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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Alkali modifications improved the zeo-
lites natural adsorption capabilities. 

• Zeolites had adsorption and desorption 
with over 80% and 90%, respectively. 

• Possible to use unsupervised machine 
learning algorithms for pattern 
recognition. 

• Supervised machine learning regression 
models were successfully tested and 
applied. 

• Possible to use classification algorithms 
to select the best modifications.  
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A B S T R A C T   

Rare earth elements (REE) are a significant group of valuable elements used in diverse and relevant applications 
in our daily lives. The mining and processing of the original ores, as well as the final wastes disposal, produce 
wastewater with variable concentrations of REE to be recovered. Sorbent materials like zeolites have been 
employed in adsorption processes to capture diverse pollutants from wastewater. The objective of this study is to 
identify the most effective modified zeolite for the adsorption and desorption of REE from aqueous solutions. To 
achieve this, the processes evaluation by machine learning (ML) algorithms was explored through both super-
vised and unsupervised analyses. The purpose of the usage of such tools was to assist in the selection of the 
optimal zeolite for REE recovery and to assess the predictive capabilities of the models. Modified zeolites were 
obtained by acid and alkali treatments in order to increase their sorption capacity compared to the controls and 
they were characterized by SEM/EDS, FTIR and pH zero point charge. Kinetic modelling and desorption assays 
were also performed, these last ones to evaluate the REE leaching from the sorbent for the best suitable modified 
zeolites. An overall removal of 80% for adsorption and over 90% recovery for desorption were achieved for the 
best modified zeolites. ML algorithms helped to classify the adsorption results and allowed the selection of the 
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best suitable modified zeolites. It is concluded that alkali modification of the zeolites surfaces increases their 
natural adsorption capacity for recovering REE.   

1. Introduction 

Rare earth elements (REE) are a group of seventeen elements, sub-
divided into light REE (La to Gd) or heavy REE (Tb to Lu, including Y) 
[1]. These elements are widely used in various applications due to their 
specific properties [1,2]. As they are becoming more and more essential, 
these elements are getting closer attention. REE play a crucial role in 
advancing various aspects of the materials industry (e.g. catalysis, 
magnets, metallurgy, information storage, military technologies, trans-
port of energy) [3,4]. In addition, REE offer the remarkable ability to 
substantially modify material properties even in minute amounts. 
Consequently, the definition of materials doped with rare earths is now a 
crucial step in technological advancements. For this reason, several 
governments and international institutions classified REE as critical 
materials [1–3]. There is almost no production of REE in European 
Union (EU) due to the complex exploitation of their deposits [5]. The 
REE extraction and refining have relevant environmental impact [6], as 
they are associated with radioactive pollution and toxicity due to the 
eventual presence of radioactive elements like uranium or thorium [7]. 
The extraction of REE is associated with technological advancements 
that emerged in the mid-20th century. During this period, only euro-
pium could be industrially extracted on a significant scale, primarily as 
EuSO4. This is attributed to the fact that europium ions undergo an 
easier reduction from trivalent to divalent states compared to other REE. 
The first effective REE isolation technique was developed based on ion 
exchange chromatography. This technique exploited the differences in 
stability between different rare-earth citrate chelates. About 1954, 
another effective method, liquid− liquid extraction, was developed and 
successfully used in commercial production [8,9]. For that reason, 
alternative methods to mining for obtaining REE are quite attractive, 
such as recycling REE from containing waste streams using commer-
cially available materials as zeolites [6]. Some efforts have been made in 
this context allowing the specific recycling of REE [10] or achieving 
their recovery and possible reuse [11,12]. 

Adsorption processes have been extensively used to remove different 
pollutants from wastewater such as heavy metals [13,14], which led to 
their recognition as some of the most interesting separation processes. 
Adsorption is simple and competitive, with high recovery efficiency, 
with availability of a wide-range of sorbents, effective even with low 
concentrations of sorbate and environmentally sustainable [1,14–16], 
making it quite attractive for pollutant removal. 

Different inorganic materials are used as sorbents like clays, carbon 
and zeolites [11,17,18]. Zeolite are crystalline microporous alumino-
silicates that are used as catalysts, adsorbents and ion-exchangers 
[19–21]. Different surface treatments can be used to increase the 
ion-exchange capacity of the zeolites. The most common modifications 
on the surface of the zeolites are chemical [22,23] or hydrothermal [24, 
25] treatments that improve the zeolite porosity. The chemical treat-
ments can be achieved by using mineral salts, alkaline or acidic solutions 
[26]. These treatments can improve physicochemical properties of the 
zeolites by the modification of their crystal size, morphology and 
chemical composition to enhance their adsorption capacity [27]. The 
acid treatment of zeolites could dissolve some amorphous materials and 
open the blocked pores of the zeolites [27]. However, this treatment 
may lead to a dealumination process, which results in an increase of the 
Si/Al ratio [28]. The alkaline treatment can attack silica, remove silicon 
ions and increase their mesoporosity, leading to an improvement of the 
ion exchange ability of the modified zeolite [29]. Briefly, the hydro-
thermal treatment consists in using an aqueous solution, as an alkali 
solution, leading to an ion exchange capacity improvement of the zeolite 
with low Si/Al [30]. 

Machine learning (ML) models have been recognized as an important 
tool for wastewater treatment [31,32] in the case of adsorption of an-
tibiotics [33], organic compounds [34] and metals [35,36]. Also, it have 
been applied to REE separation techniques [37] and to adsorption [38]. 
In this work, the evaluation by ML algorithms was explored through 
both supervised and unsupervised analyses. Supervised learning in-
volves the use of labelled data and provides a dataset with features or 
characteristics and labels [39], and can be divided in classification and 
regression. Classification is used with discrete labels, when the y values 
have fixed categorical outcomes, presented by whole numbers designed 
as integers. It is usual to try more than one algorithm, as KNN, Decision 
Tree, Random Forest and Logistic Regression, which are widely applied 
as learning algorithms, adequate to be used for small number of data and 
their hyperparameters are easily optimized [32]. The unsupervised 
learning uses data with no labels, aims to explore the data and to find 
similarities between them [39] and try to find “hidden” labels within the 
data. For that, clustering and dimensionality reduction algorithms were 
used. The clustering algorithms consist of a classification method of 
objects into different groups [39], as K-Means Analysis. The dimen-
sionality reduction aims to remove irrelevant and redundant data to 
improve data quality and to promote more efficient strategies [39], as 
Principal Component Analysis (PCA). 

