

Dinis Sanches Fernandes

A computer vision based
navigation system for an
autonomous vehicle model in a
controlled environment using
reinforcement learning

Dissertação de Mestrado

Mestrado Integrado em Engenharia Eletrónica

Industrial e Computadores

Trabalho realizado sob a supervisão de:

Professor Doutor Fernando Ribeiro

janeiro 2023

Autonomous Driving (Computer Vision + A.I.)

Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

License granted to users of this work:

CC BY-SA

https://creativecommons.org/licenses/by-sa/4.0/

1

Autonomous Driving (Computer Vision + A.I.)

Índice

2 Acknowledgements 4

4 Introduction 6

4.1 Motivation . 6

4.2 Objective . 7

5 State of the art 8

5.1 Autonomous Driving . 8

5.1.1 Perception, Localization, Planning and Control 8

5.1.2 Levels of Driving Automation . 10

5.1.3 Sensorization of Vehicles . 11

5.1.4 Automobile Industry State of the Art . 13

5.1.5 Waymo Vs Tesla . 17

5.2 Reinforcement learning . 18

5.2.1 Farama Foundation Gymnasium - Cart pole 19

5.2.2 Grid World . 21

5.2.3 Basic Concepts . 22

5.2.4 Advanced concepts . 33

5.2.5 Proximal Policy Optimization . 44

5.2.6 Simulation Software . 46

5.2.7 ROS . 47

6 Simulation Environment Development 49

6.1 Description of the vehicle . 49

6.1.1 Launch File and Package Dependencies 50

6.1.2 XML and URDF files . 50

6.1.3 URDF . 50

6.1.4 XACRO files . 53

6.1.5 Model development . 54

6.2 Gazebo integration . 55

6.2.1 Launch File and Package Dependencies 56

6.2.2 Environment Description . 58

2

Autonomous Driving (Computer Vision + A.I.)

6.3 Joint Control . 58

6.3.1 Launch File and Package Dependencies 58

6.3.2 Transmissions Plug-ins yaml . 59

6.3.3 ROS nodes and rospy . 61

6.4 Camera integration . 61

6.4.1 Intel realsense packages . 62

6.4.2 Adding Camera Packages to model . 62

7 Control & PPO implementation 64

7.1 Environment methods implementation . 64

7.1.1 Simulation drivers . 64

7.1.2 Computer vision . 68

7.1.3 Reward . 71

7.1.4 Environment . 80

7.2 PPO methods implementation . 84

7.2.1 Neural networks . 85

7.2.2 Memory collector . 88

7.2.3 GAE . 91

7.2.4 Gradient Update . 93

7.2.5 PPO Learn . 96

8 Results 99

8.1 Hyperparameters tuning . 99

8.1.1 Learning rate . 99

8.1.2 Mini batch size . 100

8.2 Final results . 102

9 Conclusion and future work 105

Bibliographic references 106

3

Autonomous Driving (Computer Vision + A.I.)

2 Acknowledgements

I want to take this moment to thank everybody that contributed directly or indirectly to the development

of this dissertation. All of the people mentioned had a positive impact on my life by helping me grow,

learn, or just by making my days better, this is what made me able to face all the challenges during these

five years.

First I want to thank my parents Jorge and Manuela, my brothers Gil and Diogo, and my grandparents

Natércia, Alzira, António, and Adolfo for making me the person I am today and for so many other things.

I want to thank my princes Madeleine, for supporting me when I needed the most and for making me

the happiest man in the world.

I want to thank my supervisor Professor Fernando Ribeiro for helping whenever I asked for help and

for introducing me to the laboratory of automation and robotics where I developed most of the dissertation

and where I met many amazing people.

Finally I want to thank my close friends from Guimarães whom I shared many priceless stories: Tech-

não, Spark, Alibabá, Fátima, Priest, Zombie-Pit, Amnésia, Viciadinha, Caixas, Bob, Galitos, Rammstein,

Extrolha, Marroquina, Só-quer, Zé relojoeiro, Hulk, Graxas, MalhaBacas, and Central.

4

Autonomous Driving (Computer Vision + A.I.)

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, Guimarães, January 2023

Dinis Sanches Fernandes

5

Autonomous Driving (Computer Vision + A.I.)

4 Introduction

4.1 Motivation

Technology has been responsible for shaping lives in ways that could never be imagined before.

The development of the personal computer (PC) allowed people to have an accessible and intuitive

interaction with the ever-evolving semiconductor technologies, presently it is an essential tool in people’s

daily lives. The development of the internet allowed people to access information in ways that were very

difficult to imagine before. These devices are so essential to human lives that people don’t appreciate

them that much anymore, but there was a time when people had to live without them. For most, it is

impossible to imagine a lifestyle without electricity but for a long time, humans relied only on fire as a

source of energy. This is the power of Technology, something that today may seem impossible tomorrow

may be just another basic part of our lives.

The book ”AI - 2041” (Lee & Chen, 2021) describes 10 technologies that artificial intelligence (AI)

will make available. One of the technologies described in the ”The Holly Driver” chapter is autonomous

driving. In the mentioned chapter the author depicts a world in which autonomous vehicles are a part of

people’s daily lives, in some parts of the world. In this world autonomous vehicles (AVs) allow people to live

without the struggles of heavy traffic congestion which is a problem that has been around for many years

and no solutions seem to have been found. This problem influences people’s moods and productivity

daily.

Lex Fridman, in an MIT lecture (Self-Driving Cars: State of the Art (2019), 2019), also justified his

motivation around AVs on the number of lives this technology will save, which is a legit concern taking

into to account that ”every year the lives of approximately 1.3 million people are cut short as a result of a

road traffic crash” (WHO, 2022). Traffic can also become a problem for ambulances when carrying urgent

patients. AVs will help mitigate this problem as priority vehicles will circulate much faster, therefore having

a faster response to people in need.

Another important aspect of autonomous driving is the possibility of facilitating the access of people

with less mobility anywhere. This lack of mobility may be due to many reasons such as age or handicapped

and this technology will highly improve people’s lifestyles by facilitating their mobility and improving their

autonomy.

Today may seem a bit futuristic to imagine cities without massive traffic congestion, roads without

6

Autonomous Driving (Computer Vision + A.I.)

accidents, or cars without drivers but this will be one of the breakthroughs of our generation and it will

become part of our lives just as today is the electricity, PCs or the internet. One day society will look back

to road casualties and road traffic as a thing of the past and won’t even understand how it was possible

to live with it daily, just like today’s people can’t live without electricity.

4.2 Objective

The objective of this dissertation is to create a control system for the navigation of an autonomous

vehicle model in a controlled environment. The control system has to be developed using reinforcement

learning methods that input the frames of a camera (or cameras) and output the wheel’s speed and

angle. With a consistent model developed in simulation, the following objective is to use the trained model

to control the vehicle in the real world. The vehicle and environment model inside the simulation should

be as close as possible to the real world so that the model is easily adapted. Another objective is to study

the possibility of optimizing the algorithm by training it in the real world.

The purpose of these objectives is to test the capability of reinforcement learning algorithms when

applied to autonomous vehicles. Test reinforcement learning algorithm capabilities to interpret computer

vision data and output suitable actions. The development of an environment, the autonomous vehicle

model, and the respective actuators and sensors will allow others to test any control algorithm for au-

tonomous driving.

Testing reinforcement learning (RL) algorithms’ capabilities to achieve different goals are of interest to

the scientific community because it allows developers to find out where the algorithms are having success

and where they are failing. This diagnostic is what allows the constant improvement of algorithms. The

same concept applies to autonomous driving, testing different approaches allows developers to identify

what works best when developing the control system.

7

Autonomous Driving (Computer Vision + A.I.)

5 State of the art

5.1 Autonomous Driving

This section exposes the theoretical concepts of any autonomous driving system and analyses the

autonomous driving industry, namely:

• Basic concepts of a self-driving vehicle

• Different levels of autonomous driving systems

• Different types of sensors used in the industry and respective strengths and weaknesses

• Main ways companies are using sensors to develop autonomous vehicles and what are their plans

for the future

5.1.1 Perception, Localization, Planning and Control

”An autonomous vehicle is capable of using sensors to get a picture of its operating environment and

make driving decisions based on that data without the intervention of a human operator” (Synopsys, 2022)

That being said, the system of an autonomous vehicle gathers data from the sensors to obtain meaningful

information about the environment which is then used to navigate through the environment. This ability

to interpret the sensor’s data in a meaningful way and the ability to control the vehicle’s route is the basic

competencies of an autonomous vehicle.

According to (Pendleton et al., 2017) ”The core competencies of an autonomous vehicle software

system can be broadly categorized into three categories, namely perception, planning, and control.”

• Perception refers to the ability of an autonomous system to collect information and extract relevant

knowledge from the environment

• Planning refers to the process of making purposeful decisions typically to bring the vehicle from a

start location to a goal location while avoiding obstacles and optimizing over designed heuristics.

• Control competency refers to the vehicle’s ability to execute the planned actions which have been

generated by the higher level processes.

8

Autonomous Driving (Computer Vision + A.I.)

In a nutshell, perception is the ability to obtain data from the sensors and process it to take the

important information from it and with this information, the system uses its planning ability to make

choices such as: deciding what route to take from point A to point B and decide when to overtake another

vehicle. The planning consists of higher-level processes that have to effectively be executed by the control

ability. The control ability consists of lower-level processes that use the actuators to execute the planned

actions.

Figure 5.1: Perception Planning Control

Using sensors and feature extraction methods to process the received data the perception system

acquires relevant data from the environment. The planning mechanism uses this data to ”plan” the best

course of action. The control system receives ”orders” from the planning system and executes the planned

actions directly on the actuators.

9

Autonomous Driving (Computer Vision + A.I.)

5.1.2 Levels of Driving Automation

A fully autonomous vehicle can drive anywhere without any human control and without previous knowl-

edge about the location in which the vehicle is driving. Fully autonomous vehicles are not a reality yet,

but companies have been developing systems with an increasingly higher level of automation. The effort

of these companies resulted in a set of systems designed to help the driver - ADAS (Advanced Driver

Assistance System). The most commonly used ADAS system is cruise control. This system allows the

user to set the vehicle to a constant speed while having the foot off the throttle. This is especially useful

when driving on the highway because trips are usually longer and the car speed is mostly constant. Cruise

control allows the user to abstract himself from a component of driving by introducing automation in the

system. These systems introduce some level of automation to the driving, by helping the driver with some

tasks. The more driving systems are introduced to the vehicle the more autonomous it gets, while not

being fully autonomous. To make the distinction between each level of automation a table was created

(from SAE J3016™, 2021). This table consists of 6 levels, going from zero (No automation) to five (Fully

autonomous car), each level describes the requirements for a system to be considered at that level. Figure

5.2 describes what each level of automation represents.

SAE J3016TM LEVELS OF DRIVING AUTOMATIONTM

DRAFT- Stand alone

•	lane centering

	 OR

•	adaptive cruise
control

•	local driverless
taxi

•	pedals/
steering
wheel may or
may not be
installed

•	lane centering

		 AND

•	adaptive cruise
control at the
same time

•	same as
level 4,
but feature
can drive
everywhere
in all
conditions

•	automatic
emergency
braking

•	blind spot
warning

•	lane departure
warning

•	traffic jam
chauffeur

You are driving whenever these driver support features
are engaged – even if your feet are off the pedals and

you are not steering

You are not driving when these automated driving
features are engaged – even if you are seated in

“the driver’s seat”

These automated driving features
will not require you to take

over driving

You must constantly supervise these support features;
you must steer, brake or accelerate as needed to

maintain safety

What does the
human in the
driver’s seat
have to do?

Example
Features

When the feature
requests,

you must drive

These are automated driving features
These features

provide
steering

OR brake/
acceleration
support to
the driver

These features
provide
steering

AND brake/
acceleration
support to
the driver

These features can drive the vehicle
under limited conditions and will

not operate unless all required
conditions are met

This feature
can drive the
vehicle under
all conditions

These features
are limited

to providing
warnings and
momentary
assistance

These are driver support features

What do these
features do?

SAE
 LEVEL 0TM

SAE
 LEVEL 1TM

SAE
 LEVEL 2TM

SAE
 LEVEL 3TM

SAE
 LEVEL 4TM

SAE
 LEVEL 5TM

Copyright © 2021 SAE International.

Copyright © 2021 SAE International. The summary table may be freely copied and distributed AS-IS provided that SAE International is acknowledged as the source of the content.

Learn more here: sae.org/standards/content/j3016_202104

Figure 5.2: SAE Levels of Driving Automation (from SAE J3016™, 2021)

10

Autonomous Driving (Computer Vision + A.I.)

5.1.3 Sensorization of Vehicles

The perception system input of an autonomous vehicle is the data retrieved from the sensors. This

subsection presents:

• The main sensors used in car industry

• How each sensor works

• The overall strengths and weaknesses of each sensor.

a) LIDAR

The LIDAR acronym means Light Detection and Ranging (Mazzari & Mazzari, 2021). The way this

sensor works is very similar to a sonar, but instead of using sound, it uses light. It is a remote sensing

technology that measures the distance between itself and a target (Mazzari & Mazzari, 2021).

The LIDAR has a transmitter and a receiver. The transmitter transmits laser beams in different di-

rections. The laser beams are then reflected by the object hit. The laser beam is then received by the

LIDAR receiver. The time it takes for the laser beam to return is called Time of flight (ToF). The ToF is

used to calculate the distance between the LIDAR and the object. This process of sending a laser beam,

receiving it, and calculating the distance is carried out in many different directions. With the data given by

the sensor, it is possible to create a Point Cloud which consists of a map of the surroundings. The map

may be 1D, 2D, or 3D but the one used in autonomous driving is the 3D Point-Cloud map.

The LIDAR is a really powerful sensor, as it outputs data that allows algorithms to accurately and

efficiently build a 3D representation of the surroundings. Yet the LIDAR’s capabilities are very limited

when it comes to object recognition, and extreme weather (heavy rain due to the light’s refraction) can

affect its normal behavior. Another LIDAR disadvantage is that it is an expensive sensor.

b) Radar

Radars have been around for a long time and are used in many different fields, such as meteorology,

road traffic control, etc. There are many different types of RADARs, one of the most popular and relevant

to autonomous driving is called FMCW - Frequency-Modulated Continuous-Wave (Cohen, 2021). Radars

measure the distance to an object and some radars are capable of measuring velocity simultaneously.

11

Autonomous Driving (Computer Vision + A.I.)

The radars have good range flexibility because they can measure objects that are less than a centimeter

away but they can also measure objects hundreds of meters away.

It works by emitting electromagnetic (EM) waves that reflect when colliding with an obstacle (Cohen,

2021). The time it takes for the emitted frequencies to travel back is used to calculate the distance

between the radar and the obstacle.

The obstacle’s speed is calculated through the Doppler effect. The Doppler effect consists of a physical

property in which the wavelength varies accordingly to the obstacle’s speed.

Despite operating like the LIDAR, this sensor has a few differences, just like the LIDAR the Radar can

not identify objects due to its low-definition modeling. To contrast, it is capable of operating under extreme

weather.

c) Cameras & Computer Vision

Cameras are a very common gadget in people’s daily lives. Nowadays in western countries, most

people have at least one camera constantly in their pockets. It allows people to store photos or videos. A

video is just a very fast succession of taking photos. The photos of a video are usually called frames. To

understand how cameras can be used in machine learning algorithms it is important to first understand

how this technology gathers data.

A camera consists mostly of a set of lenses and an electronic chip. The camera’s lens focuses the

light into the Chip. This Chip is composed of many photosensitive sensors. Each sensor is capable of

measuring the amount of light. For each pixel, there are one or more sensors. Each sensor captures the

amount of red, green, and blue for the respective pixel. The picture captured by the camera is a matrix of

all the pixels.

Through the described method it is possible to store a matrix of pixels called frames. Each frame

represents the light that crossed the camera’s lens at a given time.

The use of cameras is great because, with this type of sensor, it is possible to translate what a human

sees into digital values.

The increase in computer power and organized data available in recent years allowed the intensive

development of a branch of AI called Machine Learning. Machine Learning associated with the data

obtained through cameras has made huge breakthroughs in the field of computer vision.

The machine learning algorithms applied to computer vision use convolutional neural networks (CNN).

CNN consists of mathematical models that require a process called training to accomplish the desired

function. The training process requires a vast source of data and computer vision offers Machine Learning

12

Autonomous Driving (Computer Vision + A.I.)

exactly that.

CNN and computer vision allowed the creation of powerful algorithms capable of taking human-like

decisions, such as identifying real-world objects with low error rates. Examples can be

• Image classification sees an image and can classify it (a dog, an apple, a person’s face).

• Object detection can use image classification to identify a certain class of image and then detect

and tabulate their appearance in an image or video.

• Object tracking follows or tracks an object once it is detected.

• Content-based image retrieval uses computer vision to browse, search and retrieve images from

large data stores, based on the image’s content rather than metadata tags associated with them.

Cameras operate very differently when compared to the previously referenced sensors. It is a High-

resolution sensor that can identify objects due to its high resolution, it is cheap when compared with

LIDAR and it outputs human-like data. Cameras also have their disadvantages like outputting 2D data and

difficulties with low light environments. The 2D representation of cameras is a problem being solved by

cameras such as the intel realsense. The intel realsense returns 2 matrices one with the color frame and

the other with the object’s distance in the frame to the camera.

