms only up to the first order,

ρ(t) ≈ ρ(0) + ρ(1)(t). (2.38)

Substituting Eq.(2.38) into Eq.(2.33), we see that in the linear regime most terms actually vanish: the

terms
[
B · F (t),ρ(1)(t)

]
and

[
ΣH [ρ(1)(t)] +ΣF [ρ(1)(t)],ρ(1)(t)

]
are neglected because they are

of second order and the term
[
h,ρ(0)

]
is right away zero since the equilibrium rDM ρ(0) is a function of

occupation of the single-particle Hamiltonian h. We are left with

iℏ
d

dt
ρ
(1)
ab (t)−

(
hacρ

(1)
cb (t)− ρ(1)ac t)hcb

)
= Bi

acF
i(t)ρ

(0)
cb − ρ(0)ac B

i
cbF

i(t)

+ ΣH
ac[ρ

(1)(t)]ρ
(0)
cb − ρ(0)ac Σ

H
cb[ρ

(1)(t)]

+ ΣF
ac[ρ

(1)(t)]ρ
(0)
cb − ρ(0)ac Σ

F
cb[ρ

(1)(t)]. (2.39)
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Next, we write the time-dependent force and the rDM as their Fourier counterpart

F (t) =

∫
dω

2π
e−iωtF (ω), (2.40)

ρ
(1)
ab (t) =

∫
dω

2π
e−iωtρ

(1)
ab (ω), (2.41)

yielding the rDM equation of motion in terms of the frequency of the field ω,

ℏωρ(1)ab (ω)−
(
haγρ

(1)
γb (ω)− ρ(1)aγ (ω)hγb

)
= Bi

aγF
i(ω)ρ

(0)
γb − ρ(0)aγB

i
γbF

i(ω)

+ ΣH
aγ [ρ

(1)(ω)]ρ
(0)
γb − ρ(0)aγΣ

H
γb[ρ

(1)(ω)]

+ ΣF
aγ [ρ

(1)(ω)]ρ
(0)
γb − ρ(0)aγΣ

F
γb[ρ

(1)(ω)]. (2.42)

Since, at linear order, the system response more aggressively at frequencies ω which are in resonance

with the characteristic frequencies of the system, we try to rewrite the linear response as(
ℏωδγδab −Hγδ

ab

)
ρ
(1)
ab (ω) = Jab(ω). (2.43)

with Hγδ
ab the effective two-particle Hamiltonian and Jab(ω) the source term. Specifically, we expect to

obtain a free-particles term (where the two particle to not actually interact with each other), a Hartree term

and a Fock term. Comparing Eq.(2.42) and Eq.(2.43), we can readily identify the non-interaction term as

being

haγρ
(1)
γb (ω)− ρ(1)aγ (ω)hγb =

∑
γδ

(haγδδb − δaγhδb) ρ
(1)
γδ (ω), (2.44)

and the source term as being

Jab(ω) =
(
Bi

aγρ
(0)
γb − ρ(0)aγB

i
γb

)
F i(ω). (2.45)

Although not so straight forward, after some minor play with mute indices while making use of the sym-

metry properties of the potential in Eqs.(2.10) and (2.11), the two-particle Hamiltonian can be identified

as

Hγδ
ab = (haγδδb − δaγhδb) +

(
V δa
ϵγ ρ

(0)
ϵb − ρ(0)aϵ V

ϵδ
γb

)
−
(
W aδ

ϵγ ρ
(0)
ϵb − ρ(0)aϵ W

ϵδ
bγ

)
. (2.46)

Furthermore, working in the basis that diagonalizes the single-particle Hamiltonian, we have that

hac = ϵaδac and ρ
(0)
ab = faδab, (2.47)

where ϵa is the occupational energy of the state a and fa = f(ϵa) is the occupation of the state given by

the Fermi-Dirac distribution. In this basis, the two-particle Hamiltonian in Eq.(2.46) simply reads

Hγδ
ab = (ϵa − ϵb) δaγδδb + (fb − fa)

(
V δa
bγ −W aδ

bγ

)
. (2.48)

Furthermore, the source term in Eq.(2.45) also simplifies to

Jab(ω) = (fb − fa)B
i
abF

i(ω). (2.49)
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2.3.1 Zero temperature regime

Consider the case of an insulator at absolute zero. Since at T = 0K the Fermi-Dirac distribution behaves

as a Heaviside theta function (centered at the Fermi energy), in the base that diagonalizes the single-

particle Hamiltonian, the degrees of freedom can only be classified as either occupied |o⟩ or empty |e⟩

such that fo = 1 or fe = 0. In this regime, the HamiltonianHγδ
ab has 2×2×2×2 = 16 blocks arising

from all the different combination of a → o1 or e1, b → o2 or e2, γ → o3 or e3 and δ → o4 or e4.

Therefore, we can write Eq.(2.43) explicitly asℏω1−


He3e4

e1e2
He3o4

e1e2
Ho3e4

e1e2
Ho3o4

e1e2

He3e4
e1o2

He3o4
e1o2

Ho3e4
e1o2

Ho3o4
e1o2

He3e4
o1e2

He3o4
o1e2

Ho3e4
o1e2

Ho3o4
o1e2

He3e4
o1o2

He3o4
o1o2

Ho3e4
o1o2

Ho3o4
o1o2






ρ
(1)
e3e4(ω)

ρ
(1)
e3o4(ω)

ρ
(1)
o3e4(ω)

ρ
(1)
o3o4(ω)

 =


Je1e2(ω)

Je1o2(ω)

Jo1e2(ω)

Jo1o2(ω)

 , (2.50)

where, in order to highlight the absolute zero regime, we introduced the notation J = J(T = 0). It is

important to have in in mind that, although we are specifying a degree of freedom, there are other degrees

of freedom still hidden away in the indices. That is why we formally referred to the Hamiltonian “entries”

as being block matrices (and some an entry). Also, the dimensions of this blocks define the identity matrix

1 dimensions which was not yet specified (it is not just a 4 × 4 matrix). In this context, although the

occupation function in this regime does really only have the two values, fo = 1 or fe = 0, the same is

not true for the occupational energy ϵ, as it depends not only on the empty or occupied definition of the

state but also on the other possible degree of freedom. From Eq.(2.48), we see that if a term has a ̸= γ

or/and δ ̸= b then the free-particles term is zero and if it has a = b then its the interaction term that is

zero. In addition, from Eq.(2.49), we see that the source terms with indices only in the occupied or the

empty states vanish. We are left withℏω1−


He3e4

e1e2
0 0 0

He3e4
e1o2

He3o4
e1o2

Ho3e4
e1o2

Ho3o4
e1o2

He3e4
o1e2

He3o4
o1e2

Ho3e4
o1e2

Ho3o4
o1e2

0 0 0 Ho3o4
o1o2






ρ
(1)
e3e4(ω)

ρ
(1)
e3o4(ω)

ρ
(1)
o3e4(ω)

ρ
(1)
o3o4(ω)

 =


0

Je1o2(ω)

Jo1e2(ω)

0

 . (2.51)

Now, the first and last rows of the system of equations in Eq.(2.50) must have the trivial solution ρ(1)e3e4(ω) =

ρ
(1)
o3o4(ω) = 0, and therefore, the linear response system reduces toℏω1−

 He3o4
e1o2

Ho4e3
e1o2

He3o4
o2e1

Ho4e3
o2e1

 ρ
(1)
e3o4(ω)

ρ
(1)
o4e3(ω)

 =

 Je1o2(ω)

Jo2e1(ω)

 , (2.52)
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where, since the electrons are indistinguishable and interchangeable, we renamed the indices o1e2 ⇆
o2e1 and o3e4 ⇆ o4e3. Recalling the symmetry properties of the potentials in Eqs.(2.10) and (2.11), one

can find that the remaining Hamiltonian terms are actually related in the diagonal and in the off-diagonal.

As derived in Appendix A.3, we find that Ho4e4
o1e2

= −
(
He3o4

e1o2

)∗
and He4o3

o2e1
= −

(
Ho3e4

e1o2

)†
. The linear

response yields

ℏω

 1 0

0 −1

−

 R C

C† R∗

 ρ
(1)
eo (ω)

ρ
(1)
oe (ω)

 =

 1 0

0 −1

 J eo(ω)

J oe(ω)

 , (2.53)

where we multiplied both side by the matrix with the identities blocks 1 and−1 along its diagonal such that

the two-particle Hamiltonian is written with all blocks having a positive sign (instead of having the minus

signs in the bottom row). From Eq.(2.48), the two-particle Hamiltonian blocks are given respectively by

R ≡ He3o4
e1o2

= (ϵe1 − ϵe2) δe1e3δo4o2 +
(
V o4e1
o2e3

−W e1o4
o2e3

)
, (2.54)

C ≡ Ho3e4
e1o2

= 0 +
(
V e4e1
o2o3

−W e1e4
o2o3

)
. (2.55)

At this point the effective two-particle electron-hole Hamiltonian, denoted from now on asHe-h , is usually

referred as the Bethe-Salpeter Hamiltonian [(25)]. Let us take a look at the first row of the linear response

in Eq.(2.53),

(ℏω1−R)ρ(1)
eo (ω)−Cρ(1)

oe (ω) = J eo(ω)1. (2.56)

Consider that, initially, we have an electron in the valence band that, by the external source J eo(ω),

transitions to the conduction band, leaving behind a hole to whom it couples, effectively creating an

exciton. However, although not so prominently, the reversed process, i.e the annihilation of the exciton by

reemerging of the electron with its hole, can also occur due toJ oe(ω) (think of it as stimulated emission).

This reversed process is described by the second row of the linear response in Eq.(2.53),

(ℏω1+R∗)ρ(1)
oe (ω) +C†ρ(1)

eo (ω) = J oe(ω)1. (2.57)

Moreover, notice that this processes are actually intertwined via the coupling block C (hence the name).

As one could expect, the strength of the coupling of both processes is not so predominant when comparing

it with the main contribution of the resonant term R. As a common approximation, one could neglect the

coupling block C. This is the so called Tamm-Dancoff approximation. In due time, we will examine the

reliability of such approximation.
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Generalized susceptibility

We can compactly write the linear response problem in Eq.(2.53) as

(ℏωS −He-h)ρ
(1)(ω) = SJ (ω), (2.58)

with S being the matrix having the identities blocks 1 and −1 diagonally across. Inverting the relation,

the linear response yields

ρ(1)(ω) = (ℏωS −He-h)
−1 SJ (ω). (2.59)

One the other hand, the deviation of the expected value of some observable A, as written in Eq.(2.14),

with respect to its equilibrium state⟨A⟩0), is given by

⟨A⟩ (ω) =
∑
ab

Aabρ
(1)
ba (ω) = Aoeρ

(1)
oe (ω) + Aeoρ

(1)
eo (ω). (2.60)

Since Aab is a physical observable it is necessarily a real quantity, Aba = A∗
ba and thus, using Eq.(2.59),

we can rewrite the expectation value instead as

⟨A⟩ (ω) =
[
Aeo Aoe

]†
(ℏωS −He-h)

−1 S

 Beo

Boe

F (ω), (2.61)

where we unfolded the zero-temperature source term J (ω) using Eq.(2.49) and denoted B = B(T =

0K). This way, comparing Eq.(2.61) with the generic expectation value ⟨A⟩ (ω) = χAB(ω)F (ω), it is

easy to identify the generalized susceptibility as being

χAB(ω) =
[
Aeo Aoe

]†
(ℏωS −He-h)

−1 S

 Beo

Boe

 . (2.62)

Linear response eigenvalue solution

Obtaining the linear response within this time-dependent Hartree-Fock scheme requires solving the linear

problem in Eq.(2.58). One way this can be done is to solve first for the generic eigen-problem

(ℏωS −He-h) ·Ψλ = EλΨ. (2.63)

Notice, however, although both He-h and S are Hermitian, the total matrix in the above eigen-problem is

not. Therefore, one needs to solve instead for the eigen-problem

He-h ·ΨX = EXS ·ΨX . (2.64)
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Only in this case doesΨX andEX actually correspond to the collective excitations energies and respective

wave-functions. The eigenvalues solution EX will appear as a par of negative and positive energies with

the same absolute value. In practice, solving this generalized eigen-problem must be done numerically.

