
University of Minho
School of Engineering

Miguel André Rocha Dias

A novel system for managing
OpenEHR structures

may 2023

University of Minho
School of Engineering

Miguel André Rocha Dias

A novel system for managing
OpenEHR structures

Masters Dissertation Master’s Degree in Bioinformatics
Master’s in Bioinformatics

Dissertation supervised by
Professor José Manuel Ferreira Machado

may 2023

Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

License granted to users of this work:

[Caso o autor pretenda usar uma das licenças Creative Commons, deve escolher e deixar apenas um dos

seguintes ícones e respetivo lettering e URL, eliminando o texto em itálico que se lhe segue. Contudo,

é possível optar por outro tipo de licença, devendo, nesse caso, ser incluída a informação necessária

adaptando devidamente esta minuta]

CC BY

https://creativecommons.org/licenses/by/4.0/ [Esta licença permite que outros distribuam,

remixem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam

o devido crédito pela criação original. É a licença mais flexível de todas as licenças disponíveis. É re-

comendada para maximizar a disseminação e uso dos materiais licenciados.]

CC BY-SA

https://creativecommons.org/licenses/by-sa/4.0/ [Esta licença permite que outros remis-

i

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

turem, adaptem e criem a partir do seu trabalho, mesmo para fins comerciais, desde que lhe atribuam

o devido crédito e que licenciem as novas criações ao abrigo de termos idênticos. Esta licença costuma

ser comparada com as licenças de software livre e de código aberto «copyleft». Todos os trabalhos novos

baseados no seu terão a mesma licença, portanto quaisquer trabalhos derivados também permitirão o uso

comercial. Esta é a licença usada pela Wikipédia e é recomendada para materiais que seriam beneficiados

com a incorporação de conteúdos da Wikipédia e de outros projetos com licenciamento semelhante.]

CC BY-ND

https://creativecommons.org/licenses/by-nd/4.0/ [Esta licença permite que outras pes-

soas usem o seu trabalho para qualquer fim, incluindo para fins comerciais. Contudo, o trabalho, na

forma adaptada, não poderá ser partilhado com outras pessoas e têm que lhe ser atribuídos os devidos

créditos.]

CC BY-NC

https://creativecommons.org/licenses/by-nc/4.0/ [Esta licença permite que outros remis-

turem, adaptem e criem a partir do seu trabalho para fins não comerciais, e embora os novos trabalhos

tenham de lhe atribuir o devido crédito e não possam ser usados para fins comerciais, eles não têm de

licenciar esses trabalhos derivados ao abrigo dos mesmos termos.]

CC BY-NC-SA

https://creativecommons.org/licenses/by-nc-sa/4.0/ [Esta licença permite que outros

remisturem, adaptem e criem a partir do seu trabalho para fins não comerciais, desde que lhe atribuam

a si o devido crédito e que licenciem as novas criações ao abrigo de termos idênticos.]

CC BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/ [Esta é a mais restritiva das nos-

sas seis licenças principais, só permitindo que outros façam download dos seus trabalhos e os compartil-

hem desde que lhe sejam atribuídos a si os devidos créditos, mas sem que possam alterá- los de nenhuma

forma ou utilizá-los para fins comerciais.]

ii

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgements

I would like to start out by acknowledging my tutor, José Machado, for allowing me to carry out this

dissertation under his guidance. I feel extremely privileged to have had the opportunity to learn from him

and his feedback was crucial in putting the final touches of this work.

Secondly I’m thanking Daniela Oliveira, my co-tutor, for her dedicated help with all the programming

work carried out. She always made herself readily available to answer any questions and give helpful

feedback related to the research and writing of this dissertation. Without her help this project wouldn’t be

possible.

To my friends, Samuel, José and Gil, for their unconditional support and encouragement throughout

all the ups and down while making this dissertation.

Lastly my family, namely my mom, dad, and sister for their constant love and support, as well as for

their patience and understanding during the long hours spent working on this dissertation. Would also

like to make a special dedication to both of my grandmothers who have sadly passed away recently. My

memories of them will be cherished for many years to come.

To everyone who has contributed to this work in big and small ways, I offer my most sincere grati-

tude. Your support and encouragement have been instrumental in making this dissertation possible and

It couldn’t have ever been possible without your help.

iii

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, Braga, may 2023

Miguel André Rocha Dias

iv

Abstract

The term e-Health has been increasingly used in research projects in the health industry. This concept

encompasses the development and application of software and hardware solutions for the collection,

storage, manipulation, and communication of data in an efficient way, with an objective of continuously

improving the provision of health care.

The development of Health Information Systems has increasingly lacked the establishment of high

levels of interoperability in its semantic, syntactic, and technical aspects. The development of systems

that allow promoting interoperability between HIS within the same institution or even between HIS from

different institutions is on the global agenda as a common concern for all countries.

The use of globally recognized standards has been increasingly common, ensuring that both the

information structure and its meaning remain intact, regardless of the flow they follow. Thus arises the

motivation to develop a system that contributes to the continuous improvement of interoperability in health,

through the use of the openEHR standard.

The following dissertation presents a novel way to handle clinical data by creating an artifact enabling

the conversion of openEHR standardized data into a JSON object. The web application showcases a new

way for a user to check for openEHR data while the API can be utilized by developers to work with openEHR

data in a more accessible and supported manner with other programming tools. To carry out the work a

thorough examination of web development tools to build both the backend and frontend of the app was

essential, as well as coming up with the most accurate regex expressions that are able to extract data from

openEHR files. The research and engineering effort put through the project was successful in showcasing

this novel approach implementing yet another tool to help out healthcare professionals and biomedical

software engineers.

Keywords: openEHR, e-Health, Interoperability, Health Information Systems, JSON, API

v

Resumo

O termo e-Health tem sido cada vezmais utilizado em projetos de pesquisa na área da saúde. Este conceito

engloba o desenvolvimento e aplicação de soluções de software e hardware para recolha, armazenamento,

manipulação e comunicação de dados de forma eficiente, com o objetivo de melhorar continuamente a

prestação de cuidados de saúde.

O desenvolvimento dos Sistemas de Informação em Saúde (SIS) tem falta de estabelecimento de

elevados níveis de interoperabilidade nas suas vertentes semântica, sintática e técnica. O desenvolvimento

de sistemas que permitam promover a interoperabilidade entre SIS dentro damesma instituição oumesmo

entre SIS de diferentes instituições é uma preocupação comum a todos os países.

A utilização de padrões mundialmente reconhecidos tem sido cada vez mais comum, garantindo que

tanto a estrutura da informação assim como o seu significado permaneçam intactos, independentemente

do fluxo que seguem. Surge assim a motivação para desenvolver um sistema que contribua para a

melhoria contínua da interoperabilidade na saúde, através da utilização da norma openEHR.

Esta dissertação apresenta uma nova forma de tratar dados clínicos criando um artefato que permite

a conversão de dados padronizados openEHR em um objeto JSON. A aplicação Web apresenta uma nova

maneira de um usuário verificar dados openEHR enquanto a API pode ser utilizada por desenvolvedores

para trabalhar com dados openEHR de uma maneira mais acessível e compatível com outras ferramentas

de programação. Para realizar o trabalho, foi essencial uma análise das ferramentas de desenvolvimento

web para construir o backend e o frontend do aplicativo, além de encontrar as expressões regex mais

precisas que são capazes de extrair dados de arquivos openEHR. O esforço de pesquisa e engenharia

realizado no projeto foi bem-sucedido em mostrar esta nova abordagem, implementando mais uma fer-

ramenta para ajudar profissionais de saúde e engenheiros de software biomédico.

Palavras-chave: openEHR, e-Health, Interoperabilidade, Sistemas de Informação em Saúde, JSON,

API

vi

Contents

I Introductory material 1

1 Introduction 2

1.1 Context and Scope . 2

1.2 Motivation . 3

1.3 Objectives . 3

1.4 Dissertation Organization . 4

2 Research methodologies 5

2.1 Design Science Research . 5

2.2 Waterfall Development Methodology . 7

3 State of the art 9

3.1 Hospital information systems . 9

3.2 Interoperability . 12

3.3 Healthcare data standards . 14

3.3.1 HL7 . 14

3.3.2 DICOM . 16

3.3.3 SNOMED . 17

3.3.4 openEHR . 18

3.4 openEHR Architecture . 19

3.4.1 openEHR Reference model . 19

3.4.2 Classes . 20

3.4.3 Datatypes and Datastructures . 24

3.4.4 Inheritance . 25

3.4.5 Clinical Data sets vs openEHR solutions . 26

vii

3.5 Archetype Definition Language . 27

3.5.1 Data ADL . 28

3.5.2 Constraint ADL . 29

3.6 Web Applications development . 30

3.6.1 REST API . 31

3.6.2 Front-End . 33

3.6.3 Back-end . 33

3.6.4 JavaScript Object Notation . 33

4 Materials and Methods 35

4.1 Javascript . 35

4.2 React . 35

4.3 Bootstrap . 36

4.4 NextJS . 36

4.5 Github API . 37

II Core of the Dissertation 38

5 ADL to JSON conversion 39

5.1 Archetype Header . 40

5.2 Concept and Specialize . 40

5.3 Language . 41

5.4 Description . 41

5.5 Ontology . 42

5.6 Definition . 43

5.6.1 Include Archetype . 45

5.6.2 Property Matches . 46

6 Web Application Development 49

7 Conclusions and future work 52

7.1 Conclusions . 52

7.2 Prospect for future work . 53

viii

III Appendices 59

A Support work 60

B Listings 63

ix

List of Figures

1 An overview of the Design Science methodology taken from Azasoo and Boateng [2015]. 6

2 The general steps of Waterfall Development Methodology in software engineering taken

from Adobe Communications Team [2022]. 7

3 The three main types of interoperability and their association with EHRs. 13

4 An example of a HL7 V2 (blue square) file and a HL7 V3 file (red square). 15

5 Comparison between a V2 HL7 file and a FHIR HL7 file. 16

6 Diagram showing how the DICOM-PACS architecture works. 17

7 Representation of a dual model approach. Taken from Batra et.al. 20

8 All the classes defined in the openEHR reference model. 21

9 Clinical Investigator Recording Process diagram. 22

10 The hierarchy of an Entry class. Entry is divided into a Care_Entry and Admin_Entry

classes. Care_Entry contains the archetypes related to the CIRP. 24

11 Example of the various datatypes a single archetype can have. 25

12 Example of a child class (Vaccine prescription) inheriting properties from a parent class

(Prescription). The attributes for drug name, dose, quantity dispensed, and start date

are all common in both parent and child archetypes while the batch number attribute is

only present in the Vaccine Prescription archetype. 26

13 Representation of the structure of an ADL archetype file. 27

14 Representation of a snippet of a Data ADL syntax made for a person attribute. Written

in orange are the special characters used as well as their meanings. 28

15 Representation of a snippet of a constraint ADL syntax. The syntax is mostly similar

however it replaces the arrows with curly braces. 29

16 Usage of the allow_archetype term to include certain files. 30

17 General architecture of a web application. 31

x

18 Representation of a REST API. 32

19 Example of a JSON structure supporting string, list, and boolean types recognized by the

editor with multiple colors. 34

20 Example of a header section. The grey square is the original unmodified header while

the black square is the final JSON structure. 40

21 Example of a concept section and it’s corresponding JSON formatted structure. 40

22 Example of a language section and it’s corresponding JSON formatted structure. 41

23 Example of a JSON formatted description section. 42

24 Snippet of an Ontology section. The ”ar-sy” , ”sl” and ”en” codes correspond to lan-

guages. A node (at0000) with a text and description attributes inside the English lan-

guage section for term definitions is also seen here. 43

25 Example of a representation of a CLUSTER root node in a JSON string. 44

26 Example of an element leaf node. 44

27 A DV_CODED value matches filled with ontology data. 45

28 Example showing an ITEM_TREE subclass with another cluster inside represented with

the xsi_type property. 46

29 Examples of property matches (red squares) in a role class archetype. The blue brackets

identify the information contained in each property. 47

30 Object created with various archetype property names and their corresponding parse

functions. 47

31 Example of an EVALUATION archetype with a data and protocol matches properties. . . 48

32 Representation of the application schema. 49

33 The web application main window. 50

34 The web application window after the file is parsed to a JSON. 51

35 A section of a JSON structure rendered using the react-json-view component. 51

xi

List of Tables

1 Regular expressions used to capture each section in the ADL file. 39

2 DV types and their definitions. 60

3 Data Structures created for each DV type. 62

4 List of Files in the CKM repository used to work on the JSON parser. 63

xii

Acronyms

ADL Archetype Definition Language.

API Application Programming Interface.

cADL Constrain Archetype Definition Language.

CDS Clinical Data sets.

CIRP Clinical Investigator Recording Process.

CKM Clinical Knowledge Manager.

CT Computerized Tomography.

dADL Data Archetype Definition Language.

DICOM Digital Imaging and Communications in Medicine.

DSR Design Science Research.

EHR Electronic Health Record.

HIS Hospital Information Systems.

HL7 Health Level 7.

HTTP Hypertext Transfer Protocol.

IHTSDO International Health Terminology Standards Development Organisation.

JSON JavaScript Object Notation.

MRI Magnetic Resonance Imaging.

xiii

PACS Picture Archiving and Communication System.

REST Representational state transfer.

RM Reference Model.

SNOMED Systematized Nomenclature of Medicine Clinical Terms.

XML Extensible Markup Language.

xiv

Part I

Introductory material

1

Chapter 1

Introduction

The research and engineering work covered in this paper was done for a dissertation final year project

under the name ”A novel system for managing OpenEHR structures” as a part of the University of Minho’s

Bioinformatics Masters’s degree. This project consists of a web application built using the front end library

React that connects to a GitHub repository to manage OpenEHR related files while parsing said files to valid

JSON structures, essentially creating a working API using OpenEHR files. The work was carried out in the

Algoritmi Research Center, a research division of the School of Engineering at the University of Minho. This

introductory chapter includes a description of the project’s scope and context (Section 1.1), an explanation

of its motivation (Section 1.2), a list of goals that must be achieved in order for it to be completed (Section

1.3), and a description of the document structure (Section 1.4).

1.1 Context and Scope

Nowadays, the use of information technologies (IT) is critical in a wide range of industries, particularly

the health care industry. The need for ongoing patient care improvement is evident in the health space,

along with this requirement, clinical decision-making must be effective and efficient or there can be serious

issues Oliveira et al. [2018]. For this to be achievable, an increasing number of new auxiliary instruments

have appeared to help carry out clinical actions with a higher degree of success. Assuring the patient’s

safety and well being is the first step in providing high-quality healthcare and, subsequently, effective

outcomes to treat said patient. All healthcare personnel have a responsibility to ensure the patient’s

safety, but given their constantly evolving and chaotic environment in the day-to-day life of their hospital

work carrying out said responsibility proves to be a very difficult task Oliveira et al. [2020].

To accommodate the dynamic changes in data requirements, a framework that is open, semanti-

cally shareable, and collaboratively modelled is required. As a multilevel modeling framework, openEHR

specifications can be used to develop standards and build information and interoperability solutions for

2

the healthcare industry Lamine et al. [2017]. In the method recommended by openEHR, the reference

model (RM) concentrates on the properties and logic structures needed to describe data, making it stable

and providing the fundamental building blocks for creating actual medical information models. Templates

and archetypes make up the archetypal model. Archetypes can be created based on the RM to define

all the characteristics of particular therapeutic notions. It is possible to group several archetypes into

context-specific data sets, or templates, which are typically created and applied locally.

1.2 Motivation

With this project, the intention is to appeal to the reuse of openEHR standardized data, and consequently

to their interpretation between systems in a direct and efficient way. This project appeals to help the ever

emerging interoperability problem by suggesting a newmore efficient way to collect and distribute electronic

health records and the showcasing of a prototype application to aid in the observation of said data. The

developed artefact should have it’s focal point the forward improvement of health data management for

health care professionals and the contribution of a new tool for IT developers in the biomedical space

hoping to improve on the distribution of healthcare data. This initial artefact can be used as an entry point

and be further improved or updated later on while remaining consistent with the standards defined by

openEHR systems.