This work aims to assess the effect of chemical treatments on 
different zeolites structures as faujasite (FAU) and Linde Type A (LTA) to 
improve their sorption capacity for REE entrapment. Acid and alkali 
treatments with different concentrations were used to modify zeolites. 
The best chemical treatments were then selected in accordance with the 
results obtained for the REE adsorption-desorption and kinetics 
modeling. Furthermore, the adsorption results were analyzed by su-
pervised and unsupervised machine learning. 

2. Materials and methods 

2.1. Materials 

Stock solutions of each rare earth were prepared from the dissolution 
of the respective salt in distilled water (H2O) to obtain a solution with a 
concentration of 1000 mg/L and then used on the batch assays: euro-
pium (EuCl3.6 H2O; 99.9%) and cerium, (Ce(NO3)3.6 H2O; 99.5%) were 
purchased from Acros Organics; lanthanum, (La(NO3)3.6 H2O; 99.9%), 
praseodymium, (PrCl3.xH2O; 99.9%), terbium, (TbCl3.6 H2O; 99.9%) 
and yttrium, (YCl3.xH2O; 99.9%) were purchased from Alfa Aesar. The 
REE used in this work have ionic radii between 1.17 to 1.04 Å due to 
their different oxidation state, trivalent [40], while their hydrated radii 
ranged from 2.60 to 2.38 Å, considering the higher hydration coordi-
nation, nonahydrates [41]. The multi-element ICP quality control 
standard solution, with a concentration of each element of 200 mg/L, 
was purchased from CPAchem. Two zeolite structures were used, FAU 
(13X) and LTA (4A), typical adsorbents supplied from Acros Organics 
and Sigma-Aldrich, respectively. The particle size for 13X beads is 4 to 8 
mesh with an average pore size of 7.4 Å, while 4A pellets have a 
diameter of 1.6 mm with an average pore size of 4 Å. 

2.2. Zeolite modifications 

The 13X and 4A zeolites modifications were carried out on flow 
columns using different basic and acid solutions. NaOH and KOH at 
concentrations of 0.10, 0.25 and 0.50 M were used and HNO3, HCl and 
H2SO4 were tested at a concentration of 0.25 M. The procedure was 
divided into two steps. In the first step, 20 g of zeolite were washed with 
500 mL H2O for 6 h with a flow rate of 23 mL/min. In the second step, 
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500 mL of the acid or of base solutions were used for 22 h with a flow 
rate of 3 mL/min. The resulting modified zeolites will be identified with 
the respective pre-treatment and concentration. Control of the pre- 
treatment process was also performed. The control zeolites were desig-
nated as ZX_H2O or ZA_H2O and were produced by replacing the 500 mL 
of the pre-treatment second step with H2O. After this procedure, the 
zeolites were dried at 60 ◦C for 48 h before characterization or 
adsorption-desorption assays. A list of the designation for each sample 
that will be tested and a description of the chemical modifications per-
formed is shown in Table 1. 

2.3. Characterization 

The modified zeolites were characterized by Scanning Electron Mi-
croscopy/Energy Dispersive X-Ray spectroscopy (SEM-EDS), Fourier- 
transform infrared spectroscopy (FTIR) and pHZPC. The characteriza-
tion procedures by SEM-EDS and pHZPC were performed similarly to the 
one reported by Barros et al. [11]. 

FTIR measurements were performed on different samples using an 
attenuated total reflectance, ATR-FTIR, PerkinElmer Spectrum Two 
spectrometer equipped with an ATR accessory. A diamond prism was 
used as the waveguide. Firstly, the samples were reduced to powder and 
then all spectra were recorded with a resolution of 2 cm− 1 in the 
wavelength region 4000–400 cm− 1 by averaging 50 scans and the an-
alyses were carried out at room temperature. 

2.4. Analytical quantification of REE 

All liquid samples were analyzed at the Inductively Coupled Plasma - 
Optical Emission Spectrometry, ICP-OES, (Optima 8000, PerkinElmer). 
The procedure was very similar to the one reported by Barros et al. [11]. 
This analysis was performed with slightly different operating conditions, 
namely, RF power at 1400 W, argon plasma flow at 12 L/min, auxiliary 
gas flow at 0.2 L/min, and nebulizer gas flow at 0.70 L/min. The 
wavelengths (nm) used for each element were: La—408.672, 
Ce—413.764, Eu—381.967, Y—371.029, Tb—350.917 and 
Pr—390.844, with an axial plasma view for La, Ce, Tb and Pr, while for Y 
and Eu, a radial view was used. 

2.5. Selection of modified zeolite by adsorption assays 

2.5.1. Adsorption assays 
The adsorption assays were carried out using a concentration of 6 g/L 

of the modified zeolites with a mixed REE solution with a concentration 
of 10 mg/L of each REE tested. The uptake assays were carried out at 

room temperature in batch vessels placed in rotary shakers at 130 rpm 
for 24 h. The same procedure was used in kinetics assays that lasted 125 
h. The pH was controlled and the desired values ranged between 3 and 4. 
When pH was higher than 4, a drop of a diluted solution of HCl would be 
added. The uptake at a given time for each REE is the mass of such 
element that is retained per mass of sorbent. 

2.5.2. Kinetics modeling 
The kinetics modeling was performed using the non-linear forms of 

the Pseudo-first order (PFO) [42], Eq. (1), and of the Pseudo-second 
order (PSO) [43] models, Eq. (2). The use of non-linear equations 
aims to avoid some errors associated with the linearization of the models 
by changing the error structure or altering their distribution, possibly 
distorting the fitting as referenced in the literature [44,45]. 

This fitting was performed using the non-linear equations of both 
models and the least-squares regression method, using Origin Pro 8.5 
software. The equations used are the following: 

qt = qe ∗ (1 − e− k1∗t) (1)  

qt =
k2 ∗ q2 ∗ et

1 + k2 ∗ qe ∗ t
(2)  

where qt (mg/g) is the mass of solute retained per mass of solid at time, t; 
qe (mg/g) is the mass of adsorbate per unit mass of adsorbent at equi-
librium; k1 is a rate constant (min− 1) and reflects a combination of the 
rate constants of adsorption ka and desorption kd; k2 (g/(mg × min)) is a 
complex parameter related to the initial concentration of solute. 

2.6. Desorption assays 

Desorption assays were carried out using 3 different acid solutions: 
HNO3, H2SO4 and HCl, at a concentration of 0.10 M each in H2O. The 
zeolites loaded with REE produced previously were used in these tests. 

