
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Tomás Barros Carneiro

iQbricks: Integration of a fully-featured
quantum language in the framework Qbricks

May 2023

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Tomás Barros Carneiro

iQbricks: Integration of a fully-featured
quantum language in the framework Qbricks

Master dissertation
Integrated Master Degree in Information Physics

Dissertation supervised by
Renato Neves
Pedro Rangel Henriques

May 2023

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.
Therefore, the present work can be utilized according to the terms provided in the license
bellow. If the user needs permission to use the work in conditions not foreseen by the licens-
ing indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

A C K N O W L E D G E M E N T S

I would like to express my heartfelt appreciation to my supervisors, Pedro Henriques and
Renato Neves, for their invaluable patience, and feedback. My journey would not have
been possible without Christophe Chareton, who provided me with generous guidance,
knowledge, and expertise throughout my internship. I am also deeply grateful to CEA for
their generous support, which made this incredible opportunity possible.

I would like to extend my thanks to the rest of the Qbricks team for their constant help,
feedback, and moral support. I am also thankful to the researchers and work colleagues I
met during talks and seminars, who have impacted and inspired me.

Lastly, I want to express my sincere gratitude to my family and friends. Their unwavering
belief in me has kept my spirits and motivation high during this process.

ii

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

Tomás Barros Carneiro

A B S T R A C T

Quantum Computing has noticeably grown over the last two decades, making it a revolu-
tionary field of investigation in the current era of technological research.
Such a growth has been leading to an increasing demand in research by several big enter-
prises such as IBM, Google and Microsoft, paving the way for a richer ecosystem and untold
benefits among the Quantum Computing community.
Verification is a crucial aspect of software development, as it ensures that a program per-
forms as intended and reduces the risk of introducing errors. This is especially important
in the field of Quantum Computing, where the complexity of programs is high and the
behavior of quantum systems is often counterintuitive. Verification of quantum programs
can help detect errors that may lead to incorrect results, which is of utmost importance when
dealing with quantum algorithms and quantum simulations. As a result, having a formal
verification framework for quantum programs can greatly benefit the development of reliable
and accurate quantum software. Qbricks is a verification framework for building quantum
programs, and corresponds to the framework on which this project has been integrated.
During the course of this thesis, iQbricks – an intuitive and user-friendly language to
build and formally verify quantum programs – was developed, along with a framework to
translate and generate verifiable Qbricks programs from iQbricks.
This project’s main achievements were: (1) the design and implementation of a high-level
programming language for describing quantum circuits in an intuitive and user-friendly
way and (2) the implementation of a translator, embedded in Qbricks’ framework, that
converts iQbricks programs to Qbricks ones.
The developed framework was evaluated against two different quantum algorithms: the
Quantum Fourier Transform and Grover’s algorithm.
This project was accompanied by an internship at the Commissariat à l’énergie atomique et
aux énergies alternatives (CEA) - LSL, where this implementation was developed in direct
involvement with Qbricks’ team of investigators.

Keywords: Quantum Computing, Qbricks, formal verification, quantum programming
language, Quantum Fourier Transform, Grover’s algorithm

iv

R E S U M O

A Computação Quântica cresceu de forma notável nas últimas duas décadas, tornando-se
um campo revolucionário de investigação na atual era da investigação tecnológica. Tal
crescimento tem levado a uma crescente procura na investigação por parte de várias grandes
empresas como a IBM, Google e Microsoft, abrindo caminho para um ecossistema mais rico e
benefícios inéditos entre a comunidade da Computação Quântica.
A verificação é um aspecto crucial no desenvolvimento de software, pois garante que um
programa execute conforme o previsto e reduz o risco de introduzir erros. Isso é especial-
mente importante no campo da computação quântica, onde a complexidade dos programas
é alta e o comportamento dos sistemas quânticos é frequentemente contra-intuitivo. A
verificação de programas quânticos pode ajudar a detectar erros que possam levar a re-
sultados incorretos, o que é de extrema importância ao lidar com algoritmos quânticos
e simulações quânticas. Como resultado, ter um framework de verificação formal para
programas quânticos pode beneficiar grandemente o desenvolvimento de software quântico
confiável e preciso. Qbricks é uma estrutura de verificação para a construção de programas
quânticos, e corresponde à estrutura sobre a qual este projecto foi integrado. Durante o curso
desta tese, foi desenvolvida iQbricks - uma linguagem intuitiva e de fácil utilização para
construir e verificar formalmente programas quânticos - juntamente com uma ferramenta
para traduzir e gerar programas Qbricks verificáveis a partir de iQbricks.
As principais concretizações deste projecto foram: (1) a concepção e implementação de uma
linguagem de programação de alto nível para descrição de circuitos quânticos de uma forma
intuitiva e de fácil utilização e (2) a implementação de um tradutor, embutido em Qbricks,
que converte programas iQbricks para Qbricks. A ferramenta desenvolvida foi testada
utilizando dois algoritmos quânticos diferentes: o Transformada de Fourier Quântica (QFT)
e algoritmo de Grover.
Este projecto foi acompanhado por um estágio no Commissariat à l’énergie atomique et aux
énergies alternatives (CEA) - LSL, onde esta implementação foi desenvolvida em colaboração
direta com a equipa de investigadores de Qbricks.

Palavras-chave: Computação Quântica, Qbricks, verificação formal, linguagem para progra-
mação quântica, Transformada de Fourier Quântica, algoritmo de Grover

v

C O N T E N T S

1 introduction 1

1.1 Motivation and Context 1

1.2 Contributions 2

1.3 Document’s structure 3

2 state of the art 4

2.1 Quantum Computing 4

2.2 Qbricks framework 14

2.3 Language processing 20

3 iqbricks language 24

3.1 Motivational Examples 24

3.2 Specification 30

3.3 Syntax analyser 31

4 a verification framework for iqbricks 39

4.1 Solution design 39

4.2 Java AST structure 40

4.3 AST Builder 52

4.4 Changing the paradigm 78

4.5 Ocaml AST structure 79

4.6 Evaluating the Java-AST 84

4.7 Generating a program in Qbricks 106

5 testing 110

5.1 Introduction 110

5.2 Grover’s algorithm 110

5.3 QFT algorithm 120

6 conclusion 126

6.1 Prospects for future work 126

vi

L I S T O F F I G U R E S

Figure 1 Bloch sphere representation of a qubit’s state 6

Figure 2 Controlled-U gate 10

Figure 3 Hadamard transform on n qubits 11

Figure 4 Quantum circuit for simultaneously evaluating f (0) and f (1) 12

Figure 5 Quantum circuit respective to Deutsch’s algorithm 12

Figure 6 Overview of Qbricks verification process 15

Figure 7 Syntax for Qbricks-Dsl 16

Figure 8 Data flow of a language recognizer 20

Figure 9 Parse-tree generated from code example 23

Figure 10 AST generated from Parse-tree in Figure 9 23

Figure 11 iQbricks circuit constructors 25

Figure 12 Resulting circuits for globally applying gates and using for-cycles 26

Figure 13 Controlled-U gate constructor 26

Figure 14 Example concerning controlled gates 26

Figure 15 Conjugated gates circuit example 27

Figure 16 QFT circuit implementation 28

Figure 17 Chosen architecture for the implementation of iQbricks 40

Figure 18 Circuit respective to Grover’s algorithm 111

Figure 19 Circuit respective to Grover’s iteration subroutine 112

Figure 20 Generated OpenQASM grover_run circuit 120

Figure 21 QFT circuit implementation 121

Figure 22 QFT program with generated proof-obligations 125

Figure 23 Generated OpenQASM qft circuit 125

vii

L I S T O F TA B L E S

Table 1 PPS accessors and types 17

Table 2 Function circ_to_pps and accessors 18

Table 3 Parallel composition with pre and post conditions 19

Table 4 Sequential composition with pre and post conditions 19

viii

1

I N T R O D U C T I O N

This dissertation presents and discusses a Master’s Project in Physics Engineering, Infor-
mation Physics branch. The current chapter showcases: the main goals of this project,
contributions brought by the work done and the structure of this document.

1.1 motivation and context

From coherently handling only a few qubits to dozens of them currently, viable quantum
computers seem closer to us than ever. Actually there is a general belief that we are
on the verge of a ‘second quantum revolution’, as signaled for example by the quantum
computers Sycamore and Jiuzhang which provided for the first time experimental evidence
of the so-called ’quantum computational advantage’ (Arute et al., 2019; Zhong et al., 2020). In
addition, 2022’s Nobel prize in physics was awarded to three of the pioneers in quantum
information science, for experiments with entangled photons, establishing the violation of
Bell inequalities. Such a revolution raises the hope that many quantum algorithms will soon
move from the scientist’s or engineer’s notebook into actual quantum computers, which
would revolutionise different areas of society, from medicine to metrology (Preskill, 2018).

In this context, the overarching goal of the project is to provide mechanisms for checking
whether a given quantum algorithm will behave as intended when running on a quantum
computer. This is both interesting and challenging: many of the methods used in classical
programming for checking that algorithms behave as intended simply break when subjected
to quantum laws. For example, debugging is not applicable because to inspect the state of a
quantum program at the middle of its execution ruins its end result. On the other hand, the
well-known method of deductive verification is still applicable. Formal methods and deductive
verification offer a wide range of techniques aiming at proving the correctness of a system
with absolute, mathematical guarantee -— reasoning over all possible inputs, with methods
drawn from logic, automated reasoning and program analysis (Chareton et al., 2021). The
advantages of having a formally verified program are numerous. First, it ensures that the
program is free from errors that could lead to unintended behavior or security vulnerabilities.
Additionally, it can increase confidence in the correctness of the program, which is especially

1

1.2. Contributions 2

important for critical systems that must operate correctly in high-stakes environments, such
as quantum computers. Finally, it can serve as a form of documentation, making it easier to
understand the program’s behavior and ensuring that it remains consistent as the program
evolves over time. Thus even if more expensive, formal verification offers an alternative to
testing, it enables parametric proof certificates that guarantee program correctness.

In deductive verification, programs are typically annotated with logical assertions, such as
pre and post-conditions for operations or loop invariants. Then proof obligations are (semi-)
automatically generated, in such a way that proving them ensures that the logical assertions
hold along any execution of the program (Chareton et al., 2021). A deductive verification
framework for quantum algorithms, called Qbricks, was proposed in (Chareton et al., 2021)
– and remarkably the latter was already used for successfully verifying important quantum
algorithms, such as quantum phase estimation (QPE) and Grover’s search. Another similar
solution for formally proved correct quantum programs is the language Sqir (Hietala et al.,
2021b,a) which is being developed concurrently with Qbricks.
Qbricks adopts the circuit formalism as the quantum computational model. In this sense,
it is a formal framework for developing quantum programs in the form of circuits, from
their design to their verification. This framework serves as the foundation for the the main
contributions of this dissertation as detailed next.

1.2 contributions

Qbricks’ quantum programming language is still minimal (i.e. not rich in features) and it is
thus neither user-friendly nor close to the way quantum algorithms are typically described.
This hinders the design of complex quantum algorithms within the framework and its wide
adoption by the everyday quantum programmer. The goal of the project is to integrate in the
framework Qbricks a more feature-rich and user-friendly quantum programming language,
in the spirit of IBM’s famous language Qiskit Cross (2018). By introducing a quantum
programming language which allows for deductive verification, in addition to offering an
alternative to testing, it has in principle the decisive additional advantages to both enable
parametric proof certificates and offer once-for-all absolute guarantees for the correctness of
quantum programs.
The primary contributions of this project are:

1. The design and implementation of a high-level programming language for describing
quantum circuits in an intuitive and user-friendly way.

2. An embedded layer in Qbricks’ framework that allows users to write a quantum
program using the newly designed iQbricks and translate it to Qbricks’ language
which can then be verified via SMT solvers such as Z3 and Alt-Ergo.

1.3. Document’s structure 3

3. An AST for quantum circuits, it (1) roots the connection between Qbricks and
iQbricks, (2) enables to connect the circuit object language with a specification
language and (3) opens way for point 4.

4. The framework which results from the development of points 1 and 2 can be expanded
to other quantum programming languages in the future, by reusing the developed
data structures in the translation process.

The full implementation for this project can be consulted in Carneiro (2023).
During the course of this thesis, an internship was conducted for the duration of six

months at CEA Paris-Saclay, where this project was developed in collaboration with Qbricks’
research group. This allowed for a more overall optimised implementation, resulting from
the daily-basis communication and interaction with developers working on different layers of
Qbricks’ framework. As different steps were being taken during this implementation, they
were thoroughly discussed amongst the research group, whose feedback always contributed
to the development process.

1.3 document’s structure

The current chapter just gave a general overview of this M.Sc. project. The subsequent
chapters provide a more detailed report, specifically:

1. Chapter 2 briefly introduces the topics that serve as basis of this project: namely,
quantum computation, the Qbricks framework, and language processing;

2. Chapter 3 introduces the new language and provides a thorough comparison against
other quantum programming languages;

3. Chapter 4 describes the general architecture of the project’s implementation. Data
manipulation processes involving the creation of different AST’s are also thoroughly
covered;

4. Chapter 5 illustrates our implementation at work. Specifically it presents two well-
known quantum algorithms/subroutines written in our language – Quantum Fourier
Transform and Grover algorithm – and the verification process concerning some of their
properties via the translation implemented in this project;

5. Chapter 6 discusses future work prospects and concludes.

2

S TAT E O F T H E A RT

2.1 quantum computing

Modern technology is present in most parts of our lives and typically recurs to different
aspects of computation - in fact, from simple devices to more complex ones, there is almost
always some form of (classical) computation involved. At the most fundamental level,
such devices store digital information in the form of bits - 0’s and 1’s - which are then
processed by different algorithms with a certain task at hand. During the last few decades,
there has been tremendous progress in computational performance, allowing computers to
perform operations faster and more efficiently. However, when faced with highly complex
problems - with lots of variables interacting in complicated ways - scientists and engineers
still need to turn to supercomputers - very large classical devices, often with thousands of
classical CPU and GPU cores. Even then, supercomputers struggle to solve certain kinds of
problems due to the fundamental nature of classical computing. Not only this, quantum effects
are beginning to interfere in the functioning of electronic devices as they are made smaller
and smaller. There are several leading fields of study in which quantum computing can
have a positive impact, such as the simulation of chemical reactions – contributing to drug
manufacturing, molecular research, optimisation of computational processes – applicable to
the financial industry or any organization dealing with logistics optimization – and quantum
machine learning – with countless applications in areas like image recognition, training
neural networks and fraud detection.

2.1.1 Historical background

The problems mentioned above can be tackled to some extent by the use of a new type of
computation brought up to attention by Richard Feynman in Feynman (1982). Back then,
following great breakthroughs in quantum physics, by scientists such as Erwin Schrödinger
and Niels Bohr, it was already apparent that our universe was quantum mechanical. Facing
this idea, Feynman propounded the question: What kind of computer are we going to use to
simulate physics? His interest was to simulate the physical world but, as mentioned above, this

4

2.1. Quantum Computing 5

world was a quantum mechanical one. He came to realize that due to the hidden-variable
problem (Bell, 1964), it was almost impossible to represent the results of quantum mechanics
with a classical universal device. Indeed, the amount of data generated in order to simulate
quantum probabilities was just too heavy to store. His suggestion was a Quantum Computer,
i.e. a computer that fully explores the quantum mechanical laws. Feynman believed that
with a suitable class of such quantum machines any quantum system could be efficiently
simulated.

The fact that classical computers cannot efficiently simulate quantum ones (Feynman,
1982) suggests that the latter, at least at a theoretical level, may offer a fundamental speed
advantage. In fact we know by now that this speed advantage is so remarkable that many
researchers believe no conceivable amount of progress in classical computation will be
able to overcome the gap between the power of a classical computer and the power of a
quantum one Nielsen and Chuang (2010). David Deutsch was one of the first scientists to
demonstrate this advantage, by presenting an algorithm – that combines quantum parallelism
with a property of quantum mechanics known as interference (Nielsen and Chuang, 2010).
Deutsch’s algorithm later evolved into what is known today as Deutsch-Jozsa’s algorithm,
mainly used in introductory courses as an illustration of ‘quantum advantage’. Even though
considered a "toy algorithm", it supports the belief in quantum computing’s superiority
for solving certain classes of problems. This belief was crystallised most notably in 1997

by Peter Shor who demonstrated that two strikingly hard computational problems - prime
factorisation of an integer and the so-called discrete logarithm - could be solved efficiently in a
quantum computer Shor (1997). Since these two problems seem to have no efficient solution
on a classical computer, the breakthrough fuelled interest among the scientific community.
Additionally, Lov Grover’s 1996 discovery of a quadratic speedup on the unstructured
database search problem using a quantum computer further confirms the potential power of
quantum computing Grover (1996). Unfortunately, while there may be other problems that
quantum computers can solve more efficiently than classical ones, coming up with good
quantum algorithms is still a hard task.

2.1.2 Qubit

In classical computation information is represented by bits. In quantum information, a bit
can be encoded using a two-dimensional property of a subatomic object (usually, a photon
or an electron, or an ion). This quantum two-dimensional system is called a quantum bit, or
qubit for short. The bases of a qubit can be represented using Dirac ‘|⟩’ notation - |0⟩ and |1⟩.
One of the most prominent aspects of a qubit is that it can be in a state other than |0⟩ or |1⟩;
more specifically it can be in a superposition, encoded in the form of a linear combination of
|0⟩ and |1⟩. A linear combination of states is written as a vector:

2.1. Quantum Computing 6

|ψ⟩ = α |0⟩+ β |1⟩ (1)

where α and β are complex numbers, called probability amplitudes. In the quantum setting,
we are interested on those combinations that satisfy the equation |α|2 + |β|2 = 1. Then, the
probability of observing state |0⟩ as the result of measuring the qubit |ψ⟩ is |α|2 while the
probability of observing |1⟩ is |β|2 (Nielsen and Chuang, 2010).

Simply put, the state of a qubit is a unit vector in the two-dimensional complex vector space
C2. The states |0⟩ and |1⟩ are known as computational basis states, and form an orthonormal
basis for this space. In matrix from they are formally defined as:

|0⟩ = [1, 0]T, |1⟩ = [0, 1]T (2)

For the particular cases where α = β = 1√
2

and α = 1√
2

and β = − 1√
2
, the corresponding

states are commonly denoted by |+⟩ and |−⟩:

|+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ (3)

|−⟩ = 1√
2
|0⟩ − 1√

2
|1⟩ (4)

For these amplitude values, we have |α|2 = |β|2 = 1
2 . This means that we have a 50%

probability of observing either |0⟩ or |1⟩ when measuring either of the above states.
If global phases are ignored, the state of a qubit can be represented geometrically on a

three-dimensional unit sphere - often called Bloch sphere - showed in Figure 1 by rewriting
Equation 1 as:

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ (5)

where θ and ϕ are respective polar and azimuthal angles.

ϕ

θ

x̂ = |+⟩

ŷ = |i⟩

ẑ = |0⟩

−ẑ = |1⟩

|ψ⟩

Figure 1: Bloch sphere representation of a qubit’s state

2.1. Quantum Computing 7

By observing Figure 1, we see that a qubit can be in an infinite number of states. However,
when a qubit is measured its state collapses from a superposition of |0⟩ and |1⟩ to a specific
state corresponding to the measurement result, either |0⟩ or |1⟩ (i.e. one of the poles). For
example, if we measure a qubit in the state |+⟩ and obtain 0 as a result, the state collapses
to |0⟩.

2.1.3 Quantum circuits - a model for quantum computing

Although conceptually different, quantum computation is analogous to classical computation
in the sense that both can be represented as circuits containing wires (where information
passes) and gates (which compute the information). Akin to classical circuits and logical
gates, information in a quantum circuit is manipulated via what are called quantum gates. To
understand how such gates work is essential to comprehend and build different quantum
algorithms, so we will briefly overview them next.
The most common notation for quantum gates is the following:

|ψin⟩ U |ψout⟩

where U can be any unitary gate, and the circuit’s input and output are given by |ψin⟩ and
|ψout⟩, respectively. Quantum circuits are represented as a sequence of gates, read from the
left to the right, and each wire represents a single qubit. Unitary gates are used to represent
unitary operators, which perform unitary transformations on qubits. An operator U is
defined as unitary if U†U = I (Nielsen and Chuang, 2010), where U† denotes the Hermitian
conjugate of U and I denotes the identity matrix. The importance of unitary operators lies
in the fact that they preserve inner products between vectors, which is essential for the
preservation of norms of states that are encoded as unit vectors (as given by Eq.1). Therefore,
it is essential that gates preserve norms, and as a result, single quantum gates (i.e. gates
that work on one qubit) are described as 2 × 2 unitary matrices. One of the most important
single quantum gates is the Hadamard gate H represented by matrix 6:

H =
1√
2

(
1 1
1 −1

)
(6)

When the Hadamard gate is applied to an element of the computational basis it creates a
superposition:

H |0⟩ = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2
(|0⟩+ |1⟩) = |+⟩ (7)

H |1⟩ = 1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2
(|0⟩ − |1⟩) = |−⟩ (8)

2.1. Quantum Computing 8

In circuit language:

|0⟩ H |+⟩ |1⟩ H |−⟩

Other essential single quantum gates are given by the Pauli matrices:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(9)

In particular, the X gate is usually referred to as NOT gate, because its application to a
quantum state results in:

X (α |0⟩+ β |1⟩) = α |1⟩+ β |0⟩ (10)

The Z gate leaves |0⟩ unchanged and flips the sign of |1⟩ to give − |1⟩. By using a linear
combination of Pauli matrices a group of gates called rotation gates, generally defined as:

Ru(θ) = e
−iθu

2 , u ∈ {X, Y, Z} (11)

The application of one of these gates to a qubit results in a rotation of its state around one
of Bloch sphere’s (Figure 1) axis – x̂ if the gate is RX(θ), ŷ if it is RY(θ) or ẑ if it is RZ(θ) – by
an angle of θ:

RX(θ) =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
, RY(θ) =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
, RZ(θ) =

(
e−i θ

2 0
0 ei θ

2

)
(12)

Another gate worth mentioning is the phase shift gate Ph(θ), which shifts the global phase
of a qubit by θ if its quantum state is |1⟩. From this gate, we can obtain the S and T gates,
which correspond to the phase shift gate with θ = π

2 and θ = π
4 , respectively:

Ph(θ) =

(
1 0
0 eiθ

)
, S =

(
1 0
0 i

)
, T =

(
1 0
0 eiπ/4

)
(13)

2.1.4 Multi-qubit systems

When dealing with multiple qubits, the space of corresponding states arises from the tensor
product (⊗). Specifically, for n-qubits the state space of the system is C2n

. If we consider a
multi-qubit system |ψ⟩ with n qubits, each described by a state |ψi⟩, then we note that the
composite state is given by:

2.1. Quantum Computing 9

|ψ⟩ = |ψ0⟩ ⊗ |ψ1⟩ ⊗ · · · ⊗ |ψn⟩ =
n⊗

i=0

|ψi⟩ (14)

For a more compact representation,
⊗n

i=0 |ψi⟩ will be typically represented as:

|ψ0ψ1 . . . ψn−1⟩ (15)

An example of a multi-qubit gate is the tensor product of n single-qubit gates U (for
example, H or X):

U⊗n
n⊗

i=0

|ψi⟩ =
n⊗

i=0

U |ψi⟩ , U ∈ {H, X, Y, Z, . . . } (16)

|ψin⟩0
...

|ψin⟩n−1

U

U

= U

|ψout⟩0
...

|ψout⟩n−1

Swap gates, as their name suggests, swap the position of two qubits:

|ψ0⟩
|ψ1⟩

|ψ1⟩
|ψ0⟩

Another useful multi-qubit quantum gate is the controlled-NOT gate (C-NOT for short).
This gate receives two input qubits, designated as control and target respectively. If the
control qubit – marked with a dot – is set to |1⟩, the target qubit – marked with a "⊕" – is
flipped – as if an X gate were applied to it. Otherwise if the control qubit is |0⟩, the target
qubit stays the same. Thus we obtain:

C-NOT |00⟩ 7→ |00⟩ , C-NOT |01⟩ 7→ |01⟩
C-NOT |10⟩ 7→ |11⟩ , C-NOT |11⟩ 7→ |10⟩

(17)

The corresponding matrix and circuit are given by:

C-NOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (18)
|ψ0⟩
|ψ1⟩

|ψ0⟩
|ψ1 ⊕ ψ0⟩

2.1. Quantum Computing 10

This operation is as a generalization of a classical XOR gate, since its action can be
described as |A, B⟩ → |A, B ⊕ A⟩, where ⊕ is addition modulo two, which is exactly what
the XOR gate does Nielsen and Chuang (2010).

Suppose that instead of the X gate, which flips the qubit given as input, we now have an
arbitrary single qubit gate U. A controlled-U operation 2 will follow the same logic as the
C-NOT gate: there will be a control and a target qubit, and only if the control qubit is set to
|1⟩ the U gate will be applied to the target qubit; otherwise this qubit is left unchanged:

C-U |ψ0, ψ1⟩ 7→ |ψ0⟩Uψ0 |ψ1⟩ (19)

Note that since our control qubit |ψ0⟩ will be in a state |0⟩ or |1⟩, the notation Uψ0 means
that the gate U will either be applied to the target qubit |ψ1⟩, or act as an identity gate I,
which maps a state to itself: I |ψ⟩ 7→ |ψ⟩.

Note that the U gate can be any unitary gate, meaning that it can also represent a
multi-qubit gate.

|ψ0⟩
|ψ1⟩ U

|ψ0⟩
Uψ0 |ψ1⟩

Figure 2: Controlled-U gate

Another very useful multi-qubit gate is the Toffoli gate, which is basically a generalized
controlled-NOT gate. It receives 3 qubits as input - two control qubits and a target one - and
only flips the target qubit if both the control qubits are set to |1⟩:

|ψ0⟩
|ψ1⟩
|ψ2⟩

|ψ0⟩
|ψ1⟩
|ψ2 ⊕ ψ0ψ1⟩

Note that if |ψ2⟩ is set to |1⟩, its output state will correspond to the result of a NAND gate
acting on the first two qubits – state |0⟩ is obtained only when both |ψ0⟩ and |ψ1⟩ are set to
|1⟩:

Toffoli |000⟩ 7→ |000⟩ , Toffoli |001⟩ 7→ |001⟩
Toffoli |010⟩ 7→ |010⟩ , Toffoli |100⟩ 7→ |100⟩
Toffoli |110⟩ 7→ |111⟩ , Toffoli |111⟩ 7→ |110⟩

(20)

A less common, but still useful, multi-qubit gate is the Fredkin gate, also known as
"CSWAP", which acts as a controlled swap gate:

2.1. Quantum Computing 11

|ψ0⟩
|ψ1⟩
|ψ2⟩

|ψ0⟩
|ψ1

′⟩
|ψ2

′⟩

2.1.5 Universal quantum gates

In quantum computing, a set of gates is said to be universal if any unitary operation may
be approximated to arbitrary accuracy by a quantum circuit involving only those gates.
Nielsen and Chuang (2010) describes three different universality constructions for quantum
computing, which culminate in a proof that any unitary operation can be approximated to
arbitrary accuracy using the Hadamard, Phase (Ph(θ)), C-NOT and T gates.

2.1.6 An example of Quantum Advantage

It is referred to as a quantum advantage when a quantum computer can solve a specific class
of problems more efficiently than a classical computer. As detailed in the example below, one
of the significant advantages of quantum computing is the ability to perform an extremely
high number of computations in parallel. Technically, this is achieved using the concept
of superposition. Superposition can be achieved by simply applying n Hadamard gates in
parallel on n qubits. For n qubits initialized at state |0⟩ (|0⟩⊗n), we obtain the circuit in
Figure 3:

|0⟩0
...

|0⟩n

H

H

= H

|0⟩+|1⟩√
2

...
|0⟩+|1⟩√

2

Figure 3: Hadamard transform on n qubits

The resulting state for this circuit is:

1√
2n ∑

x∈2n
|x⟩. (21)

Note that the state of n-qubits carries the information of 2n complex numbers. Thus a
quantum superposition state, can store 2n inputs in n qubits simultaneously. This means that
as the number of qubits grows linearly, the number of associated complex numbers grows
exponentially. This is a reason why it is so hard to simulate quantum mechanical systems
classically.