5.1.4 Automobile Industry State of the Art

Presently many companies are developing autonomous vehicles, but there are mainly two approaches

to this problem. On one hand, some companies rely on LIDAR sensors and sometimes even highly detailed

maps. These companies accept the limitations of cameras and use other sources of data. On the other

hand, some companies believe that the LIDAR is not needed because the information that it offers can be

gathered with a camera that has a higher definition and is cheaper. These companies use cameras and

robust computer vision algorithms to gather important environmental features.

This subsection presents:

• Two main companies researching and developing AVs

• An overview of the companies plans to commercialize its vehicles

• The sensors each vehicle uses

• The level of autonomy of each vehicle

13

Autonomous Driving (Computer Vision + A.I.)

a) Waymo

Waymo is a company that started with the google’s self-driving car development in 2009 and since

then they have made significant improvements in the Hardware of its vehicles and mainly in its embedded

software, the Waymo Driver. This company offers two types of services, Waymo One and Waymo Via

where the first consists of an autonomous taxi service in Metro Phoenix (located in Arizona, United States

of America), and the second consists of an autonomous transportation service. This section describes the

Waymo one service. Users of this service make use of an app to request a vehicle, the vehicle drives to

point of pick-up set by the user and then drives the user to the set point of destination. The trip can be

personalized to stop in different locations before the final destination.

Waymo vehicles uses the three previously described sensors, LIDAR, RADAR, and Cameras but it also

uses a localization system. For a vehicle to be able to operate in a new area, Waymo has to first map

the territory with a large detail, from lane markers to stop signs to curbs and crosswalks. With the data

given by the localization systems, the vehicle can plan the route and know where the traffic signals and

other important road points are. When the vehicle arrives at locations like a crossroad it uses its sensing

to analyze the state of other vehicles and traffic signals to then act accordingly.

Waymo vehicles drive without any human intervention or supervision, the human does not at any point

touch the steering wheel to control the car during a regular trip. These vehicles have some limitations,

because of their dependency on a detailed localization system design by Waymo. This company designs

vehicles that can drive autonomously yet are limited to a small area of operation therefore the level of

autonomy is ranked Level 4 (Ackerman, 2021).

b) Tesla

Tesla is an American-based company ”founded in 2003 by the engineers Martin Eberhard and Marc

Tarpenning Eberhard served as its CEO and Tarpenning served as CFO” (Reed, 2020). The founders of

this company aimed to build a fully electric vehicle that served ”practical specifications that could arguably

meet consumer needs”. At the time no other company was able to develop a vehicle that could fit the

consumer’s needs, since all of them lacked batteries powerful enough to accelerate the car to highway

speed, so the project of building an electric sports car was a very ambitious objective, but this is exactly

what Tesla did. In 2006 the first Tesla Roadster prototype was announced, and two years later, in 2008,

it entered production. This vehicle was powerful enough to accelerate to highway speed, with a top

speed of 201 km/h (Tesla Roadster (first generation), 2022) and had an appealing autonomy of 320Km

14

Autonomous Driving (Computer Vision + A.I.)

(Tesla Roadster (first generation), 2022) The only problem with the vehicle was that it priced out most

consumers, with a release cost over US$100,000. Because of these specifications, the first vehicle of

Tesla was a great achievement since no company was able to create an electric car powerful enough to be

highway legal. Despite this achievement by 2009, the company was facing some financial problems (Cao,

2021). In 2008 Elon Musk, who was the company’s Board of Directors chairman since its investment of

US$30.000.000, became the CEO of Tesla. In the same year (2008), the plans for the new vehicle, the

Model S sedan, were announced. This was still a luxury car but with a much lower price of US$76,000.

The Model S prototype was unveiled in 2011 and went into full production in 2012. By 2013 the company

was able to present its first quarterly profit and since then they have been releasing not just vehicles but

also Solar panels, Solar tiles to be installed on the roof of houses, started an energy distribution service,

and most importantly power stations to recharge Tesla’s vehicles. An important aspect is that the batteries

used in Tesla’s vehicles are produced by their own company. The production of batteries was an important

investment for Tesla. To improve the batteries production Tesla announced the construction of multiple

factories called Gigafactory. The Gigafactory is a facility designed for battery production. In 2016 the

Model 3 sedan was announced retailing below US$70.000 an even lower price when compared with the

previously released vehicle, the Model S sedan. Most recently Tesla has released the Model Y.

Cars produced by Tesla, besides having top of the line electric batteries also carry embedded soft-

ware with constant improvements. This software includes the Tesla autopilot which offers active safety

features and driving assistance features, this is carried out with the data acquired through the sensors.

The sensorization of Tesla vehicles is a computer vision based, meaning that its perception uses mainly

cameras. These vehicles also use ultrasonic sensors but the control system relies mostly on the data gath-

ered by the cameras. The perception system is composed of three forward cameras, two forward-looking

side cameras, one rearview camera, and twelve ultrasonic sensors. The three cameras (Wide, Main, and

Narrow camera) mounted behind the windshield provide broad visibility in front of the car, and focused,

long-range detection of distant objects. The sensors functions are described below:

• Wide Camera - 120 degree fish eye lens that captures traffic lights, obstacles cutting into the path

of travel and objects at close range. Particularly useful in urban, low speed maneuvering

• Main camera - covers a broad spectrum of use cases

• Narrow Camera - provides a focused, long-range view of distant features. Useful in high-speed

operation

• Forward Looking Side Cameras - 90 degree redundant forward looking side cameras that look for

15

Autonomous Driving (Computer Vision + A.I.)

cars unexpectedly entering the same lane as the vehicle on the highway and provide additional

safety when entering intersections with limited visibility

• Rearward Looking Side Cameras - monitor rear blind spots on both sides of the car, important for

safely changing lanes and merging into traffic

• Rear View Camera - The rear view camera is useful when performing complex parking maneuvers

• Ultrasonic Sensors - These sensors are useful for detecting nearby cars, especially when they

encroach on your lane, and provide guidance when parking .

The Tesla autopilot includes three main functionalities, the TACC (Traffic-Aware Cruise Control), Au-

tosteer, and Auto Lane Change. TACC is an advanced version of cruise control which when activated by

the driver, sets the vehicle’s speed to the same as the vehicle in front, this feature may also stop at stop

signs and traffic lights if activated by the user. Autosteer adds steering assistance to TACC meaning that

the vehicle automatically adjusts the car’s steering to stay inside the lanes. The driver has to be aware

at all times in case the vehicle’s trajectory needs to be corrected, so to force the user to be aware, the

vehicle has to detect the driver’s hands on the steering wheel, or else it gives notifications to the user. In

case the user does not respond to the notifications given by the vehicle the autosteer will be deactivated

automatically and the driver will not be able to activate it for the remaining trip. When the autosteer is

activated the user may use the auto lane change feature to make the vehicle change lanes automatically,

yet as usual the driver has to be aware of other vehicles on the road before initiating the lane changing

process. The described feature before being available to the user has to go through a process of hardware

calibration, this is a one-time process that takes a couple of hours of driving on clearly marked roads. Tesla

is constantly improving their embedded software and because of this, the vehicle includes the possibility

of upgrading its embedded software anytime the company releases an update.

The autopilot developed by Tesla consists of driving assistance functionalities, which provide the driver

with steering, braking, and acceleration support, this means the human is responsible for driving at all

times, the software only gives the driver support features. The described functionalities make the Tesla

autonomous driving system level 2 autonomy (Morris, 2022). Level 2 autonomy consists of a driving

assistance system that helps the driver with lane centering and adaptive cruise control, being this achieved

through the autosteer and TACC systems respectively.

16

Autonomous Driving (Computer Vision + A.I.)

5.1.5 Waymo Vs Tesla

At first sight, the level 4 of automation present in Waymo vehicles is much more impressive when

compared to the level 2 of automation present in Tesla’s autopilot driving assistant system, yet the Waymo

features come at an expensive price. Waymo’s driving system relies heavily on highly detailed maps.

Maps may be simple to manage in a small and organized area, such as Metro Phoenix city, but when

considering more extensive areas such as a whole country or even the whole world, these maps raise

severe scalability problems since they rely on a constant update of the road signs, constructions, possible

accidents that influence the traffic, etc. Besides the problem of scalability Level, 5 of autonomy is the

future and for this level of autonomy to be achieved the vehicle must be able to drive in any location in

any conditions, without the need for previous experience and for this the use of maps does not allow a

vehicle to reach level 5 of autonomy. Another thing that might be a problem in the future for Waymo is the

use of LIDAR. This highly complex sensor adds about US$7.500 (Moreno, 2021) to the vehicle’s price.

This cost is an improvement to US$75.000 (Moreno, 2021) the sensor used to cost. Cameras are a very

cheap technology, and therefore it seems difficult for LIDARs to compete with cameras when it comes to

price. Presently the LIDAR still has an advantage when compared to cameras, and that is the fact that

cameras retrieve 2D data and the LIDAR retrieves data that can be used to build the car’s surroundings

3D map. This is the main advantage the LIDAR has, yet this is something that neural networks can solve

as described in the paper ”Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object

Detection for Autonomous Driving” (Wang et al., 2019). The referenced paper describes how, with neural

networks and cameras, it was possible to have a depth perception with 74% accuracy in a 30 meters

range. This type of signal processing makes LIDAR not very useful. Elon Musk described LIDAR as “a

fool’s errand” (Burns, 2019) and affirmed that “Anyone relying on LIDAR is doomed. Doomed!” (Burns,

2019) Because LIDARs are ”expensive sensors that are unnecessary.”(Burns, 2019) and because they

are unnecessary they end up being ”a whole bunch of expensive appendices.” (Burns, 2019) Elon ended

this controversial statement with the obvious ”Like, one appendix is bad, well now you have a whole bunch

of them, it’s ridiculous”(Burns, 2019). Developments in computer vision algorithms and the investment

of companies such as Tesla make a question of time before the scientific community finds a way of

retrieving data through cameras in such a way that makes LIDARs useless, therefore the development

efforts in autonomous driving should be put to camera-based systems. Tesla has not been able to present

an autonomous vehicle with a higher level of autonomy because the company is putting all its efforts into

creating technology that will be the future of autonomous driving. The Tesla approach is challenging but

17

Autonomous Driving (Computer Vision + A.I.)

much more rewarding in long term. On the other side of the spectrum there are companies like Waymo

that are developing vehicles that today show much better results but in long term will be surpassed.

5.2 Reinforcement learning

Machine learning has three branches of algorithms: supervised, unsupervised, and reinforcement

learning. Both supervised and unsupervised learning algorithms are mainly used to label input data.

Meaning that these algorithms receive a dataset and output features about the input. The difference

between supervised and unsupervised learning is that unsupervised learning gets non-labeled data, and

supervised learning gets labeled data.

Reinforcement learning is very different from other machine learning algorithms. RL’s approach is

inspired by the training of animals. To teach a dog how to do something the trainer waits for it to do an

action if the action is good it gets a treat if the action is bad it does not get a treat and sometimes even

physical punishment. In RL there is an agent, the algorithm makes interpretation of the environment, the

state, and the agent chooses an action accordingly to the present state and executes it in the environment.

After executing the action in the environment the algorithm makes another interpretation, the next state,

and assigns a reward. Both the reward and state are input to the agent and the process repeats itself

across a number of iterations. The state works as a way of interpreting the environment so the agent

can understand it and the reward is a way of knowing if the taken action is good or bad. For a state

received the agent executes an action, and for this reason, it can be called state-action pair. Depending

on the RL algorithm there is a step that gets the rewards acquired for the state-action pair and changes

the agent to maximize the rewards obtained. After training the agent it should be able to execute the

target task by just receiving the states. This high-level overview (5.7) explains any RL algorithm from the

basics like Q learning to the most advanced like deep Q-learning (Mnih et al., 2013), deep deterministic

policy gradient (Lillicrap et al., 2015), proximal policy optimization (Schulman, Wolski, Dhariwal, Radford,

& Klimov, 2017), etc.

Machines do not have the perception that humans have of the real world so it is the developer’s job to

create mechanisms that allow machines to train agents to execute a target task. This subsection explains

the main mechanisms that allow RL algorithms to learn.

a) Autonomous vehicle track

The environment in which the vehicle learns how to drive is the Portuguese national robotics champi-

18

Autonomous Driving (Computer Vision + A.I.)

onship autonomous driving track. The autonomous driving challenge has many different tasks to accom-

plish but the sole objective of this dissertation is to make a consistent control system capable of navigating

around the track using as input a camera and as a control system an RL algorithm.

Figure 5.3: Portuguese national robotics championship autonomous driving track

5.2.1 Farama Foundation Gymnasium - Cart pole

OpenAI is a company that invests in the research and development of AI-based systems. Their goal

is to develop AI systems that outperform humans in economically valuable tasks. OpenAI considers its

mission fulfilled by helping other developers achieve the common goal. This intention is supported by

the release of the gym library, which is an open-source library used to test and benchmark AI algorithms.

The Gym library maintenance recently passed to a non-profitable organization named Farama Foundation

which changed the library’s name to gymnasium (Farama-Foundation, 2022).

This library offers a set of environments controlled by a set of functions. The cross-referenced python

code 5.1 shows a basic example of the car pole environment execution. Info is a parameter that gives

information about the simulation that is not supposed to be used to train algorithms.

• Line 1 - gymnasium library is imported

• Line 2 - Initiate env object, this object gives access to most library functionalities (Ex: reset, step,

action_space), the parameter received is the target environment name

19

Autonomous Driving (Computer Vision + A.I.)

• line 4 - Resets the simulation and returns observation which is the state

• line 6 - Cycle that implements the maximum number of iterations

• line 8 - Step function receives as parameters an action to be executed, executes the action for a time

step and returns some data. Observation is the state, reward is the reward value, and terminated,

that returns 1 when the simulation reached a terminal state and 0 otherwise. The parameter set

inside step function is env.action.sample which returns a random action from the environment’s

action space.

• line 10 - This condition resets the environment if the value returned by the step function is 1, else

it continues running

• line 13 - Closes the environment

1 import gym

2 env = gym.make("CartPole -v1")

3

4 observation , info = env.reset()

5

6 for _ in range(1000):

7

8 observation , reward , terminated , info = env.step(env.action_space.

sample())

9

10 if terminated:

11 observation , info = env.reset()

12

13 env.close()

Listing 5.1: Gym cart pole basic python example

The gymnasium environments are like video games but instead of being controlled by a human player,

the objective is to be controlled by an algorithm (agent), cart pole is a gymnasium library environment.

The agent’s goal in this environment is to control a cart left or right to hold the pole on top for as long as

possible, the cart’s control is carried out by choosing action 1 or 0. Choosing action 0 makes the car go

left and action 1 makes the car go right, the car’s speed is not controllable, it either goes full speed left or

full speed right.

The observation returns important information about the cart and pole model 5.4.

20

Autonomous Driving (Computer Vision + A.I.)

Figure 5.4: Cart pole gymnasium environment observation

It is important to notice that the code’s flow 5.1 is similar to what is represented in 5.7. The difference

is that in example 5.1 the agent takes random actions despite the reward and state returned. The objective

of RL algorithms is to use states to gain experience and learn how to better execute the task to maximize

the reward obtained.

All information about the environment can be found on the gymnasium documentation page (Farama-

Foundation, 2022).

5.2.2 Grid World

Grid World is an environment in which the agent starts at a position, and the objective is to move

up, down, left, or right to achieve the end state. There are two positions where the agent reaches the

end. There is one position where it gets a positive reward of 1, and in the other, it gets a negative reward

of -1. There is also a position with a wall meaning that the agent cannot move to that position. In this

example the agent starts at position (2,0), the wall is in position (1,1), the positive reward is at (0,3) and

the negative reward is at (1,3).

Figure 5.5: Grid World

21

Autonomous Driving (Computer Vision + A.I.)

For explaining purposes, two different variations of grid world will be used: Deterministic grid world and

probabilistic grid world. Deterministic grid world does not have probabilities associated with the agent’s

state transitions. Considering that the agent is at state s and it executes action a the next state s′ will

always be the same. In probabilistic grid world, there are probabilities associated with state transitions.

Considering that the agent is at state s and it executes action a there is a probability associated with what

the next state s′ is going to be. For the sake of simplicity, the only probabilistic state transition used in

probabilistic grid world is the state transition shown in the cross-referenced table 5.1 and all the other

state transitions are 100%.

State Action
Next

State

Probabil-

ity

(1, 2) UP (0, 2) 50%

(1, 2) UP (1, 3) 50%

Table 5.1: Probabilistic Grid World State Transition

5.2.3 Basic Concepts

The basic concepts subsection explains how a basic RL algorithm is implemented. The objective is to

expose how all the basic concepts of RL algorithms merge with the Bellman equation to solve the control

and evaluation problem in grid world. The Bellman equation is not used in the algorithm implemented in

this dissertation, and grid world is an environment used only for explaining purposes, but it is important

to understand this approach to understand the more advanced algorithms and how they work in more

complex environments.

a) Environment Agent Feature extraction

The agent is the algorithm’s part that makes decisions, receives data from the environment, and

learns. The environment is everything outside the agent, and it could be anything, from a video game, a

simulation, the real world, etc. The environment interpretation is carried out by feature extraction methods

which are designed by the developer and the objective is to translate the environment to features the agent

can recognize.