The assays were carried out at room temperature in rotary shakers at 
120 rpm, for 5 h, using a volume of 0.1 L of leaching solution and 0.35 g 
of loaded zeolite. Samples of the solution were taken and then analyzed 
by ICP. 

The recovery percentage (% recovery) [46] was calculated using Eq. 
(3): 

%recovery =
Ct ∗ Vt

mREE
(3)  

where Ct is the concentration of one REE (mg/L) at a given time, Vt is the 
solution volume (L) of a given time, and mREE is the total mass (g) of a 
given REE retained by a given zeolite. 

2.7. Machine learning 

The ML analysis was performed using a table with the C/C0 results 

Table 1 
Description of the modification of each tested zeolite with the respective name.  

Designation Modification description 

Z13X zeolite 13X - control 
ZX_H2O zeolite 13X washed with H2O - control 
ZX_NaOH 0.10 M zeolite 13X modified by NaOH at 0.10 M 
ZX_NaOH 0.25 M zeolite 13X modified by NaOH at 0.25 M 
ZX_NaOH 0.50 M zeolite 13X modified by NaOH at 0.50 M 
ZX_KOH 0.10 M zeolite 13X modified by KOH at 0.10 M 
ZX_KOH 0.25 M zeolite 13X modified by KOH at 0.25 M 
ZX_KOH 0.50 M zeolite 13X modified by KOH at 0.50 M 
ZX_HCl 0.25 M zeolite 13X modified by HCl at 0.25 M 
ZX_HNO3 0.25 M zeolite 13X modified by HNO3 at 0.25 M 
ZX_H2SO4 0.25 M zeolite 13X modified by H2SO4 at 0.25 M 
Z4A zeolite 4A - control 
ZA_H2O zeolite 4A washed with H2O - control 
ZA_NaOH 0.10 M zeolite 4A modified by NaOH at 0.10 M 
ZA_NaOH 0.25 M zeolite 4A modified by NaOH at 0.25 M 
ZA_NaOH 0.50 M zeolite 4A modified by NaOH at 0.50 M 
ZA_KOH 0.10 M zeolite 4A modified by KOH at 0.10 M 
ZA_KOH 0.25 M zeolite 4A modified by KOH at 0.25 M 
ZA_KOH 0.50 M zeolite 4A modified by KOH at 0.50 M  

Table 2 
The binary classification for the different REE. The C/C0 values were given a 
classification accordantly. The mean value of these intervals was taken and 
given the respective binary classification.  

C/C0 intervals C/C0 

Classification 
Binary Classification 

0.8 < C/C0 

< 1.0  
1 1 if the mean of the classification for the tested 

REE is above 4.0 
0.6 < C/C0 

< 0.8  
2 

0.4 < C/C0 

< 0.6  
3 

0.2 < C/C0 

< 0.4  
4 0 if the mean is below 4.0 

0.0 < C/C0 

< 0.2  
5  
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Fig. 1. : REE adsorption on zeolite 13X and modified samples. The assays were carried out with a multi solution of REE previously described. The treated with acid 
modifications are ZX_HNO3 0.25 M ( ), ZX_HCl 0.25 M ( ) and ZX_H2SO4 0.25 M ( ). The zeolites with alkali modifications are ZX_NaOH 0.1 M 
( ), ZX_NaOH 0.25 M ( ), ZX_NaOH 0.5 M ( ), ZX_KOH 0.1 M ( ), ZX_KOH 0.25 M ( ) and ZX_KOH 0.5 M ( ). The control zeolites are 
ZX_H2O ( ) and Z13X ( ). 
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Fig. 2. : REE adsorption on zeolite 4 A and modified zeolites, without pH adjustment. The assays were carried out with a multi solution of REE previously described. 
The zeolites with alkali modifications are ZA_NaOH 0.1 M ( ), ZA_NaOH 0.25 M ( ), ZA_NaOH 0.5 M ( ), ZA_KOH 0.1 M ( ), ZA_KOH 0.25 M 
( ) and ZA_KOH 0.5 M ( ). The control zeolites are ZA_H2O( ) and Z4A ( ). 
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after 24 h for each tested REE, the pH of the zeolite treatment, pH of the 
adsorption solution after the 24 h time point for each sample. The 
resulting table was studied under unsupervised learner (Principal 
Component Analysis, K-Means Analysis) and supervised learner (clas-
sification and regression). 

K-nearest neighbors Classifier (KNN), Decision Tree Classifier and 
Random Forest Classifier were used to classify the samples. These clas-
sifiers are often used in binary classification, as explained in Table 2. The 
data was divided into two sets, a training set (70% of the data), to train 
the model and a test set (30% of the data), where the model’s prediction 
is tested. It also added a stratify option to the data division, allowing 
both test and train sets to have the same percentage of positive cases (in 
this case, a good adsorbent) as the complete set. 

For the regression, the training test split was 70% for training and 
30% for testing. Different metrics were used to evaluate the regression 
prediction, which are the mean absolute error (MAE), the mean squared 
error (MSE), the root mean squared error (RMSE) and the R-Squared 
(R2). These metrics were used to evaluate the results of the test data. 
MAE is calculated by the sum of the absolute differences between the 
real and predicted values of each tested observation and then divided by 
the number of observations. MSE is calculated by the average sum of the 
squared difference between the real and the predicted values. Finally, 
RMSE is the square root of the value obtained from the MSE. 

All tests were performed using Spyder (Python 3.9) and the respec-
tive needed modules as pandas, numpy, scikit-learn, matplotlib and 
seaborn. 

2.8. Statistical analysis 

The adsorption results were analyzed using the One-Way ANOVA, 
where the obtained values for each pre-treated zeolite and the respective 
controls were compared between each other. The Two-Way ANOVA was 
used for the statistical analysis of the desorption results. The Bonferro-
ni’s multiple comparison test was used for both data sets. 

The ANOVA analyses were performed using the software Graph Pad 
Prism version 8.0.2 (Graph Pad Software, Inc, San Diego, CA, USA). The 
results were only considered significantly different when the probability 
(p-value) was lower than 0.05, assuming a 95% confidence interval. 

3. Results and discussion 

3.1. Modified zeolites characterization 

Two different zeolite structures, FAU (13X) and LTA (4A), were 
subjected to chemical modification with acid and basic solutions at room 
temperature. 