2.1. Quantum Computing 12

Suppose there is a function f : {0, 1} → {0, 1}. It receives the state |x, y⟩ as input, where
x is a superposition: |x⟩ = 1√

2
(|0⟩+ |1⟩). Now, assume there’s an appropriate quantum

circuit, which will be called U f , defined by a black-box (for the purpose of this example) that
performs the transformation |x, y⟩ 7→ |x, y ⊕ f (x)⟩ – similarly to a C-NOT gate (see 17). With
a little thought, if y = 0, the final state of the second qubit will simply be the value f (x).
With this assumption, the circuit in Figure 4 will result in the state:

|0, f (0)⟩+ |1, f (1)⟩√
2

(22)

|0⟩+|1⟩√
2

U f

|0⟩

x x

y y ⊕ f (x)

Figure 4: Quantum circuit for simultaneously evaluating f (0) and f (1)

which contains information about both f (0) and f (1), as if f was evaluated for |0⟩ and |1⟩
simultaneously. This phenomenon is referred to as quantum parallelism, and is a fundamental
feature of many quantum algorithms Nielsen and Chuang (2010).

Despite the fact that the function f appears to be evaluated only once, quantum parallelism
allows for the evaluation of f for all potential inputs at once. This is not necessarily
useful, since it is only possible to extract one value of f from a superposition state such as

∑x |x, f (x)⟩. Nevertheless, simple modifications to the quantum circuit in Figure 4 enable it
to outperform classical ones. The resulting circuit is presented in Figure 5:

|0⟩ H
U f

H

|1⟩ H

x x

y y ⊕ f (x)

Figure 5: Quantum circuit respective to Deutsch’s algorithm

The input state |01⟩ is sent through two Hadamard gates in parallel, and the circuit U f is
applied to the resulting state. Then a final Hadamard gate is applied to the first qubit, which
results in the state:

± |0⟩
[
|0⟩−|1⟩√

2

]
if f (0) = f (1)

± |1⟩
[
|0⟩−|1⟩√

2

]
if f (0) ̸= f (1)

(23)

2.1. Quantum Computing 13

It can be rewritten more concisely as

|ψ⟩ = ± | f (0)⊕ f (1)⟩
[
|0⟩ − |1⟩√

2

]
, (24)

So if the first qubit is measured, the result f (0)⊕ f (1) – which represents a global property
of f (x) – can be determined using only one evaluation of f , which, in the classical case,
would require at least two evaluations. This example demonstrates a property of quantum
mechanics known as interference. Intuitively, U f introduces interference patterns which, after
applying the Hadamard gate, will give away information about a global property of the
function f , namely the value f (0)⊕ f (1).
Deutsch’s algorithm is a simplified version of the more general Deutsch-Jozsa algorithm [Nielsen
and Chuang (2010)]. Although this algorithm is often referred to as a toy algorithm – since
it has no known applications – it provides an exponential speedup, and it makes use of
unique quantum mechanics’ properties in order to efficiently manipulate information.

2.1.7 Quantum Computing in our days

Current generation quantum computers are not yet capable of replacing classical computers
for commercially relevant applications. However, as quantum technology advances very
rapidly, quantum applications are expected to become viable during the next decade (Finke,
2022).

The main obstacle in the path to such applications is the fact that the state of a qubit is
extremely sensitive to disturbances from the outside environment, which raises a critical
challenge in quantum computing technology. It is foreseen that while the community tries
to overcome this obstacle, quantum computing will fall into two phases:

1. the NISQ phase: standing for Noisy Intermediate Scale Quantum, in which noise in
quantum gates cannot be completely eliminated. This generally limits the size of
quantum circuits that can be executed reliably and promotes the design of near-term,
noise-resilient quantum algorithms. Intermediate scale refers to quantum computers
ranging from 50 to around 100 qubits (Preskill, 2018).

2. Fault Tolerant Quantum Computing phase: through the application of quantum error
correction algorithms, a threshold that limits the probability of error can be imposed,
mitigating the effect of noise in the underlying hardware Nielsen and Chuang (2010).

2.2. Qbricks framework 14

2.2 qbricks framework

Quantum algorithms are usually described as a series of operations which, when composed
with each other, transform an initial state into the desired state. This state is then usually
measured to retrieve classical information. A quantum algorithm is thus described as a
sequence of operations typically given in the form of a quantum circuit or a quantum
programming language. It is also common to attach a specification to an algorithm, i.e.
the corresponding global memory-state transformation typically described in logical form.
A major challenge is then to verify that the circuit generated by the code written as an
implementation of a given algorithm indeed corresponds to the intended algorithm, and that
the transformations occurring along the circuit indeed result in the intended global state
(Chareton et al., 2021).

2.2.1 An overview of Qbricks

Qbricks (Chareton et al., 2021) is a framework for semi-automated formal verification
of quantum programs. Specifically it supports the description of quantum circuits using
a circuit description language and semi-automatic proof support concerning program
specifications. It thus lowers the amount of labor-intensive effort needed to create verified
quantum programs.

In more detail, Qbricks is equipped with:

• a domain specific language (Qbricks-DSL) for building parameterised quantum circuits;

• a dedicated logical specification language (Qbricks-Spec);

• a flexible path-sum (Amy, 2019) symbolic representation for reasoning about quantum
states - named parameterised path-sum semantics (PPS);

• a Hoare-style logic, called Hybrid Quantum Hoare Logic (HQHL), for deductive verification
of quantum programs.

Overall the framework can be boiled down to two key aspects:

quantum circuit representation is achieved through the domain specific language
(Qbricks-DSL) - which makes use of data constructors which represent elementary gates,
sequential and parallel composition, and ancilla creation Chareton et al. (2021). One
particular aspect of Qbricks-DSL is that measurement is out of its scope. Nonetheless it is
possible to reason about probabilistic outputs of circuits, as if the result of a circuit was
measured Chareton et al. (2021).

2.2. Qbricks framework 15

program specification and verification is accomplished by using PPS symbolic
representation as a specification mechanism for quantum programs. Figure 6 illustrates how
a program implemented using Qbricks framework is processed. A program in Qbricks

will consist of two parts: a circuit description, accomplished using Qbricks-Dsl, and a
formal specification, using Qbricks-Spec and PPS representation. Along with Qbricks-Spec

specification language and PPS, the so-called Hybrid Quantum Hoare Logic (HQHL) engine
produces proof-obligations which are then validated (mainly by SMT solvers) Chareton et al.
(2021).

Figure 6: Overview of Qbricks verification process

2.2.2 Circuit representation

Quantum circuits in Qbricks are represented using Qbricks-DSL, a first-order, functional
language. Unlike e.g. Quipper or Qwire, a quantum circuit in Qbricks is not a function acting
on qubits: it is a simple, static object. A circuit is a compositional structure consisting of
gates and circuit combinators, such as sequential composition, parallel composition, control
and inversion Chareton et al. (2021).

Qbricks is embedded in the Why3 (Filliâtre and Paskevich, 2013) deductive verification
framework. Programs are written in ML language (Leroy et al., 2022) with an (opaque)
datatype circ as the medium to build and manipulate circuits. On top of circ, the type
system of Qbricks-Dsl features the integer (int) and arrow types. This type system is not
exhaustive and is meant to be extended with usual constructs such as Booleans, pairs, lists,
and other user-defined inductive datatypes: its embedding into WhyML makes it easy to use
such types. The syntax for Qbricks-Dsl is expressed in Figure 7.

The core language constructs for Qbricks-Dsl are divided in two main parts:

2.2. Qbricks framework 16

Types A, B ::= circ | int | A → B | . . .

Circuit Terms C ::= Ph(θ) | H | CNOT | Rz(θ) | parallel(M, N) | sequence(M, N) |
invert(M) | control(M) | ancilla(M) | size(M)

Terms M, N ::= C | n | θ | x | λx.M | M N | let rec f x = M in N

Figure 7: Syntax for Qbricks-Dsl

• Circuit Terms, which consist in basic elementary gates, high-level combinators and a
size construct:

– Basic elementary gates: H for the Hadamard gate, Rz(θ) for the rotation gate
around z-axis, Ph(θ) for the global phase shift gate on one qubit and CNOT
for the controlled NOT gate. The chosen gates represent a universal set of gates,
meaning that any quantum unitary matrix can be approached arbitrarily close via
the sequence or parallel composition of these gates. Other, more convenient gates,
can be defined as macros on top of these. If one aims at using Qbricks inside a
verification tool-chain, these macros can for instance be the gates of the targeted
architecture.

– High-level circuit combinators: the purpose of these constructors is to allow
different circuits to be arranged together: parallel for parallel composition of cir-
cuits, sequence for sequential composition of circuits with the same size, invert
for inverting circuits, control for controlling circuits, and finally ancilla(M)

for adding an auxiliary qubit initialized to |0⟩ as the last wire of M which is
discarded afterwards. Provided that their input is of type circ, the output of all
combinators is circ.

– Size construct: size(M) returns the number of wires of M. Provided that its
input is of type circ, the output is int.

• Regular ML-like constructs:

– Integer constants (n, k, . . .), term variables (x, f , . . .), lambda terms (λx.M), ap-
plication (M N) and let-rec construction to permit recursion.

2.2.3 Specification and verification

Specification and logical reasoning in Qbricks is supported by Qbricks-Spec specification
language – aimed at expressing and proving specification properties of quantum programs
(written via Qbricks-DSL) – along with a Hybrid Quantum Hoare Logic (HQHL) which follows
Hoare’s pre and post condition logical sequents (Hoare, 1969).

2.2. Qbricks framework 17

In order to interpret circuit description functions, Qbricks uses parameterised path-sums
(PPS). PPS is an extension of path-sums (Amy, 2019), a way of specifying quantum operations
and verifying the equivalence between quantum circuits.
In Qbricks, a path-sum P is an object with four parameters:

1. The width of the target circuit pps_width(P), with type int

2. The range, meaning that the output sum of kets has a term for each bit vector y⃗ of
length pps_range(P), with type int

3. Function pps_angle(p) that for any input bit vector x⃗ of length pps_width(P) (standing
for a basis ket input to the target circuit) and for any index bit vector y⃗ of length
pps_range(P), defines a real scalar (standing for a basis ket output to the target circuit)

4. Function pps_ket(P), that for any input bit vector x⃗ of length pps_width(P) and for any
index bit vector y⃗ of length pps_range(P), defines a bit vector of length pps_width(P)
(standing for a basis ket output to the target circuit)

Table 1: PPS accessors and types
Identifier Type Id abbreviation
pps_width int pw
pps_range int pr
pps_angle bitvector −→ bitvector −→ real pa
pps_ket bitvector −→ bitvector −→ bitvector pk

Then for any bit vector x⃗ of size pw(P), the expression

Ps(h, |⃗x⟩) = 1√
2pr(P) ∑

y⃗∈BVpr(P)

e2·πi.pa(P)(x⃗,⃗y) |pk(P)(x⃗, y⃗)⟩pw(P) (25)

combines these different elements together to define a linear application for quantum state
vectors.

In Qbricks-Spec, a generalization of path-sums is given by parameterised path-sums (pps).
A pps will act as a function which takes a set of parameters as input and returns a path-sum
as output. Thus for each possible value of its parameters, this function outputs a family of
path-sums, that describes the transformations applied in a family of quantum circuits.

This makes the pps representation well-fitted for the specification of parameterised quan-
tum algorithms, allowing for the compositional combination of accessors (Table 1) along with
circuit constructors from Qbricks-Dsl. As a result, it enables reasoning about parameterised
quantum circuits and their semantics without requiring the manipulation of sum terms
or other higher-order objects. With the aid of this tool, the automatic generation of proof
obligations for Qbricks specifications only yields first-order formulas, allowing for a high
degree of automation when given as input to SMT-solvers (Chareton et al., 2021).

2.2. Qbricks framework 18

Since both Qbricks-Dsl and Qbricks-Spec ultimately express families of quantum circuits,
it is possible to access Qbricks-Dsl object terms with Qbricks-Spec, by making use of the
circ_to_pps(C) function, where C represents a quantum circuit family in Qbricks-Dsl.
Since this function outputs a pps, it is possible to reason about circuit constructors’ properties
by using the accessors listed in Table 2.

Table 2: Function circ_to_pps and accessors
Accessor

pps_width(circ_to_pps(C))
pps_range(circ_to_pps(C))
pps_angle(circ_to_pps(C))
pps_ket(circ_to_pps(C))

Combined with Qbricks-Dsl, Qbricks-Spec makes it possible to express properties
regarding Qbricks-Dsl circuit constructors, by making use of HQHL expressions in the form
of pre and post conditions for arbitrary parameterised circuits. Hoare logical expressions have
the form: {Ψ} e {Φ}. This notation states that whenever Ψ is satisfied, running e ensures that
Φ is satisfied. By including pps specifications in a program, one can specify pre-conditions
on function inputs and post-conditions ensuring properties on function outputs. These pre
and post conditions can be chained along the composition of functions in order to generate
proof-obligations that are sent to the proof engine.

The formulas expressing semantical constraints used in Qbricks-Spec are of the form:

∀x⃗ : A⃗ · P(x⃗) −→ (M : Exp1 7→ Exp2) (26)

meaning "For all typed variables x1 : A1, . . . , xn : An of Qbricks-Dsl, provided that the
property P(x⃗) is satisfied, then the circuit corresponding to the term M (of type circ)
maps the algebraic expression Exp1 to Exp2". In particular, M is an open term of Qbricks-
Dsl (of type circ) with free variables contained in x⃗; P(x⃗) is a logical property that
should be satisfied by any substitution of x⃗; finally, Exp1 and Exp2 are algebraic expressions
parameterised by x⃗ (Chareton et al., 2021).

For example, programs that represent parallel and sequential composition and their
specifications are given in Tables 3 and 4. M1 and M2 represent two arbitrary circ terms.
Expressions “pre” and “post” refer to pre- and post-conditions for these compositions. The
variable result contains the circ term which results from the application of each combinator.

1. Concerning the composition in Table 3, it is guaranteed that the width of result

is equal to the sum of the widths of M1 and M2, given by n1 and n2, respectively.
Additionally, it states that the application of result to the tensor product of input
vectors |⃗x⟩ and |⃗y⟩ results in the tensor product of their respective PPS (this notation is
the same as in Subsection 2.1.4).

2.2. Qbricks framework 19

2. Concerning the composition in Table 4, it must be true that the width of M1, M2 and
result is the same. Finally, it is also guaranteed that PPS3 – corresponding to the
path-sum which results from applying both M1 and M2 (sequentially) to input state |⃗x⟩
– is obtained by applying result to the initial PPS1.

Table 3: Parallel composition with pre and post conditions
result = parallel(M1, M2)
pre:

width(M1) = n1
width(M2) = n2
∀x⃗ · (M1 · |⃗x⟩ 7→ PPS1(x⃗))
∀y⃗ · (M2 · |⃗y⟩ 7→ PPS2 (⃗y))

post:
width(result) = n1 + n2
∀x⃗ · ∀y⃗ · (result · |⃗x⟩ ⊗ |⃗y⟩ 7→ PPS1(x⃗)⊗ PPS2 (⃗y))

Table 4: Sequential composition with pre and post conditions
result = sequence(M1, M2)
pre:

width(M1) = n
width(M2) = n
∀x⃗ · (M1 · PPS1(x⃗) 7→ PPS2(x⃗))
∀x⃗ · (M2 · PPS2(x⃗) 7→ PPS3(x⃗))

post:
width(result) = n
∀x⃗ · (result · PPS1(x⃗) 7→ PPS3(x⃗))

2.2.4 Probabilistic reasoning

As mentioned in Subsection 2.2.1, Qbricks-Dsl lacks a construct for measuring quantum
registers. However, Qbricks-Spec offers reasoning tools that can in some way overcome
this limitation. The probability of obtaining a result by a measurement is correlated with
the amplitudes of the corresponding ket-basis vectors in the quantum state in memory. In
particular, function proba_measure:

proba_measure(C, |v⟩n , j) = |(Ps(circ_to_pps, |v⟩n , j))|2 (27)

receives as input a circuit C, a quantum data register |v⟩n and an index j ∈ [0, 2n[; and it
outputs the probability of one measuring j in the quantum register that results from the
application of circuit C to |v⟩.

Qbricks’ framework has been tested against different quantum algorithms such as Quan-
tum Fourier Transform (QFT), Grover’s search algorithm, Quantum Phase Estimation (QPE),
Shor order-finding, among others (Chareton et al., 2021).

2.3. Language processing 20

2.3 language processing

A language is a set of valid sentences, a sentence is made up of phrases, and a phrase is
made up of vocabulary symbols, called Terminal symbols. Terminal symbols shall appear
in a sequence and comply to a correct order to form a valid language sentence. In order to
implement a processor able to cope with language sentences, an application that reads
sentences and reacts appropriately to the phrases and input symbols must be built. The
main contribution of this M.Sc. project is to convert “sentences” from the language that we
implemented to another language (Qbricks).

2.3.1 Fundamentals

Programs that recognize the structure of a language’s sentences are called parsers. Antlr

tool (Parr, 2013) translates grammars to parsers that look remarkably similar to what an
experienced programmer might build by hand. This structural analysis usually boils down
to two tasks:

lexical analysis the process of using a lexer for grouping characters into words or
symbols (tokens), using Regular Expressions to formally specify each token;

parsing the actual parser that feeds off of these tokens to recognize the sentence structure,
using a grammar as formal specification of the valid sentences.

The diagram shown in Figure 8 illustrates the basic data flow to process the syntactic
structure of a sentence. Input text is converted into tokens by the lexer. These tokens are then
analysed by the parser which generates a structure (usually a parse-tree), that represents how
input text matches the grammar.

Figure 8: Data flow of a language recognizer

The most common formalism for describing languages are context-free grammars (CFG),
which are formally defined as a 4-tuple:

2.3. Language processing 21

CFG = ⟨T, N, S, P⟩ (28)

where

T is the set of all terminal symbols of the language

N is the set of all non-terminal symbols of the grammar

S ∈ N is the grammar’s start symbol or axiom

P is the set of productions of the grammar

Each production p ∈ P has the form p : N → (N ∪ T)∗, where ’∗’ comes from the EBNF
(Extended Backus-Naur Form) notation, and indicates zero or more repetitions of a part.

2.3.2 Designing a language with ANTLR

Antlr (Parr, 2013) is a powerful parser generator for recognising and processing structured
text written according to the grammar of a specific language. It is widely used in academia
and industry to build all sorts of languages, tools, and frameworks. From a formally defined
grammar, Antlr generates a parser for that language that can automatically build parse trees,
also known as concrete syntax trees - which represent how input text matches the grammar
- while also generating tree walkers that can be used to visit the nodes of those trees to
execute application-specific code (Parr, 2013). Parse-tree walkers can be in the form of
listener and visitor pattern implementations, thus deemphasizing embedding actions (code)
in the grammar. This decouples grammars from application code, nicely encapsulating an
application inside the visitors, instead of fracturing it and dispersing the pieces across a
grammar (Parr, 2013).
Given its flexibility and simplicity, Antlr makes it much easier to build language-based
applications, in particular it provides a great environment for developing new programming
languages.

2.3.3 The Abstract Syntax Tree structure

An abstract syntax tree (AST) is a tree representation of the abstract syntactic structure
of text written in a formal language. Each node of the tree typically denotes a construct
occurring in the text. Nodes contain information about different language block-builders
(or constructors) that appear throughout a program. A node can also contain children-nodes,
thus the denomination ‘tree’.

2.3. Language processing 22

The syntax is “abstract” in the sense that it only represents the structural or content-related
aspects rather than every detail found in the actual syntax. This distinguishes abstract syntax
trees from concrete syntax trees, or parse trees, mentioned in the previous Subsection 2.3.2,
which contain terminal symbols typically with no semantic relevance, such as brackets or
parentheses, commas or semi-colons to disambiguate expressions. Once a parse tree is built
(from a source file), an AST can be generated by visiting this parse tree and extracting relevant
information about the program. The generated AST can then be edited and adapted, in
order to represent different abstract structures which will ultimately represent a program’s
information.

Consider the example in Listing 2.1.

while (a > 0) :
if (b == 1) :

b = a * 3

Listing 2.1: Code example

After processing the lines of code in Listing 2.1, the parse-tree in Figure 9 is generated by a
parser. A corresponding Abstract Syntax Tree can be seen in Figure 10. It is noticeable that
some of the nodes in Figure 9 have been removed. This is due to the subsequent processing
that occurs after generating the parse-tree. When the AST is generated, variables a and b are
identified and locally stored, integer numbers are also identified and labelled, and expressions
are unfolded. It is also possible to generate intermediary ASTs, enabling a more flexible and
modular framework. AST generation is a vital tool for compiler design, since it allows for
a convenient representation of programs, making subsequent processing and contextual
analysis an easier and more intuitive task.

2.3. Language processing 23

Figure 9: Parse-tree generated from code example

Figure 10: AST generated from Parse-tree in Figure 9

3

I Q B R I C K S L A N G UA G E

This chapter introduces the iQbricks language. Its main features are presented and illus-
trated with different examples. iQbricks is also compared to other quantum programming
languages using two different quantum circuit implementations. We then demonstrate how
programs can be annotated with specifications in Qbricks-Spec. Finally, the language’s syntax
analyser is thoroughly explained along with the corresponding grammar.

The main goal of iQbricks language is to provide a set of symbols (vocabulary) and of
program constructors that facilitate the description of quantum circuits. Thus throughout the
design of this language, a number of features were implemented taking in account features
from other quantum circuit description oriented languages, such as Qiskit (Cross, 2018), and
Silq (Bichsel et al., 2020), aiming for an intuitive and easy-to-use quantum programming
language.

3.1 motivational examples

This section introduces the main features of iQbricks and provides intuitions on how to
write programs in this language. iQbricks is then compared against Qbricks, Qiskit and
Silq via different quantum circuit implementations.

3.1.1 Main features

iQbricks circuit constructors are displayed in Figure 11. All the available gates were
presented in Section 2.1. The goal for defining this set of gates was not only to represent
a pseudo-universal set, but also to simplify the writing of quantum circuits: a rich set of
circuit constructors wards off the need for complex gate compositions. Note that the
function application gate, denoted by f , corresponds to a circuit defined by a function of type
B⊗n → B⊗n – where B corresponds to a Boolean which can either be 0 or 1. iQbricks circuit
constructors are expressed in Figure 11.

24

3.1. Motivational Examples 25

Function application gates : f | reverse

Single-qubit gates : H | X | Y | Z | Rx(θ) | Ry(θ) | Rz(θ) | Ph(θ) | S | T

Multi-qubit gates : SWAP | C-NOT | Toffoli | Fredkin | Controlled-U

Figure 11: iQbricks circuit constructors

Single-qubit gates can be applied to quantum registers in one of three ways:

1. to a specific index of a register, i.e. a single qubit;

2. to a whole register;

3. to a specific interval of a register.

The different ways that one can apply gates avoids the need to use for-loops in order to
iterate through quantum registers. Nevertheless, there are still cases where for-loops are
useful for iterating through quantum registers. See the examples in Listings 3.1 and 3.2.

circ qr ->
H(qr)
X(qr)

Listing 3.1: Using the global application of gates to
to iterate through a quantum register

circ qr ->
for i in qr {

H(qr[i])
for a in qr[i:]{

X(qr[a])
}

}

Listing 3.2: Using a for-loop to iterate through a
quantum register

Let us analyse both examples thoroughly:

1. In the first example gates H and X are applied globally to register qr, of size n. This
means n H gates will first be applied (in parallel), and then sequenced with n X gates
(in parallel).

2. In the second example, a nested-for will allow the representation of a more complex
circuit, by iterating through different indexes of register qr at each iteration1.

For an input register of size n = 3, the corresponding circuits for the examples above are
represented in Figures 12a and 12b.

The controlled-U gate (Figure 13) is a customizable control gate, in which

• multiple register indexes can be used as controls simultaneously;

• U can represent any circuit in iQbricks.

3.1. Motivational Examples 26

|qr⟩0

|qr⟩1

|qr⟩2

H

H

H

X

X

X
(a) Global application of gates H and X

|qr⟩0

|qr⟩1

|qr⟩2

H X

X

X

H X

X H X
(b) Applying gates H and X inside a for-loop

Figure 12: Resulting circuits for globally applying gates and using for-cycles

n

U

n

Figure 13: Controlled-U gate constructor

The use of the controlled-U gate allows for controlled operations with higher degrees of
complexity to be represented with little effort. Suppose we wish to represent the circuit in
Figure 14:

|qr⟩0
|qr⟩1

|aux⟩0

|aux⟩1

U
G

Figure 14: Example concerning controlled gates

Listing 3.3 exhibits a program fragment that represents the two controlled-operations.

circ qr, aux ->
with control qr (U(aux[0]))
with control qr[0] (G(aux))

Listing 3.3: Using arbitrary control operator to apply controlled gates

1. First, gate U is applied to the first index of register aux – U(aux[0]) – using qr (globally)
as the control.

2. Then gate G is applied (globally) to aux – G(aux) – using the first index of register qr –
qr[0] – as the control.

Conjugate based circuit operations are also included in the language’s constructors. A
conjugated operation occurs when an operator U is applied before a circuit and its conjugate
based operation U† is applied after the circuit. In iQbricks, any gate U can be used to
perform this conjugate based operation.
Consider a function f , which represents a circuit, and suppose we wish to use it as a
conjugate-based operator. Reusing the circuit in Figure 14 and Listing 3.3, the code in Listing
3.4 would represent the circuit in Figure 15.

1 the notation qr[i:] in the inner for-loop states that the variable a will take values from the interval [i, i + 1, . . . , n],
where n is the size of register qr

3.1. Motivational Examples 27

circ qr, aux ->
with conjugated (f(qr,aux)) {

with control qr (U(aux[0]))
with control qr[0] (G(aux))

}

Listing 3.4: Using conjugated basis operator

|qr⟩0
|qr⟩1

|aux⟩0

|aux⟩1

f
U

G
f †

Figure 15: Conjugated gates circuit example

3.1.2 Uniform superposition using Hadamard gates in parallel

Consider a quantum circuit that creates a uniform superposition – i.e. it applies n Hadamard
gates in parallel to |0⟩⊗n – as illustrated in Subsection 2.1.6. This is a very common operation
in quantum algorithmics. The four different code examples in Listings 3.5, 3.6, 3.7 and 3.8
each implement a circuit which represents a uniform superposition in different languages:
Silq (Bichsel et al., 2020), Qiskit (Cross, 2018), Qbricks and iQbricks.
x := 0:uint[n];
for i in [0..n) {

x[i] := H(x[i]);
}

Listing 3.5: Creating a uniform superposition in Silq

qc = QuantumCircuit(n)
for qubit in range(n):

qc.h(qubit)

Listing 3.6: Creating a uniform superposition in Qiskit

let circuit = ref (m_skip n) in
for i = 0 to (n - 1) do

circuit := !circuit -- (place hadamard i n);
done;

Listing 3.7: Creating a uniform superposition in Qbricks

circ qr[n] -> H(qr)

Listing 3.8: Creating a uniform superposition in iQbricks (without specification)

In the first three examples parallel application of the Hadamard gate is achieved through
the use of for-cycles, where at each iteration an Hadamard gate is applied to a different index
of the register. In the last example the Hadamard gate is globally applied to the register qr,
which simplifies the writing and readability of the program.