22

Autonomous Driving (Computer Vision + A.I.)

b) States Rewards Actions

The state consists of feature(s) that describe the agent relative to the environment, and a well-designed

state stores feature(s) that are useful for the agent to complete the desired task. The feature(s) can be

any datatype, a single value, a tuple of values, an array of values, etc. The state is represented with s and

the next state is represented with s′. In grid world the only important feature is the agent’s position in the

environment (grid) so the state will be state = (agent_position) Ex: state = (1,0). In cart pole there are

more important features to be recognized: the cart position, cart velocity, the pole’s angle, and the pole

angular velocity. The agent state in the cart pole environment is a tuple of the mentioned features state =

(cart_position, cart_velocity, pole_angle, pole_angular_velocity) state = (1.5, -2.3, 0.1, 2.1)

The reward is a value the agent receives when it reaches some state, and it should reward the agent

for reaching the desired state and punish it for reaching an undesired state. Rewarding the agent means

returning a higher reward value, and punishing the agent means returning a negative reward value. So the

reward system should return a high reward for reaching the desired state and a lower reward for reaching

an undesired state. A reward can be negative when reaching an undesired state. In this dissertation for

a more intuitive reward description, a negative reward is referred to as a penalty. Designing a reward

system is not straightforward, the RL agents do not perceive rewards like humans do. In the Alpha go

documentary Frank Lentz said ”AlphaGo says [...] it shouldn’t matter how much you win by, you only need

to win by a single point” (AlphaGo, 2017). The point of this quote is that an RL model does not value big

rewards like humans. When it receives a big reward it does not even understand how the set of actions led

it to that specific state, it understands better small rewards that evaluate its immediate actions. Grid world

is a very simple environment, used for explaining purposes, which is why the positive reward is only given

at the end, but in more complex environments, like the cart pole, the reward is given on every iteration.

In cart pole a positive reward of one is given on every iteration, independently of how long the agent has

managed to hold the pole, and the longer it holds the pole the more rewards it gets. If the reward system

was based on checkpoints, it would not be as effective because the agent would have a greater challenge

understanding how its action leads to that positive reward.

The agent interacts with the environment by choosing an action for each iteration. The action can be

a value or a set of values (an action can set values for multiple actuators). For example, to control a car

the driver has to control both the speed and the steering. To create an agent to drive a car it has to be

able to control the steering and the speed at the same time. So for each iteration, the agent has to choose

an action that consists of two values, the speed, and the steering angle. In the grid world and cart pole

23

Autonomous Driving (Computer Vision + A.I.)

environment, the agent only chooses one action. In the grid world the action can be Up, Down, Left, or

Right in cart pole the action can be +1 (Right) or -1 (Left). In this example the agent can only choose an

action from a limited action space meaning that the agent only has to choose the action with the largest

chance of success. There are other environments where the agent has to choose the action’s value, and

this is the difference between continuous action space and discrete action space.

Figure 5.6: Reinforcement learning high level overview

c) Policy

There are multiple definitions for the word policy depending on the context but most of them agree

that it consists of a set of ideas that define the course of actions an individual takes given the present

state of things. A policy in RL is very similar, as it defines the action the agent takes given state s and is

represented by π(a|s). There are many ways of implementing a policy, the most basic is using a table

that matches an action to a state, and this way the agent can output the best action for a given state. In

Grid world the policy chooses the direction to go for a given state. An example of a policy for grid world is:

24

Autonomous Driving (Computer Vision + A.I.)

State Action

(0,0) RIGHT

(0,1) RIGHT

(0,2) RIGHT

(1,0) UP

(1,2) UP

(2,0) UP

(2,1) RIGHT

(2,2) UP

(2,3) LEFT

Table 5.2: Grid world simple policy example

Figure 5.7: RL policy

d) Markov Decision Process

Markov decision process (MDP) (Bellman, 1957) is a concept that defines the basis of RL algorithms.

MDP is dependent on other Markov concepts, like the Markov Property, Markov Process, and Markov

Reward Process. The Markov property says that being at a state st the probability of transitioning to the

state st+1 is independent of the previous states st−1, st−2, (...), st−n. In grid world, the Markov property

works like the following, if the agent follows the policy 5.2 when it reaches s = (0, 0) the action to

execute under the policy is RIGHT, so the probability of transitioning to state s = (0, 1) is independent of

the previous transitions: from (1, 0) to (0, 0), and from (2, 0) to (1, 0).

25

Autonomous Driving (Computer Vision + A.I.)

P [st+1|st] = P [st+1|s1, (...), st]

A Markov process is defined by a state s and a probability P of transitioning to the next state s′.

P [st+1 = s′|st = s]

A Markov reward process is defined by a state, state transition probability, a reward, and the discount

factor. This is motivated by the principle that every goal can be described by a set of smaller rewards.

The Markov decision process is defined by a state, a state transition probability, a reward, the discount

factor, and an action. The action allows the agent to control the states for which it wants to transition, to

receive a reward.

e) Model based vs Model free

When executing an action there is always a probability associated with its outcome. When playing a

game like Tic-tac-toe, chess, or go the player tries to predict the opponent’s movements to plan the best

way of attacking. The other player’s move is not certain, but some moves are more likely to execute than

others. Model-based algorithms calculate the next state probability according to its action. In the context

of a tic-tac-toe game, the agent predicts the other player’s reaction to its action, with this information it

defines the policy.

A model-free algorithm (Swazinna, Udluft, Hein, & Runkler, 2022) calculates the return of each state

through experience. The agent chooses an action a1 for the present state st. The experience acquired

by the agent allows it to make a the next state value approximation st+1. With this value, it can compare

the state value reached when taking a different action a2 for the state st. With this data, it improves its

policy. It differs from the model-based algorithms (Swazinna et al., 2022) because it does not predict the

probability of state transitions, as it chooses the action that leads to the state with the higher value.

f) Episodes Iterations

An iteration is the time step between the agent’s actions. For each iteration, the agent takes an action,

and it receives the next state and a reward. An episode includes all the iterations from the starting state

until reaching a terminal state. An episode is a set of iterations.

This whole process represents an episode in Grid World:

26

Autonomous Driving (Computer Vision + A.I.)

Iteration State Action
Next

State
Reward

1 (2,0) Up (1,0) 0

2 (1,0) Up (0,0) 0

3 (0,0) Right (0,1) 0

4 (0,1) Right (0,2) 0

5 (0,2) Right (0,3) 1

g) Control VS Prediction Problem

The objective of RL is to create a policy that is good at solving a task, this is done by running multiple

episodes trying different policies evaluating each, and comparing to find the optimal policy. The objective

is achieved by solving two problems:

• Control Problem - To find the best policy

• Prediction Problem - To finds the value of each state for the current policy (Modayil, White, & Sutton,

2011)

This is a cycle, where the prediction stage calculates the value of each state and then the control stage

with the values calculated creates a policy and executes it.

h) Return

Return is the sum of all possible future rewards. The formula to calculate the return is:

G(t) =
∑∞

τ=0 γ
τR(t+ τ + 1)

In this formula for a given time step t, G(t) is equal to the sum of Rewards R(t+ τ + 1) multiplied

by the discount factor γ raised to the value of τ . The variable τ represents all the following time steps.

The discount factor, γ, represents the decaying importance of future rewards, i.e. the further away the

reward is from the present time step the lower weight on the return value. To understand how this works

mathematically it is easier to represent it as follows:

G(t) = R(t+ 1) + γR(t+ 2) + γ2R(t+ 3) + ...

If: γ = 0.5

27

Autonomous Driving (Computer Vision + A.I.)

G(t) = R(t+ 1) + 0.5R(t+ 2) + 0.25R(t+ 3) + ...

If: γ = 0.9

G(t) = R(t+ 1) + 0.9R(t+ 2) + 0.81R(t+ 3) + ...

The discount factor is a constant that should be regulated to control how far the future reward should

be taken into account when calculating the return. This constant is a hyperparameter. Hyperparameters

are values that should be regulated by the user to tune the training algorithm (Kiran & Ozyildirim, 2022).

Figure 5.8: Return in Grid World

For example, in an episode the agent at a time step t is at state s = (2, 0), it will follow the trajectory

represented by the blue arrows in the cross-referenced figure 5.8 and the discount value is equal to 0.9

γ = .9 then the return at time step t is calculated as follows:

G(t) = R(t+ 1) + 0.9R(t+ 2) + 0.81R(t+ 3) + 0.729R(t+ 4) + 0.6561R(t+ 5)

R(t+ 1) = R(t+ 2) = R(t+ 3) = R(t+ 4) = 0

R(t+ 5) = 1

G(t) = 0.6561

i) Value Function and Bellman equation

The return usually is not directly applied in an RL algorithm and this is because the return associates

a set of events (time steps) to be calculated. Instead of using the return to evaluate the potential of a given

position, the algorithms use the value function. The value function associates a value given a state. One

way to calculate the value of a state is by using the Bellman equation:

Vk+1(s) =
∑

a π(a|s)
∑

s′
∑

r p(s
′, r|s, a)[r + γ ∗ Vk(s

′)]

∆ = maxs|vk+1(s)− vk(s)|

28

Autonomous Driving (Computer Vision + A.I.)

Solving the prediction problem is finding a way of evaluating the potential of each environment state.

The value function’s objective is to solve the prediction problem, it evaluates the potential of each state so

the control process can find a way of navigating to the states with higher potential. The Bellman equation

is a way to calculate the value function. It is important to understand that the value function is a concept

that can be approached using different techniques. The described example represents a way of estimating

the value function but there are other methods.

The Bellman equation consists of an iterative process, which estimates the value of each state by

calculating a new value at each iteration until the new value gets very close to the previous value. It is

a process that repeats itself until it satisfies a condition that determines if the current estimator is close

to the estimator calculated in the previous iteration. When the new value is very close to the previous

value it means that the present estimation is good and does not need more improvement. The iteration is

represented in the equation by k and Vk+1(s) represents the new present state s value estimation. Vk(s
′)

represents the present next state value estimation. γ is the discount factor and r is the reward received in

the present iteration. p(s′, r|s, a) is the probability of going to the next state s′ and receive the reward r

knowing that the present state is s and the action chosen by the agent is a. This component represents

the environment’s model. This means the algorithm creates a state transition estimator because when

the agent is at a state s and executes the action a usually it is not 100% certain what the next state is

going to be. For example, when a football player kicks the ball it is not totally certain that it is going to

be a goal, but there is a probability to be a goal and a probability of not being a goal even when shooting

from the same position. This concept works for RL algorithms too, when the agent is at a state s and

executes the action a usually there is a probability associated with what is going to be the next state s′ and

the received reward r. Not all RL algorithms use this concept of creating an environment model and this

distinguishes a model-free algorithm from a model-based algorithm. π(a|s) represents the probability of

the policy choosing action a given that the current state is s.

Trying to understand the Bellman equation with mathematics may be a bit abstract so the following

pseudocode shows the Bellman equation implementation to evaluate a policy in grid world.

29

Autonomous Driving (Computer Vision + A.I.)

Algorithm 1 An algorithm with caption

1: while True do

2: MaxV ariation← 0

3: for s in AllStates do

4: if s not Terminal then

5: Vold = V [s]

6: Vnew = 0

7: for a in AllActions do

8: for s′ in AllStates do

9: if a == π(a|s) then

10: PolicieV alue← 1

11: else

12: PolicieV alue← 0

13: end if

14: r ← Rewards(s′)

15: Vnew ← Vnew+PolicieV alue∗TransitionProb(s, a, s1)∗(r+γ∗V [s′])

16: end for

17: end for

18: V [s]← Vnew

19: ∆ = |Vnew − Vold|

20: MaxV ariation← max(MaxV ariation,∆)

21: end if

22: end for

23: if threshold > MaxV ariation then

24: Break

25: end if

26: end while

30

Autonomous Driving (Computer Vision + A.I.)

The objective of this function is to evaluate the environmental states. The value of each state in the

Bellman equation is dependent on the policy, which in this example is the cross-referenced 5.2.

Transition Prob is the environment model, which in this example is defined by the user since this

environment is made for learning purposes. The version used is Probabilistic grid world, so all state

transitions are 100% certain except for the state transition referenced in the table 5.1. For this algorithm

to work Transition Prob has to return zero in case the state transition is not referenced in the model.

The variable Max variation is used to register the biggest change in the state value for each evaluation

iteration. When the MaxIteration variable value is greater than the threshold, the evaluation process

finishes.

This algorithm loops through all the states to evaluate each (line 2), and verifies if the current state

s is terminal in which case it will be skipped because terminal states do not get a value. If the state is

not terminal the algorithm evaluates the current state s, starting by storing the previously stored current

state value V [s] and creating a variable Vnew with value zero (lines 5 and 6). The variable Vnew stores

the new current state value s. For the current state, the algorithms loop through all the possible actions,

and for each action, it loops through all possible states s′ (lines 7 and 8). The agent can not just jump

from start to finish in grid world so some state transitions are not possible, these state transitions have

zero transition probabilities so these impossible state transitions will not have an impact on value calculus.

Inside the cycles, the algorithm starts by defining the PolicyValue variable value which is equal to zero if

the action a is equal to the action the policy chooses for the current state s if not the value is zero. This is

because the policy is deterministic, not probabilistic. The algorithm gets the rewards for the next state s′

(line 14) and calculates the current state s new value Vnew (line 15). The value Vnew sums the previous

value of Vnew because the state’s value is the sum of all possible future rewards and this is the reason

for having four cycles, one to repeat the process until MaxVariation is lower than the threshold, one to

loop through all the state to calculate the respective value, one to iterate through all the possible action

the agent takes at that state and one for all possible next states. The algorithm calculates the difference

between the previously calculated state value and the newly calculated state value, the highest difference

is stored (lines 18 to 20). The final step is to compare the highest difference when calculating the new

value of each state and if it is under the threshold the policy evaluation process finishes.

j) Control Problem and Bellman Equation

The control system objective is to find the optimal policy. The control algorithm uses the value calcu-

lated for each state in the evaluation process and creates a policy that transitions to the states with higher

31

Autonomous Driving (Computer Vision + A.I.)

immediate and future value.

Algorithm 2 An algorithm with caption

1: PolicyStable← True

2: for s in AllStates do

3: BestAction← None

4: BestV alue← −inf

5: if s not Terminal then

6: aold ← π(a|s)

7: for a in AllActions do

8: V alue← 0

9: for s′ in AllStates do

10: r ← Reward(s′)

11: V alue← value+ TransitionProb(s, a, s1) ∗ (r + γ ∗ V [s′])

12: end for

13: if V alue > BestV alue then

14: BestV alue← V alue

15: BestAction = a

16: end if

17: end for

18: π(a|s)← BestAction

19: if BestAction != aold then

20: PolicyStateble← False

21: end if

22: end if

23: end for

The variable PolicyStable is initiated, and at the end of this process if this flag is still True it means

that the policy remains unchanged and this means that the policy is already optimal. The algorithm loops

through all the states in the environment (line 2). Inside the cycle initiates the variablesBestAction and

BestV alue, because inside this cycle the algorithm is going to find the best value action and is going to

use these variables to register the greatest value and to which action this value is associated. It checks

if the present state is not terminal (line 5) and then stores the action that previously was associated with

the present state s in the variable aold (line 6). The algorithm loops through all possible actions (line 7)

32

Autonomous Driving (Computer Vision + A.I.)

and initiates the variable value (line 8) that is going to store the total value of each transition done when

the agent is at state s and executes one of the actions a. The algorithm loops through all the states to

test all the possible next states s′ when executing the action a in state s. Inside this cycle it calculates

the value of each possible next state s′ starting by retrieving the reward r for the next state s′ (line 10).

The algorithm then calculates the value for each next possible states s′ and this uses the value calculated

during the evaluation process V [s′]. After evaluating all the possible states the algorithm compares the

previous best value BestV alue with the value calculated now V alue, if the value calculated now is

greater it stores the action and the action value in the respective variablesBestAction andBestV alue

(lines 13 to 15). The algorithm stores the BestAction in the policy π(a|s). If the present best action

is different from the one stored previously it sets the policy as unstable (lines 19 and 20). The process of

evaluation and control improvement should be repeated until the policy is stable.

5.2.4 Advanced concepts

The Bellman equation is the basis of RL algorithms but the most powerful algorithms do not use it.

The more advanced algorithms, called Deep Learning, use neural networks to create a policy. Neural

networks are basically ”giant mathematical models” (Lee & Chen, 2021) that are inspired by the human

brain.

Neural networks have achieved impressive results mainly in the field of computer vision. The most

common example of neural networks is the algorithm that distinguishes cats and dogs. In some cases,

this type of algorithm has been able to reach error rates much lower than solutions based on classic linear

algorithms.

a) Neural Networks

The basis of neural networks is the neurons. A neuron has an input and an output. The input consists

of a set of values (X1*W1, X2*W2, X3*W3). The set of values is then processed in two different operations

(Sum, Activation). The first operation (Sum) is very simple, where all the values in the input plus the

bias (B) are summed (X1*W1, X2*W2, X3*W3 + B). The first operation product is passed to the second

operation (activation). This step consists of associating the previous operation product with the activation

function. It is a simple mathematical operation that associates the input (Xsum) to an output (f(Xsum)),

using a function (f). The function (f) can have many shapes, depending on the activation function chosen.

The activation function chosen in this example is ReLU (Agarap, 2018).

33

Autonomous Driving (Computer Vision + A.I.)

