
University of Minho
School of Engineering

Tomás Rodrigues Alves de Sousa

Classification and Clustering
using Swap Test as distance metric

july 2023

University of Minho
School of Engineering

Tomás Rodrigues Alves de Sousa

Classification and Clustering
using Swap Test as distance metric

Masters Dissertation
Integrated Master’s in Physics Engineering

Dissertation supervised by
Luís Paulo Santos
André Sequeira

july 2023

Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

License granted to users of this work:

CC BY

https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

Acknowledgements

I want to convey my heartfelt appreciation to the following people, without whom this thesis would not have

been possible:

First and foremost, I want to thank my peers and girlfriend for their unwavering encouragement and

support throughout the process. Your faith in me and willingness to listen to me talk about my studies

kept me going even when things got tough.

I am also grateful to Luis Paulo Santos, my professor, for accepting my thesis proposal and offering

invaluable advice and feedback throughout the writing process. Your knowledge and views were valuable

in assisting me in refining my ideas and developing a more substantial thesis.

Lastly, I’d like to thank my mentor, Andre Sequeira. Your unwavering support and desire to go above

and beyond to assist me in completing this thesis have been truly unique. I can’t convey how much your

advice and mentoring have meant to me.

Thank you so much for your motivation, support, and advice. This thesis is as much yours as mine,

and I am thankful for everything you have done to assist me in finishing it.

ii

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, Braga, july 2023

Tomás Rodrigues Alves de Sousa

iii

Abstract

This master’s thesis explores the advantages of using a quantum-based distance metric in a Machine

Learning (ML) algorithm. It compares the performance of such a hybrid algorithm with an entirely classical

algorithm. QuantumMachine Learning (QML) has been growing in recent years. Some studies suggest that

QML may even provide a polynomial speed-up for data categorization compared to traditional ML. However,

analyzing the benefits is not straightforward, as QML algorithms often rely on abstract, oracle (black-box)

models that frequently rely on Quantum Random Access Memory (QRAM). Furthermore, loading classical

data onto quantum registers limits the applicability of QML, imposing a bottleneck. We used the Swap

Test to measure the overlap between two quantum states to achieve our objective. Then we replaced the

classical distance metric in a distance-based machine learning algorithm with the quantum-based distance

metric. Our research showed that the Swap Test could be used as a distance metric in classical algorithms,

despite the fact that the results obtained are not better than the classical metrics. In the final discussion,

we present some ways that can improve the obtained results.

Keywords Quantum Machine Learning, Machine Learning, Classification, Clustering, Swap Test, dis-

tance metric

iv

Resumo

Esta dissertação de mestrado visa explorar as potenciais vantagens de usar uma métrica de distância

baseada em quantum num algoritmo de Machine Learning (ML) e comparar o desempenho de um algo-

ritmo híbrido com o de um algoritmo totalmente clássico. Quantum Machine Learning (QML) tem vindo

a crescer nos últimos anos. Alguns estudos sugerem que o QML pode avir a contribuir para uma aceler-

ação polinomial na categorização de dados em comparação com o ML tradicional Landman [2021]. No

entanto, analisar os benefícios não é direto, pois os algoritmos QML geralmente dependem de modelos

abstratos baseados em oráculos (caixa preta) que frequentemente dependem de Quantum Random Ac-

cess Memory (QRAM). A aplicabilidade pode ser limitada devido á dificuldade imposta em carregar dados

clássicos para registos quânticos. Para atingir o nosso objetivo, usamos o Swap Test para medir a so-

breposição entre dois estados quânticos e, em seguida, substituímos a métrica de distância clássica num

algoritmo de Machine Learning por uma métrica de distância baseada em quantum. A nossa pesquisa

mostrou que o Swap Test pode ser usado como métrica de distância, em algoritmos clássicos, apesar de

os resultados obtidos não serem melhores que as métricas clássicas. Na discussão final, apresentamos

algumas formas que podem melhorar os resultados obtidos.

Palavras-chave Quantum Machine Learning, Machine Learning, Classification, Clustering, Swap Test,

metrica de distancia

v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

2 Machine Learning 4

2.1 Introduction . 4

2.2 Types of Machine Learning . 5

2.3 Key Machine Learning Concepts . 7

2.3.1 Data . 7

2.3.2 Normalization . 10

2.3.3 Standardization . 10

2.3.4 Underfitting and Overfitting . 11

2.3.5 Distance and Similarity measures . 12

2.3.6 Dimensionality Reduction . 14

2.4 Clustering Algorithms . 15

2.4.1 Types of Clustering . 16

2.4.2 KMeans Algorithm . 19

2.4.3 Evaluation metrics . 22

2.5 Summary . 24

3 Quantum Machine Learning 26

3.1 Quantum Computing Key Concepts . 28

3.1.1 Fundamental Principles of Quantum Mechanics 28

3.1.2 Quantum bit . 29

3.1.3 Quantum Gates . 30

3.2 Data Encoding . 32

vi

3.3 Measuring the overlap between quantum states . 35

3.3.1 SWAP Test . 35

3.3.2 Inversion Test . 38

3.3.3 Functions after the Overlap . 39

3.4 Quantum-Clustering . 41

4 Experimentation of Swap Test as a distance metric 43

4.1 Classification . 44

4.2 Clustering . 47

5 Conclusions 49

vii

List of Figures

1 Examples of underfitting (linear model), good fit (quadratic model), and overfitting the

data (polynomial of degree 15). 11

2 The scattered points represent a multivariable Gaussian distribution, and the vectors that

are displayed are the eigenvectors of the covariance matrix, but they have been scaled

by the square root of the respective eigenvalue and shifted to position their tails at the

mean . 14

3 clustering on digits dataset. The withe cross represents the centroids 15

4 Centroid-based clustering . 17

5 Density-based clustering . 17

6 Distribution-based Clustering . 18

7 Hierarchical Clustering . 18

8 QML development timeline . 27

9 Four Approaches to Combine Quantum Computing and Machine Learning 27

10 Qubit |ψ〉 represented in the Bloch Sphere. 30

11 Swap Test for two qubits . 37

12 Inversion Test for two quibits . 38

13 (A) two 1D non-flat manifolds (circles) which are non-convex, (B) two 1D non-flat man-

ifolds (arcs) which are non-convex, (C) three 1D flat manifolds (segments) which are

convex, (D) three 0D flat manifolds (centers as points) which are convex. 47

14 A - Euclidean Distance, B - Cosine Distance, C - SWAP Test (Rotation Encoding), D -

SWAP Test (Amplitude Encoding) . 48

viii

List of Tables

1 Qubit Complexity analysis . 34

2 Overview of data-encoding strategies and their functions (Schuld, 2021) 39

3 Fowlkes-Mallows and Rand Index evaluation metrics obtained for Euclidean, Cosine, and

Swap test as distance metrics in the iris dataset (Fisher [1988]) 45

4 Fowlkes-Mallows and Rand Index evaluation metrics obtained for Euclidean, Cosine, and

Swap test as distance metrics in the dry beans dataset (de Wolf [2019]) 46

ix

x

Chapter 1

Introduction

1.1 Context

Computation is an integral part of our daily lives, with computers being the primary tool for processing large

amounts of information. However, as we continue to push the boundaries of computational power, the

limitations of traditional computing methods are becoming increasingly apparent. For example, traditional

computing methods struggle to handle large amounts of data, like big data, and they also have difficulty

with complex problems like simulating quantum systems (Lloyd [1996]), breaking encryption (Aaronson

[2017]), and modeling protein folding (Baker [2003]). With the increasing demand for more efficient and

powerful computing systems, researchers have been exploring new approaches to computation, and one

promising area of research is quantum computing.

Quantum computing relies on the principles of quantum mechanics, which govern the behavior of

matter and energy at the atomic and subatomic levels. Unlike classical computing, which uses bits to

represent data, quantum computing uses quantum bits or qubits. Qubits can exist in multiple states si-

multaneously, known as superposition. They can also become entangled, which allows for the creation

of complex interactions between multiple qubits. These properties of quantum mechanics allow quantum

computers to perform certain types of computations much faster than classical computers. The promise

of computational advantage resulted in rapid growth in recent years for this field of research, with many

scientists and engineers working to develop new quantum algorithms to use on real-world quantum com-

puters.

A field that could potentially gain from computational speed up is Machine Learning, and therefore

Quantum Machine Learning (QML) has become an emerging field. QML seeks to leverage the power

of quantum computing to improve the performance of machine learning algorithms. Some algorithms

use quantum-based techniques such as quantum entanglement, quantum superposition, and quantum

interference to perform operations on data in a way that is impossible with classical algorithms. However,

1

the analysis of the benefits of QML is not straightforward, as QML algorithms often rely on abstract, oracle

(black-box) models that frequently rely on Quantum Random Access Memory (QRAM), and the applicability

may suffer due to the bottleneck imposed by loading classical data onto quantum registers, as reported

in studies such as (Landman [2021]).

This thesis explores how we can incorporate quantum algorithms, such as the Swap test, in classical

machine learning by replacing some components of classical algorithms. These may not convey immediate

improvements but showcases the possibility of incorporating quantum components in classical algorithms.

We first provide an overview of the fundamental concepts of classical machine learning and then delve

into how quantum computing can perform tasks in classical machine learning algorithms. Specifically, we

introduce quantum algorithms for distance estimation and techniques for encoding classical information

as quantum states. These can represent feature vectors in the quantum realm. Then we use the swap

test to measure the overlap between two quantum states as a quantum-based distance metric, which we

use to replace a classical distance metric on a classical ML algorithm. This approach, which we call the

hybrid machine learning routine, is helpful in testing the performance of a quantum-based distance metric

with real-world classical data.

Our research results determine if the swap test can be used as a distance metric in distance-based

classical machine learning algorithms, enhancing the already available distance metrics.

1.2 Motivation

This thesis explores the potential advantages of using quantum computing in machine learning. The rapid

advancements in quantum computing have led researchers to investigate new ways to apply quantum

algorithms to real-world problems and machine learning is a rapidly growing field that has the potential to

revolutionize many aspects of society.

One of the main motivations of this thesis is to investigate the use of the swap test as a quantum-

based distance metric. The swap test is a quantum algorithm that can measure the overlap between

quantum states. In this thesis, we will explore using the swap test as a quantum-based distance metric

in a machine learning algorithm, specifically the K-means algorithm, and compare its performance to

a classical distance metric. The choice of the K-means algorithm was motivated by its simplicity and

the fact that it is a distance-measure-based algorithm. Furthermore, this thesis aims to showcase the

implementation of a hybrid quantum machine learning algorithm. By combining quantum and classical

computing, we aim to demonstrate the potential benefits of using quantum computing in machine learning

2

and provide a practical example of how quantum computing can incorporate machine learning problems.

This thesis also aims to contribute to the growing body of research in quantum machine learning.

By understanding the foundations and principles of classical machine learning, we can better appre-

ciate the potential benefits and limitations of using quantum computing in this field. Therefore, this thesis

will also focus on evaluating the performance of the hybrid quantum machine learning algorithm using

real-world data to compare with classical machine learning algorithms and demonstrate the use of the

swap test as an alternative distance metric to current machine learning algorithms such as the K-means.

3

Chapter 2

Machine Learning

2.1 Introduction

Machine Learning (ML) is often associated with robots and artificial intelligence, but it is much more than

that. It is a powerful tool with many applications, such as computer vision, pattern recognition, forecasting,

anomaly detection, and text-to-speech.