3.1. Motivational Examples 28

3.1.3 QFT algorithm

The Quantum Fourier Transform (QFT) algorithm is the quantum implementation of the
discrete Fourier Transform over the amplitudes of a wavefunction (Nielsen and Chuang, 2010).
It is a component of several quantum algorithms, most notably Shor’s factoring algorithm
and the Quantum Phase Estimation (QPE) algorithm/routine. The circuit that implements
QFT is illustrated in Figure 16.

|ψin⟩0

|ψin⟩1

|ψin⟩2
...

|ψin⟩n−2

|ψin⟩n−1

H R2 R3 . . . Rn−2 Rn−1

H . . . Rn−3 Rn−2 . . .

. . .

. . .

. . .

H R2

H

|ψout⟩0

|ψout⟩1

...

|ψout⟩2

|ψout⟩n−2

|ψout⟩n−1

Figure 16: QFT circuit implementation

Rk is a rotation gate defined by the matrix:

Rk =

(
1 0
0 e2πi/2k

)
(29)

The code in Listings 3.9, 3.10 and 3.12 corresponds to the QFT implementation using the
languages Silq, Qiskit, Qbricks and iQbricks.

def qft [n:!N] (x: int[n]) mfree: int[n] {
for k in [0..n) {

x[k] := H(x[k]);
for l in [k+1..n) {

if x[l] && x[k] {
phase(2*pi*2^(k-l-1));

}
}

}
return x;

}

Listing 3.9: QFT algorithm in Silq

Using Silq, a nested-for and a conditional clause are used along with Hadamard and phase
rotation gates. Thus, the implementation uses 3 control-flow instructions and involves 2
quantum gates.

def qft(circuit, n):
if n == 0:

3.1. Motivational Examples 29

return circuit
n -= 1
circuit.h(n)
for qubit in range(n):

circuit.cp(pi/2**(n-qubit), qubit, n)
qft(circuit, n)

Listing 3.10: QFT algorithm in Qiskit

Using Qiskit, the function qft is defined recursively, and contains one for-loop. The
conditional clause checks the input size ‘n’ and decrements it if it is higher than 0. This
example has 2 control-flow operations, 1 recursive function-call and involves 2 quantum
gates.

let qft (n:int) : circuit
=
begin
let q = ref 0
in let c = ref (m_skip n)

in while (!q < n) do
begin

let i = ref (!q+1)
in let cl = ref (m_skip n)

in while (!i < n) do
cl := !cl -- (crz !i (!q) (!i - !q+1) n);
i := !i +1

done;
cl:= place_hadamard (!q) n -- !cl;
c:= !c -- !cl;
q := !q+1

end
done;

return (!c)
end

Listing 3.11: QFT algorithm in Qbricks (without specification)

Using Qbricks, a nested-while is used along with instructions for sequencing Hadamard
and controlled-Z rotation gates to the function’s circuit. Thus, the implementation uses 2
control-flow instructions and involves 2 quantum gates.

|| qft || (qreg qr)
circ qr ->

for q in qr {
H(qr[q])
for i in qr[q+1..-1] {

with control qr[i+1] (RZ(i-q, qr[q]))
}

}

Listing 3.12: QFT algorithm in iQbricks (without specification)

In iQbricks, we have a nested-for, similarly to the Silq example in Listing 3.9. The
circuit gates used in Listing 3.12 are: Hadamard gate and controlled-U gate with U = Rz(θ).
Therefore, this implementation has 2 control-flow instructions and involves 2 quantum gates.

3.2. Specification 30

Concerning the different implementations of the QFT algorithm, iQbricks appears to be
the most readable, and the one with less instructions.

3.2 specification

Programs in iQbricks can be annotated with assertions, loop-invariants and pre- and post-
conditions. The specification language used in the annotations is the aforementioned
Qbricks-Spec (see Subsection 2.2.3 and Chareton et al. (2020)).
In a program, main and auxiliary functions each contain pre- and post-conditions for
reasoning about input parameters and output results, respectively. Each instruction can be
annotated with assertions after being applied. For-cycles are annotated with loop-invariants,
which is a condition that is necessarily true immediately before and immediately after each
iteration of a loop.

The example in Listing 3.13 illustrates a general definition of an annotated program in
iQbricks.

|| main || (qreg ancilla)
pre { ancilla > 0 }

circ qr[4], ancilla -> # optional size declaration
Circuit description + annotations
for i in qr {

invariant {range circ = i}
H(qr[i])
assert {width circ = qr + ancilla}

}
pos { {width result = qr + ancilla},

{range result = qr}
}

Listing 3.13: Example of a iQbricks program with specification

Firstly, a pre-condition for reasoning about function main’s inputs (qreg ancilla, in this
case) is specified right after the declaration of the function’s name and parameters2. Then
at the beginning of the for-loop, a loop-invariant is specified – in this case, referring to the
values that iterator i takes. By using the keyword ‘circ’, we can reason about a circuit’s
properties. In this example, the operator ‘range’ is used, which refers to the amount of
created superpositions in a circuit. Since we apply an Hadamard gate at each iteration, this
invariant is true throughout the loop. After applying the Hadamard gate, an assertion –
referring to the size of the circuit (width circuit) – is used. We now refer to the width of
circ, stating that it is equal to the sum of the input registers – qr and ancilla. Finally, at
the end of the function, the post-condition is placed for reasoning about the obtained results.
The keyword ‘result’ is used for referring to the resulting circuit specified by the function.

2 When referring to quantum register’s identifiers (in this case ancilla) inside a specification, the identifiers
represent the register’s size

3.3. Syntax analyser 31

Operators ‘width’ and ‘range’ are used again: the resulting circuit’s width and number of
created superpositions correspond to ‘qr + ancilla’ and ‘qr’, respectively.

3.3 syntax analyser

iQbricks is an “imperative style” language, in the sense that its programs consist of a
sequence of statements that change a global state. Instructions enable the programmer
to implement quantum circuits. The instructions available in iQbricks are the following:
control-flow operations (through the use of conditional statements and ‘for’ loops) and basic
quantum gates.
In order to formally define the syntactic rules of iQbricks, it is necessary to create a grammar
to formally specify the set of valid sentences in this language. The tool Antlr translates
this grammar to an actual parser. Then from an input file containing a program the latter
builds a parse tree that records how the structure of this program was recognized. This
was illustrated in Section 2.3. iQbricks’ grammar, written in Antlr notation, is described
concept by concept in the following subsections.

3.3.1 Program definition

A program is declared by optional file imports, a main function and, optionally, auxiliary
functions (Listing 3.14). Functions from different files can specifically be imported at the very
beginning of a program. The main function will represent the program’s quantum circuit.
Each additional auxiliary function will define a separate quantum circuit. These auxiliary
circuits can then be used (in the main function) through function calls, in order to compose a
more complex one.

program :
(imports)? main (aux)*
;

Listing 3.14: Program definition

3.3.2 Imports, main and auxiliary functions

Each file to be imported to a program is identified by the token IMPORT (IMPORT="import"),
followed by its name (ID=[a-zA-Z][a-zA-Z_0-9]∗), which means that every ID must start
with a letter and may contain any combination of digits and letters, with the exception of the
language’s reserved words). In order to be imported, files must also be present in the current
directory.
Main and auxiliary functions have a structure similar to each other. Each function is identi-

3.3. Syntax analyser 32

fied by its idFun, i.e. its name or identifier. The characters which surround the idFun will
allow the distinction between the main and auxiliary functions, these being BB – “double
bars” ||main_id|| or SB – "single bars" |aux_id|, respectively. Additionally, each function
may (note the extended-BNF operator "?") have parameters received as inputs. Finally, the
function’s pre and post-conditions (written according to Qbricks-Spec’s grammar) and circuit
– defined by the circ token (Listing 3.15) – are specified.

imports :
(IMPORT file=ID)+
;

main :
BB idFun BB (params)? pre circ pos #mainFun
;

aux :
SB idFun SB (params)? pre circ pos #auxFun
;

Listing 3.15: Syntactic structure of main and auxiliary functions

3.3.3 Function parameters and types

In the case where parameters are received by a function, these will be represented in a list,
separated by commas (VG=","), surrounded by parenthesis (OP="(" and CL=")"). Each of
these parameters must have a type and an id, its name. There are five different data types
in iQbricks:

• Integer – INT="int"

• Float – FLOAT="float"

• Boolean – BOOL="bool"

• Circuit – CIRC="circ"

• Quantum register – QREG="qreg"

Listing 3.16 illustrates how function parameters and types are specified.

params : OP param (VG param)* CL #funParams
;

param : ptype=type id=ID #singlePar
;

type :
INT #intType
| FLOAT #floatType

3.3. Syntax analyser 33

| BOOL #boolType
| CIRC #circType
| QREG #qrType
;

Listing 3.16: Syntactic structure of function parameters

3.3.4 Quantum circuits

As it was mentioned before, each function will represent a quantum circuit family. A circuit
is identified firstly by the token CIRC (CIRC="circ"), and receive a list of quantum registers
(separated by commas). Each of these registers consists in its identifier (id) and an optional
size parameter (‘range’), surrounded by the tokens ROP="[" and RCL="]", where its size may
be specified. This type of quantum register is the same that will be used in gate applications
and for loops, where the ‘range’ operator may now be used to iterate through a register
(Listing 3.17). There are four different ways to use the ‘range’ operator:

1. as a term expression - which refers to a specific index of the register, e.g. [i+1]

2. iterating up to a specific index by placing a TP (TP=":") token before a term, e.g. [:-1]

3. iterating from a specific index (up to the last one) by placing a TP token after a term, e.g.
[1:]

4. iterating over an interval between two specific indexes by placing two PT (PT=".")
tokens between the “start” and “end” terms, e.g. [i..i+3]

Note that a term specified by the expression "-1" will refer to a register’s last index.
Finally, a circuit’s body appears after the token ARROW (ARROW="->").

circ :
CIRC id_list (ARROW circbody=body)? #regCirc
;

id_list :
qReg (VG qReg)* #qrList
;

qReg :
id=ID (ROP size=range RCL)? #qr
;

range :
term #termRange
| TP term #uptoRange
| term TP #fromRange
| start=term PT PT end=term #intervalRange
;

Listing 3.17: Syntactic structure of circuit and quantum registers

3.3. Syntax analyser 34

3.3.5 Body and Instructions

A body consists in an assertion followed by a list of (0 or more) instructions.
An assertion can either be empty or identified by the token ASSERT (ASSERT="assert")

followed by a list of FORMULA tokens, separated by commas (VG=",") each wrapped around
curly braces (COP="{", CCL="}").
There are two types of instructions: regular and return instructions. Return instructions are
identified by the token RET (RET="return") and can either be empty or include an expression
to be returned. They may only appear at the end of a function’s description. Regular
instructions are ensued by an assertion and take one of the following forms:

• for instruction

• if/else instruction

• gate application instruction

• control gate instruction

• conjugated block instruction

Listing 3.18 illustrates how the rules mentioned above are specified.
body : assert_ (instr)* #regBody

;

assert_ : #emptyAssert
| ASSERT COP? FORMULA (VG FORMULA)* CCL? #assertSpec
;

FORMULA : COP ~[{}\n]+ CCL ;

instr :
(forinst=for_ | ifinst=if_ | applyinst=apply | ctlinst=control | conjinst=

conjugated)
assert_ #regInst

| RET (expr)? #retInst
;

Listing 3.18: Syntactic structure of body and instructions

3.3.6 For-loops

A for loop consists of: an iterator variable (identified by "var"), an iteration range (identified
by "iter"), a loop invariant and a body. There are two types of expressions that can
represent the iteration:

1. one which makes use of the "range" operator (RANGE="range"), so that the iterator will
go up to the value specified by a term expression or a quantum register;

3.3. Syntax analyser 35

2. the other simply consists of a quantum register, whose size determines a specific index
range.

Invariants are identified by the token INVARIANT (INVARIANT="invariant") followed by a
list of FORMULA tokens, separated by commas (VG=",") each wrapped around curly braces,
in a similar way to the aforementioned assert expressions. Listing 3.19 illustrates how the
rules mentioned above are specified. Term and Quantum register expressions are reviewed in
Subsections 3.3.11 and 3.3.4, respectively.

for_ :
FOR var=ID IN iteration=iter COP inv=invariant forbody=body CCL #forLoop
;

iter :
RANGE OP (expvalue=term | qrvalue=qReg) CL #rangeIter
| qReg #qrIter
;

invariant :
INVARIANT COP? FORMULA (VG FORMULA)* CCL? #invSpec
;

Listing 3.19: Syntactic structure of the for loop

3.3.7 If/else conditionals

If statements (Listing 3.20) are defined by a Boolean expression (cond) and a body – sur-
rounded by curly brackets "{" and "}" – for the case where the Boolean expression is true
(ifbody). Optionally, a body (elsebody) can be placed after the reserved-word ELSE="else",
and corresponds to the case where the Boolean expression is false.

if_ :
IF cond=expr
COP ifbody=body CCL
(ELSE COP elsebody=else_ CCL)? #condIf
;

else_:
body #elsebody
;

Listing 3.20: Syntactic structure of if/else conditional statements

3.3.8 Gate application instructions

Gate application instructions are used to append quantum gates to a circuit. These gates
can either be circuits defined by auxiliary functions or by one of the following primitive
quantum gates:

3.3. Syntax analyser 36

• Hadamard gate

• Rotation gates around axis X, Y and Z

• Pauli gates X, Y and Z

• Phase shift gate

• T and S gates

• Swap gate

Auxiliary functions can either be defined inside a program, or imported from one. Such
functions can be applied as gates by using Function and reverse function operations, which
take a list of arguments as inputs – corresponding to the parameters received by this function
– separated by commas and surrounded by parenthesis. Rotation and Phase shift gates receive
two parameters as inputs: the angle and the register where the gate will be applied. The
remaining gates (H, X, Y, Z, T, S) receive one single parameter and the swap gate receives
two, which correspond to the registers on which the gate will act. Listing 3.21 illustrates how
the rules mentioned above are specified.
apply :

fun=idFun OP (fargs=args)? CL #funApply
| REVERSE OP fun=idFun OP (fargs=args)? CL CL #revApply
| HAD OP qr=qReg CL #hadApply
| XGATE OP qr=qReg CL #xApply
| YGATE OP qr=qReg CL #yApply
| ZGATE OP qr=qReg CL #zApply
| TGATE OP qr=qReg CL #tApply
| SGATE OP qr=qReg CL #sApply
| RY OP angle=ang VG qr=qReg CL #ryApply
| RZ OP angle=ang VG qr=qReg CL #rzApply
| RX OP angle=ang VG qr=qReg CL #rxApply
| PHASE OP angle=ang VG qr=qReg CL #phApply
| SWAP OP qrL=qReg VG qrR=qReg CL #swapApply
;

args :
term (VG term)* #funArgs
;

ang :
term #angTerm
;

Listing 3.21: Syntactic structure of a gate application

3.3.9 Controlled gate instructions

Controlled gates are used to append controlled quantum gates to a circuit (Listing 3.22). These
gates consist in:

3.3. Syntax analyser 37

1. The standard C-NOT, Toffoli and Fredkin gates, receiving the control and target registers,
in this order, as arguments;

2. A "with control" operator, which takes a list of registers to be used as controls – separated
by commas – and any other gate (either an apply or by a control instruction) – surrounded
by parenthesis – as parameters.

control :
WITHCTL ctlqrs=id_list OP ctlgate=apply CL #applyControl // with control q[0],q

[1] (RZ(1,q[2]))
| WITHCTL ctlqrs=id_list OP ctlgate=control CL #multiControl // with control q

[0],q[1] (cnot(q[2],q[3]))
| CNOT OP ctlqr=qReg VG tqr=qReg CL #cnotControl // cnot(q[0],q[2])
| TOFF OP ctl1=qReg VG ctl2=qReg VG tg=qReg CL #toffControl // toff(q[0],q[1],q

[2])
| FRED OP ctl1=qReg VG tg1=qReg VG tg2=qReg CL #fredControl // fred(q[0],q[1],q

[2])
;

Listing 3.22: Syntactic structure of control gates

3.3.10 Conjugate-based gate instructions

Conjugate-based instructions are used to apply the conjugate-based operator to a circuit. Such
an instruction contains: a gate application instruction (applyinst) – corresponding to the
gate being applied as the conjugated operator – and a body (conjbody) – which corresponds
to the list of instructions applied in between the conjugate-based (Listing 3.23).

conjugated :
WITHCJG OP? applyinst=apply CL? COP conjbody=body CCL
;

Listing 3.23: Syntactic structure of a conjugated instruction

3.3.11 Expressions and atoms

Expressions are used in return (Listing 3.18) and if (Listing 3.20) instructions and represent
logical expressions. Two expressions can be compared using the logical operators: EQ="==",
NEQ="!=", GT=">", LT="<", GEQ=">=" and LEQ="<=". An expression can be a term, which
consists in an arithmetic expression where terms can be combined using arithmetic operators:
POW="ˆ", MUL="*", EQ="/", PLUS="+", MINUS="-". A term expression can also be a unary term,
with the operators MINUS="-", SQRT="sqrt" (square-root) for term values and LEN="len"

(length) for quantum registers. Terms can be surrounded by parenthesis in order to indicate
the priority for their calculation. Lastly, a term can be defined by an atom which can be: a
number value, a variable name or the number Pi.

3.3. Syntax analyser 38

expr : term #termExpr
| left=expr op=EQ right=expr #eqExpr
| left=expr op=GT right=expr #gtExpr
| left=expr op=LT right=expr #ltExpr
| left=expr op=GEQ right=expr #geqExpr
| left=expr op=LEQ right=expr #leqExpr
| left=expr op=NEQ right=expr #neqExpr
| OP expr CL #parenExpr
;

term : atom #atomTerm
| left=term op=POW right=term #powTerm
| left=term op=MUL right=term #mulTerm
| left=term op=DIV right=term #divTerm
| left=term op=PLUS right=term #addTerm
| left=term op=MINUS right=term #subTerm
| OP term CL #parenTerm
| unOp #unaryTerm
;

unOp : MINUS term #negUnary
| LEN OP qReg CL #lenUnary
| SQRT OP value=term CL #sqrtUnary
;

atom : value = NUM #numAtom
| pi = PI #piAtom
| var = ID #varAtom
;

Listing 3.24: Syntactic structure of expressions

4

A V E R I F I C AT I O N F R A M E W O R K F O R I Q B R I C K S

The present chapter details the implementation of the translation process from an iQbricks

program to a Qbricks program. The chapter starts by presenting a solution design for the
translation process. It then provides a detailed explanation of the data structures created
during the translation process and the translation process itself between these structures.

4.1 solution design

The chosen architecture for the integration of iQbricks in Qbricks framework is shown in
Figure 17. It can be boiled down to four stages:

1. The iQbricks program is processed by the Antlr language recognizer, which creates
a concrete syntax tree (CST) representing how the input text aligns with the iQbricks

grammar;

2. the generated CST is then translated to a Java AST structure by a Visitor class named
“ASTBuilder”, which extends the base Visitor class generated by Antlr;

3. an AST Evaluator takes the Java AST and converts it into an equivalent AST written in
Ocaml. This process involves defining translation rules for each type of node in the
Java AST. Essentially, the Evaluator provides a mapping from the Java AST to the Ocaml
AST.

4. the generated Ocaml AST structure is finally processed by another AST Evaluator. This
Evaluator maps the Ocaml AST to the Qbricks language by defining a translation
process for each created AST data-type.

The translated program can then be tested using Why3 (Filliâtre and Paskevich, 2013), a
specification environment that generates a set of proof obligations for a specified program.
These obligations can then be satisfied to certify the program.

39

4.2. Java AST structure 40

Figure 17: Chosen architecture for the implementation of iQbricks

4.2 java ast structure

In order to build an AST which represents a program’s information, we must first define
a structure where all the possible nodes are contemplated. Along this section, we cover
the process of defining the AST nodes. Note that the methods for getting and setting
node variables are not present in the node definitions, since their implementation is trivial.
Nevertheless, the full code can be seen in Carneiro (2023).

4.2.1 AST definition

Firstly, we create an abstract class which is extended by the children nodes. This can be done
easily with the code in Listing 4.1.

public abstract class AST {}

Listing 4.1: General AST definition

4.2. Java AST structure 41

4.2.2 Program Node

As it was explained in Section 3.3, a program consists of:

• optional file imports,

• a main function,

• optional auxiliary functions.

A program node has the structure presented in Listing 4.2. This node extends the previously
created AST Node.

class ProgramNode extends AST {
public ImportsNode imports;
public MainNode main;
public List<AuxNode> auxList;

}

Listing 4.2: Definition of a program node

4.2.3 Imports Node

In iQbricks imports are optional and therefore possibly non-existent. Thus one of this
node’s variable is a Boolean which expresses the existence of imports. If imports exist the
corresponding files names are represented in a list of String. The definition for an imports
node is shown is Listing 4.3.

class ImportsNode extends ProgramNode {
private List<String> files;
public boolean hasImports;

}

Listing 4.3: Definition of an import node

4.2.4 Main and Auxiliary Nodes

Main and auxiliary nodes have similar structures, since they both represent functions. These
nodes extend the program node, and contain the following information:

• the function’s name,

• a Boolean which states if the function has parameters, and a parameters node for the case
where it does,

• a circuit node,

4.2. Java AST structure 42

• pre and post-condition nodes.

Main and auxiliary node definitions are presented in Listings 4.4 and 4.5.

class MainNode extends ProgramNode {
private String id;
public Boolean hasParams;
public CircNode circ;
public ParamsNode params;
public PreNode pre;
public PosNode pos;

}

Listing 4.4: Definition of a main function node

class AuxNode extends ProgramNode {
private String id;
public CircNode circ;
public ParamsNode params;
public PreNode pre;
public PosNode pos;
public Boolean hasParams;

}

Listing 4.5: Definition of an auxiliary function node

4.2.5 Parameters Node

A parameters node consists of a list of single-parameter nodes. Each single-parameter node
contains a type and an identifier – its name. Parameters and single-parameter node structures
are presented in Listing 4.6.

class ParamsNode extends MainNode {
private List<SingleParam> params;

}

class SingleParam extends ParamsNode {
private String type;
private String id;

}

Listing 4.6: Definition of a parameters node

4.2.6 Pre and Post-condition Nodes

Pre and post-conditions have similar structures, since their sole purpose is to express program
specifications using Qbricks-Spec language. Thus, they contain a list of String, where
each element corresponds to a logical expression. Pre and post-condition node structures are
presented in Listing 4.7.

4.2. Java AST structure 43

class PreNode extends MainNode {
private List<String> conds;

}

class PosNode extends MainNode {
private List<String> conds;

}

Listing 4.7: Definition of Pre and post-condition nodes

4.2.7 Circuit Node

A Circuit Node contains two children-nodes: one for the circuit’s quantum registers and the
other for the circuit’s body. Circuit node structure is presented in Listing 4.8.

class CircNode extends MainNode {
private CircIds ids;
private BodyNode body;

}

Listing 4.8: Definition of a circuit node

4.2.8 Circuit registers Node

A Circuit registers Node contains a list of Quantum register Nodes that represent the quantum
registers composing a circuit.

class CircIds extends CircNode {
private List<QregNode> regs;

}

Listing 4.9: Definition of a circuit identifiers node

4.2.9 Quantum register and Range Nodes

Quantum register nodes are present in several different node structures:

• Circuit registers Node, previously introduced,

• For-loop Iteration Node, for the case of iteration through a register,

• Gate application Nodes (which includes both single and multi-qubit gates).

A quantum register has a string identifier “id”, an optional range node and a Boolean for
checking the existence of the latter.

4.2. Java AST structure 44

class QregNode extends AST {
public RangeNode range;
public Boolean has_range;
public String id;

}

Listing 4.10: Definition of a quantum register node

Range nodes, used in quantum register nodes, contain a string identifier “iterator” (inher-
ited from the quantum register node), and a term node for both the start and end of the iteration
range.

class RangeNode extends QregNode {
public String iterator;
public TermNode start;
public TermNode end;

}

Listing 4.11: Definition of a range node

4.2.10 Body and Assertion Nodes

A body node contains a list of instruction nodes and an assertion node. Body nodes extend circuit
nodes and are used by the instruction nodes for, if, else and conjugated.

class BodyNode extends CircNode {
private List<InstrNode> bodyInstr;
private AssertNode assertion;

}

Listing 4.12: Definition of a body node

An assertion node has a similar structure to pre and post-condition nodes in Subsection 4.2.6.
It consists of a list of conditional expressions represented by strings. Assertion nodes are
present in all instruction nodes, since all instructions can be followed by an assertion.

class AssertNode extends BodyNode {
private List<String> assertions;

}

Listing 4.13: Definition of an assertion node

4.2.11 Instruction Node

An instruction node is described by one of the following:

• For node,

• If node,

4.2. Java AST structure 45

• Apply node,

• Control node,

• Conjugated node,

• Return node.

Therefore, each one of these nodes extends an instruction node.

4.2.12 For and Invariant Nodes

A for node contains four different nodes:

1. Invariant node which represents the loop-invariant for the cycle;

2. For-iteration node which contains information about the iteration values for the loop;

3. Body node which corresponds to the loop’s body;

4. Assertion node which corresponds to the loop’s post-condition.

class ForNode extends InstrNode {
private InvariantNode invariant;
private ForIter iter;
private BodyNode body;
private AssertNode assertion;

}

Listing 4.14: Definition of a for node

An invariant node has a similar structure to an assertion node. It is defined by a list of
conditional expressions, represented by strings.

class InvariantNode extends ForNode {
private List<String> conds;

}

Listing 4.15: Definition of an invariant node

4.2.13 For-iteration Node

A for-iteration node contains the information regarding a for-loop’s iteration range. It consists
of:

• a string identifier “iterator”, representing the loop’s iterator name;

• a Boolean “iterQr” which is true if a quantum register node is being iterated and false if
instead an term node is being iterated;

4.2. Java AST structure 46

• a Boolean “range” which is true if the range operator is being used for the iteration;

• a term node and a quantum register node: each for-iteration node will contain either a term
or a quantum register node, which will represent the loop’s iteration interval.

Method setIterable (Listing 4.16) checks whether the iterable object is an instance of the
Term node class or the Quantum register node class. If it is a Term Node, it sets the iterableExpr

field to the iterable object and sets the iterQr field to false. If it is a Quantum register node, it
sets the iterableQr field to the iterable object and sets the iterQr field to true.

class ForIter extends ForNode {
private String iterator;
private Boolean iterQr;
private Boolean range;
private TermNode iterableExpr;
private QregNode iterableQr;

public void setIterable(AST iterable){
if (iterable instanceof TermNode) {

this.iterableExpr = (TermNode) iterable;
iterQr = false;

} else {
this.iterableQr = (QregNode) iterable;
iterQr = true;

}
}

}

Listing 4.16: Definition of a for-iteration node

4.2.14 If and If-condition Nodes

An if node has four fields: withElse, cond, assertion, and ifBody, as well as an optional
field elseBody:

• The withElse field is a Boolean that indicates whether the if statement has an else
clause;

• The cond field represents the condition of the if statement;

• The assertion represents the if statement’s assertion;

• The ifBody field is an object of the Body Node class, which represents the body of the if
statement;

• The elseBody field, if present, is also an object of the Body Node class and represents
the body of the else clause.

The If-condition node has a single field: cond, which is an object of the ExpressionNode class
and represents the condition of the if statement.

