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To see a World in a grain of sand 
And a Heaven in a wild flower, 
Hold Infinity in the palm of your hand 
And Eternity in an hour 

 ________William Blake 
 
 
 
 

 
 
 
 

I traveled, I saw many things; and I understand more than I can express. 
_______preacher of Ecclesiastes  

 
 

The only thing that does not change is that everything changes. 
_______I Ching  

 



 

Abstract 
 

Neural development is controlled by the temporal and spatial coordination of intrinsic and extrinsic 

factors that may be brain region-specific. In this work, the regulation of postnatal hippocampal neuronal 

proliferation, differentiation and apoptosis by extrinsic factors including glucocorticoids, 

neurotransmitters and cytokines was investigated. Hippocampal and cerebellar granule neuronal cultures 

were used to identify factors which may be responsible for the differential developmental patterns 

displayed by granule neurons in cells from these morphologically similar brain areas, and the signaling 

pathways employed were also studied. Other in vitro studies were done to examine the mechanisms 

underlying glucocorticoid-induced apoptosis in the hippocampus, in particular with regard to the role of 

glutamatergic transmission.  
 
Results show that transforming growth factor β2 (TGF-β2), supported by the Smad signaling machinery, 

plays a key role in determining hippocampal cell fate by inhibiting proliferation and, in parallel, inducing 

neuronal maturation. Brain-derived neurotrophic factor (BDNF), better known for Trk receptor-mediated 

promotion of neurogenesis and differentiation, was found to exert anti-proliferative and pro-neuronal 

effects on developing hippocampal neurons by activating a MAP kinase cascade which interacted with 

the TGF-β signaling pathway. 
 
The glucocorticoid dexamethasone (DEX) was found to directly induce apoptosis in hippocampal cell 

cultures through the mediation of glucocorticoid receptors (GR); this effect could only be demonstrated if 

neuroprotective mineralcorticoid receptors (MR) were antagonized. Further, it was shown that mature, 

rather than immature, granule neurons are targeted by glucocorticoids for apoptosis.  
 
Additional experiments showed that glucocorticoid actions at least partially depend on the prevailing 

glutamatergic status. The apoptotic actions of DEX are, at least partly, mediated by NMDA and 

metabotropic glutamate receptors. Low doses of NMDA, acting via the synaptic NMDA receptor 

(NMDAR) were shown to efficiently block DEX-induced hippocampal cell death. Evidence was obtained 

to show that glucocorticoid-induced apoptosis in hippocampal cells is mediated by NMDAR as well as 

metabotropic receptors. Thus, the final outcome of glucocorticoid treatment on hippocampal cell survival 

depends on the convergence and integration of transcriptional signals and signals originating at the cell 

membrane. 
 
In conclusion, these studies have identified some of the factors and signaling pathways contributing to the 

orchestrated neurodevelopment of hippocampal, as well as cerebellar, neurons.  



 

Resumo 

 
O desenvolvimento do sistema nervoso é o corolário de uma coordenação temporo-espacial de vários factores 

intrínsecos e extrínsecos, que apresentam, adicionalmente, importantes variações regionais. Neste trabalho 

dissertação foi avaliada a influência de factores extrínsecos, incluindo os glucocorticóides, neurotransmissores e 

citoquinas, nos mecanismos reguladores da neurogénese (proliferação, diferenciação e apoptose) pós-natal do 

hipocampo. Foram utilizadas culturas de neurónios hipocampais e cerebelosos para identificar factores e 

cascatas de sinalização responsáveis pelos padrões distintos de desenvolvimento das células granulares dessas 

áreas cerebrais. Foram ainda realizados estudos in vitro para analisar os mecanismos subjacentes à apoptose 

hipocampal induzida por glucocorticóides, em particular aqueles que envolvem a transmissão glutamatérgica.  
 
Os resultados obtidos demonstram que o “transforming growth factor β2” (TGF-β2), e a vias de sinalização 

Smad, desempenha um papel determinante no destino das células hipocampais porque inibe a sua proliferação 

e, em paralelo, promove a diferenciação neuronal. Ao invés, o “brain-derived neurotrophic factor” (BDNF), 

conhecido por promover neurogénese e diferenciação neuronal através de receptores tirosina cínase (Trk-r), 

revelou um efeito anti-proliferativo e favorecedor da maturação neuronal pela activação da cascata da cínase 

MAP que, por seu turno, interactua com a via de sinalização do TGF-β. 
 
Demontrou-se ainda que a dexametasona, um glucocorticóide, induzia directamente apoptose em culturas de 

células hipocampais, numa acção mediada pelos receptores dos glucocorticóides (GR); porém, este efeito era 

apenas evidente se o efeito neuroprotector dos receptores minerolocorticóides (MR) fosse concomitantemente 

bloqueado. Ficou também demonstrado que apenas as células granulares diferenciadas eram alvo da apoptose 

mediada pelos glucocorticóides.  
 
Experiências subsequentes permitiram evidenciar que as acções dos glucocorticóides dependiam, pelos menos 

parcialmente, da neurotransmissão pelo glutamato. Com efeito, a apoptose induzida pela dexametasona era em 

parte mediada pelos receptores NMDA e metabotrópicos do glutamato. Curiosamente, doses baixas de 

glutamato, activando os receptores sinápticos do NMDA, bloqueavam eficazmente esse efeito apoptótico. O 

balanço final do tratamento com glucocorticóides em células hipocampais em cultura depende, pois, da 

convergência e integração de sinais dependentes da transcrição e de outros com origem na membrana celular. 
 
Em conclusão, estes estudos permitiram a identificação de factores e vias de sinalização que contribuem para a 

complexa orquestração do desenvolvimento de células hipocampais e cerebelosas.  
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1.1. The life cycle of the neuron 
The neuron, the basic function unit of nervous system, is composed of a large cell body and is characterised by 

its axon and dendrites. Axons and dendrites receive and transmit information using chemical or electrical 

signals. 

 

During early development (e.g. E14 in rodents), neurons are generated as neuronal precursors from the 

asymmetrical division of stem cells located in subventricular zone of the brain (Brazel et al., 2003; Alvarez-

Buylla et al., 2000). These precursors migrate to their final position following tangential or radial pathways. 

Neuronal production continues during postntal life in several brain regions, including the olfactory bulb, 

hippocampus, cerebellum, and cortex; neurogenesis in these various regions varies in intensity (highest during 

early life) and extends over different periods, e.g. throughout life in the olfactory bulb and hippocampus, and 

for much shorter periods in the cerebellum and cortex.  

 

Despite high rates of neurogenesis during embryogenesis and early postnatal development, only a proportion of 

newly-generated cells will survive; most (70% of cortical cells in E14 mouse, Blaschke 1996) die through 

programmed cell death (apoptosis) due to inadequate neurotrophic support. The surviving cells mature and 

establish complex neurite extensions and synapses. While most neurons survive for an extended period of the 

lifespan, granule cells in the olfactory bulb and dentate gyrus of the hippocampus, continually die and undergo 

renewal from progenitor cell reservoirs.  

 

1.2. Neurodevelopmental windows 
During development, neuronal proliferation, migration, differentiation and maturation are regulated by multiple 

intra (intrinsic) and extra (extrinsic) cellular factors, which change in a temporal and spatial way. The most 

frequently cited case is that of the different cell fates of neural stem cells of different ages or anatomical 

origins. The differentiation of neurons, astrocytes and oligodendrocytes in the neocortex peaks sequentially 

before, during and after birth (Sauvageot and Stiles, 2002). The importance of positioning is illustrated by 

considering that neocortical pyramidal neurons born in the dorsal ventricular zone migrate radially to establish 

a six-layer- structure in an inside-out manner (Rakic, 1987; 1988); GABAergic neurons and oligodendrocytes 

originating in the ventral ventricular zone migrate tangentially to their final destinations (Corbin et al., 2001; 

Parnavelas, 2000; Tekki-Kessaris et al., 2001); and cerebellar Purkinje cells and hippocampal pyramidal 

neurons arise earlier than cerebellar and hippocampal granule cells (Smeyne et al., 1995; Sonmez and 

Herrup,1984; Vogel et al.,1989; Mullen et al.,1997; Altman, 1990; 1965; Harman, 1997). Also of relevance is 

the observation of GABA and GABA decarboxylase (GAD) in hippocampal granule cells and GABA in mossy 

fibers until 22-23 days of age, after which their presence is downregaulated with increasing maturity (Gutierrez 

et al., 2003). All these temporal and spatial differences are controlled by the interplay of intrinsic and extrinsic 

regulatory molecules.  

 

1.2.1. Intrinsic regulators 
The bHLH (basic helix-loop-helix) transcription factors are a large family with ~125 members encoded in the 

human genome (Ledent et al., 2002). Several of these factors have been shown to control the proliferation and 

differentiation of cortical progenitor cells (Ross et al., 2003). The transition from proliferation to initial 

neurogenesis and terminal neuronal differentiation correspond temporally with the differential expression 



 

levels of bHLH factors, from decreased Hes, Id, to increased neurogenin (Ngn), Mash1 and NeuroD (Ross et 

al., 2003).  

• Hes, Id (bHLH differentiation inhibitors) and Ngn, Mash1 (bHLH proneuronal factors) are expressed 
in the ventricular zone of the telencephalon and trigger differentaition of progenitors there.  

•  NeuroD, NeuroD2, Nex (bHLH differentiation genes) are expressed in the cortical plate, where fully 
differentiated neurons are located (Ross et al., 2003).  

•  Ngns are expressed in the dorsal telencephalon and stimulate the differentiation of glutamatergic 
neurons; 

•  Mash1 is expressed in the ventral telencephalon where GABAergic and cholinergic neurons arise 
(Wilson and Rubenstein, 2000).  

•  In addition, bHLH gene products interact with other molecules (Notch1, Prox1) to delineate the 
sequential stages of dentate gyrus development (Pleasure et al., 2000).  

 
Members of the bHLH family have also shown to induce cell cycle arrest by activating cdk inhibitors (Farah et 

al., 2000), e.g. through the Cip/Kip cdk inhibitors, p21Cip1 and p27Kip1, which interact with cyclin D-cdk4/6 and 

cyclin E-cdk2 (Massague et al., 2000). In this context, it is interesting that p27Kip1 and the cell cycle 

retinoblastoma Rb protein (a cdk substrate) were detected in E14.5 progenitors but not E10.5 progenitors in the 

rat neural tube (Luo et al., 2002), indicating temporal coordination in the expression of the various cell cycle 

regulator molecules. Indeed, temporal patterns of expression of neurogenesis-regulating genes can be 

evolutionarily traced back to Drosophila in which competence to acquire early-born fates is restricted to 

mitotic neuronal precursors; in this species, the Hunchback gene causes neuroblasts to gradually lose their 

competence to generate early-born cell types (Pearson and Doe, 2003).  

 

1.2.2. Extrinsic regulators 
Heterochronic transplants in the ferret cortex showed that transplanted young progenitor cells can adopt the cell 

fate of the recipient environment, whereas older progenitor donor cells cannot take up the features of a younger 

recipient; the latter progenitors continue to express characteristics which correspond to their age (Desai and 

McConnell, 2000), thus implicating a role for regulatory factors in the extracellular environment.  

• The transforming growth factor-β (TGF-β) superfamily which consists of more than 35 members, 
including TGFβ1 and 2, the bone morphogenetic proteins (BMPs), growth differentiation factors 
(GDFs), activins, glial cell line-derived neurotrophic factor (GDNF), represents a large group of 
extracellular growth factors that display wide distribution. The functions of members of this 
superfamily include cell cycle control and differentiation during neural development (Bottner et al., 
2000). For example, TGF-β2 was reported to stimulate (Mahanthappa and Schwarting 1993) or inhibit 
(Constam et al., 1994) neurogenesis, or both (Kane et al., 1996), as well as to regulate neuronal 
differentiation (Ishihara et al., 1994; Abe et al., 1996; Cameron et al., 1998). TGF-β2 is expressed in a 
temporal and spatial pattern during development. TGF-β2 levels peak in cerebellar granule cells at 
postnatal day 10 while these cells are proliferating and migrating; thereafter, their levels decline and 
they are only expressed in adult cerebellar Purkinje cells (Constam et al., 1994; Unsicker and Strelau, 
2000). TGF-β2 immunoreactivity is seen not in the ventricular zone, but is present in the subventricular 
zone, the telencephalic cortex and the cerebellar anlage of the E16 rat (Flanders et al., 1991). Together, 
these observations suggest that TGF-β2 contributes to neuronal differentiation.  

• In contrast to TGF, the BMP signals block neural maturation and promote an epidermal fate; 
consistently, BMP mRNA is expressed in epidermal, but not neural cells (Wilson and Edlund 2001). 
Interestingly, the temporal and spatial patterns of expression of BMPs during mouse embryonic 
development correspond with its role as a proliferation inhibitor and stimulator of apoptosis in the 
dorsomedial telencephalon (Furuta et al., 1997). BMP exert both positive and negative effects on 



 

neurogenesis, depending on ligand identity, ligand concentration and the lineage of the responding cell 
(Furuta et al., 1997; Shou et al., 2000; Zhu, et al., 1999; Mabie et al., 1999; Angley et al., 2003). 
Expression of both BMP2 and its receptors is highest during embryonic development, with a sharp 
decline during postnatal life (Mehler et al., 1997). 

• Expression of GDNF and its receptors (Widenfalk 1997; Koo 2001) show distinct spatial and temporal 
patterns. Pinna Serra (2002) demonstrated that GDNF-like immunoreactivity in the neonatal human 
hippocampus is much higher than in the adult hippocampus. The GDNF receptor C-ret is highly 
expressed in the dorsal pyramidal cell layer of the hippocampus at P4-P7, declining markedly 
thereafter. The GDNF receptor GFR-α2 shows a similar expression profile in the cerebellar granule cell 
layer (Burazin, 1999). GDNF, plays a crucial role in the differentiation, proliferation and survival of 
neurons, by acting through GFR and RET receptors (Airaksinen and Saarma, 2002). GDNF mRNA and 
protein levels in the hippocampus increase from early embryonic age to birth, reaching a peak during 
the first postnatal week and declining to prenatal levels in the adult (Ikeda et al.,1999; Lenhard and 
Suter-Crazzolara, 1998). The mRNA for its receptors are expressed at higher levels in adult 
hippocampal granule cells than in adult cerebellar granule cells (Burazin and Gundlach,1999). 

• GDF10 mRNA expression in rodent brain was observed in the cingulate cortex, retrosplenial cortex, 
CA3 and ventral limb of the dentate gyrus at P6, persisting in the cingulate cortex up to P21; in marked 
contrast, GDF10 expression continues to be seen in the hippocampal granule and caudal CA3 cells well 
into adulthood (Soderstrom and Ebendal 1999). 

• Members of the neurotrophin family (e.g. brain-derived neurotrophic factor [BDNF] and nerve growth 
factor [NGF]) are also representative of extrinsic factors whose distribution follows spatial and 
temporal patterns; the role of these molecules in the control of neuronal survival, proliferation, and 
differentiation are well documented. Levels of most neurotrophins increase during ontogeny of the 
brain, peak around birth and decline in adulthood. They usually show region-specific patterns of 
distribution, although they may overlap in some areas or at particular stages of development (Rocamora 
et al., 1993; Zhou et al., 1994). 

 

1.2.3. Lifetime events 
The birth, maturation and survival of neurons are also heavily under the influence of lifetime events. These 

may include physiological and cellular stressors, social status, agressivity (Mirescu et al., 2004), nutrition, 

exercise, pharmacological treatments (Dekosky et al., 1982; Yu et al., 2004; Deisseroth et al., 2004), etc. The 

ultimate effects of the above factors will be determined by the variety of extrinsic and intrinsic factors 

described above as well as other endocrine, paracrine and autocrine factors; some of these are summarized in 

the following Tables.  

 

Regulators of Neuronal Birth – some examples* 
Factors Effects System 

FGF family +proliferation  +/-Neurogenesis P0 rat HP,CB; adult SVZ 
  Dissociated embryonic rat RT,CTX,HP,ST,SPC; adult 

SVZ,HP 
   
EGF family   
TGF-α +proliferation  +/-Neurogenesis Adult rat DG 
EGF +proliferation  +/-Neurogenesis Dissociated rat ST,HP,OE; adult SVZ 
GGF +proliferation   Dissociated NCSC 
   
TGFβ family   
TGFβ2 -/+proliferation  +/-Neurogenesis Embryonic rat OE, CB; Dissociated CB granule cell 

precursors 
TGFβ3 +proliferation +Neurogenesis Embryonic rat RT 
BMP2,4,5,6,7 -proliferation +-Neurogenesis Dissociated rat NCSC, SVZ, embryonic SPC explants 



 

GDF11 -proliferation  +Neurogenesis Rat OB 
GDNF +/-proliferation  +Neurogenesis NT2/D1,SH-SY5Y, C6; Dissociated rat 

photoreceptors, NCSC, mouse progenitors 
Neurotrophins  
NGF +proliferation  +Neurogenesis PC12, rat chromaffin cell, DRG, chick sympathetic 

ganglia embryo 
BDNF +/-proliferation  +Neurogenesis Dissociated rat HP; SVZ; CB granule cell,  
NT-3 +proliferation  +Neurogenesis Rat DRG, NCSC, sympathetic neuron 
NT-4/5 +Neurogenesis CB granule cell 
IGF-1 +proliferation  +Neurogenesis CB granule cell precursors, NSC 
CNTF/LIF +/-Neurogenesis Dissociated fetal/adult rat stem cells 

Table continued on next page – 
 



 

 
PDGF +proliferation  +Neurogenesis Rat NSC 
Hormones   
Thyroid hormones, retinoic 
acid 

+Neurogenesis Dissociated rat photoreceptors 

Glucocorticoids -proliferation  +Neurogenesis Rat hippocampal cells in vitro; 
Mineralocorticoids +proliferation Hippocampal cells in adrenalectomized rat  
Estrogens -proliferation  +Neurogenesis Mouse embryonic stem cells 
   
Excitatory amino acids   
Non-NMDAR agonist 
(kainite) 

-proliferation E16/E18 rat CTX explants 

NMDAR agonist (NMDA) -proliferation Adult rat DG 
NMDAR antagonist 
(MK801) 

+proliferation P2-5 and adult rat DG 

   
Inhibitory amino acids   
GABA -proliferation E16/18 dissociated rat CTX, explants 
 +proliferation P6-8 rat CB granule cell precursors; E13-14 mouse VZ 
Biogenic amines  
-Monoamines (αMPT, 
reserpine) 

-proliferation P11 SVZ 

-serotonin synthesis 
inhibitor (pCPA) 

-proliferation E8-12 SC and HP 

Cholinergic agonist 
(nicotine) 

-proliferation Embryonic or postnatal CTX 

   
Neuropeptides   
Opioids   
Met5-enkephalin -proliferation P6 rat CB 
Opioid R antagonist 
(naltrexone) 

+proliferation P6 rat CB, DG, SVZ 

VIP/PACAP   
PACAP  -proliferation E13.5 rat dissociated CTX 
VIP +proliferation E15.5 rat dissociated SCG 
VIP antagonist -proliferation E6 mouse prosencephalon 
   
Tumour suppressors   
RB -proliferation Rat SVZ, HP subgranular progenitors 
PTEN -proliferation Mouse NSC, 
SHH +proliferation Rat adult HP progenitors, CB granule cell precursors; 

mouse retinal precursors 
WNT +/-proliferation, +neurogenesis Mouse NPCs, SVZ progenitors, midbrain precursors 

* Based on Cameron HA, Hazel TG & McKay RDG (1998) J Neurobiol 36: 287-306. 
BDNF, brain derived neurotrophic factor; BMP, bone mophogenetic protein; CB, cerebellum; CNTF, ciliary neurotrophic 
factor; CTX, cortex; DG, dentate gyrus; EGF, epidermal growth factor; ESC, embryonic stem cells; FGF, fibroblast growth 
factor; GABA, gamma aminobutyric acid; GDF, growth/differentiation factor; GDNF, glia derived neurotrophic factor; HP, 
hippocampus; IGF-1, insulin like growth factor-1; LIF, leukemia inhibitory factor; NCSC, neural crest stem cells; NGF, 
nerve growth factor; NMDA, N-methyl D-aspartate; NPC, neural procursor cells; NSC, neural stem cells; NT, neurotrohpin; 
OE, olfactory epithelium; PACAP, pituitary adenylate cyclase activating peptide; PDGF, platelet derived growth factor; 
PTEN, phosphatase and tensin homolog deleted on chromosome 10; RT, retina; SC, superior colliculus; SCG, superior 
cervival ganglion; SHH, sonic hedgehog; SPC, spinal cord; ST, striatum; SVZ, subventricular zone; TGF, transforming 
growth factor; VIP, vasoactive intestinal peptide. +, stimulation; -, inhibition. 
 