Said numerical implementation will be discussed in Sec.IV. Once we calculate the wave-functionsΨX , we

can expand the first-order rDM into its basis,

ρ(1)(ω) =
∑
X

aX(ω)ΨX , (2.65)

with aX the coefficients to be determined of said expansion. Substituting Eq.(2.65) directly into Eq.(2.58)

and contracting the result with Ψ†
X′ yields∑

X

aX(ω) (ℏω − EX)Ψ
†
X′ · S ·ΨX = Ψ†

X′ · S ·J (ω). (2.66)

Now, the generalized eigenvectorsΨX must satisfy the generalized orthogonality relationΨ†
X ·S ·ΨX′ =

sign(EX)δX,X′ where the sign function ensures that He-h is positive-defined (i.e, for the negative energy

of the pair, sign(EX)EX = |EX |). Using this orthogonality condition, we solve for the aX coefficients

we obtain

aX(ω) =
sign(EX)

(ℏω − EX)
Ψ†

X · S ·BF (ω). (2.67)

Immediately, the first order rDM in Eq.(2.65) yields

ρ(1)(ω) =
∑
X

ΨX
sign(EX)

(ℏω − EX)
ΨX · S ·BF (ω), (2.68)

and therefore, the generalized susceptibility from Eq.(2.62) can be obtained through

χAB(ω) =
[
Aeo Aoe

]†∑
X

 ΨX
eo

ΨX
oe

 sign(EX)

(ℏω − EX)

[
ΨX

eo ΨX
oe

]†
· S

 Beo

Boe

 . (2.69)
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Chapter 3

Excitonic generalized eigen-problem in a crystal

In this section we derive the explicit form of the two-particle electron-hole Hamiltonian Heh for crystals

systems, therefore working in a Bloch states basis. We show how to obtain the explicit form of the potential

V αβ
γδ for an atomistic electron-electron interaction written in a Bloch basis assuming ultra-localized Wannier

functions. Using those results we then arrive at the structure of the eigen-problem for an insulator at zero

temperature in the Bloch momentum degree of freedom. Furthermore, we also concern ourselves with the

spin-structure of the eigen-problem and show that we can the problem can decoupled into a spin-singlet

and a spin-triplet class of solutions. By the end of the section we discuss on the screening in the Hartree

and Fock term.

3.1 Electron-electron atomistic interaction in the Bloch basis

Consider an electron-electron interaction within a crystal lattice written in second quantization as

He-e =
∑
R1R2
ς1ς2

V ((R1 + sς1)− (R2 + sς2)) c
†
R1ς1

c†R2ς2
cR2ς2cR1ς1 , (3.1)

where the operators c†Rς (cRς ) create (annihilate) an electron in a given Bravais lattice site R in a given

sub-lattice ς and V is some generic electrostatic potential. Foremost, we note that while we could have

simply written R := R + sς , we make explicit the sub-lattice index as an anticipation to the work with

hBN. Notice that, instead of carrying out the four differentR indices, we assume that the electrons interact

“atomistically” at large distances such thatR1 is so very far out fromR2 that, for all intents and purposes,

the displacement of each electron on the real space lattice after the interaction is negligible, this is, that

R4, ς4 ≈ R1, ς1 and R3, ς3 ≈ R2, ς2.

In order to express the e-e atomistic interaction in the Bloch basis we write the fermionic operators in

19



terms of the Bloch momentum in a given basis {ϕς
kλ},

cR,ς =
1√
N

∑
k,λ

eik·(R+sς)ϕς
kλckλ, (3.2)

where N is the number of primitive cells, k is the Bloch momentum degree of freedom and λ is the

band-index, and the electrostatic potential V as it Fourier counterpart

V(R1 + sς1 ,R2 + sς2) =

∫
dDp

(2π)D
eip·(R1+sς1−R2−sς2 )V(p), (3.3)

with D = 1, 2, ... being the system dimensions. Moreover, we write the Fourier reciprocal vector p as

p = q +G with q being a vector that lays inside the first Brillouin zone (1BZ) and G = n1b1 + n2b2

with n1, n2 ∈ Z a reciprocal lattice vector such that
∫
dDp →

∑
G

∫
1BZ d

Dq. In this topic, we also

introduce an Umklapp scattering curved bracket {} notation indicating the translation of some momentum

vector by the appropriate (and unique) reciprocal lattice vector such that it forces it back inside the 1BZ,

for example, {p} = q. Substituting Eqs.(3.2) and (3.3) into Eq.(3.1) we obtain

He-e =
1

N2

∑
R1R2
ς1ς2

∑
k1k2k3k4
λ1λ2λ3λ4

∑
G

∫
1BZ

dDq

(2π)D
V(q +G)

× e−i(k1−k4−q−G)·(R1+sς1 )e−i(k2−k3+q+G)·(R2+sς2 )

×
(
ϕς1
k1λ1

)∗ (
ϕς2
k2λ2

)∗
ϕς2
k3λ3

ϕς1
k4λ4

× c†k1λ1
c†k2λ2

ck3λ3ck4λ4 , (3.4)

where the summation over R1 yields∑
R1ς1

e−i(k1−k4−q−G)·(R1+sς1 ) =
∑
ς1

e−i(k1−k4−q−G)·sς1Nδq,{k1−k4}, (3.5)

and the summation over R2 yields∑
R2ς2

e−i(k2−k3+q+G)·(R2+sς2 ) =
∑
ς2

e−i(k2−k3+q+G)·sς2Nδq,{k3−k2}. (3.6)

Substituting the summations results into Eq.(3.4) we further obtain

He-e =
∑

k1k2k3k4
λ1λ2λ3λ4

∑
G

∫
1BZ

dDq

(2π)D
V(q +G)

×
∑
ς1

e−i(k1−k4−q−G)·sς1
(
ϕς1
k1λ1

)∗
ϕς1
k4λ4

δq,{k1−k4}

×
∑
ς2

e−i(k2−k3+q+G)·sς2
(
ϕς2
k2λ2

)∗
ϕς2
k3λ3

δq,{k3−k2}

× c†k1λ1
c†k2λ2

ck3λ3ck4λ4 , (3.7)
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allowing us to identify the density matrix elements, sometimes named form factors, as

ϱ kλ
k′λ′

(±(q +G)) =
∑
ς

ei(k
′−k±(q+G))·sς (ϕς

kλ)
∗ ϕς

k′λ′ . (3.8)

Comparing the e-e interaction HamiltonianHe-e in Eq.(3.7) with the genericHint in Eq.(2.7), we can identity

the general expression for the interaction potential matrix elements for an atomistic interaction written in

term of Bloch states basis as

V k1λ1,k2λ2

k3λ3,k4λ4
=

1

V
∑
G

∫
1BZ

dDq

(2π)D
V(q+G)

(
ϱk1λ1
k4λ4

(q +G) ϱk2λ2
k3λ3

(−(q +G)) δq,{k1−k4}δq,{k3−k2}

)
,

(3.9)

where V = V1BZ/(2π)
D ×N is the real space crystal volume in D dimensions.

See that, through a diagrammatic analysis, the general features of his expression could have been

guessed with some educated guesses. Looking at the Feynman diagram for this interaction shown in

Fig.(3), we see the V(q +G) potential depicted by the squiggly interaction line and the Kronecker deltas

δq,{k1−k4} and δq,{k3−k2} forced by the conservation of momentum at each vertices, connecting electron

k1, k4, p and k2, k3, −p. The strength of the interaction at this vertices should then be modulated by

the density of the participant particles, built from the electronic wave-functions ϕς
kλ.

Figure 3: Feynman diagram of the electron-electron interaction in Eq.(3.9).

3.1.1 General electron-electron interaction

For a more complete description of the e-e interaction one must always use the general expression in terms

of the electronic Bloch states {ψkλ(r)} of the density matrix elements,

ϱ kλ
k′λ′

(q +G) =

∫
dDrei(q+G)·rψ∗

kλ(r)ψk′λ′(r), (3.10)
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with r the generic position of the electron, i.e r = R+sς +rWS with rWS the position within the Wigner-

Seitz unit cell. As a matter of fact, the atomistic interaction approximation used in our model can be

obtained directly from the general expression if one expresses the Bloch states in a Wannier basis {wς},

ψkλ(r) =
1√
N

∑
R,ς

eik·(R+sς)ϕς
kλwς(r −R− sς), (3.11)

and assumes ultra-localized orbitals by forcefully introducing the Kronecker delta terms δRR′ and δςς′ .

Substituting Eq.(3.11) directly into Eq.(3.10), within this ultra-localized regime, we obtain

ϱ kλ
k′λ′

(q +G) ≈
∑
ς

e−i(k′−k+(q+G))·sς (ϕς
kλ)

∗ ϕς
k′λ′ϱ00

ςς′
(q +G) (3.12)

with ϱRR′

ςς′
(q +G) =

∫
dDrei(q+G)·rw∗

ς (r −R− sς)wς(r −R′ − sς′). (3.13)

Setting ϱ00
ςς′
(q +G) = 1 yields the same result in Eq.(3.8) of our atomistic model.

3.2 Structure of eigen-problem in the Bloch momentum de-

gree of freedom

Consider an electron of momentum k in a fully occupied valence band v with energy ϵk,v that, by the

perturbation of an externally applied electric field, transitions to the empty conduction band c with mo-

mentum k+Q, withQ being the center of mass momentum of the exciton, having now energy ϵ{k+Q}c.

Note that, in this two-band model, the occupied state corresponds to the valence band index, o → v,

and the empty state corresponds to valence band index, e → c. As it turns out, this two-band model is

sufficient to describe excitons in hBN, due to the simplicity of its electronic band structure. However, this

is not always the case, since in most TMD at least a three band model is necessary [(26)]. The source

term that described such perturbation is

J{k+Q}c1,kv2(ω,Q+G). (3.14)

Accounting for the Bloch momentum degree of freedom, the linear response in Eq.(2.53) would read

∑
k3k4

ℏωS −

 Hk3c3,k4v4
{k+Q}c1,kv2 Hk3v3,k4c4

{k+Q}c1,kv2(
Hk3v3,k4c4

{k+Q}c1,kv2

)† (
Hk3c3,k4v4

{k+Q}c1,kv2

)∗
 ρ

(1)
k3c3,k4v4

(ω)

ρ
(1)
k3v3,k4c4

(ω)

 = S

 J{k+Q}c1,kv2 (ω)

Jkv1,{k+Q}c2 (ω)

 ,
(3.15)

where the summation over the momentum k3 and k4 accounts for all the possible different interactions

(although, technically, it should have been an integral in the thermodynamic limit). This interaction must,
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of course, conserve momentum as imposed by the Kronecker deltas in Eq.(3.9) or by the diagrammatics in

Fig.(4). For instance, looking at the Hartree term in Fig.(4)(c) we see that the virtual transferred momentum

q must read q = Q +G while for the Fock term in Fig.(4)(b) must read instead q = {k − k′} +G,

where we rewrote k4 → k′. Therefore, the linear response yields

∑
k′

ℏωS −

 R(Q) C(Q)

C(Q)† R∗(Q)

 ρ
(1)

{k′+Q}c3k′v4
(ω)

ρ
(1)

{k′+Q}v3k′c4
(ω)

 = S

 J{k+Q}c1,kv2 (ω, q +G)

Jkv1,{k+Q}c2 (ω, q +G))

 ,
(3.16)

where the resonant block is given by

R(Q) = H
{k′+Q}c3,k′v4
{k+Q}c1,kv2 =

(
ϵ{k+Q}c1 − ϵkv2

)
δ{k+Q}c1,{k′+Q}c3δkv2,k′v4 +

(
V

k′v4,{k+Q}c1
kv2,{k′+Q}c3 −W

{k+Q}c1,k′v4
kv2,{k′+Q}c3

)
,

(3.17)

and the coupling block by

C(Q) = H
{k′+Q}v3,k′c4
{k+Q}c1,kv2 = V

k′c4,{k+Q}c1
kv2,{k′+Q}v3 −W

{k+Q}c1,k′c4
kv2,{k′+Q}v3 . (3.18)

We note that formally we should have made explicit composite indices kc1v1;k
′c3v4 in the resonant

and coupling blocks but abstained to do so for the sake of space and tidiness. Finally, using the general

expressions in Eqs.(3.9) and (3.8), we can explicitly show the interaction terms in either the resonant and

coupling block. The resonant Hartree term yields

V
k′v4,{k+Q}c1
kv2,{k′+Q}c3 =

1

V
∑
G

V(Q+G)

[
ϱ{k+Q}c1

kv2

(Q+G)

] [
ϱ k′v4
{k′+Q}c3

(−(Q+G))

]
(3.19)

with, ϱ{k+Q}c1
kv2

(Q+G) =
∑
ς

ei(k−{k+Q}+(Q+G))·sς
(
ϕς
{k+Q}c1

)∗
ϕς
kv2

(3.20)

and, ϱ k′v4
{k′+Q}c3

(−(Q+G)) =
∑
ς

ei({k
′+Q}−k′−(Q+G))·sς

(
ϕς
k′v4

)∗
ϕς
{k′+Q}c3 , (3.21)

while the resonant Fock term yields

W
{k+Q}c1,k′v4
kv2,{k′+Q}c3 =

1

V
∑
G

W ({k − k′}+G)

[
ϱ {k+Q}c1
{k′+Q}c3

({k − k′}+G)

] [
ϱk′v4
kv2

(−({k − k′}+G))

]
(3.22)

with, ϱ {k+Q}c1
{k′+Q}c3

({k − k′}+G) =
∑
ς

ei({k
′+Q}−{k+Q}+({k−k′}+G))·sς

(
ϕς
{k+Q}c1

)∗
ϕς
{k′+Q}c3

(3.23)

and, ϱk′v4
kv2

(−({k − k′}+G)) =
∑
ς

ei(k−k′−({k−k′}+G))·sς
(
ϕς
k′v4

)∗
ϕς
kv2
. (3.24)
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Comparing the resonant and coupling indices in Eqs.(3.17) and (3.18) respectively, we see that the mo-

mentum indices stay exactly the same while the band indices swap as v4 → c4 and c3 → v3. Therefore,

the expressions for the coupling block are the same as for the resonant block in Eqs.(3.19) through (3.24)

but instead with the band indices altered as v4 → c4 and c3 → v3.