4.2. Java AST structure 47

class IfNode extends InstrNode {
private Boolean withElse;
private IfCond cond;
private AssertNode assertion;
private BodyNode ifBody;
private BodyNode elseBody;

}

class IfCond extends IfNode {
private ExpressionNode cond;

}

Listing 4.17: Definition of If and If-condition nodes

4.2.15 Apply node

An Apply node corresponds to a (non-control) gate application. These gate applications are
defined by four different types of nodes, depending on the number of the gate’s parameters1:

1. Nodes with only one parameter – the quantum register – corresponding to gates:
H, X, Y, Z, T, S (Listing 4.18);

class SingleApply extends ApplyNode {
private QregNode qreg;
private AssertNode assertion;

}

Listing 4.18: Definition of a Single argument gate application node

2. Nodes with two parameters – the quantum register and the rotation angle θ – corre-
sponding to gates: Rx(θ), Ry(θ), Rz(θ), Ph(θ) (Listing 4.19);

class DoubleApply extends ApplyNode {
private QregNode qreg;
private TermNode angle;
private AssertNode assertion;

}

Listing 4.19: Definition of a two argument gate application node

3. Swap gate node, with two quantum registers (Listing 4.20);

class SwapApply extends ApplyNode {
private QregNode qleft;
private QregNode qright;
private AssertNode assertion;

}

Listing 4.20: Definition of a Swap gate application node

1 Note that all gate applications are proceeded with an assertion, thus all apply nodes contain an assertion node.

4.2. Java AST structure 48

4. Function and reverse-function application nodes, which can receive multiple arguments,
and will therefore store these in a list of Term nodes(Listing 4.21);

class FunApply extends ApplyNode {
private String funID;
public List<TermNode> termArgs;
private AssertNode assertion;

}

Listing 4.21: Definition of a function gate application node

4.2.16 Control node

A control node consists of one of four controlled gate applications2:

• With-controlled operator, which can receive multiple control registers as arguments, and
either an Apply node or a Control node as the gate being used for the control. The two
different cases will be distinguished by the Boolean isMulti, which will be true in the
case where the gate is represented by a Control node (Listing 4.22). Note that in both
cases, the target registers will be specified in the gate node’s structure;

class WithCtlNode extends CtlNode {
private List<QregNode> ctlArgs;
private ApplyNode ctlGate;
private CtlNode ctlMulti;
private Boolean isMulti;
private AssertNode assertion;

}

Listing 4.22: Definition of a with-controlled gate application node

• C-NOT gate (Listing 4.23), which receives the control and target quantum registers;

class CnotNode extends CtlNode {
private QregNode ctl;
private QregNode target;
private AssertNode assertion;

}

Listing 4.23: Definition of a C-NOT gate application node

• Toffoli gate (Listing 4.24) which receives the first and second control and target quantum
registers;

class ToffNode extends CtlNode {
private QregNode ctl1;
private QregNode ctl2;
private QregNode target;
private AssertNode assertion;

2 Note that similarly to gate applications, all control instructions are proceeded with an assertion, thus all control
nodes contain an assertion node.

4.2. Java AST structure 49

}

Listing 4.24: Definition of a Toffoli gate application node

• Fredkin gate (Listing 4.25) which receives the first and second control and target quantum
registers;

class FredNode extends CtlNode {
private QregNode ctl1;
private QregNode ctl2;
private QregNode target;
private AssertNode assertion;

}

Listing 4.25: Definition of a Fredkin gate application node

4.2.17 Conjugated node

A conjugated node contains three different nodes (Listing 4.26):

• An apply node, which represents the gate or circuit being used as the conjugated-basis;

• A body node, consisting in the conjugated block’s body;

• An assertion node, corresponding to the conjugated instruction’s assertion.

class ConjNode extends InstrNode {
private ApplyNode apply;
private BodyNode body;
private AssertNode assertion;

}

Listing 4.26: Definition of a conjugate-based gate application node

4.2.18 Return node

A return node consists of a Boolean which states if the return expression is empty and an
expression node, which represents the expression being returned.

class RetNode extends InstrNode {
private Boolean argBool;
private ExpressionNode args;

}

Listing 4.27: Definition of a return

4.2. Java AST structure 50

4.2.19 Expression node

An expression node represents any type of expression in this language. Thus, it is extended
by several other nodes:

• InfixExpressionNode extends the ExpressionNode class, and represents an infix expres-
sion which is an expression that has a left and right operand and an operator between
them. It has two fields: Left, that represents the left operand of the expression, and
Right, that represents the right operand of the expression (Listing 4.28).

class InfixExpressionNode extends ExpressionNode {
private ExpressionNode Left;
private ExpressionNode Right;

}

Listing 4.28: Definition of an infix expression node

• EqualNode, GTNode, LTNode, GEQNode, LEQNode, and NEqualNode classes all extend the
InfixExpressionNode class and represent specific infix expressions: EqualNode for
equal to (==), GTNode for greater than (>), LTNode for less than (<), GEQNode for greater
than or equal to (>=), LEQNode for less than or equal to (<=), and NEqualNode for not
equal to (!=) (Listing 4.29).

class EqualNode extends InfixExpressionNode {}
class GTNode extends InfixExpressionNode {}
class LTNode extends InfixExpressionNode {}
class GEQNode extends InfixExpressionNode {}
class LEQNode extends InfixExpressionNode {}
class NEqualNode extends InfixExpressionNode {}

Listing 4.29: Definition of different expression operations nodes

4.2.20 Term node

A Term Node extends the Expression Node class and represents a simple term in an expression.
A term expression can represent different operations: an arithmetic expression taking two
terms; a unary or an atom.

A Term node is extended by the following nodes:

• InfixTermNode extends the TermNode class, and represents an infix term which is a term
that has a left and right operand and an operator between them. It has two fields:
Left, that represents the left operand of the expression, and Right, that represents the
right operand of the expression (Listing 4.30).

class InfixTermNode extends TermNode {
private TermNode Left;

4.2. Java AST structure 51

private TermNode Right;
}

Listing 4.30: Definition of an infix Term expression node

• PowerNode, MulNode, DivNode, AddNode and SubNode classes all extend the InfixTermNode
class and represent specific infix terms: PowerNode for power (ˆ), MulNode for multipli-
cation (*), DivNode for division (/), AddNode for addition (+) and SubNode for subtraction
(-) (Listing 4.31).

class PowerNode extends InfixTermNode {}
class MulNode extends InfixTermNode {}
class DivNode extends InfixTermNode {}
class AddNode extends InfixTermNode {}
class SubNode extends InfixTermNode {}

Listing 4.31: Definition of different term expression operations nodes

• ParenNode represents a term expression surrounded by parenthesis, thus its only
parameter (term) will correspond to the respective term (Listing 4.32).

class ParenNode extends TermNode {
private TermNode term;

}

Listing 4.32: Definition of a parenthesis term node

4.2.21 Unary and Length nodes

A UnOpNode extends the TermNode class, and represents a unary operator term which is a term
that has (1) a unary operator (length, square-root or negative sign) and (2) an inner term. It
has two fields: op, that represents the applied operator as a string, and InnerTerm, that
represents the operation’s inner term (Listing 4.33).

class UnOpNode extends TermNode {
private String op;
private TermNode InnerTerm;

}

Listing 4.33: Definition of an unary term node

LenNode represents a unary term where the length keyword is used as operator, and is
applied to a quantum-register node (Listing 4.34).

class LenNode extends TermNode {
private QregNode QrTerm;

}

Listing 4.34: Definition of a length term node

4.3. AST Builder 52

4.2.22 Atom node

An Atom node extends the TermNode class, and corresponds to an atom, which can be a
number value, a variable name or the number Pi. This node’s structure will therefore
contain two fields: Type and Value, both represented by strings (Listing 4.35).

class AtomNode extends TermNode {
private String Value;
private String Type;

}

Listing 4.35: Definition of an atom term node

4.3 ast builder

In this section the process of building the actual AST from the generated Parse-tree will be
thoroughly explained.

Antlr automatically generates a base Visitor class for traversing the parse-tree generated
from a source file – in this case, a program written in iQbricks. The generated Visitor
contains a visit method for every rule present in the language’s grammar. This base Visitor
class provides an empty implementation which can be extended to create a visitor which only
needs to handle a subset of the available methods. The generated Visitor’s implementation is
shown (partially) in Listing 4.36.

public class QbricksBaseVisitor<T> extends AbstractParseTreeVisitor<T> implements
QbricksVisitor<T> {
@Override
public T visitProgram(QbricksParser.ProgramContext ctx) {

return visitChildren(ctx);
}

@Override
public T visitImports(QbricksParser.ImportsContext ctx) {

return visitChildren(ctx);
}

@Override
public T visitMainFun(QbricksParser.MainFunContext ctx) {

return visitChildren(ctx);
}

@Override
public T visitAuxFun(QbricksParser.AuxFunContext ctx) {

return visitChildren(ctx);
}

Listing 4.36: Generated Base Visitor

The purpose of the Visitor that extends the generated Base Visitor is to traverse through the
generated parse-tree, building a new tree with the same structure of the AST described in

4.3. AST Builder 53

Section 4.2. Thus this Visitor class is named “ASTBuilder”, and its definition and methods
will be described in the following subsections.

4.3.1 Creating the AST Builder

In order to create the AST Builder, a new class is created that extends the automatically
generated Base Visitor (Listing 4.36), as shown in Listing 4.37.

public class ASTBuilder extends QbricksBaseVisitor<AST> {
// Visit methods for grammar rules

}

Listing 4.37: AST Builder definition

Visit methods generate AST nodes and assign values to their parameters with information
from the generated parse-tree. Each visit method takes a single argument, “ctx”, which is the
root context of the parse tree for the respective grammar rule.

4.3.2 Program Visit

Revisiting the grammar definition for the program rule in Listing 4.38, it states that a program
is composed of three parts: an optional “imports” section, a required “main” section, and
zero or more “aux” sections.

program :
(imports)? main (aux)*
;

Listing 4.38: Program rule definition

The visit method for this rule (Listing 4.39)

• creates three new AST nodes: Program Node “node”, Imports Node “imports”, and Main
Node “main”;

• assigns the result of visiting the “main” section from the parse-tree context to the “main”
node

• creates a list of Aux Node objects “auxList”;

• checks if the “imports” section from the parse-tree context is not null, if so assigns the
the result of visiting this section to the “imports” node;

• loops through the “aux” sections in the parse-tree context and assigns the result of
visiting each specific section to the “aux” variable. The “aux” variable is then added to
the “auxList” list of nodes;

4.3. AST Builder 54

• sets the values of the “imports”, “main”, and “auxList” nodes on the “node” object
and returns the “node” object.

@Override
public AST visitProgram(QbricksParser.ProgramContext ctx) {

ProgramNode node = new ProgramNode();
ImportsNode imports = new ImportsNode();
MainNode main = (MainNode) visit(ctx.main());
List<AuxNode> auxList = new ArrayList<>();
AuxNode aux;
if (ctx.imports()!=null)

imports = (ImportsNode) visit(ctx.imports());
for (int c = 0; c < ctx.aux().size(); ++c){

aux = (AuxNode) visit(ctx.aux(c));
auxList.add(aux);

}
node.setImports(imports);
node.setMain(main);
node.setAuxList(auxList);
return node;

}

Listing 4.39: Program visit method definition

4.3.3 Imports Visit

The grammar definition for the imports rule in Listing 4.40 states that the “imports” section
is defined by one or more occurrences of the “IMPORT” keyword (“import”) followed by an
identifier “file” which is matched to the token “ID” (a sequence of one or more letters,
underscores or digits that starts with a letter).

imports:
(IMPORT file=ID)+
;

Listing 4.40: Imports rule definition

The visit method for this rule (Listing 4.41)

• creates a new Imports Node “node” and a list of strings “files”;

• checks if the imports context from the parse-tree is empty, if not it sets the “hasImports”
flag to true on the “node” and then it loops through all the “ID” – which represent the
files’ names – found in the imports context and adds them to the “files” list;

• sets the values on the “files” list on the “node” and returns the “node” object.

@Override
public AST visitImports(QbricksParser.ImportsContext ctx) {

ImportsNode node = new ImportsNode();
List<String> files = new ArrayList<>();

4.3. AST Builder 55

if(!ctx.isEmpty()){
node.setHasImports(true);
for (int i=0; i<ctx.ID().size(); i+=2){

files.add(ctx.ID(i).getText());
}

}
node.setFiles(files);
return node;

}

Listing 4.41: Imports visit method definition

4.3.4 Main and Auxiliary function Visit

The grammar definition for the main and aux function rules in Listing 4.42 states that a
function is defined by and identifier “idFun” surrounded by the characters “||” if it is the
main function or by the character “|” if it is an auxiliary one, followed by an optional
section of parameters “params” and the function’s pre-condition “pre”, circuit definition “circ”
and post-condition “pos” sections.

main :
BB idFun BB (params)? pre circ pos #mainFun
;

aux :
SB idFun SB (params)? pre circ pos #auxFun
;

Listing 4.42: Main and Aux rules definition

The visit methods for both main (Listing 4.43) and aux (Listing 4.44) rules are identical. In
detail, they

• create a new Main or Auxiliary node “node”;

• create three new AST nodes: Circ node “circ”, Pre-condition node “pre” and Post-
condition node “pos”, and assign the result of visiting each respective section from the
parse-tree context to its node;

• create a Parameter node “pNode” and check if the “params” section exists by counting the
number of children in the root context. If it exists, the method assigns the result of visiting
the “params” section from the parse-tree context to “pNode” and the “hasParams” flag
is set to true on the “node”; if not, “pNode” is set to null and the “hasParams” flag is
set to false;

• set the identifier value in the “node” to the “idFun” section’s text;

• set the values of the “circ”, “pNode”, “pre”, and “pos” nodes on the “node” object and
return the “node” object.

4.3. AST Builder 56

@Override
public AST visitMainFun(QbricksParser.MainFunContext ctx) {

MainNode node = new MainNode();
CircNode circ = (CircNode) visit(ctx.circ());
PreNode pre = (PreNode) visit(ctx.pre());
PosNode pos = (PosNode) visit(ctx.pos());
ParamsNode pNode;
if(ctx.getChildCount()>6) {

pNode = (ParamsNode) visit(ctx.params());
node.setHasParams(true);

} else {
pNode = null;
node.setHasParams(false);

}
node.setID(ctx.idFun().getText());
node.setCirc(circ);
node.setParams(pNode);
node.setPre(pre);
node.setPos(pos);
return node;

}

Listing 4.43: Main function visit method definition

@Override
public AST visitAuxFun(QbricksParser.MainFunContext ctx) {

AuxNode node = new AuxNode();
CircNode circ = (CircNode) visit(ctx.circ());
PreNode pre = (PreNode) visit(ctx.pre());
PosNode pos = (PosNode) visit(ctx.pos());
ParamsNode pNode;
if(ctx.getChildCount()>6) {

pNode = (ParamsNode) visit(ctx.params());
node.setHasParams(true);

} else {
pNode = null;
node.setHasParams(false);

}
node.setID(ctx.idFun().getText());
node.setCirc(circ);
node.setParams(pNode);
node.setPre(pre);
node.setPos(pos);
return node;

}

Listing 4.44: Auxiliary function visit method definition

4.3.5 Function parameters Visit

The grammar definition for the parameters rule in Listing 4.45 states that the “params” section
is defined by one or more occurrences of a single parameter “param” section, separated by a
comma “VG” and surrounded by parenthesis tokens “OP” and “CL”. A single parameter “param”

4.3. AST Builder 57

section is defined by a type “ptype” section followed by an identifier “id” which is matched
to the token “ID”.

params :
OP param (VG param)* CL #funParams
;

param :
ptype=type id=ID #singlePar
;

type :
INT #intType
| FLOAT #floatType
| BOOL #boolType
| CIRC #circType
| QREG #qrType
;

Listing 4.45: Parameters rule definition

The visit method for the parameters rule (Listing 4.46)

• creates a new Parameters Node “node” and a list of single parameter nodes “params”;

• loops through the list of parameters from the parse-tree root context and adds the
result of visiting each “param” section to the “params” list;

• sets the values on the “params” list on the “node” and returns the “node” object.

@Override
public AST visitFunParams(QbricksParser.FunParamsContext ctx) {

ParamsNode node = new ParamsNode();
List<SingleParam> params = new ArrayList<>();
for (int c=0; c < ctx.param().size(); ++c){

params.add((SingleParam) visit(ctx.param(c)));
}
node.setPs(params);
return node;

}

Listing 4.46: Parameters visit method definition

The visit method for the single-parameter rule (Listing 4.47)

• creates a new Single-parameter Node “node”;

• sets the values of root context’s “ptype” and “id” on the parameter node’s type and
identifier.

@Override
public AST visitSinglePar(QbricksParser.SingleParContext ctx) {

SingleParam node = new SingleParam();
node.setParam(ctx.ptype.getText(),ctx.id.getText());
return node;

4.3. AST Builder 58

}

Listing 4.47: Single-parameter visit method definition

4.3.6 Circuit and Quantum-register Visit

The grammar definition for the circ rule in Listing 4.48 states that the “circ” section is
defined by a token “CIRC”, followed by a list of quantum registers “id_list” and a token
“ARROW”, proceeded by the circuit’s body “circbody” section. Rule id_list (Listing 4.48)
states that the “id_list” section is defined by a list of one or more occurrences of “qReg”
sections, separated by a “VG” token (the comma character). Finally, rule qReg (Listing 4.48)
states that the “qReg” section is defined by a identifier “id” which is matched to the token
“ID”, followed by an optional section, which consists in a range section “size” surrounded
by brackets tokens “ROP” and “RCL”.

circ :
CIRC id_list ARROW circbody=body #regCirc
;

id_list :
qReg (VG qReg)* #qrList
;

qReg :
id=ID (ROP size=range RCL)? #qr
;

Listing 4.48: Circuit, quantum register and list of registers rules definition

The visit method for the circ rule (Listing 4.49)

• creates a new Circuit Node “node”, a Circuit registers Node “ids” and a list of Quantum
register Nodes “circQrs”;

• creates a Body Node “body” and assigns the result of visiting the “circbody” section
from the parse-tree context to the node

• creates a variable “id_list” which is then assigned the list of quantum registers
“id_list” section from the parse-tree context;

• loops through the list of quantum registers from the “id_list” section and adds the
result of visiting each “qReg” section to the “circQrs” list;

• sets the value of the circuit registers “circQrs” on the Circuit registers Node “ids”;

• sets the values of the Circuit registers Node “ids” and Body Node “body” on the “node”
and returns the “node” object.

4.3. AST Builder 59

@Override
public AST visitRegCirc(QbricksParser.RegCircContext ctx) {

CircNode node = new CircNode();
CircIds ids = new CircIds();
List<QregNode> circQrs = new ArrayList<>();
BodyNode body = (BodyNode) visit(ctx.circbody);
QregNode qr;
ParseTree id_list = ctx.getChild(1);
for (int c = 0; c < id_list.getChildCount(); c+=2){

qr = (QregNode) visit(id_list.getChild(c));
circQrs.add(qr);

}
ids.setRegs(circQrs);
node.setIds(ids);
node.setBody(body);
return node;

}

Listing 4.49: Circuit visit method definition

The visit method for the qReg rule (Listing 4.50)

• creates a new Quantum register Node “qr” and a Range Node “range”;

• checks if the number of children on the root context is superior to one: if so, this means
the parse-tree context contains a range section. In this case, the result of visiting the
range section is assigned to the “range” node, and the Boolean “hasRange” is set to true;
In case there is not a range section, the method sets the “range” node to null and the
Boolean “hasRange” to false;

• sets the values of the Range Node “range” and the identifier “id” from the parse-tree
context on the “qr” node and returns the “qr” object.

@Override
public AST visitQr(QbricksParser.QrContext ctx) {

QregNode qr = new QregNode();
RangeNode range;
if (ctx.getChildCount()>1) {

range = (RangeNode) visit(ctx.size);
qr.setHasRange(true);

}
else {

range = null;
qr.setHasRange(false);

}
qr.setRange(range);
qr.setId(ctx.id.getText());
return qr;

}

Listing 4.50: Quantum register visit method definition

4.3. AST Builder 60

4.3.7 Range Visit

The grammar definition for the range rule in Listing 4.45 states that the “range” section is
defined in four different ways, covered in Subsection 3.3.4:

1. as a term expression;

2. iterating up to a specific index by placing a “TP” (TP=":") token before a term;

3. iterating from a specific index (up to the last one) by placing a “TP” token after a term;

4. iterating over an interval between two specific indexes by placing two “PT” (PT=".")
tokens between the “start” and “end” terms.

range :
term #termRange
| TP term #uptoRange
| term TP #fromRange
| start=term PT PT end=term #intervalRange
;

Listing 4.51: Range rule definition

There are four visit methods for the range rule (Listing 4.46):

1. Visit method for a term range node (Listing 4.52) creates a Range node “node”, a Term
node “term” and assigns the result of visiting the “term” section from the parse-tree
context to the “term” variable; it then creates a string “id”, which is assigned the
value of the parent’s (quantum-register) identifier and set as the iterator parameter on
the “node”; Term nodes which represent the start and end parameters in the Range node
are both set as “term” and the “node” is returned;

@Override
public AST visitTermRange(QbricksParser.TermRangeContext ctx) {

RangeNode node = new RangeNode();
TermNode term = (TermNode) visit(ctx.term());
String id = ctx.getParent().getChild(0).getText();
node.setIterator(id);
node.set(term,term);
return node;

}

Listing 4.52: Term range visit method definition

2. Visit method for an up-to range node (Listing 4.53) is similar to the visit method in
Listing 4.52, but the Term node which represents the start parameter is set as null and
end parameter is set as the “end” variable, after which the “node” is returned;

@Override
public AST visitUptoRange(QbricksParser.UptoRangeContext ctx) {

RangeNode node = new RangeNode();

4.3. AST Builder 61

TermNode end = (TermNode) visit(ctx.term());
String id = ctx.getParent().getChild(0).getText();
node.setIterator(id);
node.set(null,end);
return node;

}

Listing 4.53: Up to range visit method definition

3. Visit method for a from range node (Listing 4.54) is similar to the visit methods in
Listings 4.52 and 4.53, but the Term node which represents the start parameter is set
as the “start” variable and end parameter is set as null, after which the “node” is
returned;

@Override
public AST visitFromRange(QbricksParser.FromRangeContext ctx) {

RangeNode node = new RangeNode();
TermNode start = (TermNode) visit(ctx.term());
String id = ctx.getParent().getChild(0).getText();
node.setIterator(id);
node.set(start,null);
return node;

}

Listing 4.54: From range visit method definition

4. Visit method for an interval range node (Listing 4.55) is similar to the visit methods in
Listings 4.52, 4.53 and 4.54, but the Term node which represents the start parameter is
set as the “start” variable and end parameter is set as the “end” variable, after which
the “node” is returned;

@Override
public AST visitIntervalRange(QbricksParser.IntervalRangeContext ctx) {

RangeNode node = new RangeNode();
TermNode start = (TermNode) visit(ctx.getChild(0));
TermNode end = (TermNode) visit(ctx.getChild(3));
String id = ctx.getParent().getChild(0).getText();
node.setIterator(id);
node.set(start,end);
return node;

}

Listing 4.55: Interval range visit method definition

4.3.8 Assertion, Pre and Post-condition and Invariant Visit

The grammar definition for the assertion, pre-condition, post-condition and invariant

rules in Listing 4.42 state that all these specifications consist in an identifier – respective to
each of the rules – followed by a list of (one or more) “FORMULA” tokens, surrounded by curly
brace tokens “COP” and “CCL”. One particular aspect about the assertion rule is that it can

4.3. AST Builder 62

be empty, for the cases where the user does not intend to add specification after a certain
instruction.

assert_ : #emptyAssert
| ASSERT COP? FORMULA (VG FORMULA)* CCL? #assertSpec
;

pre :
PRE COP? FORMULA (VG FORMULA)* CCL? #preSpec
;

pos :
POS COP? FORMULA (VG FORMULA)* CCL? #posSpec
;

invariant :
INVARIANT COP? FORMULA (VG FORMULA)* CCL? #invSpec
;

Listing 4.56: Specification rules definition

The visit methods for the specification rules in Listing 4.56 are identical (Listing 4.57), and

• create a new node “node”;

• create a list of strings for storing “FORMULA” tokens from the parse-tree context;

• loop through the list of formulas from the parse-tree root context and add the value of
each “FORMULA” token to the list of strings;

• set the values of the list of formulas on the “node” object and return the “node” object.

@Override
public AST visitAssertSpec(QbricksParser.AssertSpecContext ctx) {

AssertNode node = new AssertNode();
List<String> asserts = new ArrayList<>();
for(int c = 0; c < ctx.FORMULA().size(); ++c){

asserts.add(ctx.FORMULA(c).getText());
}
node.setAssertions(asserts);
return node;

}

@Override public AST visitPreSpec(QbricksParser.PreSpecContext ctx) {
PreNode node = new PreNode();
List<String> preconds = new ArrayList<>();
for (int c = 0; c < ctx.FORMULA().size(); c++){

preconds.add(ctx.FORMULA(c).getText());
}
node.set(preconds);
return node;

}

@Override
public AST visitPosSpec(QbricksParser.PosSpecContext ctx) {

PosNode node = new PosNode();

4.3. AST Builder 63

List<String> posconds = new ArrayList<>();
for (int c = 0; c < ctx.FORMULA().size(); c++){

posconds.add(ctx.FORMULA(c).getText());
}
node.set(posconds);
return node;

}

@Override
public AST visitInvSpec(QbricksParser.InvSpecContext ctx) {

InvariantNode node = new InvariantNode();
List<String> invariants = new ArrayList<>();
for (int c = 0; c < ctx.FORMULA().size(); c++){

invariants.add(ctx.FORMULA(c).getText());
}
node.set(invariants);
return node;

}

Listing 4.57: Specification visit methods definition

4.3.9 Body Visit

The grammar definition for the body rule (Listing 4.58) states that a “body” section consists
in an assertion section followed by a list of zero or more instruction sections.

body :
assert_ (instr)* #regBody
;

Listing 4.58: Body rule definition

The visit method for the body rule (Listing 4.59)

• creates a Body Node “node”, a list of Instruction Nodes “nodeList” and an Instruction
Node “instr”;

• loops through the list of instructions from the body’s “instr” section and adds the
result of visiting each “instr” section to the “nodeList” list;

• sets the value of the “nodeList” list and the result of visiting the assertion section on
the “node” and returns the “node” object.

@Override
public AST visitRegBody(QbricksParser.RegBodyContext ctx) {

BodyNode node = new BodyNode();
List<InstrNode> nodeList = new ArrayList<>();
InstrNode instr;
for (int c = 0; c < ctx.instr().size(); ++c){

instr = (InstrNode) visit(ctx.instr(c));
nodeList.add(instr);

}

4.3. AST Builder 64

node.setBodyInstr(nodeList);
node.setAssertion((AssertNode) visit(ctx.assert_()));
return node;

}

Listing 4.59: Body visit method definition

4.3.10 Instruction Visit

The grammar definition for the instruction rule (Listing 4.60) states that an “instr” section is
defined by any regular instruction: for, if, apply, control or conjugated followed by an assertion,
or else it is defined by a return instruction, which has an optional expression section.

instr :
(forinst=for_ | ifinst=if_

| applyinst=apply | ctlinst=control
| conjinst=conjugated) assert_ #regInst
| RET (expr)? #retInst
;

Listing 4.60: Instruction rules definition

The visit method for the regular instruction rule (Listing 4.61) returns the result of visiting
the child with index zero, corresponding to a for, if, apply, control or conjugated section.

@Override
public AST visitRegInst(QbricksParser.RegInstContext ctx) {

return visit(ctx.getChild(0));
}

Listing 4.61: Regular Instruction visit method definition

4.3.11 Return Visit

The visit method for the return instruction rule (Listing 4.62)

• creates a Return Node “ret” and an Expression Node “expr”;

• checks if the parse-tree context contains two children, in which case the result of visiting
the “expr” section is set on the “args” parameter of the “ret” node and the Boolean
“argBool” is set to true. In case the parse-tree context does not contain two children,
the “args” parameter of the “ret” node is set to null and the Boolean “argBool” is set
to false;

• returns the “ret” node.