 

 
Regulators of Neuronal Death – some examples  

Factors Functions 
Death ligands  
Fas Bind Fas-L, by recruiting FADD, activate caspase-8, and begin caspase cascade to apoptosis 
TNF Bind TNF receptors, the activation of death domain lead to apoptosis by JNK or caspase pathway  
  
TGFβ superfamily  
TGFβ1 Protect neuron from apoptosis via c-jun-AP1 pathway 
GDNF Promote neuronal survival 
  
Neurotrophins  
NGF Promote neuronal survival 
BDNF Promote neuronal survival 
NT-3 Promote neuronal survival 
NT-4/5 Promote neuronal survival 
  
Excitatory amino acids  
NMDA Activate NMDA-R, induce calcium influx and apoptosis cascades 
Kainite Activate GluR5-7, KA1,2, induce sodium influx and cell swelling 
AMPA Activate GluR1-4, induce sodium influx and cell swelling 
  
Hormones  
Glucocorticoids  
Corticosterone Activate MR and GR, low level is neuroprotective  
Dexamethasone Activate GR, induce apoptosis in HP granule cells  
Tumour suppressors*  
RB Promote cell cycle arrest, apoptosis 
PTEN Block Akt activity of phosphorylating Bad, pro-apoptotic 
P53 G1 phase cell cycle arrest, apoptosis 
P53BP1 Responding to DNA-double-strand breaks 
SMC1 Intra-S-phase checkpoint; chromosome integrity and the prevention of DNA-damage hypersensitivity 
NBS1 Responding to DNA-double-strand breaks; S-phase-cell cycle arrest 
MDM2 P53 protein regulation 
FANCD2 Intra-S-phase checkpoint 
CHK2 Cell cycle arrest, apoptosis and signaling to p53 
CTIP Regulates BRVA1 function 
BRCA1 Homologous recombination repair 
ATM Autophosphorylation and self activation; coordinating the responses to DNA double-strand breaks 
  
Apoptosis-related 
proteins 

 

Bcl2, Bcl-XL Inhibit apoptosis by preventing the release of AIF and cytochrome c from mitochondria 
Bad Pro-apoptotic, Dephosphorylation of Bad cause the release of cytochrome c from mitochondria 
Bax, Bak Pro-apoptotic, promote mitochondria permeability  
AIF Apoptosis inducing factor, induce nuclear condensation and large scale DNA fragmentation in a caspase-

independent fasion 
Caspases Release of cytochrome c from mitochondria and formation of cytochrome c/Apaf-1/caspase-9 complex 

initiate caspases activation, cleave downstream substrates and lead to DNA ladder. 
  
Transcription factors  
NFκB Inhibit apoptosis 
IκB Inhibit NFκB 

* Taken from: Baker SJ & McKinnon PJ (2004) Nature Reviews Cancer 4: 184-195. 
AMPA, Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BDNF, brain derived neurotrophic factor; GDNF, glia derived neurotrophic 
factor; NGF, nerve growth factor; NMDA, N-methyl D-aspartate; NT, neurotrohpin; PTEN, phosphatase and tensin homolog deleted on 
chromosome 10; TGF, transforming growth factor; TNF, tumor necrosis factor.   



 

1.3. Structure, neurochemistry and function of the hippocampus 
The hippocampal formation comprises the entorhinal cortex, hippocampus proper, dentate gyrus and subicular 

complex. The hippocampal formation is an arched or banana-shaped structure, symmetrically located besides 

the inferior horn of lateral ventrical in the posterior of the dorsal lateral part of the telencephalon, with its long 

axis extending from the septal nuclei rostro-dorsally to the temporal lobe caudoventrally. The hippocampus 

proper is composed of the polymorphic layer (hilus), the pyramidal cell layers and the molecular layer (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1. Schematic representation of hippocampus by Golgi, using his silver impregnation stain.  
 

The pyramidal cell layer is divided into the CA1, CA2, CA3 regions, according to differences in cellular 

architecture: the CA1 region contains small pyramidal neurons while the CA2 and CA3 regions contain larger 

neurons; the dentate gyrus includes the polymorphic layer and the granular and molecular layers. The granular 

layer is composed of tightly packed granule neurons, which send mossy fibers to CA3 pyramidal cells. The 

granule cells receive inputs from the entorhinal cortex via the perforant pathway, and the CA3 neurons project 

to CA1 neurons via the Shaeffer collateral pathway. Most of the afferent pathways within the hippocampus 

appear to be glutamatergic, although the hilar-granule connections are mainly GABAergic. Besides perforant 

pathway, the dentate gyrus also receives cholinergic and GABAergic inputs from the septal nuclei, 

noradrenergic input from the locus coeruleus, serotonergic input from the raphe nuclei and dopaminergic input 

from the ventral tegmental area. In addition, the hippocampus expresses several neuropeptides and many of its 

cells are rich in calcium binding proteins.  (Amaral and Witter, 1995; Freund and Buzsaki, 1996)  

 
Together, the inter-connected regions of the hippocampal formation form part of the so-called ‘Papez circuit’, 

named after James Papez who proposed a model of interacting brain regions to explain the conscious (cortical-

mediated) and peripheral manifestations (hypothalmic- mediated) aspects of emotion (Papez, 1937). This basic 

plan gave rise to the denomination limbic system, introduced by Paul MacLean who added the following 

structures: the orbitofrontal and medialfrontal cortices (prefrontal area), the parahippocampal gyrus and 

important subcortical groupings like the amygdala, the medial thalamic nucleus, the septal area, prosencephalic 

basal nuclei (the most anterior area of the brain) and a few brainstem formations (MacLean, 1949) (see Fig. 2) 

CA1 

CA2 

CA3 

DG 
hilus 



 

 

 
Figure 2. Schematic representation of Papez’ circuit, consisiting of the cingulate gyrus, anterior thalamjic 
nuclei, mammiliary bodies and hypothalamus and the hippocampal formation; some of the other structures 
added to this circuit by MacLean include the prefrontal and associative cortices and the amygdala.  
 

Recently, Lein, E.S. et al. (2004) and Zhao, X. et al. (2001) produced what may be called a ‘molecular atlas of 

the hippocampus’, based on results obtained by DNA microarray analysis and in situ hybridization 

histochemistry. These authors found certain relationships between the intensity of gene expression and cell 

morphology. For example, they found that the expression of the nephroblastoma-overexpressed gene (Nov) is 

restricted to the CA1 pyramidal layer, the Purkinje cell protein 4 gene is restricted to the CA2 and dentate 

gyrus, and bcl-2 related ovarian killer protein gene is restricted to the CA3 region. In addition, desmoplakin 

expression was restricted to dentate granule cells, while that of calretinin was confined to hilar cells and cells 

within the subgranular zone of the dentate gyrus, and Mrg1b to CA1-CA3 pyramidal cells. 

 
The hippocampus is best known for its role in learning and memory. Evidence for its role in cognition includes 

experiments showing that damage to the hippocampus leads to severe impairment of declarative (explicit, 

relational) memory (Squire, 1992). Also, blockade of NMDA receptors and prevention of LTP impair learning 

of new spatial tasks (Morris, 1989).  

 



 

The hippocampus also functions as a site of corticosteroid negative feedback, therefore contributing to the 

neural regulation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Loss of hippocampal neurons or 

reductions in the levels of glucocorticoid receptor [GR] expression lead to hypercortisolism and DEX 

resistance, while stimulation of the hippocampus inhibits GC secretion (Sapolsky and Plostsky, 1990). Besides 

GR, the hippocampus in fact contains another type of corticosteroid receptor, namely, the mineralocorticoid 

receptor (MR). It is believed that while GR mediate negative feedback signals, MR mediate inhibitory tone on 

HPA axis activity (Reul et al., 2000).  

 

Lastly, one aspect of hippocampal structure should be mentioned. While the pyramidal cell layers are already 

formed and post-mitotic at the time of birth, granule cells in the dentate gyrus form just before birth (in the rat), 

and in all species thus far examined, continue to proliferate throughout life (Kempermann et al., 2004; Arlotta 

et al., 2003; Seki et al., 2003; Gage et al., 1998).  Newly generated granule cells in the adult animal were 

shown to facilitate synaptic plasticity, thereby contributing to the formation of new memories (Schmidt-Hieber 

et al., 2004). A number of external enviromental factors, including physical activity, stress and learning 

influence hippocampal neurogenesis (Prickaerts et al., 2004); stress, for example inhibits proliferation of 

progenitor cells and has been suggested to be one of the underlying pathophysiological mechanisms of major 

depression (a condition accompanied by hyperactivity of the HPA axis). Interestingly, anti-depressant drugs 

stimulate the production of new granule neurons and the latter has been suggested to underpin the therapeutic 

actions of these drugs (Malberg, 2004; Santarelli et al., 2003). 

 

1.4. Neurodevelopmental similarities between the hippocampus and cerebellum  
Hippocampal and cerebellar granule cell formation begins towards the end of the embryonic period, with the 

majority of cells being born during the first postnatal week in rats (Altman et al., 1965, 1972, 1990, 

Schlessinger et al., 1975). The newly-born cells are formed from precursor cell populations in the secondary 

germinal matrix (external granular layer, EGL, in the cerebellum; hilus in the hippocampus) which migrate to 

the proliferative zone without the aid of radial glial guides (Tomasiewicz et al., 1993; Corbin et al., 2001), 

eventually forming a tightly-packed cellular layer in a phylogenetically ancient cortical structure of the brain 

(Altman, 1969). While hippocampal granule cell proliferation continues throughout life, albeit at a reduced rate 

as the organism ages (Kuhn et al., 1996; Cameron & McKay, 2001), cerebellar granule cell production ceases 

when the EGL disappears during early postnatal life (Altman et al., 1965, 1972, 1990, Schlessinger et al., 

1975). 

 
Granule neurons are characterized by highly condensed chromatin and little cytoplasm (Palay & Chan-Palay, 

1974, Laatsch & Cowan, 1966, Romon y Cajal, 1911), and express GABA receptors (Tietz et al., 1999, Kim et 

al., 2000) and glutamate receptors (Wisden et al., 2000, Shigemoto & Mizuno 2000), as well as receptors for 

other neurotransmitters, neurotrophins and growth factors (see references under the table below). On the other 

hand, hippocampal and granule cells show some distinct differences; for example, only hippocampal granule 

cells express the NR2B subunit of the glutamate receptor whereas the NR2C subunit of this receptor are found 

in their cerebellar counterparts (Wisden et al., 2000). Also, during early development, cancer-related genes are 

more active in cerebellar granule cells but not in their hippocampal counterparts (Saito et al., 2002). The Table 

below shows some distinstive and common features of hippocampal and granule neurons. 

 
 
 



 

 
 
 
 

Comparison of Cerebellar & Hippocampal Granule Cells 
 Cerebellar granule cells Hippocampual granule cells 

Derivation Metencephalon(1-4) Telencephalon(5) 
Genesis Begins at the end of embryonic 

period, reaching a peak during the 
first postnatal week of life and then 

stops when EGL disappears (6) 

Begins at the end of embryonic period, reaching 
a peak during the first postnatal week of life; 
gradually decreases but occurs at low level in 

adults also (7-9) 
Migration Migrate from secondary germinal 

matrix (EGL) as a precursor 
population in the absence of radial 

glial guides (10) 

Migrate from secondary germinal matrix (hilar 
region) as a precursor population in the absence 

of radial glial guides (11) 

Morphology 
 

5-6 µm in diameter, with cytoplasmic 
indentations in nucleus, highly 

condensed chromatin, small 
cytoplasm(12 ) 

7-10 µm in diameter, nuclear envelope rarely 
indented, highly condensed chromatin, small 

cytoplasm (13, 14) 

Architecture Tightly packed cellular layer in a 
phylogenetically ancient cortical 

structure of the brain(15) 

Tightly packed cellular layer in a 
phylogenetically ancient cortical structure of 

the brain(15) 
Glucocorticoids receptors 

 
GR+, MR+ (GR develop later than 

MR)(16) 
GR+, MR+ (GR develop at the same time as 

MR)(17) 
Ionotropic glutamate receptor 

MRNAs(18) 
NMDA receptor mRNAs (NR2B 

switches to NR2C ~ P7) 
NR1+++ 
NR2A+ 
NR2B- 

NR2C+++ 
NR2D- 
KA1- 

KA2+++ 
(KA) GluR5- 

(KA) GluR6+++ 
(KA) GluR7- 

(AMPA)GluR1- 
(AMPA) GluR2+++ 

(AMPA) GluR3- 
(AMPA) GluR4++ 

(NR2A and NR2B but not NR2C mRNAs 
expressed ) 
NR1+++ 

NR2A+++ 
NR2B+++ 

NR2C- 
NR2D- 

KA1+++ 
KA2+++ 

(KA) GluR5- 
(KA) GluR6++ 
(KA) GluR7++ 

(AMPA) GluR1+++ 
(AMPA) GluR2+++ 
(AMPA) GluR3+++ 
(AMPA) GluR4+++ 

Metabotropic glutamate receptor 
mRNAs(19) 

MGluR1+ 
mGluR2- 
mGluR3- 

mGluR4+++ 
mGluR5- 
mGluR7- 

mGluR1++ 
mGluR2++ 
mGluR3++ 
mGluR4+ 

mGluR5++ 
mGluR7++ 

Glutamate transporters(20) EAAT1- 
EAAT3+ 

EAAT1- 
EAAT3+ 

Glutaminase(21) + + 
Glycine receptor(22,23,24) + + 

GABAA receptor mRNA(25,26,27) 
 

α1++ 
α2- 
α4- 
α5- 
α6 + 
β1-+ 
β2++ 
β3+ 
γ2+ 
δ+ 

α1+ 
α2++ 
α4++ 
α5+ 
α6 – 
β1++ 
β2+ 
β3++ 
γ2+ 
δ- 

5HT receptors(28,29) Barely detectable + 
Cholinergic receptors 

(Nicotine)(30,31) 
α3+ (low level) 
α4+ (low level) 
β2+ (low level) 

+ 

Cholinergic receptors (Muscarine)(32) M2+ M1+ 
- Table continued on next page – 

 



 

 
PKC(33,34) β,α,ε,δ subunits+ 

(β predominates) 
ε,β,α+ 

(ε predominates) 
Calbindin(35,36) 

 
- + 

Dynorphin(37-40) - + 
Transcription factor RU49(41) 

(special marker for granule cell) 
+ + 

NeuroD (critical for granule cell 
differentiation)(42,43) 

+ (expression peaks later than in 
hippocampus) 

+ (expression peaks earlier than in cerebellum) 

Cancer related gene expression(44) More active at earlier stages No such tendency 
Interleukin 1 beta(45) + + 

NGF & Receptor gp75(45-47) + + 
BDNF & Receptor TrkB(47-49) + higher than NGF 

Stimulate migration in vivo 
+ higher than NGF 

NT-3 & Receptor TrkC(48,50-52) + + 
NT-4/5(53,54) + protects against adrenalectomy-induced 

apoptosis of rat hippocampal granule cells 
GDNF & Receptor(55-58) + + 
CNTF & Receptor(59-62) + ++ 
AFGF & Receptor(63,64) + + 

- Table continued on next page – 
BFGF & Receptor(65,67) + + 

SCG10 [growth-associated proteins 
(nGAPs) (68-70) 

 + 

GAP43 [growth-associated proteins 
(nGAPs) ](69-71) 

+ -(in adult rat) 
+(in monkey) 

Neuregulins (NRG) [glial growth 
factor (GGF), acetylcholine-receptor-
inducing activity (ARIA), heregulin 
(HRG) and neu differentiation factor 
(NDF)] &  ErB receptors 

NRG induced NR2C subunit 
expression  
ErbB2, ErbB3 and ErbB4 +(72-75) 

 

 

Pituitary adenylate cyclase-activating 
polypeptide (PACAP) 
&Receptors(76-78) 

Actively expressed in rat 
cerebellum during postnatal 
development, peaks between P4-
P20; administration of PACAP to 
P8 rats increases the number of 
surviving granule cells in the EGL 
and IGL of the cerebellum, and 
stimulates neuronal migration from 
the EGL to the IGL 

PAC(1)-R expression is maintained in adult  
 

Polysialylated form of neural cell 
adhesion molecule (PSA-NCAM) (79-

84) 

Granule cells express E-N-CAM on 
cell bodies, axons, and leading and 
trailing processes also during 
migration but cease to reveal 
detectable levels of E-N-CAM at the 
end of migration after reaching 
their final position in the internal 
granular layer 

Highly expressed during development and 
persistent expression in the adult rat 
 

Bcl-2 mRNA(85, 86) + (higher in late prenatal development 
than in postnatal and adult brain) 

+ (higher in late prenatal development than in 
postnatal and adult brain) 

CREB(87-89) + + Increased cell proliferation is accompanied 
by activation of CREB phosphorylation in 
dentate gyrus granule cells 

Nuclear factor-kappaB (NF-kappaB), 
key regulators of either cell death or 
survival in neuronal cells (90-93) 

high in granule cells before 
postnatal day 7 (P7) and declines 
after P7 

+ 

TGF-beta2 (90,94) Transient production by postnatal 
cerebellar  
4-fold up-regulation in P12 versus 
P4 cerebella, represses NF-kappaB 
activity 

+ 

- Table continued on next page 



 

 
Glucocorticoid treatment(95-101) • bFGF↑  

• No deficits in rotarod 
performance with Dex treatment 

• Neonataes treated with 
hydrocortisone results in 
decrease cell proliferation and 
premature cessation of 
precursors in EGL 

• Chronic corticosterone 
administration does not 
change Calbindin-D28k mRNA 
and protein levels 

• Decrease GR,MR 

• NGF mRNA ↑, bFGF↑ 
• Deficits in Morris water maze 

performance with Dex treatment 
• 2 months rat treated with corticosterone 

for 3hrs decreased cell proliferation 
 
 
• Chronic corticosterone administration 

increased Calbindin-D28k mRNA and 
protein levels 

• Decrease GR,MR 

Adrenalectomy(99,102-107) • P11 ADX enhances cell 
proliferation and delays 
disappearance of EGL 

• P22 ADX decreases glutamine, 
glutamine synthetase, with 
taurine, aspartic, glutamic and 
GABA unchanged 

• 3 months ADX has no effect on 
Calbindin-D28k mRNA and 
protein levels in rats 

• Increase GR,MR 

• P11 ADX enhances cell proliferation  
• P22 ADX decreases glutamine, glutamine 

synthetase, with taurine, aspartic, glutamic 
and GABA unchanged 

• 3 months ADX decreases Calbindin-D28k 
mRNA and protein levels in rats 

• 2 months ADX increases cell proliferation 
in rats 

• 3 months ADX induced granule cell loss 
• Increase GR,MR 

Transplantation(108-110) • Neonate cerebellar granule cells 
switch calbindin gene on when 
transplanted into neonate 
hippocampus 

• Gestation day 14 (E14) 
cerebellar primordium 
transplanted into adult rat 
cerebellum, expression of 
tenascin, BDNF and NGF-R 
found during migration and 
differentiation of grafted 
Purkinje and granule cells  

Adult rat hippocampal progenitors did not 
express neuronal markers after being 
transplanted into the adult cerebellum for 8 
weeks 
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1.5. Problems addressed in this thesis 
The questions addressed here may be placed in three major categories:  

 Factors contributing to differential neurodevelopmental patterns 

Cerebellum-hippocampus transplantation experiments have suggested the importance of factors released 

by the donor and/or host cells in neurogenesis (Yoshimura et al., 2000; Tao et al., 1997; Borghesani et al., 

2002) and cell fate decisions (Renfranz et al., 1991; Vicario-Abejón, 1995; Suhonen et al., 1996; Alder et 

al., 1999). Little is known about the identity of the intrinsic and environmental signals that maintain the 

equilibrium between neuronal birth, maturation and death. Whereas some factors (e.g. bFGF, PDGF) 

mainly function as promoters of proliferation, others (e.g. TGFβ, BMP, GDF, GDNF) act as inhibitors of 

proliferation. Like the neurotrophins (e.g. BDNF, NGF), factors such as IGF-1 and GDNF enhance 

neuronogenesis, whereas factors such as LIF, BMP and CNTF stimulate astrogenesis. In one part of this 

thesis, we attempted to identify the factors that may be involved in the differential timing of neurogenesis 

in the cerebelum vs. the hippocampus, focussing on the question of whether each brain region may be 

characterized by specific anti-proliferative and differentiating factors which come into play within 



 

different windows of time. Earlier studies suggested that autocrine or paracrine secretions may play a role 

in the proliferation, survival and differentiation of developing granule neurons (Gao et al., 1991; Ueki et 

al., 2003), with a number of experimental paradigms indicating regulatory roles for the neurotrophin 

BDNF (Lin et al., 1998; Borghesani et al., 2002) and other cytokines (bFGF: Tao et al., 1997; members 

of the TGFβ superfamily: Unsicker and Strelau, 2000; Pratt and McPherson, 1997; Alder et al., 1999; 

Angley et al., 2003) in these events. Mumm et al., (1996) demonstrated autoregulation of neurogenesis 

and, more recently, Wu et al., (2003) showed that mature neurons in the olfactory epithelium secrete a 

factor (GDF11) that negatively regulates the proliferation of progenitor cells. These questions  were 

addressed using in vitro systms and are described in Chapter 2.  