Figure 5.9: Neuron

Figure 5.10: Neural Network

A neural network consists of a set of neurons connected in a structured way. In a neural network,

there is always an input layer, an output layer, and a variable number of hidden layers. The number of

neurons in each hidden layer and the number of hidden layers are defined by the user and should be

tuned to obtain the best result possible. A layer consists of a set of neurons. Each neuron of a layer

has an input for the output of each neuron (X1, X2, X3) of the previous layer and an output for each

neuron of the next layer, this connection between any two neurons has a respective weight (W1, W2, W3).

The neuron receives the values from the previous layers multiplied by the respective connection weight

(X1*W1, X2*W2, X3*W3). The neuron represented in the 5.9 figure is a representation of any neuron in

the neuronal network’s second hidden layer 5.10. The neuron N5 receives the values from N1(X1), N2(X2)

and N3(X3) neurons. The values received are multiplied by the weight connection and the resulting value

34

Autonomous Driving (Computer Vision + A.I.)

will be the input for the neuron’s operations (Sum, Activation). The weights that connect the neurons and

the biases of each neuron are tuned during the training process to create a neural network that works for

the target task.

b) Weights and Biases

It is important to remember that the weights that connect all the neurons together and the bias of

each neuron are the variables that are changed to tune the neural network.

W =



W0

W1

W2

(...)

Wn


B =



B0

B1

B2

(...)

Bn


The weights and biases are usually referred to as the neural network’s parameters and are represented

through the θ symbol.

c) Loss Function

The loss function, also known as the cost function, is a way of calculating how badly the neural network

performed for a given state. The greater the loss value is, the worse it performed at a given time step. It

can be represented with J , L, or C. A simple and widely used loss function formula is the quadratic loss

function:

L = (y − ŷ)2

In this formula, y represents the neural network’s output, and ŷ is the value the neural network should

have outputted.

y ŷ L

1.1 1 0.01

2 1 1

0 1 1

3 1 4

35

Autonomous Driving (Computer Vision + A.I.)

d) Gradient

The policy gradient methods were proposed as an alternative to the algorithms that try to approximate

the value function. These algorithms create a policy using the value function estimator created, but these

algorithms have many limitations. This is why the paper ”Policy Gradient Methods for Reinforcement

Learning with Function Approximation” (Sutton, McAllester, Singh, & Mansour, 1999) proposed the policy

gradient methods.

The gradient of a function f is ∇f and it calculates the function’s f steepest ascent direction. Cal-

culating the gradient of a function is just calculating the respective partial derivatives. The symbol θ

represents a function variable/parameter.

∇f =



∂f
∂θ0

∂f
∂θ1

∂f
∂θ2

(...)

∂f
∂θN


In a two-dimensional space (x,y), the function gradient f(x) = x2 is just a derivative ∇f = 2x

because this function only has one partial derivative. If the gradient is measured at x = 2 the gradient is

∇f = 4. The information that is taken from this operation is that for the function f(x) at the point x = 2

the direction with the steepest increase is increment x with a slope of four. In reinforcement learning the

gradient is usually used to minimize the loss function, so instead of maximizing the gradient, the objective

is to minimize it, this is why RL uses a negative gradient (−∇). So for the function f(x) = x2 the gradient

in x = 2 is −∇f = −4 indicating the direction of descent.

Figure 5.11: Quadratic Function Gradient

It is important to bear in mind that this is an overly simplified example of applying the gradient.

36

Autonomous Driving (Computer Vision + A.I.)

In a machine-learning context, the function to which the gradient is applied is more complex and has

an unknown shape, therefore the direction of ascent is not as clear as a quadratic function in a two-

dimensional space. What is done in machine learning is to take small steps in the gradient’s direction

until the local minimum is found, this is called gradient descent.

x′ = x− α∇f

In this formula, α represents the learning rate. The learning rate defines the step size in the gradient

direction. Through the course of multiple iterations, this formula can find the local minimum of a function

f(x)

Figure 5.12: Gradient of f(x)

Defining the right learning rate is important because defining a learning rate that is too small leads

to RL algorithms that take too long to converge to the local minimum and defining a learning rate too big

leads to RL algorithms that can not converge to the local minimum.

Figure 5.13: Learning rate tuning

The example shown works in a two-dimensional space but the gradient works with functions with N

dimension, with N being any natural number. To better understand how this works in a space with more

than two dimensions the following example shows how the gradient works in a three-dimensional space.

37

Autonomous Driving (Computer Vision + A.I.)

A quadratic function f(x, y) = x2 + y2 has the shape shown in the cross-referenced figure 5.14. If

the variables x = 1, y = 1 the value of f(1, 1) = 2 . The objective is to minimize the function f value

so the first step is to calculate the gradient:

∇f =

∂f
∂x

∂f
∂y

 =

2x
2y


The gradient descent algorithm is applied. In this example, the learning rate used is α = 0.1

x′ =

1
1

− 0.1 ∗

2 ∗ 1
2 ∗ 1

 =

0.8
0.8


So to minimize the function f value the variables should have the following values x = 0.8, y = 0.8

which is equal to the value f(0.8, 0, 8) = 1.28, this is a lower value than the one at the previous point

f(1, 1) = 2. This operation can be visualized in the figure 5.14

Figure 5.14: Quadratic 3D function gradient

So far this subsection has explained the mathematical process of applying gradient descent but its

utility in RL may not be clear. An example follows to better understand how the gradient connects to the

previously explained concepts.

If an agent implements it’s policy using a neural network, tuning the policy consists of adjusting

the neural network’s parameters θ (weights, W , and biases B). Using the loss function the algorithm

38

Autonomous Driving (Computer Vision + A.I.)

evaluates how bad the policy is. So the objective is to tune the neural network’s parameters θ to minimize

the loss function L. What this subsection explains is that the gradient is capable of finding the minimum

of a function by tuning some parameters. So the gradient is capable of adjusting the neural network’s

parameters θ to minimize the loss function.

θ′ = θ − α∇θL

This formula represents the algorithm gradient descent applied to the loss function and the neural

network’s parameters. The gradient descent can be represented more clearly as follows:

∇θL =



∂L
∂θ0

∂L
∂θ1

∂L
∂θ2

(...)

∂L
∂θN


θ =



θ0

θ1

θ2

(...)

θN


The symbol θ represents the weights (W) and biases (B) so this is the same as follows:

b′0

b′1

b′2

(...)

b′Nb


=



b0

b1

b2

(...)

bNb


− α



∂L
∂b0

∂L
∂b1

∂L
∂b2

(...)

∂L
∂bNb




w′
0

w′
1

w′
2

(...)

w′
Nw


=



w0

w1

w2

(...)

wNw


− α



∂L
∂w0

∂L
∂w1

∂L
∂w2

(...)

∂L
∂wNw



39

Autonomous Driving (Computer Vision + A.I.)

e) Backpropagation

The gradient is given by a matrix of partial derivatives and a neural network consists of a set of

neurons, it may seem strange how these two concepts connect. Applying a gradient to the neural network

parameters is done through a process called backpropagation (Rumelhart, Hinton, & Williams, 1986).

Calculating the gradient in a time-step is calculating all the partial derivatives in its matrix ∂L
∂w

.

Figure 5.15: Two layers neural network

To understand how this derivative is applied to a neural network the cross-referenced figure 5.15

represents a neural network with only two neurons, the output a(L), and the input a(L−1), with a connection

between them with a weight value of w(L). Supposing that there is a desired output of y now it is possible

to create a loss function that compares the neural network’s last layer with the desired output. In this

example, the loss function will be a mean squared error L = E[(a(L) − y)2].

The output neuron input is given by the previous layer neurons output, a(L−1), multiplied by the

connection’s weight, w(L), and summed the respective neuron’s bias, b(L), so the neuron output, in this

case, is given by: z(L) = w(L)a(L−1) + b(L). The output layer value is given by: a(L) = σ(z(L)).

Applying the chain rule it is possible to write the following:

∂L0

∂w(L)
=

∂z(L)

∂w(L)

∂a(L)

∂z(L)
∂L0

∂a(L)
(5.1)

Calculating each partial derivatives:

∂L0

∂a(L)
= 2(a(L) − y)

∂a(L)

∂z(L)
= σ′(z(L))

∂z(L)

∂w(L)
= a(L−1) (5.2)

With this data, it is now possible to calculate the ∂L0

∂a(L) , which corresponds to the loss in iteration zero.

The loss average is calculated across multiple iterations through the following formula:

∂L

∂w(L)
=

1

n

n−1∑
k=0

∂Lk

∂wL

40

Autonomous Driving (Computer Vision + A.I.)

This same process has to be executed for the biases of the neural network.

∂L0

∂b(L)
=

∂z(L)

∂b(L)
∂a(L)

∂z(L)
∂L0

∂a(L)
(5.3)

∂z(L)

∂b(L)
= 1 (5.4)

This process is easily escalated to any type of neural network. If the neural network has one more

layer the chain rule is a little different but the logic is the same. The cross-referenced figure shows a neural

network of three layers. Calculating the weight’s gradient wL−1 at iteration zero is to calculate ∂L0

∂wL−1

Figure 5.16: Three layers neural network

To easily find out the formula to update any neural network parameter using the chain rule it becomes

more intuitive to use the scheme in the cross-referenced figure 5.17.

Figure 5.17: Chain rule from scheme to formula

After understanding how to calculate the gradient using backpropagation to update neural networks

with N layers the next step is to understand how to update a neural network with N neurons in each layer.

To illustrate the difference this example uses the neural network shown in cross-referenced figure 5.18. To

identify the connection’s weights, w, this example uses indexes that identify from which neuron to which

neuron the connection corresponds.

41

Autonomous Driving (Computer Vision + A.I.)

Figure 5.18: Neural network example

To calculate the gradient the only change to do is to z. The value of z
(L)
0 , for example, is calculated

using the following equation.

z
(L)
0 = a

(L−1)
0 wL

00 + a
(L−1)
1 wL

10 + a
(L−1)
2 wL

20 (5.5)

f) Actor-Critic Algorithms

The limitation of some deep RL algorithms is that the actions have to be discreet, this means that

there is a limited set of actions from which the agent can choose. The cart-pole environment has a discrete

action space approach, the cart can only go right or left, and there is no variation in speed. A continuous

action space approach would be choosing the cart’s speed in either direction.

Actor-critic algorithms (Barto, Sutton, & Anderson, 1983) allow continuous action space using two

neural networks, the critic and the actor. The actor is responsible for choosing an action. The critic is

responsible for creating a model for the value function. The actor receives a state and outputs an action,

and the critic receives a state and outputs the value for that state. The critic neural network is trained to

get better value function predictions. The actor is trained to get a better policy.

g) Advantage function and GAE

The advantage function calculates the difference between the predicted return of a state and the actual

return of a state when executing an action a at the state s.

A(s, a) = Q(s, a)− V (s) (5.6)

42

Autonomous Driving (Computer Vision + A.I.)

Function V (s) represents the expected state s return. Function Q(s, a) represents the expected

return of state s when executing action a. Essentially for a state s the advantage calculates the differ-

ence between the predicted expected return value (V (s)) and the value the expected return obtained by

executing the action a (Q(s, a)). With this information the formula can be more clearly interpreted:

A(s, a) = Eτ [G(τ)|s0 = s, a0 = a]− V̂ (s) (5.7)

The value represents a value function estimator which is why it gets a hat (V̂ (s)). In an actor-critic

algorithm V̂ (s) is obtained by inputting the state s to the critic neural network, and the output is the value

of that state V̂ (s).

The return of a state is the present reward summed with all the discounted future rewards. The

discounted future consists of calculating the next state s1 value so it can be calculated using the value

estimator V̂ (s1). The expected return is calculated by summing the reward obtained in the state s to the

predicted next state value V (s1).

Eτ [G(τ)|s0 = s, a0 = a] = r0 + γV (s1) (5.8)

Â(s, a) = r0 + γV̂ (s1)− V̂ (s) (5.9)

This formula induces bias to the advantage estimator because it is too dependent on the value esti-

mator. A way of reducing this dependency on the estimator would be to extend the temporal difference

by getting the following equation:

Â(n)(s, a) = r0 + γr1 + (...) + γn−1rn−1 + γnV (sn)− V (s0) (5.10)

In this formula, if n is increased it gets less dependent on the estimator meaning less bias, but

because this formula has more variables it has a higher variance if n is decreased it gets less variance

but gets more dependent on the estimator meaning higher bias. So n is responsible for controlling the

bias/variance trade-off.

The paper ”High-Dimensional Continuous Control Using Generalized Advantage Estimation” in section

3 aims to produce ”an accurate estimate of the discounted advantage estimation function” (Schulman,

Moritz, Levine, Jordan, & Abbeel, 2015), to achieve this goal the paper proposes the general advantage

43

Autonomous Driving (Computer Vision + A.I.)

estimation (GAE). The GAE controls the bias/variance trade-off by calculating the exponential average

for all n values. For a thorough comprehension of the GAE concepts, the mentioned paper should be

analyzed. This dissertation will not develop the final formula deduction and why this formula controls

the bias/variance trade-off. This dissertation understands that the following formulas, proposed in the

mentioned paper, calculate a good advantage function estimation.

Â
GAE(γ,λ)
t (s, a) =

∞∑
l=0

(γλ)lδVt+l (5.11)

δt = rt + γV̂ (st+1)− V̂ (st) (5.12)

5.2.5 Proximal Policy Optimization

Proximal policy optimizations (PPO) is an actor-critic, model-free algorithm developed by Open AI.

The algorithm PPO is proposed in the paper ”Proximal Policy Optimization Algorithms” (Schulman et al.,

2017). PPO improves some features proposed in the popular algorithms: policy gradient (PG) and trust

region policy optimization (TRPO) (Schulman, Levine, Moritz, Jordan, & Abbeel, 2015). To understand

PPO’s innovation first it is essential to understand the other algorithms and what it’s problems are.

Policy Gradient methods are based on the following loss function:

LPG(θ) = Et[logπθ(at|st)Ât] (5.13)

The term πθ(at|st) represents the probability of the agent taking each action and the term Ât rep-

resents the advantage estimation. The advantage is a higher positive number if the action taken is better

than predicted and a higher negative number if the action taken is worse than predicted. More intuitively,

this function rewards actions that end up being better than expected and punishes actions that end up

being worse than expected, the higher the action probability the more it gets punished or rewarded. This

concept is used in both TRPO and PPO.

The problem with the policy gradient approach is that the gradient updates are carried out without

some kind of limit on the updates optimism. This is a problem because the advantage (Ât) may have

high values in situations not well justified and having high loss function values means making long jumps

on the gradient updates, which associated with faulty data may lead to destructive policy updates. This

optimism limit is what TRPO aims to improve.

44

Autonomous Driving (Computer Vision + A.I.)

max
θ

Et[
πθ(at|st)
πθold(at|st)

Ât − βKL[πθold(.|st), πθ(.|st)]] (5.14)

In this formula, the term
πθ(at|st)

πθold(at|st)Ât
is the probability of taking an action with the current policy pa-

rameters divided by the probability of taking that same action but with the old policy parameters, multiplied

by the advantage. This term is similar to the policy gradient loss but instead of using log πθ(at|st) it uses
πθ(at|st)

πθold(at|st)
. The second term implements the KL constraint which solves the destructive policy updates

however the KL constraint doesn’t work that well and therefore ”additional modifications are required”

(Schulman et al., 2017).

rt(θ) =
πθ(at|st)
πθold(at|st)

(5.15)

LCLIP (θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (5.16)

LCLIP+S
t = Et[L

CLIP
t (θ) + c2S[πθ](st)] (5.17)

The ratio rt(θ) is used so the equation is easier to understand. LCLIP chooses the lowest term,

rt(θ)Ât or clip(rt(θ), 1− ε, 1 + ε)Ât. The second term clips the ratio, rt(θ). Clipping means setting

a minimum, 1 − ε and a maximum 1 + ε. If rt(θ) is smaller than 1 − ε the term clip returns 1 − ε, if

rt(θ) is bigger than 1 + ε it returns 1 + ε, for rt(θ) between the maximum and the minimum it returns

rt(θ). ε is a constant with a value defined by the user and has a value between 0.1 and 0.3. The PPO

paper also suggests using an entropy bonus ”to ensure sufficient exploration”. In the equation LCLIP+S
t ,

c2 is a constant defined by the user that multiplies to the calculated entropy S.

The graphic 5.19 shows the clipping of LCLIP . This shows the pessimist approach of PPO. It is

pessimist because if the advantage is negative there is no limit. The advantage is negative when the action

value ends up being worse than predicted by the value estimator, on the other hand, if the advantage is

positive it means that the action value ended up being better than predicted by the value estimator. If the

advantage is positive the step in the gradient is limited on the other hand if the advantage is negative the

gradient update is not limited this is why PPO is considered to be a pessimist algorithm (Schulman et al.,

2017).

45

Autonomous Driving (Computer Vision + A.I.)

Figure 5.19: PPO loss function graphic

a) Critic loss function

In an actor-critic algorithm, there are two loss functions, one for the actor and one for the critic. The

critic’s goal is to estimate the state’s value in the environment so the loss function has to indicate how

good or bad the critic estimation is. A commonly used loss function is the mean squared error.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5.18)

The critic loss function measures the predicted value of a state vs the real state value, so the error is

calculated using the following formula.

e = (V (s)− V̂ (s))2 (5.19)

The variable V̂ (s) represents the value estimation done by the critic for the state s and V (s) repre-

sents the real state s value. This formula calculates the critic’s error when estimating the value of a state

s. The real value V (s) is given by summing the advantage A and the predicted value V̂ (s).