@Override
public AST visitRetInst(QbricksParser.RetInstContext ctx) {

4.3. AST Builder 65

RetNode ret = new RetNode();
ExpressionNode expr;
if (ctx.getChildCount()==2) {

expr = (ExpressionNode) visit(ctx.expr());
ret.setArgs(expr);
ret.setArgBool(true);

} else {
ret.setArgs(null);
ret.setArgBool(false);

}
return ret;

}

Listing 4.62: Return Instruction visit method definition

4.3.12 For-loop Visit

The grammar definition for the for-loop rule (Listing 4.63) states that a “for_” section is
defined by a “FOR” token followed by an identifier “var” (the iterator variable), an “IN”
token, a for-iteration section “iteration”, the for-loop’s invariant “inv” and body “forbody”
sections, both surrounded by curly-brace tokens “COP” and “CCL”. For-iteration rule (Listing
4.63) states that an “iter” section is defined by a “RANGE” token followed by either a term or
a quantum-register section surrounded by parenthesis tokens; an “iter” section can also be
defined by a single quantum-register section.

for_ :
FOR var=ID IN iteration=iter
COP inv=invariant forbody=body CCL #forLoop
;

iter :
RANGE OP (expvalue=term | qrvalue=qReg) CL #rangeIter
| qReg #qrIter
;

Listing 4.63: For-loop and iteration rules definition

The visit method for the for-loop rule (Listing 4.64)

• creates two new AST nodes: For-loop node “node” and For-iteration node “iter”;

• sets the For-loop node’s assertion by visiting the parent instruction section;

• creates an Invariant node “invariant” and the result of visiting the “inv” section is
assigned to it;

• creates a Body node “body” and the result of visiting the “forbody” section is assigned
to it;

• creates a variable “iterable” and the the “iteration” section is assigned to it;

4.3. AST Builder 66

• sets the For-iteration node’s iterator as the “var” identifier section;

• checks whether the “iterable” variable corresponds to a range or a quantum-register
section; if it is a range section, the result of visiting the term or quantum-register section
is set as the iterable value and the range Boolean is set to true on the for-iteration node; in
case it is a quantum-register section, the result of visiting this section is set as the iterable
value and the range Boolean is set to false on the for-iteration node;

• sets the values of the Invariant Node “invariant”, the Body Node “body” and the
For-iteration Node “iter” on the For-loop node. Finally, it returns the “node”.

@Override
public AST visitForLoop(QbricksParser.ForLoopContext ctx) {

ForNode node = new ForNode();
ForIter iter = new ForIter();
node.setAssertion((AssertNode) visit(ctx.getParent().getChild(1)));
InvariantNode invariant = (InvariantNode) visit(ctx.inv);
BodyNode body = (BodyNode) visit(ctx.forbody);
ParseTree iterable = ctx.iteration;
iter.setIterator(ctx.var.getText());
if(iterable.getChildCount() > 1) {

iter.setIterable(visit(iterable.getChild(2)));
iter.setRange(Boolean.TRUE);

} else {
iter.setIterable(visit(iterable.getChild(0)));
iter.setRange(Boolean.FALSE);

}
node.setInvariant(invariant);
node.setBody(body);
node.setIter(iter);
return node;

}

Listing 4.64: For-loop visit method definition

4.3.13 If-statement Visit

The grammar definition for the if-statement rule (Listing 4.65) states that an “if_” section is
defined by an “IF” token followed by a conditional expression “cond”, a body “ifbody” section
surrounded by curly-brace tokens “COP” and “CCL” and an optional else section, defined by
an “ELSE” token followed by the else’s body “elsebody” surrounded by curly-brace tokens.

if_ :
IF cond=expr
COP ifbody=body CCL
(ELSE COP elsebody=else_ CCL)? #condIf
;

else_:
body #elsebody
;

4.3. AST Builder 67

Listing 4.65: If and else rules definition

The visit method for the if-statement rule (Listing 4.66)

• creates two new AST nodes: If Node “node” and If-condition Node “cond”;

• sets the If node’s assertion by visiting the parent instruction section;

• creates a Body Node “ifBody” and the result of visiting the “ifbody” section is assigned
to it;

• sets the if-condition node’s expression as the result of visiting the “cond” section;

• sets the values of the If-condition Node “cond” and the Body Node “ifbody” on the If
node;

• checks if the “else” section exists, in which case the result of visiting the “elsebody”
section is set as the else’s body value and the withElse Boolean is set to true on the If
Node; in case it does not exist, “elsebody” section is set to null and the withElse Boolean
is set to false on the If Node;

• returns the If Node.

@Override
public AST visitCondIf(QbricksParser.CondIfContext ctx) {

IfNode node = new IfNode();
IfCond cond = new IfCond();
node.setAssertion((AssertNode) visit(ctx.getParent().getChild(1)));
BodyNode ifBody = (BodyNode) visit(ctx.ifbody);
cond.setExpr((ExpressionNode) visit(ctx.cond));
node.setCond(cond);
node.setIfBody(ifBody);
if(ctx.getChildCount()>5) {

node.setElseBody((BodyNode) visit(ctx.elsebody));
node.setWithElse(true);

} else {
node.setElseBody(null);
node.setWithElse(false);

}
return node;

}

Listing 4.66: If-statement visit method definition

4.3.14 Apply Visit

The grammar definition for the gate application rule (Listing 4.67) states that an “apply”
section is defined by a gate identifier, followed by the gate’s arguments. If the number of

4.3. AST Builder 68

arguments exceeds one they will be surrounded by parenthesis tokens “OP” and “CL” and
separated by commas “VG”.

apply :
fun=idFun OP (fargs=args)? CL #funApply
| REVERSE OP fun=idFun OP (fargs=args)? CL CL #revApply
| HAD OP qr=qReg CL #hadApply
| XGATE OP qr=qReg CL #xApply
| YGATE OP qr=qReg CL #yApply
| ZGATE OP qr=qReg CL #zApply
| TGATE OP qr=qReg CL #tApply
| SGATE OP qr=qReg CL #sApply
| SWAP OP qrL=qReg VG qrR=qReg CL #swapApply
| RX OP angle=ang VG qr=qReg CL #rxApply
| RY OP angle=ang VG qr=qReg CL #ryApply
| RZ OP angle=ang VG qr=qReg CL #rzApply
| PHASE OP angle=ang VG qr=qReg CL #phApply
;

args :
term (VG term)* #funArgs
;

ang :
term #angTerm
;

Listing 4.67: Gate application definition

There are four different types of Apply nodes, depending on the number of the gate’s
parameters. Each type of Apply node corresponds to a visit method.

1. Visit method for nodes with only one parameter (Listing 4.68) creates a SingleApply
node “node”, checks if the gate is being used as a controlled operation in order to correctly
set the associated assertion on the “node” object, creates a Quantum register node “qr”
and the result of visiting the “qr” section from the parse-tree context is assigned to it.
Then “qr” is set as the quantum register on the “node”, after which “node” is returned;

@Override
public AST visitSingleApply(QbricksParser.SingleApplyContext ctx) {

SingleApply node = new SingleApply();
if(!ctx.getParent().getClass().getSimpleName().equals("ApplyControlContext"))

{
node.setAssertion((AssertNode) visit(ctx.getParent().getChild(1)));

}
else

node.setAssertion((AssertNode) visit(ctx.getParent().getParent().getChild
(1)));

QregNode qr = (QregNode) visit(ctx.qr);
node.setQreg(qr);
return node;

}

Listing 4.68: Single argument gate application visit method definition

4.3. AST Builder 69

2. Visit method for nodes with two parameters (Listing 4.69) creates a DoubleApply node
“node”, checks if the gate is being used as a controlled operation in order to correctly
set the associated assertion on the “node” object, creates a Quantum register node “qr”
and the result of visiting the “qr” section from the parse-tree context is assigned to
it. Creates a Term node “angle” and the result of visiting the “angle” section from the
parse-tree context is assigned to it. Then “qr” is set as the quantum register and “angle”
is set as the angle on the “node”, after which the “node” is returned;

@Override
public AST visitDoubleApply(QbricksParser.DoubleApplyContext ctx) {

DoubleApply node = new DoubleApply();
if(!ctx.getParent().getClass().getSimpleName().equals("ApplyControlContext"))

{
node.setAssertion((AssertNode) visit(ctx.getParent().getChild(1)));

}
else

node.setAssertion((AssertNode) visit(ctx.getParent().getParent().getChild
(1)));

QregNode qr = (QregNode) visit(ctx.qr);
TermNode angle = (TermNode) visit(ctx.angle);
node.setQreg(qr);
node.setAngle(angle);
return node;

}

Listing 4.69: Two argument gate application visit method definition

3. Visit method for the Swap gate node (Listing 4.70) creates a SwapApply node “node”,
checks if the gate is being used as a controlled operation in order to correctly set the
associated assertion on the “node” object, creates two Quantum register nodes: “left”
and “right” and the result of visiting the “qrL” and “qrR” sections from the parse-tree
context are respectively assigned to it. Then “left” and “right” are set as the quantum
registers on the “node”, after which the “node” is returned;

@Override
public AST visitSwapApply(QbricksParser.SwapApplyContext ctx) {

SwapApply node = new SwapApply();
if(!ctx.getParent().getClass().getSimpleName().equals("ApplyControlContext"))

{
node.setAssertion((AssertNode) visit(ctx.getParent().getChild(1)));

}
else

node.setAssertion((AssertNode) visit(ctx.getParent().getParent().getChild
(1)));

QregNode left = (QregNode) visit(ctx.qrL);
QregNode right = (QregNode) visit(ctx.qrR);
node.setQregs(left,right);
return node;

}

Listing 4.70: Swap gate application visit method definition

4.3. AST Builder 70

4. Visit method for Function and reverse-function application nodes (Listing 4.71) creates a
FunApply node “node”, checks if the gate is being used as a controlled operation in order
to correctly set the associated assertion on the “node” object, creates a list of Term nodes:
“termArgs” and the result of visiting the “term” sections from the parse-tree context is
added to it. Then the function’s identifier “fun” and arguments “termArgs” are set on
the “node”, after which the “node” is returned;

@Override
public AST visitFunApply(QbricksParser.FunApplyContext ctx) {

FunApply node = new FunApply();
List<TermNode> termArgs = new ArrayList<>();
ParseTree args = ctx.fargs;
if(!ctx.getParent().getClass().getSimpleName().equals("ApplyControlContext"))

{
node.setAssertion((AssertNode) visit(ctx.getParent().getChild(1)));

}
else

node.setAssertion((AssertNode) visit(ctx.getParent().getParent().getChild
(1)));

if (ctx.getChildCount()>3) {
TermNode arg = (TermNode) visit(args.getChild(0));
termArgs.add(arg);
if (args.getChildCount() > 1) {

for (int c = 2; c < args.getChildCount(); c += 2) {
arg = (TermNode) visit(args.getChild(c));
termArgs.add(arg);

}
}

}

node.setFunID(ctx.fun.getText());
node.setTermArgs(termArgs);

return node;
}

Listing 4.71: Function gate application visit method definition

4.3.15 Controlled gate Visit

The grammar definition for the controlled gate application rule (Listing 4.72) states that a
“control” section is defined by a gate identifier – with-controlled operator, C-NOT, Toffoli or
Fredkin – followed by a list of quantum registers “ctlqrs”, separated by commas, and a
control gate “ctlgate”, surrounded by parenthesis, in the with-controlled case; for the C-NOT,
Toffoli or Fredkin gates, the gate identifier is followed by the gate’s arguments, surrounded by
parenthesis and separated by commas.

control :
WITHCTL ctlqrs=id_list OP ctlgate=apply CL #applyControl
| WITHCTL ctlqrs=id_list OP ctlgate=control CL #multiControl
| CNOT OP ctlqr=qReg VG tqr=qReg CL #cnotControl

4.3. AST Builder 71

| TOFF OP ctl1=qReg VG ctl2=qReg VG tg=qReg CL #toffControl
| FRED OP ctl1=qReg VG ctl2=qReg VG tg=qReg CL #fredControl
;

id_list :
qReg (VG qReg)* #qrList
;

Listing 4.72: Controlled gate application definition

There are five different visit methods for the controlled gate application rule:

1. Visit methods for Control nodes using a with-controlled operator (Listing 4.73) create a
with-controlled node with an associated assertion, and a “gate” node consisting of a gate
application node or a controlled gate application node. A list of quantum-register nodes
is created by visiting the “ctlqrs” section from the parse-tree context, added to the
“ctlNodes” list, and set as control registers, with the “gate” node as the control gate.
The resulting node is then returned.

@Override
public AST visitApplyControl(QbricksParser.ApplyControlContext ctx) {

WithCtlNode node = new WithCtlNode();
node.setAssertion((AssertNode) visit(ctx.getParent().getChild(1)));
ApplyNode gate = (ApplyNode) visit(ctx.ctlgate);
List<QregNode> ctlNodes = new ArrayList<>(); //list of control qubits
ParseTree ctls = ctx.ctlqrs;
QregNode qr = (QregNode) visit(ctls.getChild(0));
ctlNodes.add(qr);
if (ctls.getChildCount() > 1) {

for (int c = 2; c < ctls.getChildCount(); c += 2) {
qr = (QregNode) visit(ctls.getChild(c));
ctlNodes.add(qr);

}
}
node.setCtlArgs(ctlNodes);
node.setCtlGate(gate);
return node;

}

@Override
public AST visitMultiControl(QbricksParser.MultiControlContext ctx) {

WithCtlNode node = new WithCtlNode();
node.setAssertion((AssertNode) visit(ctx.getParent().getChild(1)));
CtlNode gate = (CtlNode) visit(ctx.ctlgate);
List<QregNode> ctlNodes = new ArrayList<>(); //list of control qubits
ParseTree ctls = ctx.ctlqrs;
QregNode qr = (QregNode) visit(ctls.getChild(0));
ctlNodes.add(qr);
if (ctls.getChildCount() > 1) {

for (int c = 2; c < ctls.getChildCount(); c += 2) {
qr = (QregNode) visit(ctls.getChild(c));
ctlNodes.add(qr);

}
}
node.setCtlArgs(ctlNodes);
node.setCtlMulti(gate);

4.3. AST Builder 72

return node;
}

Listing 4.73: With-control visit method definition

2. Visit methods for C-NOT (Listing 4.74), Toffoli and Fredkin nodes (Listing 4.75) create
a “node” respective to the applied control operation, checks if the gate is being used
as a controlled operation in order to correctly set the associated assertion on the “node”
object; then, quantum-register nodes are created and assigned the result of visiting both
the control and target sections from the parse-tree context, which are then set on the
“node”, the “node” is then returned;

@Override
public AST visitCnotControl(QbricksParser.CnotControlContext ctx) {

CnotNode node = new CnotNode();
if(!ctx.getParent().getClass().getSimpleName().equals("MultiControlContext"))

{
node.setAssertion((AssertNode) visit(ctx.getParent().getChild(1)));

}
else

node.setAssertion((AssertNode) visit(ctx.getParent().getParent().getChild
(1)));

QregNode ctl = (QregNode) visit(ctx.ctlqr);
QregNode target = (QregNode) visit(ctx.tqr);
cnot.setQregs(ctl,target);
return node;

}

Listing 4.74: C-NOT gate application visit method definition

@Override
public AST visitFredControl(QbricksParser.FredControlContext ctx) {

FredNode node = new FredNode();
if(!ctx.getParent().getClass().getSimpleName().equals("MultiControlContext"))

{
node.setAssertion((AssertNode) visit(ctx.getParent().getChild(1)));

}
else

node.setAssertion((AssertNode) visit(ctx.getParent().getParent().getChild
(1)));

QregNode ctl1 = (QregNode) visit(ctx.ctl1);
QregNode ctl2 = (QregNode) visit(ctx.ctl2);
QregNode target = (QregNode) visit(ctx.tg);
node.setQregs(ctl1,ctl2,target);
return node;

}

@Override
public AST visitToffControl(QbricksParser.ToffControlContext ctx) {

ToffNode node = new ToffNode();
if(!ctx.getParent().getClass().getSimpleName().equals("MultiControlContext"))

{
node.setAssertion((AssertNode) visit(ctx.getParent().getChild(1)));

}
else

4.3. AST Builder 73

node.setAssertion((AssertNode) visit(ctx.getParent().getParent().getChild
(1)));

QregNode ctl1 = (QregNode) visit(ctx.ctl1);
QregNode ctl2 = (QregNode) visit(ctx.ctl2);
QregNode target = (QregNode) visit(ctx.tg);
node.setQregs(ctl1,ctl2,target);
return node;

}

Listing 4.75: Fredkin and Toffoli gate application visit method definition

4.3.16 Conjugated-basis Visit

The grammar definition for the conjugated-basis rule (Listing 4.76) states that a “conjugated”
section is defined by a “WITHCJG” token followed by an gate application instruction “applyinst”
section and a body “conjbody” section surrounded by curly-brace tokens “COP” and “CCL”.

conjugated :
WITHCJG OP? applyinst=apply CL? COP conjbody=body CCL
;

Listing 4.76: Conjugated-basis rule definition

The visit method for the conjugated-basis rule (Listing 4.77)

• creates a Conjugated node “node”;

• creates a Body Node “body” and the result of visiting the “conjbody” section is assigned
to it;

• creates an Apply Node “apply” and the result of visiting the “applyinst” section is
assigned to it;

• sets the associated assertion on the “node” object;

• sets the values of the “body” and “apply” nodes on the “node”;

• returns the “node”.

@Override
public AST visitConjugated(QbricksParser.ConjugatedContext ctx) {

ConjNode node = new ConjNode();
BodyNode body = (BodyNode) visit(ctx.conjbody);
ApplyNode apply = (ApplyNode) visit(ctx.applyinst);
node.setAssertion((AssertNode) visit(ctx.getParent().getChild(1)));
node.setBody(body);
node.setApply(apply);
return node;

}

Listing 4.77: Conjugated-basis visit method definition

4.3. AST Builder 74

4.3.17 Expression and Term Visit

The grammar definition for the expression and term rules (Listing 4.78) states that an “expr”
section is defined by a term – which can represent an arithmetic expression, a unary term
or an atom – or by a logical expression. Both expressions and terms can be surrounded by
parenthesis.

expr :
term #termExpr
| left=expr op=EQ right=expr #eqExpr
| left=expr op=GT right=expr #gtExpr
| left=expr op=LT right=expr #ltExpr
| left=expr op=GEQ right=expr #geqExpr
| left=expr op=LEQ right=expr #leqExpr
| left=expr op=NEQ right=expr #neqExpr
| OP expr CL #parenExpr
;

term :
atom #atomTerm
| left=term op=POW right=term #powTerm
| left=term op=MUL right=term #mulTerm
| left=term op=DIV right=term #divTerm
| left=term op=PLUS right=term #addTerm
| left=term op=MINUS right=term #subTerm
| OP term CL #parenTerm
| unOp #unaryTerm
;

atom :
value = NUM #numAtom
| pi = PI #piAtom
| var = ID #varAtom
;

unOp :
MINUS term #negUnary
| LEN OP qReg CL #lenUnary
| SQRT OP value=term CL #sqrtUnary
;

Listing 4.78: Expressions definition

• Visit method for a term expression (Listing 4.79) returns the result of visiting the “term”
section from the parse-tree context;

@Override
public AST visitTermExpr(QbricksParser.TermExprContext ctx) {

return visit(ctx.term());
}

Listing 4.79: Term expression visit method definition

4.3. AST Builder 75

• Visit methods for logical expressions (Listing 4.80) are similar: the respective node is
created, left and right expressions are set on the node by visiting “left” and “right”
sections from the parse-tree context, and the node is returned;

@Override
public AST visitEqExpr(QbricksParser.EqExprContext ctx) {

InfixExpressionNode node = new EqualNode();
node.setLeft((ExpressionNode) visit(ctx.left));
node.setRight((ExpressionNode) visit(ctx.right));
return node;

}

@Override
public AST visitNeqExpr(QbricksParser.NeqExprContext ctx) {

InfixExpressionNode node = new NEqualNode();
node.setLeft((ExpressionNode) visit(ctx.left));
node.setRight((ExpressionNode) visit(ctx.right));
return node;

}

@Override
public AST visitGeqExpr(QbricksParser.GeqExprContext ctx) {

InfixExpressionNode node = new GEQNode();
node.setLeft((ExpressionNode) visit(ctx.left));
node.setRight((ExpressionNode) visit(ctx.right));
return node;

}

@Override
public AST visitLeqExpr(QbricksParser.LeqExprContext ctx) {

InfixExpressionNode node = new LEQNode();
node.setLeft((ExpressionNode) visit(ctx.left));
node.setRight((ExpressionNode) visit(ctx.right));
return node;

}

@Override
public AST visitGtExpr(QbricksParser.GtExprContext ctx) {

InfixExpressionNode node = new GTNode();
node.setLeft((ExpressionNode) visit(ctx.left));
node.setRight((ExpressionNode) visit(ctx.right));
return node;

}

@Override
public AST visitLtExpr(QbricksParser.LtExprContext ctx) {

InfixExpressionNode node = new LTNode();
node.setLeft((ExpressionNode) visit(ctx.left));
node.setRight((ExpressionNode) visit(ctx.right));
return node;

}

Listing 4.80: Logical expression visit methods definition

• Visit method for a parenthesis expression (Listing 4.81) returns the result of visiting the
“expr” section from the parse-tree context;

4.3. AST Builder 76

@Override
public AST visitParenExpr(QbricksParser.ParenExprContext ctx) {

return visit(ctx.expr());
}

Listing 4.81: Parenthesis expression visit method definition

• Visit method for an atom term (Listing 4.82) returns the result of visiting the “atom”
section from the parse-tree context;

@Override
public AST visitAtomTerm(QbricksParser.AtomTermContext ctx) {

return visit(ctx.atom());
}

Listing 4.82: Atom term visit method definition

• Visit methods for arithmetic expressions (Listing 4.83) are similar: the respective node is
created, left and right terms are set on the node by visiting “left” and “right” sections
from the parse-tree context. The node is then returned;

@Override
public AST visitPowTerm(QbricksParser.PowTermContext ctx) {

InfixTermNode node = new PowerNode();
node.setLeft((TermNode) visit(ctx.left));
node.setRight((TermNode) visit(ctx.right));
return node;

}

@Override
public AST visitMulTerm(QbricksParser.MulTermContext ctx) {

InfixTermNode node = new MulNode();
node.setLeft((TermNode) visit(ctx.left));
node.setRight((TermNode) visit(ctx.right));
return node;

}

@Override
public AST visitDivTerm(QbricksParser.DivTermContext ctx) {

InfixTermNode node = new DivNode();
node.setLeft((TermNode) visit(ctx.left));
node.setRight((TermNode) visit(ctx.right));
return node;

}

@Override
public AST visitAddTerm(QbricksParser.AddTermContext ctx) {

InfixTermNode node = new AddNode();
node.setLeft((TermNode) visit(ctx.left));
node.setRight((TermNode) visit(ctx.right));
return node;

}

@Override
public AST visitSubTerm(QbricksParser.SubTermContext ctx) {

4.3. AST Builder 77

InfixTermNode node = new SubNode();
node.setLeft((TermNode) visit(ctx.left));
node.setRight((TermNode) visit(ctx.right));
return node;

}

Listing 4.83: Arithmetic expression visit methods definition

• Visit method for a parenthesis term (Listing 4.84) creates a Parenthesis node, sets the result
of visiting the “term” section from the parse-tree context on the node and returns the
node;
@Override
public AST visitParenTerm(QbricksParser.ParenTermContext ctx) {

ParenNode node = new ParenNode();
node.setTerm((TermNode) visit(ctx.term()));
return node;

}

Listing 4.84: Parenthesis term visit method definition

• Visit method for a unary term (Listing 4.85) returns the result of visiting the “unOp”
section from the parse-tree context;
@Override
public AST visitUnaryTerm(QbricksParser.UnaryTermContext ctx) {

return visit(ctx.unOp());
}

Listing 4.85: Parenthesis expression visit method definition

• Visit methods for negative and square-root unary terms (Listing 4.86) create a unary node
“node”, set the respective operator and inner term on the node, and the node is returned;
@Override
public AST visitNegUnary(QbricksParser.NegUnaryContext ctx) {

UnOpNode node = new UnOpNode();
node.setOp("Minus ");
node.setInnerTerm((TermNode) visit(ctx.term()));
return node;

}

@Override
public AST visitSqrtUnary(QbricksParser.SqrtUnaryContext ctx) {

UnOpNode node = new UnOpNode();
node.setOp(ctx.SQRT().getText());
node.setInnerTerm((TermNode) visit(ctx.term()));
return node;

}

Listing 4.86: Negative and square-root unary terms visit method definition

• Visit method for a length unary term (Listing 4.87) creates a length node “node”, sets the
respective quantum register on the node by visiting the “qReg” section from the parse-tree
context, and the node is returned;

4.4. Changing the paradigm 78

@Override
public AST visitLenUnary(QbricksParser.LenUnaryContext ctx) {

LenNode node = new LenNode();
node.setQrTerm((QregNode) visit(ctx.qReg()));
return node;

}

Listing 4.87: Length unary term visit method definition

• Visit method for an atom term (Listing 4.88) returns the result of visiting the “atom”
section from the parse-tree context;
@Override
public AST visitAtomTerm(QbricksParser.AtomTermContext ctx) {

return visit(ctx.atom());
}

Listing 4.88: Atom term visit method definition

• Visit methods for number, pi and variable atoms (Listing 4.89) create an atom node “node”,
set the respective value and type on the node, and the node is returned;
@Override
public AST visitNumAtom(QbricksParser.NumAtomContext ctx) {

AtomNode node = new AtomNode();
node.setValue("Num "+ctx.value.getText());
node.setType("Num");
return node;

}

@Override
public AST visitPiAtom(QbricksParser.PiAtomContext ctx) {

AtomNode node = new AtomNode();
node.setValue("Num pi");
node.setType("Num");
return node;

}

@Override
public AST visitVarAtom(QbricksParser.VarAtomContext ctx) {

AtomNode node = new AtomNode();
node.setValue("Var \""+ctx.var.getText()+"\"");
node.setType("Var");
return node;

}

Listing 4.89: Number, pi and variable atom terms visit method definition

4.4 changing the paradigm

Once we extract the relevant information from the concrete-syntax tree and build the Java-
AST, we have a nicely organized data-structure that represents a program in iQbricks. By
traversing the Java-AST, information stored in nodes can be easily extracted in order to either

4.5. Ocaml AST structure 79

1. translate it directly to a target language or

2. generate a different abstract structure, which can enable a more fine-grained representa-
tion of a program for later translating into the target language.

The implemented solution for this project follows the second approach. Since the target
language (Qbricks) is a functional one, directly translating the Java-AST to a functional paradigm
would result in a much more complicated and possibly unfeasible translation process,
which could limit iQbricks’ potential as a quantum programming language. A functional
representation of a program’s structure simplifies the translation process and provides a
more solid and encapsulated implementation for iQbricks framework. Taking this into
account, Java-AST Evaluator generates an AST in Ocaml language from the previously built
Java-AST. The implementation for the ML-AST structure and Java-AST Evaluator will be
covered in Sections 4.5 and 4.6, respectively.

4.5 ocaml ast structure

Following the same process used to define the Java-AST, a structure that represents a
program’s information, ML-AST, was defined. The new AST was defined using Ocaml’s
records feature, which is a concise and expressive system for declaring new data types. A
record represents a collection of values stored together as one, where each component is
identified by a different field name. The basic syntax for a record type declaration is shown
in Listing 4.90.

type <record-name> =
{

<field> : <type>;
<field> : <type>;
...

}

Listing 4.90: Basic record syntax

4.5.1 Program type

A program type consists in:

• a string identifier “id”,

• a list of strings “imports”,

• a “main” function, defined by a function type,

• a list of auxiliary functions, defined by function types.