3.3 Structure of eigen-problem in the spin degree of freedom

Until now we have omitted the spin degrees of freedom, effective dealing with spineless fermions. We will

now study the effect of spin in the structure of the effective two-particle Hamiltonian. We consider, however,

the spin-orbit interaction to be negligible such that the single-particle states can be simply classified as

either spin-up |↑⟩ or spin-down |↓⟩ states, this way, we just have to introduce the spin degree of freedom

σ =↑, ↓ and sum over all the possible spin combinations of σ3 and σ4 in Eq.(3.16). The Hilbert space

of the electron-hole pairs consists now of eight subspaces: |c3 ↑3, v4 ↑4⟩, |c3 ↑3, v4 ↓4⟩, |c3 ↓3, v4 ↑4⟩,

|c3 ↓3 v4 ↓4⟩ and the other four instead with c3 → v3 and v4 → c4. Therefore, the linear response

equation (shown within the TDA for the sake of space) yieldsℏω1−


R↑3↑4

↑1↑2 R↑3↓4
↑1↑2 R↓3↑4

↑1↑2 R↓3↓4
↑1↑2

R↑3↑4
↑1↓2 R↑3↓4

↑1↓2 R↓3↑4
↑1↓2 R↓3↓4

↑1↓2

R↑3↑4
↓1↑2 R↑3↓4

↓1↑2 R↓3↑4
↓1↑2 R↓3↓4

↓1↑2

R↑3↑4
↓1↓2 R↑3↓4

↓1↓2 R↓3↑4
↓1↓2 R↓3↓4

↓1↓2






ρ
(1)
c3↑3,v4↑4

ρ
(1)
c3↑3,v4↓4

ρ
(1)
c3↓3,v4↑4

ρ
(1)
c3↓3,v4↓4

 =


Jc1↑1,v2↑2

Jc1↑1,v2↓2

Jc1↓1,v2↑2

Jc1↓1,v2↓2

 . (3.25)

Notice that most of the matrix elements are actually zero due to spin conservation, since the virtual

transferred particle does not carry spin i.e the interaction does not induce spin-flips. To see why, we

turn once more to a diagrammatic approach and study the diagrams in Fig.(4). For example, in the free-

particles term and in the Fock term represented in Fig.(4)(a) and (b) respectively, we must force the spin

σ3 to be the same as σ1 and the spin σ2 to be the same as σ4. One the other hand, in the Hartree term

in Fig.(4)(c), we must force the spin σ1 to be the same as σ2 and the spin σ4 to be the same as σ3.

Therefore, we are left with

R =


ϵ+ V −W 0 0 V

0 ϵ−W 0 0

0 0 ϵ−W 0

V 0 0 ϵ+ V −W


↑↑

↑↓

↓↑

↓↓

, (3.26)
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where, for compactness, we wrote ϵ :=
(
ϵ{k+Q}c1 − ϵkv2

)
,W := W

{k+Q}c1,k′v4
kv2,{k′+Q}c3 andV := V

k′v4,{k+Q}c1
kv2,{k′+Q}c3 .

If we now change the basis to

U =


1√
2

1√
2

0 0

0 0 1 0

0 0 0 1

1√
2

− 1√
2

0 0

 , (3.27)

we effectively decouple the problem into a spin-singlet class of solutions with symmetric subspace

(1/
√
2) (|c ↑, v ↑⟩+ |c ↓, v ↓⟩) for which the Hamiltonian becomes

Rs = ϵ−W + 2V, (3.28)

and a spin-triplet class of solutions, consisting of the subspaces |c ↑, v ↓⟩ and |c ↓, v ↑⟩, and the anti-

symmetric (1/
√
2) (|c ↑, v ↑⟩ − |c ↓, v ↓⟩), for which the Hamiltonian becomes

Rt = ϵ−W. (3.29)

The linear response can thus be solved for singlet and triplet configuration separately, we no further regards

to the spin degrees of freedom. This still holds true outside the TDA, considering the coupling block C.

Notice that, if the spin-orbit interaction was not negligible, the singlet and triplet configurations would have

mixed and the two-particle Hamiltonian must be discussed including its full spin structure. This increases

the number of basis states by a factor of 4 and the evaluation of the linear response becomes more

difficult. For a discussion on the effect of spin-orbit interaction on the optical spectra (not particularly in

hBN but inMoS2) see [(27)].

See that, in full analogy to the electric charge case, an electron of spin σ removed from a fully occupied

valence band can be interpreted as the valence band having an overall deficiency of spin σ which can then

be regarded as a hole with spin −σ. In this sense the singlet state can be understood as a zero spin

electron-hole bound state.
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Figure 4: Feynman diagram of the electron-electron interaction including spins for the (a) free-

particles/non-interacting term [corresponding to the first term in Eq.(3.17)], (b) for the resonant Fock

interaction [in Eq.(3.19)] and (c) for the resonant Hartree interaction [in Eq.(3.22)].

3.4 Screening in the Hartree and Fock terms

While we prematurely introduced the screened potential W into the Fock self-energy term in Eq.(2.32), we

still haven’t discuss the reason why the Fock term is screened while the Hartree term is not. Since we

already discussed the many-body perturbation problem and obtained a description for the effective two-

particle collective excitations, we are now more then capable to clearly see why this is the case. Foremost

to this discussion, we note that the Hartree term is also commonly referred as being the exchange term

and the Fock term as the direct term although, when talking about two electrons interaction outside the

context of a excitonic problem, the Fock term is actually the one being called the exchange term and the

Hartree as the direct (this is just an unfortunate mismatch).

For this discussion, it is useful to take a diagrammatic approach and write the Bethe-Salpeter equation

(BSE) as its analogous Dyson equation G = G0 + G0ΣG where G is the two-particle propagator, G0 is

the non-interacting single-particle propagator andΣ is the proper/irreducible self-energy of the interaction,

i.e that no component of Σ can be written in terms of two self-energy connected by G0. As usual, an
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iterative solution can be constructed by making the initial ansatz G = G0, obtaining G = G0 +G0ΣG0

and then repeatedly substituting the new equality back into G until we arrive at G = G0 + G0ΣG0 +

G0ΣG0ΣG0+ .... Diagrammatically, this expansion amounts to an infinite series of diagrams containing

all possible combinations of the interaction vertex.

Consider, initially, the interaction to be the bare Coulomb V. Setting Σ = ΣH , the Dyson equation for

the Hartree interaction is as shown in Fig.(5)(a). Notice that all diagrams from 2rd order onward contain

a series of “bubbles” diagrams formed from the combinations VG0V. Analogously, setting Σ = ΣF for

the Fock interaction, we obtain a corresponding series of “ladders” as shown in Fig.(5)(b).

Consider now that we substitute our bare Coulomb potential for the random phase approximation

(RPA) screened potential WRPA. In the RPA, electrons are assumed to respond to an effective potential WRPA

which already accounts for an averaging of screening effects. We can write the renormalized interaction

as WRPA = V + VLV + VLVLV + ... where L is the so called Lindhard function corresponding to the

proper bubble diagram as shown in Fig.(5)(c). Now see what happens if we substitute the potential WRPA

in the place of V in both the Hartree and Fock terms. For the Fock terms it’s easy to see that each “rung”

term has now infinite terms, corresponding to each of the bubbles of the interaction line. However, if we

try to do the same for the Hartree term, we just obtain diagrams that are already accounted elsewhere in

the original expansion. This multiple counting of equivalent terms is strictly forbidden since the interaction

potential must be proper, so it is concluded that the interaction V in the Hartree termmust not be screened,

at least in the RPA sense. Said in other words, the bubble series in Fig.(5)(b) already “naturally” screens

itself.

We note that some studies argue that, when solving the BSE in a restricted subspace of the full Hilbert

space (for example, the subspace associated with low-energy bands close to the Fermi energy), the Hartree

interaction should be appropriately screened by states outside of said subspace (for example, higher energy

bands and/or other physical subsystems such as substrates). This is the so called S-approximation [(28)].

As we will explain further ahead, for the case of isolated hBN, due to the simplicity of its band structure,

we actually do not need to account for the screening of higher order bands. However, when dealing with

the hBN-metal hetero-structure, we do screen both the Hartree and Fock term due to the proximity of the

metal. For a more in dept discussion on the screening in the exchange term and the S-approximation see

the article [(28), (29)]. As a compendium see also the many-body theory books [(30), (31)].

We take this discussion as an opportunity to point out that we are working within the static limit,

W(ω = 0), meaning that we do not account for the dynamics (i.e the frequency dependency) of the

screened potential W(ω). As a side note, in a non-equilibrium Dyson equation sense, this would be
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equivalent to close the system of equations for the lesser- and greater-GF, also know as Kadanoff-Baym

equation, by setting the collision integrals to zero [(32)]. As discussed in the article [(33)], taking into

account the dynamical effects is possible however, instead of obtaining a simple eigenvalue problem, one

obtains a non-linear one, this is, we would need to solve the BSE self-consistently because the Fock self-

energy itself would depend on the resulting excitonic energy. Fortunately, as also pointed out in their work,

taking the static limit is a reasonable approximation for most semiconductor crystals since the plasmon

energies that control the dynamic of the screening are much bigger than the excitonic binding energies,

effectively closing the iterative process.

Figure 5: Diagrammatic approach to the iterative Dyson equation by expansion of the electron-hole prop-

agator G in powers of the (a) Hartree self-energy (b) Fock self-energy. (c) RPA expansion of the effective

potential WRPA.

On the topic of screening, we take this opportunity to lay out the explicit form of the static potentials

describing the e-e interaction. We comment on the results in three dimensions but also in two dimensions

as a precursor to the study of hBN. Firstly, the bare interaction of the Hartree/exchange term corresponds

to the Coulomb potential,

V(r) =
e2

4πε0

1

|r|
, (3.30)

expressed in reciprocal space. Performing the 3D and 2D Fourier transforms, one obtains, respectively,

V3D(k) =
e2

ε0

1

|k|2
and V2D(k) =

e2

2ε0

1

|k|
. (3.31)

While for the case of a 3D dielectric the screened interaction of the Fock/direct can be obtained just by

directly making the alteration ε0 → ε in the 3D bare potentials, the same is not true for the 2D case. As
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derived in Appendix B.1, the suitable choice of potential to account for the repulsive screened interaction

between electrons in a polarizable 2D semiconductor is the Rytova-Keldysh potential,

W(k) =
e2

2ε0

1

|k|
1

1 + r0|k|
, (3.32)

where r0 = χ2D/2 is the so called effective screening radius which is material dependent. The term

1/(1 + r0k) account for the RPA dielectric screening as discussed above.
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Chapter 4

Numerical Implementation

In this section we discuss on the numerical implementation details of the generalized eigen-problem in

Eq.(2.64). For this discussion, we refer to bright excitons in hBN as a concrete example and visual aid,

however, we will refrain ourselves to comment beyond numerical details since this section is prior to

that of excitons hBN. In due time such comments will be made and refer to this section so one gets a

complete grasp of some details. We start by showing how the discretization of the eigenvalue problem

is made with a k-point sampling of the electronic first Brillouin zone, tackling the complications that

emerge such as the small apparent momenta divergence of the interaction and the need to implement a

cutoff for large momentum. Next, in order to obtain the excitonic energies and wave-functions, we review

possible numerical eigen-solvers outside and within the Tamm-Dancoff approximation. Finally, we test

the convergence of the excitonic energies with the number of k-point samplings and norm of cutoff as a

compromise between numerical precision and computational cost (on a 8core machine).

4.1 Discretization of the eigenvalue problem

4.1.1 k-point sampling

Looking back at Eq.(3.16), although in the thermodynamic limit the sum over the electron’s momentum

k′ should be actually an integral, in order for us to be able to withdraw any information about the excitonic

band structure and wave-function, we need to retain k′ as a sum over a discretized grid ofNk equidistant

points within the 1BZ separated by some interval ∆k,∫
1BZ

dk

(2π)2
→ ∆k

∑
k∈1BZ

. (4.1)
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This can be done in a mid-point rule as

kn1,n2(b1, b2) =
2n1 −

√
Nk − 1

2
√
Nk

× b1 +
2n2 −

√
Nk − 1

2
√
Nk

× b2 ,with n1, n2 ∈ 1, 2, ...,
√
Nk,

(4.2)

where b1 and b2 are reciprocal space vectors and the interval length reads ∆k = |b1|/
√
Nk along both

the b̂1 and b̂2 direction. In Fig.(6) we shown a concrete example of a discretized 1BZ grid for the case

of hBN. For example, substituting n1 =
√
Nk and n2 = 1/2

(√
Nk + 1

)
into Eq.(4.2), we obtain the

point near the edge of the 1BZ along the b̂1 direction just shy of the symmetry pointM (which is exactly

on the edge of the 1BZ) by half a division length. Notice that, to guarantee that n2 is a whole number we

must set Nk as an odd perfect square. Also, with Nk being odd, it is guaranteed that the Γ symmetry

point is exactly hit. In addition, particularly for the hBN case, to ensure that the immensely relevant valley

symmetry points±K are exactly part of the grid, i.e±K
!
= kn1,n2(b

hBN
1 , bhBN

2 ), one needs to specifically

use NK ∈ {3 + 6N}2 where N are natural numbers.