1.3 Objectives

The main goal for this master’s thesis is to create a novel HIS artifact that helps both healthcare profes-

sionals as well as developers at managing openEHR records. The research question for a project of this

magnitude could be defined as:

”Will this new approach provide a solution for the significant challenges faced by profes-

sionals in the medical industry with the increasing complexity of propagation of healthcare

record data?”

To demonstrate how the new clinical system can be readily and swiftly constructed in a secure and

transparent manner multiple objectives need to be accomplished and the final developed artefact needs

to be critically analysed in order to deduct if it trully is fit to solve the research question. As such the

objectives required to achieve throughout the development of this thesis are as follows:

1. A research effort over the main topics of health data on answering relevant questions for the work

3

such as the importance of data standards in healthcare, what is interoperability in health data and

how openEHR functions.

2. Identification of the most suitable research methods and technologies to be used to develop the

artefact. In order to bring the Healthcare Information System artefact to life there’s a need to explore

a range of research methodologies that are suited for the development of the artefact, as well as

identifying the specific technologies that will enable its creation.

3. Artefact development. A description of the steps taken to achieve the artefact plus any challenges

encountered or measures taken in order to build the best version of the artefact.

4. An artefact critical evaluation going over the aspects that it actually improved over previous work

done in the area as well as any limitations that can be improved in the future.

The built artefact comes in the form of software with the functionality to connect to an existing repos-

itory storing openEHR related files (Archetypes and Template files) with a way to parse them into a more

reliable and supported data structure, the JSON format. A graphical interface for the user to manage these

newly converted files is also one of the main features developed.

1.4 Dissertation Organization

The following dissertation is divided into two parts. Part I, comprises of the introduction, a research

methodologies used section a state of the art going over background and important theoretical concepts

of the openEHR system and finally a materials and methods section going over any tools used to make

this project. Part II is the core of the dissertation that goes over the entire development process ending

off with a conclusions and future work discussion over the buit artefact.

4

Chapter 2

Research methodologies

The development of new technologies is usually accompanied by an extensive research effort in order to

determine efficient methods or tools for a project to come to fruition.

The starting point of this project was the identification of the problem that translates into the high

dissemination of relevant clinical information, of each patient, upon admission, through different systems

and in different forms. A critical analysis of similar past projects in the subject area of health data was

performed namely the extensive reading of engineering journal reports, articles, thesis and dissertation

work done in biomedical health IT. This initial research was crucial in fully understanding the problem of

interoperability and implementing a new solution. Later, the implementation of the solution required an

investigation of the most suitable programming tools and techniques for the job. This process required

extensive reading of documentation and trial and error during it’s implementation in the design of the

artefact.

On account of this, the following chapter exemplifies and describes proven research methods that were

used to manage the case study defined and later design a solution for the proposed investigation question.

2.1 Design Science Research

The DSR (Design Science Research) methodology was selected as the optimal approach for addressing the

problem in the case study. This methodology involves the creation and evaluation of practical solutions or

artefacts within a real-world context. It is commonly used in IT product development, offering a structured

framework for addressing specific issues and implementing targeted actions.

In a DSR project aimed at developing a new health application, the artefact could be the actual applica-

tion itself, along with any accompanying design documents, user guides, and usability testing results. The

application is the tangible output of the design process and is intended to address a specific health-related

problem or need. The artefact is evaluated based on its effectiveness in addressing the identified problem

5

and meeting the needs of the intended user group Weigand et al. [2021].

The methodology was chosen because it aligned well with the case study, which required a deep

understanding of the problem before proposing a supported and justified solution. With this initial aware-

ness, development could proceed confidently, knowing that the proposed solution was feasible. After

obtaining the first version of the artefact, it must be evaluated and reviewed by users to ensure it meets

the initial requirements and identify areas for improvement and future goals. The DSR methodology is

acknowledged as a cyclical process, initiated by problem identification and case study formulation by the

Designer, followed by solution prediction based on research and investigation.

Figure 1: An overview of the Design Science methodology taken from Azasoo and Boateng [2015].

The main investigation question was first identifying the challenge concerning the dispersion of crucial

clinical information of patients across various systems. The aim was to create a solution that facilitates

swift and intuitive access to necessary information for healthcare professionals as well as developers.

Accounting for that question, an artefact was built which consists of a prototype of an automatic platform

devised to present updated electronic record data information stored in a database, by converting the data

into a new more flexible and easily accessible format. Following implementation, the prototype’s impact

will be assessed by users, and adjustments will be made as necessary.

6

2.2 Waterfall Development Methodology

Software development encompasses diverse methodologies that developers can utilize to conceptualize,

plan, create, and test software. Selecting the optimal methodology for a specific need and project require-

ments is vital. Being well-versed in the prevalent software development methodologies is essential for

software practitioners to make informed choices on the most appropriate one to implement.

A reliable approach for software engineering is the Waterfall method. As it’s name might imply it’s

a linear and sequential approach that is dependant on each phase being fully planed out and developed

before moving on to the next phase. Any requirements or documentation are gathered upfront, with the

design and development stages following in a sequentially manner, with no overlap or parallel work. Finally,

testing and deployment are carried out before the final software is delivered to the end users Adenowo

and Adenowo [2013].

Figure 2: The general steps of Waterfall Development Methodology in software engineering taken from

Adobe Communications Team [2022].

Each step can be summarized as follows:

• Requirements: Initial planning phase where information is compiled and requirements for the soft-

ware are identified and documented. This involves gathering inputs from the client, understanding

their needs, and defining the functional and non-functional requirements of the software.

• Design: The software architecture, system design, and detailed design are created in this phase.

This includes defining the overall structure of the software, designing interfaces, data models, and

algorithms.

7

• Implementation: Phase where the code writing of the software takes place. Software engineers

write the code according to the design specifications defined previously. During this stage, software

engineers convert the design into executable software, ultimately creating the final product.

• Verification or Testing: After the development phase is finished, the software undergoes deep testing

to detect and fix programming bugs. This stage encompasses unit testing, integration testing,

system testing, and acceptance testing, to verify that the software performs as intended and fulfills

the specified requirements.

• Deployment & Maintenance: Once the software has passed the testing phase with success, it is

deployed to the production environment, making it accessible to end users. Any new problem that

may arise from the software is then taken care off by a team of developers that fix it by releasing

newer versions of the software.

Generally this approach to software development might feel more restrictive than others. The step by

step approach works for the scope of this project since it isn’t being developed by a large team of soft-

ware engineers nor doesn’t have a client whose input might change the development after the developed

artefact. All the design choices were developed based off the initial given input and for the most part have

remained unchanged. In the future, assuming the implementation of this novel way to represent data

is more widespread, a different methodology could be implemented to account for the limitations of the

Waterfall method.

8

Chapter 3

State of the art

This chapter starts out with a brief history of how Hospital Information Systems emerged and the creation

of Electronic Health Records due to an increasing need to organize information. Subsequently, the state

of the art delves into the openEHR foundation, exploring key concepts needed for the development of the

work in this dissertation namely the general architecture of archetypes and reference models and the file

syntax of archetypes. This section also provides an in-depth exploration of how web applications work.

3.1 Hospital information systems

The amount of clinical data has increased significantly in recent years, and the need for more organized

and automated information management has in consequence become increasingly important. Nowadays

there’s the use of computerized systems designed to manage and integrate all of the administrative,

financial, and clinical functions of a hospital. All this is being done by collecting, organizing, and analyzing

clinical data in an efficient manner, allowing hospitals to easily access and utilize this information as

needed Islam et al. [2018].

The use of technology in conjunction with medical assistance is not a recent phenomenon however.

In the 1960s the first forms of telemedicine, a term used to describe the delivery of medical services

and knowledge via electronic communication and information technology, were implemented in a Ne-

braska Psychiatric Institute Wittson and Benschoter [1972]. Due to the internet still being in its infancy

telemedicine at the time was primarily supported through video broadcasting and telephone Jagarapu and

Savani [2021].

The 1990s saw a huge growth in telehealth. In a co-funded project by the European Commission,

numerous large-scale initiatives and supporting policies were put in place to encourage the development

of e-health applications across Europe, including remote imaging, teleconsultation, e-learning, surgery-

hospital communication, telesurgery, virtual staff meetings, emergency telemedicine, and more Beuscart

9

et al. [2014]. Many initiatives were created by scientists, medical experts, and institutions, but only a

small number of them have persisted to this day. This decade also saw the development of electronic

health records systems as well as the national and international health data standards that facilitated the

interoperability of said electronic records, allowing for the sharing of health information between different

systems. Electronic health records EHR are essentially digital versions of a patient’s medical history, in-

cluding their medical conditions, medications, and test results. These records are created and maintained

by healthcare providers and can be accessed by authorized healthcare professionals to provide better,

more coordinated care for patients. This surge in popularity for e-health eventually also led to the devel-

opment of more sophisticated EHR systems, which were able to support the management of larger and

more complex datasets.

EHRs brought several advantages over traditional paper-based health records. Some of the key benefits

of EHRs include:

• Improved accuracy and completeness of health information: Because EHRs are digital, they can

support the capture of more detailed and accurate health information than what is possible with

paper records. For example, EHRs can automatically populate fields with standardized data, and

can support the use of data validation rules to ensure the accuracy of the information entered Chan

et al. [2010]. This can help to reduce errors and omissions in the health record, and improve the

quality of care.

• Easier access and sharing of health information: EHRs can be accessed and shared more easily

than paper records, which can facilitate care coordination among different healthcare providers

Staroselsky et al. [2006]. They can be accessed remotely by authorized users, and can support

the sharing of clinical information through secure networks or web-based portals. This can help

to support more effective communication and decision-making among healthcare teams, and can

improve the availability of health information to support patient care.

• Increased efficiency and productivity: EHRs can support the automation of many administrative

and clinical tasks, which can help to reduce the time and effort required to manage health records

Atreja et al. [2008]. For example, EHRs can support the use of decision support tools and clinical

guidelines, which can help to streamline the care process and reduce the time and effort required

to document and manage patient information Romano and Stafford [2011]. This approach can

enhance the efficiency of healthcare organizations.

• Better support for population health management: EHRs can support the aggregation and analysis

10

of health data from multiple patients and sources, which can help to identify trends, patterns, and

opportunities for improvement in population health. For example, EHRs can support the identifica-

tion of high-risk patients or populations, and can help to facilitate the implementation of targeted

interventions to improve health outcomes Corey et al. [2018].

• Enhanced patient engagement and participation: EHRs can support the involvement of patients

in their own care, and can provide patients with access to their own health information Caligtan

and Dykes [2011]. For example, EHRs can support the use of patient portals, which can allow

patients to view their health records, communicate with their providers, and manage their own

health information. This can help to improve patient engagement and participation in their care,

and can support the development of more collaborative and patient-centered care models.

• Improved public health surveillance and emergency preparedness: EHRs can support the real-time

monitoring and tracking of health data, which can help to identify potential outbreaks or public

health threats. For example, EHRs can support the rapid identification and notification of cases

of infectious diseases, and can help to facilitate the implementation of appropriate public health

interventions Birkhead et al. [2015]. This can improve public health surveillance and emergency

preparedness, and can help to protect the health of the population.

• Reduced risk of medical errors and adverse events: EHRs can support the use of clinical decision

support tools and alerts, which can help to prevent medical errors and adverse events. For example,

EHRs can alert providers to potential drug interactions or contraindications, and can support the

implementation of evidence-based best practices and guidelines Kuperman et al. [2007]. This can

help to reduce the risk of medical errors and adverse events, and can improve the safety and quality

of care.

• Improved patient outcomes and satisfaction: EHRs can support the delivery of more effective and

efficient care, which can lead to improved patient outcomes and satisfaction. For example, EHRs

can support the use of evidence-based care protocols and decision support tools, which can help

to optimize treatment and management plans Moja et al. [2014]. This can help to improve patient

outcomes, and can enhance patient satisfaction with the care they receive.

• Enhanced research and data analytics capabilities: EHRs can support the collection and analysis of

large and complex datasets, which can help to advance research and support data-driven decision-

making Luo et al. [2016]. For example, EHRs can support the identification of trends, patterns,

11

and associations in health data, and can facilitate the development of new knowledge and insights.

This can enhance the research and data analytics capabilities of healthcare organizations, and can

support the development of more effective and personalized care approaches.

This sizable number of advantages over traditional paper-based health records has proven the value

that EHRs offer in clinical care which is why they are increasingly being used in healthcare settings to

support the delivery of high-quality, efficient, and patient-centered care.

The first ten years of the new millennium saw further advancements of e-health. The implementation

of incentives and penalties related to the use of EHR by the US government, through programs such as

the Meaningful Use initiative Sherer et al. [2016], helped to accelerate the adoption of EHR by healthcare

organizations. This led to a significant increase in the number of EHR systems in use, and the development

of a range of new and innovative EHR technologies and approaches. Today, some applications are utilized

often, including encrypted texting, emergency telemedicine, remote imaging, electronic health records,

and interhospital communication.

The availability of EHRs solutions continues to evolve with further developments that try to improve

interoperability and standardization of data. New ways to represent data more efficiently that integrate

machine learning or artificial intelligence are being developed to support the sharing of health data Yu

et al. [2018]. The history of EHRs is one of rapid evolution and growth, and the future of EHRs is likely to

be even more efficient.

3.2 Interoperability

Medical information may often be displayed differently depending on the type of data stored. As a result,

health professionals may face difficulties in comprehending the patient’s status. To ensure smooth oper-

ations, prevent communication breakdowns, and uphold consistency, it is essential to achieve seamless

communication between multiple HIS. Hence the concept of interoperability is crucial to achieve this. This

involves the ability of different systems, devices, or applications to communicate and share information

efficiently.

A general lack of interoperability can cause major inefficiencies in a hospital environment. There can

be patients that may end up receiving care from multiple providers and each provider may have their own

EHR system. If these systems are not interoperable, they can not exchange clinical information about

the patient efficiently, and consequently, supporting the advancement of a comprehensive understanding

of the patient’s overall health proves to be a more challenging task. An efficient interoperable system

12

however not only helps improve the quality and effectiveness of data sharing, it also supports more effective

decision-making and care planning. The concept of interoperability in HIS can also play a crucial role in

enabling the consolidation and examination of health data on a broader scope. This capability assists in

identifying trends, patterns, and areas for enhancing population health, thereby supporting the creation of

more precise and impactful interventions Kukafka et al. [2007].

Three primary categories of interoperability are typically recognized: semantic interoperability, syntac-

tic interoperability, and structural interoperability.

Figure 3: The three main types of interoperability and their association with EHRs.

• Semantic interoperability: The ability of different systems to interpret, understand and share

the meaning of the data that is exchanged between them Heiler [1995]. Systems must use a

common set of concepts, definitions, and terminologies to represent clinical data and be able to

map and transform data between different representation formats.

• Syntactic interoperability:: The exchange of data in a consistent and structured format. In this

case, systems should use a common set of rules and conventions for representing and transmitting

data and must be able to validate and interpret the data that is exchanged between them Hosseini

and Dixon [2016].

• Structural interoperability: The process of integration and linking data from multiple sources.

Interoperable systems should have the ability to collect and analyze data from multiple patients and

sources which may include different HIS Delgado [2013].

13

3.3 Healthcare data standards

Healthcare data standards are a set of guidelines and specifications that came to existence due to agree-

ments between various international organizations, in an effort to have a single standardized way to define

health records across various different systems, organizations, and individuals. This is used to ensure that

health-related information is accurately and consistently collected, stored, and shared. These standards

enable interoperability, which as previously said is the ability of different systems and devices to work

together seamlessly allowing patient information to be easily shared among healthcare providers.