The SEM results (Fig. S1) show that the modification had small ef-
fects on the zeolite morphology, which were more noticeable at higher 
concentrations of the treatment solutions, as expected. However, these 
results do not give any specific information regarding the modifications 
and their eventual impact on the surface characteristics or on the zeolite 
adsorption behavior. 

The elementary quantification of the pristine zeolites and the 
modified ones were evaluated using EDS analysis for zeolite 13 X 
(Table S1) and for zeolite 4A (Table S2). For zeolite 13X (FAU), the data 
provided showed that the sodium present in the framework was entirely 
replaced by protons of the acid solutions and a dealumination was 
observed, while an opposed effect was observed for the alkali treat-
ments. The treated 4A (LTA) zeolites have similar Si/Al ratios than the 
ones found for the controls, suggesting that these samples are only slight 
affected by the treatments. 

The alkali treated zeolites have similar pHZPC to the respective con-
trols, Z13X or Z4A, Fig. S2. Although there is no difference regarding the 
pHZPC, a different behavior during the adsorption is noticed. Overall, 
there was a decrease in the pHZPC value for the acid treated Z13X, which 
could be related with the incorporation of the H+ from the solution into 

the zeolite, which reduces its natural negative charge. 
FTIR spectra (Fig. S3) are very similar between each zeolite type 

used. The characteristic bands of the zeolite are identified with small 
shifts for both zeolite structures. These shifts especially in the case of 
13X suggest that the pre-treatments had no drastic effect on the pristine 
zeolite. The Si/Al ratio of the zeolite 13X and of the modified zeolites, 
(Table S3) was determined by FTIR analysis using the equation 4: 

x = 3.857 − 0.00621WDR (5) 

In here x = (1 +Si/Al)− 1 and WDR is the wavenumber at 
500–650 cm− 1, related to the vibrations of the FAU lattice [47]. The 
results suggest that the modification affects mainly the most external 
surface of the zeolite 13X. 

3.2. Selection of the most suitable chemical treatment 

3.2.1. Selection using adsorption results 
The REE ionic radii are small enough, between 1.17 to 1.04 Å [40], 

so the zeolites Z13X and Z4A are expected to be able to remove those 
ions from the liquid solution considering their average pore size, 7.4 Å 
and 4.0 Å, respectively. However, for the Z4A zeolite, it might be harder 
to remove the REE considering their hydrated radii from 2.60 to 2.38 Å, 
considering a nonahydrates coordination [41]. The adsorption data 
from the mixed REE solution with the pre-treated zeolites are presented 
in Fig. 1. 

Overall, independently of the REE, the modified zeolites with alkali 
treatment showed higher adsorption performance than the acid treated 
ones. Statistical differences (Table S4) were found for the retention of 
some REE between the pre-treated sorbents, especially the acid modified 
zeolites and ZX_KOH 0.50 M, and the controls. As the acid treated 13X 
zeolite did not show any enhancement of the adsorption ability, it was 
not considered in the forward experiments. The adsorption process oc-
curs on the material surface and the acid modified zeolites might suffer a 
reduction of the microporosity and an increase of the mesoporosity, 
which leads to a reduced surface area and helps to explain the poorer 
results. The C/C0 results obtained after the alkali modification of sur-
faces are similar for both the 0.25 M treatment solutions and for 
ZX_NaOH 0.50 M when compared to the controls. The ZX_KOH 0.50 M 
presented worse results, with two significant differences found 
(Table S4). The samples modified with 0.10 M of NaOH and KOH were 
the modified zeolites reached the lowest C/C0 in solution after 24 h, 
Fig. 1. ZX_NaOH 0.10 M had removals over 80% for five REE, apart from 
Ce. The results are similar between the controls, Z13X and ZX_H2O, 
except for Tb and Eu, for which Z13X presented lower C/C0, suggesting 
that the pristine zeolite washing with distilled water does not improve or 
worsened in terms of adsorption capacity. It should be noticed that the 
water washing does not change the Si/Al ratio of the zeolite 13X (data 
not shown). The pH solution was monitored during each of the assays 
with 13X zeolites, as presented in Fig. S4, and for that, the precipitation 
of the REE can be discharged for the solutions tested with sorbents 
treated with alkali with lower concentrations. However, some REE 
precipitation was observed 3 h after the beginning of the assay with 
zeolites treated with NaOH or with KOH, 0.50 M. For this reason, the 
concentration of 0.50 M for both alkali treatment solutions are consid-
ered inadequate for the REE recovery. 

The REE adsorption tests were also performed with the zeolite 4A 
and respective modified samples, Fig. 2. It is also shown that one of the 
controls, Z4A, had the worst results in terms of the different REE 
adsorption, even with significant differences when compared to the 
modified zeolites (Table S5). The overall adsorption capacity of the LTA 
structure increased with the alkali treatments and ZA_NaOH 0.50 M was 
the best sorbent with removals above 80%, except for La and Ce. The pH 
monitoring in assays with 4A zeolite is presented in Fig. S5. As with 13 X 
zeolite, ZA_NaOH 0.50 M and ZA_KOH 0.50 M used in adsorption tests 
presented some REE precipitation after 3 h of assay. 

From data of Fig. 1 and Fig. 2, the uptake, q, was calculated after 24 h 
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of assay. The uptake is defined by the mass of sorbate per mas of sorbent. 
Its values are presented in Tables S6 and S7 for 13X and 4 A zeolite 
samples, respectively. 

For the zeolite 13X, the ZX_NaOH 0.10 M presented the highest up-
take values for most of the REE, except for Y and Pr, suggesting a se-
lective REE adsorption by the zeolite, Table S6. These uptake values are 
a good indicator that the alkali treatment with the base solution with 
lowest concentration, improved the adsorption capacity of the zeolite 
surface. These results confirm that the zeolite structures used in this 
work have different selectivities toward the cations. LTA show selec-
tivity for small highly hydrated cations as Ag or K. In the case of REE, the 
selectivity of LTA aims at the small trivalent cations as Y and Pr. In the 
case of 13X larger trivalent cations as La, Ce and Eu are selected [48]. 