A straightforward example of ML is a spam filter. A spam filter is a program that uses ML algorithms

to identify and filter out unwanted emails based on specific criteria. For instance, a simple spam filter can

classify an email as ”spam” if it contains the words ”winning” and ”prize” and ”not spam” otherwise. Of

course, modern spam filters are much more complex than this, but the basic principle remains the same.

ML is changing our world, from business to self-driving cars. It pushes humanity to the next level,

and the potential for future applications is limitless. Despite this, many people still have misconceptions

about ML. This section provides a clear and straightforward introduction to the fundamentals of ML to help

readers better understand this field.

What Is Machine Learning

Machine Learning (ML) is a branch of computer science that develops algorithms and models that can

learn from data and make predictions or decisions without being explicitly programmed. It sits on the idea

that a computer program can improve its performance on a given task, T, by learning from experience, E,

as measured by a performance measure P, (Mitchell [1997]) .

One of the critical aspects of ML is the use of data. Most ML models require large amounts of data

to perform a task, compare it with the actual result, and then improve over time based on error, which

means that good quality data that is well-understood and cleaned is a must before being fed into the ML

process.

To ”make” a machine learn, we must understand various concepts such as supervised and unsuper-

vised ML, models, cost functions, and data normalization and generalization. The choice of algorithms

4

depends on the type of data and task we are trying to automate.

A classic example of ML is a machine learning algorithm used to play a game of checkers. In this case,

the experience E is playing many games of checkers, task T is playing checkers with many players, and

the performance measure P is the probability that the algorithm will win in the game. Board games have

been groundbreaking for ML because they can give precise details about the environment to the model so

it can learn from experience. Many are associated with high intelligence, like checkers, chess, and Go.

It is important to note that ML is a subset of Artificial Intelligence (AI) and differs from AI. AI is a

general concept that creates human-like critical thinking capabilities and reasoning skills for machines.

At the same time, ML is specific and aims to create machines that can learn autonomously from data

and make predictions or take decisions on a specific problem using pattern recognition and predictions in

unknown situations.

Machine Learning has been a growing field in all industries and has changed how we approach complex

problems. However, it has some limitations, one being the computational power and time required to

perform some tasks.

2.2 Types of Machine Learning

Machine learning highly depends on data Tom Mitchell 2.1. This sub-field of computer science aims to

build algorithms based on examples of some phenomenon (E), used to teach algorithms to learn from Data

and interactions. In this field of computer science, it is possible to find four main categories of learning

- supervised, semi-supervised, unsupervised, and reinforcement learning. We discuss each learning type

in the following sections.

Supervised Learning

In supervised learning, we have a data set that maps Xi −→ Y i. Here X is the collection of all the

n-dimensional feature vectors. Each feature vector is a vector in which the dimension is j = {1, . . . , N}

containing a value in each feature j that describes the data point. In the same way, Y is the collection

of all the labels that represent the set. These labels can be real numbers data structures like vectors

and graphs or simply a class (binary/multi). The primary aim of a supervised algorithm is to induce a

relationship (linear or nonlinear) between the inputs and outputs and predict the output for yet unobserved

input values. For example, we want to be able to predict the output Y i for any input Xi.

An excellent example of a supervised task is classifying a binary class set of emails as spam or not.

5

The classifier then labels unseen emails as either spam or not spam. A loss function quantifies the quality

of the prediction made. The goal is to minimize this loss function f(Y ′(i), Y (i)), where Y ′i represents

the predicted class and Yi represents the actual value of the data point i.

There are some steps to consider to reach the end goal of supervised learning.

1. Data analysis and model Selection: We assume that the probability distribution belongs to a

family of functions parameterized by some vector θ. It can also be called inductive bias. We could

have two models representing the distribution functions of the data: generative and discriminative

models. In a generative model, the algorithm learns how to generate new samples from the data

distribution, while in discriminative models, the model learns how to identify newly generated data.

2. Learning: Given a training set, we optimize the learning parameters to minimize the loss function.

3. Inference: Here, the trained model is used to predict the output Yi’(Xi).

Supervised learning is vastly utilized in various subjects, such as object detection, semantic segmen-

tation, panoptic segmentation, keypoint detection, regression problems, and language modeling.

Unsupervised Learning

In Unsupervised learning, we have a data set of unlabeled data, meaning that we only have, X, all of

the n-dimensional feature vectors that compose the collection. The lack of Y, the labels is the main

difference between supervised and unsupervised learning. Unsupervised learning algorithms aim to extract

properties from all the feature vectors to transform the data into another feature vector or a value that solves

other problems, such as clustering, returning an id that represents the group.

These types of models can be used for:

1. Density estimation: Using only the data set, we directly estimate the probability distribution

p(X).

2. Clustering: Separate the data into various clusters based on their similarities and differences.

The notion of similarity depends on the case at hand, especially in the strategy used to define such

similarity.

3. Dimensionality Reduction: The idea behind dimensionality reduction is to represent the feature

vectorsXi that compose the data into a different vector space, either to visualize the data better or

to combine features that bring high correlations. The output of the model is, as expected, a feature

vector that has fewer features than the input Xi;

6

4. Generation of new data points: With the data set, we could generate new data points that

would follow the probability distribution, allowing us to replicate or forecast the data.

Like in supervised learning, the same steps take place in unsupervised learning.

Semi-Supervised Learning

With this model, the idea is to use a data set with labeled and unlabeled data points. We shall that

machine learning is highly dependent on the volume of data. More generally means a generalization of

the model. So instead of adding more uncertainty to the problem, we add more information, meaning a

better probability distribution.

Reinforcement learning

These machine learning models differ from the previous ones as a result of the shape of the data set,

previously we had a data set mapped a Xi −→ Yi in the supervised learning or an unlabeled data set

composed only by feature vectors X . Now we have a model that stays in a particular environment and

can perceive that environment’s state as a vector of features, meaning that during the learning process,

there is no correct answer, but rather a sub-optimal answer for those features at that time. So the end goal

of the model is to produce a sequence of sub-optimal decisions that better suit the optimizer. Typically

the optimization process resorts to the use of a reward system. The reward system is a feedback loop

that tells the algorithm if the decisions helped or harmed the end goal. The environment with which the

algorithm interacts has a Markov Decision Process. Some application areas for this algorithm are game

playing, robotics, resource management, and logistics.

2.3 Key Machine Learning Concepts

This section aims to set the mark for some of the most important concepts regarding machine learning.

Of course, it is difficult to mention all since Machine Learning is a vast field of study, and every Machine

Leaning problem has its learning curve. Nonetheless, the concepts in this section aim to address the

problem we want to tackle throughout the dissertation.

2.3.1 Data

Data is essential to every machine learning algorithm; the more data we can give an ML model, the better

it can generalize. As mentioned above, if we are talking about supervised or unsupervised learning, ML

7

data is generally represented in feature vectors. There are different types of data:

• Numerical data refers to any data points with a numerical value. Numerical data might be

continuous or discrete. While discrete data have a specific value, continuous data can have any

value within a certain range. For instance, the number of doors on cars will be two, four, or five,

while the house cost will be continuous and might range from 100K to 500K. Numerical data can

be of the int or float data types.

• Categorical data When we talk about attributes, commonly, they are represented through cate-

gorical data, for instance, the color of a car or the year it was. It may also take the form of a number

so long as the number designates a class. For instance, 1 may represent a gas vehicle, and 0 for

a diesel vehicle. Some ML algorithms, such as those that derive from decision Trees (Günlük et al.

[2021]), can handle categorical data without any data engineering.

• Time Series consists of numbers gathered at regular intervals over a predetermined period. Like

in the stock market, knowing a stock’s price is crucial ahead of time. The type of data has a

temporal feature associated with it so that it is simple to track the timestamp of the data. There

are specific ML algorithms that deal with time-series data, such as ARIMA, SARIMA, ARIMAX, and

others (Parmezan et al. [2019]).

• Text data Literals are the only thing in text data. As the model is mathematical and requires data

to inform numbers, the first step in managing data is to convert them into numbers. We might

utilize functions as a collection of word formulations to do this. The field of ML associated with text

data is normally NLP, and there is a particular way to deal with this type of data, often requiring

neural-network algorithms, such as BERT algoritms and LSTM.

8

Model Parameters and Hyper-parameters

Hyper-parameterA hyper-parameter is an attribute of a learning algorithm that typically, but not always,

has a numerical value. The setting of those values impacts the algorithm’s performance. The method

does not learn hyper-parameters from data. Instead, the programmer must set them before running the

algorithm.

Parameter The variables known as parameters are what the learning process uses to define the

model. The learning algorithm alters parameters directly in response to training data. Finding parameter

values that make the improve performace is the aim of learning.

Model-Based Learning and Instance-Based Learning

Model-based techniques for supervised learning are the most common. SVM is one such algorithm. A

model with parameters learned from the training data uses model-based learning algorithms using the

training data. Algorithms for instance-based learning employ the entire dataset as the model. The k-

Nearest Neighbors instance-based algorithm is often used in practice (KNN). For example, in classification,

the kNN algorithm looks at the input example’s immediate vicinity in the space of feature vectors to predict

a label for it. It then outputs the label that it frequently encounters in this immediate vicinity.

The difference between Classification and Regression

Classification The challenge of classification is to label an unlabeled example automatically. One well-

known application of classification is spam detection. The classification problem is resolved in machine

learning by a classification learning algorithm that takes a set of labeled examples as inputs and creates a

model that can take an unlabeled example as input and either directly output a label or output a number

that the programmer can use to deduce the label. Probability is an illustration of such a number. A label

in a classification problem belongs to one of a limited number of classes. Binary classification is used

when there are only two classes (e.g., ”approved”/”not approved,” ”spam”/”not spam,” etc.). Multi-class

classification is a classification problem involving three or more classes. While some learning algorithms

are, by definition, binary classification methods, others naturally support more than two classes. Some

techniques allow a binary classification learning algorithm to become a multi-class method. Clustering

algorithms can also solve classification problems, since clustering algorithms group similar instances,

these groups can be used as classes in a classification problem.

9

Regression Regression is a problem of predicting a real-valued label from an unlabeled sample (often

referred to as a target). A well-known regression example is estimating home value based on attributes like

square footage, the number of bedrooms, location, and other factors or predicting the stock market value

based on previous events. A regression learning technique uses a set of labeled instances as inputs to

create a model that can accept an unlabeled example as input and output a target to solve the regression

problem.

2.3.2 Normalization

The process of normalization involves transforming a numerical feature’s actual range of values into a

standard range of values, often in the range [-1, 1] or [0, 1]. Let us say, for instance, that a specific

feature’s natural range is 100 to 1200. One can normalize the values into the range [0, 1] by taking 100

out of each feature value and dividing the result by 1100. The normalization formula is typically expressed

as follows:

x =
xi −mini

maxi −mini
(2.1)

where mini and maxi are the minimum and maximum values of all the feature vectors in the dataset.

Normalizing data is not always a must. But, it may result in better performances, especially when talking

about regression algorithms, and we have a very small number and a very large number in the same set.

2.3.3 Standardization

The process of standardization (also known as z-score normalization) involves rescaling the feature values

to give them the characteristics of a standard normal distribution with µ = 0 and σ = 1, where µ is the

mean (the average value of the feature, averaged over all examples in the dataset), and σ is the standard

deviation from the mean. Z-scores are calculated as follows:

x̂ =
xi − µi

σi
(2.2)

When to apply standardization and when to employ normalization needs to be clarified. Usually, testing

both and determining which performs better for the task is usually the best procedure. For example,

unsupervised learning algorithms benefit more from standardization than from normalization, and when

having a high range of values since it shrinks the gap between those values. Standardization can also

outperform normalization when the dataset has a distribution close to the normal distribution. In other

cases, normalization is preferable.