Figure 6: Discrete hBN first Brillouin zone grid with Nk = 441 points (corresponding to
√
Nk = 21

points along each b1/b2 direction) defined in a mid-point rule in the electronic k-space.

After performing this k-point sampling, the linear response equation in Eq.(3.16) (shown only within

the TDA for the sake of space) readsℏω1Nk×Nk
−


R

{k′
1+Q}c3,k′

1v4
{k1+Q}c1,k1v2

R
{k′

2+Q}c3,k′
2v4

{k1+Q}c1,k1v2

k′
→

R
{k′

1+Q}c3,k′
1v4

{k2+Q}c1,k2v2
R

{k′
2+Q}c3,k′

2v4
{k2+Q}c1,k2v2

k′
→

↓k ↓k
. . .





ρ
(1)

{k′
1+Q}c3k′

1v4

ρ
(1)

{k′
2+Q}c3k′

2v4

↓k′

 =


J{k1+Q}c1,k1v2

J{k2+Q}c1,k2v2

↓k

 ,
(4.3)

where k and k′ run on all the points of the discretized 1BZ. From here we can construct our two-particle

Hamiltonian matrix with each entry of the resonant block R and coupling block C calculated using the

expressions in Eqs.(3.19) through (3.24) for a fixed exciton center of mass momentum Q. The electronic
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Bloch states ϕς
kλ are also obtained numerical, usually through some type of DFT calculations. As we will

see further in the text, in this work the electronic Bloch states ϕς
kλ were calculated within a tight-binding

model, corresponding to the eigenvectors of the tight-binding Hamiltonian.

4.1.2 Regularization of interaction for small momentum

Bare Coulomb potential

Consider the case of a zero momentum exciton Q = 0 and the first term of the sum over the reciprocal

vectors G = 0. In this case, directly from Eq.(3.19), the resonant Hartree term reads

V k′v4,kc1
kv2,k

′c3
(G = 0) =

1

V
V(0)

[
ϱkc1
kv2

(0)

] [
ϱk′v4
k′c3

(0)

]
(4.4)

with ϱkc1
kv2

(0) =
∑
ς

(
ϕς
kc1

)∗
ϕς
kv2

(4.5)

and ϱk′v4
k′c3

(0) =
∑
ς

(
ϕς
k′v4

)∗
ϕς
k′c3

. (4.6)

Although the bare Coulomb potential in Eq.(3.31) has an apparent divergence at k = 0 that should

be dealt with, since the tight-binding Block states ϕς
kc and ϕς

kv are orthogonal to each other (since they

correspond to the eigenvectors of the TB Hamiltonian for a fixed k), both form factors are actually zero

and subsequently the Hartree term as a whole is also zero. This holds true also for the coupling block and

for any choice of potential V .

Rytova-Keldysh potential

As derived in Appendix B.1, the Rytova-Keldysh potential, which describes the repulsive screened interac-

tion between electrons in a polarizable 2D semiconductor, reads

W(k) =
e2

2ϵ0

1

|k|
1

1 + r0|k|
, (4.7)

with r0, the effective screening radius, a constant that is material dependent. See that, for the particular

case of k = 0, we get a divergence of this potential. This is problematic since, due to the k-point

sampling, we have this divergence appearing as a Fock interaction term with k = k′ and G = 0 in our
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effective two-particle Hamiltonian,

W
{k′+Q}c1,k′v4
kv2,{k′+Q}c3 (G = 0) =

1

V
W (0)

[
ϱ{k′+Q}c1
{k′+Q}c3

(0)

] [
ϱk′v4
k′v2

(0)

]
(4.8)

with ϱ{k′+Q}c1
{k′+Q}c3

(0) =
∑
ς

(
ϕς
{k′+Q}c1

)∗
ϕς
{k′+Q}c3 (4.9)

and ϱk′v4
k′v2

(0) =
∑
ς

(
ϕς
k′v4

)∗
ϕς
k′v2

. (4.10)

Notice that this divergence is not safeguarded by the orthonormality properties of the Block states ϕς
kλ

as it was the case for the Hartree term because the form factors now have the same band indices, cc

or vv. Fortunately, we can bypass this apparent small momenta divergence going back to the integral

representation of the thermodynamic limit. Therefore, we will be integrating in k′ the Fock interaction

term with G = 0 in a tiny patch of the 1BZ centered around zero, which we will be denoting by 1bz0.

We assume that the Block states ϕς
kλ in Eqs.(4.9) and (4.10) vary smoothly with k′ such that they can be

considered outside of the integral, effectively dealing with the divergence of W in isolation. Although the

integral over the 1bz0 is still ill-defined at zero, we can clear up the divergence by separating the integral into

two distinct parts: a polar integral centered in zero with a radiusR◦ which maximize the area of integration

to the biggest possible circle enclosed within 1bz0 and a second integral containing the remaining area

Aout. This regions are depicted in Fig.(7) in yellow and blue respectively (in a very low k-points sampling

such that 1bz0 is big enough to see clearly). Within this course of action, the divergent term 1/k at k = 0

only appears in the polar integral which ends up being canceled out with the polar Jacobian determinant

k. The integral over the “weird shaped” remaining area can then be done numerically without the trouble

of the divergence. We obtain∫
1bz0

d2k′

(2π)2
W(k′) =

1

(2π)2
e2

2ϵ0

[
2π

log(r0R◦ + 1)

r0
+

∫
Aout

1

k′
1

1 + r0k′
d2k′

]
. (4.11)

We note that in a later section we will be dealing with a metal screened Rytova-Keldysh potential which

effectively loses this divergence but we still had to implement this integral treatment. This is necessary

because in the limiting case where the metal is very far away from the material of study, the metal screened

Rytova-Keldysh potential will tend to its bare form and thus the divergence will progressively become

apparent and must be dealt with. As a side note, since the metal screened Rytova-Keldysh polar integral

is not so analytically trivial to solve we do it numerically (which is still fine since the divergence is not there

anymore).
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Figure 7: Discrete hBN first Brillouin zone grid with Nk = 9 points (corresponding to
√
Nk = 3 points

along each b1/b2 direction) defined in a mid-point rule in the electronic k-space. The yellow area corre-

spond to the biggest possible circle enclosed within the central tiny patch of the 1BZ . The remaining area

Aout is colored in blue.

4.1.3 Cutoff of the interaction for large momentum

As a mean to define a numerical precision to our calculations, we now introduce a cutoff norm |kcutoff| to

the interaction range of both the bare and screened potentials for large momentum such that

V (k > |kcutoff|) = W (k > |kcutoff|) = 0. (4.12)

This cutoff is proactively justified by the absence of the term ϱ00
ςς′
(k) introduced in Sec.III.A, which is known

to decay fairly quickly. Since we have set this term to unity in our ultra-localized orbitals we are effectively

missing out on this rapid decay and most introduce it manually. Therefore, with this cutoff most of the

effective two-particle Hamiltonian terms [described in Eqs.(3.19) through (3.24)] will be exactly zero and not

just very small valued. The Hamiltonian He-h will have a dominant diagonal due to the free-particles non-

interacting term while the off-diagonal terms fade in magnitude. This fact is a huge numerical advantage

since we should be able to use sparse matrices. Sparse matrices provide a more efficient storage of

data that has a large percentage of zeros, typically > 70%. While full (or dense) matrices store every

single element in memory regardless of value, sparse matrices store only the nonzero elements and their

position within the matrix. However, as it turned out, the use of sparse matrix was not fully justified since

the percentage of zeros in the matrix was not big enough for numerical improvement and we defaulted to

using dense matrices (we could, of course, diminish the cutoff norm even more such that the matrix had

a usable percentage of zeros, however we would be cutting off relevant contributions).

Moreover, due to this cutoff range, we can upper-bound the infinite sum over all possible the reciprocal

lattice vectors G in Eqs.(3.19) through (3.24) accounting only for the neighboring Brillouin zones that are
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actually within the cutoff range of all points within the 1BZ. In Fig.(8) we show how this upper-bounding

responds for a given cutoff.

Figure 8: Upper-bounding of the summation
∑

G due to the cutoff norm for values (a) |kcutoff| = |M −

K|/2 ≈ 0.43Å
−1

and (b) |kcutoff| = 4Å
−1

, represented in the electronic k-space. The red circles,

centered at the 1BZ (in dark gray) vertices, represents the allowed area within which a grid point has

|k| < |kcutoff|. In light gray are all the neighboring BZs, defined by a G(n1, n2) shift from the 1BZ,

that intersect with said red circles. The |M − K|/2 distance, corresponding to the radius of a 1BZ

circumscribed circle centered in ±K and characterizes the low-energy regime.

4.2 Eigen-solvers

Once the effective two-particle Hamiltonian is built, the next step is to calculate its eigenvalues. Numer-

ically, this is a simple task and can be done in a number of different ways. In our case, this was done

in Julia in two different manners. Initially, we focused on the Tamm-Dancoff approximation and solved

the simple eigen-problem R · ΨX = EXΨX resorting to the built-in eigen(A, 1 : n) function, which

provided us with the eigenvalues up to the nth state as long as A is Hermitian (which R is). However,

outside of the TDA, one has to solve a generalized eigenvalue problem, He-h ·ΨX = EXS ·ΨX , and

cannot straightforwardly use the eigen(A, 1 : n) function. For this, one needs to use some approximated

eigenvalue algorithm like the power method [(34)]. Moreover, considering that the excitonic eigenvalues

appear as−λNk
,−λNk−1, ...,−λ1,+λ1, ...,+λNk−1,+λNk

(as commented previously in Sec.II.C.3),

one would need to use instead a shifted inverse power method [(34)] since uniquely using the inverse

method would only get us the largest eigenvalue but with a negative sign and uniquely using the shifted

method would get us the positive-negative pars around zero. In particular, we resorted to the Arnoldi itera-

tion algorithm [(35)], which is basically an improved power method, particularly useful when dealing with

large sparse matrices [(36)].
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4.3 Convergence with sampling and cutoff

First and foremost, before showing any relevant results, we must test the optimal number of k-sampling

points Nk and the optical cutoff kcutoff, chosen as a compromise between numerical precision and com-

putational cost. We study the absolute and relative errors along the convergence of the first 8 energy

levels with one of the parameters fixed in its optimal value while the other is incrementally increasing. This

was, of course, an iterative process between the results of Nk and kcutoff after some decent guess. The

kcutoff initial guess can be reasoned, for example, by looking at the magnitude of a given row of Rk,k′∈1BZ

calculated with large Nk and kcutoff [calculated using the expression in Eq.(4.3)] as shown in Fig.(9).

In this heatmap plot, we can see that the strength of interaction between k = K and its neighboring

points k′ doesn’t extend much further than≈ 1 Å−1 , with the remaining values being of order≈ 10−6eV.

While the convergence tests were performed for optically active modes (singlet-state with Q = 0) within

the TDA, we assume that the results applies outside of the TDA as well as for all other Q’s and for the

triplet-states. Analyzing the convergence of the energy levels accompanied by its absolute and relative

error for consecutive increments of the respective parameter compiled in Fig.(10), we consider the values

Nk = (3 + 6 × 15)2 ≈ 9000 points and kcutoff = 1.5Å
−1

to be an optimal compromise between

numerical precision and computational cost (on a 8core machine) and, as such, will be used throughout

all the numerical calculations. Building the 9000 × 9000 two-particle matrix from Eqs.(3.19) through

(3.24) and calculating its first eight energies with the built-in Julia eigen-solver took about ∼30min. From

the absolute error shown in Fig.(10) we consider to have precision roughly to the second decimal place

and will be showing the results accordingly.
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Figure 9: (top) Strength of interaction of K with its neighboring k′
i ∈ 1BZ, corresponding to the 1BZ

heatmap plot of the entries of the resonant block row RK,k′
i
. (bottom) Entries of the resonant block row

RK,k′
i
for only k′

i ∈ 1BZ ∩ ky = 0, corresponding to the path denoted in white in the heatmap. The

1BZ is depicted in gray outlines. Points outside the 1BZ area were shifted from within the 1BZ by a given

reciprocal lattice vector G for viewing purposes. The pink highlights characterizes the low-energy regime

and has radius |kcutoff| = |M −K|/2 ≈ 0.43Å
−1

. The blue highlights characterizes chosen optimal

cutoff, |kcutoff| = 1.5.
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Figure 10: Convergence of the first eight energy levels for a bright exciton in hBN as a function of (1st

column) the number of k-sampling pointsNk using |kcutoff| = 1.5Å
−1

and (2nd column) as a function

of the cutoff norm |kcutoff| using Nk ≈ 9000 points. Each energy convergence plot is accompanied by

the absolute error in a log10 scale and the relative error between energies calculated with consecutive

increments of the respective parameter. There are only 5 states visible because we treated degenerated

states as being the same state (which we checked to behaved the same apart from some very minor

variations.). The blue shaded area corresponds to the values taken as the optimal compromise between

numerical precision and computational cost. The pink shaded area characterizes the low-energy regime

and has radius |kcutoff| = |M −K|/2 ≈ 0.43Å
−1

.
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Chapter 5

Excitons on hBN structures

5.1 Tight-binding model for the single-particle Bloch states

Hexagonal boron nitride (hBN) is a 2D material composed of a simple layer of alternating boron and

nitrogen atoms disposed in a planar honeycomb lattice, as shown in Fig.(11)(a). hBN shares a lot of

similarities with graphene, also a 2D honeycomb structured material but instead composed of only carbon

atoms. The most relevant distinction is that graphene behaves as a semi-metal with a zero-gap at its Dirac

points while hBN, due the different electrostatic environment in the boron and in the nitrogen atom, has an

opening gap of about ϵg = 5.9eV (there are actually a lot of different results for ϵg in the literature however

the mentioned value is one of the more commonly reported [(37)]. Also, hBN has a slightly larger lattice

constant than graphene (about 1.8%), being around a0 = 2.5Å [(38)]. The planar honeycomb lattice can

be described as a triangular Bravais lattice generated by the real vectors basis

a1 =
a0
2

(
1,
√
3
)
, (5.1)

a2 =
a0
2

(
−1,

√
3
)
. (5.2)

In each Wigner-Seitz cell, we have one atom of boron and one atom of nitride, which we designate as

sub-lattices A and B respectively, having positions,

sA =(0, 0), (5.3)

sB =
a0√
3
(0, 1). (5.4)

For each site A, the position of the nearest-neighbors (NN) in the sites B are given by

δ1 =
a0√
3
(0, 1), (5.5)

δ2 =
a0

2
√
3

(
−
√
3,−1

)
, (5.6)

δ3 =
a0

2
√
3

(√
3,−1

)
. (5.7)
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All these vectors are shown in Fig.(11)(a) within the real space lattice. Furthermore, from the real lattice

basis vectors follow the reciprocal lattice basis vectors

b1 =
2π√
3a0

(√
3, 1
)
, (5.8)

b2 =
2π√
3a0

(
−
√
3, 1
)
. (5.9)

which are shown in Fig.(11)(b) together with the first zone of Brillouin, which they form.