Various organizations have dedicated to developing international frameworks and standards for elec-

tronic health information, these include specifications about EHRs, terminologies, and models that support

the exchange, integration, and retrieval of information. Achieving semantic interoperability, the ability for

different systems to understand and accurately interpret the meaning of the data being shared is con-

sidered the most challenging level to achieve Intely [2022]. The European Commission (EC) suggests

that semantic interoperability can only be attained through agreements on standards, information models,

terminologies, and semantic definitions for data sharing. Factors such as cultural, legal, and social con-

siderations within organizations, regions, or countries may also impact the implementation of semantically

interoperable systems Guijarro [2009].

For this reason, it is suggested that this high level of semantic interoperability should be initially im-

plemented and practiced only in specific, high-priority clinical areas with significant relevance to patient

safety.

One of the earliest examples of healthcare data standards is the Health Level Seven International HL7

standard but there many more examples of data standards created for medicine like the DICOM standard,

SNOMED or the OpenEHR standard, all of which will be described in the followings sections.

3.3.1 HL7

Health level 7 is a US-based organization founded in 1987 whose main objective is in creating data stan-

dards in messaging as well as electronic records for HIS Rene Spronk [2014]. This is done by producing

electronic records whose document structure supports system interoperability and emphases various im-

portant services in hospital care like administration and clinical practice. The HL7 standards have come

a long way starting with the initial development in 1987. Version 2 of HL7 came out in 1989 and was

made to create interoperability in data exchange between hospital systems however the major downside

of this version is the lack of scalability in integrating other information systems not directly related to

14

healthcare like jurisdictional information systems Goossen and Langford [2014]. Another limitation of this

version is not having an organized system for understanding and defining the shared concepts used in

various communication and interaction methods. Version 3 started development in 1995 and one of the

improvements was the creation of an ontology section that was lacking in the previous version as well as

completely remodeling the entire document structure by using Extensible Markup Language (XML) syntax,

based on a new specification framework developed called the Reference Information Model (RIM) Goossen

and Langford [2014].

Figure 4: An example of a HL7 V2 (blue square) file and a HL7 V3 file (red square).

A new version of HL7 called Fast Health Interoperability Resources (FHIR) that implements a RESTful

API approach was eventually released. This version supports both XML and JSON which makes it easier

to implement server-wide communications and create web applications Hussain et al. [2018].

15

Figure 5: Comparison between a V2 HL7 file and a FHIR HL7 file.

3.3.2 DICOM

The DICOM acronym stands for Digital Imaging and Communications in Medicine, a data standard created

in 1983 as a joint effort between the National Electrical Manufacturers Association and the American

College of Radiology Mustra et al. [2008]. The sole purpose of this standard was for creating interoperability

between any medical imaging device and servers that capture and archive said generated imaging. These

servers are formally called Picture Archiving and Communication Systems PACS.

It serves to standardize images of all types of exams such as computerized tomography CT scans,

magnetic resonance imaging MRI, X-rays, and mammograms, but unlike other image file formats such as

JPEG or TIFF, files in this standard are not recognized by image reading software that is installed in most

users operating systems. To view this type of file, it is necessary to use a DICOM viewer, which interprets

the file information and displays it as an image Altexsoft [2022].

16

Figure 6: Diagram showing how the DICOM-PACS architecture works.

DICOM is a good standard for medical imaging due to its interoperability, comprehensiveness, wide

adoption, and continuous updates, allowing for easy sharing and accessing of medical images. The support

of a wide range of imaging modalities and information systems and integration with web technologies and

cloud services makes it a format that is continuously updated to stay current with the latest medical imaging

technology.

3.3.3 SNOMED

SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms) is a comprehensive and stan-

dardized clinical terminology system developed and maintained by the International Health Terminology

Standards Development Organisation IHTSDO NIH [2016]. It is used as a reference terminology for EHR

and other health information systems, and it is widely adopted in many countries worldwide. It is a formal

ontology that represents biomedical concepts, such as diseases, symptoms, procedures, and medications,

using a hierarchical structure of concepts, relationships, and attributes. Each concept is assigned a unique

identifier, called a SNOMED CT Concept ID, which is used to represent the concept in EHRs and other

systems IHTSDO [2013].

SNOMED CT is available in various formats, such as a relational database, a set of flat files, or an RDF

(Resource Description Framework) representation. The most commonly used formats are RF2 (Release

Format 2), which is a set of flat files, and RF1 (Release Format 1), which is a relational database format.

RF2 is the latest format of SNOMED CT and it is the most widely used format in the current implementation.

17

The RF2 format represents the SNOMED CT concepts, relationships, and other metadata in a number

of different files, such as a concepts file, a descriptions file, and a relationships file. The files are organized

by release, and each file contains a set of records, where each record corresponds to a single concept,

description, or relationship, usually provided in a compressed .zip or .gz format.

SNOMED CT also provides a number of additional resources and tools to support the implementation

and use of the terminology, such as a browser, a mapping tool, and a subsetting tool. It also provides

the SNOMED CT International Release, which is the main version of SNOMED CT, as well as a number of

national extensions, which are versions of SNOMED CT that have been adapted to the specific needs of a

particular country or region.

3.3.4 openEHR

OpenEHR is an organization that creates open-source community-driven electronic health record (EHR)

systems based on internationally agreed standards, supporting the interoperability of any application in

the clinical setting. It was founded in the early 2000s by a group of researchers and clinicians who were

interested in creating an open-source, standards-based approach to EHR systems. openEHR Foundation

[2022c]

A big advantage of openEHR over traditional EHR systems is its ability to support the sharing and

exchange of clinical information between different systems. Because openEHR uses a standardized data

model and a consistent approach to representing clinical data, it is easier for different systems to commu-

nicate and exchange information. In the context of openEHR, semantic interoperability is supported by the

use of archetype reference models, which provide standardized definitions of clinical data that can be used

to specify the allowable data for a particular clinical concept Min et al. [2018]. Syntactic interoperability

is supported by the use of open standards and specifications, which define the rules and conventions for

representing and exchanging health data using openEHR. Finally, structural interoperability is supported

by the use of domain knowledge governance, which is the process of defining, managing, and maintaining

the clinical data models and terminologies that are used in openEHR systems.

This can help to improve the quality and availability of health data and support more effective care

coordination and collaboration among healthcare providers.

OpenEHR is designed to be a flexible system, allowing it to support the representation of a wide range

of clinical data and to adapt to changing requirements and standards, helping to ensure that openEHR

systems remain relevant and useful over time to support the ongoing evolution of healthcare practice and

technology.

18

Because the user interface of an openEHR system is separate from the underlying data model (dual

model approach), it is easier to customize and modify the system to meet the specific needs of a particular

healthcare organization or clinical specialty. This can help to improve the usability and effectiveness of the

system and support the capture of more comprehensive and accurate clinical information.

3.4 openEHR Architecture

3.4.1 openEHR Reference model

Arguably one of the most important features of the openEHR approach to interoperability is the use of

archetype reference models. These are standardized definitions of clinical data that can be used to spec-

ify the allowable data for a particular clinical concept. By using archetype reference models, different

openEHR systems can represent clinical data in a consistent and standardized manner, which can sup-

port the sharing and exchange of health data between different systems.

This utilizes a very characteristic architecture based on a dual-level approach. The first level is com-

monly referred to as the Reference Model, it’s in this section that various medical definitions, data types/-

data structures are defined. This RM serves as the main ontology for every class that gets formerly defined

in the EHR. The Archetype model is located on level 2, it’s here that all the information about a patient is

located.

Here there can be more than one archetype, or even archetypes that include other archetypes inside

them, and each of them can provide information specific to certain medical exams, or patient character-

istics like body weight and blood pressure.

Level 2 uses the information provided by the RM in level 1 to conjugate all the knowledge about a

certain patient. Using the body weight characteristic as an example the archetype will have 2 attributes,

one for ”Weight” which will have a numeric Datatype in the RM and another for ”Comment” which in turn

will have a text datatype.

According to Batra et al. [2017] a reference model can be represented with the following schema.

19

Figure 7: Representation of a dual model approach. Taken from Batra et.al.

The use of two-level modeling in electronic health records changes the engineering of the software

significantly. The core system is based on stable reference and archetype models, with domain semantics

delegated to domain specialists who build archetypes, templates, and terminology rather than relying on

”ad hoc” conversations with users to gather information. This approach results in archetypes becoming

a technology-independent, single-source expression of domain semantics used to drive all technical ex-

pressions of the semantics. While some applications require custom engineering, all can now rely on an

archetype and template-driven computing platform, resulting in a more consistent and efficient develop-

ment process. openEHR Foundation [b]

This dual-layer approach is a practical way to create EHRs because one could completely change

the Reference Model or come up with new data structures/types and none of the archetypes would get

deconstructed or have any significant loss of information.

3.4.2 Classes

In order to accomplish interoperable data sharing across clinical systems it’s important to distinguish

between the various types of archetypes and the information they carry. For that reason, each archetype

is assigned a specific class which serves as a blueprint for a given EHR. Depending on the class type they

have properties that are unique to them. A complete EHR is essentially made up of various Archetypes

that are organized depending on the type or how specific the information they carry is. The openEHR

Reference Model currently defines the following 4 categories of component archetype classes those being

20

the Composition, Section, Entry, and the Cluster class.

Figure 8: All the classes defined in the openEHR reference model.

Composition

Composition is essentially the main container of an EHR. All recorded patient data is saved inside this

class of archetype. Some reference model attributes that are exclusive include the clinical author identifier

(composer), start and end times of clinical encounters, and healthcare location. This type of archetype

represents generic documents including the discharge summary of a patient or lab reports.

Some of the RM attributes for a typical composition archetype report include the Identifier for the

creator of the Composition archetype (Composer) any other clinical professionals that may have been

involved in the medical appointment (Participations), the start and end time of the clinical session and

location of the Health care facility openEHR Foundation.

Section

The next class contained inside Composition. A Section is used to divide complex compositions into

manageable pieces. They are just used for human navigation to place other smaller and more detailed

clinical data provided by the Entry and Cluster classes. Examples of Section classes include reports about

vital signs or physical examination history.

Entry

In the reference model an Entry is on the lower branch of a composition and inside a section archetype

component while at the same time, it’s possible for more than one Entry component to be inside a section.

The information within an Entry retains its meaning, regardless of where it is used, true to openEHR’s

21

fundamental design feature of being able to reuse information for the automatic processing of EHR data.

These types of archetypes are used to store data for the Clinical Investigator Recording Process, an ontology

model for representing clinical information proposed by Thomas Beale† and Sam Heard as a way to

address the lack of standardization and consistency in clinical documentation.Beale et al. [2007].

A diagram of the Clinical Investigator Recording Process can be seen in the following figure:

Figure 9: Clinical Investigator Recording Process diagram.

The process starts with the observation of the patient by a healthcare investigator. The patient pro-

vides a self-report of their symptoms and concerns followed by the investigator taking notes, subsequently,

the investigator conducts a thorough physical examination, including the collection of vital signs and doc-

umentation of any abnormal findings that deviate from the expected range of a healthy individual. With

the symptoms, and data collected an evaluation of the patient’s condition is performed. The investigator,

using published clinical knowledge, compares the symptoms exhibited by the patient with possible dis-

eases/conditions and performs a final diagnosis. With the diagnosis done instructions are created for how

to treat the patient and provide him with the care and/or medication needed.

As seen in the image above the CIRP has 4 steps to accomplish the goal of creating a consistent and

organized patient diagnosis investigation. These steps are represented in the ENTRY archetypes with the

following subclasses:

• Observation: This subclass represents an assertion about a particular fact, such as a measurement

or a statement of a patient’s condition. For example, blood pressure, temperature, or a patient’s

symptoms could be represented as observations.

22

• Evaluation: This subclass represents an assessment of a particular fact or situation, such as a

diagnosis or an interpretation of test results. For example, a radiologist’s interpretation of a CT

scan or a physician’s diagnosis of a patient’s condition could be represented as evaluations.

• Instruction: This subclass represents an order or requests for a particular action to be taken, such

as a medication order or a lab test request. For example, a physician’s order for a patient to receive

a certain medication or a request for a lab test could be represented as instructions.

• Action: This subclass represents the performance of a particular action or procedure, such as

administering medication or conducting a surgical procedure. For example, a nurse’s administration

of a medication or a surgeon’s performance of a procedure could be represented as actions.

Subtypes that represent each step of the CIRP are inserted into a higher hierarchy folder, the Care_Entry

class. As its name implies this includes archetypes that contain valuable information about patient care.

Additionally, the Entry class can have an additional subfolder to store purely administrative or bureaucratic

hospitalization information called the Admin_Entry. Administrative information is typically created by non-

clinical staff performing administrative tasks to coordinate clinical processes by recording details such as

patient admission, appointments, discharge or transfer, and billing or insurance information. Care_Entry

on the other hand can only contain information strictly created by clinical professionals since those are

the only ones knowledgeable enough to partake in the CIRP.

While administrative information does not directly impact clinical decision-making, it is crucial to the

smooth functioning of healthcare systems. Without this information, it would be difficult for healthcare

providers to coordinate appointments, transfers, or billing, and patients would not have access to important

details about their care. Despite its importance, removing administrative information from the EHR would

not compromise clinical integrity, it would simply make it more challenging for caregivers to stay informed

about important details related to patients they are responsible foropenEHR Foundation [2022a].

23

Figure 10: The hierarchy of an Entry class. Entry is divided into a Care_Entry and Admin_Entry classes.

Care_Entry contains the archetypes related to the CIRP.

Cluster

Essentially the ”lowest” container class of archetypes. They can be found inside Entry, and Composition

archetypes as well as other Cluster archetypes. Clusters are particularly useful in cases where recursive-

ness is important, such as when a data element needs to be repeated or nested within another data

element. An example of this use of recursion can be seen in a hypothetical OBSERVATION archetype

that contains a Cluster inside, about symptoms seen in a patient. If the patient had heart palpitations the

Cluster could contain other ClusterS which describe conditions normally associated with the said symptom

(like having a stroke or anxiety).

3.4.3 Datatypes and Datastructures

The following are the datatypes supported by openEHR

• Text, this can include just plain text or coded text

• Date/times

• Encapsulated multimedia data or parsed text files

• Basic boolean types or state variables like temperature or blood pressure levels

• Quantities like weight or height with their corresponding values and units of measurement

24

Figure 11 shows an example of how these data types can be found in a given archetype. For a

prescription archetype, you have the attributes for Drug Name, Dose quantity, and start date and their

corresponding datatype

Figure 11: Example of the various datatypes a single archetype can have.

3.4.4 Inheritance

The openEHR archetype framework allows for the creation of archetypes that can be inherited from other

archetypes, known as ”specialization”. This process is used to create new archetypes that are based on

existing ones but with additional constraints or modifications.openEHR Foundation [2022b]

This is made possible by employing the ”specialize” keyword, enabling the referencing of a preexisting

archetype as the parent archetype. The child archetype possesses the capability to introduce specific

changes while ensuring compatibility with the parent archetype. These changes may involve the addition of

new attributes or the constraining of existing ones. This allows for a hierarchical framework of archetypes to

be established, with more specialized archetypes inheriting characteristics from broader ones. Additionally,

this mechanism supports multiple inheritance, allowing an archetype to inherit attributes from multiple

parent archetypes.

25

Figure 12: Example of a child class (Vaccine prescription) inheriting properties from a parent class (Pre-

scription). The attributes for drug name, dose, quantity dispensed, and start date are all common in both

parent and child archetypes while the batch number attribute is only present in the Vaccine Prescription

archetype.

3.4.5 Clinical Data sets vs openEHR solutions

There are several problems associated with the use of traditional clinical datasets that openEHR tries to

solve. The lack of consistency in basic data types, presentation formats, and design principles used for

example can make it difficult to compare and integrate data from different sources. The time of data

capture, interpretation of data, and integrity constraints can also vary, leading to further inconsistencies.

Another problem with CDS is the replication of domain knowledge and the lack of multi-language support,

which can make it difficult to share and understand data across different systems and organizations.

CDS also heavily relies on non-integrated specialist applications, which can make it challenging to share

information between different systems and authorities.