4.5. Ocaml AST structure 80

A program type has the structure expressed in Listing 4.91.

type program =
{

id: string;
imports: string list;
main: fun_;
aux: fun_ list;

}

Listing 4.91: Program type definition

4.5.2 Function type

A function type consists in:

• a string identifier “id”,

• a circuit type “circ”,

• a list of parameter types “params”,

• a list of pre and post-condition types “pre” and “pos”, respectively.

A function type has the structure expressed in Listing 4.92.

type fun_ =
{

id: string;
circ: circ;
params: param list;
pre: string list;
pos: string list

}

Listing 4.92: Function type definition

4.5.3 Parameter type

A parameter type consists in:

• a string identifier “id”,

• a type “type_” 3.

Parameter and “type” type structures are expressed in Listing 4.93.

3 The “type_” type is a variant type, which means it can take on one of several different forms, represented by the
"|" symbol. In this case, the “type_” type can be one of four possible values: “Qreg”, “Circ”, “Int” or “Bool”.
These values represent the different types in iQbricks.

4.5. Ocaml AST structure 81

type type_ = | Qreg | Circ | Int | Bool ;;

type param =
{

id: string;
type_: type_

}

Listing 4.93: Parameter and “type” type definition

4.5.4 Circuit type

A circuit type consists in:

• a list of quantum register types “qregs”, which have two fields: a string identifier “qrid”
and an expression type “size”,

• a list of instruction types “body”.

Circuit and quantum register types structures are expressed in Listing 4.94.

type circ =
{

qregs: qreg list;
body: instruction list

}

type qreg =
{

qrid: string;
size: expr;

}

Listing 4.94: Circuit and quantum register types definition

4.5.5 Instruction type

An instruction type is a variant type and can take different forms. Each variant has a record
type associated with it, which contains different fields:

• “Conjugated” variant has three fields: a unitary type “gate”, a list of instruction types
“body” and a list of strings “assertion”,

• “For” variant has five fields: an iteration type “iter”, a string identifier “qr” (if a
quantum register is being iterated it consists in its identifier) a list of strings “inv” (the
loop’s invariant), a list of instruction types “body” and a list of strings “assertion”,

4.5. Ocaml AST structure 82

• “If” variant has three fields: a condition type “cond”, a list of instruction types “body”
and a list of strings “assertion”,

• “IfElse” variant has the same fields as the “If” variant, with the addition of a list of
instruction types “elsebody” for the else’s body,

• “Unitary” variant has a single field: a unitary type,

• “Return” variant has a single field, defined by a string.

Instruction type’s structure is expressed in Listing 4.95.

type instruction =
| Conjugated of {gate:unitary; body:instruction list; assertion: string list}
| For of {iter:iter; qr:string; inv: string list; body:instruction list; assertion:

string list}
| If of {cond: cond; body:instruction list ; assertion: string list}
| IfElse of {cond:cond; ifbody:instruction list; elsebody:instruction list;

assertion:string list}
| Unitary of unitary
| Return of string ;;

Listing 4.95: Instruction type definition

4.5.6 Iteration type

An iteration type consists in:

• a string identifier “iterator”,

• expression types “starts” and “ends”.

Iteration type’s structure is expressed in Listing 4.96.

type iter =
{

iterator: string;
starts: expr;
ends: expr;

}

Listing 4.96: Iteration type definition

4.5.7 Unitary type

A unitary type is a variant type and each different variant form has a record type associated
with it, which contains different fields:

• “Sequence” variant has two unitary type fields,

4.5. Ocaml AST structure 83

• “Apply” variant has four fields: a gate type “gate”, a string identifier “qreg”, a range
type “range” and a list of strings “assertion”,

• “MultiApply” variant has three fields: a multigate type “gate”, a list of iter types “regs”,
and a list of strings “assertion”,

• “WithControl” variant has four fields: a unitary type “ctlgate”, a list of iter types
“ctls”, an iter type “tg” and a list of strings “assertion”,

• “FUN” and “REV” variants have two fields: a string identifier “id” and a list of expression
types “args”.

Unitary type’s structure is expressed in Listing 4.97.

type unitary =
| Sequence of unitary * unitary
| Apply of {gate:gate; qreg:string; range:range; assertion:string list}
| MultiApply of {gate:multigate; regs:iter list; assertion:string list}
| WithControl of {ctlgate:unitary; ctls:iter list; tg:iter; assertion:string list}
| FUN of {id:string; args: expr list}
| REV of {id:string; args: expr list} ;;

Listing 4.97: Unitary type definition

4.5.8 Range type

A range type consists in two expression types: “starts” and “ends”. Its structure is expressed
in Listing 4.98.

type range =
{

starts: expr;
ends: expr;

}

Listing 4.98: Range type definition

4.5.9 Gate and Multi-gate types

A gate type is a variant type that represents the different single-qubit gates in iQbricks.
The possible variants are: H, X, Y, Z, T, S, Rx(θ), Ry(θ), Rz(θ) and Ph(θ). In rotation gates
Rx(θ), Ry(θ), Rz(θ) and Ph(θ), the angle θ is specified by an expression type. A multi-gate type
is another variant type that represents multi-qubit gates in iQbricks. The possible variants
are: C-NOT, Toffoli, Fredkin and Swap.

Gate and Multi-gate type structures are expressed in Listing 4.99.

4.6. Evaluating the Java-AST 84

type gate =
| H | X | Y | Z | T | S
| Rx of expr
| Ry of expr
| Rz of expr
| Ph of expr ;;

type multigate =
| Cnot | Toff | Fred | SWAP ;;

Listing 4.99: Gate and Multi-gate types definition

4.5.10 Condition and Expression types

A condition type defines the different comparison operations between two expressions:
equal to, not equal to, greater than, less than, greater than or equal to, and less than or equal
to. An expression type defines the different mathematical expressions: addition, subtraction,
multiplication, division and power. It also includes unary operators minus, length and square-root
and atoms for numbers and variables.

Condition and Expression type structures are expressed in Listing 4.100.

type expr =
| Plus of expr * expr
| Subtract of expr * expr
| Times of expr * expr
| Divide of expr * expr
| Power of expr * expr
| Minus of expr
| Len of string
| Sqrt of expr
| Num of int
| Var of string ;;

type cond =
| Eq of expr * expr
| NEq of expr * expr
| Gt of expr * expr
| Lt of expr * expr
| GEq of expr * expr
| LEq of expr * expr ;;

Listing 4.100: Condition and expression types definition

4.6 evaluating the java-ast

Once the Java-AST is defined, it is necessary to build an AST Visitor class to traverse it. This
class contains the Visit methods that are implemented in the Java-AST Evaluator. For nodes that
are extended by other nodes – Instruction, Control, Apply, Term and Expression – it is necessary

4.6. Evaluating the Java-AST 85

to check which instance of the node is being visited. This is done by using a sequence of
if-statements that verify all possible instances of the node. Listing 4.101 is an abridged version
of the implemented AST Visitor, the full code is detailed in Carneiro (2023).
public abstract class MyASTVisitor <T> {

public abstract T Visit(ProgramNode node);
public abstract T Visit(ImportsNode node);
public abstract T Visit(MainNode node);
public abstract T Visit(AuxNode node);
// Visit methods for remaining rules
public T Visit(InstrNode node) {

if (node instanceof ForNode)
return Visit((ForNode) node);

else if (node instanceof IfNode)
return Visit((IfNode) node);

...
public T Visit(CtlNode node) {

if (node instanceof WithCtlNode)
return Visit((WithCtlNode) node);

else if (node instanceof CnotNode)
return Visit((CnotNode) node);

...
public T Visit(ApplyNode node) {

if (node instanceof FunApply)
return Visit((FunApply) node);

else if (node instanceof RevApply)
return Visit((RevApply) node);

else if (node instanceof HadApply)
return Visit((HadApply) node);

else if (node instanceof RxApply)
...

public T Visit(TermNode node) {
if (node instanceof PowerNode)

return Visit((PowerNode) node);
else if (node instanceof MulNode)

return Visit((MulNode) node);
else if (node instanceof DivNode)
...

public T Visit(ExpressionNode node) {
if (node instanceof EqualNode)

return Visit((EqualNode) node);
else if (node instanceof GTNode)

return Visit((GTNode) node);
else if (node instanceof LTNode)
...

Listing 4.101: AST Visitor definition

4.6.1 Java-AST Evaluator

The Java-AST Evaluator is responsible for processing the Java-AST tree structure by imple-
menting the necessary visit methods. The purpose of this Evaluator is to convert the Java-AST
into an ML-AST representation. The Evaluator does this by walking through the nodes in the
Java-AST and generating a text file that represents the ML-AST using the defined data types.

4.6. Evaluating the Java-AST 86

An abridged example of a program written in Ocaml which represents an ML-AST
structure is shown in Listing 4.102, where a program with id “grover_cz”, an auxiliary
function “oracle”, import files and the main function are expressed. The program begins
by opening “ML_AST” and “ML_eval” modules, which correspond to the ML-AST structure
definition and the ML-AST Evaluator, respectively. Then a program type structure is defined.

open ML_AST
open ML_eval

let p = {
id = "grover_cz";
aux = [

{
id = "oracle";
circ = {

qregs= [{qrid="qr"; size=Num 0}];
body = [
...]

}
}

];
imports = ["grover";];
main = {

...
}

};;

Listing 4.102: ML-AST structure example

4.6.2 Program Node Evaluation

The Visit method for the Program node (Listing 4.103):

• starts by declaring a StringBuilder variable “t”, which contains the generated code that
is later written to a file;

• declares lists “auxs”, “undeclared_funs” “declared_funs” and “index”;

• creates a string “main” and the result of visiting the Main node is assigned to it;

• appends the initial portion of the Ocaml program: the file imports and declaration of
the program “p” and its identifier;

• handles the case of auxiliary functions in the program: if there are auxiliary functions
in the program, the results of visiting the node’s auxiliary list are stored in the list
“auxs” and the identifier of each auxiliary function is added to the list “declared_funs”.
If the number of auxiliary functions in the node’s auxiliary list is smaller than the

4.6. Evaluating the Java-AST 87

number of auxiliary functions in the globally declared list “auxIds” 4 it iterates over
“auxIds” to find any auxiliary functions that have not been declared. These undeclared
functions are added to the “undeclared_funs” list. Finally, these undeclared functions
are removed from “auxIds” which stores the names of all declared functions in a
program, in their order of appearance.

• appends auxiliary functions to the variable “t” in their correct order 5;

• in case functions are received as arguments by either the main or auxiliary functions,
removes them from the “undeclared_funs” list;

• appends files which need to be imported – either imports declared at the beginning of
a program or functions in the “undeclared_funs” list – to “t”;

• appends the string “main” to “t”;

• finally, appends a function – which applies the ML-eval “run_program” function to the
generated program “p” and outputs the result to a file – to “t”, after which the string
value of “t” is returned.

public List<String> auxIds = new ArrayList<>();

public String Visit(ProgramNode node) {
StringBuilder t = new StringBuilder();
List<String> auxs = new ArrayList<>();
List<String> undeclared_funs = new ArrayList<>();
List<String> declared_funs = new ArrayList<>();
List<Integer> index = new ArrayList<>();
String main = Visit(node.getMain());
t.append("""

open ML_AST
open ML_eval

let p = {
id = \"""").append(node.getMain().getID()).append("\";\n");

if (!node.getAuxList().isEmpty()) {
for (AuxNode c : node.getAuxList()) {

auxs.add(Visit(c));
declared_funs.add(c.getID());

}
if (node.getAuxList().size() < auxIds.size()){

for (String s : auxIds) {
if (!declared_funs.contains(s))

undeclared_funs.add(s);
}
for (String s: undeclared_funs) {

auxIds.remove(s);

4 The globally declared list “auxIds” stores the names of auxiliary functions that are either declared or called
throughout a program in their order of appearance.

5 Ocaml programs require functions to be declared before they are called, hence the need to input them in the
correct order.

4.6. Evaluating the Java-AST 88

}
}
t.append("aux = [");

for (AuxNode c : node.getAuxList())
index.add(auxIds.indexOf(c.getID()));

for (int n, i = 0; i < index.size(); ++i) {
n = index.indexOf(i);
t.append("\n").append(auxs.get(n));

}
t.append("\n];\n");

} else {
undeclared_funs = auxIds;
t.append("aux = [];\n");

}
if (node.getMain().getHasParams()) {

for (SingleParam p : node.getMain().getParams().getPs()) {
undeclared_funs.remove(p.getId());

}
}
for (AuxNode n: node.getAuxList()){

if (n.getHasParams()) {
for (SingleParam p : n.getParams().getPs()) {

undeclared_funs.remove(p.getId());
}

}
}
t.append("imports = [");
if(node.getImports().hasImports)

t.append(Visit(node.getImports()));
for (String s: undeclared_funs) {

t.append("\"").append(s).append("\"; ");
}
t.append("];\n");
t.append(main);
t.append("""

let () =
let run = run_program p in
let oc = open_out (p.id ^ ".mlw") in

Printf.fprintf oc "%s" run;
close_out oc;
print_endline "translation generated successfully";""");

return t.toString();
}

Listing 4.103: Program node Visit method

4.6.3 Imports Node Evaluation

The Visit method for the Imports node (Listing 4.104):

• starts by declaring a StringBuilder variable “s”;

• loops through the node’s import files, appending them to “s”;

4.6. Evaluating the Java-AST 89

• returns the string value of “s”.

public String Visit(ImportsNode node) {
StringBuilder s = new StringBuilder();
for (String i: node.getFiles()) {

s.append("\"").append(i).append("\"; ");
}
return s.toString();

}

Listing 4.104: Imports node Visit method

4.6.4 Main Node Evaluation

The Visit method for the Main node (Listing 4.105) first extracts information from the Main node
and creates a string representation of it in the ML-AST format. Specifically, it extracts the
“ID” of the Main node, the result of visiting its Circuit node object, and parameters associated
with the Main node. It then concatenates this information into string variable “r”, along with
the results of visiting the pre and post-condition nodes of the Main node. The method then
returns the string “r”.

public String Visit(MainNode node) {
String r = "main = {\n id = \"" + node.getID() + "\";\n" +

"circ = {\n" + Visit(node.getCirc()) + "}; \n"
+ "params = [";

if (node.hasParams)
r += Visit(node.getParams());

r += "]; \n" + Visit(node.getPre()) + Visit(node.getPos()) +
"}};;\n";

return r;
}

Listing 4.105: Main node Visit method

4.6.5 Auxiliary Node Evaluation

The Visit method for the Auxiliary node (Listing 4.106) has a similar structure to the visit method
for the Main node. It first adds the auxiliary function’s “ID” to the global variable “auxIds”
list, if it has not been added yet. It then constructs and returns the string representation of
the Auxiliary node: the “ID” of the auxiliary function, the result of visiting its Circuit node
and any parameters associated to the node, as well as the results of visiting the pre and
post-condition nodes.

public String Visit(AuxNode node) {
if (!auxIds.contains(node.getID())) auxIds.add(node.getID());
String r = "{\nid = \"" + node.getID() + "\";\n" +

"circ = {\n" + Visit(node.getCirc()) + "};\n"

4.6. Evaluating the Java-AST 90

+ "params = [";
if (node.hasParams)

r += Visit(node.getParams());
r += "]; \n" + Visit(node.getPre()) + Visit(node.getPos()) +

"}; \n";
return r;

}

Listing 4.106: Auxiliary node Visit method

4.6.6 Parameters Node Evaluation

The Visit method for the Parameters node (Listing 4.107) iterates through the list of parameters
(in case they exist) and for each one it adds their “id” and “type” to a string “r”, after which
“r” is returned.

public String Visit(ParamsNode node) {
StringBuilder r = new StringBuilder();
if (node.getPs()!=null) {

for (SingleParam c : node.getPs()) {
r.append("{id=\"").append(c.getId()).append("\"; ");
r.append(" type_=").append(c.getType()).append("}; ");

}
}
return r.toString();

}

Listing 4.107: Parameters node Visit method

4.6.7 Pre, Post-condition and Assertion Nodes Evaluation

The Visit methods for Pre, Post-condition, Assertion and Invariant nodes (Listing 4.108) have
similar structures: after declaring a StringBuilder variable “r”, the node’s list of conditions
is iterated and each one of its elements is added to “r”, after which “r” is returned. Visit
methods for Assertion and Invariant nodes also check if the node is not null, since it is not
mandatory for it to be specified after an instruction.

public String Visit(PreNode node) {
StringBuilder r = new StringBuilder();
r.append("pre = [");
for (String c: node.get()){

r.append("\"").append(c).append("\"; ");
}
return r+"];\n";

}

public String Visit(PosNode node) {
StringBuilder r = new StringBuilder();
r.append("pos = [");
for (String c: node.get()){

4.6. Evaluating the Java-AST 91

r.append("\"").append(c).append("\"; ");
}
return r+"];\n";

}

public String Visit(AssertNode node) {
StringBuilder r = new StringBuilder();
r.append("assertion=[");
if (node!=null) {

for (String c : node.getAssertions())
r.append("\"").append(c).append("\"; ");

}
return r+"]\n";

}

public String Visit(InvariantNode node) {
StringBuilder r = new StringBuilder("inv = [");
if (node!=null) {

for (String c : node.get())
r.append("\"").append(c).append("\"; ");

}
return r+"];\n";

}

Listing 4.108: Pre and Post-condition, Assertion and Invariant nodes Visit methods

4.6.8 Circuit Node Evaluation

The Visit method for the Circuit node (Listing 4.109) starts by declaring the circuit’s quantum
registers and visiting the circuit registers node “Ids”. Then the result of visiting the body node is
added to the string “r”, which is returned.

public String Visit(CircNode node) {
String r;
r = "qregs= ["+Visit(node.getIds())+"];\n"+

Visit(node.getBody());
return r;

}

Listing 4.109: Circuit node Visit method

4.6.9 Circuit registers Node Evaluation

The Visit method for the Circuit registers node (Listing 4.110):

• starts by creating a new StringBuilder “qregs” which will be used to build the string
representation of the circuit registers;

• retrieves the first quantum register node from the input node and extracts its “ID”. If
this quantum register has a range specified (which refers to the register’s size), the size

4.6. Evaluating the Java-AST 92

is retrieved by visiting the range node. Otherwise, the size is assumed to be 0; The
register’s identifier and size are then added to “qregs”;

• clears the “global_qrs” list, which is used to keep track of all the quantum registers in
the circuit, and adds the first quantum register’s “ID” to it;

• if there are more than one quantum register nodes in the input node’s list, the method
loops over the rest of the registers. For each quantum register node, the identifier and
size (if applicable) are extracted in the same way as before and added to “qregs”. The
identifier is also added to the “global_qrs” list;

• returns the string value of the variable “qregs”;

public String Visit(CircIds node) {
StringBuilder qregs = new StringBuilder();
String size, qr = node.getRegs().get(0).getId();
if (node.getRegs().get(0).hasRange())

size = Visit(node.getRegs().get(0).getRange());
else size = "Num 0";
qregs.append("{qrid=\"").append(qr).append("\"; ");
qregs.append("size=").append(size).append("}");
global_qrs.clear();
global_qrs.add(qr);
if (node.getRegs().size()>1) {

for (QregNode c : node.getRegs().subList(1, node.getRegs().size())) {
qr = c.getId();
qregs.append("; {qrid=\"").append(qr).append("\"; ");
if (c.hasRange())

size = Visit(c.getRange());
else size = "Num 0";
qregs.append("size=").append(size).append("}");
global_qrs.add(qr);

}
}
return qregs.toString();

}

Listing 4.110: Circuit registers node Visit method

4.6.10 Quantum register and Range Nodes Evaluation

The Visit method for the quantum register node returns either the register’s “ID” if the range
Boolean is false, or the result of visiting the range node if the range Boolean is true.

public String Visit(QregNode node) {
if (!node.hasRange())

return node.getId();
else return Visit(node.getRange());

}

Listing 4.111: Quantum register node Visit method

4.6. Evaluating the Java-AST 93

The Visit method for the range node (Listing 4.112) handles the different representations for
range nodes (as covered in Subsection 4.3.7):

• it starts by extracting the input node’s identifier, as well as the “start” and “end” term
nodes;

• if the start term is null, i.e. not specified (‘up-to’ node), string variable “s” is set to “Num
0” (the number zero). The result of visiting the “end” term node is assigned to string
variable “e”. If “e” is equal to “Minus (Num 1)”, this refers to the case where we wish
to iterate up-to the last index (not-inclusive) of the register, so “e” is set to the subtraction
of the register’s length by the number 2 6. If not, “e” is set to the subtraction of the value
of “e” by the number 1;

• if the end term is null (‘from’ node), this refers to the case where we wish to iterate from
the start term up-to the last index (inclusive) of the register. Thus the result of visiting
the “start” term node is assigned to “s” and “e” “e” is set to the subtraction of the the
register’s length by the number 1;

• if the start and end terms are the same (term range node), the result of visiting the “start”
term node is assigned to “s”, and if “s” is equal to “Minus (Num 1)”, this refers to
the case where we wish to refer to the last index of the register, thus “s” is set to the
subtraction of the the register’s length by the number 1;

• if instead the range node is an interval node, the result of visiting the “start” and “end”
term nodes is assigned to “s” and “e”, respectively. If “e” is equal to “Minus (Num 1)”,
this refers to the case where we wish to iterate up-to the last index (not-inclusive) of the
register, so “e” is set to the subtraction of the register’s length by the number 2. If not,
“e” is set to the subtraction of the value of “e” by the number 1;

public String Visit(RangeNode node) {
String r, s, e, id=node.getIterator();
TermNode start = node.getStart();
TermNode end = node.getEnd();
if (start==null){

s = "Num 0";
e = Visit(end);
if (e.equals("Minus (Num 1)")) {

e = "Subtract (Len \""+id+"\", Num 2)";
}
else e = "Subtract ("+e+", Num 1)";
r = s + ";" + e;

} else if (end==null) {
s = Visit(start);
e = "Subtract (Len \""+id+"\", Num 1)";
r = s + ";" + e;

6 The size of a register is given by its length subtracted by 1, since the first index is considered to be 0.

4.6. Evaluating the Java-AST 94

} else if (start.equals(end)){
s = Visit(start);
if (s.equals("Minus (Num 1)")) {

s = "Subtract (Len \""+id+"\", Num 1)";
}
r = s;

} else {
s = Visit(start);
e = Visit(end);
if (e.equals("Minus (Num 1)")) {

e = "Subtract (Len \""+id+"\", Num 2)";
}
else e = "Subtract ("+e+", Num 1)";
r = s + ";" + e;

}
return r;

}

Listing 4.112: Range node Visit method

4.6.11 Body Node Evaluation

The Visit method for the body node (Listing 4.113):

• starts by declaring a StringBuilder “r” which will contain the string representation of
the body;

• clears the global list “unitaries” 7;

• adds the result of visiting each instruction node in the input node to “r”;

• in case the body contains only a sequence of gate application instructions, the function
“printUnitaries” (Listing 4.113) is used to add the sequential composition of these
gates in the ML-AST format to “r”;

• returns the string value of “r”.

public String Visit(BodyNode node) {
StringBuilder r = new StringBuilder("body = [\n");
unitaries.clear();
for(InstrNode c:node.getBodyInstr()){

r.append(Visit(c));
}
if (r.toString().equals("body = [\n"))

r.append(printUnitaries(unitaries)).append("];\n");
else r.append("];\n");
return r.toString();

}

7 This list is used by visit methods for instruction nodes, in order to correctly extract the circuit’s gate compositions
and express them using the ML-AST format

4.6. Evaluating the Java-AST 95

public String printUnitaries (List<String> l) {
String old, s="";
if (!l.isEmpty()) {

if (l.size() < 2)
s = "Unitary ("+l.get(0)+");\n";

else {
s = "Sequence ("+l.get(1)+","+l.get(0)+")";
for (int i = 2; l.size()>i; i++){

old = s;
s = "Sequence (" + l.get(i) + "," + old + ")";

} s = "Unitary("+s+");\n";
}

}
return s;

}

Listing 4.113: Body node Visit method and “printUnitaries” function

4.6.12 Return Node Evaluation

The Visit method for the return node (Listing 4.114):

• prints the “unitaries” list, since a return instruction signals the end of the function;

• if the input node contains arguments, returns the result of visiting the respective
expression nodes as a string (surrounded by parenthesis);

• if the input node does not contain arguments, returns an empty string instead;

public String Visit(RetNode node) {
String s = printUnitaries(unitaries);
if(node.getArgBool())

return s+"Return \""+ Visit(node.getArgs())+"\";\n";
else return s+"Return \"\";\n";

}

Listing 4.114: Return node Visit method

4.6.13 For-loop Node Evaluation

The Visit method for the for-loop node (Listing 4.115):

• prints the “unitaries” list, since the list is deleted upon visiting the input node’s body;

• adds the result of visiting the for-iteration, invariant, body and assertion nodes to the string
“s”;

• clears the “unitaries” list and returns the string “s”.

4.6. Evaluating the Java-AST 96

public String Visit(ForNode node) {
String s, body;
s = printUnitaries(unitaries);
s += "For {\n" + Visit(node.getIter())

+ Visit(node.getInvariant());
body = Visit(node.getBody());
s += body + Visit(node.getAssertion()) + "};\n";
unitaries.clear();
return s;

}

Listing 4.115: For-loop node Visit method

4.6.14 For-iteration Node Evaluation

The Visit method for the for-iteration node (Listing 4.116) handles the different iteration cases
(covered in Subsection 3.3.6):

• starts by extracting the iterator identifier;

• if both “range” and “iterQr” Boolean fields are true in the input node, the iteration
limits – defined by string variables “s” (start) and “e” (end) – are extracted from the
result of visiting the quantum register node: the string before the semicolon character “;”
represents the start and the string after represents the end;

• if the “range” Boolean is true and “iterQr” is false, variable “s” is set to “Num 0” (the
number 0) and the result of visiting the expression node is assigned to “e”;

• if instead only the “iterQr” Boolean is true, there are two cases: (1) in case the limits
are specified in the quantum register, i.e. “qr[a..b]”, the string which represents the
start is assigned to “s” and the string which represents the end is assigned to “e” and
(2) if the entire register is being iterated, i.e. “qr”, “s” is set to “Num 0” (the number 0)
and the last index of the register (given by the subtraction of the register’s length by the
number 1) is assigned to “e”;

• finally, if the “iterQr” Boolean is true, the iteration’s “qr” is set as the quantum register’s
identifier, otherwise “qr” is set as “ ” (the space character).

public String Visit(ForIter node) {
String s,t,e,iterator=node.getIterator();
String[] limits;
t = "iter = {\n";
if(node.getRange() && node.getIterQr()) { // for i in range(qr)

limits = Visit(node.getIterableQr()).split(";");
s = limits[0];
e = limits[1];

4.6. Evaluating the Java-AST 97

t += "iterator= \"" + iterator + "\";\n"
+ "starts = " + s + ";\n"
+ "ends = " + e + "\n";

}
else if (node.getRange() && !node.getIterQr()) { // for i in range(expr)

s = "Num 0";
e = Visit(node.getIterableExpr());
t += "iterator= \"" + iterator + "\";\n"

+ "starts = " + s + ";\n"
+ "ends = " + e + "\n";

}
else if(node.getIterQr()){ // for i in qr

limits = Visit(node.getIterableQr()).split(";");
if (limits.length>1) {

s = limits[0];
e = limits[1];

}
else {

s = "Num 0";
e = "Subtract(Var \"" + limits[0] + "\", Num 1)";

}
t += "iterator= \"" + iterator + "\";\n"

+ "starts = " + s + ";\n"
+ "ends = " + e + "\n";

}
else return "Can only iterate qreg or range operator\n";
if (node.getIterQr())

t += "};\nqr = \"" + node.getIterableQr().getId() + "\";\n";
else t += "};\nqr = \" \";\n";
return t;

}

Listing 4.116: For-iteration node Visit method

4.6.15 If-statement and If-condition Nodes Evaluation

The Visit method for the if-statement and if-condition nodes (Listing 4.117):

• prints the “unitaries” list, since the list is deleted upon visiting the input node’s body;

• if the if-statement does not contain an “else” section, the method declares an “If”-type
instruction, and adds the result of visiting the if-condition 8, body and assertion nodes to
the string “s”;

• if the if-statement contains an “else” section the method declares an “IfElse”-type
instruction and adds the result of visiting the if-condition, if and else’s body and assertion
nodes to the string “s”;

• clears the “unitaries” list and returns the string “s”.