Figure 11: (a) hBN real space honeycomb lattice constructed from two superposed triangular sub-lattices

of boron atoms (depicted in red), denoted as sub-lattice A, and of nitrogen atoms (depicted in blue),

denoted as sub-lattice B. The vectors a1 and a2 are the lattice basis vectors and δ1, δ2 and δ3 are

the nearest-neighbor vectors. (b) hBN reciprocal space lattice with b1 and b2 its basis vectors. The first

Brillouin zone is emphasized in light gray while the remaining are only outlined. The red dots correspond

to the Dirac points ±K and the green dots correspond to the 1BZ edgesM points.

In order to compute the excitonic energies using Eqs.(3.19) through (3.24), we first need to know

the single-particle Bloch wave-functions ϕς
kλ. In this work we calculate them in a nearest-neighbors tight-

binding model. For this, we write the system’s single-particle NN tight-binding Hamiltonian in real space

as

HTB(R) =
∑
i

ϵAa
†
Ri
aRi

+
∑
i

ϵBb
†
Ri
bRi

− t
∑
⟨i,j⟩

(
a†Ri

bRi+δj + b†Rj
aRi−δj

)
, (5.10)

where the operators a†Ri
(aRi

) create (annihilate) an electron in the sub-lattice A in a given Bravais lattice

site Ri while the operators b†Ri
(bRi

) create (annihilate) an electron instead in the sub-lattice B (in a
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given Bravais lattice site Ri). Therefore, the first two terms correspond to the isolated single-particles

Hamiltonian of the site A and B, respectively, and the last term to the hybridization between neighboring

sites i and j, describing the possible hoppings from site A to site B and vice-versa. We only assess

hopping terms up to the first neighbors terms, which is denote by ⟨i, j⟩, and consider a static hopping

term in either direction, i.e tRi,Rj
→ −t. Notice that, contrarily to graphene, since the atoms on sites A

and B are different the single-particle energies ϵA and ϵB are inherently different. We can represent the

NN TB Hamiltonian in Eq.(5.10) in reciprocal space by expressing the creation/annihilation operators as

their Fourier counterparts,

aRi
=

1√
V

∑
k

e+ik·(Ri+sA)ak, (5.11)

bRi
=

1√
V

∑
k

e+ik·(Ri+sB)bk, (5.12)

and rearranging the expression just that the identity δ(k − k′) = 1/N
∑

i e
−iRi·(k−k′) is apparent.

We obtain

HTB(R) =
∑
k

ϵAa
†
kak +

∑
k

ϵBb
†
kbk − t

∑
k

(
γka

†
kbk + γ†kb

†
kak

)
, (5.13)

with the newly-defined γ complex number,

γk =
∑
⟨j⟩

e+ik·δj . (5.14)

If we now define a row vector c†k =
[
a†k b†k

]
we can rewrite the system’s Hamiltonian as HTB

R =∑
k c

†
kH

TB
k ck with the hBN NN TB Hamiltonian matrix being

HTB(k) =

 ϵA −tγk
−tγ†k ϵB

 . (5.15)

Within this simplified tight-binding model, the expression for the electronic two-band structure can easily

be obtained analytically by diagonalizing the matrix in Eq.(5.15), yielding

E±
TB(k) = ±

√√√√ϵ2 + t2

[
3 + 2 cos (a0kx) + 4 cos

(
a0
√
3

2
ky

)
cos
(a0
2
kx

)]
. (5.16)

Here we defined the zero point energy at (ϵA + ϵB)/2 and defined ϵ ≡ (ϵA − ϵB)/2 at the middle

of the gap such that ϵA = ϵ and ϵB = −ϵ. The valence band corresponds to the E−
TB(k) dispersion

while the E+
TB(k) corresponds to the conduction band, as shown in Fig.(12) which is accompanied by

the density of states DoS(E) =
∑

k δ (E − E(k)) . Notice that, if ϵA = ϵB , as is the case for
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graphene, we obtain ϵ = 0 and the band dispersion closes in a linear fashion at the so called Dirac

points, K± = (±4π/(3a0), 0). In hBN, the electronic band dispersion is also at its minimum near

these points but has instead a parabolic shape. In either case, this points represent a fundamental

symmetry of the system, called valley parity. To see why the dispersion is parabolic at these valley points,

we Taylor series expand the exponential of γk in Eq.(5.14) near k → K + p with p → 0. We obtain

e+ip·δj ≈ 1 + ip · δj . Now, since
∑

⟨j⟩ e
+iK·δj = 0 we are left with

γK+p ≃ ip ·
∑
⟨j⟩

e+iK·δjδj = −
√
3a0
2

(px − ipy) . (5.17)

Invoking the Pauli matrices definitions, from Eq.(5.15) we can write the TB Hamiltonian Hk
TB in this low-

energy regime as

HTB(K + p) = ϵσz + t

√
3a0
2

(p · σ) , (5.18)

which clearly resembles the 2D Dirac Hamiltonian, HDirac = σzmc
2 + c (p · σ) with ϵ taking the role of

the rest mass energy mc2 and instead with a velocity vF = t
√
3a0/2 , termed the Fermi velocity, as a

replacement to the velocity of light c. Notice that, for the case of graphene, since ϵ = 0, the electrons

would behave as if they are massless. In this limit, the hBN low-energy dispersion can be written as the

typical relativistic dispersion relation

ETB(K + p) = ±
√
p2v2F +m2

effv
4
F . (5.19)

wheremeff is the effective mass of the electron at a given point near the valleys.

Although not captured in this simple tight-binding model, if one does some type of DFT to obtain a

more complete electronic band structure, one could see that the hBN bands do actually cross between

themselves (see, for example, Fig.(1) from [(39)]). This appears to be troublesome to our two-band time-

dependent Hartree-Fock mean-field theory since certain transitions could occur between bands that are

not accounted for in our model. However, these other intersecting bands corresponds to electronic states

that are orthogonal to the ones we use in our two-band model and thus, will not interfere (i.e, even if we

accounted for this other bands in our model, the form factors in Eqs.(3.19)-(3.24) would always give zero

for transitions between those bands). However, this only applies for the hBN case since, if one was dealing

instead with TMDs, one would need to account for at least three bands [(26)]. Furthermore, following the

context of TMDs, one should also need to account for the spin-orbit coupling (SOC) where the effective

Hamiltonian for such a system could be obtained by adding to Eq.(5.18) the termHSOC = tstsz(σz−1)/2

where ts quantifies the spin-orbit coupling and sz = ±1 labels the spin projection of the bands [(26),

(40)].
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Figure 12: hBN electronic band structure from a nearest-neighbor tight-binding model accompanied by

the density of the states. The dispersion goes along the symmetry path k : Γ → K → M → Γ

and was calculated using ϵg = 7.8eV for the energy gap, t = 3.1eV for the hopping parameter and

a0 = 1.42
√
3Å for the honeycomb lattice length.

5.2 Isolated hBN excitonic properties

5.2.1 Bright exciton: singlet state forQ = 0

Firstly, we focus on the results, in and out of the TDA, for the (optical active) bright excitons, corresponding

to the singlet state for a zero center of mass momentum exciton. Bright excitons, as opposed to dark

excitons, dominate the optical properties of semiconductors since they can form/recombine from a single

photon absorption/emission, making them the main focus of most of the literature on excitons.

The hBN NN TB electronic parameters to perform the calculation were: e2/ε0 = 104/55.3eVÅ,

ϵg = 7.8eV for the energy band-gap, t = 3.1eV for the hopping parameter, a0 = 1.42
√
3Å for the

honeycomb lattice length and r0 = 10Å for the effective screening radius of the Rytova-Keldysh potential.

We have selected these values because they correspond to those featured in the reference [(41)], with which

we intend to make a comparative analysis of the results. Furthermore, following the convergence tests

done in Sec.IV, we will be using a k-sampling ofNk = 8649 points with a cutoff norm of |kcutoff| = 1.5Å.

We show the results for the bright exciton energies in Fig.(13) and the results for the corresponding

wave-function intensities in both reciprocal and real space in Fig.(15). The real space representation was
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obtained via

ΨX
cv(R+ sα,R

′ + sβ) =
1

Nk

∑
k

eik·((R+sα)−(R′−sβ))
(
ϕβ
kv

)∗
ϕα
kcΨ

X
cv(k), (5.20)

where R + sα is the position of the electron in the real space lattice and R′ + sβ the position of the

hole. In particular, the results shown in Fig.(15) have the hole fixed at the center boron atom in the origin

of the referential, i.e R′ = 0 and sβ = sA. Such expression can be obtained by considering the rDM

in real space, ρRα,R′β =
〈
c†
R′,β

cR,α

〉
and inverse-Fourier transforming the creation/annihilation as in

Eq.(3.2).

Analyzing the energy state results in Fig.(13), we observe a 1st and a 2nd lowest energy state having

both the same energy 6.31eV. This states are then separated from the next higher energy state by 0.75eV.

Subsequently, we obtained a 4th state considerably above the 3rd by 0.09eV and then a succession of

two pairs of states, 5th and 6th, and 7th and 8th, having also the same energy (in pairs). We see that the

lowest energy state is isolated from the higher energy states by a gap of 0.75eV, compared to the 0.25eV

range between the 3st and 8nd states. Furthermore, the emergence of states having the same energies is

to be expected due to valley parity symmetry where, and speaking from a low-energy scheme in the vicinity

of K± , each decoupled valley would contributes with its own eigenvalue. This, of course, assumes that

inter-valley coupling in nearly absent which is not necessarily true as seen in the degeneracy lift between

the 3rd and 4th state. Formally, we must sum the total wave-function intensities of the states that share

the same energy, in order to preserve the natural symmetry of the (perfect) crystal lattice [(42)]. We do this

in both the reciprocal and real intensities plots in Fig.(15) and denote the now single double-degenerated

states by their pure constituents states in a square bracket notation. If we were to break the symmetry

of the crystal, for example by slightly displacing one of the atoms, we would expect a splitting of these

constituent states.

In order to understand if our calculations are trustworthy, we compare our results with those obtained

in previous studies, specifically the references [(39), (41), (43), (44)]. We note that these comparisons

are not meant to be one-to-one because the electronic parameters and methodology do not exactly match

between the different articles and ours. Also, we note that in [(41)] refers not to the excitonic energies

EX but instead to their binding energy Eb with respect to the electronic energy gap, i.e Eb = EX − ϵg.

Moreover, the order of appearance of the states may depend on whether the electronic calculations where

based on a TB or an ab inition model. In particular, comparing with the results from [(39), (43)], we see

that in our TB calculations the non-degenerated 3rd and 4th states, which are degenerate in their ab inition

calculations, are switched with the degenerated 5th and 6th states, which are non-degenerate in their ab

inition calculations. Beside this points, we consider the values and behavior of our results within reason
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with the mentioned studies: a lowest energy state around ∼ 6eV isolated from the higher energy states

by a gap of ∼ 1eV with three pairs of degenerated states and two non-degenerated states separated by

∼ 0.1eV.

Figure 13: hBN bright exciton energies (corresponding to the optically active singlet state with center of

mass momentum Q = 0) for the first eight excitonic states. The energy values read as: 6.31eV for the

1st and 2nd state, 7.06eV for the 3rd, 7.15eV for the 4th, 7.18eV for the 5th and 6th and 7.31eV for the

7th and 8th. The parameters utilized for these results are made explicit in the beginning of Sec.V.B.I. Also,

the calculation were performed within the TDA.