10

2.3.4 Underfitting and Overfitting

When discussing machine learning results, it is inevitable to talk about bias. Bias is, by definition, a ”de-

viation of the expected value of a statistical estimate from the quantity it estimates.” In machine learning,

a model has low bias if it predicts the labels on the training set well. On the other hand, if the model fails

to predict under the training set, we say that it has a high bias or that the model underfits. Bias can

also refer to a value that systematically causes the algorithm to have bad or excellent results. So the term

”underfitting” refers to the situation in which a model cannot accurately forecast the labels of the data on

which it was trained. Underfitting can be caused by several factors, the most prominent of which are as

follows:

• The model is too simple for the data

• The features available are not representative enough

Figure 1: Examples of underfitting (linear model), good fit (quadratic model), and overfitting the data

(polynomial of degree 15).

Another issue a model could have is one in which it overfits the data. The model with an overfitting

problem makes accurate predictions based on the training data, but it performs poorly when applied to at

least one of the two holdout data sets. Several factors can cause overfitting, the most prominent of which

are the following:

• The model is far too complicated for the available information (for instance, an extremely tall deci-

sion tree or an extremely deep or wide neural network frequently overfits);

• There is an excessive number of features yet inadequate training examples.

11

2.3.5 Distance and Similarity measures

In machine learning, distance means a concrete way of describing what it means for data points of some

space to be close to or far away from each other. How we calculate distance can change dramatically

depending on our dimensional space. Nonetheless, the sense that distance represents the similarity

between data points remains.

Let us have a distance function between two vectors a and b, d(a, b) that defines the distance

between both vectors. For d to be a function of distance, it must follow the following properties (Deza and

Deza [2012]) :

• Non-negativity: The distance between x and y is always a value greater than or equal to zero.

d(a, b) ≥ 0

• Identity of indiscernible : The distance between a and b is equal to zero if and only if a is equal

to b.

d(a, b) = 0 ⇐⇒ a = b

• Symmetry: The distance between a and b is equal to the distance between b and a.

d(a, b) = d(b, a)

• Triangle inequality: Considering the presence of a third point d, the distance between a and b

is always less than or equal to the sum of the distance between a and d and the distance between

b and d.

d(a, b) ≤ d(a, d) + d(d, b)

When the distance is a range [0, 1], the similarity measure s(a, b) can be calculated as follows:

s(a, b) = 1− d(a, b)

Now let us state a few well-known distance metrics below, where ai represents the ith value of the

vector a, and the same goes for b.

12

• Minkowski distance measure: Also known as Lp norm, the Minkowski can be defined as:

Minkdistance(a, b) = p

√√√√
n∑

i=1

|ai − bi|p (2.3)

where p is a positive value. Depending on the value that is given to p, we can derive three more

distances:

1. Manhattan Distance When p = 1. Also known as the l1 norm or rectilinear distance, it

represents the sum of the absolute differences between the opposite values in the vector.

Mandistance(a, b) =
n∑

i=1

|ai − bi| (2.4)

2. Euclidean Distance When p = 2. Also known as the l2 norm (Wen et al. [2016]), the

Euclidean distance is an extension of the Pythagorean Theorem. Representing the root of the

sum of the square of differences between the opposite (Liberti et al. [2012]).

Eucldistance(a, b) =

√√√√
n∑

i=1

|ai − bi|2 (2.5)

The Euclidean distance is a case called Square Euclidean distance where the sum of

the squared differences is without taking the square root.

SquaredEucldistance =
n∑

i=1

(ai − bi)
2 (2.6)

• Inner product distance measures the inner product is some product of pairwise values from

vector a and b. This gives a similarity measure between the two vectors. Many well-known metrics

derive from this, such as:

1. Jacard Distance: This distance metric measures the dissimilarity between sample sets. It

complements the Jaccard similarity coefficient (Cesare and Xiang [2012]).

Jacdistance(a, b) =

∑n
i=1(ai − bi)2∑n

i=1 a
2
i +

∑n
i=1 b

2
i −

∑n
i=1 aibi

(2.7)

2. Cosine Distance Also called angular distance, the cosine distance derives from the cosine

similarity that measures the angle between 2 vectors:

Cosdistance(a, b) = 1−
∑n

i=1 aibi√∑n
i=1 a

2
i

√∑n
i=1 b

2
i

(2.8)

13

2.3.6 Dimensionality Reduction

Dimensionality reduction is a technique that aims to reduce the number of dimensions representing a

feature vector, a well-known algorithm for this is the Principal Component Analysis (PCA). First introduced

by Karl Pearson in 1901 (F.R.S.) as an analog of the principal axis theorem, the Principal Compo-

nent Analysis (PCA) is a technique vastly used in Machine Learning, especially when dealing with large

datasets, that contain a high number of dimensions/features since it allows for a dramatic dimensionality

reduction of the dataset.

Despite many formulations on calculating the PCA, the dimensionality reduction can be interpreted

as a sequence of p unit vectors of a set of points located in a real coordinate space. The ith vector in this

sequence represents the direction of a line that best fits the data while remaining orthogonal to the first

i− 1 vectors in the sequence.

Figure 2: The scattered points represent a multivariable Gaussian distribution, and the vectors that are

displayed are the eigenvectors of the covariance matrix, but they have been scaled by the square root of

the respective eigenvalue and shifted to position their tails at the mean

In this context, ”best-fitting line” refers to the line that achieves the goal of reducing the average

squared perpendicular distance between the points and the line as much as possible. These directions

make up an orthonormal basis, ensuring that the data’s many dimensions are not linearly connected. The

dimensionality reduction is achieved by using only the first few principal components to change the basis

to the initial vector.

14

2.4 Clustering Algorithms

Clustering is grouping similar objects based on specific characteristics or features. It is a fundamental

technique in machine learning, as it allows for discovering patterns and relationships within a dataset. One

typical example of a dataset used for clustering is the digits dataset, which contains images of handwritten

digits. Using a clustering algorithm, we can group similar images of digits based on their visual features.

Clustering algorithms can be applied for various end goals, such as data compression, anomaly detec-

tion, and feature selection. One of the most common applications of clustering algorithms is classification.

Clustering algorithms can create classes for a classification problem by grouping similar instances. This

approach is known as cluster-based classification, where clusters are the classes for the classification

task. Clustering can also be used as a preprocessing step for classification, where the clusters are used

to create a more informative feature representation of the data.

Figure 3: clustering on digits dataset. The withe cross represents the centroids

In this section, we will delve into the various clustering algorithms and their specific use cases and

discuss how they can be applied to classification problems. Understanding the different clustering algo-

rithms and their specific use cases can better identify and solve clustering problems in various fields. For

example, in computer vision, clustering can group similar images for image classification tasks. Clustering

can group similar documents for text classification tasks in natural language processing.

Figure 3 illustrates an example of clustering on the digits dataset. The white crosses represent the

centroids of each cluster. Here the clustering algorithm groups similar images together based on their

visual features. This can be useful for tasks such as image classification, where the clusters can be used

15

as classes for the classification task.

To begin grouping similar examples, one must first locate comparable examples. Then, determine the

degree of similarity between two or more instances by merging the feature data of the examples into a

metric referred to as a similarity measure. In the following sections, we will look into different types of

clustering and a centroid-based algorithm, the KMeans algorithm.

2.4.1 Types of Clustering

As the size of the dataset increases, the running time of many clustering algorithms becomes infeasible.

The computational complexity of these algorithms is often measured by the number of pairwise similarity

comparisons that need to be made between the instances in the dataset. For example, a naive implemen-

tation of the k-means algorithm has a time complexity ofO(n2), where n is the number of instances in the

dataset. This means that as the number of instances increases, the algorithm’s running time increases

at a rate of n2.

In contrast, some algorithms, such as the k-means algorithm, have a linear time complexity of O(n),

meaning they scale well with larger datasets.

In addition to the time complexity, it is also essential to consider the algorithm’s suitability for the

specific dataset characteristics. For example, some algorithms are better suited for datasets with many

features, while others are better for datasets with many instances. The data distribution can also play

a role in the choice of algorithm (Xu and Tian [2015]). For example, density-based algorithms are well

suited for non-linearly distributed data, while centroid-based algorithms are better for datasets with linearly

distributed data.

Centroid-based Clustering

Centroid-based Clustering groups the data in a way that is not hierarchical, as opposed to the hierarchi-

cal clustering method, which is explained further down. K-means is the centroid-based grouping technique

that sees the most widespread application. Algorithms based on the centroid are practical, although they

are susceptible to beginning conditions and outliers. The k-means clustering technique is the primary topic

of study in this class because it is powerful and very straightforward.

16

Figure 4: Centroid-based clustering

Density-based Clustering Clusters are formed by connecting regions with a high example density

using density-based clustering. This paves the way for distributions of various shapes, provided that dense

areas can be connected. These algorithms struggle when presented with data with a wide range of densities

and a high dimension count. In addition, the architecture of these algorithms makes it so that they do not

place outliers in any of the clusters.

Figure 5: Density-based clustering

Distribution-based Clustering

This clustering approach assumes data is composed of distributions, such as Gaussian distributions.

In 6, the distribution-based algorithm clusters data into three Gaussian distributions. As the distance from

the distribution’s center increases, the probability that a point belongs to the distribution decreases. The

bands show a decrease in probability. When the type of distribution is unknown, one should use a different

algorithm.

17

Figure 6: Distribution-based Clustering

Hierarchical Clustering Hierarchical clustering is a very different type of clustering that forms a

tree of clusters (Fowlkes and Mallows [1983b]). It should come as no surprise that hierarchical clustering

works particularly well with hierarchical data, such as taxonomies.

Figure 7: Hierarchical Clustering

Cluster-based Classification

Cluster-based classification is a method of classification that utilizes clustering algorithms as a prepro-

cessing step. Cluster-based classification aims to group similar instances and assign class labels to the

clusters. This approach is based on the assumption that instances within the same cluster are more likely

to belong to the same class.

One of the main advantages of cluster-based classification is that it can handle datasets with many

classes and instances where traditional classification methods may struggle. It can also be helpful when

the class labels are unknown or difficult to obtain. By using clustering to similar group instances, we can

uncover hidden patterns in the data and assign class labels based on these patterns.

There are several approaches to cluster-based classification, such as using the cluster centroid as the

18

class representative or a majority voting scheme. Another approach is to use a probability-based method,

where the class label of an instance is determined by the class label of the cluster it belongs.

It is worth mentioning that using clustering algorithms for classification problems has its limitations.

One of them is that the clusters created by the algorithm sometimes align with the actual class labels,

which can lead to misclassification.

Another essential aspect of cluster-based classification is the choice of the clustering algorithm. Dif-

ferent algorithms have different strengths and weaknesses, and the choice of algorithm will depend on the

specific characteristics of the dataset and the problem at hand.

For example, k-means is a popular choice for clustering continuous variables, while hierarchical clus-

tering is well-suited for datasets with many instances. In addition, density-based clustering algorithms,

such as DBSCAN, help detect clusters with non-convex shapes, which can be helpful in datasets with

complex patterns.

2.4.2 KMeans Algorithm

Now that we have listed the types of clustering, let us dive deeper into a specific example of Centroid-base

clustering the KMeans Algoritm.