For the 4A zeolite, the ZA_NaOH 0.5 M had the highest q value 
(Table S7), except for La. The alkali treatments with NaOH and KOH 
enhance, in general, better results compared to the ones obtained with 
the untreated zeolite. The best results were obtained with 0.50 M for 
both solutions, probably by an improvement in the microporosity of the 
structure, facilitating the incorporation of the REE into the zeolite 

matrix. 
Comparing ZA_NaOH 0.50 M and ZX_NaOH 0.10 M, (Tables S6 and 

S7), it is noticeable that the LTA zeolite have the highest q of all tested 
REE, except for La. The main difference between the LTA and FAU is the 
way how the β cages are connected. For the LTA, the β cages are linked 
via oxygen bridges, which form an α cages [49] with small pores of 
approximately 4.1 Å, while for the FAU, the β cages are linked by double 
six-membered rings, forming a “supercage” [49] with pores approxi-
mately of 7.4 Å. The chemical modification with the alkali solution 
could explain the differences, since these modifications could lead to 
alterations in the surface. Considering their ionic radii, between 1.17 to 
1.04 Å [40], the REE should easily diffuse into the pores of both LTA and 
FAU zeolites, however their hydrated radii are higher, between 2.60 to 
2.38 Å [41]. The expansion of the ionic radius of REE may impose 
certain limitations on their ability to penetrate the pores of the LTA. 
This, associated with the pH solution for the ZA_NaOH 0.50 M remain-
ing between 5.5 to 6.5, in which REE can precipitate, prompted the 
exclusion of this zeolite in the subsequent sections. 

Overall and just from the adsorption results, the zeolites ZX_NaOH 

Fig. 3. : Graphical representation ML algorithms analysis of the data obtained at 24 h assay: A) PCA analysis and B) K-Means algorithm.  
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0.10 M and ZX_KOH 0.10 M are the most promising ones to be used in 
continuous assays. However, it is required to assess their behaviour 
regarding desorption and the kinetics of both processes. 

3.2.2. Sorbents selection evaluated by ML algorithms 
The normal analysis of adsorption and desorption results can be 

laborious and extremely intensive when we are dealing with a large 
number of information, which could come from different pollutants, 
methods or sorbents used. For that reason, the development of a ML 
based analysis can support a faster interpretation of the results with high 
accuracy giving the best solution for such a problem. Adding to that, 
with a good characterization of the sorbent, it might help to correlate 
some of its characteristics with its eventual appropriateness as a sorbent. 
Finally, in other cases those characteristics can be helpful to foresee the 
possible design and use of the sorbent for other pollutants. Therefore, 
employing ML algorithms to choose the most suitable modified zeolite as 
sorbent in the batch system serves as a preliminary step to assess its 
application to real conditions in water treatment processes. The selec-
tion of the best suitable zeolites was achieved with the classification 
algorithms, which results were compared with the ones obtained in the 
adsorption assays. The results obtained from ML algorithms were vali-
dated by further experimental adsorption assays. Recently, the same ML 
tools were used in the selection of the best catalytic system obtained by 
REE adsorption within zeolites and validated the impact of these new 
approaches [31]. This analysis used data obtained for each modified 
zeolite, REE, pH values after 24 h adsorption and the pHZPC values. The 
results obtained are shown in Fig. 3. 

The process starts with a scaling of the data, followed by a dimension 
reduction, accordantly to their similarity using a PCA. The selection of 
the correct number of features to use is required, so that the weight 
(variance) of each feature contributing to the PCA may be evaluated. It 
was selected 2 principal components, PCA 1 and PCA 2, were selected as 
they explain over 92% of the sample variation (Fig. S6A) and confirmed 
by the Knee locator [50]. The features distribution of the data are seen in 
Fig. 3A that clarifies how they are related to each other, using the cos of 
the angle between the features analyzed and interpreting the resulting 
values (variables with a coefficient correlation close to 1 are directly 
proportional, while those close to –1 are inversely related). The coeffi-
cient correlation between the pH values of the assay (pH_assay) and 
those of the treatment pH (pH_treatment) is close to 1, since a higher 
solution pH of the zeolite chemical treatment should provoke a higher 
pH during the adsorption assay. Overall, a positive correlation was 
detected between each REE C/C0 ratios and the other REE C/C0 ratios. 
Nevertheless, when the pH values are correlated with the C/C0 of the 
different REE, values closer to –1 are obtained and this shows that as the 
pH values augment, the values of C/C0 in the solution decrease. 

The weight of the different features on the behaviour of the different 
modified zeolites is described in Fig. 3A. The values of the C/C0 have 
high weight on the acid treated 13X zeolite, since for these samples the 
C/C0 was still high after 24 h, meaning that there was little or no 
adsorption. The same happened with ZX_KOH 0.50 M. The zeolites 
modified with 0.25 M, NaOH 0.50 M and the ZX_H2O are closer to the 
center, showing that none of the features have a relatively high influence 
on the results obtained with those sorbents. On the other hand, the 
variable pH of the assay has a higher weight on the behavior of the 
different modified zeolites, 4 A and 13X. For ZA_NaOH 0.50 M and 
ZA_NaOH 0.25 M, the influence of pH_treatment is higher. The modified 
zeolites 13X NaOH and KOH 0.10 M are in the opposite position of the 
C/C0 values, which could be associated with the improved performance 
that these modified zeolites during the adsorption of REE and therefore, 
reaching lower C/C0 values. 

The data was then used in an analysis by the K-Means algorithm, 
presented in Fig. 3B, to evaluate the number of groups that the zeolite 
samples can be divided into. The correct number of groups, which was 4, 
shown in Fig. S6B, was confirmed using the Knee Locator. Group 4, in 
purple, shown in Fig. 3B, contains the acid treated zeolites, indicating 

that these treatments are not the most suitable to improve the adsorption 
capacity of zeolites due to high correlation with C/C0 ratios, as previ-
ously suggested by the results shown in Fig. 1. Group 1, highlighted in 
blue, includes the 13X modified zeolites with NaOH and KOH 0.10 M 
and the 4 A modified with NaOH 0.25 M and 0.50 M. This group is sit-
uated in the opposite side of the C/C0, which as previously mentioned is 
translated into lower C/C0. In consequence, the zeolites with the best 
adsorption performance, ZX_NaOH 0.10 M and ZX_KOH 0.10 M (Fig. 1), 
and the ZA_NaOH 0.50 M (Fig. 2) are included in this group. The only 
unexpected presence in this group is the ZA_NaOH 0.25 M, since it was 
not included in the group of the best zeolites in the adsorption analysis. 
However, the ZA_NaOH 0.25 M was the second best zeolite in terms of q 
values (Table S7). Group 2, shown in green, includes the others Z4A 
modified zeolites and Z13X. Group 3, in yellow, has the remaining ze-
olites 13X. These groups include materials with middle-term adsorption 
performance, especially zeolites 13X, between a bad performance cor-
responding to group 4 and a good performance belonging to group 1. 
The presence of the Z13X in the group dominated by the zeolite 4 A 
indicate that, for these features, the Z13X is more similar to the zeolite 
4A than initially thought. 