OpenEHR was built as a solution that addresses these problems by providing a reference model and

the use of the archetype structure. Archetypes are able to support the definition of time series and have

all relevant information for the interpretation of measurement, making it easier to understand and use the

data and define integrity constraints in a uniform way, which helps to ensure the quality and consistency

of the data.

Another important aspect of openEHR is the mechanism of making archetypes freely available at one

central place, which helps to avoid ’reinventing the wheel’ and ensures that the latest and most accurate

26

archetypes are used. The openEHR also ensures that any translation occurs within one archetype only,

which helps to maintain the semantic meaning of the data. Furthermore, archetypes can be shared by

multiple HIS and authorities, which allows information to be exchanged between different systems while

keeping the semantic meaning allowing for more efficient and effective sharing and integration of health

information across different systems and organizations.

3.5 Archetype Definition Language

As established previously in this chapter, without a consistent and standardized way of defining archetypes,

different systems, applications, and organizations may have different interpretations of the same concept,

which can lead to inconsistencies and interoperability issues.

The openEHR foundation created a rather complex syntax to define and build archetypes formally

named the Archetype Definition Language ADL. This language has a characteristic structure that is de-

signed according to the following image:

Figure 13: Representation of the structure of an ADL archetype file.

The terms represented in bold (archetype, concept, language, definition, ontology) are the main parts

of the document present in every file while the terms in parenthesis are merely optional and are not present

in every ADL file.

27

There are two main syntaxes for representing data in ADL files. Data ADL dADL and Constraint ADL

cADL. The dADL structure is used to define most of the content of a common ADL file including the header,

concept, language, description, and ontology sections. The following sections exemplify how this syntax is

written as well as the special characters used and their meanings.

3.5.1 Data ADL

Figure 14 shows a snippet of a data ADL syntax being used. This section is best characterized by the

use of the smaller than (<) and greater than (>) symbols to enclose and delimit object definitions that

are associated with a certain attribute name (e.g. the family_name attribute). Attributes can have sub-

attributes characteristics (e.g. name attribute) and form more complex tree branch-like paths.

Figure 14: Representation of a snippet of a Data ADL syntax made for a person attribute. Written in

orange are the special characters used as well as their meanings.

The dADL syntax is designed to represent data in a way that is both human-readable and machine-

processable while making the fewest assumptions about the underlying information model. While the

XML schema could also compete for this purpose it however is mainly intended for machine processing.

dADL is an abstract syntax for object-oriented data that provides a comprehensive set of leaf data types,

adheres to object-oriented semantics, and requires half the space of the equivalent XML while not using

the confusing XML notion of ’attributes’ and ’elements’ to represent object properties, and more than one

information model can be compatible with the same dADL-expressed data openEHR Foundation [a].

28

3.5.2 Constraint ADL

This is a special syntax designed to let the user put restrictions on data defined by object-oriented informa-

tion models in archetypes by defining data structures that conform to the general object model defined,

running computational systems that check data against cADL in an archetype. Syntax wise it’s similar

in structure to dADL since both are defined by blocks, however, cADL uses brackets, and the ”matches”

keyword (the math symbol ∈ and the ”is_in” keyword can also be used) instead of greater/lesser than

and the equal sign.

Figure 15: Representation of a snippet of a constraint ADL syntax. The syntax is mostly similar however

it replaces the arrows with curly braces.

In cADL terms that are written in all caps, the PERSON class in the previous example, are the main

constraint identifiers while lowercase terms like name or addresses correspond to attributes constrained to

the main identifier. cADL also recognizes certain keywords that offer additional constraint instructions for

certain data that get parsed. The cardinality keyword written in red is used to define container attributes

that set constraints on the number of members that an instance of a container type, like a list or a set,

can have. The example above essentially says that the addresses property has a cardinality that matches

a number between zero to many.

Using the previous image as an example, it is evident that a ”name matches” attribute comes with

a constraint that the PERSON type identifier must match the regular expression ”/.+/” in the TEXT field.

This regular expression matches any character occurring at least once. Regular expressions like this can be

used to define constraints that allow the inclusion of other archetypes files, by using the ”allow_archetype”

keyword. In the following example, we have a SECTION archetype that defines an item’s property indicating

what OBSERVATION and other SECTION archetypes are allowed. A regex like /.*/ or /.+/ essentially means

any archetype is allowed to be included in this context while usually, the ”include” keyword will only exhibit

one or two regular expressions for files that need to be inside the original archetype.

29

Figure 16: Usage of the allow_archetype term to include certain files.

3.6 Web Applications development

The process of creating software applications that can be accessed over the internet using a web browser

requiring the knowledge of various technologies and frameworks, as well as an understanding the unique

challenges posed by web-based environments.

Some key concepts one needs to know about web application development include:

• Client-server architecture: Web applications typically follow a client-server architecture, where

the client (usually a web browser) sends requests to a server, which processes those requests and

sends back responses.

• Frontend development: The frontend of a web application is the part that is visible to the user

and is responsible for handling user input and displaying the application’s output.

• Backend development: The backend of a web application is the part that is responsible for

processing data and business logic.

• APIs: Web applications often use APIs (Application Programming Interfaces) to allow different parts

of the application to communicate with each other and get specific data.

• Security: Web applications can face numerous security risks. Security flaws can occur due to

unwanted SQL injection, cross-site scripting (XSS), and cross-site request forgery (CSRF). It is im-

perative to possess knowledge on crafting secure code, employing encryption techniques, and

30

incorporating authentication and authorization mechanisms to ensure the development of robust

and protected web applications.

• Performance: Minimizing load times, reducing server response times, and optimizing data pro-

cessing are all important aspects of a well performed web application.

• Testing: Web applications must be thoroughly tested to ensure they function as intended and

are free of bugs. Testing frameworks and techniques such as unit testing, integration testing, and

end-to-end testing are usually done to build reliable web applications.

The general architecture of a web application follows a model where you have users interacting with an

interface that can trigger requests to the App’s scripting on the backend side. The web server is then able

to extract any data the user requested initially and send the response where it’s displayed in the frontend

for the user to see and interact with. An overview of this web application architecture can be seen in Figure

17:

Figure 17: General architecture of a web application.

3.6.1 REST API

A REST API (or Representational State Transfer API) is an application programming interface that conforms

to the constraints of REST architecture, an architectural style for distributed hypermedia systems. The pri-

mary purpose of an API is to offer a streamlined web services database, enabling applications to efficiently

communicate and exchange data across the internet. It is specifically designed to be lightweight, ensuring

optimal performance and ease of integration.

31

REST APIs typically use the HTTP protocol and its request methods (GET, POST, PUT, and DELETE)

to send and receive data. The client and server components of a REST API are loosely coupled, and

communication is done through a stateless interface, as such the client does not need to maintain any

state information about the server, and the server does not need to keep track of the client’s state.

Figure 18: Representation of a REST API.

The primary design principles of REST APIs are based on the Representational State Transfer (REST)

architectural style. This style was originally proposed by Roy Fielding in his 2000 doctoral dissertation,

and it provides a set of rules for designing web services that are lightweight, maintainable, and scalable

Fielding [2020]. The main principles of REST APIs are as follows:

• Client-server separation: The client and server should be independent and should not rely on

each other. This allows the client and server to be developed and deployed independently.

• Statelessness: The server should not maintain any state information about the client. The client

should instead send all the necessary data required for each request.

• Cacheability: The server should provide information about which responses can be cached and

for how long.

• Uniform interface: The server should provide a consistent interface for clients, which should be

independent of the underlying implementation.

• Layered system: The server should support a layered system, which allows for different levels of

authentication and authorization.

• Code-on-demand: The server should provide the client with the ability to download code and

execute it. This can be used to provide additional functionality, such as dynamic HTML.

32

3.6.2 Front-End

Frontend refers to the part of a software system or application that is visible to and interacts directly with

the user. It includes the user interface, which provides a way for users to interact with the application, as

well as the frontend logic that processes user input and sends requests to the backend.

In a typical web application, the frontend consists of the user interface that is displayed in the user’s

browser. This interface is built using primarily HTML code, with CSS offering styling choices and JavaScript

handling all the complex logic behing the scenes.

The frontend logic is responsible for handling user input and generating requests to the backend,

as well as processing responses from the backend and updating the user interface accordingly. The

logic is typically implemented using JavaScript, which allows for dynamic behavior and interactivity in

the application. Multiple frameworks and libraries have been developed to ease developers into building

functional web applications, for javascript development the more popular choices are React and Angular

but more are continuously being produced.

3.6.3 Back-end

While the frontend deals with the user interactions the backend refers to the part of a software system or

application that is responsible for processing data and performing operations that are not directly visible

to the user, that includes the server-side logic that powers the application, manages the database, and

handles requests from the frontend.

In a typical web application, the backend consists of a server, application server, and database. The

server receives requests from the client (e.g. a browser), routes them to the appropriate part of the

application, and sends responses back to the client. The application server is responsible for handling

the business logic and processing data, while the database stores and retrieves data as needed by the

application.

A system’s backend can be developed using a variety of programming languages and frameworks.

Software professionals skilled in API development, server-side programming, and database management

will usually be given the job to build the backend of applications.

3.6.4 JavaScript Object Notation

JavaScript Object Notation or JSON is a data interchange format first introduced in 2002 by Douglas

Crockford as an alternative to XML, which was becoming increasingly complex and difficult to use Florescu

33

and Fourny [2013]. Similar to the syntax of JavaScript object literals, JSON is built using a collection of

key-value pairs where the keys are strings surrounded by quotation marks and values can be any supported

data type like numbers, Booleans, arrays or other complex nested JSON objects.

It’s generally agreed that using a JSON structure to represent data when transferring between a server

and web applications is a better alternative to other text-based formats like XML or, in the context of

openEHR, ADL files Simec and Maglicic [2014]. Compared to the XML format, JSON is strictly typed

meaning objects can be recognized as any data type supported like string, numbers, or booleans, unlike

XML where every value data is recognized as a string type only. JSON objects are also far more lightweight

allowing for faster data transfers and consuming less bandwidth between the client side and the server

side of an application.

Figure 19: Example of a JSON structure supporting string, list, and boolean types recognized by the

editor with multiple colors.

JSON is used extensively in modern software development, particularly API development. The popu-

larity of the JSON format has become such a stapple in the programming landscape most languages will

include built in methods or libraries to work with JSON parsed data. Some notable examples include the

JavaScript JSON.parse() and JSON.stringify() methods, the JSON Schema standard, and popular JSON

libraries like Jackson (for Java) and Newtonsoft.Json (for .NET) . Its support in various programming lan-

guages means it’s far easier to maintain the interoperability of openEHR data assuming the data is parsed

in a JSON object since almost all modern languages recognize JSON structures and have prebuilt methods

used to extract only certain values needed by the user.

34

Chapter 4

Materials and Methods

This section lists various tools used to create the web application part of this project, namely the main

language, libraries and frameworks used. A brief look into what they are, and their functionalities is also

described here.

4.1 Javascript

Introduced in 1995 by Netscape Communications Corporation, JavaScript emerged as a programming

language aimed at creating interactive elements and dynamic content within web pages. It a language

used both for developing the client-side interface as well as server-side scripting. On the client side, it is

used in conjunction with HTML and CSS to create more complex interactive elements on web pages, such

as forms or animations that responds to certain user inputs. In conjunction with the back-end side it’s

possible to create dynamic applications that continuously communicate with a server to display data from

a database.

Its relevance can be attributed to its ability to offer developers a way to construct high-powered and

reliable web applications and websites. JavaScript garners additional appeal due to its widespread support

across all major web browsers, ensuring easy accessibility for developers of varying expertise levels Wirfs-

Brock and Eich [2020]. To this day, JavaScript is the most used client-side language for any web browser

and many major companies and organizations still use it W3Techs, making it a well-supported language

with tons of libraries, frameworks, and documentation.

4.2 React

Created by Facebook in 2013, React is one if not the most popular JavaScript library to design user

interfaces. It’s specially designed to simplify the creation of fast and dynamic user interfaces by using a

35

virtual DOM, which is an in-memory representation of a web page, to improve the performance of web

applications by only updating elements that need to be updated at a certain time. React also makes use

of a declarative programming style, which means that developers can focus on the code that is necessary

to create the user interface, rather than having to worry about the order of operations.

The biggest feature in the React library is in the powerful component-based architecture which makes

it easy to break complex user interfaces into smaller components. Each component is a self-contained

piece of code that can be reused throughout the application, making it easier to manage and maintain the

overral code.

Facebook, Instagram, Airbnb, and Netflix Evgeniy Fetisov [2023] are just some of the few large com-

panies that actively incorporate this library with many smaller companies actively using this technology

in their day-to-day life. With its component-based architecture, easy-to-learn syntax, and performance-

oriented design, React is a popular choice for developing web applications and websites and it’s why it

was the main library used to build the user interface of this project.

4.3 Bootstrap

Bootstrap is an open-source front-end framework that is used for developing responsive, websites. It was

created by Mark Otto and Jacob Thornton in 2011 at Twitter and is currently maintained by the Bootstrap

core team with contributions from the open-source community Spurlock [2013].

It’s built on HTML, CSS and JavaScript code and is used to create modern, interactive webpages

with high user engagement. It provides a wide range of components and plugins that help developers

create webpages quickly and efficiently at the same time offering plenty of customizable options, allowing

developers to customize the look and feel of the website to their own liking.

Being one of the most popular frontend frameworks it’s extremely well documented, with plenty of

tutorials, courses and resources available to help developers get up and running quickly. Any developer

with not a lot of experience in UI design can build a functional and aesthetically pleasing website with

minimal effort making it a popular choice.

4.4 NextJS

A fullstack web development framework that provides an intuitive way to build web applications while

integrating both the server side and front-end code together. It was created by Zeit, a technology company

based in San Francisco, California, in 2016, and it has quickly gained traction among developers due to

36

its numerous benefits and features Konshin [2018].

This framework uses server-side rendering to deliver fast web pages that load quickly, even on slow

connections. This approach also improves search engine optimization (SEO) by providing search engines

with optimized HTML that is easy to index. Additionally, Next.js provides a feature called Incremental Static

Regeneration, which enables developers to re-render only the parts of the page that need to be updated,

resulting in faster load times and a more responsive user experience, it also provides excellent support for

static site generation, which makes it ideal for building content-heavy websites that require fast load times

and improved SEO Konshin [2018].

4.5 Github API

GitHub is a web-based platform founded in 2008 by Tom Preston-Werner, Chris Wanstrath, and PJ Hyett.

It’s widely used for hosting, managing, and collaborating on software development projects as well as

general file storage van der Vlist [2013]. It’s popularity arrised from it’s usage in open-source software

development, used by both large businesses and individual developers to store and manage their code

repositories. For this project GitHub was chosen to manage the files in the CKM repository due to its

ease-of-use API and the compatibility with the Archetype Designer web software.

37

Part II

Core of the Dissertation

38

Chapter 5

ADL to JSON conversion

Parsing ADL files to a valid JSON structure was not a simple one step process, due to JSON’s strict text

formating rules in order for the script to recognise any string given to it and convert to a JSON structure

certain changes in the files had to be made, in particular when it came to symbols that had to be replaced

or removed. In order to make this easier the program created JSON structures based on information

about the header, concept, language, description, definition, and ontology. Only after creating each of

these structures the final JSON formatted file can be formed by adding the previous JSONs into one big

compiled JSON. This part of the work required the usage of regular expressions to either extract all the

information or modify certain parts of the ADL text document. The following table examplifies the regex

created to get each section mentioned previously.

Section Regular Expression

Header /archetype[\w\W]*?concept/

Concept /concept[\w\W]*?language/

Language /language[\w\W]*?description/

Description /description[\w\W]*?definition/

Definition /definition[\w\W]*?ontology/

Ontology /ontology[\w\W]*>/

Table 1: Regular expressions used to capture each section in the ADL file.