This algorithm is used to cluster data by first attempting to divide samples into K groups with the

same variance and then minimizing a criterion known as the within-cluster sum-of-squares or the inertia

2.4.2. This approach requires the cluster count to be supplied before it can be used. It works well with

many samples and has been implemented in various application areas and disciplines of study.

The k-means algorithm creates K distinct clusters C from a given set of samples Xn, with each

cluster being defined by the average value µj of the samples contained within it. The means are often

referred to as the centroids of the cluster. Nevertheless, it is essential to remember that they are not, in

most cases, points from the initial set X , even though they exist in the same space.

The algorithm aims to minimize the inertia

n∑

i=0

min
µj∈C

(‖xi − µj‖2) (2.9)

The equation above can be recognized as a measure of how internally coherent the clusters are.

Nonetheless, this can bring drawbacks, like the assumption that the clusters are convex and isotropic,

which is only sometimes the case. Moreover, this leaves the algorithm vulnerable to elongated and irreg-

ularly shaped clusters.

19

Another problem from the inertia equation is the need for more normalization. Since the result of

the equation is not bounded, it can lead to wrong results depending on the distance metric used. Run-

ning a Principal Component Analysis (PCA) before the k-means can mitigate this and speed up the

computation.

Lloyd’s algorithm is another name for the K-means clustering method. The algorithm can be broken

down into three distinct phases, as stated in the pseudocode below:

Algorithm 1 KMeans

1: Selecting the initial K centroids

2: Define a threshold

3: for difference between the old and the new centroids < threshold do

4: assigns each sample to its nearest centroid

5: creates new centroids by taking the mean value of all of the samples assigned to each previous

centroid

6: end for

The selection of the initial centroids can be made in many different ways. The simplest method is to

choose K random samples from the set Xn. However, this selection can significantly impact the results

of the algorithm.

The K-means algorithm will always converge if given enough time, although this convergence can be

to a local minimum. However, this is hugely reliant on the centroids being initialized correctly initially.

Consequently, the computation is frequently carried out multiple times, each with a unique initialization of

the centroids. The k-means ++ (Arthur and Vassilvitskii [2007]) is a particular case of k-means with a

different initialization strategy. This method sets the initial centroids (usually) far apart, leading to better

results than those obtained from random initialization. There is a complete discussion on this matter in

(Celebi et al. [2013]).

There are many variants of the k-means algorithm, but we need to get into more detail. We will mention

some of this algorithm’s advantages and disadvantages.

20

Advantages

• Relatively simple to implement;

• Scales to large data sets;

• Guarantees convergence;

• Can warm-start the positions of centroids;

• Easily adapts to new examples;

• Generalizes to clusters of different shapes and sizes, such as elliptical clusters;

Disadvantages

• Choosing the number of clusters k manually

There are strategies, like the elbow curve in the ”Loss vs. Clusters” plot, to help us choose the

number of clusters.

• Dependency on the initial values;

• Clustering data of varying sizes and densities.

When trying to cluster data where the clusters are of variable sizes and densities, k-means need

help. This can be mitigated by generalizing K-means with the help of weights for each cluster;

• Clustering outliers

• Scaling with number of dimensions

Outliers can pull centroids, or outliers may be given their own cluster so they are not disregarded.

A good practice is to remove them before the algorithm execution.

• Scaling with number of dimensions

A distance-based similarity measure tends to converge to a constant value between any two supplied

examples as the number of dimensions it considers rises. Reduce the problem’s dimensionality by

applying Principal Component Analysis (PCA) to the feature data.

21

2.4.3 Evaluation metrics

Let us see how a classification algorithm evaluates compared to a clustering algorithm. We see up front

that it is different since the typology of the problem is entirely different. On the one hand, we want to see

if the classification was successful, and for that, we can use metrics such as recall or precision. (section

3 subsection metrics). On the other hand, we have a much more complex problem than counting the

number of errors/wrong classifications.

When looking at a clustering evaluation problem, we should not consider the absolute values of the

cluster labels but rather whether the clustering defines separations of the data that are similar according

to some ground truth or some similarity metric. They assume that members of the same class are more

similar than members of different classes.

With this in mind, let us take a look at some evaluation metrics used:

• Rand Index The Rand index is a function initially proposed by (Hubert and Arabie [1985]) that

gauges the similarity of the two assignments, ignoring permutations, given knowledge of the ground

truth class assignments and our clustering method assignments of the same samples. This method

is bounded, meaning lower values indicate different labeling, as higher values indicate similar clus-

tering compared to the ground truth. The score ranges from 0 to 1. This method can compare all

kinds of clustering algorithms since it is not dependent on the structure of the clusters.

Being C the ground truth and K the clustering, let us define a and b as

– a the number of pairs of elements that are in the same set in C and the same set in K;

– b the number of pairs of elements that are in different sets in C and different sets in K

The Rand index can be formulated as follows:

RI =
a+ b

C
nsamples

2

(2.10)

In the above equation, Cnsamples

2 is the total of possible pairs in the dataset.

• Fowlkes-Mallows scores

This evaluation method is presented by (Fowlkes and Mallows [1983a]) in Bell Labs and can be

used when a ground truth class assignment is available. This method is defined as the geometric

mean of the pairwise precision and recall:

FMI =
TP√

(TP + FP)(TP + FN)
(2.11)

22

Where TP is the number of True Positive (i.e., number of labeled points that genuinely belong to

the ground truth cluster), FP is the number of False Positive (i.e., number of points that belong

to the same clusters in the actual labels and not in the predicted labels) and FN is the number

of False Negative (i.e., the number of points that belongs in the same clusters in the predicted

labels and not in the actual labels).

This evaluation method gives a single score that is upper bounded by 1 and lower bonded by 0 It

also is independent of the structure of the cluster.

• Contingency Matrix

Similar to the Confusion Matrix for classification, there is the square matrix in which the order of

rows and columns corresponds to a list of classes.

The contingency matrix reports every true/predicted cluster pair’s intersection cardinality. When the

samples are independent and have an identical distribution, the contingency matrix gives enough

data for all clustering metrics, eliminating the need to consider instances that do not cluster in all

cases.

Let us imagine that we have a 2-cluster problem, and the output of the Contingency Matrix is

CT =

 2 1 0

0 1 2

At a glance, we can already tell there are two actual clusters, one for each row. The first row of the

matrix indicates that there are 3 data points in the first cluster. Of those, two are predicted to be in

cluster 0, one in a cluster on, and none in cluster 2. The same goes for the second row.

This evaluation method allows for examining the spread of each actual cluster across predicted

clusters and vice versa. Nonetheless, analyzing when it starts to increase the number of clusters

can become a challenge.

• Silhouette Coefficient

If the labels for the ground truth are unknown, the evaluation must be done with the model it-

self. One such evaluation is the Silhouette Coefficient, where a model with better-defined clusters

receives a higher Silhouette Coefficient score.’

Each sample’s Silhouette Coefficient is defined, and it consists of two scores:

– a: The mean distance between a sample and all other points in the same class.

23

– b: The mean distance between a sample and all other points in the next nearest cluster.

The Silhouette Coefficient s for a single sample can be calculated by:

s =
b− a

max(a, b)
(2.12)

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient

for each sample. This approach is highly utilized, especially when working with lots of data and

clusters, since it can give a sense of how the data is distributed, scores near −1 indicate incorrect

clustering, and scores averaging+1 indicate dense clustering or separated clusters. If the score is

close to 0, we have overlapping clusters. (Rousseeuw [1987])

• Homogeneity, completeness and V-measure

With the aid of conditional entropy analysis, understandable metrics may be defined based on the

samples’ ground truth class assignments.

(Rosenberg and Hirschberg [2007]) proposed two ideal goals for cluster assignments:

1. Maximum Intra-cluster Similarity: Aim to maximize similarity within each cluster, ensur-

ing samples in the same cluster share similar characteristics.

2. Minimum Inter-cluster Similarity: Aim to minimize similarity between different clusters,

ensuring distinct characteristics for samples in different clusters.

These goals can be assessed using conditional entropy analysis, which measures the uncertainty

in class assignments given cluster assignments. By defining understandable metrics based on

conditional entropy, we can evaluate the quality of cluster assignments in terms of meeting these

goals.

2.5 Summary

In this chapter, we have discussed the topic of clustering and the various types of clustering algorithms

available. We have also provided a detailed explanation of the k-means algorithm and its implementation

and examples of its use in real-world applications. Additionally, we have discussed various evaluation

metrics, such as the Fowlkes-Mallows score, Rand index, and silhouette score, that can evaluate the

performance of clustering algorithms.

24

In the following chapters, we will delve further into clustering and Quantum Machine Learning (QML)

by exploring a hybrid approach to the k-means algorithm. Specifically, we will use the swap test algorithm

to replace traditional distance metrics such as Euclidean distance and Cosine distance with the overlap

measure calculated on a quantum simulator.

We will then compare the results obtained using the traditional k-means algorithm with those obtained

using the hybrid approach. We will also use the evaluation metrics discussed in this chapter, such as the

Rand index and Fowlkes-Mallows score, to evaluate the performance of the hybrid approach.

Overall, this chapter has provided a solid foundation for the understanding of clustering algorithms

and how they can be used to extract valuable insights from data. The further chapters will provide more

in-depth information on QML and lay the foundation for the hybrid algorithm.

25

Chapter 3

Quantum Machine Learning

In this chapter, we will talk about Quantum Machine Learning (QML) has gained significant attention in the

last decade due to its potential to leverage the power and speedups of quantum computation for solving

complex Machine Learning problems. This interdisciplinary field has attracted interest from scholars and

institutions who see QML as an exciting avenue for combining two significant research areas. First, the

rapid growth of research in QML can result from the availability of quantum hardware and the development

of quantum algorithms that outperform their classical counterparts in some specific tasks (Biamonte et al.

[2016]).

According to (Wiebe [2020]), QML has two fundamental definitions. The first is that ”QML involves

using a quantum device to solve a machine learning task with greater speed or accuracy than its classical

analog would allow.”, this comes from algorithms proposed that promise polynomial speedups, such as

(fir) and (Wiebe et al. [2014]) and many others, and focuses on the use of quantum machines to solve

the same tasks as classical machines. The second definition is that it ”involves using a quantum device

to classify or extract features from quantum states.”, this statement comes from the possibility of gaining

speedups in problems where the data itself is hard to generate or store classically.

Despite the differences in definition, QML has flourished in both directions, either by speeding up

linear algebra calculations essential to many Machine Learning algorithms or by providing new and robust

models, depicted in figure 8. According to (Seaar Al-Dabooni [2019]), different approaches to QML have

led to faster computation and the development of new machine-learning models that take advantage of

quantum properties. The authors provide examples of how quantum computing has been applied to linear

algebra and other fundamental components of machine learning algorithms and how it has enabled the

development of new models.

26

Figure 8: QML development timeline

To help make sense of the different methods and approaches in QML, (Aïmeur et al. [2006]) introduced

a typology that identifies four distinct methods for combining quantum computing and machine learning,

each of which is dependent on whether or not one assumes the data to have been produced by a quantum

(Q) or classical (C) system, as well as whether or not the information processing device in question is

quantum (Q) or classical (C). (see Figure 9).

Figure 9: Four Approaches to Combine Quantum Computing and Machine Learning

The CC approach is the complete classical way, where classical data is processed by a classical

machine, nonetheless the. Classical implementations derive from quantum ideas/counterparts, the so-

called ”quantum-inspired” algorithms. TheCQ graph section refers to classical machine learning operating

on quantum data. Orthogonal to this, we have the QC that uses quantum algorithms on classical feed

data. Finally, we have the QQ that looks at quantum data processed by quantum computers.