After an assessment of the experimental data using the PCA and K- 
Means algorithms, the possibility of the modified zeolites classification 
was verified. Therefore, it was attributed to each sample a binary clas-
sification, where 0 is considered bad or low REE adsorption and 1 is 
considered a good performance or high REE adsorption, which was 
made in agreement with Table 2. 

The classification was performed using 3 different classifiers: KNN, 
Decision Tree and Random Forest, to evaluate its sustainability by using 
ML. The classification will help to select suitable new materials for REE 
removal from wastewater using zeolites as adsorbents and might be 
implemented for other pollutants removal to determine the best 
approach. The zeolites that had a good classification (binary classifica-
tion of 1) were ZX_KOH and ZX_NaOH 0.1 M and ZA_NaOH 0.25 and 
0.5 M. The results of this classification are shown in Fig. S7. 

The selection of the best suitable number of neighbors (n_neighbors) 
by the KNN Classifier, is shown in Fig. S6C, from which 1 neighbor is 
selected depending on the accuracy values for both training and test sets. 
The accuracy for the precision, recall and f1-score for each classifier 
used and for both test and training sets. The precision of one classifier is 
related to the accuracy of making good predictions, which was 100% for 
every classifier, being the same values for the recall, value of the 
correctly identified positive predictions, and f1-score, harmonic mean of 
the precision and the recall. 

In these approaches, it should be noticed that having 100% accuracy 
on the training sets with a relatively low value for the test set might 
mean that overfitting occurs for the training set, which is not the best- 
case scenario. That is, since the idea of the training set is to get a bet-
ter generalization of the results, then the model is used for unseen data, a 
test set, which serves to evaluate the capacity of the model to classify the 
new data. All classifiers presented a 100% score for the training set, 
shown in Table S8. For the test sets, the results are shown using the 
precision, recall and f1-scores of the prediction done by the model, 
considering the actual classification. These results were confirmed by 
the confusion matrix, Fig. S8, that confirms that there were only true 
positives (the model predict it is a good adsorbent and it is) and true 
negatives (the model predict it is a bad adsorbent and it is) values 
identified. 

Overall, this study shows that it is possible to use ML algorithms to 
support the selection of the best suitable zeolite for the removal of REE. 
The models used were able to select the best adsorbents in the list with 
very good metric results. 

For the leaching and adsorption kinetics, the selected modified ze-
olites are ZX_NaOH 0.10 M and ZX_KOH 0.10 M. The ZA_NaOH 0.5 M 
zeolite will not be considered by the same reasons explained in the 
previous chapter, while the ZA_NaOH 0.25 M did not have outstanding 
results during the adsorption that justify its use. 
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3.2.3. Predicting unseen data using ML algorithms 
The Pearson correlation was calculated to study the possible corre-

lation and the results are displayed in a heatmap, Fig. 4. 
It may be seen that the different pH values (pH_assay and pH_treat-

ment) have a moderate positive correlation (between 0.50 and 0.70) 
[51]. The pH_assay have a negligible correlation (between 0.00 and - 
0.30) [51] with the C/C0 for La, a low negative correlation (between - 
0.30 and - 0.5) [51] with the results for Ce, Y and Pr and a high negative 
correlation (between − 0.70 and − 0.90) [51] with the adsorption of Tb 
and Eu. With this it would be expected that C/C0 would be lower as the 
pH increases till a certain degree (pH values that do not lead to REE 
precipitation) and this was verified during the adsorption assays. The 
pH_treatment had moderate negative correlation (between - 0.50 and - 
0.70) with the adsorption of Ce, Y and Pr, a high negative correlation 
(between − 0.70 and − 0.90) [51] with Tb and Eu and a low negative 
correlation (between - 0.30 and - 0.5) with La, following the same 
explanation as before. The C/C0 correlation between the REE is high 
(between 0.70 and 0.90) or very high positive (between 0.70 to 0.90) 
[51], with 2 exceptions: between La and Tb, 0.67, and between La and 
Eu, 0.66, which are moderate positive correlations. These results suggest 
that the entrapment values of the REE have a direct correlation with 
each other, meaning that for the samples used in this study it could be 
possible to predict the final C/C0 of one REE using the known values of 
another REE. It is essential to mention that the correlation is stronger for 
REE of the same group (light or heavy REE). Pr presented the best cor-
relation with the other tested REE, with values over 0.9, as shown in 
Fig. 4. This leads to the possibility of only using Pr to estimate the values 
of other REE present in the solution, considering all zeolites tested and 
that the results after 24 h assay. The results for the tested linear re-
gressions are shown in Table S9. 

Table S9 displayed different metrics used to evaluate the scoring of 
the estimation of the C/C0 of the other REE, once the Pr values are 
known. The lower the values for these metrics, the closer are predicted 
values to the real ones, indicating that the model predictions are good. 
The R2 value is also essential, as it validates a good fitting to the data. As 
shown, the values are higher than 0.77 for both test and training sets, 
which is good since it reveals a strong correlation. It may be concluded 
from the overall metrics evaluated that it is possible to determine the 
residual REE concentrations in solution, just knowing one of them. 

Nevertheless, the REE concentrations prediction was tested for a time 

period using the data obtained with a single zeolite. Two different 
adsorption periods were considered, 125 h and 24 h, for the ZX_NaOH 
0.10 M. As before, a Pearson correlation was made for the different re-
sults of the REE C/C0, as shown in Fig. 5. 

Fig. 5A shows the correlations of the C/C0 for the different REE for 
the 24 h adsorption period. The correlation values shown are very high 
for every REE, including the correlation values obtained with Y, with 
values above 0.98. In this test, the Y will be used as the x value, with the 
results shown in Table S10. The correlation values for the 125 h assay, 
shown in Fig. 5B, are all for every tested combination. Pr was used as the 
x value and the results are shown in Table S11. When the Pearson 
Correlation values are compared between the 2 assays, the more 
extended adsorption test presents a better correlation between the tested 
REE. That is translated into better metrics and scorings for the models 
when performing the tests. The methodology was the same as the one 
performed for the estimation of the C/C0 values of the zeolite. 