 Mechanisms of glucocorticoid-mediated apoptosis in the hippocampus 

Glucocorticoids are hormones secreted from adrenal cortex, part of the HPA axis. Corticosterone (in 

rodents) or cortisol (in humans), by activating GR and MR, play an important role in development and 

physiological activity. Both receptors are expressed in hippocampus, and granule cell survival and 

apoptosis are balanced by the activation of these two receptors: MR activated by low coticosterone levels 

appear to mediate neuroprotective actions, whereas GR which are activated by high corticosterone levels 

lead to apoptosis of hippocampal granule cells (Almeida et al., 2000). Previous studies showing that the 

synthetic GR agonist dexamethasone (DEX) can induce granule cell death (Hassan et al., 1996; Almeida et 

al., 2000) raised interpretational questions requiring demonstration that DEX can directly target 

hippocampal neurons for death. Chapter 3 describes the results of experiments designed to solve this 

question using primary hippocampal cell cultures. The presented results also confirm the view that, 

because of their neuroprotective properties, activated MR can counteract the cell death-inducing actions of 

GR.  

 Endocrine (adrenal)-neurotransmitter (EAA) interactions 

Glutamate is the dominant neurotransmitter in the brain, being found in most excitatory synapses. Its 

actions are mediated by ionotropic glutamate receptors (iGluR) and metabotropic glutamate receptors 

(mGluR). The iGluR are directly associated with ligand-gated ionophores permitting Ca2+ influx, whereas 

the mGluR are G protein-coupled receptors which can activate secondary messengers such as cAMP or 

diacylglycerol and phosphoinositides (Lipton and Rosenberg, 1994; Pin and Duvoisin, 1995). Both types 

of receptor can activate downstream pathways that determine cell survival or death. Their dichotomous 

actions appear to result from differences in the duration and magnitude of action and the subsequent levels 

of intracellular Ca2+; thus, synaptic NMDA receptors (NMDA.R) have been associated with the promotion 

of cell survival and extrasynaptic NMDA.R with apoptosis (Hardingham et al., 2002; Riccio and Ginty, 

2002).               

Glucocorticoids and GluR share an intimate relationship: (i) glucocorticoids can increase hippocampal cell 

vulnerability to glutamate receptor (GluR) activation (Armanini et al., 1990); (ii) GR activation leads to an 

upregulation of the expression of one type of GluR, the ionotropic NMDA receptor (NMDA.R), which is 

strongly implicated in neurotoxicity (Weiland et al., 1997); (iii) GR occupation has been associated with 

an increase in glutamatergic transmission (Moghaddam et al., 1994) and (iv) glutamate can enhance GR 

activation (Gursoy et al., 2001).  In light of these interactions, and given the neurotoxic potential of each, 

glutamate and glucocorticoids, the many possibilities for mutual potentiation of each other’s effects, 

experiments were conducted to explore the mechanisms through which glucocorticoids can modulate 

glutamatergic effects on hippocampal cell death and survival. The results of these studies are presented in 



 

Chapters 4 and 5; the latter chapter also addresses the question of whether immature or mature neurons are 

targeted by glucocorticoids and glutamate. 
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2.1. Supplementary background information 
The neurotrophin family, whose main members are NGF, BDNF, NT3, NT4/5, play proliferation-, growth- and 

survival-promoting functions in the central and peripheral nervous systems. These peptide ligands bind to their 

corresponding tyrosine kinase (Trk) receptors: NGF to TrkA, BDNF to TrkB, NT3 to TrkC, and NT4/5 to TrkB 

receptors. In turn, the Trk receptors activate downsdream Ras-Raf-MEK-ERK pathways, ultimately influencing 

the above-mentioned developmental processes, as well as neuronal differentiation and synapse formation and 

activity.   

 

The TGF-β superfamily is a large family (> 30 members, including TGF-β2, activin, Nodal, and BMP, GDF) 

of peptides which exert important actions throughout a neuron’s life (proliferation, differentiation and 

apoptosis). Members of the TGF-β superfamily signal by sequentially binding to two transmembrane protein 

serine/threonine kinases; ligand binding to type II receptors activates type I receptors. Receptor-regulated 

SMAD proteins (R-SMAD) serve as substrates of type I receptors which subsequently bind Co-Smad4 and 

translocate to the nucleus, forming a transcriptionally-active complex after association with DNA-binding 

partner(s). This last complex binds to promoter elements of target genes whose functions include regulation of 

the cell cycle, differentiation and cell adhesion, positioning, and movement (Moustakas et al., 2001; Chang et 

al., 2002; Shi and Massagué, 2003). Cross talk between the TGF-β pathway and other signaling pathways are 

now known, even if incompletely understood. For example, the extracellular receptor kinase (ERK) can 

phosphorylate some of the Smads. In addition, TGF-β can signal independently of the Smads by activating 

mitogen-activated protein kinases (MAPKs) such as ERK1/2, p38 and the c-Jun-N-terminal kinase JNK, by 

activating upstream kinase activators (Attisano and Wrana, 2002). 
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Abstract 

Hippocampal and cerebellar granule cells share several similarities, but while hippocampal granule cells self-

renew throughout life, their cerebellar counterparts become post-mitotic during early post-natal development. 

Here, we show that locally-acting, tissue-specific factors determine the proliferative potential of these two cell 

types. Thus, conditioned medium from hippocampal cells (CMHippocampus) stimulates proliferation in cerebellar 

cultures (measured by bromodeoxyuridine incorporation) and, vice versa, mitosis in hippocampal cells is 

inhibited by CMCerebellum in a dose- and time-dependent manner. The anti-proliferative effects of CMCerebellum 

were associated with an increase in the expression of the cyclin-dependent kinase inhibitors p21 and p27 as 

well as markers of neuronal maturity/differentiation. Boiling CMCerebellum resulted in a loss of anti-proliferative 

activity, indicating its peptidergic or protein nature. Fractionation of CMCerebellum using ion exchange 

chromatography yielded fractions with distinct antiproliferative/differentiating and neuroprotective activities. 

Preadsorption of CMCerebellum with antisera against candidate cytokines indicated that TGF-β2 and BDNF 

contribute to the anti-proliferative and pro-differentiating effects of CMCerebellum, an interpretation strengthened 

by the reproducibility of CMCerebellum effects with exogenous TGF-β2 and BDNF. CMCerebellum was shown to 

enhance nuclear translocation of Smad 2 (transducer of TGF-β2 signaling) and Co-Smad 4. Transient 

expression of dominant negative forms of Smad 3 and Smad 4 (acting downstream of TGF-β2 specifically) 

negated the anti-proliferative/differentiating actions of CMCerebellum. BDNF was shown to activate the 

MEK/ERK pathway, perhaps subsequently TGF-β2 signaling mechanisms. In conclusion, hippocampal 

neuronal proliferation and differentiation are regulated through an interplay between the paracrine actions of 

BDNF and TGF-β2. 



 

Introduction  

Control of cell fate, including the mechanisms governing cell proliferation, differentiation and death, is a 

central theme in developmental neurobiology. Besides contributing to a better understanding of these biological 

processes, identification of the instructive and permissive factors and their signaling pathways will provide 

leads for prevention and treatment (including cell replacement) of neurodegenerative and other diseases of the 

brain. Cerebellum-hippocampus transplantation experiments have suggested the importance of factors released 

by the donor and/or host cells in neurogenesis (Yoshimura, 2001; Tao, 1997; Borghesani et al., 2002) and cell 

fate decisions (Renfranz et al., 1991; Vicario-Abejón, 1995; Suhonen, 1996; Alder et al., 1999). Granule cells 

of the cerebellum and hippocampal dentate gyrus share several morphological commonalities (Ramon y Cajal, 

1911); also, they both display dependencies on, or expression of, a common set of growth factors and signaling 

pathways (Dreyfus, 1998). On the other hand, cerebellar and hippocampal granule cells show distinct 

differences in their repertoire of glutamate receptor subtypes (Monyer et al., 1994) and gene expression profiles 

(Saito et al., 2002), features that most likely reflect their different physiological roles. These similar, but also 

divergent, properties make these two types of granule neuron interesting models for analyzing the intrinsic 

factors responsible for the regulation of their proliferation and maturation. Both, dentate and cerebellar granule 

cells first appear late in embryogenesis, with peak numbers appearing during the first postnatal week (Altman 

et al., 1972; Altman and Bayer, 1990; Schlessinger et al., 1975). Hippocampal granule cells continue to 

proliferate throughout life, although the rate of proliferation wanes with age (Altman and Bayer, 1990; Kuhn et 

al., 1996; Cameron and McKay, 2001). In contrast, the genesis of cerebellar granule cells terminates within the 

first 2 weeks of life (Altman, 1972). Interestingly, gene profiling studies revealed that genes involved in 

oncogenesis and ribosomal protein synthesis are most strongly expressed at the peak of cerebellar granule cell 

production (Saito et al., 2002); of the five gene clusters analyzed in that study, none showed any particular 

temporal pattern of expression in the dentate gyrus.  

To examine the hypothesis that tissue-specific factors may serve as ‘start’ and ‘stop’ paracrine controls of 

proliferation in different brain areas, we here measured neurogenesis by the bromodeoxyuridine (BrdU) 

incorporation in immunochemically characterized cells after exchanging conditioned medium (CM) between 

rat postnatal day 4 (P4) hippocampal (proliferating) and P7 cerebellar (non-proliferating) granule cell cultures; 

a similar approach was also used on co-cultures of hippocampal and cerebellar slices derived from differently 

aged donors. Our studies involving a combination of ion exchange chromatography, immunoneutralization and 

manipulation of specific signal transduction pathways reveal that TGF-β2 and BDNF secreted from cerebellar 

granule cells have strong anti-proliferative and neuronal differentiating properties when applied to mitotic 

dentate granule cells.  

 

Materials and Methods 

Primary cell cultures and conditioned medium 

Hippocampal, cerebellar and cortical primary cell cultures were prepared as previously described (Lu et 

al., 2003). Briefly, hippocampal (P4) and cerebellar (P7) cells obtained from Wistar rats aged 4 days were 

digested using the Papain Dissociation System (Worthington Biochemicals); dissociated cells were plated 

on poly-d-lysine-coated glass coverslips at a density of 400 cells/mm2. Cultures were maintained in 

Neurobasal A medium/2% B27 Supplement and 1 Mm GlutamaxI and 0.1 mg/ml kanamycin (Invitrogen) 

in an incubator at 37°C flushed with 5% CO2/95% air and under 90% relative humidity. Half the culture 

medium was renewed every 3 days. Experiments were started 8-14 days after plating. 



 

Immunocytochemical analysis revealed that the cultures comprised ca. 40% neurons (neuronal markers 

used: NeuN, TuJ1 and doublecortin), ca. 10% astroglial cells (glial fibrillary acidic protein, GFAP-

positive) and ca. 50% progenitor (nestin-positive) cells. Twenty-four hours before experiments, the 

culture medium was completely replaced with conditioned medium (CM) from either cerebellar 

(CMCerebellum) or hippocampal (CMHippocampus) cultures containing BrdU (20 Μm). Treated cultures were 

fixed with 4% paraformaldehyde (PFA) 24 hours later and processed for the immunocytochemical 

detection of BrdU. 

 

Slice culture 

Cerebellar and hippocampal ‘interface’ slice cultures were prepared from P7 Wistar rats based on a protocol 

published by Noraberg et al. (1999). Briefly, hippocampal and cerebellar slices (400 µm) were placed on 

Millicell® semiporous membranes in 6-well plates (Millipore). Slices from each brain area were placed 

adjacent to each other in a single well, and bathed in 50% OPTI-MEM®/Dulbecco’s modified Eagle’s Medium 

(DMEM), including 10% fetal bovine serum, 15% horse serum, 1 Mm Glutamax, and 0.1 mg/ml kanamycin in 

Hank’s buffered saline solution; all media and additives were from Invitrogen. Co-cultures were maintained at 

37°C (90% humidity) for 16 days, with medium changes every 3 days. Twenty-four hours before fixation (4% 

PFA), cultures were treated with BrdU (20 µM) and propidium iodide (PI, 20 µM; Molecular Probes).  

 

HiB5 hippocampal cell line 

Neural precursor SV40 T large antigen-immortalized HiB5 cells (Renfranz et al., 1991) were kindly provided 

by Dr. Nina Rosenqvist (Lund, Sweden). In all experiments, cells were maintained in DMEM containing 10% 

fetal calf serum and 1% kanamycin at the permissive temperature (32˚C) and a 5% CO2 environment.  

 

Immunocytochemistry 

Slice and dispersed cell cultures were fixed in 4% paraformaldehyde in 0.1 M PBS, permeabilized with 0.3% 

Triton-X100/PBS and incubated in 3% donkey serum/0.3% Triton for 30 minutes. Specimens were then 

incubated (1 hour; room temperature) with primary antibodies, all diluted 1:500 in 3% donkey serum/0.3% 

Triton X-100 in PBS: anti-BrdU (DAKO), anti-Nestin (Chemicon), anti-TuJ1 (Babco), anti-MAP2 (Sigma), 

anti-doublecortin (Santa Cruz Biotechnology), anti-GFAP (Sigma), anti-αMash1 and anti-αMath1 (kind gifts 

from Dr. Jane Johnson, Dallas, TX). After washing in PBS, cells and slices were incubated (30 minutes, room 

temperature) with biotinylated anti-mouse or anti-rabbit secondary antibody (1:500; Sigma). Specimens were 

then washed thoroughly in PBS and incubated (30 minutes, room temperature) with FITC- or horse radish 

peroxidase-conjugated Avidin (1:500; Sigma). HRP was developed with diaminobenzidine (0.025% in 0.001% 

H2O2 in Tris-buffered saline). In some instances, nuclear staining was achieved using Hoechst 33342 (1:1000 

in PBS; 15 minutes; Roche). Specimens were examined using through-light or fluorescence microscopy after 

mounting in appropriate media. Cells staining positive for BrdU or one of the various neural markers were 

counted with respect to the total number of cells in 5 randomly-chosen microscopic fields (0.072 mm2; 

magnification: 400X) across the long axis of each object; an average of 1,000 cells were sampled on each 

coverslip and the results shown represent values from 6-10 coverslips per treatment. 

 

Cell death assay 



 

Cell death was examined in 4% PFA-fixed cells by TUNEL histochemistry or Hoechst 33342 staining. For 

TUNEL histochemistry, samples were permeabilized (0.1% Triton X-100) and then treated with a peroxidase-

blocking solution (1% H2O2) before being processed as described previously (Almeida et al., 2000). Apoptotic 

cells were characterized by dark brown nuclear staining; only those nuclei showing evidence of DNA 

fragmentation without plasma membrane damage were considered to be undergoing apoptosis. Hoechst 

staining (see above) was used, randomly, to confirm results obtained using TUNEL. The relative number of 

apoptotic vs. Total number of cells were quantified in at least 5 randomly chosen microscopic fields 

(magnification of 400X).  

 

Western blotting 

Cells were harvested in lysis buffer, briefly sonicated (ice), and lysates were cleared by centrifugation. Proteins 

were electrophoretically resolved on 10 or 8% SDS polyacrylamide gels and transferred onto nitrocellulose 

membranes. Membranes were blocked in PBS containing 5% non-fat milk and 0.2% Tween-20, and incubated 

with specific primary antibodies (anti-MAP2a/b: Sigma, 1:5000; anti-synapsin: Chemicon, 1:400; anti-p21: 

Pharmingen, 1:500; anti-p27: Santa Cruz, 1:200). Antigens were revealed by enhanced chemoluminescence 

(Amersham Biosciences) after incubation with appropriate horseradish peroxidase-IgG conjugates 

(Amersham). 

 

Concentration and purification of conditioned medium from cerebellar cultures (CMCerebellum) 

A total of 1 L of CMCerebellum was collected from cultures between 8 and 14 days in vitro (d.i.v.). A 100-fold 

concentrate, containing peptides with Mr > 6Kda, was prepared using Vivaspin® columns (Vivascience). 

Concentrated CMCerebellum was then run through Q-ion exchange columns (Vivapure® 20; Vivascience), and 

eluted with buffer with a sequential salt gradient. The bio-active fractions were further separated on Affigel 

blue columns (BioRad). All resulting fractions were analyzed by immunocytochemistry for their ability to 

influence BrdU incorporation and  apoptosis as well as the expression of neuronal markers in hippocampal 

cultures.  

 

Heat lability test 

Concentrated (100X) CMCerebellum was boiled for 15 minutes before addition to hippocampal cultures and 

measurement of bioactivity (cell proliferation and neuronal markers, as described above).  

 

Immunoneutralization  

Antibodies against brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were purchased 

from Santa Cruz Biotechnology; antibodies against TGF-β2 were from R&D Systems. CMCerebellum was 

adsorbed with these antisera for 1 hour (room temperature) before being added to cell cultures at dilutions 

ranging from 1:10 to 1:10,000 after which the biological activity of the CMCerebellum was assessed as described 

before.  

 

BDNF studies 

Results from the BDNF immunoneutralization experiments were confirmed by adding BDNF (Hbdnf, 10-100 

ng/ml; Alomone Laboratories) to hippocampal cultures on 7 d.i.v., and monitoring for BrdU incorporation and 

MAP2a/b expression after 24 hours.  



 

Further verification of BDNF effects was obtained by transiently transfecting primary hippocampal cultures 

with a BDNF expression vector (pcDNA3-BDNF-Citron, kindly provided by Dr. Oliver Griesbeck, 

Martinsried, Germany); Pegfp was used as a control. Transfection was carried out using 1 µg DNA/well and 

Lipofectamine 2000® (Invitrogen) under serum-free conditions. Twenty-four hours after transfection, media 

were exchanged between BDNF- and EGFP-transfected cells, and BrdU (20 µM) was added to the cultures. 

BrdU incorporation was assessed after a further 24 hours.  

MAP kinase mediation of the pro-mitotic actions of BDNF was examined by assaying BrdU retention after 

treating cultures with the MEK1/2 inhibitor UO126 (Cell Signaling; 5 µM). The ability of BDNF (100 ng/ml) 

to stimulate cytoplasm-to-nucleus translocation of key TGF-β signaling partners was analyzed by transiently 

transfecting hippocampal cultures with fluorescence-tagged Smad2 and Smad4 (see below) and microscopic 

examination.  

 

Smad nuclear translocation  

To study nuclear translocation of Smad, primary hippocampal neurons, grown for 7 days in 12-well dishes, 

were transfected with Pegfp-Smad2 or Pegfp-Smad4 (kindly provided by Dr. Kelly Mayo, Evanston, IL). 

Transfection was carried out using 1 µg DNA/well and Lipofectamine 2000® (Invitrogen) under serum-free 

conditions. Transfection efficiency, judged in control transfections with Pegfp, was approximately 5%. 

Following transfection, cells were returned to standard growing medium or CMCerebellum for a further 24 hours 

before staining with Hoechst 33342 and microscopic examination.  