As a result of this evolution, Quantum Machine Learning (QML) has established itself as an active

sub-discipline of quantum computing research. We will look at some challenges and possible solutions to

QC regime.

27

3.1 Quantum Computing Key Concepts

The field of quantum computing has seen remarkable advancements in recent years, with the development

of practical algorithms and the construction of experimental quantum computers.

In this section, we will be providing a brief introduction to the fundamental concepts of quantum

computing. To serve as a foundation for the upcoming chapters where we will discuss the application of

quantum computing in machine learning.

Quantum computing is a field that utilizes the principles of quantum mechanics. The fundamental

component is quantum bits, or qubits, to store and process information instead of classical bits. A qubit

achieves a linear combination of two states by utilizing the quantum mechanical phenomenon of superpo-

sition. For example, a traditional binary bit can only represent a single binary value, such as 0 or 1, and

can only be in one of two states. Conversely, a qubit can represent a 0, a 1, or any percentage of 0 and

1 in a superposition of both states, with a specific likelihood of being a 0. The standard notation used for

these states in quantum mechanics is the dirac notation, ’|〉.’

A fundamental component in quantum computing is quantum gates or operators, which manipulate

qubits. These gates are the quantum equivalent of classical logic gates, including the NOT gate, the

Hadamard gate, Pauli matrices, and the identity operator.

This section will also provide a brief overview of the main principles of quantum mechanics that

form the basis for quantum computing. These include superposition, entanglement, and interference.

By understanding these key concepts, we can better understand the underlying principles of quantum

computing and how it differs from classical computing.

This section is not an exhaustive explanation of quantum mechanics or quantum computing but rather

a brief reminder of the basic concepts to understand the chapters’ ahead. To gain a deeper understanding

of the subject, we recommend visiting (Nielsen and Chuang [2010]).

3.1.1 Fundamental Principles of Quantum Mechanics

The principles of quantum mechanics form the basis for quantum computing and are fundamental to

understanding the behavior of quantum systems. Three of the main principles are superposition, entan-

glement, and interference.

Superposition is a fundamental concept in quantum mechanics that allows a quantum system to

exist in multiple states simultaneously. It is typically represented using the notation |ψ〉 = a1 |0〉 +

a2 |1〉, where |ψ〉 is the state of the system, and |0〉 and |1〉 are the basis states when measuring in

28

the computational basis, also known as the z basis. The complex coefficients a1 and a2 describe the

probability amplitudes of the quantum system in the states |0〉 and |1〉, respectively. This mathematical

representation of the physical state of a quantum system is known as a quantum state.

Entanglement is a phenomenon in which two or more quantum systems become correlated so that

the state of one system is dependent on the state of the other. Entanglement is often represented using

the notation |ψ〉 = a |00〉 + b |11〉, where the first and second qubits are entangled. Entanglement is,

therefore crucial principle in quantum computing as it allows for the creation of quantum states that cannot

be represented classically and is the basis for many quantum algorithms, such as quantum teleportation

and quantum key distribution.

Interference is a fundamental principle of quantum mechanics that involves adding or canceling the

amplitudes of quantum states. This phenomenon can occur constructively or destructively and is deter-

mined by the relative phase of the complex coefficients. Interference is the foundation of various quantum

algorithms, including the quantum Fourier transform and the quantum phase estimation algorithm, as it

plays a crucial role in determining the probabilities of the outcomes of a quantum system.

These principles of quantum mechanics are the foundation for quantum computing and are essential

to understanding the behavior of quantum systems. For a more detailed explanation of these principles

and the mathematical formalism of quantum mechanics, we recommend reading (Nielsen and Chuang

[2010]) and (Sakurai and Napolitano [2017]). Quantum circuits are a universal language for describing

complex quantum computations. Just like programming languages allow the user to code without manually

manipulating the 0′s and 1′s that make a classical computation, quantum circuits are the first analog to

a first and primitive programming language for quantum computing. A well-known language that provides

this type of circuit is qiskit, a Python SDK provided by IBM. It is possible to find more information about

this package in qiskit.org.

3.1.2 Quantum bit

A single single quantum bit |ψ〉 and can be represented in following form:

|ψ〉 = α |0〉+ β |1〉 (3.1)

In the equation above the |0〉 =

1

0

 and |1〉 =

0

1

 are known as the computational basis states,

forming an orthogonal basis in the complex vector space.

Where α and β are complex numbers where |α|2 + |β|2 = 1.

29

https://qiskit.org/overview

A straightforward deduction is the complex conjugate of |ψ〉:

|ψ〉† = 〈ψ| = α∗ 〈0|+ β∗ 〈1| (3.2)

In quantum mechanics, measurement is the way to obtain information about a quantum property, this

is called an observable, and it is represented by a quantum operator that acts on quantum states. When

a measurement is performed on 3.1, the state will collapse to one of the eigenstates of the corresponding

observable with some probability. In quantum circuits, the eigenstates for measurement are typically the

computational basis |0〉 and |1〉 and the probability that |ψ〉 collapses to state |0〉 is given by |α|2.

3.1.3 Quantum Gates

Here we will show some of the quantum gates used in this paper. There are two types of quantum gates:

single-qubit and multi-qubit. In both cases, something to bear is that qubits in quantum circuits are usually

initialized in the state |0〉.

Pauli gates X , Y and Z are single qubit gates represented by:

X =

0 1

1 0

 Y =

0 −i

i 0

 Z =

1 0

0 −1

 (3.3)

Pauli gates define rotation gates that can then be used to create more complex rotations likeRot(θ) ≡

ei
θ
2σ, where σ is the generator that defines the direction for the rotation, i.e., σ = σx,σy,σz. We can

see in the Bloch Sphere (fig. 10) a state |ψ〉 as a result of combining two rotations, on the initial state |0〉,

a Rot(θ) on the y axis and Rot(φ) on the x axis:

|ψ〉 = eiλ(cos
(
θ

2

)
|0〉+ eiα sin

(
θ

2

)
|1〉) (3.4)

Figure 10: Qubit |ψ〉 represented in the Bloch Sphere.

30

Applying these rotations to a state makes it rotate around the x, y, or z axis by an angle of θ:

RX(θ) =

 cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

 RY (θ) =

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

 RZ(θ) =

e−i θ2 0

0 ei
θ
2

(3.5)

Hadamard is a single qubit gate represented by H :

H =
1√
2

1 1

1 −1

 (3.6)

Used to create superpositions in qubits. This gate has the following result when applied to a basis

state.

H |0〉 = 1√
2
(|0〉+ |1〉) = |+〉

H |1〉 = 1√
2
(|0〉 − |1〉) = |−〉

(3.7)

CNOT or controlled-NOT gate is a 2-qubit gate. It can be represented by:

CNOT ≡

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

(3.8)

The example above is of a controlled gate, where the state of the qubit is changed based on the value

of another qubit, called the control qubit:

CNOT |00〉 = |00〉 , CNOT |01〉 = |01〉

CNOT |10〉 = |11〉 , CNOT |11〉 = |10〉
(3.9)

The representation of this multi-qubit gate in a circuit is given by:

|ψ0〉
|ψ1〉

|ψ0〉
|ψ1 ⊕ ψ0〉

SWAP gate is another multi-qubit gate that swaps the state of two qubits:

SWAP ≡

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

(3.10)

It has the following circuit representation:

31

|ψ0〉
|ψ1〉

≡
|ψ1〉
|ψ0〉

Fredkin or controlled SWAP (C-SWAP) gate is a swap gate, but with a control qubit it can be repre-

sented by:

|ψ0〉
|ψ1〉
|ψ2〉

|ψ0〉
|ψ2〉
|ψ1〉

3.2 Data Encoding

When tackling a QML problem is natural that the first question we ask ourselves is how to load data into a

quantum computer. To load classical data into a quantum computer, we must first implement a process

called state preparation. This process is responsible for the data encoding strategy. Different strategies

can have a significant impact on the runtime performance of the quantum algorithm, especially in the

number of qubits used.

It is important to note that the best encoding strategy will depend on the specific problem and the

nature of the data used.

Different strategies can significantly impact the quantum algorithm’s runtime performance, particularly

in the number of qubits required. Here, we will provide a brief overview of three commonly used data

encoding techniques: Basis Encoding, Angle Encoding, and Amplitude Encoding (Lloyd et al. [2020]). Let

us consider a dataset of M entry points each with N features, D = {x1, . . . , xm, . . . , xM} where

xm = [xm
1 , . . . , x

m
N] is a N -dimensional vector for m = 1, . . . ,M

• Basis Encoding involves a process known as basis embedding. Each input of a qubit system is

linked to a computational basis state. Since this is the case, traditional data must be binary strings.

The embedded quantum state may be thought of as the bit-wise translation of a binary string into

the states of the quantum subsystems that correspond to those states. For instance, the 4-qubit

quantum state |1001〉 corresponds to the value x = 1001 in decimal. As a result, one quantum

subsystem is equivalent to one bit of classical information.

Let us have a look at the traditional dataset that was stated earlier. To do basis encoding, each

example has to be a string of binary digits with N bits; xm = (b1, . . . , bN) where bi ∈ {0, 1} for

I = 1, . . . , N . Assuming that all characteristics are stored with unit binary precision (one bit), it

32

is possible to directly transfer each input example x(m) to the quantum state
∣∣x(m)

〉
. It is possible

to describe an entire dataset as a superposition of several computational basis states.

|ψ〉 = 1√
M

M∑

m=1

∣∣x(m)
〉

(3.11)

This equation means that for N bits, there are 2N possible basis states.

• Angle Encoding

Angle encoding is a strategy that uses the angle of a vector in high-dimensional space to encode

classical data into a quantum system. Encoding a datapoint with N features into N qubits, using

one qubit per feature. To encode a real-world data set X , the data should first be normalized

between 0 and 2π, resulting in X̃ , to ensure that the data can be accurately represented using

angle encoding. To better distinguishability between the points, the encoding could be chosen

between 0 and π, ensuring that the furthest points are opposite when we are encoding using only

a single rotation.

The X̃ vectors can be represented by:

|ψx〉 =
n⊗

j=1

e−ix̃jσx |0n〉 (3.12)

where σ ∈ {I, σx,σy,σz}. The main advantage of this method is the ability to preserve the

high-dimensional structure of the data, as the angles of the vectors are preserved in the encoding

process. However, it requires more qubits to encode the same data than amplitude encoding.

Additionally, the state preparation of the angle-encoded vectors can be costly in terms of time

complexity, especially for high-dimensional data sets. It is Θ(1) per feature if we consider an

encoding with a depth of 1, meaning using a single rotation.

Furthermore, angle encoding requires an angle generator σ ∈ I, σx,σy,σz, which defines the

direction of the rotation used in the encoding process. The angle generator’s choice can affect the

encoding’s performance, as different generators may result in different distributions of the encoded

data.