V (s) = A(s, a) + V̂ (s) (5.20)

5.2.6 Simulation Software

There are many robotics simulation softwares. In this dissertation three softwares were examined,

Mujoco, CoppeliaSim, and Gazebo, all of them are open-source and each has its main advantages and

46

Autonomous Driving (Computer Vision + A.I.)

disadvantages. A more thorough analysis of each software’s pros and cons can be done but in this

dissertation, only the deciding factors that led to the software’s choice will be described.

Mujoco is a software developed by DeepMind that out of the three options has the most accurate

physics simulation engine. The downside is that it used to be proprietary software and just recently it

became open source (Kocher, 2022), for this reason, there is not much online support and this makes

the development of models and environments much harder. Mujoco was tested for two weeks and after

some time, it was verified that developing a simulation environment would take too much time. Another

deal breaker of Mujoco is its resource cost. Simulations with Mujoco are CPU heavy and AI algorithms

already require a lot of computing power especially with computer vision.

CoppeliaSim is an open-source software created specifically to allow users ”fast prototyping and verifi-

cation” (CoppeliaSim, 2022). This software offers a GUI for intuitive and easy environment development.

The user can develop an environment and a robot model using the GUI toolbar to drop the primitive shape

into the environment and then create joints between the primitive shapes. The primitive shapes and joints

can be configured to fit the user’s needs. The joints can then be controlled through external scripts. The

GUI interface allows development faster which is very appealing. Coppelia comes with a huge downside

when compared with Gazebo which is the dependency on the GUI.

Gazebo is a popular open-source robotics simulator created by Open Robotics, this is positive because

this means having useful resources available online such as tutorials that help understand how to use the

software, having other users that have solved problems similar to the ones faced in this dissertation, and

having modules developed by other users that can be integrated into the simulation environment. Another

huge feature of Gazebo is the fact that a simulation can be executed with GUI off. This allows lighter

execution which is very important because AI algorithms also require a lot of computer power and having

tools that are too heavy will affect the algorithm performance and the simulation software. Gazebo has a

great connection with robotic operating system (ROS) which allows users to develop ROS packages that

describe the environment and then control the environment through ROS topics.

With all the data gathered from each simulation software, it was decided that Gazebo had the best

feature trade-off in the context of this dissertation. The main reasons are that it allowed a lighter environ-

ment by turning off the GUI, its connection with ROS, and also the fact that both Gazebo and ROS are two

popular softwares that have a lot of information online.

5.2.7 ROS

ROS stands for robotic operating system (Tellez, 2022), this open-source framework is popular and the

47

Autonomous Driving (Computer Vision + A.I.)

community has been active in the development of packages since 2010. The most basic ROSmechanisms

are packages, nodes, topics and messages. The packages are executable programs that can create

nodes, the nodes can be subscribed or publish to a topic. When a node is subscribed it means that it

reads messages sent to the topic to which it is subscribed, if the node is a publisher it means that it

sends messages to the topic to which it is a publisher. These mechanisms allow packages to share data,

allowing modular development of a robotic system. The modular robotic system development is especially

useful for the integration of packages developed by other users. For example if in a project a driver for a

sensor is needed and this driver is already developed and shared the user can just download the package

and use the generated nodes/services to retrieve data from the sensor.

In the context of ROS/Gazebo communication, when launching a gazebo package some topics are

created to get messages from the simulation environment, these topics will send messages that store

data such as the position of objects in the environment. To control joints in the simulation the package

creates nodes that send messages to the target topic and this will make the joints behave according to

the message.

48

Autonomous Driving (Computer Vision + A.I.)

6 Simulation Environment Development

To develop the simulation environment the tools selected were Gazebo as the simulation software and

ROS as the middleware tool. The description of the autonomous vehicle, environment, control system and

the intel real sense camera were carried out using ROS packages. Each ROS package has a launch file

that describes what ROS does when launching the respective packages. The description is carried out

using a set of ROS commands expressed in a markup language format. This chapter explains how each

package was developed.

Figure 6.20: Simulation environment

6.1 Description of the vehicle

The package that describes the autonomous vehicle is named autonomous_vehicle_description and

has four folders: launch, meshes, rviz and urdf.

• meshes - Stores all the STL files needed for the model’s visual component

• launch - Stores the launch file

• urdf - Stores URDF (Unified Robotics Description Format) file with autonomous vehicle model de-

scription

• rviz - Stores automatically generated files, that convert the URDF model description into a RVIZ

specific description

The autonomous vehicle description files use XML description. RVIZ (ROS visualization) is a software

used to visualize the model that is described in the URDF file.

49

Autonomous Driving (Computer Vision + A.I.)

6.1.1 Launch File and Package Dependencies

The launch file function inside the autonoumous_vehicle_description package is to run the vehicle

description in RVIZ. Launching the description file in RVIZ is useful because it allows the user to detect any

syntax errors in the description, checks if the description is the intended, and finally tests any movable

joints. To test the file it is more efficient to launch the model in RVIZ instead of Gazebo because it is a

lighter software and is faster to launch.

This file starts by declaring a variable that stores the path to the model description. The variable is used

to declare the path to the model description in the parameter server. Three nodes have to be initialized:

joint_state_publisher, robot_state_publisher, and rviz node. The rviz node requires an argument that sets

the path to which RVIZ stores the configurations. The launch file created in this project can be easily

adapted to launch any URDF file in RVIZ by just changing the robot_description path.

Figure 6.21: Launch file description package

6.1.2 XML and URDF files

A Markup Language consists of a language that uses tags to describe elements in a document. Some

Markup languages have a specific set of tags, for example, HTML offers a set of tags designed for a

more efficient web design workflow. The model description in this dissertation uses URDF which is a

specification of XML (Extensible Markup Language). XML is a markup language that unlike HTML does

not have a predefined set of tags, the tags are specifically designed for a purpose. There is a specific

set of XML tags designed to describe multibody systems which are URDF. URDF is an XML specification

mainly used to describe a robotic model, normally to be used in a simulation.

6.1.3 URDF

XML language uses tags, and the XML specification used to describe the robot model is URDF. In

50

Autonomous Driving (Computer Vision + A.I.)

URDF the two main tags used to describe a robot are links and joints, where links describe objects and

joints glue the objects together. When creating a joint between two links a father and child link have to

be defined creating a hierarchy. The rest of this subsection explains thoroughly how the basic description

and implementation of an URDF model works. One important thing to notice is that all the values that

define sizes are expressed in meters and all the values that express angles are in radians.

A link tag describes a body, the body has three main attributes described through tags: visual, inertial,

and collision. The link’s visual and collision attributes shape are described using the geometry tag inside

of which primitive shapes or meshes are used to specify the respective geometry. The tags used to define

a geometry through primitive shapes are box, cylinder, or sphere. For each primitive shape, different

parameters have to be defined. The box has a size parameter that consists of three values to define

the three vertices size. The cylinder has a radius and length parameter in which the first refers to the

radius and the second to the cylinder’s length. The sphere has only one parameter which is the radius,

this defines the sphere’s radius. For a more detailed geometry description, there is a tag that allows the

user to include mesh files. The mesh files are normally generated in 3D modeling software that allow the

user to create complex shapes and then export them to a file that describes the shape created. There

are multiple extensions used for mesh files but in this project, all the mesh files used are stored in STL

files. The desired mesh file can be used to describe a geometry using the mesh tag. The most important

parameter in this tag is the filename. The filename parameter is a string with the path to the desired

mesh to be used on the respective link property geometry. Using meshes gives a lot more detail to the

robotic model, but when applied to the link’s collision properties it comes at a heavy computational cost.

To avoid excessive CPU usage it is a great idea to simplify as much as possible the collision properties by

using primitive shapes to describe the robot model instead of using meshes because meshes are much

more detailed than primitive shapes and therefore require more CPU power than primitive shapes, slowing

down the process.

To define the visual and collision attributes position the tag used is origin. Inside the origin tag, there

can be set parameters such as XYZ which allows the user to set the link position in space according to

the cartesian coordinates, and RPY which allows the user to set the pitch roll and yaw. Roll pitch and yaw

is a way of setting the orientation in space, where roll sets the angle by rotating around X, pitch sets the

angle by rotating around Y and yaw sets the angle by rotating around Z. It is important to notice that all

the values set the respective link property origin relative to the center of the model which has coordinates

x=0 y=0 z=0 and r=0 p=0 y=0.

The two most important tags to define in the link’s inertial component are mass and inertia. The value

51

Autonomous Driving (Computer Vision + A.I.)

Figure 6.22: Link with visual and collision properties

parameter inside the mass tag sets the link’s mass in kilograms. The inertial tag receives the value to set

the respective link inertia matrix. The inertial matrix values are Ixx, Ixy, Ixz, Iyy, Iyz, and Izz. The values

to be set are easily obtained by using a software such as Meshlab, where any mesh file can be added

to then be processed to get the results expected by the user. By using ”Compute Geometric Measures”

functionality this software gives the user the mesh’s inertial matrix values. If the values are too low, the

simulation might crash because in an iteration if some values get to zero the math may not be physically

possible. To avoid the type of problems described before a factor may be added to get higher values,

”Transform: Scale” allows the user to choose a scaling factor and apply it.

Now that the link and its respective components can be defined using the tags described before, the

next step is to define the model joints using the joint tag, which specifies how the links relate. To create a

joint between two links the user has to set a parent link, a child link, and a type of joint. There are different

types of joints of which revolute, continuous and fixed were the ones used to describe the autonomous

vehicle model. A fixed joint fixes the two links. A continuous joint allows rotational movement between

two links, and as the name suggests is continuous and along a specific axis without upper or lower limits

of rotation. This type of joint is useful to describe movements such as the wheel of a car. A revolute joint

allows rotational movements between two links, along a specific axis and unlike the continuous joint this

52

Autonomous Driving (Computer Vision + A.I.)

Figure 6.23: Setting the inertial properties with a 10x scale factor

has an upper and lower limit of rotation. This type of joint is useful to describe for example the steering

wheel of a car because it rotates the wheel of a car according to a specific axis but with upper and lower

limits of rotation. Origin property is used to set a child link position offset relative to the parent link origin.

Stating the origin inside joint differs from stating the origin inside the link because it sets the whole link

origin and not just a single property, and it also differs because it is relative to the parent link origin and

not relative to the model origin. Inside origin there are two useful parameters that can be set which are

XYZ which receives the cartesian coordinates to offset the child’s position in space and RPY which offsets

the child link angle. There is another useful property to be set which is limit. With this property, the user

can set some limits to the joint, like effort lower limit, upper limit, and velocity depending on the type of

joint used.

6.1.4 XACRO files

The model is described through URDF files. The URDF description is quite limited and for this reason,

ROS offers the XACRO extension. The XACRO extension is a very powerful resource that allows users to

do things such as link multiple files, create macros, set variables, and create mathematical equations.

The mentioned functionalities are very useful when developing the model description because it al-

lows the user the possibility of creating macros to describe a shape that repeats itself in space and the

macro can be used to describe the shape instead of having to rewrite the description again. The mathe-

53

Autonomous Driving (Computer Vision + A.I.)

Figure 6.24: Joint between base and wheel

matical equation functionality and the variables allow the user to automate some processes in the model

description which is very useful too, especially when used with the macro functionality.

The mentioned XACRO functionalities allow users to easily integrate other models already created by

just including the file that describes it and declaring the macro in the XACRO file. This is carried out by

just replacing the URDF file extension with XACRO. The user then can use the XACRO macro created to

include the model.

6.1.5 Model development

When developing the model the first step consists of creating the root link. The root link cannot have

any collision or inertial properties, as it can only have visual properties. In this description the root link does

not have any properties, it is named vehicle and connects to the base_link through a joint. The base_link

describes the autonomous vehicle base, the visual properties include the mesh file used to model the

autonomous vehicle, meaning that it is a detailed representation of what the vehicle looks like in the real

world. The collision properties geometry was described using a primitive shape in this case a box that had

roughly the same size as the vehicle’s base. The box that describes the vehicle’s base collision properties

is a bit smaller than the actual vehicle base, to avoid collision with wheels when turning. The base_link

54

Autonomous Driving (Computer Vision + A.I.)

visual and collision properties are described in the figure 6.22. To describe the inertia matrix inside

the inertial properties an external software, Meshlab was used to calculate the values. The first values

gathered were very close to zero and to avoid crashes in the simulation, as explained before, a factor of 10

was applied and new higher values were gathered and used in the model. Figure 6.23 shows the inertia

matrix values gathered in Meshlab before and after applying the scaling factor. Four links were created to

describe each vehicle wheel. To describe the wheels two XACRO macros were created to avoid repetition

of the same tag structure, as the description of each wheel is equal. The visual properties are defined

using a mesh file that is the real-world wheels representation. The collision properties are described using

a cylinder primitive shape of the same size as the wheels. The cylinder rotates 90 degrees to have the

same position as the wheels. The inertial matrix values inside the inertial properties were gathered using

an external software, Meshlab, and once again a factor of 10 was applied to match the base factor and

to get higher values. The back wheels are connected to the motors and the front wheels are connected to

the axle. The motors representation connected to the wheels is carried out by creating a continuous type

of joint that connects the base to each wheel. The front wheels do not have a motor but are connected to

the axle and so the axle needs to be described. The vehicle axle turns in two different spots, one for each

wheel, and for this reason, two links with box shape were created and attached to the base_link using

fixed joints. The two mentioned links are meant to describe the axle turning points and for this reason,

the links are distanced from the base_link accordingly. A joint was created between the axle points and

wheels, this joint is of type revolute with a limit of 35 degrees for each side allowing the front wheels to

turn like the axle does. Figure 6.25 shows the vehicle visual and collision properties and helps understand

how the wheels turn around the axle.

6.2 Gazebo integration

The autonomous_vehicle_description package stores all the model description files but lacks the launch

file that allows the user to launch the model inside Gazebo and a simulation environment description. The

package described in this section is autonomous_vehicle_gazebo and stores the following folders:

• launch - stores the .launch file

• world - store .world file

55

Autonomous Driving (Computer Vision + A.I.)

Figure 6.25: Vehicle collision and visual properties, with wheels turning left

6.2.1 Launch File and Package Dependencies

The launch file is the most important part of this package since its sole purpose is to include all the

needed files to launch the model inside gazebo. The file starts by setting a few arguments that specify

how the simulation should be launched. The model parameter stores the path to the URDF file with the

model description and is used to open the model description in Gazebo using the URDF spawner which is

a functionality from the package gazebo_ros, therefore this package is a dependency of autonomous_ve-

hicle_description. With a standard set of tags, it is also possible to define many parameters about the

simulation, defined in the arguments set at the beginning of the file, which can also be changed from

the command line when launching the package. An important argument to set is the path to the .world

file that describes the simulation environment. Another important set of arguments that urdf_spawner

receives are the starting model coordinates, X, Y, Z. It is also possible to change other parameters using

the arguments set at the beginning of the file like GUI which sets whether the simulation should launch

the visual interface. Having the visual interface running can use a lot of computational resources, so this

functionality is very useful to train a Machine Learning model because many iterations are needed for the

56

Autonomous Driving (Computer Vision + A.I.)

algorithm to learn, and the mathematical operations required to train the model are complex and require

computational power. For this reason, it is of concern to developers to save as much CPU as possible on

operations that are not important such as the GUI. The launch file ends by including the launch file from

autonomous_vehicle_control package, which is explained in the next section.

Figure 6.26: Launch file gazebo package

57

Autonomous Driving (Computer Vision + A.I.)

6.2.2 Environment Description

To describe the simulation environment there is a .world file that describes it using XML tags. It is a

very simple environment having only the sun and the track plane. The track plane is an object created and

added by the user to the Gazebo models folder. The Gazebo models folder is located in .gazebo>models,

the .gazebo folder is normally stored in the home directory. To create this object a folder was created

with the name track_plane inside which there is a file named model.sdf to describe the track. The object

description is similar to the predefined simulation plane, the difference is that the material is now a

picture. The picture is the scaled track representation processed to show the road lines in white with

black background. To set the material there is a folder with two other folders named, scripts and textures.

The textures folder stores the picture that sets the plane material. Folder scripts store a file that describes

the material.

6.3 Joint Control

This section explains how the “bridge” between the simulation and external scripts are related, and this

is needed to allow the movable joints control from external scripts written in python. Most of the mech-

anisms implemented to control the joints are stored in autonomous_vehicle_control, but the packages

referred to before (autonomous_vehicle_description and autonomous_vehicle_gazebo) lacked some infor-

mation needed for the communication, so some changes were needed. The autonomous_vehicle_control

includes the following folders:

• config - Stores YAML file that sets the joint control type

• launch - Stores the .launch file

• scripts - Stores the python scripts to control the simulation

6.3.1 Launch File and Package Dependencies

The launch file (6.27) first loads the YAML file by indicating it’s path, this file describes the joints

to control. The launch file than creates a node using controller_manager, the node created receives

messages that control the simulation joints.

The first tag in the YAML file (6.30) should be the model namespace. For each joint to be controlled

the user declares a tag with the controller name for each joint, which have to be declared inside the

58

Autonomous Driving (Computer Vision + A.I.)

namespace tag. For each controller at least two parameters have to be declared: the joint which declares

the joint to be controlled, and the type that defines the hardware interface type. For each type of hardware

controller, other parameters may be declared like the PID controller gains.