 

Smad signaling and cell proliferation 

Analysis of Smad signaling in the control of proliferation was studied in primary hippocampal cells after 

transfection (see above) with 1 µg/well of the following plasmids generously provided by Dr. Joan Massague 

(New York, NY; Pcs2-FLAG-Smad3 (Smad3 wild type), Pcs2-FLAG-Smad3(3S-A; Smad3 dominant 

negative), Pcmv5-FLAG-DPC4 (Smad4 wild type), Pcmv5-FLAG-DPC4(1-514; Smad4 dominant negative); 

Pegfp was used as an internal control. Twenty-four hours after transfection and exposure to either control or 

CMCerebellum, TGF-β2 (1 ng/ml) or BDNF (100 ng/ml), the number of BrdU-positive cells relative to the total 

number of (Hoecahst 33342-stained) cells was assessed.  

 

3TP-Lux reporter assay 

The p3TP-Lux reporter gene, containing a known TGF-β-inducible plasminogen activator inhibitor promoter 

(Wrana et al., 1994) and kindly provided by Dr. J. Massague, was transfected into HiB5 cells seeded in 24-well 

plates (4x104 cells per well), together with wildtype or dominant negative Smads. Plasmid (625 ng of total 

DNA) was introduced using Lipofectamine 2000® into cells maintained in Neurobasal A medium/2% B27 

Supplement and 1 Mm GlutamaxI and 1% kanamycin (all from Invitrogen). Twenty-four hours after 

transfection, cells were treated with CMCerebellum (10 µl/ml). Cells were harvested 24 h thereafter in 100 µl of 1X 

lysis buffer (Promega) and centrifuged. The cleared supernatants were assayed for β-gal and luciferase activity. 

For β-gal detection, 10µl of cellular extract was mixed with 100 µl of β-gal buffer (60 Mm Na2HPO4, 40 Mm 

NaH2PO4, 10 Mm KCl, 1 Mm MgCl2, 2 Mm β-mercaptoethanol) and 20 µl of O-nitrophenyl-β-D-

galactopyranoside (Sigma). The reaction was terminated with 50 µl of Na2CO3 (1M) and luciferase activity was 

measured by mixing 30 µl of cellular extract with 50 µl of a buffer containing 75 Mm Tris-HCl and 1 Mm 

MgCl2 (Ph 8). Substrate D-(-) Luciferin (1 Mm) was automatically injected and light emission (410 nm) was 

measured over 20 s in a luminometer. 



 

Statistical analysis 

All data are depicted as means + S.D. and represent the observations from 3-5 independent experiments, with 

3-4 replicates for each data point. Data were analyzed for statistical significance using ANOVA and 

appropriate post-hoc tests (Student-Newman-Keuls or Kruskal-Wallis multiple comparison procedures) in 

which P < 0.05 was set as the minimum level of significance.  

 

Results 

Spontaneous neuronal proliferation and apoptosis (Fig. 1A) 

Hippocampal and cerebellar cultures (8-19 d.i.v.) displayed a dense network of TuJ1-positive neurites (TuJ1 

antibody labels neuron-specific tubulin β III). Confirmation that the cerebellar cultures contained post-mitotic 

neurons was provided by staining for the basic Helix-Loop-Helix (Bhlh) transcription factor Math-1, known to 

be essential for cerebellar granule cell development (Ben-Arie et al., 1997), and for the neuronal commitment 

gene Mash-1 (Ross et al., 2003). Hippocampal cultures did not stain for Math-1 but were Mash-1-positive; as 

in the cerebellum, Mash-1 marks immature neurons in the hippocampus (Pleasure et al., 2000).  

Both cerebellar and hippocampal cultures displayed mitosis (BrdU incorporation; blue-black nuclei;) and 

apoptosis (brown-stained TUNEL-stained cells showing evidence of nuclear fragmentation), shown in the 

second column of Fig. 1A. 

 

Cerebellar ‘stop’ signals vs. Hippocampal ‘go’ signals  (Fig.1B-F) 

To test the hypothesis that cerebellar cells secrete factors that serve as an ‘instructive’ microenvironment, BrdU 

incorporation (24 hours) by hippocampal cultures maintained in conditioned medium derived from cerebellar 

cultures (CMCerebellum) was examined using immunocytochemistry. As shown in Fig. 1B, exposure to 

CMCerebellum resulted in a significant reduction in BrdU incorporation (p < 0.001). In a reverse experiment, 

cerebellar cultures treated with CMHippocampus showed a significant increase in the relative number of cerebellar 

cells that stained positively for BrdU (p < 0.01) (Fig. 1C). Similar results were obtained in studies where 

hippocampal (4-day old donors) and cerebellar (7-day old donors) slices were used. During the last 24 hours of 

co-culture (14 days), slices were treated with BrdU (20 µM) and BrdU retention was subsequently monitored 

by immunocytochemistry. As Fig. 1E shows, cell proliferation in hippocampal slices was significantly reduced 

in the presence of cerebellar slices as compared to when hippocampal slices were grown alone (p < 0.01); in 

contrast, cell proliferation in cerebellar slices was slightly, but not significantly, increased in the presence of 

hippocampal tissue.  

Besides braking proliferation in hippocampal slices, cerebellar slices also induced cell death in the former, as 

monitored by the significant retention of propidium iodide (PI) in hippocampal tissue (P < 0.05); in contrast, 

the presence of hippocampal tissue did not influence the number of dying cells within cerebellar slices (Fig. 

1F). Representative images of BrdU- and PI-stained co-cultures are shown in Supplementary Figs. IA-D and 

Figs. 1E-H, respectively. 

The above results indicate that soluble factors with mitotic and anti-proliferative properties are secreted into 

CMHippocampus and CMCerebellum, respectively. Further, it was shown that the anti-mitotic effects of CMCerebellum  

were restricted to hippocampal cells insofar that its addition did not influence proliferation in cortical primary 

cultures (Fig. 1D). From this point, our studies were focused on the anti-proliferative activity of CMCerebellum on 

hippocampal cells. 

 
Specificity and dose- and time-dependency of CMCerebellum effects, and physical properties of the 



 

bioactive moieties present in CMCerebellum (Fig.2A, B) 

Incubation of hippocampal cell cultures with varying volumes of 100-fold concentrated CMCerebellum established 

that the putative anti-proliferative factors in CMCerebellum dose-dependently influence BrdU incorporation (Fig. 

2A). Further, as shown in Fig. 2B, significant inhibition of BrdU incorporation was observed as early as 3 

hours following addition of 10 µl of 100X concentrated CMCerebellum (p < 0.001). Significant inhibitory effects 

of CMCerebellum were still observable after 24h (p < 0.05), but these were absent after 48 and 72 hours. Notably, 

there was a gradual and significant, time-dependent decline in the proliferative potential of hippocampal cells 

under basal conditions (fresh control medium vs. CMCerebellum). Also, it should be noted that there was no 

increase in the rate of apoptosis during the first 12 hours after addition of concentrated CMCerebellum (data not 

shown). 

An insight into the physico-chemical nature of the putative factor(s) contributing to the anti-proliferative 

activity of CMCerebellum was gained by assaying the effects of boiled 100-fold concentrated CMCerebellum on BrdU 

incorporation by recipient hippocampal cells. As Fig. 2A (last column) shows, the anti-mitotic activity of 

CMCerebellum was abolished by boiling for 15 minutes; boiling CMCerebellum for 5 minutes did not influence 

biological activity (data not shown). These findings point to the peptidergic/proteinaceous nature of the anti-

proliferative moieties present in CMCerebellum.  

CMCerebellum induces expression of negative regulators of the cell cycle and markers of neuronal 

differentiation (Fig.2C-F) 

Western blot analysis showed that treatment of hippocampal cultures with  CMCerebellum induces expression of 

the cyclin-dependent kinase inhibitors p21 and p27 (Fig. 2C), indicating that the anti-proliferative effects of 

CMCerebellum result from its ability to interfere with progression through the cell cycle.  

The anti-mitotic effects of CMCerebellum were found to be associated with enhanced numbers of cells displaying 

signs of neuronal maturity: hippocampal cultures grown in CMCerebellum showed a small but significant (p < 

0.05) decrease in the number of cells immunoreactive for doublecortin (Fig. 2E), the marker of early post-

mitotic neuroblasts, and a significant increase (p < 0.01) in the relative number of cells that demonstrated 

MAP2a/b immunoreactivity (Fig. 2D). Increases in MAP2a/b were seen in immunofluorescence and by 

Western blot analysis. In addition, as also shown in Fig. 2D, hippocampal cultures treated with CMCerebellum also 

showed increased expression of synapsin in Western blots. Interestingly, CMCerebellum had no significant effect 

on the relative number of glial (GFAP-immunopositive) cells in the hippocampal cultures (Fig. 2F).  

The above findings indicate that biological factors present in CMCerebellum can induce cell cycle arrest within that 

subpopulation of cells destined to become neurons while, at the same time, accelerating neuronal maturation.  

 

Presence of multiple factors with differing anti-proliferative, apoptotic and differentiation-inducing 

properties in  CMCerebellum (Table 1) 

Working on the premise that more than one factor may account for the anti-mitotic actions of CMCerebellum on 

hippocampal cell cultures, concentrated CMCerebellum was fractionated according to ionic strength after 

minimizing albumin interference using Affigel Blue chromatography. The 4 fractions that were eluted with 

NaCl (0.1-1.5 M) showed differing potencies on the proliferative, apoptotic and differentiating potential of 

hippocampal cells (Table 1). Specifically, fractions eluting at 0.1 M NaCl had significant anti-mitotic (p < 

0.001) and anti-apoptotic (p < 0.05) activities; strong anti-apoptotic activity was observed in eluates containing 

1.5 M NaCl (p < 0.001), and fractions eluting at 1 M NaCl proved effective at promoting neuronal maturation 

(p < 0.05). These results show that CMCerebellum contains a cocktail of factors that can differentially influence 

hippocampal cell fate. 



 

 

Identification of anti-proliferative and differentiating factors (Fig. 3) 

Some of the above experiments indicated that the active factor(s) of interest in CMCerebellum were heat unstable 

and of a Mr > 6 kDa. Immunoneutralization was used as a first identification approach; 3 candidate trophic 

factors, previously implicated in neuronal birth, differentiation and death, namely, NGF, BDNF, and TGF-β2 

(Minichilo et al., 1996; Massague et al., 2000; Borghesani et al., 2002; Vaudry et al., 2003) were chosen for 

analysis of effects on BrdU incorporation and differentiation (MAP2a/b expression). Immunocytochemistry 

showed the presence of all these peptides in cerebellar and hippocampal cultures (see Supplementary Fig. 2). 

BrdU incorporation by hippocampal cells was not affected after incubation in anti-NGF-preadsorbed 

CMCerebellum (Fig. 3A). Anti-BDNF (1:10) significantly blocked the anti-proliferative effects of crude 

CMCerebellum (p < 0.05; Fig. 3B), as did anti-TGF-β2 (1:1000 and 1:100; p < 0.01; Fig. 3C).  

In accordance with our earlier results that showed that CMCerebellum concomitantly blocks proliferation of 

hippocampal cells while promoting their maturation (Fig. 2), immunoneutralization against TGF-β2 (antibody 

concentrations that proved efficient at reversing the anti-mitotic effects) significantly reduced MAP2a/b 

expression (p < 0.01; Fig. 3D). In contrast, anti-NGF (which did not influence proliferation) and anti-BDNF 

did not alter the relative number of MAP2a/b-immunoreactive cells as compared to CMCerebellum that had not 

been pre-adsorbed with these antisera (Fig. 3D).  

Replication of CMCerebellum effects with exogenous BDNF and insights into signaling pathways involved 

(Fig. 4) 

Immunoneutralization experiments provide only qualitative information and may be compromised by factors 

such as antibody affinity and purity. We pursued analysis of the contribution of BDNF by comparing 

proliferation and maturation in hippocampal cells grown in either CMCerebellum or normal medium to which 

BDNF was added. Significant reductions in BrdU incorporation were observed after treatment with 50 ng/ml (p 

< 0.05) and 100 ng/ml (p < 0.001) (Fig. 4A).  

Similarly, as depicted in Fig. 4B, transfection of hippocampal cells with a plasmid expressing BDNF 

significantly inhibited cell proliferation compared to cells transfected with Pegfp (p < 0.001). Also, when 

medium from Pbdnf-transfected cells (24 hours) was added to Pegfp-transfected cells, proliferation was 

inhibited (third bar in Fig. 4B; p < 0.01). 

In addition to inhibiting cell proliferation, exogenous BDNF at doses between 10 and 100 ng/ml were found to 

promote neuronal maturation; this was seen as a significant increase in the number of MAP2a/b-

immunopositive cells after neurotrophin treatment (p < 0.01; Fig. 4C). In addition, BDNF (100 ng/ml) 

stimulated neurite extension (‘long neurites’ defined as neurites with lengths > twice the diameter of the cell 

body) within 24 hours of application (p < 0.01; Fig. 4C).  

The above findings indicate that exogenous BDNF can largely replicate the effects of CMCerebellum, suggesting 

that BDNF might be an ‘upstream player’ in the manifestation of CMCerebellum actions. Since BDNF signaling 

pathways reportedly converge on those triggered  by TGF-β2 following the neurotrophin’s activation of 

ERK1/2 (Segal and Greenberg, 1996; Pera et al., 2003), we pharmacologically tested the involvement of these 

kinases using the MEK1/2 inhibitor UO126. As shown in Fig. 4D, UO126 significantly abrogated the 

inhibitory effects of CMCerebellum on BrdU incorporation (p < 0.01). These observations, indicating that BDNF-

induced effects on proliferation are mediated through MAP kinases are consistent with earlier reports 

(Marshall, 1995; Du et al., 2003). 

Earlier studies suggested that TGF-β2 signaling pathways may mediate some BDNF actions (Sometani et al., 

2001). To confirm that BDNF can initiate a cascade leading to activation of TGF-β2, hippocampal cells were 



 

transiently transfected with 3TP-Lux, a reporter gene containing TGF-ß-responsive elements derived from the 

plasminogen activator inhibitor 1 (Wrana et al., 1994), and subsequently treated with BDNF. As Fig. 4E 

shows, BDNF at the highest concentration tested (100 ng/ml) significantly stimulated luciferase activity (p < 

0.01); similar observations were made in Pbdnf-transfected HiB5 cells (data not shown). Further support that 

other signaling molecules such as TGF-β2 might contribute to the biological effects of BDNF is provided by 

the results shown in Fig. 4F: exposure of hippocampal cultures to BDNF led to increased nuclear translocation 

of Smad2 and Smad4, both of which are crucial for transducing the TGF-β2 signal; pretreatment with 

cyclohexamide was used to exclude BDNF-stimualted de novo synthesis of proteins (e.g. TGF-β2). 

 

Exogenous TGF-β2 reproduces effects of CMCerebellum (Fig.5A and 5B) 

We also analyzed the contribution of TGF-β2 by comparing proliferation and maturation in hippocampal cells 

grown in either CMCerebellum or normal medium to which TGF-β2 was added. Significant reductions in BrdU 

incorporation were observed after treatment with TGF-β2 at 1 ng/ml (p < 0.01) and 10 ng/ml (p < 0.01) (Fig. 

5A). In addition to inhibiting cell proliferation, exogenous TGF-β2 (1 and 10 ng/ml) was found to promote 

neuronal maturation, as evidenced by a significant increase in the number of MAP2a/b-immunopositive cells (p 

< 0.05; Fig. 5B). In addition, TGF-β2 (1 ng/ml) stimulated neurite extension within 24 hours of application (p 

< 0.01; Fig. 5B).  

 

Nuclear translocation of Smads after CMCerebellum treatment (Fig. 5C) 

TGF-β exerts its biological actions through the mediation of SMAD proteins. Smad2 and Smad3 are specific 

transducers of TGF-β. Smad2,3 dimerize with Co-Smad4, as do Smads specific to other cytokines (e.g. BMP2-

linked Smads1,5,8); these complexes translocate to the nucleus where they influence the transcriptional 

machinery (Attisano and Wrana, 2002). Here, we demonstrate that transfection of primary hippocampal 

neurons with either Pegfp-Smad2 or Pegfp-Smad4 followed by exposure to CMCerebellum results in translocation 

of the EGFP-tagged proteins to the nucleus (Fig. 5C), indicating that CMCerebellum contains (an) activator(s) of 

Smad2 and Smad4. While the Smad2 result strengthens the likelihood that TGF-β is one of these factors, it 

cannot be ruled out that Smad4 translocation resulted after complexing with Smads activated by other members 

of the TGF superfamily.  

 

Dominant negative Smad3 and Smad4 abrogate the anti-proliferative and differentiating effects of 

CMCerebellum (Fig. 5D and 5E) 

CMCerebellum failed to inhibit proliferation in primary hippocampal cells expressing dominant negative forms of 

Smad3 (Pcs2-FLAG-Smad3-3SA) or Co-Smad4 (Pcmv-FLAG-DPC4(1-514) (Fig. 5D), again indicating that 

TGF-β may be (one of) the major anti-proliferative factor(s) in CMCerebellum. Participation of other Smad-linked 

factors cannot, however, be excluded, since Co-Smad4 complexes with other members of the Smad family, 

independently of TGF-β; indeed, since the effects of functional inhibition of Smad4 were significantly greater 

(p < 0.01) than those resulting from Smad3 inhibition, activation of other Smad pathways by non-TGF-β 

ligands is highly plausible.  

In contrast to control-transfected cells, cells expressing dominant negative Smad3 and Smad4 showed reduced 

relative numbers of MAP2a/b-positive cells after exposure to CMCerebellum, demonstrating these Smads to be 

involved in signaling the effects of (a) maturation-promoting factor(s) present in CMCerebellum (Fig. 5E). As 

mentioned before, Co-Smad4 dimerizes with Smad targets that are not activated by TGF-β. Since the inhibition 



 

of Smad4 was here found to have significantly stronger effects on neuronal maturation than inhibition of 

Smad3 (p < 0.01), a role for other Smad-coupled factors cannot be excluded.  

 

Transactivation of 3TP-Lux following CMCerebellum treatment (Fig. 5F-5H) 

As already mentioned, 3TP-Lux is a reporter gene that specifically responds to TGF-β. Hippocampus-derived 

HiB5 cells (shown to dose-dependently respond to the anti-proliferative effects of CMCerebellum, Fig. 5F) 

transfected with 3TP-Lux (Fig.5G) or co-transfected with 3TP-Lux and wildtype Smad3 or Smad4 (Fig. 5H) 

responded to CMCerebellum by driving luciferase expression, an effect was not seen when dominant negative 

forms of the two Smads were transfected (Fig. 5H). It should be noted that expression of the dominant negative 

plasmids markedly reduced the luciferase response in cells maintained in control (i.e. not CMCerebellum) medium 

(Figs. 5H); this finding suggests that HiB5 cells normally secrete a factor (putatively TGF-β) that can 

transactivate 3TP-Lux. Thus, the immortalized HiB5 cell line appears to be a convenient model for future 

studies.  

 

Discussion 
The pluripotency of neural cell progenitors (McConnell and Kaznowski, 1991; Coskun and Luskin, 2002) 

implies that their ultimate phenotype can be influenced by environmental factors. Phenotypic respecification 

has been demonstrated, for example, in studies involving hippocampal granule cell transplants into the 

cerebellum (Renfranz et al., 1991) and vice versa (Vicario-Abejón et al., 1995). This adaptive capacity, which 

indicates an interplay between lineage-specific and extrinsic factors, is gradually lost with time as the host 

environment becomes increasingly differentiated (Suhonen et al., 1996; Alder et al., 1999), indicating the 

importance of temporal and spatial organization. Another intriguing aspect of neuronal development concerns 

the determination of optimal neuronal population sizes. It is recognized that rates of apoptosis and neurogenesis 

from embryonic development through to adulthood occur in a balanced manner. Earlier studies suggested that 

autocrine or paracrine secretions may play a role in the proliferation, survival and differentiation of developing 

granule neurons (Gao et al., 1991; Mumm et al., 1996; Ueki et al., 2003; Wu et al., 2003). Although various 

experimental paradigms have indicated regulatory roles for the neurotrophin BDNF (Lin et al., 1998; 

Borghesani et al., 2002) and other cytokines such as Bfgf (Tao et al., 1997) and members of the TGF-β 

superfamily (Unsicker and Strelau, 2000; Pratt and McPherson, 1997; Alder et al., 1999; Angley et al., 2003) 

in these events, little is known about the identity of the intrinsic and environmental signals that maintain the 

equilibrium between neuronal birth, maturation and death.  