• Amplitude Encoding Amplitude encoding uses only log2 N qubits for encoding a N dimensional

data point x. Nonetheless, it brings some limitations to the table due to the association between

real classical information vectors and quantum amplitudes. To encode the classical vector into a

33

quantum state, we need to ensure that it is normalized, i.e., for a data setX so that
∑

k |xk|2 = 1,

resulting in X̃ . The superposition over states that encodes the features into its amplitudes can be

represented as:

|ψx〉 =
2n∑

j=1

xj |j〉 (3.13)

The need for normalization imposes the first limitation to this method since the quantum states

represent the data in one fewer dimension or with one fewer degree of freedom. A classical two-

dimensional vector (x1, x2)T can only be associated with an amplitude vector (0, 1)T of a qubit

that fulfills the equation |α0|2 + |α1|2 = 1, meaning that a two-dimensional vector is represented

in a unit circle, which is a manifold with one dimension that exists in a space with two dimensions.

When three-dimensional vectors are stored in three amplitudes of a two-qubit quantum system, the

three-dimensional space is reduced to the surface of a sphere. This process continues until the

space is reduced to a two-dimensional plane. A workaround to this restriction can be adding one

element to the classical vector with one value and then normalizing the resulting vector, allowing

the new element to carry on information about the normalization constant. Another limitation of

this encoding method is the time cost of the state preparation of the dense amplitude vectors.

The following table presented by (Schuld and Petruccione [2021]) provides a comparison of the run-

times for the three data-encoding algorithms described, whereM represents the number of inputs or data

points, N represents the number of features for each data point, and τ represents the number of bits in

a binary representation of the data point. The basis, amplitude, and angle encoding methods provide a

recipe for encoding a single input, which can be applied in superposition to encode an entire dataset.

Encoding #qubits Runtime Input type

Basis Nτ O(Nτ) Single input (binary)

Amplitude logN O(N)/O(log(N))a Single input

Angle N O(N) Single input

Table 1: Qubit Complexity analysis

aNote that the complexity notation for amplitude encoding is given as O(N) or O(log(N)) based on

the specific application.

34

These are only a tiny sample of the possible data encoding strategies. To learn more, see (Schuld and

Petruccione [2021]) Chapters 3 and 4.

Data encoding is one of the essential steps in the road map for developing a quantum machine

learning algorithm and therefore is crucial for us to mention some problems that arrive from creating

real-world algorithms. Despite many notorious encoding strategies and ingenious solutions, one of the

biggest problems is the need for qubits. This problem puts a bottleneck in the development of QML

algorithms since, in real-world ML scenarios, data has many entry points and features, and therefore is

difficult to compare algorithms and showcase a quantum advantage. Another problem comes from the

lifespan of quantum data. After the encoding process, we need to use it, but there is no place to store it.

There are some articles mentioning q-rams like (Landman [2021]) and (Schuld et al. [2018]), but there

is no actual proof of concept at the time. The encoding process must be repeated multiple times since

quantum computing is probabilistic. The model needs to be run multiple times to ensure president results,

increasing the computation time even further.

3.3 Measuring the overlap between quantum states

In classical machine learning, the similarity between two vectors is crucial in various algorithms, as dis-

cussed in Section 2.3.5. When we shift to the quantum realm, comparing two states changes, but it is

still possible to have a notion of similarity. Suppose we recall the similarity measures based on the inner

product. In that case, we can have a quantum analog with quantum states 〈a|b〉 or the absolute square

value | 〈a|b〉 |2 called the overlap. A family of tiny quantum circuits may accomplish this goal by using in-

terference between several branches of a superposition. The swap test, which provides the absolute value

of the inner product of the quantum states of two distinct quantum systems, is the interference procedure

that is the most well-known and widely used today.

3.3.1 SWAP Test

First mentioned in (Barenco et al. [1996]) and then rediscovered by (De Wolf [2019]), the swap test has

since found applications in various quantum machine learning algorithms. This method for quantifying

the similarity or overlap between two quantum states is typically represented by density matrices ρ1 and

ρ2. The basic idea behind the swap test is to extract the absolute square of the inner product of two-qubit

registers, |a〉 and |b〉, from the probability of measuring an ancilla qubit in a particular state (Schuld and

Petruccione [2021]). The controlled swap operation is represented mathematically by the unitary operator

35

SWAP12, which acts on the two-qubit system and is defined as:

SWAP12 =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

(3.14)

To perform the Swap Test method, we start with the quantum state |0〉 |a〉 |b〉, where the ancilla qubit

is in state |0〉, and |a〉 and |b〉 are two-qubit registers. Then, applying a Hadamard gate to the ancilla

qubit leads to the state.

1√
2
(|0〉+ |1〉) |a〉 |b〉 (3.15)

Next, we apply a swap operator on the two registers, conditioned on the ancilla qubit in state |1〉. This

operation swaps the states |a〉 |b〉 to |b〉 |a〉 in the corresponding branch, leading to the state

1√
2
(|0〉 |a〉 |b〉+ |1〉 |b〉 |a〉). (3.16)

Applying another Hadamard gate to the ancilla qubit results in the state

1

2
(|0〉 ⊗ (|a〉 |b〉+ |b〉 |a〉) + |1〉 ⊗ (|a〉 |b〉 − |b〉 |a〉)). (3.17)

This prepares two branches of a superposition, one containing a sum between the ”unswapped”

and ”swapped” states of the two registers and the other containing their difference. The probability of

measuring the ancilla qubit in state |0〉, denoted as p0 = | 〈0| |⊗ 1 |ψ〉 |2, where 〈0| acts on the ancilla

and 1 is the identity operator acting on the remainder of the qubits, is given by

p0 =
1

2
+

1

2
| 〈a|b〉 |2, (3.18)

and reveals the overlap of the two states via

| 〈a|b〉 |2 = 2p0 − 1. (3.19)

Note that in the more general case where the two input states are mixed a and b, the same routine can

be applied, and the success probability of the post-selective measurement is given by p0 = 1
2 −

1
2tr{ab},

where ab is the matrix product of the two mixed states.

In quantum machine learning, the Swap Test is often used in contexts where |a〉 and |b〉 represent

normalized and real-valued N -dimensional data vectors a = (a1, . . . , aN) and b = (b1, . . . , bN),

36

respectively. In this case, the overlap | 〈a|b〉 |2 equals the cosine similarity between the two vectors, a

commonly used metric in machine learning tasks such as classification and clustering. The Swap Test can

thus be used as a subroutine to calculate the cosine similarity between two vectors in a quantum machine

learning algorithm, such as quantum support vector machines (Lloyd et al. [2020]).

To replicate this method in a quantum computer, we can use a pseudo-code such as the one in

Algorithm 2:

Algorithm 2 SWAP TEST
Inputs: M copies each of the n qubits quantum states |ψ〉 and |φ〉, and N0 is the number of shots.

1: for j ranging from 1 to M state do

2: initialize an ancilla in state |0〉 and apply a Hadamard gate to the ancilla qubit

3: for i ranging from 1 to n qubit of state j do

4: apply CSWAP to |ψi〉 and |φi〉 with the control in the ancilla qubit, where i represent the

ith qubit of state j.

5: apply a Hadamard gate to the ancilla qubit

6: measure the ancilla in the Z basis and record the measurement as 0 or 1

7: end for

8: compute 2p0 − 1, where the probability p0 = N0
M , where N0 is the number of times |0〉 was

measured.

9: end for

return Overlap

The algorithm above is going to encode the Swap test routine that can be represented in a quantum

circuit as: Fredkin or controlled SWAP (C-SWAP) gate is a swap gate, but with a control qubit it can be

represented by:

|ψ0〉
|ψ1〉
|0〉 H H

|ψ1〉
|ψ0〉
|0〉

Figure 11: Swap Test for two qubits

37

3.3.2 Inversion Test

Another algorithm for calculating the overlap between two quantum states, |a〉 and |b〉, is the inversion

test, which Nielsen and Chuang first introduced in (Nielsen and Chuang [2010]). This routine can be used

to reduce the number of qubits required to a bare minimum when computing state overlaps of the form

| 〈a|b〉 |2.

Suppose we have a quantum circuitA that prepares |a〉 = A |0〉 and another circuitB that prepares

|b〉 = B |0〉. The idea is to run the circuitB†A |0〉 and measure the state of each qubit. The probability of

observing the quantum computer back in the initial state |0〉 is given by the Born rule as | 〈0| (B†A |0〉)|2,

which is just the desired overlap.

Mathematically, we can see this by writing out the expectation value of the projective measurement

M = |0〉 〈0|, which is given by

〈0|A†B(|0〉 〈0|)B†A |0〉 = 〈0|A†B |0〉 〈0|B†A |0〉 = | 〈0|B†A |0〉 |2 = | 〈a|b〉 |2.

To implement the inversion test, the quantum computer must be able to implement the inverse of one

of the state preparation circuits. The inverse of a quantum circuit U = UL...U1 is given by U †
1 ...U

†
L.

Thus, the quantum computer must be able to implement the complex-conjugate transpose version of every

gate in the circuit.

For many data-encoding strategies, this is straightforward because many of the fundamental quantum

gates are their inverse or can be inverted by feeding the parameter times a factor of −1. For example, a

Pauli rotation fulfills R†
z = R−z. However, for near-term quantum computers, it may not be possible to

invert a routine exactly, in which case one can revert to the previous method.

Overall, estimating the inner product or overlap of two n-qubit quantum states via measurements

requires, at most, 2n+ 1 qubits and a number of gates that is linear in the number of qubits.

The inversion test can be represented in a quantum circuit as:

|ψ0〉
|ψ1〉

UA U †
B

Figure 12: Inversion Test for two quibits

38

3.3.3 Functions after the Overlap

As seen, the overlap provides a way to measure the similarity between quantum states, which can be

used in various quantum machine learning tasks, such as quantum classification and quantum clustering.

This process is called a feature map that maps classical data to high-dimensional quantum states. The

similarity between the quantum states is proportional to the similarity between the original data points.

This subsection explores the concept of data encoding as a feature map and the results generated by the

quantum overlap, focusing on the distance between the encoded data points and the functions that the

encoding represents.

Data Encoding and the Overlap

The choice of data encoding strategy plays a crucial role in determining the properties of the resulting

functions. As we showed, three common data encoding strategies are basis encoding, amplitude encoding,

and angle encoding (Schuld and Petruccione [2021]). Table 2 summarizes these encoding strategies and

their corresponding functions after the overlap.

Encoding Kernel κ(x, x′)

Basis encoding δx,x′

Amplitude encoding |x†x′|2

Angle encoding
∏N

k=1 | cos(x′
k − xk)|2

Table 2: Overview of data-encoding strategies and their functions (Schuld, 2021)

The input domain is assumed to beX ⊆ RN . The quantum functions are defined as the dot product

or inner product of the data points in the quantum state. The basis encoding has a kernel equal to 1 if

the two inputs are the same and 0 otherwise. The amplitude encoding has a kernel proportional to the

square of the dot product between the two inputs. The angle encoding has a kernel equal to the product

of the cosine similarity between each feature of the two inputs.

As we see in the above resulting functions, the overlap output differs for different encodings because

each encoding has a different representation of the input data. The overlap measures the similarity be-

tween the quantum states that represent the inputs. For example, suppose the data is represented in

the basis encoding. In that case, the result of the overlap will depend on the presence or absence of the

computational basis states in the superposition. On the other hand, if the data is represented in the angle

encoding, the result of the overlap will depend on the relative phase between the quantum states. These

39

differences in the outputs of the overlap for different encodings highlight the importance of choosing the

appropriate encoding strategy based on the specific requirements of the quantum algorithm, especially

when comparing quantum results to classical ones.

Below it is possible to see in detail how to derive these functions.