We now refer to the results for the wave-functions shown in Fig.(15). Since in the Wannier limit the

exciton can be treated as a hydrogenoide model [(1)], we can classify and identify to some extent the

excitonic states in an scheme borrowed from the 2D atomic orbitals terminology: (n, ℓ,m) with n the

principal quantum number, ℓ = 0, ..., n − 1 the azimuthal quantum number and m = −ℓ, ...ℓ the

magnetic quantum number, denoting the states in the format 1s ≡ (1, 0, 0), 2s ≡ (2, 0, 0), 2p0≡

(2, 1, 0), 2p1≡ (2, 1, 1), etc... The probability densities of these hydrogenic atomic orbitals are shown

in Fig.(14) as a visual reference guide.
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Figure 14: 2D probability density projection onto the plane zOy of the hydrogenic atomic orbitals in a

(n, ℓ,m) representation. Image altered from [(45)]

Evaluating side by side the probability densities of the atomic orbitals in Fig.(14) with our results for

the hBN bright excitonic in Fig.(15), one could assess through a visual comparison that the excitonic lower

energy state resembles the 1s atomic orbital and that the higher excited state resembles the 2s atomic

orbital. Although the comparison for the in-between states is not visually evident, possibly due to trigonal

warping and/or hybridizing of the s and p behavior, we can at least assess that, since they are strikingly

similar, they must belong to the same orbital family. Given they are only three different states on that

orbital family, #3, #4 and #[5,6], it must correspond to the 2p orbital family. Thus, we assess the #[5,6]

as being the 2p0 state and the non-degenerated #3 and #4 states as being the 2p−1 and 2p+1 states

respectively. Whilst not necessarily common, the 2s level is indeed found to be above the 2p levels.
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Figure 15: hBN bright exciton (normalized) wave-function intensities |ψX |2 for the first eight excitonic

states. The representation in done in (1st row) reciprocal space and in (2nd row) real space. The single

double-degenerated states are constructed by summing the intensities of the states that share the same

energy, in order to preserve the natural symmetry of the crystal lattice. In the real space representation,

the hole (denoted by a small black dot) is fixed at the center boron atom in the origin of the referential.

While this hydrogenoide classifications of the excitonic states is useful, it its the genuine triangular

point group symmetry C3v that should formally describe the excitonic states. The C3v symmetry group is

described by three different classes: the identity E, two 3-fold rotation symmetries C3 and three mirror

symmetries σv, reflecting along the axis of highest rotational symmetry. It decomposes into three irre-

ducible representations (irreps): the single-degenerated symmetric irrep A1, the single-degenerated anti-

symmetric irrep A2, characterized by an odd character for the σv reflections, and the double-degenerated

irrep E [(46)]. Immediately, we can identify the double degenerate 2s, 2p and 2p0 as being irreducible

presented byE. It then only remains to make the correspondence between the 2p+1 and 2p−1 states and

the irrepsA1 orA2. For this, we do an intensity-phase representation of the excitonic wave-function where

each k-point of the discretized 1BZ has an associated color value given by to the wave-function phase and

an opacity proportional to the normalized intensity, as shown in Fig.(16). From here, and ignoring the

numerical noise, it is clear that the 3rd state, corresponding to the 2p−1 state, is symmetric with respect

to a highest rotational symmetry axis, in particular the ky -axis, and therefore is irreducible represented

by the A1 irrep. One the other hand, the 4th state, corresponding to the 2p+1 state, is anti-symmetric

with respect to the ky -axis and is instead irreducible represented by the A2 irrep. However, contrary to

our findings, in [(39)], which also studied the excitonic states in terms of the C3v symmetric, found the

anti-symmetric state to be instead the first of the non-degenerate states.
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Figure 16: Intensity-phase representation in reciprocal space of the hBN bright exciton wave-function for

the 3rd and 4th states. Each ki point of the discretized 1BZ grid has an associated color value given by

the wave-function phase and an opacity directly proportional to the normalized intensity.

5.2.2 Excitonic band structure

We now concern ourselves with the whole excitonic band structure for both the singlet and triplet spin-

states. Although one could argue that the excitonic band structure, specially for the triplet states, is not

necessarily interesting because dark excitons do not have a photoluminescence response and thus do not

contribute for the optical properties of the semiconductor, the particularity of them not being able to easily

recombine into a single photon, either because the electronic transition is non-vertical or spin-forbidden,

also means that they have much longer radiative lifetimes than bright excitons which makes them attractive

for different reasons, as talked about in the introduction.

In order to build the excitonic band structure we need to perform the calculations for the first eight

energy states for various exciton center of mass momentum Q. Particularly, we consider the path Q :

Γ → K → M → Γ with NQ = 32 points. For this, the total length LQ of the path was first divided

into NQ − 2 equidistant intervals ∆Q ≈ 0.134Å
−1

which are then distributed along each of the three

path directions. Since the lengths of each are not multiples of each other the K and M point are not

exactly hit so we just manually incorporate them into the path (hence the previous −2 in NQ − 2).

For this choice of Q points, the complete excitonic band structure is as shown in Fig.(17). We note

that, in this figure, the lines in-between the same state energies for consecutive Q-points were added as

a visual guide and that the actual scatter points had to be omitted because it would made the display a lot

more convoluted and impossible to read. Firstly, we comment on the overall structure and degeneracies

of the singlet states, then on the spin-splitting comparing the singlet and triplet state and finally on the

validity of the Tamm-Dancoff approximation. We focus our analysis mainly on the high symmetry points

of the excitonic band structure, Q = K and Q =M .
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Figure 17: hBN excitonic band structure for both the spin-singlet and spin-triplet states, for the first eight

excitonic states. The dispersion goes along the symmetry path Q : Γ → K → M → Γ for NQ = 32

different excitonic center of mass momentum Q. It was used a sampling of Nk = 8649 electronic

k-points and a cutoff norm of |kcutoff| = 1.5Å. The lines are added as a visual guide and the actual

scatter points had to be omitted to avoid a convoluted display. The thick black line corresponds to the hBN

electronic band-gap energy. The parameters utilized for these results are made explicit in the beginning

of Sec.V.B.I. Also, the calculation were performed within the TDA.

Inspecting Fig.(17), we see that the valley-degeneracy of the bright excitons states are immediately

lifted, which is to be expected since for a non-zero center of mass momentum exciton the C3v symmetry

is broken. Furthermore, notice that for Q = K the states group themselves once more into double-

degenerated states although not in the initial Q = 0 configuration. Analysis the first plot of Fig.(18),

where we show the energy values (vs the energy state) specifically for the Q = K case, we clearly see

that the 2nd state separates from the 1st state ending up degenerating instead with the 3rd state. This

in turns leaves the 4th state isolated since the pairs 5th and 6th, and 7th and 8th stay degenerated as

in the Q = 0 case. More importantly, see that this large-momentum excitons actually have its energy

very similar to those near zero momentum. In particular, the Q = K lowest state stays a shy ∼ 0.02eV

above the Q = 0 lowest-state. Perhaps, depending on the value of the exchange term V , controlled by

the electronic parameters, the lowest energy excitons could occur at Q = K, corresponding to a indirect

gap excitonic system.
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Concerning the spin-structure, we found that, for the zero center of mass momentum exciton, the

singlet and triplet state do not appear to have any differences, nor a spin splitting, nor a spin inversion of

levels. This, however, contradiction the ab inition results from [(43)] where, by turning on the (repulsive)

exchange interaction (which corresponds to go from the triplet to the singlet state), the energy of their

4th state moved substantially. The fact that we do not capture such phenomenon could be justified due

to the single-particle Bloch functions being approximated in a tight-binding model. This is somewhat

corroborated since in that very same study, besides the ab inition calculation, they also tested a tight-

binding model that also does not capture such inversion of levels. In our particular case, one possible

explanation can be attributed to the use of the ultra-localized electronic orbitals approximation (as described

in Section III.A) while the excitons are not genuinely in the Wannier limit, as it can be seen in the real space

representation in the second row of Fig.(15). In other words, if we are assuming the electrons to interact

only at long distances, the corresponding excitonic wave-function must be extensive enough to validate

such approximation, otherwise the electronic interaction cannot be straightforwardly described by the

Hamiltonian in Eq.(3.1) becauseR4, ς4 ≈ R1, ς1 andR3, ς3 ≈ R2, ς2 is simply not true. One the other

hand, while there were no differences between the singlet and triplet states forQ = 0, looking once more

at Fig.(17), we see that the spin-splitting is noticeable for other center of mass momenta, especially for the

2nd state. In fact, the 2nd state seems to have a much more spin structure dependent behavior overall.

In particular, we see that partway along the pathQ : Γ → K the spin-splitting is highly relevant but ends

up “closing” near the valley, coming back to zero at its center. Additional, along the path Q : K → M ,

the singlet and triplet states stay very close to each other (energetically speaking) and only near the 1BZ

edge at Q = M do they begin to considerably split. In the remaining path Q : M → Γ the splitting

stays considerable large for most of the way, closing somewhat abruptly only at Q = Γ.
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Figure 18: Comparing the first eight excitonic energy with excitonic center of mass momentum Q = K

and Q =M for both the spin-singlet and spin-triplet states. The thick black line corresponds to the hBN

electronic band-gap energy. The parameters utilized for these results are made explicit in the beginning

of Sec.V.B.I. Also, the calculation were performed within the TDA.

In the context of the hydrogenoide comparison, let us extend our discussion beyond the optical active

states, and analyze also the excitonic wave-functions for Q = K. Since its energy values resemble those

of the bright excitons, maybe is excitonic states canbe similar to the atomic orbitals. In Fig.(15) we show

the wave-functions intensities for its first eight states and indeed it is possible to see some similarities when

comparing these results with the probability densities of the atomic orbitals in Fig.(14). For example, the

2nd and 3rd state of the Q = K exciton bare a great resemblance to the 2p−1 and 2p+1 orbitals states,

not only because of their shape but also because of their tilt alignment with the reciprocal lattice vectors

b1 and b2 (analogously to the alignment to the x or y axis in the atomic orbitals). From the excitonic band

structure in Fig.(17) we can see that these 2p−1/2p+1 Q = K states are similar in energy with the not

so obvious 2p−1/2p+1 Q = 0 states, which gives further legitimacy to our initial classification. See that

this energy similarity also happens for the 2s states when comparing the #[7,8] Q = 0 state with the 4th

Q = K state. To conclude this hydrogenoide classifications of the excitonic states we mention that the

Q = K 5th and 6th state resemble respectively the 3d−1 and 3d+1 atomic orbitals and that theQ = K

7th and 8th state resemble respectively the 3d−2 and 3d+2.
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Figure 19: hBN singlet excitonic (normalized) wave-function intensities |ψn
X |2 of the first eight excitonic

states for excitonic center of mass momentum Q = K, in reciprocal space.

To test the reliability of the Tamm-Dancoff approximation, we calculated the excitonic energies for the

main three symmetry points Q = Γ, K,M for both the singlet and triplet states in and out the TDA. We

found that the energies calculated with the complete Hamiltonian bare no difference whatsoever from the

TDA calculations. However, for the Q = M singlet state we obtained some unexpected behavior on the

higher energy states. The sequence of energies for the 6th to 8th states within the TDA reads 8.98, 9.02,

9.06eV while for the complete Hamiltonian it reads 8.98, 9.06, 9.07eV. One possible explanation is that

the complete Hamiltonian calculations are actually less exact and didn’t capture the 9.02eV state due to

the usage of approximated eigenvalues algorithms, as discussed in the numerical details section. In this

sense, the 9.07eV energy would actually correspond to the 9th state within the TDA and the 9.02eV state

ended up just being skipped. Unfortunately, the calculation were only made up to the 8th state and we

cannot confirm exactly if this is the case. From these results, we conclude that, indeed, the TDA is not

only admissible but of much help since it greatly reduces the computational power needed to solve the

eigen-problem without possibly introducing additional errors due to approximated eigenvalues algorithms.

5.3 hBN-metal hetero-structure excitonic properties

As a follow-up to the isolated hBN monolayer case, consider a system where the hBN monolayer in no

longer surrounded by vacuum but is instead inside a dielectric which is in close contact with a metal such

that there is a distance d between the 2D material and the metal, as depicted in Fig.(20). We study the

effects of the metal screening on the excitonic energies as a function of the distance d. We note to the

article [(47)] which examine the effects of material thickness and surrounding dielectric medium on the
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Coulomb interactions.

Figure 20: Hetero-structure of a 2D material inside a dielectric which is in close contact with a metal.

As derived in Appendix B.2, the effective electron-hole interaction in close proximity of a bulk metal is

instead described by the metal screened Rytova-Keldysh potential

Wm(k||) =
e

2ε0

1

k||

1

r0k|| +
1
2

e
k||d

sinh(k||d)

, (5.21)

where, once again, r0 = χ2D/2 is the effective screening radius with χ2D the 2D susceptibility and

d is the distance between the hBN monolayer and the metal. Note that this expression is only valid if

we consider the metal to be perfect, χm → −∞, and the dielectric to be actually a vacuum χd = 0.