The appearance and differentiation of cerebellar and hippocampal granule neurons overlap only transiently: 

cerebellar granule cells enter a post-mitotic state at PND 7-14, i.e. when hippocampal granule cell neurogenesis 

is at its peak before gradually declining with increasing age (Schlessinger et al., 1975; Altman and Bayer, 

1990; Cameron and McKay, 2001). A recent DNA microarray analysis revealed that cerebellar and 

hippocampal granule cells display distinct gene expression profiles even at times when both cell types are 

undergoing rapid mitosis (Saito et al., 2002).  

In an analogous approach to ones used previously in animals (Renfranz et al., 1991; Vicario-Abejón et al., 

1995), the different developmental profiles in the hippocampus and cerebellum were exploited in the present 

study to identify cerebellar granule cell-specific factors which can reduce hippocampal granule cell 

proliferation and promote their differentiation. Using granule cell cultures from each brain area, and originating 

from same-aged animals, and immunocytochemical markers of neuronal maturity (MAP2a/b, TuJ1, Mash1 and 

Math1) and proliferative potential (BrdU incorporation) we first confirmed that, as compared to hippocampal 



 

cultures, the cerebellar cultures were more mature and mainly post-mitotic after 14 d.i.v. Next, cultures of one 

type were treated with conditioned medium from the other (CMCerebellum and CMHippocampus). Analysis of BrdU 

uptake revealed that whereas CMHippocampus stimulated proliferation in cerebellar cultures, CMCerebellum treatment 

inhibited cell proliferation and accelerated neuronal maturation in the hippocampal cultures; the latter events 

were accompanied by increased expression of two cell cycle arrest-related molecules, p21 and p27. Similar 

results were obtained with hippocampus-cerebellum slice co-cultures, as well as when a hippocampus-derived 

cell line (HiB5) was treated with CMCerebellum. The anti-proliferative effects of CMCerebellum had a rapid onset 

(first detectable increases in BrdU incorporation being observed after 3 hours) and were dose-dependent. 

Together, these results indicate that cerebellar and hippocampal cells secrete cell-type specific factors which 

have distinct influences on neurogenesis and differentiation. The view that cultures from each brain area 

secrete unique biologically-active substances was further supported by the finding that the incidence of 

apoptosis in hippocampal slices was increased in the presence of cerebellar slices, but not vice versa. Lastly, 

target specificity of these effects was reflected by the fact that CMCerebellum failed to influence proliferation in 

cortical cultures.  

Hints that the active anti-proliferative/pro-differentiating factor(s) in CMCerebellum were polypeptidergic in nature 

were provided by observations that boiling resulted in a loss of biological activity. Importantly, biological 

potency was retained in CMCerebellum that was subjected to ion exchange chromatography (fractions contained 

material with Mr > 6 kDa), but the anti-mitotic, apoptotic and differentiating activities eluted at different ionic 

strengths. Immunoneutralization of the various fractions was subsequently used in a first attempt to identify the 

active moieties. Our choice of candidates for initial neutralization was based on the differential expression of 

TGF-β2, NGF and BDNF in hippocampal and cerebellar tissues during development (Unsicker et al., 1991; 

Sakamoto et al., 1998; Dieni and Rees 2002; also see Supplementary Fig. 2). Those studies showed that 

neutralization of BDNF and TGF-β2 activities reversed the anti-proliferative actions of CMCerebellum, whereas 

anti-NGF treatment had no effect on this parameter. At the same time, the pro-differentiating effects of 

CMCerebellum were found to be reversed by pre-adsorption of CMCerebellum with anti-TGF-β2, but not with  anti-

BDNF or –NGF.  

Further studies were focused on verifying the roles of TGF-β2 and BDNF in the observed CMCerebellum-induced 

effects on hippocampal cell development. Immunocytochemistry demonstrated that BDNF is strongly 

expressed in cerebellar cultures but only weakly in hippocampal cultures (Supplementary Fig. 2). Treatment of 

hippocampal cultures with exogenous BDNF resulted in an inhibition of BrdU uptake and an increase in 

neuritic lengths and the number of MAP2a/b neurons. Transfection of cells with a BDNF-expressing plasmid 

provided similar results on BrdU incorporation. BDNF effects on neuronal differentiation are known to be 

mediated through TrkB receptors (Klein et al., 1991) and, depending on the strength and duration of the 

stimulus, BDNF either promotes or inhibits neuronal proliferation by activating the Trk-MAPK-ERK pathway 

(Marshall, 1995; Du et al., 2003). This prompted us to examine whether ERK signaling is involved in the 

biological actions of CMCerebellum. Activation of the ERK1/2 pathway was previously shown to block Smad in 

Xenopus embryos (Pera et al., 2003); in contrast to that finding, we here observed UO126, an inhibitor of 

MEK1/2 to negate the actions of CMCerebellum on proliferation. While a plausible explanation for these 

discrepant findings is lacking, the present data is supported by our observation that BDNF treatment can elicit a 

response from the TGF-β reporter gene, 3TP-Lux, as well as the ability of BDNF to increase the cytoplasm-to-

nucleus translocation of Smad2 and Smad4, two key players in TGF-β signaling. At this stage, the exact 

intracellular mechanisms that underpin this cross-talk between BDNF-TGF-β remain unknown, but it is 



 

pertinent to mention that previous authors also obtained evidence for cross-talk (cf. Lutz et al., 2004) or 

interdependence/synergism (cf. Unsicker and Strelau, 2000) between these trophic factors. 

There are three isoforms of TGF-β, each derived from separate genes: TGF-β1 whose expression is normally 

restricted to the choroid plexus, and TGF-β2 and TGF-β3 which are expressed in neurons and glia (Unsicker et 

al., 1991; Pratt and McPherson, 1997). TGF-β1 and TGF-β3 have been implicated in neuroprotection, while 

neurotrophic functions have been ascribed to TGF-β2 and TGF-β3 (Finch et al., 1993; Böttner et al., 2000; 

Pratt and McPherson, 1997). The latter include stimulation (Mahanthappa and Schwarting, 1993) or inhibition 

(Constam et al., 1994) of neurogenesis, or both (Kane et al., 1996), as well as the regulation of neuronal 

differentiation (Ishihara et al., 1994; Abe et al., 1996; Cameron et al., 1998). TGF-β2, the isoform focused on 

in this work, is expressed in the external granular (neurogenic) layer and in Purkinje and radial glia of the 

cerebellum according to a strict temporal pattern and interestingly,  appreciable levels of TGF-β2 are not seen 

in other brain sites of neuronal proliferation (Flanders et al., 1991; Constam et al., 1994; Unsicker and Strelau, 

2000). The expression profiles seen in vivo held true in our cultures: TGF-β2 was much stronger in cerebellar 

vs. Hippocampal cells (Supplementary Fig. 2). These observations, together with those on the distribution of 

TGFβ receptors (TGFβR; see below) imply that ligand/receptor availability govern the specific time window 

within which proliferation and differentiation can occur.   

Members of the TGF-β superfamily signal by sequentially binding to two TGFβR which are transmembrane 

protein serine/threonine kinases; in the case of TGF-β, ligand binding to TGFβR-II activates TGFβR-1; both 

the developing and rat adult hippocampus express TGFβR-II Mrna (Böttner et al., 1996). Receptor-regulated 

SMAD proteins (R-SMADs) serve as TGFβR-1 substrates which, upon phosphorylation, subsequently bind 

Co-Smad4 and translocate to the nucleus where they form a transcriptionally active complex after association 

with DNA-binding partner(s). This last complex binds to promoter elements of target genes whose functions 

include regulation of the cell cycle, differentiation and cell adhesion, positioning, and movement (Moustakas et 

al., 2001; Chang et al., 2002; Shi and Massagué, 2003). For example, cell cycle arrest by TGF-β involves 

suppression of the oncogene Myc, a repressor of the cyclin-dependent kinase inhibitors, p21 and p27 (Seoane 

et al., 2002; Gartel and Shchors, 2003). Supporting the view that TGF-β2 may be responsible for at least some 

of the antimitogenic activity of CMCerebellum we here observed an upregulation of p21 and p27 after CMCerebellum 

treatment of proliferating hippocampal neurons.  

Additional evidence for a key role of TGF-β2 in the hippocampal cell fate-determining actions of CMCerebellum 

was obtained in a series of experiments focused on the TGF-β signal-propagating SMAD proteins. Of the 

various members of the SMAD system, Smad2 and Smad 3 mediate TGF-β signals, but also those of activin, 

another member of the TGF-β superfamily. Smad4 is a requisite partner for transcriptional activity of  Smads2 

and 3, as well as Smads1, 5 and 8 which are substrates of the bone morphogenetic proteins (BMP); the 

generation of specific downstream responses presumably depends on the formation of particular R-SMAD-

Smad4 complexes which then recruit different sequence-specific DNA-binding factors (Massagué and Wotton, 

2000). Here, we demonstrated that CMCerebellum treatment can induce nuclear translocation of EGFP-Smad2 and 

–Smad4. Consistent with previous results showing that Smad2 translocation does not require Smad4 (Liu et al., 

1997), we observed that translocation occurred to a similar extent in cells transfected with the individual 

plasmids or co-transfected with EGFP-Smad2 and GFP-Smad4. Essential roles for Smad3 and Smad4 were 

also demonstrated insofar that expression of the dominant negative forms of either of these molecules 

prevented the transactivation of 3TP-Lux by CMCerebellum and abrogated the anti-proliferative and pro-

differentiating effects of CMCerebellum in hippocampal cultures.  



 

In summary, we have demonstrated that TGF-β2, acting in a paracrine fashion, plays a key role in determining 

hippocampal cell fate, namely by inhibiting cell proliferation and promoting neuronal differentiation. TGF-β2 

is expressed at moderate levels in the adult hippocampus (Unsicker et al., 1991) but is only weakly detectable 

by immunocytochemistry in early postnatal hippocampal cells; however, the developing hippocampus appears 

to have all the signaling machinery required to respond to TGF-β2 of extra-hippocampal origin. Our studies 

also show that BDNF, better known for Trk receptor-mediated promotion of neurogenesis and differentiation 

(Klein et al., 1991; Gao et al., 1995; Pencea et al., 2001), can exert anti-proliferative effects on hippocampal 

granule cell neurons by activating ERK1/2 and subsequently, TGF-β2 signaling pathways. The effects of this 

neurotrophin are also likely attributable to non-hippocampal sources since BDNF expression in the early 

postnatal hippocampus is poor (Friedman et al., 1991). While it remains to be seen whether the reported 

findings represent independent, interdependent, or parallel actions of BDNF and TGF-β2, our experiments 

identify two distally-produced growth factors, sharing common downstream signaling pathways that act in a 

temporally co-ordinated fashion to control neuronal proliferation and maturation. 

 

Acknowledgements 
J.L. was supported by a Max Planck Society Fellowship. The work was partly supported through an exchange 

grant from the DAAD-ICCTI Programme Açčoes Integradas Luso Alemãs (314-Al-p-dr). The authors thank 

Dale Milfay for her interest, encouragement and help, Drs. Oliver Griesbeck, Joan Massague and Kelly Mayo 

for plasmids, Dr. Jane Johnson for antisera, Dr. Nina Rosenqvist for HiB5 cells, Marilyn Tirard for advice on 

the transfection studies, Jutta Jasbinsek and Dieter Fischer for technical help, and Carola Hetzel for editorial 

help.  

 

References 

- Abe, K., Chu P. J., Ishihara, A. and Saito, H. (1996). Transforming growth factor-beta 1 promotes re-

elongation of injured axons of cultured rat hippocampal neurons. Brain Res. 723, 206-209.  

- Alder, J., Lee, K. J., Jessell, T. M. and Hatten, M. E. (1999). Generation of cerebellar granule neurons in vivo 

by transplantation of BMP-treated neural progenitor cells. Nat Neurosci. 2, 535-540. 

- Almeida, O. F. X, Conde, G. L., Crochemore, C., Demeneix, B. A., Fischer, D., Hassan, A. H., Meyer, M., 

Holsboer, F. and Michaelidis, T. M. (2000). Subtle shifts in the ratio between pro- and antiapoptotic 

molecules after activation of corticosteroid receptors decide neuronal fate. FASEB J. 14, 779-790.  

- Altman, J. (1972). Postnatal development of the cerebellar cortex in the rat. 3. Maturation of the components 

of the granular layer. J. Comp. Neurol. 145, 465-513 

- Altman, J. and Bayer, S. A., (1990). Migration and distribution of two populations of hippocampal granule 

cell precursors during the perinatal and postnatal periods. J. Comp. Neurol. 301, 365-381. 

- Angley, C., Kumar, M., Dinsio, K. J., Hall, A. K. and Siegel, R. E. (2003). Signaling by bone morphogenetic 

proteins and Smad1 modulates the postnatal differentiation of cerebellar cells. J. Neurosci. 23, 260-268.  

- Attisano, L. and Wrana, J. L. (2002). Signal transduction by the TGF-beta superfamily.Science 296, 1646-

1647.  

- Ben-Arie, N., Bellen, H. J., Armstrong, D. L., McCall, A. E, Gordadze, P. R., Guo, Q., Matzuk, M. M. and 

Zoghbi, H. Y. (1997). Math1 is essential for genesis of cerebellar granule neurons. Nature 390, 169-172.  

- Borghesani, P. R., Peyrin, J. M., Klein, R., Rubin, J., Carter, A. R., Schwartz, P. M., Luster, A., Corfas, G. 

and Segal, R. A. (2002). BDNF stimulates migration of cerebellar granule cells. Development, 129, 1435-

1442. 



 

- Böttner, M., Krieglstein, K. and Unsicker, K.  (2000). The transforming growth factor-betas: structure, 

signaling, and roles in nervous system development and functions. J. Neurochem. 75, 2227-2240. 

- Böttner, M., Unsicker, K. and Suter-Crazzolara, C. (1996). Expression of TGF-beta type II receptor mRNA in 

the CNS. Neuroreport 7, 2903-2907.  

- Cameron, H. A., Hazel, T. G. and McKay, R. D. (1998). Regulation of neurogenesis by growth factors and

neurotransmitters. J. Neurobiol. 36, 287-306.  
 

- Cameron, H. A. and McKay, R. D. (2001). Adult neurogenesis produces a large pool of new granule cells in 

the dentate gyrus. J. Comp. Neurol. 435, 406-417.  

- Chang, H., Brown, C. W. and Matzuk, M. M. (2002). Genetic analysis of the mammalian transforming 

growth factor-beta superfamily. Endocr. Rev. 23, 787-823.  

- Constam, D. B., Schmid, P., Aguzzi, A., Schachner, M. and Fontana A. (1994). Transient production of TGF-

beta 2 by postnatal cerebellar neurons and its effect on neuroblast proliferation. Eur. J. Neurosci. 6, 766-778. 

- Coskun, V. and Luskin, M. B. (2002). Intrinsic and extrinsic regulation of proliferation and differentiation of 

cells in the rodent rostral migratory stream. J. Neurosci. Res. 69, 795-802. 

- Dieni, S. and Rees, S. (2002). Distribution of brain-derived neurotrophic factor and TrkB receptor proteins in 

the fetal and postnatal hippocampus and cerebellum of the guinea pig. J. Comp. Neurol. 454, 229-240.  

- Dreyfus, C. F. (1998). Neurotransmitters and neurotrophins collaborate to influence brain development. 

Perspect. Dev. Neurobiol. 5, 389-399.  

- Du, J., Cai, S., Suzuki, H., Akhand, A. A., Ma, X., Takagi, Y., Miyata, T., Nakashima, I. and Nagase, F. 

(2003). Involvement of MEKK1/ERK/P21Waf1/Cip1 signal transduction pathway in inhibition of IGF-I-

mediated cell growth response by methylglyoxal. J. Cell Biochem. 88, 1235-1246.  

- Finch, C. E, Laping, N. J., Morgan, T. E., Nichols, N. R. and Pasinetti, G. M. (1993). TGF-

beta 1 is an organizer of responses to neurodegeneration. J. Cell Biochem. 53, 314-322.  
 

- Flanders, K. C., Ludecke, G., Engels, S., Cissel, D. S., Roberts, A. B., Kondaiah, P., Lafyatis, R., Sporn, M. 

B. and Unsicker, K. (1991). Localization and actions of transforming growth factor-beta s in the embryonic 

nervous system. Development. 113, 183-191. 

- Friedman W.J., Olson, L. and Persson, H. (1991). Cells that express brain-derived 

neurotrophic factor mRNA in the developing postnatal rat brain. Eur. J. Neurosci. 3, 688-

697.  

 

- Gao, W. Q., Zheng, J. L. and  Karihaloo, M. (1995). Neurotrophin-4/5 (NT-4/5) and brain-derived 

neurotrophic factor (BDNF) act at later stages of cerebellar granule cell differentiation. J. Neurosci. 15, 2656-

2667.  

- Gao, W. O., Heintz, N. and Hatten, M. E. (1991). Cerebellar granule cell neurogenesis is regulated by cell-

cell interactions in vitro. Neuron 6, 705-715. 

- Gartel, A. L. and Shchors, K., (2003). Mechanisms of c-myc-mediated transcriptional repression of growth 

arrest genes. Exp. Cell Res. 283, 17-21.  

- Ishihara, A., Saito, H. and Abe, K. (1994). Transforming growth factor-beta 1 and -beta 2 promote neurite 

sprouting and elongation of cultured rat hippocampal neurons. Brain Res. 639, 21-25. 

- Kane, C. J., Brown, G. J. and Phelan, K. D. (1996). Transforming growth factor-beta 2 both stimulates and 

inhibits neurogenesis of rat cerebellar granule cells in culture. Dev. Brain Res. 96, 46-51.  

- Klein, R., Nanduri, V., Jing, S. A., Lamballe, F., Tapley, P., Bryant, S., Cordon-Cardo, C., Jones, K. R., 

Reichardt, L. F. And Barbacid, M. (1991). The trkB tyrosine protein kinase is a receptor for brain-derived 

neurotrophic factor and neurotrophin-3. Cell 66, 395-403.  



 

- Kuhn, H. G., Dickinson-Anson, H. and Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: 

age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027-2033.  

- Lin, X., Cui, H. and Bulleit, R. F. (1998). BDNF accelerates gene expression in cultured cerebellar granule 

neurons. Dev. Brain Res. 105, 277-286. 

- Liu, F., Pouponnot, C. and Massague, J. (1997). Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-

inducible transcriptional complexes. Genes Dev. 11, 3157-3167.  

- Lu, J., Goula, D., Sousa, N. and Almeida, O. F. X. (2003) Lonotropic and metabotropic glutamate receptor 

mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic 

N-methyl-D-aspartate receptors. Neuroscience 121, 123-131.  

- Lutz, M., Krieglstein, K., Schmitt, S., ten Dijke, P., Sebald, W., Wizenmann, A. and Knaus, P. (2004). Nerve 

growth factor mediates activation of the Smad pathway in PC12 cells. Eur. J. Biochem. 271, 920-931.  

- Mahanthappa, N. K. and Schwarting, G. A. (1993). Peptide growth factor control of olfactory neurogenesis 

and neuron survival in vitro: roles of EGF and TGF-betas. Neuron. 10, 293-305.  

- Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained 

extracellular signal-regulated kinase activation. Cell. 80, 179-185.  

- Massague, J., Blain, W. and Lo, R. S. (2000). TGFβ signaling in growth control, cancer, and heritable 

disorders. Cell. 103, 295-309. 

- Massague, J. and Wotton, D. (2000). Transcriptional control by the TGF-beta/Smad signaling system. EMBO 

J. 19, 1745-1754.  

- McConnell, S. K. and Kaznowski, C. E. (1991). Cell cycle dependence of laminar determination in 

developing neocortex. Science. 254, 282-285. 

- Minichilo, L. and Klein, R. (1996). TrkB and TrkC neurotrophin receptors cooperate in promoting survival of 

hippocampal and cerebellar granule neurons. Genes Dev. 10, 2849-2858. 

- Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B and Seeburg, P. H. (1994). Developmental and 

regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529-540. 

- Moustakas, A., Souchelnytskyi, S. and Heldin, C. H. (2001). Smad regulation in TGF-beta signal 

transduction. J. Cell Sci. 114, 4359-4369. 