Basis encoding

The data-encoding feature map of basis encoding maps a binary string to a computational basis state,

φ : x 0→ |ix〉 〈ix| (3.20)

The Kronecker delta gives the quantum kernel:

κ(x, x′) = |〈ix′ |ix〉|2 = δx,x′ (3.21)

Which is a rigorous similarity measure on input space and arguably not the best choice of data encoding

for quantum machine learning tasks, do to the high number of qubits needed.

Amplitude encoding

The data-encoding feature map of amplitude encoding associates each input with a quantum state

whose amplitudes in the computational basis are the elements in the input vector,

φ : x 0→ |x〉 〈x| =
N∑

i,j=1

xix
∗
j |i〉 〈j| (3.22)

The quantum kernel is the absolute square of the linear kernel

κ(x, x′) = |〈x′|x〉|2 = |x†x′|2 (3.23)

This quantum kernel does not add much power to a linear model in the original feature space. It is

more of interest for theoretical investigations that aim to eliminate the effect of the feature map.

Rotation encoding

The data-encoding feature map of this time-evolution encoding executed by Pauli rotations is given by

φ : x 0→ |φ(x)〉〈φ(x)| (3.24)

where, if we use Pauli-Y rotations,

φ(x)〉 =
1∑

q1,...,qn=0

n∏

k=1

cos(xk)
qk sin(xk)

1−qk |q1, ..., qn〉 (3.25)

, and the corresponding quantum kernel is related to the cosine kernel:

κ(x, x′) =
n∏

k=1

| sin(xk) sin(x′
k) + cos(xk) cos(x′

k)|2 =
n∏

k=1

| cos(xk − x′
k)|2 (3.26)

40

3.4 Quantum-Clustering

Quantum Clustering is a subset of machine learning that utilizes quantum computing to perform clustering

algorithms. Clustering, as seen in 2.4, groups similar data points in a dataset. It is a crucial step in many

machine learning applications. With the advent of quantum computing, quantum clustering has emerged

as a promising approach to performing clustering algorithms more efficiently.

A popular choice is the q-means algorithm, offering a quantum-inspired alternative to the classical K-

means algorithm. Others like the Quantum Spectral Clustering (Landman [2021]), a graph-based machine

learning algorithm. Here, we will only cover one quantum clustering algorithm, the q-means, since it also

uses the Swap Test and is a direct match in the quantum realm to the classical k-means algorithm.

The q-means algorithm The q-means algorithm is a quantum-based adaptation of the classical

k-means algorithm. It uses the Swap Test as a distance metric to perform clustering on quantum data.

Unlike classical k-means, q-means can handle quantum data more efficiently.

This algorithm uses quantum subroutines instead of the traditional k-means methods of performing

tasks such as efficient tomography, finding the minimal value among a group of components, and distance

estimation. In this quantum analog, we first choose k randomly chosen centroids or utilize an initialization

method similar to k-means++. Then, in Steps 1 and 2, all data points are allocated to clusters in super-

position rather than sequentially, and in Steps 3 and 4, we update the centroids of the clusters. Until

convergence, the operation is repeated.

The steps below are a brief overview of the quantum algorithm defined in (Landman [2021]) Chapter 8.

For a more detailed understanding of the implementation, we recommend an integral look at this chapter.

1. First Step - Distance Estimation To perform the distance estimation, we first need to perform

a superposition of states where we transform a set of states |a〉 |b〉 in

|ψ〉 = 1

2
|0〉 ⊗ (|a〉 |b〉+ |b〉 |a〉) + 1

2
|1〉 ⊗ (|a〉 |b〉 − |b〉 |a〉)

(it is important to notice that at this step, it is assumed to have two quantum states |a〉 and |b〉,

probably stored in a QRAM). We can use a subroutine like the Swap Test mentioned in the previous

section 3.3.1 to perform this operation. The runtime of this subroutine is O(logNd) for a data

matrix V ∈ RNxd (see Landman [2021] Theorem 8.1)

2. Second Step - Cluster AssignmentWe have calculated the squared inner product between each

point and the k centroids, then selected the new clusters.

41

3. Third Step - Centroid State Creation The index of the data points is stored in the first register

of this state generated in the previous step, and the label for the data point being iterated through

is stored in the second register. Both registers are part of this state. Given these conditions, we

must locate the new centroids, representing the average data points with the same label. (once

more, this step requires a QRAM)

4. Fourth Step - Centroids Update To complete the update phase, it is necessary to transition

from the quantum states that represent the centroids to a description of the centroids that adhere

more closely to the classical model. The algorithm for vector state tomography will be used in this

endeavor.

There are many implementations of the q-means algorithm, one slightly different from another, either

by the steps used to reach the final goal or the runtime complexity calculation. Regardless, these all have

a common point: the need for a quantum random access memory (QRAM), a theoretical device to store

quantum data. Some possible implementations can be found in (Park et al. [2019]).

The need for a quantum random access memory and the current limitations of quantum computing

have made it challenging to implement this algorithm on real-world data. This limitation is why in the next

chapter, we will introduce the Hybrid k-means algorithm, which combines the strengths of both quantum

and classical algorithms to overcome these challenges and provide a more practical solution for real-world

data and motivates our desire to create a practical solution for clustering tasks using a quantum computer.

42

Chapter 4

Experimentation of Swap Test as a distance metric

This chapter comes as a result of the investigation made on both Classical and QuantumMachine Learning.

Despite the current evolution in the field of QML, redefining the current Machine Learning state is still

challenging, which means that in order for QML to tackle the same problems as ML, we first need to

build more robust and less noisy machines and possibly build a more high-level quantum programming

language that allows users to leverage the power of quantum towards more challenging problems known

in ML such Forecasting, Clustering, and Computer Vision.

These limitations do not mean we cannot make algorithms and POCs (Proofs of Concept) that show-

case some quantum advantages. Nonetheless, with this master thesis, we wanted to learn more about

classical Machine Leaning and test the currently available Quantum Computer simulators in real-world ML

problems. Therefore, we decided to join forces and test a simple Hybrid Classical Quantum algorithm

approach that would allow us to use classical data and leverage some quantum advantages in the overall

process.

The idea behind the Hybrid Classical Quantum algorithm developed is to create a new distance metric

for the K-Means algorithm since there are some immediate difficulties in implementing a full quantum

q-means presented in 3.4, such as the lack of qubits in a quantum machine and the need for a Q-RAM.

Our proposed distance metric, based on the Quantum Overlap concept, will serve as the ”quantum

block” in our algorithm. We aim to introduce a quantum approach to existing classical machine learning

algorithms, going beyond just K-means.

To create this quantum metric, we will be using the Swap Test circuit (as shown in Figure 3.3.1) to

evaluate its feasibility as a distance metric in distance-based classical machine learning algorithms.

Algorithm 3 refers to the pseudo-code for the Hybrid quantum-classical approach.

43

Algorithm 3 Hybrid KMeans

1: Input N size data set

2: Selecting the initial K centroids

3: Define a threshold

4: for each point i in N do:

5: for each K centroid do:

6: call the SWAP func 2 and calculate the difference between the old and the new centroids

7: if difference < threshold then

8: assigns each sample to its nearest centroid

9: end if

10: end for

11: creates new centroids by taking the mean value of all of the samples assigned to each previous

centroid

12: end for

The implementation of this algorithm uses the K-Means algorithm from Pyclustering a python library

that has a collection of cluster analysis, graph coloring, neural network models and result analysis, imple-

mented in C++ that besides very fast allows the user to create its distance metric. We also used for the

Swap Test a self-made class to do algebraic matrix calculations, simulating quantum operations.

4.1 Classification

To test the algorithm in a real-world situation, we first decided to tackle two classification problems, one

using a small data set for that we use the Iris Dataset (Fisher [1988]) a commonly used dataset, the

other is the Dry Bean Dataset (de Wolf [2019]), both donated to UC Irvine University by the authors

and available in Machine Learning University Repository.

Iris Dataset

The Iris flower dataset is balanced and represents the three iris plant varieties, Iris setosa, Iris versi-

color, and Iris virginica. Each variety represents a class in this data collection by a categorical feature.

There are three classes with a total of fifty occurrences each. One class can be linearly separated from

the others, whereas the remaining cannot.

44

https://pyclustering.github.io/docs/0.8.2/html/index.html
https://archive-beta.ics.uci.edu/dataset/53/iris

These three classes are represented by one dimension vector composed of 4 numerical features:

1. The length of the sepal in centimeters;

2. The breadth of sepal in centimeters;

3. The length of the petal in centimeters;

4. The breadth of each petal, measured in centimeters

We chose this data set for its widespread use for tutorial and teaching purposes.

We have tested the hybrid algorithm against this dataset using two different classical measures, the

Cosine Distance [2] and the Euclidean Distance [2]. We also used a Quantum distance measure using

the Swap Test, implemented using algebra calculation in Python.

In the table 3 are represented two evaluation metrics for the classification task performed on the iris

dataset.

Distance Metric and Evaluation Metrics

Distance Metric Fowlkes-Mallows Rand Index

Euclidean 0.81 0.87

Cosine 0.96 0.97

SWAP Test (Rotation Encoding) 0.83 0.88

SWAP Test (Amplitude Encoding) 0.78 0.87

Table 3: Fowlkes-Mallows and Rand Index evaluation metrics obtained for Euclidean, Cosine, and Swap

test as distance metrics in the iris dataset (Fisher [1988])

Both metrics reported in table 3 assess the obtained classification concerning the actual classification.

We can see that the SWAP test with rotation encoding performs better than Euclidean classical distance

evaluation (for both quality metrics). Still, all other comparisons between classical and quantum indicate

that quantum performs worse than classical. The results do not allow for a robust conclusion on the merits

of the proposed quantum distance metric. Further experimentation is required.

45

Dry Beans Dataset

The beans dataset (de Wolf [2019]) comprises seven distinct kinds of dry beans and their character-

istics, such as their form, shape, strain, and structure, used for a computer vision system to differentiate

them. For that purpose, a high-resolution camera captured photos of 13,611 distinct grains to construct

the classification model.

Since we have a limited number of qubits for our implementation and are dealing with a high-dimension

dataset, we decided to use a dimensionality reduction method known as PCA 2.3.6 to reduce the number

of features that constitute this dataset. We decided to use the same number of features as the previous

dataset - Iris Dataset - to evaluate the time performance of the algorithm against a dataset that has 10×

more data points than the previous one.

As before, we have tested the hybrid algorithm against this dataset using two different classical mea-

sures, the Cosine Distance [2] and the Euclidean Distance [2]. In addition, we also used a Quantum

distance measure using the Swap Test, implemented using algebra calculation in Python.

In the table 4 are represented as two evaluation metrics for the classification task performed on the

iris dataset.

Distance Metric and Evaluation Metrics

Distance Metric Fowlkes-Mallows Rand Index

Euclidean 0.81 0.87

Cosine 0.96 0.97

SWAP Test (Rotation Encoding) 0.59 0.86

SWAP Test (Amplitude Encoding) 0.41 0.78

Table 4: Fowlkes-Mallows and Rand Index evaluation metrics obtained for Euclidean, Cosine, and Swap

test as distance metrics in the dry beans dataset (de Wolf [2019])

According to both quality metrics, the proposed quantum distance metric performs worse than the

classical approaches. This result suggests that the SWAP test with the evaluated data encoding strategies

might need to be revised for classification tasks. However, there was a case where the SWAP test performed

better for the IRIS dataset. Therefore, more extensive experimental evaluations are required, eventually

including different data encoding strategies.