Furthermore, as discussed in Section III.D, the Hartree term potential should not be screened by to the

electrons in a polarizable 2D semiconductor since this screening it is already accounted for in a RPA

sense. However, the screening due to the presence of the metal is an independent source of screening

and as such, it should be imposed also in the Hartree term. Therefore, turning off the over-counted 2D

polarization screening in the Hartree term we have the metal-screened Coulomb potential

Vm(k||) =
e

2ε0

1

k||

1

1
2

e
k||d

sinh(k||d)

. (5.22)

Both this potentials are shown in Fig.(21) as a function of d. As we move the metal away from the

hBN monolayer the metal screening is progressively less apparent until the limiting case where there is

effectively zero screening. In this limiting case we return to the description of the potentials as in Eqs.(3.31)

and (3.32).
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Figure 21: Metal screened potentials in a log10 scale as a function of the distance d between the hBN

monolayer and the metal The bare potential, corresponding to d → ∞, is colored black. The utilized

effective screening radius reads r0 = 10Å.

In Fig.(22), we repeat the calculations for the first eight energy levels of the bright exciton, (correspond-

ing to the singlet state with Q = 0) but instead with the metal screened potentials as a function of the

distance d between the hBN monolayer and the bulk metal in Eqs.(5.21) and (5.22). As one would expect,

the greater the metal screening, the lower the excitonic binding energies, Eb = ϵg − EX . In a crude

explanation, this happens because the electric field lines that go outside the hBN and pierce the metal

hamper the electron-hole interaction making them less attracted to each other. In the limiting case where

the metal is so far away that its screening has no effect on the hBN monolayer, the excitonic energies tend

to the isolated monolayer values.

Figure 22: hBN-metal hetero-structure bright exciton energies as a function of the distance d between the

hBN monolayer and the bulk metal, for the first eight excitonic states. The distance d increment is 5Å. The

parameters utilized for these results are made explicit in the beginning of Sec.V.B.I. Also, the calculation

were performed within the TDA.
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Chapter 6

Conclusions and future work

In this work, we showed how collective excitations can emerge from a many-body system of interacting

particle in a time-dependent reduced density matrix Hartree-Fock mean-field theory and then we applied

this theory to the particular case of hBN structures in order to obtain its excitonic states.

In Sec.II, we studied the linear response of a system of electrons from a many-body perturbation

theory by inspecting the time evolution of the system’s rDM in a Hartree-Fock scheme. To this end, and

as a mean to simplify the rDM’s equation of motion, two main approximations were made. Firstly, we

introduced a mean-field approximation where we decoupled two-particle expectation values into a product

of two one-particle expectation values. Secondly, we imposed the case of an insulator at zero temperature

such that the occupation degree of freedom could only be classified as either occupied or empty. From

these significant simplifications, it was shown that the first order rDM could ultimately be obtained by

solving instead a generalized eigen-problem for the effective two-particle Hamiltonian of the electron-hole

interaction.

Furthermore, in Sec.III, we particularized this formalism to the case of a crystal system and an atom-

istic e-e interaction written in a Bloch basis assuming ultra-localized Wannier functions. We then derived the

explicit structure of the eigen-problem in terms of the Bloch momentum and spin degree of freedom. Con-

cerning the spin structure, we showed that (and neglecting spin-orbit effects) the eigen-problem decouples

into a singlet and triplet set of solutions, which differ by the contribution of the repulsive Hartree/exchange

interaction. In addition, we discussed on the role of screening on the Hartree and Fock terms. We clarified

why the Hartree interaction does not need to be screened, at least in the RPA sense, and commented on

why taking the screening static limit is justifiable. Subsequently, in Sec.IV we tackled some details of a

possible numerical solution for the generalized eigen-problem.

Finally, in Sec.V, we focused on the particular case of hBN structures and described the electronic

single-particle Bloch states in a nearest-neighbor tight-binding model. We then solved the generalized

eigen-problem and obtained its excitonic band structure and respective wave-functions for the first eight
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excitonic states. Foremost, we concerned ourselves with bright excitons, corresponding to the optically

active singlet state for near-zero excitonic center of mass momentum. We observed the emergence of pairs

of states having the same energies, which is to be expected due to valley parity symmetry, and stated that

we must consider these pair of states together in order to preserve the natural symmetry of the crystal.

Thereby, for calculations within the TDA, we obtained an energy of 6.32eV for the lowest energy state

#[1,2], which is isolated from the next higher energy state by a gap of 0.75eV. Subsequently, we obtained

a 4th state considerably above the 3th by 0.09eV. We then classified and identified these states by their

wave-functions in an scheme borrowed from the 2D atomic orbitals and through the triangular point group

symmetry C3v of the real space lattice. Furthermore, concerning to the whole excitonic band dispersion,

we commented on the overall structure and degeneracies of the singlet states, then on the spin-splitting

between the singlet and triplet state, and finally on the validity of the Tamm-Dancoff approximation. We

found that, while the spin-splitting for zero excitonic center of mass momentum was not verified in our

case, for larger momentum the spin-splitting is clearly visible. Finally, concerning the reliability of the TDA,

we found no difference whatsoever on the results calculated in and out of the TDA, thus corroborating its

appeal. By the end of this section, we considered the case of a hBN-metal hetero-structure in order to

study the effects of (bulk) metal screening on the excitonic energy levels. We found that, as expected, as

the metal gets closer to the hBN monolayer and the screening gets more intense, the lower the excitonic

binding energies are.

As a continuation of this work, the next step would be to take the obtained excitonic energies and

eigenvalues and calculate some optical properties following the discussion of Sec.II.C.b. Moreover, we

could calculate the expected life-time of the excitons, for example, through decay into the electromagnetic

modes of a planar laser cavity. As future lines of research, it would be interesting to apply the formalism of

this work to other 2D structures, such as TMDs in a three-band model. Indeed, even within the context of

hBN, there still remains numerous ideas to explore. How does the excitonic energies vary with the effective

screening radius r0? Or with a dielectric environment other than the vacuum? What are the effects on

the excitonic band structure due to spin-orbit coupling? What about other structures such as bilayers, or

twisted bilayers, or periodic alternating metal-dieletric-hBN structures?
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Appendix A
Details on the theoretical description of excitons

A.1 Symmetry properties of the interaction matrix elements

We show the details on how to arrive at the symmetry properties presented in Eqs.(2.10) and (2.11) of the

interaction matrix elements, as described in Eq.(2.9), of the many-body system of electron Hamiltonian in

Eq.(2.7). From the imposed symmetry V (r − r′) = V (r′ − r), we obtain

V αβ
γδ =

∫
d3rd3r′ϕ∗

α (r)ϕ
∗
β(r

′)V (r − r′)ϕγ(r
′)ϕδ(r)

=

∫
d3rd3r′ϕ∗

α (r
′)ϕ∗

β(r)V (r′ − r)ϕγ(r)ϕδ(r
′)

=

∫
d3rd3r′ϕ∗

α (r
′)ϕ∗

β(r)V (r − r′)ϕγ(r)ϕδ(r
′)

=

∫
d3rd3r′ϕ∗

β(r)ϕ
∗
α (r

′)V (r − r′)ϕδ(r
′)ϕγ(r)

= V βa
δγ . (A.1)

Similarly (
V αb
γδ

)∗
=

∫
d3rd3r′ϕα (r)ϕβ(r

′)V (r − r′)ϕ∗
γ(r

′)ϕ∗
δ(r)

=

∫
d3rd3r′ϕ∗

δ(r)ϕ
∗
γ(r

′)V (r − r′)ϕδ(r
′)ϕα (r)

= V δγ
βα

= V γδ
αβ (A.2)

A.2 Commutators and Anti-commutator properties

We show the details on how to arrive at the commutator presented in Eqs.(2.19) and Eqs.(2.20). We

evaluate each commutator individually given the fermionic and commutator operator properties,{
ca, c

†
b

}
=
{
c†b, ca

}
= δab (A.3)

{ca, cb} =
{
c†b, c

†
a

}
= 0 (A.4)
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Foremost, we derive commutator and anti-commutator properties for various numbers of operator in a

general fashion and then apply then to the explicit case at hand. The commutator and anti-commutator

operate, respectively as,

[A,Z] = AZ − ZA (A.5)

{A,Z} = AZ + ZA. (A.6)

From here it follows that

{A,Z} ={Z,A} (A.7)

[A,Z] =− [Z,A] (A.8)

Consequently we have that

[AB,Z] = ABZ − ZAB

= ABZ − ZAB + AZB − AZB

= A (BZ + ZB)− (ZA+ AZ)B

= A {B,Z} − {Z,A}B (A.9)

and

[AB,Z] = ABZ − ZAB

= ABZ − ZAB − AZB + AZB

= A (BZ − ZB)− (ZA− AZ)B

= A[B,Z]− [Z,A]B (A.10)

Using both of the properties above we further obtain

[ABCD,Z] = [(AB)(CD), Z]

= (AB)[(CD), Z]− [E, (AB)](CD)

= AB (C {D,Z} − {Z,C}D) + (A {B,Z} − {Z,A}B)CD (A.11)
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Therefore, making use of the commutator property in Eq.(A.11), we obtain, firstly for [H, c†b],

[H, c†b] =

[∑
αβ

(
hαβ + diαβE

i(t)
)
c†αcβ +

1

2

∑
αβγδ

V αβ
γδ c

†
αc

†
βcγcδ, c

†
b

]

=
∑
αβ

(
hαβ + diαβE

i(t)
) [
c†αcβ, c

†
b

]
+

1

2

∑
αβγδ

V αβ
γδ

[
c†αc

†
βcγcδ, c

†
b

]
=
∑
αβ

(
hαβ + diαβE

i(t)
) (
c†α

{
cβ, c

†
b

}
−

�����
{
c†b, c

†
α

}
cβ

)
+

1

2

∑
αβγδ

V αβ
γδ

(
c†αc

†
β

(
cγ

{
cδ, c

†
b

}
−
{
c†b, cγ

}
cδ

)
+
(
c†α�����
{
c†β, c

†
b

}
−

�����
{
c†b, c

†
α

}
c†β

)
cγcδ

)
=
∑
αβ

(
hαb + diαβE

i(t)
)
c†αδβb

+
1

2

∑
αβγδ

V αβ
γδ

(
c†αc

†
βcγδδb − c†αc

†
βδbγcδ

)
(A.12)

Suppressing the summation over β, δ and γ, respectively, using the Kronecker delta and hiding the sum-

mations on repeated indices using Einstein’s notation, we arrive at

[H, c†b] =
(
hαb + diαbE

i(t)
)
c†α +

1

2
V αβ
γb c

†
αc

†
βcγ −

1

2
V αβ
bδ c

†
αc

†
βcδ (A.13)

Analogous for [H, ca], we have

[H, ca] =

[∑
αβ

(
hαβ + diαβE

i(t)
)
c†αcβ +

1

2

∑
αβγδ

V αβ
γδ c

†
αc

†
βcγcδ, ca

]

=
∑
αβ

(
hαβ + diαβE

i(t)
) [
c†αcβ, ca

]
+

1

2

∑
αβγδ

V αβ
γδ

[
c†αc

†
βcγcδ, ca

]
=
∑
αβ

(
hαβ + diαβE

i(t)
) (
c†α�����{cβ, ca} −

{
ca, c

†
α

}
cβ
)

+
1

2

∑
αβγδ

V αβ
γδ

(
c†αc

†
β (cγ����{cδ, ca} −����{ca, cγ}cδ) +

(
c†α

{
c†β, ca

}
−
{
ca, c

†
α

}
c†β

)
cγcδ

)
= −

∑
αβ

(
hαβ + diαβE

i(t)
)
δaαcβ

+
1

2

∑
αβγδ

V αβ
γδ

(
c†αδβacγcδ − δaαc

†
βcγcδ

)
(A.14)

And finally,

[H, ca] = −
(
haβ + diaβE

i(t)
)
cβ +

1

2
V αa
γδ c

†
αcγcδ −

1

2
V aβ
γδ c

†
βcγcδ (A.15)

64



A.3 Symmetry properties of the two-particle Hamiltonian blocks

We show the details on how to arrive at the symmetry properties of the resonant and coupling block of the

effective two-particle Hamiltonian presented just above Eq.(2.53). For this we must recall the symmetry

properties of the interaction matrix elements in Eqs.(2.10) and (2.11). Firstly, focusing on the diagonal

term Ho3e4
o1e2

, since the electrons are indistinguishable and interchangeable, we can rename the electrons

o1e2 ⇆ o2e1 and o3e4 ⇆ o4e3. We obtain

Ho3e4
o1e2

= (ϵo1 − ϵe2) δo1o3δe4e2 −
(
V e4o1
e2o3

−W o1e4
e2o3

)
⇔ Ho4e3

o2e1
= (ϵo2 − ϵe1) δo2o4δe3e1 −

(
V e3o2
e1o4

−W o2e3
e1o4

)
= (ϵe2 − ϵo1) δo2o4δe3e1 −

((
V e1o4
e3o2

)∗ − (W e1o4
o2e3

)∗)
= −

[
(ϵe1 − ϵo2) δo2o4δe3e1 +

(
V e1o4
e3o2

−W e1o4
o2e3

)]∗
= −

(
He3o4

e1o2

)∗
(A.16)

Secondly and similarly for the off-diagonal term, we have

He3o4
o1e2

= −
(
V o4o1
e2e3

−W o1o4
e2e3

)
⇔ He4o3

o2e1
= −

(
V o3o2
e1e4

−W o2o3
e1e4

)
= −

[(
V e1e4
o3o2

)∗ − (W e1e4
o2o3

)∗]
= −

[
V e4e1
o2o3

−W e1e4
o2o3

]∗
= −

(
Ho3e4

e1o2

)∗
(A.17)

Moreover, note that Ho3e4
e1o2

is symmetric,

Ho3e4
e1o2

= V e4e1
o2o3

−W e1e4
o2o3

= V e1e4
o3o2

−W e4e1
o3o2

= Ho2e1
e4o3

=
(
Ho3e4

e1o2

)T
(A.18)

further meaning that

He4o3
o2e1

= −
(
Ho3e4

e1o2

)∗
= −

((
Ho3e4

e1o2

)T)∗
= −

(
Ho3e4

e1o2

)†
(A.19)

Thus, the effective two-particle Hamiltonian has the final form

He-h =

 He3o4
e1o2

Ho3e4
e1o2

−
(
Ho3e4

e1o2

)† −
(
He3o4

e1o2

)∗
 (A.20)
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Appendix B
Electron-electron interaction in quasi-2D systems

B.1 Rytova-Keldysh Potential

The purpose of this section is to discuss the formation of intralayer excitons in hBN as opposed to interlayer

excitons. For intralayer excitons in 2D materials, the suitable choice of electrostatic potential is the Rytova-

Keldish potential, as it provides a better description of the screening in a 2D material.