- Mumm, J. S., Shou, J. and Calof, A. L. (1996). Colony-forming progenitors from mouse olfactory epithelium: 

evidence for feedback regulation of neuron production. Proc. Natl. Acad. Sci. USA. 93, 11167-11172.  

- Noraberg, J., Kristensen, B. W. and Zimmer, J. (1999). Markers for neuronal degeneration in organotypic 

slice cultures. Brain Res. Protoc. 3, 278-290.  

- Pencea, V., Bingaman, K. D., Wiegand, S. J. and Luskin, M. B. (2001). Infusion of brain-derived 

neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the 

striatum, septum, thalamus, and hypothalamus. J. Neurosci. 21, 6706-6717.  

- Pera, E. M., Ikeda, A., Eivers, E. and DeRobertis, E. M. (2003). Integration of IGF, FGF, and anti-BMP 

signals via Smad1 phosphorylation in neural induction. Genes Dev. 17, 3023-3028.  

- Pleasure, S. J., Collins, A. E. and Lowenstein, D. H. (2000). Unique expression patterns of cell fate molecules 

delineate sequential stages of dentate gyrus development. J. Neurosci. 20, 6095-6105.  

- Pratt, B. M. and McPherson, J. M. (1997). TGF-beta in the central nervous system: potential roles in ischemic 

injury and neurodegenerative diseases. Cytokine Growth Factor Rev. 8, 267-292.  

- Renfranz, P. J., Cunningham, M. G. and McKay R. D. (1991). Region-specific differentiation of the 

hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell 66, 713-729. 



 

- Ramon y Cajal, S. (1911). Histologie du Systeme Nerveux de l’Homme et des Vertebres Paris: Maloine. 

(reprinted by Consejo Superior de Investigaciones Cientificas, Madrid, 1955).  

- Ross, S. E., Greenberg, M. E. and Stiles, C. D. (2003). Basic helix-loop-helix factors in cortical development. 

Neuron 39, 13-25. 

- Saito, S., Matoba, R., Ueno, N., Matsubara, K., and Kato, K. (2002). Comparison of gene expression profiling 

during postnatal development of mouse dentate gyrus and cerebellum. Physiol. Genomics 8, 131-137. 

- Sakamoto, H., Kuzuya, H., Tamaru, M., Sugimoto, S., Shimizu, J., Fukushima, M., Yazaki, T., Yamazaki, T. 

and Nagata, Y. (1998). Developmental changes in the NGF content in the brain of young, growing, low-birth-

weight rats. Neurochem. Res. 23, 115-120. 

- Schlessinger, A., Cowan, W. M. and Gottlieb, D. I. (1975). An autoradiographic study of the time of origin 

and the pattern of granule cell migration in the dentate gyrus of the rat. J. Comp. Neurol. 159, 149-175. 

- Segal, R. A. and Greenberg, M. E. (1996). Intracellular signaling pathways activated by neurotrophic factor. 

Annu. Rev. Neurosci. 19, 463 -489. 

- Seoane, J., Le, H. V. and Massague J. (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the 

outcome of the p53 response to DNA damage. Nature 419, 729-734.  

- Shi, Y. and Massague, J. (2003).  Mechanisms of TGF-beta signaling from cell membrane to the nucleus. 

Cell. 113, 685-700.  

- Sometani, A., Kataoka, H., Nitta, A., Fukumitsu, H., Nomoto, H. and Furukawa, S. (2001). Transforming 

growth factor-beta1 enhances expression of brain-derived neurotrophic factor and its receptor, TrkB, in 

neurons cultured from rat cerebral cortex. J. Neurosci. Res. 66, 369-376.  

- Suhonen, J. O., Peterson, D. A., Ray, J. and Gage F. H. (1996). Differentiation of adult hippocampus-derived 

progenitors into olfactory neurons in vivo. Nature 383, 624-627. 

- Tao, Y., Black, I. B. and DiCicco-Bloom, E. (1997). In vivo neurogenesis is inhibited by neutralizing 

antibodies to basic fibroblast growth factor. J. Neurobiol. 33, 289-296. 

- Ueki, T., Tanaka, M., Yamashita, K., Mikawa, S., Qiu, Z., Maragakis, N. J., Hevner, R. F., Miura, N., 

Sugimura, H. and Sato, K. A. (2003). A novel secretory factor, Neurogenesin-1, provides neurogenic 

environmental cues for neural stem cells in the adult hippocampus. J. Neurosci. 23, 11732-11740.  

- Unsicker, K., Flanders, K. C., Cissel, D. S., Lafyatis, R. and Sporn, M. B. (1991). Transforming growth factor 

beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44, 613-625.  

- Unsicker, K. and Strelau, J. (2000). Functions of transforming growth factor-beta isoforms in the nervous 

system. Cues based on localization and experimental in vitro and in vivo evidence. Eur. J. Biochem. 267, 

6972-6975. 

- Vaudry, D., Falluel-Morel, A., Leuillet, S., Vaudry, H., and Gonzalez, B. J. (2003). Regulators of cerebellar 

granule cell development act through specific signaling pathways. Science 300, 1532-1534.  

- Vicario-Abejon, C., Cunningham, M. G. and McKay, R. D. (1995). Cerebellar precursors transplanted to the 

neonatal dentate gyrus express features characteristic of hippocampal neurons. J. Neurosci. 15, 6351-6363. 

- Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. and Massague, J. (1994). Mechanism of activation of the 

TGF-beta receptor. Nature. 370, 341-347.  

- Wu, H. H., Ivkovic, S., Murray, R. C., Jaramillo, S., Lyons, K. M., Johnson, J. E. and Calof, A. L.  (2003). 

Autoregulation of neurogenesis by GDF11. Neuron. 37, 197-207. 

- Yoshimura, S., Takagi, Y., Harada, J., Teramoto, T., Thomas, S. S., Waeber, C., Bakowska, J. C., 

Breakefield, X. O. and Moskowitz, M. A. (2001). FGF-2 regulation of neurogenesis in adult hippocampus 

after brain injury. Proc. Natl. Acad. Sci. USA. 98, 5874-5879. 



 

 

 

 

 

 

 

 



 

 

 

Fig. 1. Cerebellar ‘stop’ vs. hippocampal ‘go’ signals. 

(A) Characteristics of hippocampal and cerebellar neuronal cultures under basal conditions, showing 

expression of the neuronal markers TuJ1, Mash1 and Math1, and levels of apoptosis (TUNEL) and 

proliferation (BrdU incorporation). Exposure of hippocampal cells to CMCerebellum reduces BrdU incorporation 

(B); exposure of cerebellar cultures to CMHippocampus stimulates BrdU uptake (C); CMCerebellum does not influence 

proliferation in cortical neurons (D). In hippocampal-cerebellar slice co-cultures, hippocampal cell proliferation 

is reduced in the presence of cerebellar slices, whereas cerebellar cell proliferation is slightly increased in the 

presence of hippocampal tissue (E). Cell death (propidium iodide assay) is increased in hippocampal, but not 

cerebellar, cells in hippocampal-cerebellar slice co-cultures (F). Scale bars in (A) represent 50 µm. Here and in 

all subsequent figures, numerical data refer to means + s.e.m. (n = 4-6). *, ** and *** indicate P < 0.05, 0.01 

and 0.001, respectively.   



 

 

Fig. 2. Hippocampal cultures express markers of cell cycle inhibition and neuronal differentiation after 

incubation in CMCerebellum. 

Dose- and time-dependency of CMCerebellum anti-mitotic effects in hippocampal cultures (A,B); anti-proliferative 

activity of CMCerebellum is abolished by boiling (A). Western blots and/or immunofluorescence showing that 

addition of CMCerebellum to hippocampal cultures induces expression of the cyclin-dependent kinase inhibitors 

p21 and p27 (C) and of the mature neuron markers MAP2A/B and synapsin (D); concomitantly, expression of 

the neuroblast marker doublecortin is decreased (E). Proliferation of GFAP-positive glial cells is not affected 

by CMCerebellum treatment (F).  



 

  
Fig. 3. Immunoneutralization of candidate anti-proliferative and differentiating factors in CMCerebellum. 

CMCerebellum was preadsorbed with the indicated dilutions of anti-NGF (A), BDNF (B), or TGF-β2 (C,D). 

Immunoneutralization of BDNF and TGF-β2 significantly attenuated the anti-proliferative actions of 

CMCerebellum; anti-TGF-β2 significantly attenuated the pro-differentiating effects of CMCerebellum, assessed  by 

MAP2A/B expression (D).  

 



 

 
Fig. 4. Exogenous BDNF replicates CMCerebellum actions through the mediation of ERK1/2 and TGF-β2 
signaling pathways. 
(A) BDNF peptide dose-dependently inhibits BrDU retention in hippocampal cells. (B) Comparison of the first 
two bars shows that hippocampal cells transiently transfected with pBDNF show reduced BrdU incorporation; 
control transfections were done with pEGFP. Inhibition of BrdU uptake is also seen in cells exposed to CM (24 
hours) from cells transfected with pBDNF (third bar). (C) BDNF stimulates maturation of hippocampal 
cultures (increased expression of MAP2A/B and neurons with neurite lengths > two times the diameter of the 
soma). (D) The MEK1/2 inhibitor, UO126 (5 µM), counteracts the anti-proliferative effects of BDNF. (E) 
Increases in the transactivation of the TGF-β-responsive 3TP-Lux reporter gene by BDNF in primary 
hippocampal cells implicates mediation of BDNF actions by TGF-β signaling pathways. (F) Involvement of 
TGF-β signaling pathways in mediating BDNF actions are also indicated by the ability of BDNF to stimulate 
cytoplasm-to-nucleus translocation of Smad2 and Smad4 (cf. Fig. 5C). In this last experiment, cells were 
pretreated with cyclohexamide (10 µM, 1 hour) before addition of BDNF (1 hour) in order to ensure that any 
BDNF effects observed were not confounded by de novo synthesis of other intermediary factors.  



 

 

Fig. 5. Involvement of TGF-β2 signaling pathways in the anti-mitotic and differentiating effects of of 

CMCerebellum.  

Exogenous TGF-β2 reproduces the anti-proliferative (A) and pro-differentiating (B) actions of CMCerebellum in 

primary hippocampal cultures. Exposure of hippocampal cells to CMCerebellum induces nuclear translocation of 

the TGF-β2-specific partner Smad2 and of Co-Smad4, as shown by transient transfection experiments (C); for 

comparison, nuclear translocation after TGF-β2 (1 ng/ml) is shown. Introduction of dominant negative forms 

(∆) of either Smad3 which specifically couples with TGF-β2 or of Co-Smad4 abrogates the anti-mitotic (D) 

and differentiating (E) effects of CMCerebellum on primary hippocampal cells. CMCerebellum also exerts anti-

proliferative effects on hippocamus-derived HiB5 cells (F). CMCerebellum stimulates generation of luciferase from 

the 3TP-Lux reporter in HiB5 cells (G); the latter is abrogated when dominant negative forms (∆) of either 

Smad3 or Co-Smad4 are co-expressed.  

 

 

 

 

 



 

 
TABLE 1 

Multiple factors in  CMCerebellum contribute to its anti-proliferative, apoptotic and differentiation-inducing 

properties. 

Concentrated CMCerebellum was fractionated according to ionic strength and dye affinity using Q and Affigel 

Blue chromatography. The 4 fractions that eluted with NaCl (0.1-1.5 M) differentially influenced proliferation, 

apoptosis and differentiation in primary hippocampal cells. Specifically, fractions with 0.1 M NaCl displayed 

significant anti-mitotic (p < 0.001) and anti-apoptotic (p < 0.05) activities; strong anti-apoptotic activity was 

observed in fractions eluting with 1.5 M NaCl (p < 0.001) whereas those eluting with 1 M NaCl promoted 

neuronal maturation (p < 0.05).  

 

 

 



 

SUPPLEMENTARY FIGURES 

 

 

 

Supplementary Fig. 1. Proliferation and apoptosis in hippocampal-cerebellar slices co-cultures.  

Compared to hippocampal slice monocultures (A), hippocampal-cerebellar slice co-cultures (B) stained for 

BrdU show reduced proliferation in hippocampal slices. BrdU incorporation in cerebellar slices was not 

markedly altered by the presence of hippocampal slices (cf. C,D). Hippocampal slices co-cultured with 

cerebellar slices (F) showed stronger retention of propidium iodide, indicating increased apoptosis, as 

compared to hippocampal mono-cultures (E). Propidium iodide staining in cerebellar slices (G) was not altered 

after co-culture with cerebellar slices (H).  

 

 



 

 

 

 

Supplementary Fig. 2. Differential expression of NGF, BDNF and TGF-β2 in cerebellar and 

hippocampal primary cultures, demonstrated by immunocytochemistry. Note the less intense staining of 

BDNF and TGF-β2 in hippocampal vs. cerebellar cultures.  

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

2.3. Additional data 
Transfection studies and different in vitro periods 

(Results obtained by the authors related to the present chapter) 
 



 

2.3. Additional data 
 
Transfection studies and different in vitro periods 
 
Results from transfection of cells with a dominant negative form of TGFβ receptor or 3TP-Luc and data from 

immunofluorescent staining of primary cerebellar cultures from P7 rats, maintained in vitro for various periods. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

A, B: primary hippocampal cells; C-E: Hib5 cell line. 
A. Transfection of cells with a dominant negative form of TGFβ receptor II (∆TβRII) before treatment with 
CMCerebellum resulted in a significant increase in proliferation, as compared to transfection with TGFβ receptor II 
(TβRII). Similarly, transfection with a dominant negative form of TrkB (∆TrkB) stimulated BrdU incorporation 
after treatment with CMCerebellum; in the latter experiment, EGFP was used as a transfection control. B. Results from 
measurements of MAP2 expression in cultures treated as described in A, show that inhibition of expression of TβRII 
or TrkB prevents CMCerebellum-induced neuronal differentiation. C. HiB5 cells were transfected with the 3TP-Luc 
(Smad pathway) reporter gene and either ∆TβRII or ∆TrkB. Under basal conditions, luciferase activity was inhibited 
significantly in the presence of both dominant negative constructs. D. In a similar experimental design to that shown 
in C, the ability of CMCerebellum to transactivate 3TP-Luc in the presence of ∆TβRII is significantly reduced vs. 
control, whereas in the presence of  ∆TrkB there is no significant effect as compared to control. E. Cells were 
transfected with 3TP-Luc and either TβRII or ∆TβRII before exposure to control or CMCerebellum; results again show 
that functional TβRII is necessary to see CMCerebellum activation of the Smad pathway. 
 



 

 
 
 
 

Results from immunofluorescent staining of primary cerebellar cultures from P7 rats, maintained in vitro for 
various periods. A, B show relative numbers of TGFβ2- and Math1-positive cells, respectively, during the 
course of culture. C, D show results of BrdU incorporation studies and MAP2 immunostaining in cultures (8 
DIV) exposed for 24h to CM Cerebellum obtained from cerebellar cultures that were 19 DIV.  
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3.1. Supplementary background information 
 

Loss of neurons bearing GR and MR in hippocampus is considered to be a primary cause of disinhibited HPA 

activity. GR activation induces apoptosis of granule cells in the hippocampus. In contrast, neuroprotection is 

seen with MR activation (Hassan et al., 1996; Almeida et al., 2000; Macleod et al., 2003). The opposing 

actions of MR and GR on neuronal survival result from their ability to differentially influence the expression of 

members of the Bcl-2 family of pro- and anti-apoptotic proteins. Specifically, in the rat hippocampus, 

activation of GR induces cell death by increasing the ratio of the proapoptotic molecule Bax relative to the 

antiapoptotic molecules Bcl-2 or Bcl-x(L); the opposite effect is observed after stimulation of MR. In addition, 

GR activation increases and MR activation decreases levels of the tumor suppressor protein p53 (a direct 

transcriptional regulator of bax and bcl-2 genes). Similar findings were obtained in neural cell cultures 

(Crochemore et al., 2002).  

In vivo, the hippocampus receives neural inputs from other cortical and subcortical structures, as well as 

humoral inputs from the periphery which, together complicate analysis of the underlying mechanism of 

glucocorticoid-induced cell death. Previous in vivo studies using the synthetic glucocorticoid dexamethasone 

(DEX) were questioned on the basis that because DEX treatment produces ‘chemical adrenalectomy’ (de Kloet 

et al., 1998); adrenalectomy itself induces apoptosis (Sloviter et al., 1993, Sousa et al., 1997). Moreover, at 

least in mice, P-glycoproteins hinder the access of DEX to the brain (Schinkel et al., 1995; Meijer et al., 1998). 

Further, it was previously shown that aldosterone or low levels of corticosterone can prevent adrenalectomy-

indiced apoptosis, probably by activating MR (Sloviter et al., 1995, Woolley et al., 1991).  

 

The above-summarized problem was resolved in an in vitro model, free from all peripheral influences, namely 

primary hippocampal cell cultures. The results described demonstrate the inherent apoptosis-inducing 

properties of DEX which become better evident if the neuroprotective actions mediated by MR are blocked 

pharmacologically. 
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Hoechst 33342  Phenol, 4-[5-(4-methyl-1-piperazinyl)[2,5'-bi-1H-benzimidazol] 

-2'-yl]-, trihydrochloride 
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Abstract  
An important question arising from previous observations in vivo is whether glucocorticoids can directly 

influence neuronal survival in the hippocampus. To this end, a primary postnatal hippocampal culture system 

containing mature neurons and expressing both glucocorticoid (GR) and mineralocorticoid (MR) receptors was 

developed. Results show that the GR agonist dexamethasone (DEX) targets neurons (MAP2-positive cells) for 

death through apoptosis. GR-mediated cell death was counteracted by the MR agonist aldosterone (ALDO). 

Antagonism of MR with spironolactone (SPIRO) causes a dose-dependent increase in neuronal apoptosis in the 

absence of DEX, indicating that nanomolar levels of corticosterone present in the culture medium which are 

sufficient to activate MR, can mask the apoptotic response to DEX. Indeed, both SPIRO and another MR 

antagonist, oxprenoate (RU28318), accentuated DEX-induced apoptosis. These results demonstrate that 

glucocorticoids can act directly to induce hippocampal neuronal death and that demonstration of their full 

apoptotic potency depends on abolition of survival-promoting actions mediated by MR.  



 

Introduction 
Disorders of mood and cognition are linked to hypersecretion of glucocorticoids (GC) resulting from reduced 

efficacy of GC negative feedback.1, 2, 3 One enduring view is that a loss of neurons bearing glucocorticoid (GR) 

and mineralocorticoid (MR) receptors in the hippocampus is the primary cause of disinhibited hypothalamo-

pituiatry-adrenal (HPA) activity; moreover hippocampal cell loss is likely to have repercussions on cognition 

and the regulation of mood and anxiety.  

 

Numerous previous experiments suggest that excessive corticosteroid secretion endangers the survival of 

hippocampal neurons by increasing their vulnerability to concomitant stimuli such as excitatory amino acids, 

calcium influxes and reactive oxygen species.4, 5 The detrimental effects of corticosteroids on the hippocampus 

are backed by imaging studies in humans: there is a strong negative correlation between cortisol levels and 

hippocampal volume in patients with major depression.6, 7 and in subjects with Cushing’s disease;8 reduced 

hippocampal volumes were also recently found in rats treated with dexamethasone (DEX), a GR agonist.9 

While most of the hippocampal shrinkage observed may be due to neuritic atrophy, including dendritic 

impoverishment and synaptic loss,10, 11, 12, other experiments have demonstrated that GR activation activates a 

molecular cascade leading to significant levels of neuronal cell death through apoptotic mechanisms.13 Besides 

apoptosis of mature hippocampal neurons,14 there is also evidence that glucocorticoids interfere with 

proliferation granule neurons of the dentate gyrus.15  

 

MR and GR both bind cortisol/corticosterone, albeit with differing affinities: whereas GR become occupied by 

corticosteroid levels in the high physiological range, MR appear to be tonically active under basal levels of 

HPA activity and there is evidence that activity of the two receptors is coordinated so as to maintain 

endocrinological and behavioral balance.1, 16, 17 We previously proposed that the relative occupation of MR and 

GR also contributes to maintenance of hippocampal cell numbers, since activation of MR counteract 

deleterious glucocorticoid actions on neuronal survival.11, 13, 14 Indeed, the results of earlier studies suggest that 

MR occupation may be essential for the survival of dentate granule neurons.19, 20, 21  

 

The interpretation of previous data showing that DEX can induce neuronal cell death in animals has been 

questioned on the basis that because DEX poorly penetrates the brain  and produces ‘chemical adrenalectomy’ 

by suppressing pituitary ACTH secretion, the observed cell loss may reflect abolition of MR activation rather 

than a direct effect of GR activation.1 The work reported here re-addresses this issue by using a 

pharmacologically malleable model, namely primary hippocampal cell cultures. Our results demonstrate the 

inherent apoptosis-inducing properties of DEX which become better evident if neuroprotective actions 

mediated by MR are blocked.  