It’s important to note that the files used to test this conversion algorithm are all ADL version 1.4 and the

openEHR reference model version used was the 1.1.0. More information about each archetype component

used to write this algorithm can be found in the ”specifications-ITS-JSON” GitHub repository. Available at:

https://github.com/openEHR/specifications-ITS-JSON (Last Accessed: April 13, 2023).

All the files used are available freely in the clinical knowledge manager CKM, a tool created by openEHR to

39

https://github.com/openEHR/specifications-ITS-JSON

view archetype and template files. Table 3 shows an extensive list of all the files that were used for testing

purposes.

5.1 Archetype Header

This following section contains information about the adl version, uid code and file name, and the corre-

sponding JSON formated header section with this information. Creating this section was fairly straight-

forward using regular expressions all that was needed to do here was to add the necessary curly braces,

quote symbol and colons while removing the unneeded parentheses.

Figure 20: Example of a header section. The grey square is the original unmodified header while the

black square is the final JSON structure.

5.2 Concept and Specialize

Both these sections only have a single parameter, concept only has a ontology code and it’s corresponding

definition while an the specialize section will only have the adl file name for the associated archetype that

gets it’s characteristics inherited.

Figure 21: Example of a concept section and it’s corresponding JSON formatted structure.

40

5.3 Language

The language section contains two main parameters, the original language the archetype was written and

any translations the ADL file can have as well as the author of said translation and related information

(name, organization, email). According to the Archetype Definition Language 1.4 specifications page,the

arrow symbol > and < are used as self enclosed parameter tags (”<” being the opening tag and ”>” the

closing tag). Knowing this information, these arrow can get replaced by curly braces originating a JSON

structure seen in the below image.

Figure 22: Example of a language section and it’s corresponding JSON formatted structure.

It should be noted that to create this JSON structure the parameters with self closing brackets like the

name, organization and email had to have said brackets removed. Only the information was needed, the

JSON does not need for these parameters to be in brackets.

5.4 Description

This section encompasses descriptive information about the archetype, including references, contributors,

and licensing. It also includes metadata for searching and indexing files in repositories. The final JSON

structure created for this work only retains information about the original creator and language details,

omitting other information.

41

Figure 23: Example of a JSON formatted description section.

5.5 Ontology

An archetype’s ontology section is mostly a term_definitions subsection where the definition for node

identifiers are found, usually written in multiple languages. The following parameters can also be found

but occur more rarely in the ontology schema:

• terminologies_available

• term_bindings

• constraint_definitions

• constraint_bindings

Each term_definitions node is written with a code starting with the letters ”at” followed by 4 digits.

The same rule applies to the ”terminologies_available” and ”term_bindings” subsections, but for the

constraint-related section, the prefix ”ac” is used instead. Inside each node there’s a text parameter with

a title followed by a description parameter with a short explanation about said title. Sometimes there’s

also a comment attribute but it’s not mandatory unlike the text and description attributes and even more

rarely there can be a provenance attribute if the term definitions came from another different terminology

openEHR Foundation [2021]. An example of an ontology section after being parsed to a valid JSON object

can seen in figures 24.

42

Figure 24: Snippet of an Ontology section. The ”ar-sy” , ”sl” and ”en” codes correspond to languages. A

node (at0000) with a text and description attributes inside the English language section for term definitions

is also seen here.

5.6 Definition

The definition portion of the archetype definition language outlines the layout and restrictions for a specific

kind of clinical document, such as a progress note or discharge summary, for that very reason it uses the

cADL syntax, unlike every previous section that followed the dADL syntax general guidelines.

It’s in this section that the information in each unique archetype class is contained as such to start

off it’s important to have the element that identifies the archetype class. The first node is represented by

the at0000 code preceded by the archetype class (in all caps), thus a cluster archetype will be identified

by the code ”CLUSTER[at0000]”.

In the JSON structure, this first node will have a rmType, an occurrences, and a node attribute. The

rmType stands for reference model type and here the class name of the archetype is identified. The

occurrences parameter has a lower occurrences and upper occurrences elements which get its values

either by an item matches line that is directed followed up, or if this line doesn’t exist it’s assumed that

the lower and upper occurrences both have a value of 1. Finally, the node attribute has the code, text, and

description elements which are directly taken from the ontology section of the file, for that very reason it’s

important to define and create the JSON section of the ontology before the definition section, even though

43

in the adl schema ontology is the very last section in the file.

Figure 25: Example of a representation of a CLUSTER root node in a JSON string.

With the initial node identified It’s now possible to fill up the rest of the JSON. Using a CLUSTER

archetype as an example, Whenever there’s an ”items matches” property the JSON will have a items list

to fill up with ELEMENT objects that the CLUSTER contains. Like the first node, ELEMENT objects will

have the same attributes identified however there’s an additional value_matches object here. This is a

parameter used to define the data type of the data brought by the element. A glossary containing a detailed

description of all the DV types can be checked through in Table 2 in the appendix section of this work.

Figure 26: Example of an element leaf node.

The previous example shows an element node with a DV_TEXT containing an object with a single

key/item pair of ”value” followed by a null keyword. The dataType in this example has an object structure

inside that the user is supposed to fill out, however, for the purpose of this work all files have these

44

structures with null values with the only exception being the DV_CODED dataType. If the DV_CODED

inside the element node contains the keyword ”local” followed by an ”at” or ”ac” code its data is taken

from the ontology section of these files otherwise this section stays blank. An example of this can be seen

in Figure 27.

Figure 27: A DV_CODED value matches filled with ontology data.

Every other object created for each DV type can be checked thoroughly in Table 3 in the appendix

section of this work.

5.6.1 Include Archetype

To make the inclusion of other archetypes possible whenever an ”allow_archetype” property is detected the

program will extract the regular expression for the file/files that need to be included and it will recursively

call for the main function to make an API call to the repository until it eventually reaches an archetype with

no valid ”allow_archetype” property. Every archetype called will then be parsed and added to the final

JSON. Archetypes that are included inside other archetypes get the added property called the ”xsi_type :

C_ARCHETYPE_ROOT” to give the indication they are archetypes included inside other archetypes.

45

Figure 28: Example showing an ITEM_TREE subclass with another cluster inside represented with the

xsi_type property.

As seen in the previous image, the included archetype will retain information about its type, occur-

rences, and node and the ”Include” list has a complex nested object with every section an archetype

has.

5.6.2 Property Matches

While CLUSTER classes will only have item object matches, certain archetype classes will include additional

properties that need to be added. These properties are easily identified by a lowercase naming convention

right after the class name identifier. An archetype can have multiple properties and these can be nested

inside other properties as seen in Figure 29.

46

Figure 29: Examples of property matches (red squares) in a role class archetype. The blue brackets

identify the information contained in each property.

After creating the first node the following step is to extract all the property matches names and content.

That is accomplished by using the following regular expression:

[a-z_]+ matches\s+{.+?}(?=\s+[a-z]+ matches|$)

The script will run a check to see which property the regex matched with and use the according

function to create an object. This is all done with an object constant that stores information about the

existing property matches and then a function created to parse properties in the most reliable manner.

Figure 30: Object created with various archetype property names and their corresponding parse func-

tions.

47

Something to note here is that certain properties while having different names are essentially parsed

the same way according to the RM schema. That’s the main reason why some matches use repeated

functions. An example of a parsed ADL file with properties specific to EVALUATION archetypes can be

seen in Figure 31:

Figure 31: Example of an EVALUATION archetype with a data and protocol matches properties.

48

Chapter 6

Web Application Development

The main objective of this application was to provide a simple way to manage files taken straight from a

given repository and directly convert them to a JSON formatted structure. To keep it relatively simple and

easy to use the Web application follows a general layout comprised of a header that when clicked exposes

the sidebar dropdown menu with the content body being rendered on the right side. A representation of

the application schema can be seen in Figure 29.

Figure 32: Representation of the application schema.

To carry out the work, the front-end part of the application was designed using React, and the compo-

nents of the pages, namely the dropdown menu on the side and buttons, were done using the bootstrap

framework since it provides easy to use and good looking templates for any HTML element. On the server

49

side of things, nextJS was used to not only make the react application run smoothly but also for rooting and

to make API calls to a GitHub repository containing clinical EHR models taken from the Clinical Knowledge

Manager (CKM), made freely available by the openEHR Foundation International. The result of this work

can be seen in the following image.

Figure 33: The web application main window.

The drop-down menu on the side is essentially the file system for the folders available on the repository.

The root directory is the CKM repository button, clicking it shows every child folder that is inside. The

archetype class name buttons are the leaf nodes of this file system and clicking them will immediately

trigger an API call to the GitHub repository by providing a list with all the files available. Clicking on any

file will in consequence trigger yet another API call for a GET request, this time to provide the contents of

the file in question. After the file is retrieved it is then parsed. If the file retrieved from the repository is a

template the application uses the package xml2json to convert the OPT file into a valid JSON, when the

file is an ADL the application uses the program created in the previous section providing a JSON formatted

structure seen in figure 31.

50

Figure 34: The web application window after the file is parsed to a JSON.

This section used the ”react-json-view” component, which is available in the following GitHub repos-

itory: https://github.com/mac-s-g/react-json-view. This component enables the elegant

rendering of JSON data with the added benefit of allowing the user to directly copypaste the entire JSON

or just certain sections. JSON structures can be easily examined using the built-in method, which not only

provides information about the data type but also indicates the number of items within the object, making

it an ideal tool for manual JSON structure checking.

Figure 35: A section of a JSON structure rendered using the react-json-view component.

51

https://github.com/mac-s-g/react-json-view

Chapter 7

Conclusions and future work

7.1 Conclusions

More and more, the support of new technologies for the provision of health care to the patient, in institu-

tions, is emerging. In this regard, the development of hospitalization support systems aims to contribute

to improving the quality of patient care. The project described throughout this dissertation had the im-

provement of organization and archival of clinical data as its main motivation, this being a rather important

aspect in the efficient work of an institution that involves health professionals from the most diverse aca-

demic backgrounds, from doctors to nurses, health assistants or even IT developers. In pursuit of this,

the research question presented below was initially formulated.

”Will this new approach provide a solution for the significant challenges faced by profes-

sionals in the medical industry with the increasing complexity of propagation of healthcare

record data?”

Combined with the high pace of work evidenced, the standardization of clinical information and the

need to make information available to all professionals, this boosted the development of the initially ideal-

ized artefact. Multiple goals were initially established in the introductory section of this dissertation. The

first two goals included a literature review of articles in the subject area of healthcare data, analysis of

past similar work and the choice of research methods to help carry out the work in the most efficient man-

ner. These objectives had a major influence in fully understanding the complexities of the technologies

used and the data standards for the openEHR which in consequence helped the planning of a general

architecture for the final artefact.

The third objective was the entire artefact creation using the knowledge acquired by all the extensive

research accomplished with the state of the art section. As far as the development goes the initial descrip-

tions and procedures necessary carried out, from the prototype to the developed platform. The idealized

REST API using ADL files succeeds at creating a standardized approach to transfer high-speed data across

52

any web platform ensuring that other developers can use this API for future application development in-

stead of creating new tools to parse ADL files. The API was tested by building a prototype web application

that reads files from a github repository and displays the openEHR data but formatted in a JSON object.

The final goal was a critical analysis of the artefact built. In terms of improvements, the user can view

the data associated with a particular EHR in a more user-friendly manner, especially since these structures

will include any nested archetypes inside. A big limitation of the original ADL file format was this lack of

inclusion of any data related to ”allow_archetype” sections. JSON’s powerful and lightweight format proves

that it’s a vital solution for the interoperability problem present in Healthcare data and the added value of

converting these files also helps in making future developers interested in making software using different

libraries or programming languages. Regarding the constraints or shortcomings of the built artefact, when

it comes to the back end created for this project the GET responses were limited in only using objects from

the files that used ADL version 1.4. For the reference model schema, the latest release as of the time of

the writing of this dissertation was version 1.1.0 and as such the script only tries to adapt ADL files using

this version. Also due to the repository that was used as the main database not having any 2.0 formatted

ADL files the decision to adapt to the syntax defined only in the 1.4 version was decided beforehand.

Going back to the main research question proposed in the beginning, It’s possible to conclude that this

artefact can indeed help provide a solution to the ongoing interoperability problem however there would

need to be an active effort to improve the platform and the ADL conversion script.

7.2 Prospect for future work

If the goal of achieving an interoperable database of ADL data endpoints is in order, there needs to be an

active effort to update this script to be more adaptable to both future and past versions of the ADL syntax.

Therefore, regular updates to the APIs are necessary to ensure compatibility with different ADL versions.

As for the web application, certain aspects could be improved to include more functionality. This

prototype is only connected to a single repository, in the future, the user could be given the choice to log in

to their desired online storage file system and manage any files directly in the web application by dragging

and dropping files or deleting unnecessary files. The user could also have the option to export files to their

own device or the ability to select only certain parameters from the JSON. Finally, the creation of a mobile

application could also be made using the REACT-NATIVE library or at the very least optimizing the current

web application to work better on a mobile phone.

53

Bibliography

Adetokunbo AA Adenowo and Basirat A Adenowo. Software engineering methodologies: a review of the wa-

terfall model and object-oriented approach. International Journal of Scientific & Engineering Research,

4(7):427–434, 2013.

Adobe Communications Team. Waterfall Methodology: A Complete Guide. https://business.

adobe.com/blog/basics/waterfall, March 2022. Accessed on 13/04/2023.

Altexsoft. Pacs and vna: What’s the difference? https://www.altexsoft.com/blog/pacs-vna/,

2022. Accessed on 15/12/2022.

Ashish Atreja, Steven M Gordon, Daniel A Pollock, Russell N Olmsted, and Patrick J Brennan. Opportunities

and challenges in utilizing electronic health records for infection surveillance, prevention, and control.

American journal of infection control, 36(3):S37–S46, 2008.

Julius Quarshie Azasoo and Kwame Osei Boateng. A retrofit design science methodology for smart meter-

ing design in developing countries. In 2015 15th International Conference on Computational Science

and Its Applications, pages 1–7. IEEE, 2015.

Shivani Batra, Shelly Sachdeva, and Subhash Bhalla. Entity attribute value style modeling approach for

archetype based data. Information, 9(1):2, 2017.

Thomas Beale, Sam Heard, et al. An ontology-based model of clinical information. Studies in health

technology and informatics, 129(1):760, 2007.

Régis Beuscart, Emmanuel Chazard, Jacques Duchêne, Grégoire Ficheur, Jean-Marie Renard, V Rialle, and

N Souf. E-health. Medical informatics, e-health: fundamentals and applications, pages 405–427, 2014.

Guthrie S Birkhead, Michael Klompas, and Nirav R Shah. Uses of electronic health records for public

health surveillance to advance public health. Annual review of public health, 36:345–359, 2015.

Christine A Caligtan and Patricia C Dykes. Electronic health records and personal health records. In

Seminars in oncology nursing, volume 27, pages 218–228. Elsevier, 2011.

54

https://business.adobe.com/blog/basics/waterfall
https://business.adobe.com/blog/basics/waterfall
https://www.altexsoft.com/blog/pacs-vna/

Kitty S Chan, Jinnet B Fowles, and Jonathan P Weiner. Electronic health records and the reliability and

validity of quality measures: a review of the literature. Medical Care Research and Review, 67(5):

503–527, 2010.

Kristin M Corey, Sehj Kashyap, Elizabeth Lorenzi, Sandhya A Lagoo-Deenadayalan, Katherine Heller, Krista

Whalen, Suresh Balu, Mitchell T Heflin, Shelley R McDonald, Madhav Swaminathan, et al. Development

and validation of machine learning models to identify high-risk surgical patients using automatically

curated electronic health record data (pythia): a retrospective, single-site study. PLoS medicine, 15

(11):e1002701, 2018.

José C Delgado. Structural interoperability as a basis for service adaptability. In Adaptive web services for

modular and reusable software development: Tactics and solutions, pages 33–59. IGI Global, 2013.