There is a tag that always needs to be declared which is the state controller in which the user defines

the publish rate. The ros_control package defines the hardware interface. The controller is then loaded

using controller_spawner which is a functionality from the controller_manager package, in this step it is

important to change the arguments (args) to the same as the controllers names defined in the YAML file

and ns to the same names as the namespace set when defining the plugin inside the URDF file (6.28)

model description. The final line makes it possible for the messages to be visualized inside RVIZ, using

the package robot_state_publisher making it a dependency of this package.

As mentioned before controller_manager was used in the launch file 6.27) making it a dependency

for this package. The package ros_control is also a dependency because it defines the hardware interface

for each controller.

Figure 6.27: Launch file control package

6.3.2 Transmissions Plug-ins yaml

After creating a URDF file to describe the model with links and joints the user has to create a “bridge”

between the model joints and ROS. To create this “bridge” firstly some changes have to be applied to

the URDF model description. The first step is to add the gazebo_ros_control plugin that allows the imple-

mentation of custom interfaces between Gazebo and ros_control. Adding the mentioned plugin is easily

carried out by pasting a standard set of tags to the end of the URDF model description file. The user has

to change the robot namespace (robotNamespace, autonomous_vehicle) in the mentioned set of tags,

and this should be the name to use in the YAML file and the launch file when using controller_spawner.

59

Autonomous Driving (Computer Vision + A.I.)

Figure 6.28: ROS control plugin in URDF description file

To describe the relationship between the actuator and the joint the user has to set transmissions, which

are defined by inserting a set of tags with the link to be controlled and the hardware interface selected.

The best way to set transmission is to get the standard set of tags and change some parameters. The

set of tags defines parameters for both the actuator and the joint, where a name has to be defined for

the transmission, the actuator, and the joint. The joint name has to correspond to the joint name to be

controlled. For both the actuator and the joint a hardware interface has to be defined which has to be the

same defined in the YAML file. Finally, the user can define a mechanical reduction inside the actuator

tag. It is important to notice that the hardware interface is carried out using ros_control and offers a few

different types of interfaces.

Figure 6.29: Define transmission in URDF description file

To finish the control “bridge” between simulation and control scripts the user has to create a YAML file

in which all the joints to be controlled are referenced. In this file, the model name should be the same as

the namespace (robotNamespace) mentioned in the URDF model and in the namespace (ns) mentioned

in the launch file when loading the controller spawner. To define each joint control the user has to define

a name, which has to be the same name used in the launch file when loading controller_spawner in args.

60

Autonomous Driving (Computer Vision + A.I.)

For each joint, a type of controller has to be specified and it has to match the hardware interface type

defined in the transmission in the URDF description file. The type of controller used is JointPositionCon-

troller and JointVelocityController, and the respective hardware interface types are position_controllers

and effort_controllers.

Figure 6.30: YAML file

6.3.3 ROS nodes and rospy

After setting all the referenced mechanisms the package is ready to be launched. After launching

the control package a ROS topic is created for each joint actuator defined. When posting a message in

a ROS topic the message is interpreted and the respective joint is updated according to the data given

by the message. In this project, two types of hardware interfaces were used: position_controllers and

velocity_controllers, and these work differently when posting a message to its topic. When posting a

number to a position_controller joint it rotates until it gets an angle equal to the value posted in its topic.

When posting a number to a velocity_controller joint it rotates with a speed equal to the value posted on

its topic.

With the controller package running and it’s topic working the user can use the rospy library to post

any message to a ROS topic, allowing the user to control the simulation using python scripts.

6.4 Camera integration

This section explains how the intel realsense camera model was added to the autonomous vehicle

61

Autonomous Driving (Computer Vision + A.I.)

model and how plugins and ROS packages allowed retrieving data in simulation similar to the camera in

the real world.

To achieve the mentioned goal some changes are required in the URDF model description. The

two packages added that allow the intel realsense camera integration are realsense2_description which

describes the camera model and realsense_gazebo_plugin which allows the user to get data from this

sensor.

6.4.1 Intel realsense packages

Creating a intel realsense camera model and developing the respective plugin to make it work with

Gazebo and ROS are two processes that are out of the scope of this dissertation and for this reason to

achieve the goal of integrating the camera in the model, two packages were included. The process of

adding the camera to the model shows the most powerful feature of ROS which is being able to easily

add and connect different modules/packages to a project. With the mentioned functionality users can

make use of modules already developed by other users allowing developers to contribute to each other’s

projects.

The camera model is stored in the realsense2_description package. This package stores various

URDF descriptions of different camera models, launch files for the visualization of each camera model,

and other essential files needed for the model description. The camera description uses meshes for the

visual properties but with primitive shapes for the collision properties which is good to save computational

resources. The Gazebo plugin files that allows retrieving data from the simulation like a real-world intel

realsense camera are stored in the realsense_gazebo_plugin and for simplicity reasons, these files are

not explained since its development is out of the scope of this dissertation.

6.4.2 Adding Camera Packages to model

To integrate the camera into the model the user must include the realsense_gazebo_plugin and

realsense2_description packages in the catkin workspace. With the packages included the plugin and the

camera model are ready to use. To use the sensor in a model description the user first has to use the

XACRO extension and then include the file with its URDF/XACRO description using the XACRO tag include.

The user sets the path to the URDF/XACRO sensor description and the XACRO macro that includes the

sensor description is now ready to use in the file. To use the sensor macro the user uses the XACRO sensor

tag and then changes the parameters accordingly to its needs. To better understand the tags to use it is a

62

Autonomous Driving (Computer Vision + A.I.)

good idea to analyze the example files test_d[model]_camera.urdf.xacro included by the developer. The

autonomous_vehicle_gazebo package can now be launched and it generates topics in which the frames

captured by the camera are published. The different topics post different types of data retrieved by the

intel realsense camera, for example, the RGB camera and the depth camera are posted in different topics.

63

Autonomous Driving (Computer Vision + A.I.)

7 Control & PPO implementation

After creating the environment the following step is to create low-level code that retrieves data and con-

trols the simulation environment. This code is then used to create more abstract code that implements

the mechanisms of RL algorithms, in this case, PPO. This chapter is divided into two sections the first ”En-

vironment methods implementation” and the second ”PPO methods implementation”. The first chapter

explains classes and the respective methods that implement low-level functionalities, the second explains

the high-level PPO class that uses the low-level functionalities to implement PPO mechanisms.

7.1 Environment methods implementation

The method step includes most of the mechanisms needed for the algorithm to apply the agent choice

in the environment and retrieve the observations needed. This method receives through parameters an

action, which is executed by themodel in the environment and returns the reward and the vehicle state after

the action. A vehicle action consists of a speed applied to the vehicle back wheels and an axle angle to the

vehicle’s front wheels choosing both the direction and the vehicle speed. A state consists of a processed

vehicle camera frame. The reward is a value relative to the vehicle’s displacement to the center of the

lane. The class AutonomousVehicle retrieves all the data needed from the simulation (camera frames

and vehicle position) and sets the back wheels’ speed and axle angle. The class ComputerVision receives

the frames stored in the AutonomousVehicle class and processes them to get the vehicle’s state. The

get_reward_2 method retrieves the vehicle’s position stored in the AutonomousVehicle class and returns

the vehicle reward. The get_reward_2 method also returns the variable done value which indicates if

the agent has reached a terminal state. The Environment class gathers the functionalities from all the

other classes and implements the high-level method step. A thorough explanation of each class and the

methods implementation is carried out in this section.

7.1.1 Simulation drivers

This subsection shows how the simulation drivers are implemented. The drivers are the methods

that transmit data such as wheel speed and axle direction and receive data such as camera frames and

vehicle’s position. This communication is carried out using ROS nodes that receive data (node publisher)

and transmit data (node subscriber) to and from the simulation environment. The implementation is

carried out using python3 and the sending and receiving of data to and from ROS topics are carried out

using the library rospy. The library rospy allows the user to create nodes and then use the nodes to

64

Autonomous Driving (Computer Vision + A.I.)

subscribe and publish to topics. The drivers are implemented inside a class named AutonomousVehicle.

a) Init node topics and variables

The point of the constructor is to initiate a node, subscribe the node to Gazebo topics that send

message with important data, and set the node as publisher in topics that control the environment. Another

important thing is create an object of CvBridge this object is important to process frames received from

the simulation environment to later be used with OpenCV functions.

Figure 7.31: Initiate node subscriber publisher variable

• line 15: Initiate the node

• line 17-21: Set node as publisher in the topics that control the axle angle in the simulation envi-

ronment

• line 23-27: Set node as publisher to topics that control the back-wheels speed

• line 31: Set node as subscriber in topics that publish data about the vehicle’s position

• line 35: Create CvBridge object that turns the received frames into frames that can be processed

using OpenCV functions

65

Autonomous Driving (Computer Vision + A.I.)

• line 40-41: Set node as subscriber to topic that publishes the vehicle’s camera frames

• line 44-47: Init variables

b) Control Actuators

Controlling the wheel’s speed and axle angle consists of publishing the desired wheel speed value

and axle angle value in the respective topics. The library rospy allows the user to publish values to topics

by using the publish function. When initiating the node as publisher the rospy method returns an object

which is used to call the publish function, this function publishes the message to the respective topic. The

parameter the publish function receives is the data to message to the respective topic.

Figure 7.32: Publish to topics that control vehicle’s actuators

• line 52-53: Publish in the respective topic the axle angle value

• line 56-57: Publish in the respective topic the back wheels speed value

66

Autonomous Driving (Computer Vision + A.I.)

c) Retrieve simulation data

When the node is set as a subscriber to a topic it is associated with a callback function. This callback

function is going to be executed every time the topic receives a new message from the publisher node.

The received data is passed through the parameter variable. In this case, two callback functions are used,

one that receives the frames from the vehicle’s camera and one that receives the position of the vehicle

in the environment. Both callbacks store the received data in variables, the difference is that the camera

callback counts the frames received and processes the frames so that the frames can later be processed

using OpenCV functions. The function that retrieves the frames rejects N frames before returning a frame,

this is carried out so that when the algorithm receives the next state gets a state with some variation. If

no frame was rejected the current state and the next state would be very similar.

Figure 7.33: Get position and camera frames from simulation environment

• line 64: Increment variable to count number of frames received

• line 67: Convert frames to OpenCV format

67

Autonomous Driving (Computer Vision + A.I.)

• line 71-73: In case of some error when converting the frame this exception is executed

• line 78: Reset frame counter to start counting number of frames rejected

• line 81-82: Stall until frame counter is equal to the number of frames to reject

• line 85: Return frame after rejecting N

• line 90-91: Store the vehicle position

• line 96: Return vehicle position

7.1.2 Computer vision

The algorithm starts by receiving a raw frame of the vehicle’s camera. The frame is then processed

to get the important environment features and minimize noise. The frame is first cropped in order to

capture only the region of interest, the floor part that shows the road lines. Then the frame is converted

to grayscale. The grayscale passes through a down-scaling process, to save memory/CPU resources and

besides the algorithm does not need much definition to recognize the road lines. The cropped frame

passes through a binary threshold filter. The binary threshold filter receives a threshold value and applies

it to the image, setting to zero the pixels with value lower than the threshold and to one the remaining

pixels. Finally, the frame is flattened, which means it is turned into an array in order to plug it into the RL

algorithm.

Figure 7.34: Computer vision algorithm

68

Autonomous Driving (Computer Vision + A.I.)

a) Init computer vision algorithm

The computer vision algorithm class constructor sets the variables, which are used to calculate the

downscaled frame shape and the region of interest to crop. The value of these variables is defined by the

user. The method get_image_shape calculates and stores the downscaled frame shape to then downscale

the frame during the feature extraction process.

Figure 7.35: Init computer vision algorithm

• line 9: Set the region of interest which is the area that will be cropped

• line 12: Set the frame percentage to downscale, this value is used to calculate the downscaled

frame shape

• line 17: Store the frame shape before downscaling

• line 20-21: Calculate the downscaled frame width and height, this is calculated dividing the original

frame width/height by the percentage of downscaled frame

• line 24: Store the downscaled frame shape

69

Autonomous Driving (Computer Vision + A.I.)

b) Computer vision algorithm

The method crop_frame crops the frame to get only the region of interest. The method flatten_frame

removes the dimension from the frame’s matrix and returns an array with the frame’s pixels values. The

method computer_vision_algorithm implements the whole feature extraction process.

Figure 7.36: Computer vision algorithm

• line 29: Crop the figure accordingly to the variables defined in the constructor

• line 34: This function turns the matrix of values into and array

• line 39: Get the cropped frame

• line 42: Convert the cropped frame into grayscale

• line 45: Downscale the grayscale frame accordingly

• line 48: Apply the threshold to the cropped grayscale downscaled frame. The threshold value is

200. Every pixel with value less than 200 is set to 0 all the other pixels are set to 1.

• line 51: Flatten the frame returned by the threshold filter and return it.

70

Autonomous Driving (Computer Vision + A.I.)

7.1.3 Reward

The class RewardFunction returns the reward of the vehicle and the variable done. The variable done

notifies whether the vehicle has reached a terminal state or not. When the vehicle reaches a terminal state

done is 1 otherwise it is 0. To calculate the reward, the reward system receives the vehicle’s coordinates

in the environment and uses these values to calculate the vehicle’s displacement off the lane center. The

reward returned is inversely proportional to the vehicle’s displacement to the center of the lane.

Calculating the vehicle’s displacement to the center of the lane using the coordinates returned by

the simulation is one of the challenges of this dissertation. First, the track is divided into sections, to

understand how the sections are divided see the background colors of figure 7.37.

Figure 7.37: Track sections and respective ideal trajectories

Using the vehicle’s position coordinates it is possible to understand in which section it is located by

comparing it to the limits of each section. After knowing the section in which the vehicle is the next step is

to use the parametric equation that describes the ideal trajectory of that particular section and calculate

the vehicle’s displacement to the ideal trajectory. The track is mathematically simple to describe using

parametric equations because it consists of circles with different radius and center points and straight

lines. There are two types of equations used, the circle and the straight line. The straight line is a linear

equation and because the straight lines are parallel to the y axis then the straight line equation is just x

equal to a constant. The circle equation is the following in which the variables h and k correspond to the

circle’s center coordinates.

(x− h)2 + (y − k)2 = r2 (7.21)

One thing that is important to point out is that these equations are calculated using the autonomous

driving challenge official measurements and coordinates. The only difference is that in simulation the

71

Autonomous Driving (Computer Vision + A.I.)

track’s origin is different, so an offset is added to compensate for this difference. The vehicle’s displace-

ment in a straight line is given by the difference between the vehicle x coordinate value and the equation’s

constant. The vehicle’s displacement in a turn is calculated using the respective parametric equation

values (h,k,r) and the vehicle’s coordinates (x,y) in the following formula:

e =
√

(x− h)2 + (y − k)2 − r (7.22)

With the described system it is possible to calculate the vehicle displacement along the entire track

and get the current track section which is most of the data needed to create the reward system. Another

reward system parameter is the vehicle speed. The speed penalty is used to motivate the algorithm to

navigate the track. If the algorithm did not receive a negative penalty for being still it would never explore

the environment because by being still it would get a better reward than navigating and crashing. The

vehicle’s speed is a value defined by the actor and can be any value between 0 rad/s and 6 rad/s. The

rewards and penalties are the following:

• Reward if the vehicle’s speed is higher than speed threshold, episode continues.

• Penalty if the vehicle’s speed is lower than the speed threshold, episode continues.

• Penalty proportional to the vehicle’s displacement relative to the center of the lane, episode contin-

ues.

• Penalty if the the vehicle’s displacement is higher than the displacement threshold, episode ends.

• Penalty if the vehicle skips a section, episode ends.

72

Autonomous Driving (Computer Vision + A.I.)

a) Init reward class

The RewardFunction class constructor sets the variables. The list track_position_array stores the

name of each track section. The list driving_line_array stores the parameters that describe the ideal

trajectory for each track section. This list stores two data types, one that has three values and a data type

that has only one value. The data types with three values describe a turn, and the data types with only one

value describe a straight line. Both lists are sorted, meaning the values stored with index 0 correspond

to the first track section, the value stored with index 1 corresponds to the second track section, etc. This

is especially useful to check if the vehicle is in the right track section. The variable current_track_section

stores the current track section the vehicle is at. When the vehicle changes section this variable is used

to check whether the vehicle is at the correct track section. The other variables store values relative to the

rewards.

Figure 7.38: Reward function init

• line 8-9: Set list that stores the name of each section

• line 12-13: Set list that stores the ideal trajectory parameters in each track section

• line 16: Set variable that stores the track section the vehicle is at. Variable used to confirm if the

vehicle didn’t jump track sections

• line 19-25: Set variables that store the agent reward

73

Autonomous Driving (Computer Vision + A.I.)

b) Get vehicle’s current track section

The method vehicle_track_position identifies the vehicle’s current track section. This method receives

the vehicle’s coordinates relative to the environment’s origin and returns the matching track section. This

method is a switch case operation that eliminates possible track positions until it finds out the correct

current track section. The value returned by this method corresponds to the index of driving_line_array

that stores the ideal trajectory parameters for the respective track section.