 

Materials and Methods 
Experiments on animals were conducted in accordance with the European Communities Council Directive No. 

86/609/EEC and local regulations. Hippocampal tissue was obtained from male rat pups, aged 4-5 days (Wistar 

rats; Charles River, Sulzfeld, Germany). Pilot in vivo studies in rats of this age showed an acute injection of 

DEX (100 µg/kg, i.p.) to result in a 60% increase in apoptotic cells in the hippocampus (measured by TUNEL 

histochemistry) within 24 h.  

Tissue and cell dissociation: Rat pups were rapidly decapitated their brains carefully dissected out and placed 

in ice-cold Neurobasal/B27 solution (Invitrogen, Karlsruhe, Germany). Hippocampi were dissected out and 

freed from meninges and vascular tissue excess under a dissecting microscope, before being sliced (ca. 250 µm 

thick) on a McIlwain tissue-chopper. Slices were briefly washed in ice-cold Neurobasal/B27 medium, 

centrifuged briefly (70 g; 20° C) and resuspended in a solution containing papain; to this end, the Papain 

Dissociation Kit (Worthington Biochemical Corp., Freehold, NJ, USA) was used with some minor 

modifications to the manufacturer’s suggested protocol (see ref. 22). Tissue digests were triturated gently and 

transferred to a medium consisting of Neurobasal/B27 medium, 1% fetal calf serum and 0.2% bovine serum 

albumin (BSA) at 37° C, filtered through a sterile nylon mesh (30 µm pore-size) and centrifuged at 200 g (20° 

C; 5 min.) before resuspension in Neurobasal/B27 medium containing enzyme inhibitor (ovomucoid/0.005% 

DNAse; Worthington). Aliquots of this suspension were run through a 1-step ovomucoid/BSA density gradient 

(centrifugation at 70 g at 20° C for 5 min.), taken up in Neurobasal/B27 medium containing basic fibroblast 

growth factor (bFGF) (10ng/ml), Glutamax I (0.5mM) and kanamycin (100µg/ml) (all from Invitrogen) and 

plated on gelatin/PDL-coated glass coverslips (Superior, Bad Mergentheim, Germany) at a density of 450 + 33 

cells/mm2. Cultures were maintained at 37° C, under 5% CO2 and 99% relative humidity.  

Treatments: Cells were exposed to drugs after 6 days in vitro; exposure to experimental drugs was for 48 h. 

The GR agonist (DEX) was obtained in aqueous form (Fortecortin®, Merk, Darmstadt, Germany) and used at 

doses of either 10-6 M or 10-5 M.  The prototypic MR agonist aldosterone (ALDO) was purchased from Sigma 

(Deisenhofen, Germany) and used at a dose of 10-5 M (survival studies) or 10-8 M (translocation experiments) 

after solution in ethanol. Two MR antagonists were used alone or as co-treatments with DEX: spironolactone 

(SPIRO; Sigma) was used at between 10-9 and 10-5 M after solution in ethanol; oxprenoate (RU28318), 

purchased from Tocris Cookson (Bristol, UK), was used at dose ranging from 10-9-10-5 M after direct solution 

in growing medium. Final ethanol concentrations in medium were 0.01%. In all experiments, the position of 

wells subjected to control or drug treatments was randomized; each experiment was performed on at least 3 

independent occasions. 

Hoechst staining: The total number of cells per unit area was determined by counting fluorescent nuclei 

(Hoechst-stained). Briefly, cells were fixed in ice-cold 4% paraformaldehyde (10 min.), washed in PBS and 

incubated with Hoechst 33342 (1 µg/ml; Molecular Probes, Leiden, The Netherlands) for 45 min. in the dark. 

After rigorous washing (PBS), coverslips were mounted in anti-fading medium before counting using the cell 

counting parameters described below. 

Immunocytochemistry: For characterization of cultures by light microscopy, cells were fixed in ice-cold 4% 

paraformaldehyde (10 min.) and incubatzed with the following primary antibodies: mouse anti-microtubule-

associated protein 2 (MAP2; Roche, Mannheim, Germany; 2 µg/ml), mouse anti-myelin basic protein for 

oligodendrocytes (MBP; Chemicon, Temecula, CA; 1:500) and rabbit anti-glial fibrillary acidic protein 

(GFAP; DAKO, Hamburg, Germany; 1:500). Peroxidase-conjugated antibodies (Sigma) and 3,3´-

diaminobenzidine tetrahydrochloride (DAB; 0.025%; Sigma) were used to visualize immunoreactive elements. 

Specimens were examined on an Olympus BX-60 microscope, video-linked to a computer equipped with 



 

image-processing software (ImagePro, Maryland, USA). Cell counts were performed on 10 randomly-chosen, 

equally-sized microscopic fields from 5 coverslips under 400X magnification. Data representing numbers of 

immunolabeled cells are expressed relative to total number of cells labeled with Hoechst dye (see above).  

Electron microscopic analysis: For classical electron microscopic characterization of the cultures, cells were 

fixed in 1% paraformaldehyde/1% glutaraldehyde in 0.1 M phosphate buffered saline (PBS; pH 7.4) for 1 h. 

Thereafter, the cells were treated with 1% osmium tetroxide, dehydrated in a graded series of ethanol and flat-

embedded in Epon resin.23 Serial ultrathin sections were cut on an ultratome  and contrasted with uranyl acetate 

and Reynold’s lead citrate. Ultrastructural evaluation was carried out with a Hitachi transmission electron 

microscope. 

Detection of apoptosis by TUNEL histochemistry: TdT-mediated dUTP nick end labeling (TUNEL) 

histochemistry was performed on 4% paraformaldehyde-fixed cells, as described.14, 24 TdT was purchased from 

MBI Fermentas (Heidelberg, Germany). The above-detailed morphometric procedures were use to quantify 

numbers of apoptotic (TUNEL-positive) as a proportion of Hoechst-stained cells.  

Reverse-transcriptase PCR: To detect GR and MR mRNA transcripts in the cultures, total RNA, free from 

chromosomal DNA contamination, was isolated (RNAeasy kit, Qiagen, Hilden, Germany) and reverse 

transcribed with SUPERSCRIPTTM II RNA H-reverse transcriptase (Life Technologies) using custom-

synthesized oligo-dT12-18 primers (MWG Biotech, Ebersberg, Germany). Published primers25  were used and 

amplication conditions were denaturation for 40 s at 94 C, annealing for 1 min. at 62° C (MR) or 40° C (GR), 

and primer extension for 2 min. at 72° C; optimal amplifications of MR and GR mRNA were achieved after 35 

and 25 cycles, respectively.  

Nuclear translocation of MR and GR: After 6 days in vitro, cells were exposed to either DEX or ALDO (both 

at 10-8 M) for 6 h. Cells were then either prepared for detection of MR and GR by immunofluorescence 

(fixation as before) or Western blotting, using rabbit anti-glucocorticoid receptor (GR; Santa Cruz 

Biotechnology, Heidelberg, Germany; 1:1,500) or rabbit anti-mineralocorticoid receptor (MR; Santa Cruz; 

1:1,500). Fluorescence images from DEX- or ALDO-treated cells were compared to those from non-treated 

cells; the prediction was that receptor immunoreactivity in the treated cells would be predominantly localized 

to cell nuclei. For Western blots, cells were lysed and processed as described previously.26  

Statistics: All numerical data, shown as means + SEM, was subjected to ANOVA and appropriate post-hoc 

analyses (SigmaStat 3). The level of significance was preset at P < 0.05.  



 

Results 

Model validation 

Most previous investigations on corticosteroid effects on hippocampal cell survival have been performed in 

adult rats or on embryonic rat hippocampal cell cultures; in the present experiments, hippocampal cell cultures 

were prepared from postnatal rats, aged 4-5 days. Preliminary in vivo studies showed that the hippocampi of 

rats of this age are sensitive to the apoptosis-inducing actions of DEX, showing a 60% increase in cell death 

following an acute injection of the drug (data not shown).  

Cells established dense networks in vitro, with some 25-30% of cells staining positively for MAP-2, a marker 

of mature neurons (Fig. 1a, b) as well as for GFAP (astrocytes; Fig. 1c) and myelin basic protein 

(oligodendrocytes; Fig. 1d). Electron microscopic analysis of the cultures revealed cells that displayed 

morphological features typical of neurons (Figs. 1e-j).  

Consistent with results from in vivo studies,27, 28 cells in culture were seen to express MR and GR mRNA 

(detected by RT-PCR analysis; Fig. 2a) as well as receptor protein (immunofluorescence images in Figs. 2b, c). 

Under basal conditions, MR were localized in both the cytoplasmic and nuclear compartments, probably owing 

to the low levels of cortisol in the medium supplement (B27); treatment with ALDO resulted in a greater 

intensity of immunoreactive signal in the nucleus. In contrast, GR in untreated cells were predominantly 

located in the cytoplasm, and were only found in the nucleus after exposure to DEX. The morphological 

localization of GR was corroborated by evidence obtained by Western blot analysis of cytoplasmic and nuclear 

fractions; Fig. 2d shows that DEX treatment results in a conspicuous re-location of GR from the cytoplasmic to 

the nuclear compartment. Together these data indicate that the receptors expressed in vitro are likely to serve 

their roles as ligand-activated transcription factors. 

DEX induces neuronal cell death in an ALDO-reversible manner  

Treatment of hippocampal cultures with the GR agonist DEX (10-5 M) doubled the relative number of TUNEL-

positive (apoptotic) cells within 48 h (P < 0.05; Fig. 3a). A significant proportion of these apoptotic cells were 

mature neurons, as judged by the reduction in the MAP-2 immunoreactive sub-population (P < 0.05; Fig. 3b). 

Whereas exposure to ALDO (10-5 M) did not affect the incidence of apoptosis or the survival of mature 

neurons, the MR agonist significantly attenuated the apotosis-inducing actions of DEX (P < 0.5; Fig. 3). Thus, 

consistent with our previous findings,13, 14 MR occupation counteracts the actions GR.    

MR antagonism accentuates apoptotic actions of DEX  

Blockade of MR with spironolactone (SPIRO; 10-8-10-5 M), resulted in a dose-dependent increase in levels of 

apoptosis (Fig. 4a). The less-potent MR antagonist oxprenoate (RU28318)29, 30, 31 only stimulated apoptosis 

when used at 10-5M, the highest doses tested (Fig. 4b). The apoptotic actions of SPIRO and RU28318 most 

probably result from their counteraction of the pro-survival effects of the nanomolar (MR-activating) levels of 

corticosterone in the B27/Neurobasal medium; these results indicate that tonic occupation of MR is essential 

for neuronal survival. The view that MR activation promotes cell survival was boosted by the finding that both 

MR antagonists synergized with a sub-optimal dose of DEX (10-6 M; 10-fold lower than the dose used in the 

previous experiment) to induce apoptosis; our observations show that manifestation of the full apoptotic 

potential of GR agonists in vitro can be masked by MR agonists that are inadvertently present in the medium. 

Comment: What’s the % of 
these? And oligodendrocytes? 

Comment: Ossie, I think we 
need more detail in the description 
of these. Figues i) and j) represent 
astrocytes, not neurons. 

Comment: This might be due to:
1- special vulnerability of neurons 
to DEX. 
2- Alteration in neuronal 
differentiation? – less likely 
Can we explore this more, e.g. by 
having the % of GFAP and MBP 
cells? 



 

Discussion 
While a number of potential molecular mechanisms may be proposed to explain the basis of impaired 

glucocorticoid feedback in the hippocampus, the impact of glucocorticoid-induced destruction of the neural 

substrate mediating this feedback has been a recurring theme in psychoneuroendocrinology over the last 

decade. A series of in vivo studies in rats previously demonstrated that the GR agonist DEX stimulates cell 

death in the hippocampus as well as in other selected brain regions such as the striatum and substania nigra.13, 

14, 32, 33 However, it remains unclear as to whether these effects occur directly or whether gluocorticoids merely 

exacerbate the neurotoxic effects of other more potent insults such as excitatory amino acids and reactive 

oxygen species.34, 35, 36 

 

Direct neural actions of DEX have also been questioned on the basis of data showing that DEX has limited 

access to the brain.1 Observations that adrenalectomy leads to apoptosis in the hippocampus,19, 20, 37 together 

with the fact that DEX treatment leads to a state of ‘chemical adrenalectomy’,1  boost the argument against 

direct effects of DEX on hippocampal cell survival. On the other hand, significant levels of apoptosis can be 

observed within 24 hours of a single injection of DEX,14 whereas the effects of adrenalectomy display different 

temporal and spatial dynamics.37, 38, 39 Further, the apoptotic effects of DEX were shown to be blocked with a 

GR antagonist;32 GR are transcription factors and we previously that their activation by DEX can trigger a 

molecular death cascade in the hippocampus and cell cycle arrest in a neural cell line.13, 26  

 

The issue of whether DEX acts directly on neurons to stimulate their demise cannot be resolved easily in vivo. 

We therefore attempted to address this question in primary neuronal cultures derived from early postnatal rats. 

These cultures were carefully characterized and their suitability for our studies verified, especially with respect 

to ontogeny of elements involved in the regulation and responsiveness of the HPA axis,27, 30, 41 as well as to age-

related differences in the in vivo responses to the cell death-inducing actions of corticosteroids.14, 42 Exposure of 

cultures to DEX at a dose of 10-5 M led to a significant loss of mature (MAP-2 positive) neurons, an event 

accompanied by a significant increase in the incidence of apoptosis. The results obtained in this isolated 

hippocampal neuron model, in which DEX can directly access individual cells, therefore show that DEX has 

the intrinsic potential to induce neuronal cell death, and that its effects occur independently of the HPA axis 

and other confounding factors.  

 

The apoptotic actions of DEX (10-5 M) were shown to be significantly attenuated when the MR agonist ALDO 

(10-5 M) was added to the culture medium. This finding is consistent with previous results obtained in rats.11, 13, 

14 Since ALDO on its own did not alter apoptotic cell and neuronal numbers, our results add currency to the 

view that MR can trigger neuroprotective mechanisms; the latter concept emerged from a number of older 

studies which showed that either ALDO or low, MR-activating levels of corticosterone could prevent or 

reverse adrenalectomy-induced apoptosis.18, 19, 39 Notably, the effects of adrenalectomy cannot be ameliorated 

by the administration of DEX.20, 43  

 

Chemically-defined media of the sort used in these studies have significant advantages over serum-containing 

media. Nevertheless, our experiments were somewhat confounded by the presence of corticosterone 

(nanomolar range, sufficient to activate MR) in the medium. This factor most probably accounts for our 

observation that the MR antagonist SPIRO increased neuronal cell death in a dose-dependent (10-7-10-5 M) 

fashion, although another (weaker) MR antagonist (RU28318) did not alter basal levels of apoptosis. Thehis 



 

finding supports the interpretation that tonic activation of MR is essential for the survival of hippocampal 

neurons.  

 

In view of the above results, we hypothesized that blockade of ‘medium-activated’ MR would accentuate the 

effects of GR stimulation; the hypothesis was proven correct by analysis of apoptosis after concomitantly 

treating cultures with either SPIRO or DEX and a sub-optimal dose of DEX: whereas DEX at a dose of 10-6 M 

did not induce cell death, its combination with a range of doses of SPIRO or RU28318 (10-8-10-5 M) 

significantly exacerbated the occurrence of neuronal apoptosis. Besides acting on MR, SPIRO can also 

antagonize androgen and progesterone receptors;44 however, since similar results were obtained with RU28318, 

a drug with greater selectivity for MR, our inference that neuroprotective effects are mediated by MR is 

warranted.  

 

In summary, evidence gained in a cellular model shows that glucocorticoids can lead to hippocampal cell death 

without the participation of other aggravating factors, so long as their effects are not masked by previously 

activated MR. The presented results also bolster the view that hippocampal neuronal survival depends on the 

tonic occupation of MR. Further, insofar that these data demonstrate the opposing roles of MR and GR in 

hippocampal cell survival, they add credibility to the ‘receptor balance hypothesis’ that was generated from 

endocrinological and behavioral studies.1, 17 If glucocortiocid-induced hippocampal cell losses do indeed 

contribute to impaired regulation of the HPA axis, eventually leading to mood, anxiety and cognitive 

impairments, therapeutic tools designed to selectively activate MR or to specifically improve their signaling 

efficiency in neurons45, 46 would be a worthwhile strategy. 
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Figure 1. Immunocytochemical and ultrastructural characterization of primary postnatal rat 
hippocampal cultures.  
 
(a) Low magnification field view of primary rat hippocampal cultures (5 days in vitro), immunostained with 
microtubule-associated protein 2 (MAP2). (b) High power micrography showing differentiated MAP2-
immunolabeled neurons. (c) High-power micrograph of astrocytes immunostained for glial fibrillary protein 
(GFAP). (d) An immunoreactive oligodendrocyte labeled with anti-myelin basic protein. Scale bars represent 
120 µm (a) and 30 µm (b-d). (e) Medium-power electron micrograph of a cultured cell showing typical features 
of a neuron. Note the large nucleus (Nu) within the perikaryon (P) richly endowed with free and membrane–
bound ribosomes. (X10,000). (f) Electron micrograph showing numerous ribosomes (arrow) and cysts of a 
Golgi-complex (arrowhead) within the neuronal cytoplasm (X28,000). (g) Demonstration of a growing 
neuronal process (P) exhibiting bundles of microtubules and mitochondria (X 13,000). (h) High-power view of 
a neuronal process with microtubules organized in a parallel fashion (arrow). Note the association of ovoid 
transit vesicles (arrowheads) with microtubules (X32,000). (i) High power micrograph of an astrocyte with a 
prominent bundle of glial filaments within its cytoplasm (arrows) (X40,000). (j) Example of a neuronal 
perikaryon (P) lying adjacent to a glial process (GP) showing glial filaments (arrowhead). Also shown is a 
neuronal process (NP) growing along the surface of the glial element. The arrow points to a synaptic vesicle-
sized element (X30,000).  



 

 
 
 

Figure 2. Glucocorticoid (GR) and mineralocorticoid (MR) receptor expression and translocation in 

hippocampal cell cultures. (a) RT-PCR demonstration of MR and GR expression in primary hippocampal 

cultures maintained for 5 days in vitro. The transcript size of each receptor corresponded with previously-

published data.25 (b) Low-power photomicrograph showing neurons displaying GR immunoreactivity. Note 

that the cells were treated with DEX (10-7 M) for 6 h before fixation, and that the GR signal is mainly located in 

nuclei, indicating translocation of the receptor from its normal cytoplasmic (unliganded) location. (Scale bar 

represents 60 µm). (c) High power view of a neuron displaying MR-immunoreactivity in its nucleus following 

exposure to the prototypic MR agonist aldosterone (10-8 M) for 6 h. (Scale bar represents 15 µm). Note that a 

small proportion of neurons and glia displayed MR immunoreactivity in their cytoplasma in the absence of 

exogenous ligand (data not shown), probably owing to the low concentrations of cortisol present in the growing 

(B27) medium. (d) Further demonstration (Western blot) that DEX treatment (10-6 M) mobilizes 

immunoreactive GR to the nucleus.  
 



 

Figure 3. Opposing effects of GR and MR ligands on hippocampal neuron  
 
survival. (a) In contrast the effects of the MR agonist aldosterone (ALDO;10-5 M), the GR ligand 

dexamethasone (DEX; 10-5 M) induces significant levels of apoptosis in hippocampal cultures. The apoptotic 

potential of DEX is significantly attenuated when cultures are concomitantly treated with ALDO and DEX. (b) 

The size of the neuronal (MAP-2 positive) subpopulation of cells in the cultures is significantly reduced in the 

presence of DEX (10-5 M) and unaffected by ALDO (10-5 M); the number of MAP-2 positive neurons is not 

significantly different from that observed in controls when cultures are exposed both ALDO and DEX. It is 

inferred from the mirror images of the data shown in (a) and (b) that DEX targets neurons for apoptotic death 

in an ALDO-reversible manner.  