Evgeniy Fetisov. Top 30 Companies Using React JS Development. https://jaydevs.com/

top-companies-using-react-js/, April 2023. Accessed on 11/04/2023.

Roy T Fielding. Chapter 5: Representational state transfer (rest). 2000. URL https://www. ics. uci. edu/~

fielding/pubs/dissertation/rest_arch_style. htm. Accessed, pages 06–25, 2020.

Daniela Florescu and Ghislain Fourny. Jsoniq: The history of a query language. IEEE internet computing,

17(5):86–90, 2013.

William Goossen and Laura Heermann Langford. Exchanging care records using hl7 v3 care provision

messages. Journal of the American Medical Informatics Association, 21(e2):e363–e368, 2014.

Luis Guijarro. Semantic interoperability in egovernment initiatives. Computer Standards & Interfaces, 31

(1):174–180, 2009.

Sandra Heiler. Semantic interoperability. ACM Computing Surveys (CSUR), 27(2):271–273, 1995.

Masoud Hosseini and Brian E Dixon. Syntactic interoperability and the role of standards. In Health

Information Exchange, pages 123–136. Elsevier, 2016.

Mohannad A Hussain, Steve G Langer, and Marc Kohli. Learning hl7 fhir using the hapi fhir server and its

use in medical imaging with the siim dataset. Journal of digital imaging, 31(3):334–340, 2018.

IHTSDO. Snomed ct concept identifier. https://confluence.ihtsdotools.org/display/

DOCGLOSS/concept+identifier, 2013. Accessed on 14/12/2022.

55

https://jaydevs.com/top-companies-using-react-js/
https://jaydevs.com/top-companies-using-react-js/
https://confluence.ihtsdotools.org/display/DOCGLOSS/concept+identifier
https://confluence.ihtsdotools.org/display/DOCGLOSS/concept+identifier

Intely. Semantic interoperability: The next big challenge for

connected healthcare. https://www.intely.io/blog/

semantic-interoperability-the-next-big-challenge-for-connected-healthcare,

2022. Accessed on 14/12/2022.

Md Mohaimenul Islam, Tahmina Nasrin Poly, and Yu-Chuan Jack Li. Recent advancement of clinical

information systems: opportunities and challenges. Yearbook of medical informatics, 27(01):083–090,

2018.

Jawahar Jagarapu and Rashmin C Savani. A brief history of telemedicine and the evolution of teleneona-

tology. In Seminars in Perinatology, volume 45, page 151416. Elsevier, 2021.

Kirill Konshin. Next. js Quick Start Guide: Server-side rendering done right. Packt Publishing Ltd, 2018.

Rita Kukafka, Jessica S Ancker, Connie Chan, John Chelico, Sharib Khan, Selasie Mortoti, Karthik Natara-

jan, Kempton Presley, and Kayann Stephens. Redesigning electronic health record systems to support

public health. Journal of biomedical informatics, 40(4):398–409, 2007.

Gilad J Kuperman, Anne Bobb, Thomas H Payne, Anthony J Avery, Tejal K Gandhi, Gerard Burns, David C

Classen, and David W Bates. Medication-related clinical decision support in computerized provider

order entry systems: a review. Journal of the American Medical Informatics Association, 14(1):29–40,

2007.

Elyes Lamine, Wided Guédria, Ariadna Rius Soler, Jordi Ayza Graells, Franck Fontanili, Léonard Janer-

García, and Hervé Pingaud. An inventory of interoperability in healthcare ecosystems: Characterization

and challenges. Enterprise Interoperability: INTEROP-PGSO Vision, 1:167–198, 2017.

Jake Luo, Min Wu, Deepika Gopukumar, and Yiqing Zhao. Big data application in biomedical research and

health care: a literature review. Biomedical informatics insights, 8:BII–S31559, 2016.

Lingtong Min, Qi Tian, Xudong Lu, Jiye An, and Huilong Duan. An openehr based approach to improve

the semantic interoperability of clinical data registry. BMC medical informatics and decision making,

18(1):49–56, 2018.

Lorenzo Moja, Koren H Kwag, Theodore Lytras, Lorenzo Bertizzolo, Linn Brandt, Valentina Pecoraro, Giulio

Rigon, Alberto Vaona, Francesca Ruggiero, Massimo Mangia, et al. Effectiveness of computerized

decision support systems linked to electronic health records: a systematic review and meta-analysis.

American journal of public health, 104(12):e12–e22, 2014.

56

https://www.intely.io/blog/semantic-interoperability-the-next-big-challenge-for-connected-healthcare
https://www.intely.io/blog/semantic-interoperability-the-next-big-challenge-for-connected-healthcare

Mario Mustra, Kresimir Delac, and Mislav Grgic. Overview of the dicom standard. In 2008 50th Interna-

tional Symposium ELMAR, volume 1, pages 39–44. IEEE, 2008.

NIH. Snomed ct overview. https://www.nlm.nih.gov/healthit/snomedct/snomed_

overview.html, 2016. Accessed on 14/12/2022.

Daniela Oliveira, Ana Coimbra, Filipe Miranda, Nuno Abreu, Pedro Leuschner, José Machado, and An-

tónio Abelha. New approach to an openehr introduction in a portuguese healthcare facility. In World

Conference on Information Systems and Technologies, pages 205–211. Springer, 2018.

Daniela Oliveira, Rui Miranda, Nuno Abreu, Pedro Leuschner, António Abelha, Manuel Santos, and José

Machado. Management of a pandemic based on an openehr approach. Procedia Computer Science,

177:522–527, 2020.

openEHR Foundation. Ehr information model. https://specifications.openehr.org/

releases/RM/latest/ehr.html#_class_descriptions_2. Accessed on 08/03/2023.

openEHR Foundation. Archetype Definition Language (ADL) 1.4 Specification. https://

specifications.openehr.org/releases/AM/latest/ADL1.4.html, a. Accessed on

08/03/2023.

openEHR Foundation. openEHR Archetype Model, b. URL https://specifications.openehr.

org/releases/BASE/Release-1.0.3/architecture_overview.html#_archetype_

model_am. Accessed on 19/02/2023.

openEHR Foundation. Archetype Definition Language ontology section. https://specifications.

openehr.org/releases/AM/latest/ADL1.4.html#_ontology_section, March 2021.

Accessed on 08/03/2023.

openEHR Foundation. openehr information model: Entry class. https://specifications.

openehr.org/releases/RM/latest/ehr.html#_the_entry_class, 2022a. Accessed on

29/02/2023.

openEHR Foundation. Adl1.4-openehr specification. https://specifications.openehr.org/

releases/AM/latest/ADL1.4.html%13_specialise_section, March 2022b. Accessed

on 14/12/2022.

57

https://www.nlm.nih.gov/healthit/snomedct/snomed_overview.html
https://www.nlm.nih.gov/healthit/snomedct/snomed_overview.html
https://specifications.openehr.org/releases/RM/latest/ehr.html#_class_descriptions_2
https://specifications.openehr.org/releases/RM/latest/ehr.html#_class_descriptions_2
https://specifications.openehr.org/releases/AM/latest/ADL1.4.html
https://specifications.openehr.org/releases/AM/latest/ADL1.4.html
https://specifications.openehr.org/releases/BASE/Release-1.0.3/architecture_overview.html#_archetype_model_am
https://specifications.openehr.org/releases/BASE/Release-1.0.3/architecture_overview.html#_archetype_model_am
https://specifications.openehr.org/releases/BASE/Release-1.0.3/architecture_overview.html#_archetype_model_am
https://specifications.openehr.org/releases/AM/latest/ADL1.4.html#_ontology_section
https://specifications.openehr.org/releases/AM/latest/ADL1.4.html#_ontology_section
https://specifications.openehr.org/releases/RM/latest/ehr.html#_the_entry_class
https://specifications.openehr.org/releases/RM/latest/ehr.html#_the_entry_class
https://specifications.openehr.org/releases/AM/latest/ADL1.4.html%13_specialise_section
https://specifications.openehr.org/releases/AM/latest/ADL1.4.html%13_specialise_section

openEHR Foundation. What is openehr. https://www.openehr.org/about/what_is_openehr,

2022c. Accessed on 13/12/2022.

Rene Spronk. The early history of health Level 7. http://www.ringholm.com/docs/the_early_

history_of_health_level_7_HL7.html, September 2014. Accessed on 11/04/2023.

Max J Romano and Randall S Stafford. Electronic health records and clinical decision support systems:

impact on national ambulatory care quality. Archives of internal medicine, 171(10):897–903, 2011.

Susan A Sherer, Chad D Meyerhoefer, and Lizhong Peng. Applying institutional theory to the adoption of

electronic health records in the us. Information & Management, 53(5):570–580, 2016.

Alen Simec and Magdalena Maglicic. Comparison of json and xml data formats. In Central European

Conference on Information and Intelligent Systems, page 272. Faculty of Organization and Informatics

Varazdin, 2014.

Jake Spurlock. Bootstrap: responsive web development. ” O’Reilly Media, Inc.”, 2013.

Maria Staroselsky, Lynn A Volk, Ruslana Tsurikova, Lisa Pizziferri, Margaret Lippincott, Jonathan Wald,

and David W Bates. Improving electronic health record (ehr) accuracy and increasing compliance with

health maintenance clinical guidelines through patient access and input. International journal of medical

informatics, 75(10-11):693–700, 2006.

Fernando N van der Vlist. A Technicity of Collaboration: Coordinating Distributed Software Development

on GitHub. PhD thesis, University of Amsterdam, 2013.

W3Techs. Usage statistics and market share of javascript for websites. URL https://w3techs.com/

technologies/details/cp-javascript. [Accessed 15 Apr. 2023].

Hans Weigand, Paul Johannesson, and Birger Andersson. An artifact ontology for design science research.

Data & Knowledge Engineering, 133:101878, 2021.

Allen Wirfs-Brock and Brendan Eich. Javascript: the first 20 years. Proceedings of the ACM on Program-

ming Languages, 4(HOPL):1–189, 2020.

Cecil L Wittson and Reba Benschoter. Two-way television: helping the medical center reach out. American

Journal of Psychiatry, 129(5):624–627, 1972.

Kun-Hsing Yu, Andrew L Beam, and Isaac S Kohane. Artificial intelligence in healthcare. Nature biomedical

engineering, 2(10):719–731, 2018.

58

https://www.openehr.org/about/what_is_openehr
http://www.ringholm.com/docs/the_early_history_of_health_level_7_HL7.html
http://www.ringholm.com/docs/the_early_history_of_health_level_7_HL7.html
https://w3techs.com/technologies/details/cp-javascript
https://w3techs.com/technologies/details/cp-javascript

Part III
Appendices

59

Appendix A
Support work

Table 2: DV types and their definitions.

DV type Data structure

DV_TEXT It corresponds to a free text that can be of three types: a simple

input, a text area or a text editor. This choice is made in the form

designer. on the forms, free text is rendered through the draft-js

library due to the possibility of text being used in a text editor. If

in the JDT the ”value” property is on the format of a string instead

of structure defined by draft-js this string is processed and trans-

formed to the appropriate format.

DV_CODED_TEXT Corresponds to a multiple choice field that can be two types: a

dropdown or radio buttons. This choice is made in the form de-

signer. the choices possible are defined in the property ”item-

sList” which corresponds to an array of objects. All objects must

have ”code” and ”text” properties. There is also a property ”con-

straints” that allows defining the choice selected by default.

DV_DURATION Corresponds to a duration with value and unit. The units are de-

fined in the ”units” property. The authorized range of values for

each unit is defined in the ”units” property as well as the precision,

and for Different units may have different ranges and precisions.

DV_DATE_TIME Corresponds to a date and time.

Continued on the next page

60

Table 2 – Continued from previous page

File Name Class Type

DV_QUANTITY Corresponds to a quantity with value and unit. The units are de-

fined in the ”units” property. The authorized range of values for

each unit is defined in the ”units” property as well as the precision,

and for different units theremay be different ranges and precisions.

DV_BOOLEAN Corresponds to a Boolean that takes one of these two values: Yes

or No.

DV_DATE Corresponds to a date.

DV_TIME It corresponds to one hour.

DV_COUNT Corresponds to a count that assumes only whole numbers. At the

JDT, the values of items of type DV_COUNT can appear as follows:

DV_IDENTIFIER Corresponds to an identifier.

DV_MULTIMEDIA Corresponds to a multimedia (files, images, etc).

DV_ORDINAL Corresponds to a multiple choice field for scores and scales. The

possible choices are defined in the ”itemsList” property that cor-

responds to an array of objects. All objects must have ”code”,

”value” and ”text”.

DV_INTERVAL<DV_DATE> Corresponds to a date range.

DV_INTERVAL<DV_COUNT> Corresponds to a range of counts in number whole.

DV_INTERVAL<DV_DATE_TIME> Corresponds to a range of quantities. To the units are defined in

the ”units” property. The authorized range of values for each unit is

defined in the ”units” property as well as the precision, being that

for different units there may be different ranges and precisions.

DV_PROPORTION Corresponds to a range of proportions. So far, the package sup-

ports Percent or Unitary type proportions. The type is specified

in the ”type” property of items of type DV_PROPORTION. In addi-

tion, in The ”numerator” property defines the range of authorized

values for the proportion.

61

Table 3: Data Structures created for each DV type.

DV type Data structure

DV_TEXT {”value”: null}

DV_CODED_TEXT {”value”: null}

DV_DURATION {”value”: {”value”:null, ”unit”: null}}

DV_DATE_TIME { ”value”: { ”date”: null,”time”: null}{

DV_QUANTITY { ”value”: { ”value”: null,”unit”: null}}

DV_BOOLEAN {”value”: null}

DV_URI {”value”: null}

DV_DATE {”value”: null}

DV_TIME {”value”: null}

DV_COUNT {”value”: null}

DV_IDENTIFIER {”value”: null}

DV_MULTIMEDIA {”value”: null}

DV_ORDINAL {”value”: null}

DV_INTERVAL { ”value”: { ”start”: null,”end”: null}}

DV_INTERVAL<DV_COUNT> { ”value”: { ”start”: null, ”end”: null}}

DV_INTERVAL<DV_DATE_TIME> { ”value”: {”date”: {”start”: null,”end”: null}”time”: {”start”: null,”end”: null}}}

DV_INTERVAL<DV_TIME> { ”value”: { ”start”: null,”end”: null } }

DV_INTERVAL<DV_QUANTITY> { ”value”: { ”value”: { ”start”: null,”end”: null }, ”unit”: null } }

DV_PROPORTION { ”value”: null } }

62

Appendix B
Listings

Table 4: List of Files in the CKM repository used to work on the JSON parser.