46

4.2 Clustering

As shown in the above chapters, clustering involves distinguishing objects into groups or clusters based

on their similarities. To evaluate the performance of our hybrid algorithm in clustering, we have selected

unlabeled generic datasets from (Pedregosa et al. [2011]). These datasets have different geometric struc-

tures, as shown in figure 13, which can help us analyze the algorithm and compare it with other classical

algorithms. We will use these clusters as the reference for further analysis.

Figure 13: (A) two 1D non-flat manifolds (circles) which are non-convex, (B) two 1D non-flat manifolds

(arcs) which are non-convex, (C) three 1D flat manifolds (segments) which are convex, (D) three 0D flat

manifolds (centers as points) which are convex.

To explore the effectiveness of our proposed hybrid algorithm, using the Swap Test to compute quantum

distance measures, we compare its performance against two commonly used classical distance measures:

the Euclidean distance metric and the Cosine distance, allowing us to estimate the similarity between the

two quantum states.

Figure 14 presents the results of the K-means algorithm using four distance metrics: A - Classical

Euclidean distance, B - Classical cosine distance, C - Quantum SWAP test with rotation encoding, and D -

Quantum SWAP test with amplitude encoding.

The first thing to note is that the obtained clusters are significantly different from the reference ones

(see Figure 13), except for the data set presented in Figure 13 D and on the 5th row of figure 14. The

results are different from the reference for the majority of the datasets, suggesting that the problem be

revisited, and an appropriate feature map has to be found, such that results are identical to the reference

(at least for the classical Euclidean distance metric).

Limiting the comparisons to figure 14, note that the quantum swap test with rotation encoding (column

C) obtains results similar to both classical cases (columns A and B), whereas using amplitude encoding re-

sults in a completely different clustering pattern. These results reinforce the conclusion drawn from the iris

47

dataset that the quantum SWAP test does not necessarily perform worst than the classical metrics. First,

however, a vast experimentation program has to be performed to understand under what circumstances

(and why) these classification/clustering differences occur. In particular, it is known that data encoding

corresponds to feature mapping therefore, it plays a crucial role in such machine learning algorithms.

Figure 14: A - Euclidean Distance, B - Cosine Distance, C - SWAP Test (Rotation Encoding), D - SWAP

Test (Amplitude Encoding)

48

Chapter 5

Conclusions

This dissertation showed the potential of quantum distance measures in classical Machine Learning (ML)

algorithms and the challenges and limitations of current quantum computing technology for Quantum

Machine Learning (QML). Despite these challenges, quantum computing can potentially solve problems

intractable with classical computers, such as simulating complex quantum systems and optimizing large-

scale combinatorial problems. However, the technology is still in its early stages and faces significant

challenges such as overhead in loading classical data, and a reduced number of qubits.

To address these challenges, we proposed a Hybrid approach that integrates a quantum routine in

classical machine learning algorithms. Our routine was the Swap test, which replaces the classical dis-

tance metric in distance-based classical algorithms. The use of quantum distance measures provides an

alternative way to represent the similarity between data points. Our results demonstrate the potential of

quantum distance measures in both Classification 4.1 and Clustering 4.2 tasks.

While our experiments show that combining classical and quantum techniques can lead to similar

performance compared to classical approaches,e.g. fig 14 and table 3, it is essential to note that the

results obtained using quantum distance measures were not superior to those obtained using classical

distance measures in all cases. In some datasets, the quantum distance measures performed worse than

the Euclidean and Cosine distances, like in the classification task of the dry beans dataset 4. These results

can be attributed to various factors, such as the choice of encoding strategy or the specific characteristics

of the dataset being analyzed.

Therefore, further research is required to developmore robust and efficient hybrid clustering algorithms

that effectively utilize quantum computing capabilities. Overall, this dissertation contributes to the growing

body of research in quantum machine learning and provides a promising avenue for future exploration.

Furthermore, by combining classical and quantum techniques, we can overcome the limitations of current

QML algorithms and pave the way for developing more powerful and efficient machine learning algorithms.

49

Bibliography

Quantum algorithms for supervised and unsupervised machine learning. pages 1–11.

Scott Aaronson. The future of quantum computing. Nature, 546(7659):195–202, 2017.

Esma Aïmeur, Gilles Brassard, and Sébastien Gambs. Machine learning in a quantum world. In Luc

Lamontagne and Mario Marchand, editors, Advances in Artificial Intelligence, pages 431–442, Berlin,

Heidelberg, 2006. Springer Berlin Heidelberg.

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In SODA ’07, 2007.

David Baker. Computational challenges in protein folding. Current opinion in structural biology, 13(1):

169–176, 2003.

Adriano Barenco, Andre‘ Berthiaume, David Deutsch, Artur Ekert, Richard Jozsa, and Chiara Macchiavello.

Stabilisation of quantum computations by symmetrisation, 1996.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quan-

tum machine learning. 2016. doi: 10.1038/nature23474.

M. Emre Celebi, Hassan A. Kingravi, and Patricio A. Vela. A comparative study of efficient initialization

methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1):200–210, 2013.

ISSN 09574174. doi: 10.1016/j.eswa.2012.07.021.

S. Cesare and Y. Xiang. Software Similarity and Classification. SpringerBriefs in Computer Science.

Springer London, 2012. ISBN 9781447129097. URL https://books.google.pt/books?id=

Fy_mNhg2lK4C.

Ronald de Wolf. Quantum computing: Lecture notes. July 2019.

Ronald De Wolf. Quantum computing: Lecture notes. arXiv preprint arXiv:1907.09415, 2019.

M.M. Deza and E. Deza. Encyclopedia of Distances. SpringerLink. Springer Berlin Heidelberg, 2012. ISBN

9783642309588. URL https://books.google.pt/books?id=QxX2CX5OVMsC.

50

https://books.google.pt/books?id=Fy_mNhg2lK4C
https://books.google.pt/books?id=Fy_mNhg2lK4C
https://books.google.pt/books?id=QxX2CX5OVMsC
Tomás Sousa

R.A. Fisher. Iris. UCI Machine Learning Repository, 1988.

E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical clusterings. Journal of the Amer-

ican Statistical Association, 78(383):553–569, 1983a. doi: 10.1080/01621459.1983.10478008.

E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical clusterings. Journal of the Amer-

ican Statistical Association, 78(383):553–569, 1983b. doi: 10.1080/01621459.1983.10478008.

Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in space. Philosophical

Magazine Series 1, 2:559–572.

Oktay Günlük, Jayant Kalagnanam, Minhan Li, Matt Menickelly, and Katya Scheinberg. Optimal decision

trees for categorical data via integer programming. Journal of Global Optimization, 81:233 – 260, 2021.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):193–218, 1985.

ISSN 1432-1343. doi: 10.1007/BF01908075. URL https://doi.org/10.1007/BF01908075.

Jonas Landman. Quantum algorithms for unsupervised machine learning and neural networks. arXiv

preprint arXiv:2111.03598, 2021.

Leo Liberti, Carlile Lavor, Nelson Maculan, and Antonio Mucherino. Euclidean distance geometry and

applications. SIAM Review, 56, 05 2012. doi: 10.1137/120875909.

Seth Lloyd. The limitations of classical simulation of quantum systems. Physical Review A, 53(5):1786,

1996.

Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran. Quantum embeddings for machine

learning. pages 1–11, 2020. URL http://arxiv.org/abs/2001.03622.

T.M. Mitchell. Machine Learning. McGraw-Hill International Editions. McGraw-Hill, 1997. ISBN

9780071154673. URL https://books.google.pt/books?id=EoYBngEACAAJ.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniver-

sary Edition. Cambridge University Press, 2010. doi: 10.1017/CBO9780511976667.

Daniel K. Park, Francesco Petruccione, and June Koo Kevin Rhee. Circuit-Based Quantum Random Access

Memory for Classical Data. Scientific Reports, 9(1):1–8, 2019. ISSN 20452322. doi: 10.1038/

s41598-019-40439-3.

51

https://doi.org/10.1007/BF01908075
http://arxiv.org/abs/2001.03622
https://books.google.pt/books?id=EoYBngEACAAJ

Antonio Parmezan, Vinícius Alves de Souza, and Gustavo Batista. Evaluation of statistical and machine

learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the

use of each model. Information Sciences, 01 2019. doi: 10.1016/j.ins.2019.01.076.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-

nay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830,

2011.

Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based external cluster evalua-

tion measure. In Conference on Empirical Methods in Natural Language Processing, 2007.

Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analy-

sis. Journal of Computational and Applied Mathematics, 20:53–65, 1987. ISSN 0377-0427. doi:

https://doi.org/10.1016/0377-0427(87)90125-7. URL https://www.sciencedirect.com/

science/article/pii/0377042787901257.

J.J. Sakurai and J. Napolitano. Modern Quantum Mechanics. Cambridge University Press, 2017. ISBN

9781108422413. URL https://books.google.pt/books?id=010yDwAAQBAJ.

Maria Schuld and Francesco Petruccione. Machine Learning with Quantum Computers. 2021. ISBN

978-3-030-83097-7.

Maria Schuld, Alex Bocharov, Krysta Svore, and Nathan Wiebe. Circuit-centric quantum classifiers. 2018.

doi: 10.1103/PhysRevA.101.032308.

Donald Wunsch Seaar Al-Dabooni. Ieee transactions on neural networks and learning systems (tnnls).

Current opinion in structural biology, 30(7):1928–1942, 2019.

Jiajun Wen, Zhihui Lai, Yinwei Zhan, and Jinrong Cui. The l2,1-norm-based unsupervised optimal

feature selection with applications to action recognition. Pattern Recognition, 60:515–530, 2016.

ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2016.06.006. URL https://www.

sciencedirect.com/science/article/pii/S0031320316301248.

Nathan Wiebe. Key questions for the quantummachine learner to ask themselves. New Journal of Physics,

22(9), 2020. ISSN 13672630. doi: 10.1088/1367-2630/abac39.

52

https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://books.google.pt/books?id=010yDwAAQBAJ
https://www.sciencedirect.com/science/article/pii/S0031320316301248
https://www.sciencedirect.com/science/article/pii/S0031320316301248

Nathan Wiebe, Ashish Kapoor, and Krysta Svore. Quantum Algorithms for Nearest-Neighbor Methods for

Supervised and Unsupervised Learning. Quantum Information and Computation, 15(3-4):318–358, jan

2014. ISSN 15337146. URL http://arxiv.org/abs/1401.2142.

Dongkuan Xu and Yingjie Tian. A Comprehensive Survey of Clustering Algorithms. Annals of Data Science,

2(2):165–193, 2015. ISSN 2198-5812. doi: 10.1007/s40745-015-0040-1. URL https://doi.

org/10.1007/s40745-015-0040-1.

53

http://arxiv.org/abs/1401.2142
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1

	Introduction
	Context
	Motivation

	Machine Learning
	Introduction
	Types of Machine Learning
	Key Machine Learning Concepts
	Data
	Normalization
	Standardization
	Underfitting and Overfitting
	Distance and Similarity measures
	Dimensionality Reduction

	Clustering Algorithms
	Types of Clustering
	KMeans Algorithm
	Evaluation metrics

	Summary

	Quantum Machine Learning
	Quantum Computing Key Concepts
	Fundamental Principles of Quantum Mechanics
	Quantum bit
	Quantum Gates

	Data Encoding
	Measuring the overlap between quantum states
	SWAP Test
	Inversion Test
	Functions after the Overlap

	Quantum-Clustering

	Experimentation of Swap Test as a distance metric
	Classification
	Clustering

	Conclusions