The results are much better for the model that used the 125 h 
adsorption data, since the predicted values are closer to the actual values 
obtained, showing that increasing the number of data points is essential 
to construct a good model. For the sake of robustness validation, it was 
decided to use the model obtained from the 125 h assay to predict the C/ 
C0 values of the REE in the 24 h assay. The C/C0 values of Pr were used 
as x, while the rest of the REE values of C/C0 were predicted from the 

Fig. 4. : Heatmap representing the Pearson correlation between the different 
features considered in these assays. The left scale represents the different cor-
relation values and the respective colors. 

Fig. 5. : Heatmap representation of the Pearson correlations for the different 
REE after 24 h of contact with the sorbent(A) and after 125 h (B). The left scale 
represents the different correlation values and the respective colors. 
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Fig. 6. : Recovery results for Z13X and respective controls with HCl, H2SO4 and HNO3.  
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previously mentioned model. The metrics and respective scorings be-
tween the predicted and actual values are shown in Table S12. 

The metrics values in Table S12 are low, showing that the predicted 
results are very similar to those obtained experimentally. However, 
comparing these metrics to the ones presented in Table S10 it may be 
concluded that the model improved with the predictions based on the 
125 h assay, with a better prediction capacity. 

It is demonstrated that it is possible to predict the final REE C/C0 in 
solution, based on the same values for one of the sorbates, as well as to 
predict the REE C/C0 values along time, based on those values measured 
at one time point. The previous work shows that it is possible to train 
and test a model with a robust prediction capacity and reduced associ-
ated errors. These models can be further improved and tested to ensure 
the best possible prediction. In the future, these models could be an 
excellent help for faster quantification of metal pollutants, REE or heavy 
metals, eventually some other pollutants. This could make the quanti-
fication of various contaminants in water resources more effortless and 
faster, leading to quicker treatment. 

3.3. Recovery of REE 

The selected modified zeolites prepared by alkali treatments were 
used for the evaluation of leaching processes. HCl, H2SO4 and HNO3 
solutions, 0.10 M, were used as eluents. The loaded zeolites were sub-
jected to leaching for 0.5 h and circa 80 to 90% of the entrapped REE 
were recovered by the liquid solution. This period of contact is the 
needed to achieve relevant recovery rates of the tested REE while 
avoiding any damage to the adsorbent. The recovery results for 0.5 h 
leaching are shown in Fig. 6 for zeolite 13X. 

Water leaching REE recovery (data not shown) from both zeolite 
structures was 5% lower the recovery with acid solutions. This suggests 
that the presence of H+ in the solution is required to enhance the 
removal of the REE from the zeolite eventually by a cationic exchange 
with the REE3+. 

Fig. 6 shows that the zeolites modified with NaOH and KOH 0.10 M 
had the best recovery, with values near the 100% for all the tested REE. 
They differ 40 to 45% from the Z13X and 20 to 35% from the ZX_H2O. A 
statistical analysis of the recovery values was performed and the results 
are shown in Table S13. A significant difference for every REE and eluent 
was observed when comparing with the control Z13X and with the 
modified zeolites (NaOH or KOH 0.10 M). In addition, a significant 
difference was also found for most of the REE and eluents tested when 
comparing the referred recoveries with the ones obtained with the 
ZX_H2O control. As expected, comparing the recovery results obtained 
with the zeolites treated with NaOH or KOH 0.10 M, no significant 
difference was observed, Fig. 6, but some differences are seen between 
the controls ZX_H2O with Z13X. In general, it may be concluded that the 
alkali treatments improve the REE removal and recovery capacity of 
zeolites from wastewater. 

The tested eluents led to similar recoveries and present no significant 
difference between them. Therefore, for future assays, the selected 
eluent will be HNO3 since this acid is weaker than the others and does 
not represent an environmental threat as the other ones. 

The following step would be a purification process. This process 
complexity will be dependent of its final objective, presence of other 
metals, precipitant used and foreseen application for the REE. Some 
examples described in the literature include the precipitation with car-
bonate [52], phosphate [53], sulfate [54] and oxalate [55]. 

3.4. Adsorption kinetics 

The selected modified zeolites and the respective controls were used 
in kinetics evaluations to understand the mechanism of the whole pro-
cess and its dependence on pre-treatments. Two fitting models were 
tested: the pseudo first-order, PFO, and the pseudo second-order, PSO. 
PFO exhibited a better fit to the experimental data compared to PSO 

(Table S14), attributed to its higher R2 value and the close resemblance 
between the qe values predicted by the model and those experimentally 
obtained (Fig. S9). The PFO model assumes that a change of the solute 
uptake along time is directly proportional to the difference between 
sorbent saturation and the uptake along time [56]. The fitting parame-
ters are shown in Table 3 and the confidence intervals in Table S15. 

The qe values are the theoretical capacity of the zeolite to retain REE 
at equilibrium, where the highest ones were obtained with ZX_NaOH 
0.10 M. This corroborates that for this zeolite, the alkali treatment 
increased the REE retention as demonstrated before. The k1 is related to 
the time required for the interaction between the REE and the zeolite, 
with both modified zeolites presenting similar values. 

The kinetic parameters for REE adsorption by ZX_NaOH 0.10 M were 
compared with the ones obtained with other inorganic materials [11,17, 
18] and the results are shown in Table S16. ZX_NaOH 0.10 M has one of 
the highest qe values among the considered sorbents and the kinetic 
parameters indicate a faster interaction of that modified zeolite with the 
REE in solution. The ratio between the different REE concentrations and 
the adsorbent concentration certainly determine the differences noticed. 

4. Conclusions 

It is shown that zeolites are able to remove REE from aqueous so-
lution defining a method for recovering REE from wastewater. The REE 
adsorption capacities of the FAU (13X) and LTA (4A) zeolites were 
enhanced after the alkali treatment, being the best results obtained with 
0.10 M NaOH for 13X and with 0.50 M NaOH for 4A. The application of 
both supervised and unsupervised machine learning algorithms proved 
to be successful in the selection of the most effective modified zeolite, as 
well as predicting unseen data. The best recoveries for the desorption 
were obtained after 0.5 h, with no leaching of REE with water as eluent. 
A significant recovery improvement was detected when comparing the 
modified and the pristine zeolites. HNO3 at 0.10 M was selected to work 
as eluent for further assays as it induces good recoveries and is a weaker 
acid when compared to the others tested. The FAU modified with NaOH 
0.10 M (ZX_NaOH 0.10 M) presented the best fitting parameters in terms 
of the tested kinetic models, showing an overall improvement in both 
capacity and rate compared to the untreated zeolites. Further 

Table 3 
Fitting parameters for PFO for the modified 13 X zeolites and respective controls.   