File Name Class Type

openEHR-EHR-CLUSTER.address.v0.adl CLUSTER

openEHR-EHR-CLUSTER.adhoc_cluster_heading.v0.adl CLUSTER

openEHR-EHR-CLUSTER.adverse_reaction_event_summary.v0.adl CLUSTER

openEHR-EHR-CLUSTER.anatomical_location.v1.adl CLUSTER

openEHR-EHR-CLUSTER.anatomical_location_circle.v1.adl CLUSTER

openEHR-EHR-CLUSTER.anatomical_location_precise.v0.adl CLUSTER

openEHR-EHR-CLUSTER.anatomical_location_relative.v2.adl CLUSTER

openEHR-EHR-CLUSTER.anatomical_pathology_exam.v0.adl CLUSTER

openEHR-EHR-CLUSTER.art_container_details.v0.adl CLUSTER

openEHR-EHR-CLUSTER.biobank_storage.v0.adl CLUSTER

openEHR-EHR-CLUSTER.bioreagent.v0.adl CLUSTER

openEHR-EHR-CLUSTER.boston_bowel_preparation_scale.v1.adl CLUSTER

openEHR-EHR-CLUSTER.case_identification.v0.adl CLUSTER

openEHR-EHR-CLUSTER.cessation_attempts.v0.adl CLUSTER

openEHR-EHR-CLUSTER.change.v0.adl CLUSTER

openEHR-EHR-CLUSTER.citation.v0.adl CLUSTER

openEHR-EHR-CLUSTER.clinical_evidence.v1.adl CLUSTER

openEHR-EHR-CLUSTER.conditional_medication_rules.v0.adl CLUSTER

openEHR-EHR-CLUSTER.consent_details.v0.adl CLUSTER

openEHR-EHR-CLUSTER.country_visited.v0.adl CLUSTER

openEHR-EHR-CLUSTER.ctcae.v0.adl CLUSTER

Continued on the next page

63

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-CLUSTER.device.v1.adl CLUSTER

openEHR-EHR-CLUSTER.device_details.v0.adl CLUSTER

openEHR-EHR-CLUSTER.dietary_phytochemicals.v0.adl CLUSTER

openEHR-EHR-CLUSTER.distribution.v0.adl CLUSTER

openEHR-EHR-CLUSTER.document_entry_metadata.v0.adl CLUSTER

openEHR-EHR-CLUSTER.dosage.v2.adl CLUSTER

openEHR-EHR-CLUSTER.dwelling.v0.adl CLUSTER

openEHR-EHR-CLUSTER.ear_cleaning.v0.adl CLUSTER

openEHR-EHR-CLUSTER.education_record.v1.adl CLUSTER

openEHR-EHR-CLUSTER.electronic_communication.v0.adl CLUSTER

openEHR-EHR-CLUSTER.environmental_conditions.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-abdomen.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-anterior_chamber_eye.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-anus.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-aqueous_humour.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-auscultation-bowel_sounds.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-auscultation-breath_sounds.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-auscultation.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-breast.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-breasts.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-cardiovascular_system.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-chest.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-conjunctiva.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-cornea.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-cranial_nerves.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-ear.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-ears.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-external_auditory_canal.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-eye.v0.adl CLUSTER

Continued on the next page

64

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-CLUSTER.exam-eyelid.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-eyes.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-face.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-finger.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-fingernail.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-foot.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-fundus_eye.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-hand.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-heart.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-inspection-cervix.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-inspection-rectum.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-inspection-vagina.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-inspection.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-iris.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-lens.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-lower_limb.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-lung.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-middle_ear.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-mouth.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-muscle.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-neck.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-nervous_system.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-optic_disc.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-palpation-cervix.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-palpation-prostate.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-palpation-rectum.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-palpation-uterus.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-palpation-vagina.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-palpation.v0.adl CLUSTER

Continued on the next page

65

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-CLUSTER.exam-penis.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-peripheral_nervous_system.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-posterior_chamber_eye.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-pupil.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-respiratory_system.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-sclera.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-scrotum.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-skin.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-testicle.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-throat.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-thyroid.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-toe.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-toenail.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-tongue.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-tooth.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-tympanic_membrane.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-upper_limb.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam-vulva.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam.v1.adl CLUSTER

openEHR-EHR-CLUSTER.exam_blastocyst.v1.adl CLUSTER

openEHR-EHR-CLUSTER.exam_blastocyst.v1 toâ�¦ CLUSTER

openEHR-EHR-CLUSTER.exam_burn.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam_embryo.v1.adl CLUSTER

openEHR-EHR-CLUSTER.exam_embryo.v1 to Pubâ�¦ CLUSTER

openEHR-EHR-CLUSTER.exam_faeces.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam_hydration.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam_lesion.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam_oocyte.v1.adl CLUSTER

openEHR-EHR-CLUSTER.exam_oocyte.v1 to Pubâ�¦ CLUSTER

Continued on the next page

66

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-CLUSTER.exam_tendon_reflexes.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam_wound.v0.adl CLUSTER

openEHR-EHR-CLUSTER.exam_zygote.v1.adl CLUSTER

openEHR-EHR-CLUSTER.exam_zygote.v1 to Pubâ�¦ CLUSTER

openEHR-EHR-CLUSTER.exclusion_exam.v1.adl CLUSTER

openEHR-EHR-CLUSTER.exclusion_symptom_sign.v0.adl CLUSTER

openEHR-EHR-CLUSTER.family_prevalence.v1.adl CLUSTER

openEHR-EHR-CLUSTER.fetal_biometry.v0.adl CLUSTER

openEHR-EHR-CLUSTER.fetus_abdominal.v0.adl CLUSTER

openEHR-EHR-CLUSTER.fetus_vaginal.v0.adl CLUSTER

openEHR-EHR-CLUSTER.financial_record.v0.adl CLUSTER

openEHR-EHR-CLUSTER.free_text.v0.adl CLUSTER

openEHR-EHR-CLUSTER.gait.v0.adl CLUSTER

openEHR-EHR-CLUSTER.genetic_variant_presence.v0.adl CLUSTER

openEHR-EHR-CLUSTER.genomic_conversion_variant.v1.adl CLUSTER

openEHR-EHR-CLUSTER.genomic_copy_number_variant.v1.adl CLUSTER

openEHR-EHR-CLUSTER.genomic_deletion_insertion_variant.v1.adl CLUSTER

openEHR-EHR-CLUSTER.genomic_deletion_variant.v1.adl CLUSTER

openEHR-EHR-CLUSTER.genomic_duplication_variant.v1.adl CLUSTER

openEHR-EHR-CLUSTER.genomic_insertion_variant.v1.adl CLUSTER

openEHR-EHR-CLUSTER.genomic_inversion_variant.v1.adl CLUSTER

openEHR-EHR-CLUSTER.genomic_repeated_sequence_variant.v1.adl CLUSTER

openEHR-EHR-CLUSTER.genomic_substitution_variant.v1.adl CLUSTER

openEHR-EHR-CLUSTER.genomic_variant_result.v1.adl CLUSTER

openEHR-EHR-CLUSTER.health_event.v0.adl CLUSTER

openEHR-EHR-CLUSTER.hip_arthroplasty_component.v0.adl CLUSTER

openEHR-EHR-CLUSTER.housing_record.v1.adl CLUSTER

openEHR-EHR-CLUSTER.housing_record.v1 to â�¦ CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-abnormality-adnexal_mass.v0.adl CLUSTER

Continued on the next page

67

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-CLUSTER.imaging_exam-abnormality.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-bladder.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-fallopian_tube.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-fetus.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-gestational_sac.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-liver.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-lymph_node.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-lymph_node_group.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-ovary.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-rectouterine_pouch.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-scrotum.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-testicle.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-uterine_body.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam-uterine_cervix.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_exam.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_finding.v0.adl CLUSTER

openEHR-EHR-CLUSTER.imaging_series.v0.adl CLUSTER

openEHR-EHR-CLUSTER.information_resource.v1.adl CLUSTER

openEHR-EHR-CLUSTER.inspection_body_fluid-sputum.v0.adl CLUSTER

openEHR-EHR-CLUSTER.inspection_body_fluid-urine.v0.adl CLUSTER

openEHR-EHR-CLUSTER.inspection_body_fluid.v0.adl CLUSTER

openEHR-EHR-CLUSTER.inspired_oxygen.v1.adl CLUSTER

openEHR-EHR-CLUSTER.interpreter_request.v1.adl CLUSTER

openEHR-EHR-CLUSTER.interpreter_request.vâ�¦ CLUSTER

openEHR-EHR-CLUSTER.issue.v0.adl CLUSTER

openEHR-EHR-CLUSTER.knowledge_base_reference.v1.adl CLUSTER

openEHR-EHR-CLUSTER.laboratory_test_analyte.v1.adl CLUSTER

openEHR-EHR-CLUSTER.laboratory_test_panel.v0.adl CLUSTER

openEHR-EHR-CLUSTER.language.v1.adl CLUSTER

Continued on the next page

68

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-CLUSTER.level_of_exertion.v0.adl CLUSTER

openEHR-EHR-CLUSTER.lymph_node_metastases.v0.adl CLUSTER

openEHR-EHR-CLUSTER.macronutrients.v0.adl CLUSTER

openEHR-EHR-CLUSTER.macroscopy_colorectal_carcinoma.v0.adl CLUSTER

openEHR-EHR-CLUSTER.macroscopy_lung_carcinoma.v0.adl CLUSTER

openEHR-EHR-CLUSTER.media_file.v1.adl CLUSTER

openEHR-EHR-CLUSTER.medication.v2.adl CLUSTER

openEHR-EHR-CLUSTER.medication_authorisation.v0.adl CLUSTER

openEHR-EHR-CLUSTER.medication_order_summary.v0.adl CLUSTER

openEHR-EHR-CLUSTER.medication_supply_amount.v0.adl CLUSTER

openEHR-EHR-CLUSTER.micronutrients.v0.adl CLUSTER

openEHR-EHR-CLUSTER.microscopy_breast_carcinoma.v1.adl CLUSTER

openEHR-EHR-CLUSTER.microscopy_colorectal_carcinoma.v0.adl CLUSTER

openEHR-EHR-CLUSTER.microscopy_lymphoma.v0.adl CLUSTER

openEHR-EHR-CLUSTER.microscopy_melanoma.v0.adl CLUSTER

openEHR-EHR-CLUSTER.microscopy_prostate_carcinoma.v0.adl CLUSTER

openEHR-EHR-CLUSTER.myringoplasty.v0.adl CLUSTER

openEHR-EHR-CLUSTER.myringotomy.v0.adl CLUSTER

openEHR-EHR-CLUSTER.notifiable_condition.v0.adl CLUSTER

openEHR-EHR-CLUSTER.occupation_record.v1.adl CLUSTER

openEHR-EHR-CLUSTER.oedema.v0.adl CLUSTER

openEHR-EHR-CLUSTER.operative_procedure.v0.adl CLUSTER

openEHR-EHR-CLUSTER.organisation.v0.adl CLUSTER

openEHR-EHR-CLUSTER.other_significant_conditions.v0.adl CLUSTER

openEHR-EHR-CLUSTER.outbreak_identification.v0.adl CLUSTER

openEHR-EHR-CLUSTER.overcrowding_screening.v0.adl CLUSTER

openEHR-EHR-CLUSTER.person.v0.adl CLUSTER

openEHR-EHR-CLUSTER.pews_original.v0.adl CLUSTER

openEHR-EHR-CLUSTER.physiological_monitoring.v0.adl CLUSTER

Continued on the next page

69

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-CLUSTER.problem_qualifier.v1.adl CLUSTER

openEHR-EHR-CLUSTER.procedure_preparation.v0.adl CLUSTER

openEHR-EHR-CLUSTER.promis_bank_v10_anxiety.v0.adl CLUSTER

openEHR-EHR-CLUSTER.promis_bank_v10_depression.v0.adl CLUSTER

openEHR-EHR-CLUSTER.promis_bank_v10_fatigue.v0.adl CLUSTER

openEHR-EHR-CLUSTER.promis_bank_v10_sleep_disturbance.v0.adl CLUSTER

openEHR-EHR-CLUSTER.promis_bank_v11_pain_interference.v0.adl CLUSTER

openEHR-EHR-CLUSTER.promis_bank_v20_ability_participate.v0.adl CLUSTER

openEHR-EHR-CLUSTER.promis_bank_v20_physical_function.v0.adl CLUSTER

openEHR-EHR-CLUSTER.promis_scale_v12_global_health.v0.adl CLUSTER

openEHR-EHR-CLUSTER.reference_sequence.v1.adl CLUSTER

openEHR-EHR-CLUSTER.refraction_details.v0.adl CLUSTER

openEHR-EHR-CLUSTER.religion.v1.adl CLUSTER

openEHR-EHR-CLUSTER.religion.v1 to Published CLUSTER

openEHR-EHR-CLUSTER.sade.v0.adl CLUSTER

openEHR-EHR-CLUSTER.sequencing_assay.v0.adl CLUSTER

openEHR-EHR-CLUSTER.service_direction.v1.adl CLUSTER

openEHR-EHR-CLUSTER.service_direction.v1 â�¦ CLUSTER

openEHR-EHR-CLUSTER.simple_variant.v0.adl CLUSTER

openEHR-EHR-CLUSTER.skin_sensation.v0.adl CLUSTER

openEHR-EHR-CLUSTER.specimen.v1.adl CLUSTER

openEHR-EHR-CLUSTER.specimen_container.v0.adl CLUSTER

openEHR-EHR-CLUSTER.specimen_measurements.v0.adl CLUSTER

openEHR-EHR-CLUSTER.specimen_preparation.v0.adl CLUSTER

openEHR-EHR-CLUSTER.specimen_transport.v0.adl CLUSTER

openEHR-EHR-CLUSTER.strategy.v0.adl CLUSTER

openEHR-EHR-CLUSTER.structured_name.v0.adl CLUSTER

openEHR-EHR-CLUSTER.symptom_sign.v1.adl CLUSTER

openEHR-EHR-CLUSTER.therapeutic_direction.v1.adl CLUSTER

Continued on the next page

70

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-CLUSTER.timing_daily.v1.adl CLUSTER

openEHR-EHR-CLUSTER.timing_nondaily.v1.adl CLUSTER

openEHR-EHR-CLUSTER.tnm-pathological.v1.adl CLUSTER

openEHR-EHR-CLUSTER.tnm.v1.adl CLUSTER

openEHR-EHR-CLUSTER.tnm.v1 to Published CLUSTER

openEHR-EHR-CLUSTER.tos.v0.adl CLUSTER

openEHR-EHR-CLUSTER.translocation_variant.v0.adl CLUSTER

openEHR-EHR-CLUSTER.tumour_colorectal_staging_non_tnm.v0.adl CLUSTER

openEHR-EHR-CLUSTER.tumour_invasion.v0.adl CLUSTER

openEHR-EHR-CLUSTER.tumour_resection_margins.v0.adl CLUSTER

openEHR-EHR-CLUSTER.waveform.v0.adl CLUSTER

openEHR-EHR-COMPOSITION.advance_care.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.adverse_reaction_list.v1.adl COMPOSITION

openEHR-EHR-COMPOSITION.care_plan.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.encounter.v1.adl COMPOSITION

openEHR-EHR-COMPOSITION.event_summary.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.family_history.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.health_summary.v1.adl COMPOSITION

openEHR-EHR-COMPOSITION.lifestyle_factors.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.medication_list.v1.adl COMPOSITION

openEHR-EHR-COMPOSITION.notification.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.obstetric_history.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.pregnancy_summary.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.prescription.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.problem_list.v2.adl COMPOSITION

openEHR-EHR-COMPOSITION.progress_note.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.report-procedure.v1.adl COMPOSITION

openEHR-EHR-COMPOSITION.report-result.v1.adl COMPOSITION

openEHR-EHR-COMPOSITION.report.v1.adl COMPOSITION

Continued on the next page

71

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-COMPOSITION.request.v1.adl COMPOSITION

openEHR-EHR-COMPOSITION.review.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.self_monitoring.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.social_summary.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.therapeutic_precautions.v0.adl COMPOSITION

openEHR-EHR-COMPOSITION.transfer_summary.v1.adl COMPOSITION

openEHR-EHR-COMPOSITION.vaccination_list.v0.adl COMPOSITION

openEHR-DEMOGRAPHIC-ADDRESS.address-provider.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-ADDRESS.address.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-ADDRESS.electronic_communication-provider.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-ADDRESS.electronic_communication.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CAPABILITY.individual_credentials.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.biometric_identifier_iso.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.birth_data_additional_detail_br.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.high_level_address_other_data_br.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.identifier_other_details.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.individual_credentials_iso.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.individual_provider_credentials_iso.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.person_additional_data_br.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.person_additional_data_iso.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.person_birth_data_iso.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.person_death_data_iso.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.person_identifier-provider.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.person_identifier.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.person_other_birth_data_br.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.person_other_death_data.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.provider_identifier.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-CLUSTER.registration_other_data.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-ITEM_TREE.person_details.v0.adl DEMOGRAPHIC