Figure 7.39: Vehicle track section limits

74

Autonomous Driving (Computer Vision + A.I.)

c) Get vehicle’s lane displacement

To calculate the vehicle’s displacement to the center of the lane first the algorithm gets the vehicle’s

current track section to get the parameters that define the ideal trajectory. The method vehicle_track_po-

sition receives the vehicle’s coordinates and returns a number, which is the driving_line_array list index

that stores the ideal trajectory parameters for the current track section. The list returns one value when the

ideal trajectory is a straight line and returns three values when the ideal trajectory is a turn. To distinguish

a straight line from a turn there is a condition that compares the number of parameters returned by the list

driving_line_array. To calculate the vehicle’s displacement to the center of the lane there are two meth-

ods, one that calculates the displacement in a straight line driving_line_error_straight and a method that

calculates the displacement in a turn driving_line_error_turn. The condition checks if the ideal trajectory

is a straight line or a turn by analyzing the number of parameters returned and calculates the vehicle’s

displacement to the ideal trajectory.

The straight lines in this track are parallel to the y axis so to calculate the displacement to a straight

line is just calculating the difference between the straight line parameter and the x vehicle coordinate. Cal-

culate the vehicle’s displacement in a turn is just applying the formula e =
√

(x− h)2 + (y − k)2 − r.

• Line 34-40: Store the vehicle’s coordinates (x and y) and the ideal turn parameters (h,k and r) in

individual variables for a clearer code.

• line 43: Calculate and return the vehicle’s displacement to the turn using the formula e =√
(x− h)2 + (y − k)2 − r

• line 48-51: Store the x vehicle’s coordinate and the ideal straight line parameter in individual

variables for a clearer code.

• line 54: Return the difference between the straight line parameter and the x vehicle coordinate,

this values is the vehicle’s displacement to ideal trajectory.

• line 59: Identify the current track section. This method receives the current vehicle coordinates

and returns a value that corresponds to the driving_line_array list index that stores the parameters

that describe the ideal trajectory for the current track section.

• line 62: Use the value returned from vehicle_track_position to get the ideal trajectory parameter(s)

from the the list driving_line_array

75

Autonomous Driving (Computer Vision + A.I.)

• line 65-73: If the list driving_line_array returns more than one parameter it means that the current

ideal trajectory is a turn and if it returns only one parameter it means the ideal trajectory is a straight

line. The respective method is used to calculate the vehicle’s displacement to the ideal trajectory.

Figure 7.40: Calculate displacement

76

Autonomous Driving (Computer Vision + A.I.)

d) Get vehicle’s reward

The algorithm calculates the displacement of the vehicle and gets the current track section, and with

this the algorithm checks whether it is the same track section as before, if the track section is not the

same as before the algorithm checks if the new section is correct. The correct track section order is in

the list driving_line_array, so checking if the new track section is correct consists of comparing the new

track section to the previous track section succeeding index. When the vehicle completes a lap the new

track section is set to 0.

When the vehicle changes section and the new section is not correct one, a penalty of -10 is returned

and done is returned with a value of 1 making the episode end. If the new section is correct the episode

continues. If the vehicle’s displacement to the ideal trajectory is higher than the threshold a penalty of -10

is returned and done is returned with a value of 1 making the episode end. If the vehicle’s displacement is

lower than the threshold value the episode continues and the vehicle’s displacement is used to calculate

the reward returned. If the vehicle speed is higher than the speed threshold a positive reward of 1 is stored

if not a penalty of -1 is stored. In the end, a reward is calculated by summing the displacement penalty

that multiplies with a constant of value -1 and the reward/penalty relative to the vehicle’s speed.

• line 186: The method receives the vehicle’s coordinates in the environment and returns the vehi-

cle’s displacement to the ideal trajectory and the track section.

• line 189: Check if the new track section is the same as the previously stored track section. If the

section is the same the process jumps to line 210.

• line 192-194: Check if the new section is correct, the sections have a specific order. This order

corresponds to the order in the list driving_line_array. To check if the vehicle is correctly driving

around the track is just checking if the new section is after the current section. Store the new track

section as the current track section.

• line 198-201: Check if the new section is correct. If the vehicle completes a full lap around the

track the new section vehicle has to be the first section. Store the new track section as the current

track section.

• line 204-207: If the new vehicle didn’t complete a lap around the track and the new section is not

the next in order it means that the vehicle didn’t navigate around the track as it is supposed. What

happens is this method returns a penalty of -10 and returns done as 1, this makes the episode

stop.

77

Autonomous Driving (Computer Vision + A.I.)

• line 210-213: If the vehicle has a higher displacement than the defined threshold this method

returns a penalty of -10 and returns done as 1 this makes the episode stop.

• line 219-228: If the vehicle’s speed is lower than the defined speed threshold a penalty is set in

the speed_val variable, if the vehicle’s speed is higher than defined threshold a reward is set in the

speed_val variable. The variable speed_val is used to calculate the reward returned.

• line 231: Calculate the reward, the reward is given by summing the speed penalty/reward and the

displacement penalty. The variable done is returned with a value of zero, so the episode continues

Figure 7.41: Calculate reward code

78

Autonomous Driving (Computer Vision + A.I.)

Figure 7.42: Calculate reward flowchart

79

Autonomous Driving (Computer Vision + A.I.)

7.1.4 Environment

The Environment class gathers the simulation drivers, computer vision algorithm, and reward system

in the step method which receives thorough parameters the action to execute. The action is the back

wheels speed and the front wheels angle. The step uses the simulation drivers implemented to execute

the action in the environment. After discarding N frames the algorithm returns a processed frame which

is the state. The step method also gets the vehicle’s coordinates from the simulation drivers and uses the

reward function methods to get the reward and done value.

The Environment class also implements other utility methods. The utility functions return the action/s-

tate space dimensions and store evaluation process videos. The reset method resets the simulation and

then waits for the simulation to reset and return the first state. Since the utility methods are simple or not

essential for the program execution these are not explained.

80

Autonomous Driving (Computer Vision + A.I.)

a) Environment Init

The environment class constructor starts by storing the objects of the ComputerVision, RewardFunc-

tion, and Environment class to call the respective methods. Then the vehicle’s starting position coordinates

are stored in lists. This is carried out because each episode the vehicle starts in one of four different po-

sitions. To define the vehicle’s position a message is sent using ROS service, which has to be of type

ModelState. The variable set_position_msg is a message of type ModelState that stores the vehicle’s

starting position coordinates to be sent through ROS service.

Figure 7.43: Environment class init

• line 19-21: Set objects of class ComputerVision, RewardFunction, and Environment, these objects

allow the class environment to gather methods to implement ”step”

• line 24-38: Set lists that store the vehicle’s starting position coordinates

• line 33-41: Set variables that store the vehicle’s starting coordinate to set the simulation using the

respective ROS service.

81

Autonomous Driving (Computer Vision + A.I.)

b) Step method

The step method receives the actions returned by the agent neural network. The agent neural network

has a last layer normalized with a sigmoid activation function. This means that the neural network’s output

are values between 0 and 1 with a shape of f(x) = 1
1+e−x . The wheels speed values are between 0

rad/s and 6 rad/s and the angle value are between -0.27 rad and 0.27 rad so the actions outputted by

the neural network have to be processed before being applied to the simulation drivers.

Figure 7.44: Action process

After processing the values returned by the neural network the same are clipped to make sure that

the values applied on the actuator are not higher than what they should be. The values are then applied

to the actuator and the algorithm retrieves the state, and reward and done to return it.

• line 141: Retrieve the vehicle’s frame after rejecting N frames

• line 144: Retrieve the vehicle’s coordinates in the environment

• line 147: With the vehicle’s coordinates calculate the reward and get the done value

• line 150: Process the frame retrieved from the environment using the computer vision algorithm

implemented to get the state.

• line 153: Return the state, reward and done variables

82

Autonomous Driving (Computer Vision + A.I.)

• line 158-161: Process the action values outputted by the neural network as described in the figure

7.44

• line 164-167: Clip the speed and angle values to make sure the values are not higher or lower than

the limits

• 170: Apply the angle and speed values on the wheels and axle.

• 173-176: Retrieve and return the state reward and done variables

Figure 7.45: Environment step method

83

Autonomous Driving (Computer Vision + A.I.)

7.2 PPO methods implementation

This section explains the PPO algorithm implementation. There is a class named PPO that implements

the high-level algorithm methods which are learn, train and test. This class stores an object of the class

Policy (actor) and Value (critic), MemoryCollector, and ZFilter. The class Policy and Value are neural

networks implemented using tensorflow2, more specifically Keras, which is included in tensorflow2. The

Policy neural network has a few specific methods. The policy neural network chooses an action, this action

is used to create a normal distribution. After creating the normal distribution a sample is retrieved and

the value is the action executed in the environment. The memory collector class collects samples from

the environment. To do this it uses the step method to execute actions in the environment and retrieve

the state, reward, and done variables. It also uses the methods from the neural networks to retrieve the

actions and the respective predicted values. After completing the memory collection process the general

advantage estimation is calculated and finally, the values can be used to make the gradient update.

84

Autonomous Driving (Computer Vision + A.I.)

7.2.1 Neural networks

An actor-critic algorithm uses two neural networks. An actor (policy) and a critic (value). There are

two ways of creating a neural network using Keras. In this dissertation, the neural networks are created

by subclassing the model class. To create a model using this process the user has to implement two

methods: call and __init__. Inside the __init__ method the user specifies the model shape and other

parameters/variables. In the method call the user specifies the model’s forward pass. In this project, call

does not define the forward pass because the sequential method is being used. The Sequential method

defines the model’s forward pass which simplifies the call method. After creating a sequential model

object, to get the output, the input is passed as an argument to the object and it returns the model’s

output. Defining the input shape is carried out by using the method build. The build method has an

input_shape argument that allows specifying the input layer shape.

The critic neural network objective is to train a model capable of estimating the states value in the

environment, so the input is a state and the output is a value prediction of that state. The critic neural

network class has the __init__ method that defines the critic neural network model and the call method

that inputs a value in the neural networks and returns the output.

Figure 7.46: Critic neural network

• line 10-11: Store parameters that define the model

• line 14-18: Define the neural network model and store the neural network object in the variable

value. To get the neural network output for any input is just using the generated object and sending

through arguments the model’s input

85

Autonomous Driving (Computer Vision + A.I.)

• line 21: Define the input layer size

• line 27: Input the states to the neural network and retrieve the output

• line 30: Return the neural network’s output

The actor neural network receives in the input a state and the output is a set of actions. The actor

neural network output are two values, one for the vehicle’s speed and one for the vehicle’s direction. The

actor is supposed to explore which consists of choosing actions with a certain level of randomness. This

randomness allows the agent to search for the best way of solving the problem. If the agent did not have

some randomness in its action choices it would probably never encounter the optimal policy. Exploring is

great because by doing a different random action the new action can be compared to actions the policy

would choose.

To ensure exploration the agent chooses values, these values are used to set the mean of a normal

distribution, the action values are then sampled from the normal distribution created. What this means

is that the neural network outputs values, and these values define the mean of a normal distribution, the

normal distribution created is used to sample actions that are used to take a step in the environment.

Figure 7.47: Exploration algorithm

A normal distribution is described with two parameters, the mean and the standard deviation. The

normal distribution mean is defined by the neural network output, the standard deviation is a Policy class

parameter. The standard deviation is set as a trainable variable. When a variable is set as trainable it is

updated in the gradient update process. The standard deviation defines how random the actions are and

the gradient changes the model’s parameters accordingly to how big the loss is. The following example

helps understand how the standard deviation works in this project. At the beginning of the training, the

policy is bad, so if the standard deviation is very small the agent follows a bad policy very strictly, the

gradient starts increasing the standard deviation because taking random actions will find better results

86

Autonomous Driving (Computer Vision + A.I.)

than following a bad policy. As the policy gets better the gradient will start decreasing the standard

deviation because following the policy is better than taking random actions until the deviation is so small

it follows the policy and that’s when the algorithm converges to an optimal solution.

Figure 7.48: Actor Neural Network

• line 19-21: Store parameters that define the model

• line 24-29: Define the neural network model and store the neural network object in the variable

policy. To get the neural network output for any input just using the generated object and sending

through arguments the model’s input

• line 33: Define the input layer size

• line 27: Define the standard deviation variable, which is set as a trainable variable.

• line 47: Set the variable states in the neural network’s input and store the output

• line 52: Create an array with the same standard deviation for each output neural network’s neuron.

• line 56: Convert the logarithmic standard deviation to a normal standard deviation

• line 63: Get the mean and standard deviation

• line 67: Create a normal distribution object with the values returned from _get_dist

87

Autonomous Driving (Computer Vision + A.I.)

Figure 7.49: Actor methods

• line 70: Get random normally distributed action

• line 73: Get the returned action probability

7.2.2 Memory collector

The MemoryCollector runs multiple episodes in the environment and stores a tuple with the following

data:

• state - State received by the environment before choosing an action

• action - Action returned by the agent neural network for the current state

• reward - Reward received after executing the chosen action and getting the new state

• next_state - State received after executing the action chose in the environment

• mask - Stores the value of done variable

The stored data is then used to make the gradient updates. Some data needs to be processed before

being used. The neural network returns actions in the shape of tensors. Tensors cannot be used directly

on the drivers created for the simulation environment so the actions have to be converted for NumPy data

88

Autonomous Driving (Computer Vision + A.I.)

types. The states, on the other hand, need to be inputted into the neural network as tensors and since

the state is a python list it needs to be converted to a tensor. The memory collection process ends when

the buffer used to make the gradient update is full.

Figure 7.50: Memory collector code

• line 38-39: Reset environment and get first state

• line 49-52: Print data if the iteration is a multiple of 500

• line 55-57: Convert the state to a tensor so it can be inputted to the neural network

• line 60: Get action sampled from the normal distribution generated from neural network output

• line 63-64: Convert values returned by the neural network

• line 67: Step on the environment using the action returned by the neural network

89

Autonomous Driving (Computer Vision + A.I.)

• line 78: Store the data retrieved from the environment

Figure 7.51: Memory collector flowchart

90

Autonomous Driving (Computer Vision + A.I.)

7.2.3 GAE

To calculate GAE the MemoryCollector stores the reward, and the critic’s value estimation and done

at each time step. The GAE method creates a list with the advantage at each time step and returns it. The

most efficient way of calculating the GAE is by iterating the MemoryCollector data backward and calculate

the advantage using the GAE formula.

Â
GAE(γ,λ)
t (s, a) =

∞∑
l=0

(γλ)lδVt+l (7.23)

δt = rt + γV̂ (st+1)− V̂ (st) (7.24)

During the episode the critic makes prediction of the states values, these prediction are stored and

used after the episode to calculate the advantage Â(s, a). If the advantage is negative it means that

the state estimation was optimistic and the state ended being worse than predicted, if the advantage is

positive it means that the prediction was pessimistic and the state ended being better than expected, in

both cases the critic’s prediction is wrong. The following formula is used to calculate the critic’s loss.

V (s) = Â(s, a) + V̂ (s) (7.25)

The critic’s value prediction is given by V̂ (s), the advantage estimation is given by Â(s, a) and V (s)

is the state value calculated through experience. If the advantage estimation Â(s, a) is positive it means

that the value estimation V̂ (s) for that state s is smaller than what it should be. What this means is that

the actual value of V (s) is higher than the initial value prediction carried out by the critic. On the other

hand if the advantage estimation Â(s, a) is negative it means that the value estimation V̂ (s) for that

state s is higher than what it should be. What this means is that the actual value of V (s) is lower than

the initial value prediction carried out by the critic. The value calculated V (s) is used in the following loss

function formula:

Lcritic = (V (s)− V̂ (s))2 (7.26)

To understand this formula it is important to keep in mind the fact that the data retrieved from the

episodes is divided into mini batches and successive gradient updates are executed using the different

91

Autonomous Driving (Computer Vision + A.I.)

batches. The critic neural network is different after each gradient update meaning that the value prediction

for the same input has different output compared to the neural network before the gradient update. The

objective is to make the new value estimations V̂ (s) closer to the value calculated through experience.

• line 10: Get the batch size

• line 11-12: Set the lists that store the advantage and the deltas

• line 19: Cycle through the whole batch backwards

• line 23: Calculate the deltas rt + γV̂ (st+1)− V̂ (st)

• line 26: Calculate the advantage
∑∞

l=0(γλ)
lδVt+l

• line 32: Calculate A(s, a) + V̂ (s)

Figure 7.52: GAE implementation

92

Autonomous Driving (Computer Vision + A.I.)

7.2.4 Gradient Update

The gradient update is the learning process core. In each gradient update, the algorithm has to store

the differential equations of each model parameter. The tensorflow2 library allows this automatic differ-

entiation. The following example shows how to implement a basic gradient update using the tensorflow2

automatic differentiation method.

In this example the gradient update is applied to the variables of a neural network stored in the object

net. The optimizer is stored in the optimizer object. The loss function is defined by the user and has to

be calculated using a tensor datatype.

Figure 7.53: Basic gradient update

This represents the basic structure of a gradient update using the automatic differentiation of the

tensorflow2 library.

• line 12: Begin the gradient update process, tape is an object that gives access to all the model’s

gradients.

• line 15: The loss is calculated inside the gradient cycle. The loss value has to be a tensor datatype.

• line 18: Retrieve the gradients calculated inside the gradient process

• line 21: Apply the updates to the model variables using the defined optimizer and the calculated

gradients.

The automatic differentiation makes implementing the gradient update much easier because the user

only needs to implement the loss function, the library uses the loss function to calculate the gradients

93

Autonomous Driving (Computer Vision + A.I.)

and make the gradient update on the neural network variables. The critic uses a mean squared error loss

function.