ZX_KOH 0.1 M ZX_NaOH 0.1 M ZX_H2O Z13X 

LA DF  22  22  37  21 
k1  0.043  0.044  0.062  0.046 
qe  3.346  3.380  3.245  3.364 
R2  0.975  0.969  0.962  0.984 

CE DF  21  26  26  21 
k1  0.063  0.033  0.099  0.059 
qe  2.813  4.442  3.220  3.747 
R2  0.951  0.986  0.925  0.983 

Y DF  22  22  37  32 
k1  0.051  0.045  0.059  0.045 
qe  2.971  2.934  2.809  2.681 
R2  0.964  0.974  0.958  0.970 

TB DF  26  19  29  23 
k1  0.046  0.048  0.052  0.032 
qe  3.231  3.063  3.391  3.211 
R2  0.962  0.967  0.970  0.945 

PR DF  17  26  30  23 
k1  0.056  0.040  0.075  0.042 
qe  2.822  3.094  2.753  2.823 
R2  0.982  0.985  0.977  0.962 

EU DF  19  20  30  20 
k1  0.056  0.044  0.055  0.029 
qe  3.011  3.824  3.773  3.939 
R2  0.969  0.980  0.962  0.949 

DF — degrees of freedom; qe — adsorption capacity at equilibrium calculated 
from the fitting (mg/g); k1 — affinity constant of the pseudo-first order model 
(min-1); R2 — coefficient correlation. 
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exploration and development of the ML models can be undertaken by 
incorporating additional critical features, expanding the dataset, and 
adjusting algorithm parameters. This approach aims to enhance the 
understanding of the process and, consequently, to refine the model. 
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earth elements (REEs) from aqueous solutions using natural zeolite and bentonite, 
Water, Air, Soil Pollut. 230 (2019), 188, https://doi.org/10.1007/s11270-019- 
4236-4. 

[19] B. Silva, H. Figueiredo, C. Quintelas, I.C. Neves, T. Tavares, Zeolites as supports for 
the biorecovery of hexavalent and trivalent chromium, Microporous Mesoporous 
Mater. 116 (2008) 555–560, https://doi.org/10.1016/j.micromeso.2008.05.015. 

[20] S.M. Al-Jubouri, S.I. Al-Batty, S. Senthilnathan, N. Sihanonth, L. Sanglura, H. Shan, 
S.M. Holmes, Utilizing Faujasite-type zeolites prepared from waste aluminium foil 
for competitive ion-exchange to remove heavy metals from simulated wastewater, 
Desalin. WATER Treat. 231 (2021) 166–181, https://doi.org/10.5004/ 
dwt.2021.27461. 

[21] N.H. Ibrahim, S.M. Al-Jubouri, Facile preparation of dual functions zeolite-carbon 
composite for zinc ion removal from aqueous solutions, Asia-Pac. J. Chem. Eng. 
(2023), e2967, https://doi.org/10.1002/apj.2967. 

[22] B. Silva, H. Figueiredo, O.S.G.P. Soares, M.F.R. Pereira, J.L. Figueiredo, A. 
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Ó. Barros et al.                                                                                                                                                                                                                                  

https://doi.org/10.1021/acs.est.0c02526
https://doi.org/10.3390/su15032081
https://doi.org/10.3390/su15032081
https://doi.org/10.1038/s41598-022-20762-y
https://doi.org/10.1021/jacsau.2c00122
https://doi.org/10.1021/jacsau.2c00122
https://doi.org/10.1016/j.scp.2022.100938
https://www.researchgate.net/publication/41845861_A_REVIEW_OF_STUDIES_ON_MACHINE_LEARNING_TECHNIQUES
https://www.researchgate.net/publication/41845861_A_REVIEW_OF_STUDIES_ON_MACHINE_LEARNING_TECHNIQUES
https://www.researchgate.net/publication/41845861_A_REVIEW_OF_STUDIES_ON_MACHINE_LEARNING_TECHNIQUES
https://doi.org/10.1007/978-3-319-26809-5_3
https://doi.org/10.1007/978-3-319-26809-5_3
https://doi.org/10.1007/s10953-020-00960-w
https://doi.org/10.1007/s10953-020-00960-w
http://refhub.elsevier.com/S0927-7757(23)02069-1/sbref40
http://refhub.elsevier.com/S0927-7757(23)02069-1/sbref40
https://doi.org/10.1016/S0032-9592(98)00112-5
https://doi.org/10.1007/s11783-009-0030-7
https://doi.org/10.1155/2017/3039817
https://doi.org/10.1016/j.watres.2020.115472
https://doi.org/10.1016/j.watres.2020.115472
https://doi.org/10.1016/j.jcat.2010.11.022
https://doi.org/10.1016/j.jcat.2010.11.022
https://doi.org/10.1016/S0167-2991(05)80011-4
https://doi.org/10.1016/S0167-2991(01)80244-5
https://doi.org/10.1109/ICDCSW.2011.20
https://doi.org/10.1109/ICDCSW.2011.20
http://refhub.elsevier.com/S0927-7757(23)02069-1/sbref49
http://refhub.elsevier.com/S0927-7757(23)02069-1/sbref49
http://refhub.elsevier.com/S0927-7757(23)02069-1/sbref49
https://doi.org/10.3390/min8030106
https://doi.org/10.1016/j.jre.2018.09.012
https://doi.org/10.1007/s42461-018-0029-3
https://doi.org/10.1007/s42461-018-0029-3
https://doi.org/10.1016/j.jre.2021.01.003
https://doi.org/10.1016/B978-0-12-818489-9.00007-4
https://doi.org/10.1016/B978-0-12-818489-9.00007-4

	Chemical modification of zeolites for the recovery of rare earth elements evaluated by machine learning algorithms
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.2 Zeolite modifications
	2.3 Characterization
	2.4 Analytical quantification of REE
	2.5 Selection of modified zeolite by adsorption assays
	2.5.1 Adsorption assays
	2.5.2 Kinetics modeling

	2.6 Desorption assays
	2.7 Machine learning
	2.8 Statistical analysis

	3 Results and discussion
	3.1 Modified zeolites characterization
	3.2 Selection of the most suitable chemical treatment
	3.2.1 Selection using adsorption results
	3.2.2 Sorbents selection evaluated by ML algorithms
	3.2.3 Predicting unseen data using ML algorithms

	3.3 Recovery of REE
	3.4 Adsorption kinetics

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgments
	Appendix A Supporting information
	References