Continued on the next page

72

Table 4 – Continued from previous page

File Name Class Type

openEHR-DEMOGRAPHIC-ORGANISATION.organisation.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-PARTY_IDENTITY.organisation_name.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-PARTY_IDENTITY.person_name-individual_provider.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-PARTY_IDENTITY.person_name.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-PERSON.person-patient.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-PERSON.person.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-ROLE.healthcare_consumer.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-ROLE.healthcare_provider_organisation.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-ROLE.individual_provider.v0.adl DEMOGRAPHIC

openEHR-DEMOGRAPHIC-ROLE.third_party_payer.v0.adl DEMOGRAPHIC

openEHR-EHR-ACTION.care_plan.v0.adl ACTION

openEHR-EHR-ACTION.health_education.v1.adl ACTION

openEHR-EHR-ACTION.imaging_exam.v0.adl ACTION

openEHR-EHR-ACTION.informed_consent.v0.adl ACTION

openEHR-EHR-ACTION.medication.v1.adl ACTION

openEHR-EHR-ACTION.procedure.v1.adl ACTION

openEHR-EHR-ACTION.review.v0.adl ACTION

openEHR-EHR-ACTION.screening.v0.adl ACTION

openEHR-EHR-ACTION.service.v0.adl ACTION

openEHR-EHR-ACTION.transfusion.v0.adl ACTION

openEHR-EHR-ADMIN_ENTRY.arrival.v0.adl ADMIN_ENTRY

openEHR-EHR-ADMIN_ENTRY.episode_institution.v0.adl ADMIN_ENTRY

openEHR-EHR-ADMIN_ENTRY.legal_constraint.v0.adl ADMIN_ENTRY

openEHR-EHR-ADMIN_ENTRY.transfer_of_care.v0.adl ADMIN_ENTRY

openEHR-EHR-ADMIN_ENTRY.translation_requirements.v1.adl ADMIN_ENTRY

openEHR-EHR-ADMIN_ENTRY.travel_event.v0.adl ADMIN_ENTRY

openEHR-EHR-ADMIN_ENTRY.triage.v0.adl ADMIN_ENTRY

openEHR-EHR-EVALUATION.absence.v2.adl EVALUATION

openEHR-EHR-EVALUATION.advance_care_directive.v1.adl EVALUATION

Continued on the next page

73

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-EVALUATION.advance_intervention_decisions.v1.adl EVALUATION

openEHR-EHR-EVALUATION.adverse_reaction_risk.v1.adl EVALUATION

openEHR-EHR-EVALUATION.alcohol_consumption_summary.v1.adl EVALUATION

openEHR-EHR-EVALUATION.art_cycle_summary.v0.adl EVALUATION

openEHR-EHR-EVALUATION.biospecimen_summary-embryo.v0.adl EVALUATION

openEHR-EHR-EVALUATION.biospecimen_summary-oocyte.v0.adl EVALUATION

openEHR-EHR-EVALUATION.biospecimen_summary-semen.v0.adl EVALUATION

openEHR-EHR-EVALUATION.biospecimen_summary.v0.adl EVALUATION

openEHR-EHR-EVALUATION.cause_of_death.v0.adl EVALUATION

openEHR-EHR-EVALUATION.clinical_synopsis.v1.adl EVALUATION

openEHR-EHR-EVALUATION.communication_capability.v1.adl EVALUATION

openEHR-EHR-EVALUATION.consumer_note.v0.adl EVALUATION

openEHR-EHR-EVALUATION.container.v0.adl EVALUATION

openEHR-EHR-EVALUATION.contraceptive_summary.v1.adl EVALUATION

openEHR-EHR-EVALUATION.contraindication.v1.adl EVALUATION

openEHR-EHR-EVALUATION.death_details.v0.adl EVALUATION

openEHR-EHR-EVALUATION.device_summary.v0.adl EVALUATION

openEHR-EHR-EVALUATION.differential_diagnoses.v1.adl EVALUATION

openEHR-EHR-EVALUATION.education_summary.v1.adl EVALUATION

openEHR-EHR-EVALUATION.estimated_date_delivery.v0.adl EVALUATION

openEHR-EHR-EVALUATION.ethnicity.v0.adl EVALUATION

openEHR-EHR-EVALUATION.exclusion_global.v1.adl EVALUATION

openEHR-EHR-EVALUATION.exclusion_specific.v1.adl EVALUATION

openEHR-EHR-EVALUATION.exposure.v0.adl EVALUATION

openEHR-EHR-EVALUATION.family_history.v2.adl EVALUATION

openEHR-EHR-EVALUATION.financial_summary.v1.adl EVALUATION

openEHR-EHR-EVALUATION.food_nutrition_summary.v0.adl EVALUATION

openEHR-EHR-EVALUATION.gambling_summary.v0.adl EVALUATION

openEHR-EHR-EVALUATION.gender.v1.adl EVALUATION

Continued on the next page

74

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-EVALUATION.goal.v1.adl EVALUATION

openEHR-EHR-EVALUATION.health_risk.v1.adl EVALUATION

openEHR-EHR-EVALUATION.housing_summary.v1.adl EVALUATION

openEHR-EHR-EVALUATION.immunisation_summary.v0.adl EVALUATION

openEHR-EHR-EVALUATION.infant_feeding.v0.adl EVALUATION

openEHR-EHR-EVALUATION.infectious_disease_summary.v0.adl EVALUATION

openEHR-EHR-EVALUATION.infectious_exposure.v0.adl EVALUATION

openEHR-EHR-EVALUATION.last_menstrual_period.v1.adl EVALUATION

openEHR-EHR-EVALUATION.living_arrangement.v0.adl EVALUATION

openEHR-EHR-EVALUATION.medication_summary.v0.adl EVALUATION

openEHR-EHR-EVALUATION.menstruation_summary.v1.adl EVALUATION

openEHR-EHR-EVALUATION.obstetric_summary.v1.adl EVALUATION

openEHR-EHR-EVALUATION.occupation_summary.v1.adl EVALUATION

openEHR-EHR-EVALUATION.physical_activity_summary.v0.adl EVALUATION

openEHR-EHR-EVALUATION.physical_characteristics.v0.adl EVALUATION

openEHR-EHR-EVALUATION.precaution.v1.adl EVALUATION

openEHR-EHR-EVALUATION.pregnancy_summary.v0.adl EVALUATION

openEHR-EHR-EVALUATION.problem_diagnosis.v1.adl EVALUATION

openEHR-EHR-EVALUATION.reason_for_encounter.v1.adl EVALUATION

openEHR-EHR-EVALUATION.recommendation.v2.adl EVALUATION

openEHR-EHR-EVALUATION.sexual_health_summary.v0.adl EVALUATION

openEHR-EHR-EVALUATION.smokeless_tobacco_summary.v1.adl EVALUATION

openEHR-EHR-EVALUATION.social_summary.v1.adl EVALUATION

openEHR-EHR-EVALUATION.source.v0.adl EVALUATION

openEHR-EHR-EVALUATION.substance_use_summary.v0.adl EVALUATION

openEHR-EHR-EVALUATION.support_network.v0.adl EVALUATION

openEHR-EHR-EVALUATION.tobacco_smoking_summary.v1.adl EVALUATION

openEHR-EHR-EVALUATION.travel_summary.v0.adl EVALUATION

openEHR-EHR-INSTRUCTION.care_plan_request.v0.adl INSTRUCTION

Continued on the next page

75

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-INSTRUCTION.health_education_request.v0.adl INSTRUCTION

openEHR-EHR-INSTRUCTION.informed_consent_request.v0.adl INSTRUCTION

openEHR-EHR-INSTRUCTION.medication_order.v3.adl INSTRUCTION

openEHR-EHR-INSTRUCTION.notification.v0.adl INSTRUCTION

openEHR-EHR-INSTRUCTION.service_request.v1.adl INSTRUCTION

openEHR-EHR-INSTRUCTION.supplemental_oxygen_order.v0.adl INSTRUCTION

openEHR-EHR-INSTRUCTION.transfusion_order.v0.adl INSTRUCTION

openEHR-EHR-OBSERVATION.abbey_pain_scale.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.abc_score_massive_transfusion.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.abc_stroke_risk_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.abcd2_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.acoustic_reflex_result.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.acvpu.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.adl.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.adverse_reaction_monitoring.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.affected_body_surface_area-burn.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.affected_body_surface_area.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.age.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.air_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.alcohol_audit.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.alcohol_intake.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.aldrete_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.alsfrs_r.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.alvarado_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.apgar.v2.adl OBSERVATION

openEHR-EHR-OBSERVATION.asa_status.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.atria_bleeding_risk.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.atria_stroke_risk.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.audiogram_result.v0.adl OBSERVATION

Continued on the next page

76

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-OBSERVATION.audiology_speech_test_result.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.auditory_brainstem_response_result.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.avpu.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.behavioural_observation_audiometry_result.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.bishop_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.blood_pressure.v2.adl OBSERVATION

openEHR-EHR-OBSERVATION.body_composition.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.body_mass_index.v2.adl OBSERVATION

openEHR-EHR-OBSERVATION.body_segment_area.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.body_segment_circumference.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.body_segment_length.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.body_surface_area.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.body_temperature.v2.adl OBSERVATION

openEHR-EHR-OBSERVATION.body_weight.v2.adl OBSERVATION

openEHR-EHR-OBSERVATION.braden_scale.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.braden_scale_q.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.bristol_stool_scale.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.bvc.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.cage.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.capillary_refill.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.caprini_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.ccs_angina_status.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.cgas.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.chadsvas_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.cheop_scale.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.chest_circumference.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.child_growth.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.child_pugh_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.clinical_frailty_scale.v1.adl OBSERVATION

Continued on the next page

77

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-OBSERVATION.clinical_frailty_scale2.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.comfort_behaviour_scale.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.condition_screening.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.conference.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.container.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.cormack_lehane.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.cow_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.crb_65.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.critical_pain_observation_tool.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.crusade_bleeding.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.curb_65.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.das28-CRP.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.das28.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.dash_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.demo.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.device_screening.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.diabetic_wound_wagner.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.downton_fall_risk_index.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.easi_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.ecg_result.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.ecog.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.edinburgh_pnd_scale.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.embryo_assessment.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.epic_cp.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.esas_r.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.estimated_glomerular_filtration_rate.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.exam.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.exclusion_pregnancy.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.exposure_screening.v0.adl OBSERVATION

Continued on the next page

78

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-OBSERVATION.fact_g-Hep.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.fact_g.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.faecal_output.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.fagerstrom.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.family_history_screening_questionnaire.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.fetal_growth.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.fetal_heart-monitoring.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.fetal_heart.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.fetal_movement.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.fitzpatrick_skin_type.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.fluid_balance.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.fluid_input.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.fluid_output-blood.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.fluid_output.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.food_item.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.four_at.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.four_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.fundoscopic_examination.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.gad_7_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.gestation.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.glasgow_coma_scale.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.glasgow_coma_scale_paediatric.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.gpaq.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.grace_admission.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.grace_discharge.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.growth_velocity.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.hannallah_pain_scale.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.harris_hip_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.has_bled.v0.adl OBSERVATION

Continued on the next page

79

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-OBSERVATION.head_circumference.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.hearing_screening_result.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.heart_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.height.v2.adl OBSERVATION

openEHR-EHR-OBSERVATION.hip_circumference.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.hirsutism_scales.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.honos.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.hscore.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.humpty_dumpty_falls_risk_assessment_tool.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.iga_eczema_treat.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.imaging_exam_result.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.infant_feeding.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.intermacs_profile.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.intraocular_pressure.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.intravascular_pressure.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.ipss.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.iss-revised.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.iss.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.issue_screening.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.jugular_venous_pressure.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.kads.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.karnofsky_performance_status_scale.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.laboratory_test_result.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.leg_length_discrepancy.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.malinas_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.management_screening.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.mantoux.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.mayo_score.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.medication_screening.v0.adl OBSERVATION

Continued on the next page

80

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-OBSERVATION.medication_statement.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.menstrual_diary.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.menstruation.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.modified_aldrete_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.modified_barthel_index.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.modified_rankin_scale.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.msfc_score.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.mskcc_bowel_function_instrument.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.mskcc_motzer.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.mst.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.murray_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.must.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.neonatal_skin_risk_assessment.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.news2.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.news_uk_rcp.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.nine_hole_peg_test.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.nutrition_intake.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.nyha_heart_failure.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.oucher_pain_scale.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.paced_auditory_serial_addition_test.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.padss.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.pasi_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.pefr_result.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.penetration_aspiration_scale.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.pews.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.pf_ratio.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.pga_eczema_treat.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.phfrat1.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.phq_9.v0.adl OBSERVATION

Continued on the next page

81

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-OBSERVATION.physical_activity.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.poem_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.pregnancy_status.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.pregnancy_test.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.procedure_screening.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.progress_note.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.promis.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.pulse.v2.adl OBSERVATION

openEHR-EHR-OBSERVATION.pulse_deficit.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.pulse_oximetry.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.qsofa_score.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.reach_b.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.refraction.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.respiration.v2.adl OBSERVATION

openEHR-EHR-OBSERVATION.richmond_agitation_sedation_scale.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.rinne_weber_result.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.sara_scale.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.scoff_questionnaire.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.scorad_index.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.six_cit.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.skeletal_age.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.soas_r.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.soas_re.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.social_context_screening.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.sofa_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.speech.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.spirometry_result.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.story.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.stroke_scale_neurological_assessment.v0.adl OBSERVATION

Continued on the next page

82

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-OBSERVATION.substance_use.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.substance_use_screening.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.symptom_sign_screening.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.tanner.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.telecommunication.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.temperature.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.testicular_volume.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.third_party_observation.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.timed_25_foot_walk.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.travel_screening.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.trunk_impairment_scale.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.tympanogram_226hz.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.tympanogram_hf.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.urinalysis.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.uterine_contractions.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.visual_acuity.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.visual_field_measurement.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.waist_circumference.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.waist_height_ratio.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.waist_hip_ratio.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.waterlow_score.v0.adl OBSERVATION

openEHR-EHR-OBSERVATION.ygtss_revised.v1.adl OBSERVATION

openEHR-EHR-OBSERVATION.ymrs.v0.adl OBSERVATION

openEHR-EHR-SECTION.adhoc.v1.adl SECTION

openEHR-EHR-SECTION.adverse_reaction_list.v0.adl SECTION

openEHR-EHR-SECTION.conclusion.v0.adl SECTION

openEHR-EHR-SECTION.diagnostic_reports.v0.adl SECTION

openEHR-EHR-SECTION.family_history.v0.adl SECTION

openEHR-EHR-SECTION.immunisation_list.v0.adl SECTION

Continued on the next page

83

Table 4 – Continued from previous page

File Name Class Type

openEHR-EHR-SECTION.lifestyle_risk_factors.v0.adl SECTION

openEHR-EHR-SECTION.medication_list.v0.adl SECTION

openEHR-EHR-SECTION.problem_list.v0.adl SECTION

openEHR-EHR-SECTION.referral_details.v0.adl SECTION

openEHR-EHR-SECTION.soap.v0.adl SECTION

openEHR-EHR-SECTION.vital_signs.v0.adl SECTION

	I Introductory material
	Introduction
	Context and Scope
	Motivation
	Objectives
	Dissertation Organization

	Research methodologies
	Design Science Research
	Waterfall Development Methodology

	State of the art
	Hospital information systems
	Interoperability
	Healthcare data standards
	HL7
	DICOM
	SNOMED
	openEHR

	openEHR Architecture
	openEHR Reference model
	Classes
	Datatypes and Datastructures
	Inheritance
	Clinical Data sets vs openEHR solutions

	Archetype Definition Language
	Data ADL
	Constraint ADL

	Web Applications development
	REST API
	Front-End
	Back-end
	JavaScript Object Notation

	Materials and Methods
	Javascript
	React
	Bootstrap
	NextJS
	Github API

	II Core of the Dissertation
	ADL to JSON conversion
	Archetype Header
	Concept and Specialize
	Language
	Description
	Ontology
	Definition
	Include Archetype
	Property Matches

	Web Application Development
	Conclusions and future work
	Conclusions
	Prospect for future work

	III Appendices
	Support work
	Listings

		2023-05-25T23:38:18+0100
	Miguel André Rocha Dias