Lcritic = (V (s)− V̂ (s))2 (7.27)

Figure 7.54: Critic gradient update

• line 13: Create an object that calculates automatically the mean squared error (y − ŷ)2

• line 16: Repeat the gradient update number of times defined by the user

• line 19: Begin gradient update process

• line 22-25: Calculate the mean square error loss

• line 28-32: Get the gradient values and apply them to the model variables using the optimizer

defined

The actor loss function used is the defined in the PPO paper:

rt(θ) =
πθ(at|st)
πθold(at|st)

(7.28)

94

Autonomous Driving (Computer Vision + A.I.)

LCLIP (θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (7.29)

LCLIP+S
t = Et[L

CLIP
t (θ) + c2S[πθ](st)] (7.30)

Figure 7.55: Actor gradient update

• line 37: Begin gradient update process

• line 40: Calculate πθ(at|st)

• line 43: Calculate rt(θ) =
πθ(at|st)

πθold(at|st)

• line 49: Calculate clip(rt(θ), 1− ε, 1 + ε)Ât)

• line 53: Calculate the normal distribution entropy generated to choose the action

• line 56: Calculate the actor loss LCLIP+S
t = Et[L

CLIP
t (θ) + c2S[πθ](st)]

• line 59-62: Get the gradient values and apply them to the model variables using the optimizer

defined

95

Autonomous Driving (Computer Vision + A.I.)

7.2.5 PPO Learn

The PPO class implements the learn method, which gathers all the mechanisms. First, it executes

the memory collection method which gathers data from the environment. The gathered data is used to

calculate the general advantage estimation. The data needed to execute the gradient update is divided

into mini-batches and the mini-batches are then used to make the gradient updates.

• line 143: Run multiple episodes and store data in the buffer until it is full. This returns a memory

object that stores the states, actions, rewards, next state, mask and log probability.

• line 145-147: Prints information so the user can check the learning process

• line 150-155: Update data to the tensorboard data base.

• line 157: Convert the memory data.

• line 159-164: Process the data batch

• line 166: Calculate the advantage using GAE

• line 171-172: Calculate how many mini batches are needed to store all the data stored in the batch

• line 174: Repeat the gradient update for all epochs. The number of epochs is an hyperparameter

that defines how many times the same data is used in the gradient update.

• line 175: Get a random list of numbers to make the gradient update in random order of mini

batches

• line 176: Repeat the gradient update for all the mini batches

• line 177-178: Calculate the current mini batch indexes.

• line 180-188: Convert the tensors to numpy values to slice the mini batch out of the batch and

convert it to a tensor again so that the mini batches can be used in the gradient update process

96

Autonomous Driving (Computer Vision + A.I.)

Figure 7.56: PPO Learn code

97

Autonomous Driving (Computer Vision + A.I.)

Figure 7.57: PPO Learn flowchart

98

Autonomous Driving (Computer Vision + A.I.)

8 Results

With the algorithm implementation, the simulation environment and the communication between the

two the algorithm is ready to start training. This chapters exposes the hyperparameters used to train the

model, the problems faced and final results achieved.

8.1 Hyperparameters tuning

This sub section exposes the process of experimenting with different hyperparameters and some

conclusions drawn from these experiments. The hyperparameters tuned are the learning rate, and the

mini batch size. The main parameter used to compare each learning process is average reward evolution

achieved by the algorithm in each learning iteration.

8.1.1 Learning rate

The objective of this experiment is to analyse the learning rate impact in the algorithm’s learning

process. This experiment consists of running two learning processes during 150 learning iterations with

two different learning rates and analyze the development of each. The neural networks have two hidden

layers and all the activation functions are ReLU, except for the output layer which is sigmoid. The hidden

layers have 250 neurons each. The following table presents the hyperparameters of each learning process.

The hyperparameters are all the same in both processes except for the learning rates which are 10 times

higher in Learn 1 than in Learn 2.

Hyperparameters Learn 1 Learn 2

Learning rate 10−3 10−4

Gamma 0,99 0,99

Tau 0,95 0,95

Clip 0,2 0,2

Buffer size 2048 2048

Mini batch size 256 256

Epochs 10 10

After running both learning processes it is possible to conclude that the learning process with lower

learning rate achieves a better result than the result achieved by the learning process with higher learning

rate. The higher learning rate is unstable and achieves a smaller average reward than the average reward

99

Autonomous Driving (Computer Vision + A.I.)

achieved by the smaller learning rate. Higher learning rate means higher jumps in the gradient, this is what

makes Learn 1 unstable, it makes big gradient updates that often are unfounded leading to destructive

gradient updates. The algorithm with high learning rate will most likely never achieve an optimal policy

and even if it achieves it most likely never converge.

Figure 8.58: Learn 1 - Learning rate 10−3

Figure 8.59: Learn 2 - Learning rate 10−4

8.1.2 Mini batch size

This experiment intends to analyze the mini batch size influence in the learning process. The exper-

iment consists of running two learning processes with different mini batch sizes. The learning process

Learn 3 has a mini batch size of 128 and the learning process Learn 4 has a mini batch size of 256. Both

learning processes took 300 learning iterations.

100

Autonomous Driving (Computer Vision + A.I.)

Hyperparameters Learn 3 Learn 4

Learning rate 5 ∗ 10−5 5 ∗ 10−5

Gamma 0,99 0,99

Tau 0,95 0,95

Clip 0,2 0,2

Buffer size 2048 2048

Mini batch size 128 256

Epochs 10 10

In this test the algorithms achieve similar final results. The learning process Learn 3 seems more

unstable than Learn 4 but this is not conclusive because Learn 3 achieves better results earlier than

Learn 4, and than its performance drops to lower values very close to the values achieved by Learn 4 at

that point. From that point onwards, both learning processes have similar improvement rate.

Figure 8.60: Learn 3 - Mini batch size 128

Figure 8.61: Learn 4 - Mini batch size 256

101

Autonomous Driving (Computer Vision + A.I.)

8.2 Final results

This subsection exposes the final results achieved after running the training algorithm. The training

consists of running the training algorithm as described in the track described in the figure 8.62. The track

shown is a simplified version of the original track, as it does not have the pedestrians crossing or the

parking spaces. The pedestrians crossing and the parking spaces are data introduced in the states which

is unnecessary and just creates uncertainty. The objective of this track is to test whether the algorithm can

create a policy capable of navigating the track in the simplest conditions. The vehicle’s starting positions

and orientations are described in the figure 8.62 using red squares for the positions and red arrows for

directions. The table shows the hyperparameters used in all the final trainings.

Figure 8.62: Simplified track - Without pedestrians crossing and parking

Learning rate 1 ∗ 10−5

Gamma 0,99

Tau 0,95

Clip 0,2

Buffer size 4096

Mini batch size 128

Epochs 10

102

Autonomous Driving (Computer Vision + A.I.)

To save time, this training starts with the policy and critic trained during the hyperparameter tuning

stage. This is to avoid wasting time training a policy and a critic from scratch. The training algorithm

crashed after four days of training. Another training process starts using the policy and critic trained until

the crash. This training runs smoothly until it converges to the optimal policy after 2 days of training.

Figure 8.63 and 8.64 show the average reward progression of both training processes.

Figure 8.63: Simple training 1

Figure 8.64: Simple training 2

Figure 8.64 shows the policy converging to the optimal solution. After ending the training process a

test is conducted to test the policy. The test consists of running episodes and retrieve the states, input the

states to the policy neural network, retrieve the output actions and control the vehicle using these actions.

The episodes have 2400 iterations each and the vehicle did not crash in any of the 5 episodes. With

this test it is possible to conclude that the optimal policy found in this training is capable of consistently

navigating the track.

103

Autonomous Driving (Computer Vision + A.I.)

After training a policy capable of navigating the simple track 8.62 the next step is to train the algorithm

to navigate the original track with pedestrians crossings and the parking spots. The original track is shown

in the figure 8.66. Each episode of the training started from a different spot of the track. The starting

spots on the track are the same used in the track 8.62. The starting policy and critic are the result of the

training in the simple track.

Figure 8.65: Original track - With pedestrians crossing and parking

The results of this training are shown in the Figure. After 8 days of training the process is terminated

by the user because during 4 days the learning is unstable and shows no signs of progress. The policy

appears to learn the basics of the navigating the track but never converges to a consistent policy. The

policy either succeeds following the road lanes and fails to ignore the parking spots/pedestrians crossings

or successfully ignores the parking spots/pedestrians crossings and lacks consistency when following the

road lanes. Many different training processes failed to complete the challenge of navigating the track

with parking spots/pedestrians crossings and after a long time of trying different solutions this task is

determined as unresolved.

Figure 8.66: Final training

104

Autonomous Driving (Computer Vision + A.I.)

9 Conclusion and future work

The objectives set at the beginning of this dissertation were to develop an RL algorithm capable of

creating a policy that can navigate the proposed track. The algorithm has to use as input a camera. After

validating the algorithm in simulation the objective is to test it’s learning in the real world. The algorithm

was not capable of navigating the proposed track on simulation and the learning mechanisms were not

tested in the real world. This ended up being a very ambitious project that could not be fully developed

within the time limit. Even though the results do not satisfy the objectives proposed at the beginning of

the dissertation these results are still very good and it is important to focus on the work actually developed

and the amount of research carried out and described in this document. This dissertation describes

the basic concepts needed for the development of the most advanced RL algorithms at the moment.

Besides the theoretical concepts it shows how to implement an advanced RL algorithm using python3

and tensorflow2, the process of developing a simulation environment with Gazebo+ROS, and basic image

processing using OpenCV. The theoretical concepts are applied in the final project that uses all the tools

described to create an algorithm capable of training a policy to navigate a simplified version of the original

track with consistency. The ROS packages created can be used by anyone who wants to test RL algorithms

in computer vision-based autonomous driving.

This dissertation can be the starting point for other projects. Other developers can use the simulation

environment to test different algorithms. The next step of this dissertation would be to create a stronger

feature extraction algorithm capable of executing line segmentation. This algorithm would most likely get

a policy capable of navigating the track with pedestrians crossing/parking with consistency. This belief is

justified by the fact that the algorithm can create a policy capable of navigating the track without pedestri-

ans crossing/parking. If the feature extraction makes the line segmentation it eliminates the pedestrians

crossing/parking from the input, so it would work like the simplified track in which the algorithm is ca-

pable of creating a policy capable of navigating the track with consistency. After implementing the line

segmentation in the feature extraction the next step would be to introduce object detection and identifica-

tion. With this data, the algorithm would be capable of detecting and identifying objects in its trajectory.

This functionality could be associated with the depth sensor of the real sense camera. With this data, the

policy would be able to detect, identify and locate obstacles in its trajectory.

105

Autonomous Driving (Computer Vision + A.I.)

Bibliographic references

Ackerman, E. (2021, Jun). What full autonomy means for the waymo driver. IEEE Spectrum. Retrieved

from https://spectrum.ieee.org/full-autonomy-waymo-driver

Agarap, A. F. (2018). Deep learning using rectified linear units (relu). arXiv. Retrieved from

https://arxiv.org/abs/1803.08375 doi: 10.48550/ARXIV.1803.08375

Alphago. (2017). Retrieved from https://www.youtube.com/watch?v=WXuK6gekU1Y

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that can solve difficult

learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(5), 834-

846. doi: 10.1109/TSMC.1983.6313077

Bellman, R. (1957). A markovian decision process. Journal of Mathematics and Mechanics, 6(5),

679–684. Retrieved 2023-01-19, from http://www.jstor.org/stable/24900506

Burns, M. (2019, Apr). ’anyone relying on lidar is doomed,’ elon musk says. TechCrunch.

Retrieved from https://techcrunch.com/2019/04/22/anyone-relying-on-lidar-

is-doomed-elon-musk-says/

Cao, S. (2021, Jun). Elon musk reflects on tesla’s darkest hour: I gave the last of my remaining

cash. Retrieved from https://observer.com/2021/06/elon-musk-recall-tesla-

2008-financial-crisis-twitter/

Cohen, J. (2021, Jul). How radars work. Think Autonomous. Retrieved

from https://medium.com/think-autonomous/how-radars-work-

1eb523893d62?readmore=1amp;source=user_profile

CoppeliaSim. (2022, Sep). Robot simulator coppeliasim: Create, compose, simulate, any robot - coppelia

robotics. Retrieved from https://www.coppeliarobotics.com/

Farama-Foundation, F.-F. (2022, Dec). Farama-foundation/gymnasium: A standard api for reinforce-

ment learning and a diverse set of reference environments (formerly gym). Retrieved from

https://github.com/Farama-Foundation/Gymnasium

from SAE J3016™, S. I. (2021, Apr). Taxonomy and definitions for terms re-

lated to driving automation systems for on-road motor vehicles. Retrieved from

https://saemobilus.sae.org/content/J3016_202104/

Kiran, M., & Ozyildirim, M. (2022). Hyperparameter tuning for deep reinforcement learning

applications. arXiv. Retrieved from https://arxiv.org/abs/2201.11182 doi:

10.48550/ARXIV.2201.11182

Kocher, L. (2022, May). Deepmind’s open source mujoco is available on github. Retrieved from

106

Autonomous Driving (Computer Vision + A.I.)

https://www.opensourceforu.com/2022/05/deepminds-open-source-mujoco-

is-available-on-github/

Lee, K.-F., & Chen, Q. (2021). Ai 2041. Currency.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., … Wierstra, D.

(2015). Continuous control with deep reinforcement learning. arXiv. Retrieved from

https://arxiv.org/abs/1509.02971 doi: 10.48550/ARXIV.1509.02971

Mazzari, V., & Mazzari, V. (2021, Jul). What is lidar technology? Retrieved from

https://www.generationrobots.com/blog/en/what-is-lidar-technology/

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller,

M. (2013). Playing atari with deep reinforcement learning. arXiv. Retrieved from

https://arxiv.org/abs/1312.5602 doi: 10.48550/ARXIV.1312.5602

Modayil, J., White, A., & Sutton, R. (2011, 12). Multi-timescale nexting in a reinforcement learning robot.

Adaptive Behavior, 22. doi: 10.1177/1059712313511648

Moreno, J. (2021, Jan). Waymo ceo says tesla is not a competitor, gives es-

timated cost of autonomous vehicles. Forbes Magazine. Retrieved from

https://www.forbes.com/sites/johanmoreno/2021/01/22/waymo-ceo-

says-tesla-is-not-a-competitor-gives-estimated-cost-of-autonomous-

vehicles/?sh=480500f9541b

Morris, J. (2022, Nov). Why is tesla’s full self-driving only level 2 autonomous? Forbes Magazine. Re-

trieved from https://www.forbes.com/sites/jamesmorris/2021/03/13/why-is-

teslas-full-self-driving-only-level-2-autonomous/?sh=3f029dec6a32

Pendleton, S., Andersen, H., Du, X., Shen, X., Meghjani, M., Eng, Y., … Jr, M. (2017, 02). Perception,

planning, control, and coordination for autonomous vehicles. Machines, 5, 6. doi: 10.3390/ma-

chines5010006

Reed, E. (2020, Feb). History of tesla: Timeline and facts. TheStreet. Retrieved from

https://www.thestreet.com/technology/history-of-tesla-15088992

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986, Oct). Learning representations by back-

propagating errors. Nature, 323(6088), 533–536. doi: 10.1038/323533a0

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2015). Trust region pol-

icy optimization. arXiv. Retrieved from https://arxiv.org/abs/1502.05477 doi:

10.48550/ARXIV.1502.05477

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-dimensional

107

Autonomous Driving (Computer Vision + A.I.)

continuous control using generalized advantage estimation. arXiv. Retrieved from

https://arxiv.org/abs/1506.02438 doi: 10.48550/ARXIV.1506.02438

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy opti-

mization algorithms. arXiv. Retrieved from https://arxiv.org/abs/1707.06347 doi:

10.48550/ARXIV.1707.06347

Self-driving cars: State of the art (2019). (2019, Feb). YouTube. Retrieved from

https://www.youtube.com/watch?v=sRxaMDDMWQQt=4s

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999). Policy Gradient Methods for Reinforcement

Learning with Function Approximation. In S. Solla, T. Leen, & K. Müller (Eds.), Advances in neural

information processing systems (Vol. 12). MIT Press.

Swazinna, P., Udluft, S., Hein, D., & Runkler, T. (2022). Comparing model-free and

model-based algorithms for offline reinforcement learning. arXiv. Retrieved from

https://arxiv.org/abs/2201.05433 doi: 10.48550/ARXIV.2201.05433

Synopsys, S. (2022, Sep). What is an autonomous car? – how self-driving cars work. Retrieved from

https://www.synopsys.com/automotive/what-is-autonomous-car.html

Tellez, R. (2022, Nov). Ros for beginners: What is ros? Retrieved from

https://www.theconstructsim.com/what-is-ros/

Tesla roadster (first generation). (2022, Jan). Wikimedia Foundation. Retrieved from

https://en.wikipedia.org/wiki/Tesla_Roadster_(first_generation)

Wang, Y., Chao, W.-L., Garg, D., Hariharan, B., Campbell, M., & Weinberger, K. Q. (2019, June). Pseudo-

lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving.

In Proceedings of the ieee/cvf conference on computer vision and pattern recognition (cvpr).

WHO. (2022, Jun). Road traffic injuries. World Health Organization. Retrieved from

https://www.who.int/news-room/fact-sheets/detail/road-traffic-

injuries

108