2D semiconductors are characterized by a 2D polarization. This, together with the fact that the electro-

static field lines are for the most of it outside the semiconductor makes the electrostatic potential different

from the Coulomb interaction between two charges in a bulk.

The key to the derivation of the Rytova-Keldysh potential is the fact that the charge fluctuation are

proportional to the Laplacian of the potential evaluated at the plane of the 2D material, which is assumed

to be surrounded by vacuum for simplicity. Such a fact comes from the following considerations: the

induced charge density, δn2D(r||), due to a point charge located at a distance r from the system is given

by the 2D polarization, P 2D, in the usual way

δn2D(r||) = −∇ · P 2D, (B.1)

where the 3D polarization vector is given by r = (r||, z), and δn2D has units of charge per unit area.

The polarization itself is proportional to the total electric field

P 2D = −ε0χ2D∇||V(r||, z), (B.2)

with χ2D having dimensions of length. Therefore

δn2D(r||) = +ε0χ2D∇2
||V(r||, z) (B.3)

Let us write Poisson’s equation as

∇2V(r) = − e

ε0
[n2D,+ + n(r)] (B.4)
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where n2D,+ is the background positive charge density due to the atomic nuclei (in units of particles per

area). We now write the electronic density (in units of particles per area) as

n(r) = −n2D,− + δ(r) + δ(z)∆σ(r||) (B.5)

where n2D,− is the neutralizing density of negative charge, δ(r) represents the density of a localized

charge at position r, and δ(z)∆σ(r||) is the induced charge density fluctuation in the 2D material. With

this definitions, Poisson’s equation reads

∇2V(r) = − e

ε0

[
((((((((n2D,+ − n2D,− + δ(r) + δ(z)∆σ(r||)

]
= − e

ε0
δ(r)−− 1

ε0
δ(z)

(
e∆σ(r||)

)
(B.6)

Since

e∆σ(r||) = δn2D(r||) (B.7)

we have that

∇2V(r) = − e

ε0
δ(r)− 1

ε0
δ(z)

(
ε0χ2D∇||V(r||, z)

)
(B.8)

and thus

∇2V(r) = − e

ε0
δ(r)− δ(z)χ2D∇2

||V(r||, 0) (B.9)

Fourier transforming the previous equation yields

(ik)2V(k) = − e

ε0
− χ2D(ik||)

2V(k||, 0) (B.10)

Since k = (k||, kz) we obtain

−(k2|| + k2z)V(k) = − e

ε0
+ k2||χ2DV(k||, 0) (B.11)

Solving for V(k), we find

V(k) =
e

ε0

1

(k2|| + k2z)
−

k2||
(k2|| + k2z)

χ2DV(k||, 0) (B.12)

Inverse Fourier transforming kz back into the real space we obtain∫ +∞

−∞

dkz
2π

eikzzV(k||, kz) =

∫ +∞

−∞

dkz
2π

eikzz

(
e

ε0

1

(k2|| + k2z)
−

k2||
(k2|| + k2z)

χ2DV(k||)

)
(B.13)
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where the integral
∫
dkze

ikzz/(k2|| + k2z) can be solve in the complex plane with a semi-circular loop

around the upper plane and applying the residue theorem on the pole kz = +ik||. We obtain∫ +∞

−∞
dkz

eikzz

(k2|| + k2z)
= 2πi lim

kz→+ik||

(
(kz − ik||)

eikzz

(kz + ik||)(kz − ik||)

)
= 2πi

e−k||z

2ik||

= π
e−k||z

k||
(B.14)

Defining

V(k||, z) =

∫ +∞

−∞

dkz
2π

eikzzV(k||, kz) (B.15)

and substituting (B.14) into (B.13) we obtain

V(k||, z) =
1

2π

(
e

ε0

(
π
e−k||z

k||

)
− k2||

(
π
e−k||z

k||

)
χ2DV(k||)

)
(B.16)

Putting z = 0 we further obtain

V(k||) =
e

2ε0k||
− k||

χ2D

2
V(k||) (B.17)

Defining r0 ≡ 1/κ|| = χ2D/2 as the effective screening radius and solving for V(k||) yields

W(k||) =
e

2ε0

1

k||

1

1 + r0k||
(B.18)

where we useW instead of the the generic V . The solution to this integral is known as the Rytova-Keldish

potential, and this repulsive potential represents the interaction among the electrons in a polarizable 2D

semiconductor.

B.2 Screened Rytova-Keldysh Potential (2D dielectric-metal in-
terface )

As a follow-up of the previous section, consider the case where the 2D semiconductor in no longer sur-

rounded by vacuum but is instead inside a dielectric which is in close contact with a metal such that there

is a distance d between the 2D material and the metal, as depicted in Fig.(20).

To obtain the effective electron-hole interaction, which will translate in a screened Rytova-Keldysh

potential, we need to solve once more the Poisson equation (B.4) but taking into account the interface

boundary conditions satisfied by the electromagnetic fields between the dielectric εd and the metal εm,

Em · r̂|| −Ed · r̂|| = 0, (B.19)

Bm · ẑ −Bd · ẑ = 0, (B.20)
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with ẑ the unit normal to the interface and r̂|| the unit vector tangent to the interface. Consider a point

charge −e on top of the 2D material at r = 0. The electronic density as described in Eq.(B.5) has

two additional volumetric bound terms corresponding to the charges within the dielectric and the metal,

reading

n(r) = −n2D,− + δ(r) + δ(z)∆σ(r||)

+ nd(r||, z) [Θ(z + d)−Θ(z − h)]

+ nm(r||, z) [Θ(−(z + d))] (B.21)

whereΘ is the Heaviside function. As done for the isolated 2Dmaterial, supposing linear mediums without

non-local effects, the relation between the induced charges and the potential yields

ni(r) = +ε0χi∇2
||V(r||, z) (B.22)

with χi the medium i = d,m susceptibility. Following the same steps as before but having in mind this

two extra terms, after performing the 2D Fourier transform over the parallel component, V(k||, z) ≡ Ṽ,

the Poisson equations reads

(
(ik||)

2 + ∂2z
)
Ṽ = − e

ε0
δ(z)− χ2D(ik||)

2Ṽδ(z)

− χd

(
(ik||)

2 + ∂2z
)
Ṽ [Θ(z + d)−Θ(z − h)]

− χm

(
(ik||)

2 + ∂2z
)
Ṽ [Θ(−(z + d))] (B.23)

Since we know how to solve this equation inside each respective isolated medium, we make the plane-wave

ansatz

V(k||, z) =



Aek||z , if z < −d

Bek||z + Ce−k||z , if − d ≤ z ≤ 0

Dek||z + Ee−k||z , if 0 < z < h

Fe−k||z , if z > h

(B.24)

and solve for the coefficients A through F . For this, we first integrate Eq.(B.23) in ẑ in a wafer-thin slice
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of length η → 0 “around” each respective interface. Firstly, integrating from −d− η to −d+ η yields

− ∂z Ṽ
∣∣−d+η

−d−η
= −χm∂z Ṽ(z = −d− η)−

(
−χd∂z Ṽ(z = −d+ η)

)
⇒−

(
Bk||e

−k||d − C(−k||)e+k||d − Ak||e
−k||d

)
= −χmAk||e

−k||d + χd(Bk||e
−k||d + C(−k||)e+k||d)

⇔− B + Ce2k||d + A = −χmA+ χd(B − Ce2k||d)

⇔A(1 + χm)− (B − Ce2k||d)(1 + χd) = 0 (B.25)

Similarly, integrating instead from −η to +η yields

− ∂z Ṽ
∣∣+η

−η
= − e

ε0
+ χ2D(ik||)

2Ṽ(z = 0)− χd∂z Ṽ(z = −η)−
(
−χd∂z Ṽ(z = +η)

)
⇒−

(
(D − E) k|| − (B − C) k||

)
= − e

ε0
− χ2Dk||

2 (B + C)− χd (B − C) k|| + χd (D − E) k||

⇔−D + E +B − C = − e

ε0

1

k||
− χ2Dk|| (B + C)− χd(B − C) + χd (D − E)

⇔B(1 + χ2Dk|| + χd) + C(−1 + χ2Dk|| − χd)− (D − E)(1 + χd) = − e

ε0

1

k||
(B.26)

And lastly, integrating from h− η to h+ η yields

− ∂z Ṽ
∣∣h+η

h−η
= −χd∂z Ṽ(z = h− η)

⇒−
(
F (−k||)e−k||h −

(
Dk||e

k||h + E(−k||)e−k||h
))

= −χd

(
Dk||e

k||h + E(−k||)e−k||h
)

⇔F +De2k||h − E = −χdDe
2k||h + χdE

⇔F + (De2k||h − E)(1 + χd) = 0 (B.27)

Thus, to find the coefficients A through F one needs to solve the system of equations

A(1 + χm)− (B − Ce2k||d)(1 + χd) = 0 (B.28)

B(1 + χ2Dk|| + χd) + C(−1 + χ2Dk|| − χd)− (D − E)(1 + χd) = − e

ε0

1

k||
(B.29)

F + (De2k||h − E)(1 + χd) = 0, (B.30)

together with the tangential continuity of the electric field at the interfaces,

Ae−k||d − (Be−k||d + Cek||d) = 0, (B.31)

(B + C)− (D + E) = 0, (B.32)

(Dek||h + Ee−k||h)− Fe−k||h = 0. (B.33)

Directly from the system of equations we have,

Fe−k||h =− (1 + χd)
(
Dek||h − Ee−k||h

)
(B.34)

Fe−k||h =Dek||h + Eek||h (B.35)
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meaning that

D =
χd

2 + χd

e−2k||hE ≡ Gd(k||)E (B.36)

where we defined a new function Gd(k||). Also directly from the system of equations, we have

(1 + χm)Ae
−k||d =(1 + χd)

(
Be−k||d − Cek||d

)
(B.37)

Ae−k||d =Be−k||d + Cek||d (B.38)

and thus

C = − χm − χd

1 + χd + χm

e−2k||dB ≡ Gm(k||)B (B.39)

where, once again, we defined another new functionGm(k||) related to Gd(k||) via(
1 +Gm(k||)

)
B =

(
1 +Gd(k||)

)
E (B.40)

We obtain

(
1 + χ2Dk|| + χd

)
B +

(
−1 + χ2Dk|| − χ1

)
Gm(k||)B + (−1− χd)Gd(k||)E + (1 + χd)E = − 1

k||

e

ε0

⇒
[
1 + χ2Dk|| + χ1 +

(
−1 + χ2Dk|| − χd

)
Gm(k||) + (1 + χd)

(
1−Gd(k||)

) 1 +Gm(k||)

1 +Gd(k||)

]
B = − 1

k||

e

ε0

(B.41)

resulting in the potential

Ṽ = B + C =
−e

k||ε0εd

[
χ2Dk||
εd

+
2−Gd(k||)Gm(k||)(

1 +Gd(k||)
) (

1 +Gm(k||)
)]−1

(B.42)

Now, in the special case of a 3D perfect metal, χm → −∞, we have that

Gm(k||) = − χm − χd

1 + χd + χm

e−2k||d ≈ −χm

χm

e−2k||d = −e−2k||d (B.43)

and in the special case of the dielectric being actually a vacuum, χd = 0 we have that

Gd(k||) =
χd

2 + χd

e−2k||h = −e−2k||h (B.44)

In this cases, the effective potential, corresponding to the screened Rytova-Keldysh potential yields

V(k||) =
e

2ε0

1

k||

1

r0k|| +
1
2

e
k||d

sinh(k||d)

(B.45)
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