8 The visit method for the if-condition node returns the result of visiting the term node which expresses the if ’s
condition

4.6. Evaluating the Java-AST 98

public String Visit(IfNode node) {
String s, body;
s = printUnitaries(unitaries);
if(!node.getWithElse()) {

s += "If {\ncond= " + Visit(node.getCond()) + ";\n";
body = Visit(node.getIfBody());
s += body + Visit(node.getAssertion()) + "};\n";

}
else {

s += "IfElse {\ncond= " + Visit(node.getCond()) + ";\nif"
+ Visit(node.getIfBody())
+ "else" + Visit(node.getElseBody())
+ Visit(node.getAssertion())
+ "};\n";

}
unitaries.clear();
return s;

}

public String Visit(IfCond node) {
return Visit(node.getExpr());

}

Listing 4.117: If-statement and If-condition nodes Visit method

4.6.16 SingleApply node Visit

The Visit method for SingleApply nodes – corresponding to gates H, X, Y, Z, T and S – update
the global list “unitaries” with the respective unitary type gate-application. A Visit method
is defined for each SingleApply gate. Code in Listing 4.118 defines the Visit method for the
Hadamard gate. Visit methods for the remaining SingleApply gates have a similar definition,
and differ solely in the gate type identifier, i.e. “H” for the Hadamard gate.
The method starts by extracting the input node’s identifier, after which the result of visiting the
quantum-register node is assigned to a string variable “qr”. Then there are three possibilities
regarding “qr”:

1. If the “global_qrs” list contains “qr”, the gate is being globally applied to the register,
i.e. “H(qr)”. Thus the start and end values of the range parameter are given by “Num 0”
and the subtraction of the register’s length by the number 1, respectively;

2. If the “qr” string contains a semi-colon character “;”, the gate is being applied to a
specific interval of the register, i.e. “H(qr[a..b])”. The sub-strings before and after the
semi-colon character represent the start and end values of the range parameter;

3. Otherwise, the gate is being applied to a specific index of the register, i.e. “H(qr[a])”.
In this case, both start and end values of the range parameter are set as “qr”.

The input node’s assertion is extracted by visiting the respective assertion node.

4.6. Evaluating the Java-AST 99

After adding these parameters together in a string “s”, the defined “Apply” unitary is
added to the global “unitaries” list.

public String Visit(HadApply node) {
String s, start, end, id, qr;
String[] limits;
id = node.getQreg().getId();
qr = Visit(node.getQreg());
if (global_qrs.contains(qr)) {

s = "Apply {gate=H; qreg=\"" + id +
"\"; range={starts=Num 0; ends=Subtract(Len \""+id+"\", Num 1)}; " +
Visit(node.getAssertion())+"}";

}
else if (qr.contains(";")) {

limits = qr.split(";");
start = limits[0];
end = limits[1];
s = "Apply {gate=H; qreg=\"" + id +

"\"; range={starts="+start+
"; ends="+end+"}; "+Visit(node.getAssertion())+"}";

}
else {

s = "Apply {gate=H; qreg=\"" + id +
"\"; range={starts="+qr+
"; ends="+qr+"}; "+Visit(node.getAssertion())+"}";

}
unitaries.add(s);
return "";

}

Listing 4.118: SingleApply Visit method

4.6.17 DoubleApply node Visit

The Visit method for DoubleApply nodes – corresponding to gates Rx(θ), Ry(θ), Rz(θ) and Ph(θ)
– update the global list “unitaries” with the respective unitary type gate-application. A Visit
method is defined for each DoubleApply gate. Code in Listing 4.119 defines the Visit method for
the Rx(θ) gate. Visit methods for the remaining DoubleApply gates have a similar definition,
and differ solely in the gate type identifier, i.e. “RX” for the Rx(θ) gate.
This method has the same structure as the SingleApply method (Listing 4.118), with the
addition of the angle expression parameter, which is extracted by visiting the input node’s
angle.

public String Visit(RxApply node) {
String s, start, end;
String id = node.getQreg().getId();
String qr = Visit(node.getQreg());
String[] limits;
if (global_qrs.contains(qr)) {

s = "Apply {gate=Rx ("+Visit(node.getAngle())
+"); qreg=\"" + id
+ "\"; range={starts=Num 0; ends=Subtract(Len \""+id+"\", Num 1)}; "

4.6. Evaluating the Java-AST 100

+Visit(node.getAssertion())+"}";
}
else if (qr.contains(";")) {

limits = qr.split(";");
start = limits[0];
end = limits[1];
s = "Apply {gate=Rx ("+Visit(node.getAngle())

+"); qreg=\"" + id + "\"; range={starts="+
start+"; ends="+end+"}; "+Visit(node.getAssertion())+"}";

}
else {

s = "Apply {gate=Rx ("+Visit(node.getAngle())
+"); qreg=\"" + id + "\"; range={starts="+
qr+"; ends="+qr+"}; "+Visit(node.getAssertion())+"}";

}
unitaries.add(s);
return "";

}

Listing 4.119: DoubleApply Visit method

4.6.18 SwapApply node Visit

The Visit method for the SwapApply node (Listing 4.120) – corresponding to the Swap gate –
updates the global list “unitaries” with the respective unitary type gate-application. This
method extracts both input registers’ identifiers “id1” and “id2” and assigns the result of
visiting the respective quantum-register nodes to “lqr” and “rqr”. A Swap gate can only be
applied to specific indexes of a register, thus an if-statement verifies this property by checking if
neither “lqr” or “rqr” contain the semi-colon character, or are contained in the “global_qrs”
list. The input node’s assertion is extracted by visiting the respective assertion node. After
adding these parameters together in a string “s”, the defined “MultiApply” (Swap) unitary is
added to the global “unitaries” list.

public String Visit(SwapApply node) {
String r, s, id1, id2, lqr, rqr;
id1 = node.getLQreg().getId();
id2 = node.getRQreg().getId();
lqr = Visit(node.getLQreg());
rqr = Visit(node.getRQreg());
if (!(lqr.contains(";") || rqr.contains(";") || global_qrs.contains(lqr) ||

global_qrs.contains(rqr))) {
s = "MultiApply {gate=SWAP; " +

"regs=[{iterator=\"" + id1 +
"\"; starts=" + lqr +
"; ends=" + lqr
+ "}; " + "{iterator=\"" + id2 +
"\"; starts=" + rqr +
"; ends=" + rqr
+ "}]; " + Visit(node.getAssertion())+"}";

}
else return "Can only apply SWAP gate to two specific indexes\n";
unitaries.add(s);

4.6. Evaluating the Java-AST 101

return "";
}

Listing 4.120: SwapApply Visit method

4.6.19 Function and reverse-function application nodes Visit

The Visit method for function application node (Listing 4.121) has a similar definition to the
reverse-function application node’s Visit method. This method updates global lists “auxIds”
and “unitaries” with the respective function identifier and unitary type gate-application,
respectively. The method extracts the function’s identifier and its string value it is added
as the list’s first element. If the identifier is present in “auxIds” list, the previous value is
deleted. Then, the result of visiting each one of the function’s argument nodes is added to the
“args” variable. The function’s identifier and argument parameters are placed together in a
string “s”, which defines a “FUN” (or “REV”) unitary. Finally, “s” is added to the global
“unitaries” list.

public String Visit(FunApply node) {
StringBuilder args = new StringBuilder();
String s;
if (!auxIds.contains(node.getFunID()))

auxIds.add(0,node.getFunID());
else {

auxIds.remove(node.getFunID());
auxIds.add(0, node.getFunID());

}
for(TermNode arg:node.getTermArgs()){

args.append(Visit(arg)).append("; ");
}
s = "FUN {id=\"" + node.getFunID() + "\"; args=["

+ args + "]}";
unitaries.add(s);
return "";

}

Listing 4.121: Function application Visit method

4.6.20 With-controlled gate application Visit

The Visit method for the with-controlled node (Listing 4.122) updates the global list “unitaries”
with the respective unitary type controlled-gate application. The method starts by checking
if the gate being applied as the control is also a controlled gate (C-NOT, Toffoli or Fredkin), in
which case:

• the controlled-gate node is visited, which adds an element to the “unitaries” list;

4.6. Evaluating the Java-AST 102

• the added unitary is extracted, added to string “s” and removed from the “unitaries”
list;

• variable “id” (the target register’s identifier) is set as “tg” and variable “target” (the
target register’s range) is set as “Num 0” 9

If the gate being applied as the control is a non-controlled gate:

• the gate node is visited, which adds an element to the “unitaries” list;

• the added unitary is extracted, added to string “s” and removed from the “unitaries”
list;

• the method then checks which gate instance is being used and sets variables “id” (the
target register’s identifier) and “target” (the target register’s range) accordingly;

• the list of control registers is iterated and for each register, its identifier and range is
extracted and added to string “s”;

• the target register’s identifier and range are extracted and added to string “s”

• the input node’s assertion is extracted by visiting the respective assertion node and added
to string “s”;

• string “s”, which contains the defined “WithControl” unitary is added to the global
“unitaries” list;

public String Visit(WithCtlNode node) {
String[] limits;
String angle,id=null,r,start,end,range,target,target1,target2;
StringBuilder s = new StringBuilder("WithControl{ctlgate=");
if (node.getIsMulti()){

Visit(node.getCtlMulti());
s.append(unitaries.get(unitaries.size() - 1)); // get last unitary in list
unitaries.remove(unitaries.size() - 1);
id = "tg";
target = "Num 0";

}
else {

ApplyNode gate = node.getCtlGate();
Visit(gate);
s.append(unitaries.get(unitaries.size() - 1)); // get last unitary in list
unitaries.remove(unitaries.size() - 1); // delete it since its not needed

anymore
if (gate instanceof FunApply) {

target = "Var \"null\"";
id = "Var \"null\"";

} else if (gate instanceof HadApply) {
target = Visit(((HadApply) gate).getQreg());

9 Note that for the controlled gates these parameters become irrelevant when the final translation occurs.

4.6. Evaluating the Java-AST 103

id = ((HadApply) gate).getQreg().getId();
} else if (gate instanceof RxApply) {

target = Visit(((RxApply) gate).getQreg());
id = ((RxApply) gate).getQreg().getId();

...
s.append("; ctls=[");
for (QregNode n:node.getCtlArgs()){

s.append("{iterator=\"").append(n.getId()).append("\"; ");
range = Visit(n);
if (range.contains(";")) {

limits = range.split(";");
start = limits[0]; end = limits[1];

}
else {

start = range;
end = range;

}
s.append("starts=").append(start);
s.append("; ends=").append(end).append("}; ");

}
s.append("]; tg={iterator=\"").append(id).append("\"; ");
if (global_qrs.contains(target)) {

target1 = "Num 0";
target2 = "Subtract(Len \""+id+"\", Num 1)";

}
else if (target.contains(";")) {

limits = target.split(";");
target1 = limits[0];
target2 = limits[1];

}
else {

target1 = target;
target2 = target;

}
s.append("starts=").append(target1).append("; ends=").append(target2).append("}; ")

;
s.append("starts=").append(target).append("; ends=").append(target).append("}; ");
s.append(Visit(node.getAssertion())).append("}\n");
unitaries.add(s.toString());
return "";

}

Listing 4.122: With-controlled gate application Visit method

4.6.21 C-NOT, Toffoli and Fredkin nodes Visit

The Visit methods for C-NOT, Toffoli and Fredkin nodes (Listing 4.123) have similar definitions,
and differ in the gate type identifier, i.e. “Cnot” for the C-NOT gate, and number of control
registers (one for the C-NOT gate and two for the Toffoli and Fredkin gates). This method
extracts the control and target registers’ identifiers “ctl” and “tg” and assigns the result of
visiting the respective quantum-register nodes to “ctlqr” and “tgqr”. Any of the mentioned
gates can only be applied to specific indexes of a register, thus an if-statement verifies this

4.6. Evaluating the Java-AST 104

property by checking if neither “ctlqr” or “tgqr” contain the semi-colon character, or are
contained in the “global_qrs” list. The input node’s assertion is extracted by visiting the
respective assertion node. After adding these parameters together in a string “s”, the defined
“MultiApply” (C-NOT) unitary is added to the global “unitaries” list.
public String Visit(CnotNode node) {

String s,ctl=node.getCtl().getId(),tg=node.getTarget().getId();
String ctlqr = Visit(node.getCtl()), tgqr = Visit(node.getTarget());
if (!(ctlqr.contains(";") || tgqr.contains(";") || global_qrs.contains(ctlqr) ||

global_qrs.contains(tgqr))) {
s = "MultiApply {gate=Cnot; regs=[{iterator=\""

+ ctl + "\"; starts="+ ctlqr + "; ends=" + ctlqr
+"}; {iterator=\""+
tg + "\"; starts=" + tgqr + "; ends=" + tgqr
+"}]; " + Visit(node.getAssertion())+"}";

}
else return "Can only apply CNOT gate to two specific indexes\n";
unitaries.add(s);
return "";

}

Listing 4.123: C-NOT gate application Visit method

4.6.22 Conjugated-basis Node Evaluation

The Visit method for the conjugated node (Listing 4.124):

• prints the “unitaries” list, since the list is deleted upon visiting the input node’s body;

• the gate being applied as the conjugated operator is visited, which adds an element to the
“unitaries” list;

• the added unitary is extracted, added to string “s” and removed from the “unitaries”
list;

• adds the result of visiting the body and assertion nodes to the string “s”;

• clears the “unitaries” list and returns the string “s”.

public String Visit(ConjNode node) {
String body, s = printUnitaries(unitaries);
s += "Conjugated {gate=";
Visit(node.getApply());
s += unitaries.get(unitaries.size()-1);
unitaries.remove(unitaries.size()-1);
s += ";\n ";
body = Visit(node.getBody());
s += body+ Visit(node.getAssertion()) + "};\n";
unitaries.clear();
return s;

}

Listing 4.124: Conjugated node Visit method

4.6. Evaluating the Java-AST 105

4.6.23 Expression and Term nodes Visit

Visit methods for expression and term nodes which consist in operations with two terms
(Listing 4.125) return the respective condition or expression type with the left and right terms,
as covered in Subsection 4.5.10, i.e. “Eq(a,b)” for an “a==b” expression or “Plus(a,b)” for
an “a+b” expression.

public String Visit(EqualNode node) {
return "Eq ("+Visit(node.getLeft()) + "," + Visit(node.getRight())+")";

}
public String Visit(GTNode node) {

return "Gt ("+Visit(node.getLeft()) + "," + Visit(node.getRight())+")";
}
public String Visit(LTNode node) {

return "Lt ("+Visit(node.getLeft()) + "," + Visit(node.getRight())+")";
}
public String Visit(GEQNode node) {

return "GEq ("+Visit(node.getLeft()) + "," + Visit(node.getRight())+")";
}
public String Visit(LEQNode node) {

return "LEq ("+Visit(node.getLeft()) + "," + Visit(node.getRight())+")";
}
public String Visit(NEqualNode node) {

return "NEq ("+Visit(node.getLeft()) + "," + Visit(node.getRight())+")";
}
public String Visit(PowerNode node) {

return "Power ("+Visit(node.getLeft()) + "," + Visit(node.getRight())+")";
}
public String Visit(MulNode node) {

return "Times ("+Visit(node.getLeft()) + "," + Visit(node.getRight())+")";
}
public String Visit(DivNode node) {

return "Divide ("+Visit(node.getLeft()) + "," + Visit(node.getRight())+")";
}
public String Visit(AddNode node) {

return "Plus ("+Visit(node.getLeft()) + "," + Visit(node.getRight())+")";
}
public String Visit(SubNode node) {

return "Subtract ("+Visit(node.getLeft()) + "," + Visit(node.getRight())+")";
}

Listing 4.125: Two-term expressions and terms Visit methods

The Visit method for the unary node (Listing 4.126) checks which operator is being used
(either square-root or negative sign) and returns the respective expression type.

public String Visit(UnOpNode node) {
String r;
if (node.getOp().equals("sqrt"))

r = "Sqrt " + "("+Visit(node.getInnerTerm())+")";
else r = node.getOp() + "(" + Visit(node.getInnerTerm())+")";
return r;

}

Listing 4.126: Unary node Visit method

4.7. Generating a program in Qbricks 106

The Visit method for the length node (Listing 4.127) returns the value associated to a
register’s size: the subtraction of the register’s length by the number 1.

public String Visit(LenNode node) {
return "Subtract (Len \""+Visit(node.getQrTerm())+"\", Num 1)";

}

Listing 4.127: Length node Visit method

The Visit method for the parenthesis node (Listing 4.128) returns the result of visiting the
inner term node.

public String Visit(ParenNode node) {
return Visit(node.getTerm());

}

Listing 4.128: Parenthesis node Visit method

The Visit method for the Atom node (Listing 4.129) returns the input node’s value.

public String Visit(AtomNode node) {
return node.getValue();

}

Listing 4.129: Atom node Visit method

4.7 generating a program in qbricks

In order to translate from a program written in iQbricks to an AST, a Main class must be
defined. The purpose of this main class is to provide a convenient entry point for running
the language’s compiler and to ensure that the various components of the compiler are
properly integrated and executed in the correct order to produce a valid output.

This Main class (Listing 4.130) is responsible for orchestrating the different components
of the iQbricks compiler. It reads in the input file (i.e. “qft”) containing the source code,
passes it through the lexer and parser to produce a Concrete-Syntax Tree, which is then visited
by the “ASTBuilder” to generate a Java-AST. The Java-AST is then visited by the Java-AST
Evaluator to generate the corresponding ML-AST code. Finally, the generated ML-AST code
is written to a file named “ocaml_ast.ml”.

public class Main {
public static void main(String[] args)
{

try {
QbricksLexer lexer = new QbricksLexer(CharStreams.fromFileName("qft.txt"));
CommonTokenStream stream = new CommonTokenStream(lexer);
QbricksParser parser = new QbricksParser(stream);
ParseTree tree = parser.program();
ASTBuilder builder = new ASTBuilder();
AST ast = builder.visit(tree);
String val = new EvaluateVisitor().Visit((ProgramNode) ast);
PrintWriter writer = new PrintWriter("ocaml_ast.ml");

4.7. Generating a program in Qbricks 107

writer.write(val);
writer.close();
System.out.println("Translation successful");

} catch (IOException e) {
e.printStackTrace();

}
}

}

Listing 4.130: Java Main Class

4.7.1 ML-AST Evaluator

The implemented ML-AST Evaluator is a collection of functions that operate on the generated
ML-AST types and produce code in the Qbricks language. Each data-type in the ML-AST
has a corresponding function defined in the Evaluator, which takes the input data-type,
processes its contents, and returns the resulting code in Qbricks language. Essentially, the
Evaluator provides a mapping from the ML-AST to the Qbricks language by defining a
translation process for each ML-AST data-type.

In the context of programming in Ocaml, a program’s designation begins with the definition
of the module, which in this particular implementation corresponds to the identifier of the
program’s main function. Subsequently, modules that are to be imported into the program are
included. Following this, the program’s auxiliary and main functions are written.

Functions in iQbricks represent quantum circuits, thus each function in the translated
program returns a ‘circuit’ object (defined in Qbricks’ library). Program instructions consist
of control-flow operations and quantum gate applications. Instructions are therefore defined
as a series of ‘circuit’ objects, which can be sequenced together in order to compose a more
complex circuit.

4.7.2 Illustrating Example

Function “f” defined in Listing 4.131 represents a program in iQbricks which receives a
quantum-register “qr” as a parameter and applies the X and Hadamard gates to its first index.
The program’s pre and post-conditions state that the size of “qr” is bigger than zero and the
width of the resulting circuit is equal to the size of “qr”, respectively.

|| f || (qreg qr)
pre {qr > 0}
circ qr ->

X(qr[0])
H(qr[0])

pos {width result = qr}

Listing 4.131: Function “f” represented using iQbricks

4.7. Generating a program in Qbricks 108

The translated program (Listing 4.132) begins by defining a new module named “F” (the
main function’s identifier). The module then includes a set of predefined imports, which are
specified using the use keyword “use” followed by the name of the library to be imported.
These imports provide access to the functions and data structures defined in Qbricks

libraries, which are necessary to write the program.

module F

use export binary.Bit_vector
use wired_circuits.Circuit_c
(...)
use unit_circle.Angle

Listing 4.132: Function “f” after translation to Qbricks (1)

After adding the predefined and manually added imports to the module, the main function
is included (Listing 4.133). This function:

• is named “f”;

• has two integer parameters – “qr” and “n”, which represent the size of the register
“qr” and the width of the circuit, respectively;

• returns a “circuit” object

Since “qr” is the circuit’s only register, a pre-condition is automatically generated which
states that “qr” and “n” have the same value. Besides this pre-condition and the one manually
introduced in the original program (size of “qr” is bigger than zero), another is generated
which states that “n” is bigger than zero 10.

let f (qr n:int) : circuit
requires{0 < n}
requires{qr = n}
requires{qr > 0}

Listing 4.133: Function “f” after translation to Qbricks (2)

Following the pre-conditions, the function’s body is included (Listing 4.134), in which:

• a reference integer “qr_index” with a value of zero is declared, which is used to
correctly place gates on register’s indexes;

• a reference circuit “c0” with a value of “m_skip n” 11 is declared;

• the circuit resulting from applying an X gate to the index zero of register “qr” is added
in sequence to the previous value of the “c0” reference using the Qbricks sequence
operator “--”;

10 This condition is universal for circuits in Qbricks, thus it is automatically generated for all functions
11 “m_skip N” is a Qbricks function which creates an empty circuit with size “N”

4.7. Generating a program in Qbricks 109

• the same sequencing method is used for applying an Hadamard gate, which also
updates the previous value of the “c0” reference;

• reference “c0”, which represents the resulting circuit, is returned, after which the
program’s post-condition is included and the program ends.

let f (qr n:int) : circuit
requires{0 < n}
requires{qr = n}
requires{qr > 0}
=
begin
let qr_index = ref (0: int) in

let c0 = ref (m_skip n) in
c0 := !c0 -- (place xx (!qr_index + 0) n);
c0 := !c0 -- (place_hadamard (!qr_index + 0) n);

return !c0;
ensures{width result = qr}
end

Listing 4.134: Function “f” after translation to Qbricks (3)

After the translated program is generated, it can then be tested against several SMT-Solvers
using Why3 (Filliâtre and Paskevich, 2013). Why3 is a specification environment that offers
a ML-like language for both programming and writing specifications. From a specified
program, Why3 generates a set of proof obligations that need to be satisfied to certify the
program. These proofs can be manipulated through a dedicated graphical interface, and
Why3 also provides an interactive proof assistant. To prove a theorem, one can call a set
of automatic SMT solvers (CVC, Z3, Alt-ergo, etc.) accessible from the interface. It is also
possible to call lemmas to provide proof steps to the solvers, as well as to directly simplify
proof objectives through different term transformation commands.

5

T E S T I N G

The present chapter presents the implementation and translated programs of two quantum
algorithms: Grover and Quantum Fourier Transform (QFT), along with the obtained results for
each implementation.

5.1 introduction

Test files are crucial in the development of iQbricks language because they enable the
verification that the language implementation behaves as expected. Testing helps to identify
and fix errors, and ensures that new features or changes do not introduce regressions
into existing functionality. By re-running the tests after each change, it can be ensured
that any modifications to the implementation have not broken existing functionality or
introduced new bugs. This helps to maintain the overall stability and quality of the language
implementation, and builds confidence in its correctness and reliability.

5.2 grover’s algorithm

Grover’s algorithm (Grover, 1996) demonstrates the speed advantage a quantum computer
has over a classical computer in searching unstructured databases. This algorithm can speed
up an unstructured search problem quadratically, but its uses extend beyond that; it can
serve as a general trick or subroutine to obtain quadratic run time improvements for a
variety of other algorithms (Nielsen and Chuang, 2010). Its engine is a technique called
amplitude amplification.

Suppose we wish to search through a search space of N elements. Instead of searching
its elements directly, we will focus on the index of those elements, which is in the interval
[0, N − 1]. For convenience, let us assume that N = 2n, so the index can be stored in n bits,
and that the problem has exactly M solutions, with 1 ≤ M ≤ N. Now, let us consider the
existence of a function f , which takes an input integer x in the range [0, N − 1] and returns

110

5.2. Grover’s algorithm 111

values f (x) = 1 if x is a solution to the search problem, and f (x) = 0 if it is not. We can now
define a quantum oracle which has the ability to recognize solutions to the search problem.
This recognition is signalled by making use of an oracle qubit, which is a unitary operator
denoted O:

|x⟩ |q⟩ O−→ |x⟩ |q ⊕ f (x)⟩ (30)

where |x⟩ is the index register, ⊕ denotes addition modulo 2, and the oracle qubit |q⟩ is a
single qubit which is flipped if f (x) = 1, and is unchanged otherwise. We can now define
the oracle O to act on any of the standard basis states |x⟩ by |x⟩ O−→ (−1) f (x) |x⟩. We then
say that the oracle marks the solutions to the search problem, by shifting the phase of the
solution. More details are available in Nielsen and Chuang (2010).

5.2.1 The procedure

The algorithm begins with the equal superposition state,

H |0⟩⊗n =
1√
N

N−1

∑
x=0

|ψ⟩ . (31)

The search algorithm then consists of a repeated application of a quantum subroutine,
known as the Grover iterator, which will be denoted G (Figure 18). The number of necessary
applications of G for an N item search problem with M solutions is given approximately by√

N/M.

|ψin⟩0

|ψin⟩1

|ψin⟩2
...

|0⟩ X

H G0

. . .

. . .

. . .

. . .

. . .

G√
N/M

Figure 18: Circuit respective to Grover’s algorithm

The procedure for the Grover iterator (Figure 19) can be divided into four steps:

1. Apply the oracle O;

2. Apply the Hadamard transform H⊗n;

3. Perform the conditional phase shift1

|ψ⟩ → −(−1)δx0 |ψ⟩
1 every computational basis state except |0⟩ receives a phase shift of −1

5.2. Grover’s algorithm 112

4. Apply the Hadamard transform H⊗n;

Steps 2, 3, and 4 are commonly known as the Grover diffusion operator.

|ψin⟩0

|ψin⟩1

|ψin⟩2
...

|ψin⟩n−1

|1⟩

|qr⟩ → (−1) f (qr) |qr⟩

H

H

H

H

X

X

X

X

. . .

H H

X

X

X

X

H

H

H

H

. . .

|ψout⟩0

|ψout⟩1

...

|ψout⟩2

|ψout⟩n−1

Figure 19: Circuit respective to Grover’s iteration subroutine

5.2.2 Program in iQbricks

Grover’s algorithm implementation using iQbricks consists of a main function “grover” and
three auxiliary functions “init”, “grover_iter” and “diffusor”. This implementation of
the algorithm does not include its specification.

Main function “grover” (Listing 5.1) receives four parameters:

• the oracle circuit “oracle”;

• input registers “qr” and “aux”;

• the number of iterations “iters”.

The circuit for the main function:

• starts by declaring “qr” and “aux” as the circuit’s registers;

• applies “init” function to “qr” and “aux” registers;

• applies “grover_iter” function using the input parameter “oracle” and registers “qr”
and “aux”;

• returns the generated circuit.

5.2. Grover’s algorithm 113

|| grover || (circ oracle, qreg qr, qreg aux, int iters)
pre {true}

circ qr, aux ->
init(qr,aux)
for i in range(iters) {

invariant{true}
grover_iter(oracle,qr,aux)

}
return

pos {true}

Listing 5.1: Implementation in iQbricks of a fragment of Grover’s algorithm

Auxiliary function “init” (Listing 5.2) corresponds to Grover’s initialization routine, which
creates the initial superposition state and inverts the state of input auxiliary register from
|0⟩ to |1⟩. This function receives two arguments: registers “qr” and “aux”. Its circuit:

• declares “qr” and “aux” as the circuit’s registers;

• applies Hadamard gates globally to “qr” register;

• applies an X gate to “aux” register;

• applies an Hadamard gate to “aux” register;

• returns the generated circuit.

| init | (qreg qr, qreg aux)
pre {true}

circ qr, aux ->
H(qr)
X(aux)
H(aux)
return

pos {true}

Listing 5.2: Implementation in iQbricks of a fragment of Grover’s algorithm (init)

Auxiliary function “grover_iter” (Listing 5.3) corresponds to Grover iterator subroutine,
which applies the oracle and diffusion operators. This function receives three arguments: the
circuit oracle, registers “qr” and “aux”. Its circuit:

• declares “qr” and “aux” as the circuit’s registers;

• applies the oracle circuit globally 2;

• applies “diffusor” function to “qr” and “aux” registers;

• returns the generated circuit.

2 oracle circuits correspond to functions which don’t contain parameters. When received as input by a function,
such functions are always applied to all of the function’s circuit registers

5.2. Grover’s algorithm 114

| grover_iter | (circ oracle, qreg qr, qreg aux)
pre {true}

circ qr, aux ->
oracle()
diffusor(qr,aux)
return

pos {true}

Listing 5.3: Implementation in iQbricks of a fragment of Grover’s algorithm (grover_iter)

Auxiliary function “diffusor” (Listing 5.4) corresponds to the application of the Grover
diffusion operator. This function receives two arguments: registers “qr” and “aux”. Its circuit:

• declares “qr” and “aux” as the circuit’s registers;

• applies Hadamard and X gates as conjugate-based operators to the “qr” register 3. This
means that these gates are applied globally to “qr” at both the beginning and end of
the circuit;

• applies a controlled-Z gate using the indexes of “qr” up-to the last one as controls and
the last index of “qr” as the target 4;

• returns the generated circuit.

| diffusor | (qreg qr, qreg aux)
pre {true}

circ qr, aux ->
with conjugated (H(qr)) {

with conjugated (X(qr)) {
with control qr[:-1] (Z(qr[-1]))

}
}
return

pos {true}

Listing 5.4: Implementation in iQbricks of a fragment of Grover’s algorithm (diffusor)

In order to run the Grover implementation, another program, which creates an oracle
and calls the “grover” function, was developed. This program contains a main function
“grover_run”, which:

• receives the number of iterations “iters” and input registers “qr” and “aux” as
arguments;

• calls the “grover” main function using “oracle_toff” function, “qr” and “aux” regis-
ters and the number of iterations “iters” as the function arguments.

3 note that H† = H and X† = X
4 note that applying a Z gate is the same as applying the sequence of an Hadamard, followed by an X and another

Hadamard gate

5.2. Grover’s algorithm 115

Auxiliary function “oracle_toff” applies a Toffoli gate using the first and second registers
as controls and the third register as the target. This oracle was chosen arbitrarily, thus it
does not necessarily correspond to a specific problem. This program’s implementation is
expressed in Listing 5.5.

|| grover_run || (qreg qr, qreg aux, int iters)
pre {true}

circ qr, aux ->
grover(oracle_toff, qr, aux, iters)

pos {true}

| oracle_toff |
pre {true}

circ qr ->
toff(qr[0],qr[1],qr[2])

pos {true}

Listing 5.5: Implementation in iQbricks of a fragment of Grover’s algorithm (grover_run and oracle_toff)

5.2.3 Translation generated

After translation of the iQbricks implementation of Grover’s algorithm, the generated
Qbricks program consists of a module named “Grover” which includes the main and three
auxiliary functions.

The main “grover” function (Listing 5.6):

• receives a circuit type variable “oracle” and integer types “qr”, “aux”, “iters” and “n”
as arguments;

• generates pre-conditions “0<n” and “qr+aux=n”;

• declares the starting indexes for both “qr” and “aux” registers;

• creates empty circuits “c0” and “c1”;

• iterates from 0 up until the value of “iters”, updating the “c1” circuit with the
“grover_iter” function application at each iteration, using “oracle”, “qr”, “aux” and
“n” as arguments. Then, “c1” is sequenced to “c0”, after which an empty circuit is
again assigned to “c1”. Two loop-invariants are automatically generated which state
that the width of both “c0” and “c1” circuits is equal to “n”;

• applies the “init” function (using “qr”, “aux” and “n” as arguments) at the beginning
of the circuit, updating “c0”;

• returns the “c0” circuit.

5.2. Grover’s algorithm 116

let grover(oracle : int -> circuit) (qr aux iters n:int) : circuit
requires{0<n}
requires{qr+aux=n}
requires{true}
=
begin
let qr_index = ref (0: int) in
let aux_index = ref (0+qr: int) in
let c0 = ref (m_skip n) in
let c1 = ref (m_skip n) in
for i = 0 to (iters) do

invariant{width !c0=n}
invariant{width !c1=n}
invariant{true}
c1 := !c1 -- (grover_iter oracle qr aux n);
c0 := !c0 -- !c1;
c1 := m_skip n;
done;

c0 := (init qr aux n) -- !c0;
return !c0;
ensures{true}
end

Listing 5.6: Grover main function translation

Auxiliary “init” function (Listing 5.7):

• receives integer types “qr”, “aux” and “n” as arguments;

• generates pre-conditions “0<n” and “qr+aux=n”;

• declares the starting indexes for both “qr” and “aux” registers;

• creates empty circuit “c0”;

• creates empty circuit “circ_aux”, which is used to perform the global application of
the Hadamard gate on the “qr” register. This is done using a for-loop which iterates
from the first index up to the last index of “qr” and applies an Hadamard gate at each
iteration. After the loop, “circ_aux” is sequenced to “c0”;

• follows the same procedure done with the Hadamard gates, this time applying X and
Hadamard gates to “aux”. As done before, after each loop, “circ_aux” circuits are
sequenced to “c0”;

• returns the “c0” circuit.

5.2. Grover’s algorithm 117

let init (qr aux n:int) : circuit
requires{0<n}
requires{qr+aux=n}
requires{true}
=
begin
let qr_index = ref (0: int) in
let aux_index = ref (0+qr: int) in
let c0 = ref (m_skip n) in
let circ_aux = ref (m_skip n) in
for i= (!qr_index + 0) to (!qr_index + qr - 1) do

invariant{width !c0=n}
circ_aux := !circ_aux -- (place_hadamard i n);
done;

c0 := !c0 -- !circ_aux;
let circ_aux = ref (m_skip n) in
for i= (!aux_index + 0) to (!aux_index + aux - 1) do

invariant{width !c0=n}
circ_aux := !circ_aux -- (place xx i n);
done;

c0 := !c0 -- !circ_aux;
assert{true};
let circ_aux = ref (m_skip n) in
for i= (!aux_index + 0) to (!aux_index + aux - 1) do

invariant{width !c0=n}
circ_aux := !circ_aux -- (place_hadamard i n);
done;

c0 := !c0 -- !circ_aux;
assert{true};
return !c0;
ensures{true}
end

Listing 5.7: Grover “init” function translation

Auxiliary “grover_iter” function (Listing 5.8):

• receives integer types “qr”, “aux” and “n” as arguments;

• generates pre-conditions “0<n” and “qr+aux=n”;

• declares the starting indexes for both “qr” and “aux” registers;

• creates empty circuit “c0”;

• applies the “oracle” function (using “n” as argument), updating “c0”;

• applies the “diffusor” function (using “qr”, “aux” and “n” as arguments), updating
“c0”;

• returns the “c0” circuit.

5.2. Grover’s algorithm 118

let grover_iter(oracle : int -> circuit) (qr aux n:int) : circuit
requires{0<n}
requires{qr+aux=n}
requires{true}
=
begin
let qr_index = ref (0: int) in
let aux_index = ref (0+qr: int) in
let c0 = ref (m_skip n) in
c0 := !c0 -- (oracle n);
c0 := !c0 -- (diffusor qr aux n);
return !c0;
ensures{true}
end

Listing 5.8: Grover “iter” function translation

Auxiliary “diffusor” function (Listing 5.9):

• receives integer types “qr”, “aux” and “n” as arguments;

• generates pre-conditions “0<n” and “qr+aux=n”;

• declares the starting indexes for both “qr” and “aux” registers;

• creates empty circuits “c0”, “c1” and “c2”;

• creates an empty circuit “circ_aux”, which is used to apply the multi-controlled Z gate,
using a for-loop which iterates from the first index up to the next-to-last index of “qr”
and applies the controlled gate at each iteration; “circ_aux” is then sequenced with the
empty “c2” circuit;

• creates another empty circuit “circ_aux”, which is used to perform the conjugate-based
operation on the “qr” register using the X gate, again using the for-loop which applies
an X gate at each iteration; “circ_aux” and its reverse are then sequenced before and
after the “c2” circuit, respectively, after which this sequence is attached to the empty
“c1” circuit;

• applies the same process used for the conjugate-based operation with the X gate, now
using the Hadamard gate and this time updating “c0” circuit;

• returns the “c0” circuit.

let diffusor (qr aux n:int) : circuit
requires{0<n}
requires{qr+aux=n}
requires{true}
=
begin
let qr_index = ref (0: int) in

5.2. Grover’s algorithm 119

let aux_index = ref (0+qr: int) in
let c0 = ref (m_skip n) in
let c1 = ref (m_skip n) in
let c2 = ref (m_skip n) in
let circ_aux = ref (m_skip n) in
for ctl= (!qr_index + 0) to (!qr_index + qr - 2) do

invariant{width !c2=n}
circ_aux := !circ_aux -- (cont zz ctl (!qr_index + qr - 1) n);
done;

c2 := !c2 -- !circ_aux;
let circ_aux = ref (m_skip n) in
for i= (!qr_index + 0) to (!qr_index + qr - 1) do

invariant{width !c1=n}
circ_aux := !circ_aux -- (place xx i n);
done;

c1 := !c1 -- !circ_aux -- !c2 -- reverse (!circ_aux);
let circ_aux = ref (m_skip n) in
for i= (!qr_index + 0) to (!qr_index + qr - 1) do

invariant{width !c0=n}
circ_aux := !circ_aux -- (place_hadamard i n);
done;

c0 := !c0 -- !circ_aux -- !c1 -- reverse (!circ_aux);
return !c0;
ensures{true}
end

Listing 5.9: Grover “diffusor” function translation

The translation for the “grover_run” main and “oracle_toff” functions is expressed in
Listing 5.10.

Regarding the “oracle_toff” function, it receives a single parameter “n” (the circuit’s
size) and sequences a Toffoli gate using the first and second registers as controls and the
third register as the target to an empty circuit “c0”, which is then returned.

Main “grover_run” function sequences the resulting circuit from the application of the
“grover” function using “oracle_toff”, “qr”, “aux”, “iters” and “n” as function arguments
to an empty circuit “c0”, which is then returned.

let oracle_toff (n:int) : circuit
requires{0<n}
requires{true}
=
begin
let qr_index = ref (0: int) in
let c0 = ref (m_skip n) in
c0 := !c0 -- (toffoli (!qr_index + 0) (!qr_index + 1) (!qr_index + 2) n);
return !c0;
ensures{true}
end

let grover_run (qr aux iters n:int) : circuit
requires{0<n}
requires{qr+aux=n}
requires{true}
=

5.3. QFT algorithm 120

begin
let qr_index = ref (0: int) in
let aux_index = ref (0+qr: int) in
let c0 = ref (m_skip n) in
c0 := !c0 -- (grover oracle_toff qr aux iters n);
return !c0;
ensures{true}
end

Listing 5.10: “grover_run” and “oracle_toff” functions translation

5.2.4 Results

From the translation of iQbricks Grover´s algorithm implementation, two Qbricks programs
are generated: “grover” (Listings 5.6, 5.7, 5.8 and 5.9) and “grover_run” (Listing 5.10).
These programs were tested by making use of Qbricks’ transpilation tool, which generates
an OpenQASM (Cross et al., 2017) circuit from a Qbricks program. The transpilation tool
allowed not only to verify the syntactic correctness of the generated Qbricks programs, but
also to visually verify the circuit by generating the respective OpenQASM circuit.

The generated OpenQASM circuit for the “grover_run” Qbricks program with parameters:
qr=2, aux=1, iters=2 and n=3 is shown in Figure 20.

Figure 20: Generated OpenQASM grover_run circuit

We can thus conclude that the translation of Qbricks Grover´s algorithm implementation
is successful and the generated quantum circuit matches the intended design.

5.3 qft algorithm

The Quantum Fourier Transform (QFT) algorithm, illustrated in Subsection 3.1.3, for any n > 0,
transforms a superposition state |x⟩n = ∑2n−1

k=0 xk |k⟩n in the state:

QFT(|x⟩n) =
1√
2n

2n−1

∑
k=0

2n−1

∑
j=0

xj e
2πi·jk

2n |k⟩n . (32)

5.3. QFT algorithm 121

The circuit for QFT is drawn in Figure 21, where Rk is a rotation gate defined by the
matrix:

Rk =

(
1 0
0 e2πi/2k

)
(33)

|ψin⟩0

|ψin⟩1

|ψin⟩2
...

|ψin⟩n−2

|ψin⟩n−1

H R2 R3 . . . Rn−2 Rn−1

H . . . Rn−3 Rn−2 . . .

. . .

. . .

. . .

H R2

H

|ψout⟩0

|ψout⟩1

...

|ψout⟩2

|ψout⟩n−2

|ψout⟩n−1

Figure 21: QFT circuit implementation

5.3.1 Program in iQbricks

The implementation for the QFT algorithm in iQbricks (Listing 5.11) consists in a main
function “qft” and contains several specifications (both assertions and invariants) that define
the expected behavior of the circuit.

This function receives a single register “qr” as an argument, and makes use of a nested-for
structure in order to construct the QFT circuit. The function loops over the register “qr”,
applying a Hadamard gate to each qubit in turn. It then applies a series of controlled Z-rotation
(Rz(θ)) gates to the remaining qubits in the register, using the current qubit as the control
and the angle θ = 2πi

2i−q+1 , where q is the target qubit and i + 1 the current control qubit. The
generated QFT circuit is then returned.

Regarding the program’s specification, invariants and assertions are used to specify proper-
ties of the circuit at specific points during its execution. In this case, there are two invariants
that occur within the main for-loop. The first invariant specifies the number of created
superpositions (“range result = q”, so it corresponds to the number of applied Hadamard
gates) as well as the basis and angular indexing of the circuit before the Hadamard gate is
applied. The second invariant specifies the number of created superpositions (in this case,
“range result = 0”, since there are no Hadamard gates inside the loop) and the basis and
angular indexing of the circuit after the controlled Z-rotation gates are applied.

5.3. QFT algorithm 122

The assertions are used to check that the invariants hold after each step of the circuit. If an
assertion fails, it means that the circuit has not performed as expected, and the program will
not pass the proof obligation generated by the Why3 tool.

The post-condition specifies that the output circuit must have the same width as the in-
put (“width result = n”), have n created superpositions from the successive application of
Hadamard gates (“range result = n”) and follow the correct basis and angular indexing.

|| qft || (qreg qr)
pre {true}

circ qr ->
for q in range(len(qr)) {

invariant {
{range circ = q},
{forall x y i. 0<= i < n -> basis_ket circ x y i = if 0<= i < q then y i

else x i},
{forall x y. ang_ind circ x y = (ind_isum(fun k -> (ind_isum (fun l -> x l

* y k * power 2 (n-l - 1+k)) k n))0 q) /./ n}
}
H(qr[q])
assert {

{width circ = n},
{forall x y: int->int. forall i:int. 0<=i<n ->basis_ket circ x y i = if i

= q then y 0 else x i},
{forall x y. ang_ind circ x y = (ind_isum (fun l -> x l * y 0 * power 2 (n-

l - 1+ q)) q n) /./ n}
}
for i in range(qr[q+1:]) {

invariant {
{range circ = 0},
{forall x y i. 0<= i < n -> basis_ket circ x y i = x i},
{forall x y. ang_ind circ x y = (ind_isum (fun l -> x l * x q * power 2

(n- l -1+ q)) (q+1) i) /./n}
}
with control qr[i+1] (RZ(i-q, qr[q]))

}
}
return

pos {
{width result = n},
{range result = n},
{forall x y i. 0<= i < n -> basis_ket result x y i = y i},
{forall x y. ang_ind result x y = (ind_isum(fun k -> (ind_isum (fun l -> x l * y k

* power 2 (n-l - 1+k)) k n))0 n) /./ n}
}

Listing 5.11: QFT iQbricks implementation

5.3. QFT algorithm 123

5.3.2 Translation generated

From the translation of iQbricks QFT implementation, a Qbricks program is generated
which consists in a module named “Qft” which contains the main “qft” function (Listing
5.12).

This function:

• receives integer types “qr” and “n” as arguments;

• generates pre-conditions “0<n” and “qr=n”;

• declares the starting index for the “qr” register;

• creates empty circuits “c0” and “c1”;

• iterates through the “qr” register, generating a variant “qr-1-q” and invariants: “0 <= q

<= qr - 1”, “width !c0=n” and “width !c1=n”. Specification added in the iQbricks

program is then included;

• creates an empty circuit “c2” for the inner-loop and iterates through the remain-
ing indexes of the register. Variant “(!qr_index + qr - 1) - i” and invariants:
“(!qr_index + q + 1) <= i <= (!qr_index + qr - 1)” and “width !c2=n” are gen-
erated, after which the specification added in the iQbricks program is included;

• sequences the controlled Z-rotation gate application (defined as “crz” in Qbricks) to
circuit “!c2”;

• after the inner-loop, “!c2” (which now contains the sequence of the controlled Z-rotation
gates) is updated by placing an Hadamard gate at the beginning of this circuit;

• following the Hadamard gate assertions, “!c1” is sequenced with the updated “!c2”
circuit and “!c0” is sequenced with the updated “!c1” circuit, after which “!c1” and
“!c2” are cleared for the following loop iterations;

• after the outer-loop, “!c0” is returned and the program’s post-conditions are included,
after which the program ends.

let qft (qr n:int) : circuit
requires{0<n}
requires{qr=n}
requires{true}
=
begin
let qr_index = ref (0: int) in
let c0 = ref (m_skip n) in
let c1 = ref (m_skip n) in
for q = 0 to (qr - 1) do

5.3. QFT algorithm 124

variant{qr - 1 - q}
invariant{0 <= q <= qr - 1}
invariant{width !c0=n}
invariant{width !c1=n}
invariant{range !c1 = q}
invariant{forall x y i. 0<= i < n -> basis_ket !c1 x y i = if 0<= i < q then y i

else x i}
invariant{forall x y. ang_ind !c1 x y = (ind_isum(fun k -> (ind_isum (fun l -> x l

* y k * power 2 (n-l - 1+k)) k n))0 q) /./ n}
let c2 = ref (m_skip n) in
for i = (!qr_index + q + 1) to ((!qr_index + qr - 1)) do

variant{(!qr_index + qr - 1) - i}
invariant{(!qr_index + q + 1) <= i <= (!qr_index + qr - 1)}
invariant{width !c2=n}
invariant{range !c2 = 0}
invariant{forall x y i. 0<= i < n -> basis_ket !c2 x y i = x i}
invariant{forall x y. ang_ind !c2 x y = (ind_isum (fun l -> x l * x q * power 2

(n- l -1+ q)) (q+1) i) /./n}
c2 := !c2 -- (crz ((!qr_index + i + 1)) ((!qr_index + q)) (i - q) n);

done;
c2 := (place_hadamard (!qr_index + q) n) -- !c2;
assert{width !c2 = n};
assert{forall x y: int->int. forall i:int. 0<=i<n ->basis_ket !c2 x y i = if i = q

then y 0 else x i};
assert{forall x y. ang_ind !c2 x y = (ind_isum (fun l -> x l * y 0 * power 2 (n-l -

1+ q)) q n) /./ n};
c1 := !c1 -- !c2;
c2 := m_skip n;
c0 := !c0 -- !c1;
c1 := m_skip n;

done;
return !c0;
ensures{width result = n}
ensures{range result = n}
ensures{forall x y i. 0<= i < n -> basis_ket result x y i = y i}
ensures{forall x y. ang_ind result x y = (ind_isum(fun k -> (ind_isum (fun l -> x l *

y k * power 2 (n-l - 1+k)) k n))0 n) /./ n}
end

Listing 5.12: QFT translation

5.3.3 Results

The generated Qbricks program was tested against several SMT solvers using Why3. From
the specified QFT program, Why3 generates a set of proof obligations which, when satisfied,
provide a formally verified quantum program implementing the QFT circuit.

Figure 22 illustrates the generated proof-obligations for the QFT program. The green
“check-mark” on the left side of each proof-obligation signals that a proof was obtained.

Given that all the proof-obligations have been satisfied, the implementation of the QFT
algorithm is considered to be formally verified. This verification provides strong evidence
that the program behaves correctly according to its intended specification.

5.3. QFT algorithm 125

Figure 22: QFT program with generated proof-obligations

As done with the Grover circuit implementation, an OpenQASM circuit for the “qft”
Qbricks program with parameters: qr=4 and n=4 was generated, and is shown in Figure 23.

Figure 23: Generated OpenQASM qft circuit

We can thus conclude that the translation of Qbricks QFT implementation is successful,
the generated quantum circuit matches the intended design and the included specification
allows the program to be formally verified.

6

C O N C L U S I O N

In conclusion, this project has made significant contributions to the field of quantum comput-
ing. By designing a new high-level programming language for quantum circuits, iQbricks,
that translates to Qbricks, this project has made quantum programs more accessible and
user-friendly. The introduction of an AST for quantum programs not only roots the con-
nection between iQbricks and Qbricks, but also enables the connection of the circuit
object language with a specification language. Finally, the developed framework can be
easily expanded to other quantum programming languages, making this project a valuable
contribution to the growing field of quantum computing.

6.1 prospects for future work

This work has opened up exciting possibilities in the field of quantum computing. Specifically
the following are several potential areas for further exploration:

1. Development of a source specification language: There are two main tasks involved
in this development: (1) designing the language and (2) parsing it to WhyML. The
goal of this development is to provide users with a more user-friendly way of writing
specifications and to automate some of the more repetitive proofs through static
analysis and proof tactics.

2. Bridging the gap between quantum programs and other widely used languages: Using
the ML-AST as an abstract structure for quantum programs, it may be possible to
develop bridges that allow for translations back and forth between other commonly
used programming languages. This would allow for the integration of verification
frameworks with communities such as Qiskit and others. Additionally, the translation
of iQbricks programs to Qiskit enables the use of existing simulators or even real
quantum computers.

3. Extension of the object/specification language to hybrid programming: in particular
incorporation of quantum measurement and classical control, this extension is crucial

126

6.1. Prospects for future work 127

for the integration of quantum computing into hybrid environments, such as those
involving error correction, unitary decomposition, HPC integration, and pre-post
processing.

These future prospects will be pursued in a PhD project, beginning in the near future.

B I B L I O G R A P H Y

Matthew Amy. Towards large-scale functional verification of universal quantum circuits.
Electronic Proceedings in Theoretical Computer Science, 287:1–21, jan 2019. doi: 10.4204/eptcs.
287.1. URL https://doi.org/10.4204%2Feptcs.287.1.

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends,
Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum
supremacy using a programmable superconducting processor. Nature, 574(7779):505–510,
2019.

J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1:195–200, Nov
1964. doi: 10.1103/PhysicsPhysiqueFizika.1.195. URL https://link.aps.org/doi/10.

1103/PhysicsPhysiqueFizika.1.195.

Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. Silq: A high-level
quantum language with safe uncomputation and intuitive semantics. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2020, page 286–300, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450376136. doi: 10.1145/3385412.3386007. URL https://doi.org/10.1145/

3385412.3386007.

Tomás Carneiro. iqbricks. https://github.com/tbc23/iQbricks, 2023.

Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoit Valiron.
A deductive verification framework for circuit-building quantum programs. arXiv preprint
arXiv:2003.05841, 2020.

Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît Valiron.
An automated deductive verification framework for circuit-building quantum programs.
In Nobuko Yoshida, editor, Programming Languages and Systems, pages 148–177, Cham,
2021. Springer International Publishing. ISBN 978-3-030-72019-3.

Andrew Cross. The ibm q experience and qiskit open-source quantum computing software.
In APS March Meeting Abstracts, volume 2018, pages L58–003, 2018.

Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open quantum
assembly language, 2017. URL https://doi.org/10.48550/arXiv.1707.03429.

128

https://doi.org/10.4204%2Feptcs.287.1
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://github.com/tbc23/iQbricks
https://doi.org/10.48550/arXiv.1707.03429

bibliography 129

Richard P Feynman. Simulating physics with computers. International journal of theoretical
physics, 21(6/7):467–488, 1982.

Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet provers.
In Matthias Felleisen and Philippa Gardner, editors, Programming Languages and Systems,
pages 125–128, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-37036-
6.

Doug Finke. Quantum computing’s time is coming. 2022. URL https://

quantumcomputingreport.com/quantum-computings-time-is-coming/.

Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.

Kesha Hietala, Robert Rand, Shih-Han Hung, Liyi Li, and Michael Hicks. Proving quantum
programs correct. In Liron Cohen and Cezary Kaliszyk, editors, 12th International Con-
ference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy (Virtual
Conference), volume 193 of LIPIcs, pages 21:1–21:19, 2021a. doi: 10.4230/LIPIcs.ITP.2021.21.

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. A verified
optimizer for quantum circuits. Proc. ACM Program. Lang., 5(POPL):1–29, 2021b. doi:
10.1145/3434318.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):
576–580, oct 1969. ISSN 0001-0782. doi: 10.1145/363235.363259. URL https://doi.org/

10.1145/363235.363259.

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, and Jérôme Vouillon. The
ocaml system release 4.14 documentation and user’s manual, 2022. URL https://v2.

ocaml.org/releases/4.14/manual/index.html.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, 2010. doi: 10.1017/CBO9780511976667.

Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, Oct 1997.
ISSN 1095-7111. doi: 10.1137/s0097539795293172. URL http://dx.doi.org/10.1137/

S0097539795293172.

https://quantumcomputingreport.com/quantum-computings-time-is-coming/
https://quantumcomputingreport.com/quantum-computings-time-is-coming/
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://v2.ocaml.org/releases/4.14/manual/index.html
https://v2.ocaml.org/releases/4.14/manual/index.html
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172

bibliography 130

Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo,
Jian Qin, Dian Wu, Xing Ding, Yi Hu, et al. Quantum computational advantage using
photons. Science, 370(6523):1460–1463, 2020.

	1 Introduction
	1.1 Motivation and Context
	1.2 Contributions
	1.3 Document's structure

	2 State of the art
	2.1 Quantum Computing
	2.2 Qbricks framework
	2.3 Language processing

	3 iQbricks language
	3.1 Motivational Examples
	3.2 Specification
	3.3 Syntax analyser

	4 A verification framework for iQbricks
	4.1 Solution design
	4.2 Java AST structure
	4.3 AST Builder
	4.4 Changing the paradigm
	4.5 Ocaml AST structure
	4.6 Evaluating the Java-AST
	4.7 Generating a program in Qbricks

	5 Testing
	5.1 Introduction
	5.2 Grover's algorithm
	5.3 QFT algorithm

	6 Conclusion
	6.1 Prospects for future work