 

 

 

Figure 4. Blockade of MR compromises neuronal survival and predisposes neurons to DEX-induced 
apoptosis. As compared to the previously used dose of dexamethasone (DEX;10-5 M; Fig. 3), a ten-fold lower 
dose of the GR agonist does not cause significant apotosis in hippocampal cultures (cf. second and third bars in 
a and b). Reasoning that this may have resulted from nanomolar (MR-activating) concentrations of  levels of 
corticosterone in the culture medium, cells were exposed to two MR antagonists, spironolactone (SPIRO; a) 
and RU28318 (b); these compounds display slightly different pharmacological profiles.29, 30, 31 In the absence of 
dexamethasone (DEX), addition of SPIRO (10-8-10-5 M) dose-dependently increased the incidence of apoptosis 
(a); RU28318 at a dose of 10-5 M also significantly stimulated apoptosis (b). In combination with the apoptosis 
non-inducing dose of DEX (10-6 M; a and b), all doses of SPIRO and RU28318 led to levels of cell death that 
were significantly greater than those seen after treatment with the antagonist alone, i.e. blockade of MR with 
either SPIRO or RU28318 increased neuronal sensitivity to the apoptotic actions of DEX.  

 
 



 

 

 

 

 

 

 

 

 

 

 

3.3. Additional data 

Glucocorticoid-induced neuronal apoptosis: sparing of immature 

neurons and sacrifice of mature neurons 
(Results obtained by the authors related to the present chapter) 

 



 

3.3. Additional data 

 

Glucocorticoid-induced neuronal apoptosis: sparing of immature neurons and sacrifice of 

mature neurons 
Immature and mature (post-mitotic) neurons can be distinguished using immunochemical markers. Anti-nestin 

labels neuronal prercursors, whereas anti-doublecortin (DCX) labels neruroblasts (early postmitotic neurons) 

and anti-MAP-2ab and anti-NeuN label mature neurons. In addition, astrocytes can be stained with anti-GFAP. 

These markers were used to address the following question in primary postnatal hippocampal cultures: does 

glucocorticoid treatment target immature or mature neurons for apoptosis? This question deserves attention in 

view of data showing that dexamethasone (DEX) kills ‘hippocampal cells’, while at the same time reductions 

in neurogenesis seen after exposure to stress may be attributed to the elevated levels of corticosteroids 

experienced during and after a stressful stimulus. In these experiments, analysis was facilitated by including a 

pharmacological inhibitor of mitosis, arabosinide-C (Ara-C).  



 

 

GR antagonists RU38486 and J2700, as well as geldanamycin (gel, an inhibitor of the heat shock protein 90 

GR chaperone) attenuate DEX-induced apoptosis in hippocamapl primary cultures. 

 

 

 



 

 

Semi-quantitative chemo-phenotyping of primary hippocampal cultures using various markers (Nestin 
for neural precursors, Doublecortin for neuroblasts, TuJ1 for early-mature neurons, MAP2 and NeuN for 
mature neurons, and GFAP for astroglial cells).  



 

 

Change in relative numbers of cells displaying various phenotypes after treatment with DEX. 



 

 

 

 

 

 

 

 

 

 

 

 

CChhaapptteerr  44  
 

 
Ionotropic and metabotropic glutamate receptor mediation 

of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role 
of synaptic NMDA receptors 

 
 

 

4.1. Supplementary background information 

4.2. Lu J., Goula D., Sousa N. and Almeida O.F.X. (2003) Neuroscience. 121: 123-131  



 

 

 

 

 

 

 

 

 

 

 

4.1. Supplementary background information 
 



 

4.1. Supplementary background information 

 
Activation of glucocorticoid receptors (GR) leads to neuronal atrophy and death, a phenomenon that has been 

linked to disorders of mood and cognition as well as neuroendocrine dysregulation (Abraham et al., 2001; 

Sousa and Almeida, 2002). Our previous studies have clearly demonstrated that glucocorticoid-induced cell 

death in the hippocampus is apoptotic in nature as judged by morphology and the involvement of specific 

genetic programmes (Almeida et al., 2000). Several different, although not mutually exclusive, mechanisms 

have been implicated in these GR-mediated neurodegenerative effects; these include reduced glucose uptake by 

neurons, increases in the extracellular concentrations of glutamate with concomitant elevations in intracellular 

Ca2+ levels (Sapolsky, 2000).  
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General Discussion 
A central problem in developmental neurobiology concerns how the balance between neuronal birth, 

differentiation and death are maintained in the CNS, what factors and regulatory mechanisms might be 

involved in these processes, and how neuronal development is co-ordinated spatially and temporally. These 

questions formed the basis of the work reported in this thesis.  

 

Primary hippocampal granule cell cultures were used to mimic the early postnatal period when the transition 

from high proliferation to differentiation occurs (i.e. when the subgranular layer [SGZ] begins to appear); this 

period represents a critical developmental window when pro-neuronal factors increase and pro-proliferation 

factors decrease, as well as a time when program cell death is prominent. Also used were slightly older 

cerebellar granule cells cultures originating from animals in which the external granular layer (EGL) had begun 

to disappear. Together, these model systems served to investigate the regulation of proliferation and neuronal 

differentiation by secreted growth factors, glucocorticoids and NMDA. Attempts were also made to understand 

the underlying molecular mechanisms of these processes. Although not directly addressed in the main work 

presented here, the importance of spatial arrangements is illustrated in the results described in Appendix 1 

based on an in vivo study on the rat hippocampus.  

 

5.1. Experimental approaches 
In order to facilitate analysis of the factors and mechanisms regulating neuronal development, experiments 

were carried out using in vitro models: primary dissociated hippocampal and cerebellar cell cultures, 

hippocampal and cerebellar slice cultures, and a neural cell line (HiB5) derived from hippocampal progenitor 

cells. Depending on the specific question being addressed, the primary cell and slice cultures were obtained 

from rats of different postnatal developmental stages. While more amenable to genetic manipulations and 

pharmacological treatments, and providing for convenient replication of experiments in a given set of neural 

phenotypes under controlled environmental conditions, these model systems have a number of obvious 

limitations however. Primary concerns associated with such systems is the lack of the neural matrix found in 

vivo, and the high likelihood that the intercellular connections seen do not faithfully represent those found in 

situ; the latter problem may be accentuated by the fact that mature neurons are less likely to survive the 

dispersal and cultivation conditions than immature ones. Further, at least with respect to the dissociated cell 

cultures, between-experiment reproducibility can be easily compromised by variations in the starting quality 

and cellular composition (e.g. relative numbers of neurons to glia, progenitor versus mature neurons) of the 

cultures. In light of these reservations, it is essential that extrapolations from the situation in vitro to that in vivo 

be made with extreme caution.  

 

Immunohistochemical detection of cells incorporating the thymidine analogue, bromodeoxyuridine (BrdU), 

served to gain an insight of cell proliferation in the studies described here. This widely used method is more 

convenient than the traditional one involving the labelling of cells with 3H-thymidine, but is associated with the 

risk of detecting cells entering apoptosis unless it is used with extreme caution (e.g. discarding BrdU-labeled 

cells showing nuclear condensation and fragmentation and membrane blebbing). In some instances, mitosis 

was confirmed with the aid of Hoechst 33342 dye which exclusively labels DNA, allowing the identification of 

cell nuclei.  

 



 

Neurons, in various stages of maturity were identified immunocytochemically with the aid of specific antisera. 

Immature neurons (neuroblasts) were marked with anti-doublecortin, anti-TuJ1, anti-MASH and anti-Math1, 

whereas mature neurons were marked with anti-MAP2a,b. The majority of non-neuronal cells in cultures 

showed the morphological characteristics of astro-glial cells, and were labelled with anti-GFAP.  

 

Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) was used to detect apoptotic cells. 

Appendix 2 provides a detailed critique of the various methods available to detect apoptosis; despite several 

reservations, TUNEL still remains the most reliable and commonly-used method for detection of apoptosis. 

 

Appendix 2 also includes a discussion about methods for the quantification of cell numbers in a given 

physiological state, using stereological tools. The latter, which are easily applied to histological sections were 

not used in the cell-based studies described in the main work described here. Rather, we resorted to a variation 

of the Abercrombie counting method, and data are usually presented with respect to total number of cells in 

several randomly-chosen, but representative, microscopical fields. 

 

Both pharmacological and gene transfection approaches were applied to identify some of the mechanisms 

controlling neuronal birth, maturation and death. Transfections were done using a non-viral approach, mainly 

with the help of Lipofectamine 2000™ and, in some cases, the cationic polyethylenimine (PEI). The precise 

conditions and ratio of DNA:transfectant was carefully determined for primary neurons, assuring good survival 

of cultures and with a reasonable rate of transfection (ca. 5%) which provided reliably quantifiable results 

(counts of green fluorescent protein (GFP)-labeled cells, translocation of GFP-fused proteins from the 

cytoplasm to nucleus, and reporter gene assays).  

 

5.2. Endocrine and paracrine factors in neural development 
As described in the General Introduction (Chapter 1), neural development is regulated by temporally and 

spatially differentially distributed factors, including intrinsic factors like bHLH transcription factors (eg. 

Mash1, Math1, NgN), cell cycle regulators (e.g. p21, p27, p57) and extrinsic factors like neurotransmitters such 

as glutamate, cytokines (e.g. TGFβ, BMP), neurotrophins (e.g. BDNF, NGF), and hormones (e.g. 

glucocorticoids). The neurotransmitters, cytokines and neurotrphins mainly function by autocrine or paracrine 

mechanisms via membrane receptors, whereas glucocorticoid action are mediated by nuclear receptors; all of 

these extrinsic signals can trigger a cascade of responses resulting in the induction of proliferation, 

differentiation and apoptosis (or survival) by the intrinsic factors. The pro-neural proteins (eg. Mash1, Ngn2) 

can promote neuronal differentiation by downregulating the cell cycle by activating expression of cdk 

inhibitors (e.g. p27, p21, p57) or by  upregulating the expression of neuronal differentiation genes (e.g. 

NeuroD) and inhibiting gliogenic factors (e.g. LIF, CNTF, BMP) (Bertrand et al., 2002). For example, p27 

promotes gliogenesis in the absence of co-expressed bHLH proteins (Ohnuma et al., 2002) and neurotrophins 

facilitate neuronal differentiation by inducing the expression of Mash1 and Math1 (Ito et al., 2003); BMP2/4 

and epidermal growth factor (EGF) were shown to decrease expression of the pro-neural molecule Mash1 

(Ahmad et al., 1998; Shou et al., 1999); the mGlu5 receptor is present in zones of active neurogenesis (e.g. 

such as the cerebellar EGL and hippocampal SGZ) – mGlu5.R expression is highest during the first postnatal 

week (Di Giorgi Gerevini et al., 2004), correlating with high levels of neurogenesis and glutamate release and 

probably involving calcium activation of cell cycle inhibitors (Benitez-Diaz et al., 2003). Taken together, 

neural development is highly programmed with highly temporally and spatially coordinated interactions 



 

between intrinsic and extrinsic factors - increased production of specific neurotrophins or neurotransmitters 

appear to increase pro-neural transcription factors and cell cycle inhibitors which, in turn, enhance other pro-

neural factors and decrease pro-proliferation factors. 

 

Although many studies have addressed the above-mentioned neuronal development pathways, little is known 

about the interactions between neurotrophins, cytokines, neurotransmitters and hormones in the regulation of 

proliferation, differentiation, survival and death. The many similarities between hippocampal and cerebellar 

granule cells raise interesting questions about the timing of the disappearance of the EGL and appearance of the 

neurogenic SGZ; are these areas controlled by common intrinsic and extrinsic factors and, if so, what is their 

identity, and what mechanisms do they exploit? This study focussed on candidate extrinsic factors, in particular 

glucocorticoids, NMDA, BDNF and transforming growth factor β2 (TGFβ2).   

 

Interactions between glucocorticoid and several growth factors have been previously described. For example, 

glucocorticoid treatment increases NGF, NT-3, trkA, trkB, trkC and bFGF mRNA expression (Roskoden et al., 

2004), although the same treatment decreases proliferation of hippocampal and cerebellar granule cells and 

promotes premature cessation of precursor cell formation in the EGL (see Table 3 in General Introduction). In 

contrast, adrenalectomy decreases NGF, BDNF and NT-3 mRNA expression (Barbany and Persson, 1992), and 

enhances cell proliferation and delays disappearance of EGL in cerebellum while promoting hippocampal 

granule cell birth (Table 3 in General Introduction). One open question with respect to these studies is whether 

glucocorticoids exert their anti-proliferative actions by activating pro-neural factors or by direct influences on 

regulators of the cell cycle.  

 

Glucocorticoid actions are mediated by two nuclear receptors, mineralocorticoid (MR) and glucocorticoid (GR) 

receptors. Whereas activation of MR or blockade of GR promotes cell survival, activation of GR or antagonism 

of MR leads to hippocampal granule cell death. As already described in the General Introduction (Chapter 1), 

GR activation upregulates the expression of NMDA.R, which are strongly implicated in neurotoxicity (Weiland 

et al., 1997). At the same time, GR occupation is associated with increased glutamatergic transmission 

(Moghaddam et al., 1994) and glutamate facilitates GR activation (Gursoy et al., 2001). These observations 

indicate intricate interactions exist between glucocorticoids and glutamate receptors; however, little is known 

regarding the mechanisms of these interactions. Important questions which arise include: can glucocorticoids 

potentiate NMDA-induced cell death? Do glucocorticoids induce hippocampal cell death through the mediation 

of glutamate receptors?  Also, which cells are targeted for death by glucocorticoids – immature or mature cells? 

Answers to these and the previously-raised questions were sought during the course of this work using 

dissociated hippocampal and cerebellar cell culture models. Cells from 4-7 day old rats were cultured for 7-14 

days in vitro, thus covering time windows when the hippocampal SGZ was just beginning to develop and when 

the cerebellar EGL was beginning to disappear. Consistent with the previously-described different 

developmental profiles of hippocampal and cerebellar granule neurons, cerebellar cultures contained a greater 

percentage of mature cells, as judged by the expression of MAP2ab. 

 

A. Cytokine regulation of cell birth and differentiation  

To study whether secreted growth factors that might contribute to the temporally distinct patterns of 

hippocampal and cerebellar granule cell development, conditioned medium (CM) exchanges between 

hippocampal and cerebellar cultures were used in the experiments described in Chapter 2. Interestingly, 



 

CMHippocampus stimulated proliferation in cerebellar cultures whereas CMCerebellum treatment inhibited cell 

proliferation and accelerated neuronal maturation in hippocampal cultures. The latter events were accompanied 

by increased expression of two cell cycle arrest-related molecules, p21 and p27. Results of subsequent antibody 

neutralization experiments indicated that the anti-proliferative actions of CMCerebellum  may be due to the 

presence of BDNF, TGFβ2 and BMP2; involvement of these molecules was confirmed by molecular pathway 

analysis (described in the  next section). Ongoing experiments are using slice-slice and slice-cell co-cultures to 

obtain further evidence for this. In addition, a newly-developed slice-membrane blotting technique is being set 

up to investigate whether BDNF and TGF-β2 are found within or in the close vicinity of cerebellar and 

hippocampal granule cell layers; such evidence would strongly suggest that these factors act in a paracrine or 

even autocrine mode.  

 

Neurotrophins such as BDNF and NGF exert their actions on neuronal survival and differentiation by signaling 

through TrK receptors (Hofer et al., 1990; Minichiello and Klein, 1996; Borghesani et al., 2002; Bandtlow et 

al.,1990; von Bartheld, 1991; Rocamora et al., 1993; Segal et al.,1995; Zhou and Rush, 1994) which are linked 

to the activation of Ras-Raf-MAPK pathways. In general, neurotrophins stimulate rather than inhibit 

proliferation (see Table 1 in General Introduction) and promote neuronal differentiation (Benraiss et al., 2001; 

Chmielnicki and Goldman, 2002); here, treatment of immature cells with BDNF was found to inhibit 

proliferation (Chapter 2), and effect that might be related to the observation that BDNF induces p21 expression 

in maturing cerebellar granule cells (Lin et al., 1998).  

 

There are three isoforms of TGF-β, each derived from separate genes: TGF-β1 whose expression is normally 

restricted to the choroid plexus, and TGF-β2 and TGF-β3 which are expressed in neurons and glia (Unsicker et 

al., 1991; Pratt and McPherson, 1997). TGF-β1 and TGF-β3 have been implicated in neuroprotection, while 

neurotrophic functions have been ascribed to TGF-β2 and TGF-β3 (Finch et al., 1993; Böttner et al., 2000; 

Pratt and McPherson, 1997). The latter include stimulation (Mahanthappa and Schwarting, 1993) or inhibition 

(Constam et al., 1994) of neurogenesis, or both (Kane et al., 1996), as well as the regulation of neuronal 

differentiation (Ishihara et al., 1994; Abe et al., 1996; Cameron et al., 1998). TGF-β2, the isoform focused on 

in this work, is expressed in the EGL (neurogenic) and in Purkinje and radial glia of the cerebellum according 

to a strict temporal pattern but  interestingly,  appreciable levels of TGF-β2 are not seen in other brain sites of 

neuronal proliferation (Flanders et al., 1991; Constam et al., 1994; Unsicker and Strelau, 2000). The 

previously-described expression profiles held true in our cultures: TGF-β2 was much stronger in cerebellar vs. 

hippocampal cells (Chapter 2). Ongoing immunostaining to examine the dynamics of BDNF and TGFβ2 

expression in the cerebellum and hippocampus of postnatal rats suggests that the temporal profiles of 

expression of these two peptides place them in a good position to block proliferation and induce maturity in 

granule cells from both the cerebellum and hippocampus. Although not tissue-specific these molecules reflect 

the temporal co-ordination of ligand availability and signaling cascades in two cell types each displaying its 

unique developmental time-table.  

 

The studies described in Chapter 2 demonstrated important roles for BDNF and TGF-β2 in the maturation of 

cerebellar and hippocampal granule cells; pilot studies (not presented) have also implicated bone 

morphogenetic protein-2 (BMP2). While ontogenetic maps and mechanisms of action (see next section) are 

available for each of these factors, the question arises as to why several factors apparently share in the same 

function? Is it likely that each extrinsic factor is specifically responsible for the maturation of definitive 



 

neuronal phenotypes that could not be identified by our cell characterization tools? Do all these factors belong 

to an evolutionarily conserved pool where individual factors can compensate for each other, or are there cross-

talk between these factors directly or at the level of signal transduction? This last point is addressed later in this 

Discussion.  

 

B. Glucocorticoid receptors: maintaining the balance between hippocampal survival and death 

The results described in Chapter 3 deal with the role of MR and GR in maintaining the balance between cell 

survival death through apoptosis. A series of in vivo studies in rats previously demonstrated that the GR agonist 

dexamethasone (DEX) stimulates cell death in the hippocampus as well as in other selected brain regions such 

as the striatum and substania nigra (Hassan et al., 1996; Almeida et al., 2000; Haynes et al., 2001). However, it 

remains unclear as to whether these effects occur directly or whether gluocorticoids merely exacerbate the 

neurotoxic effects of other more potent insults such as excitatory amino acids (Elliott et al., 1993) and reactive 

oxygen species (Behl et al., 1997). Direct neural actions of DEX have also been questioned on the basis of data 

showing that DEX has limited access to the brain (de Kloet et al., 1975; Schinkel et al., 1995; Meijer et al., 

1998). In addition, observations that adrenalectomy (ADX) leads to apoptosis in the hippocampus (Sloviter et 

al. 1993; Sousa et al., 1997), together with the fact that, by suppressing adrenocortical secretion, DEX 

produces ‘chemical adrenalectomy’ boost the argument against direct effects of DEX on hippocampal cell 

survival. It should be noted however, that the mechanisms underlying ADX- and DEX-induced apoptosis are 

likely to be distinct since whereas significant levels of apoptosis can be observed within 24 hours of a single 

injection of DEX (Hassan et al., 1996), the effects of adrenalectomy display different temporal and spatial 

dynamics (Jaarsma et al., 1992; Hu et al., 1997; Sousa et al. 1997). Further, the apoptotic effects of DEX were 

shown to be blocked with a GR antagonist (Haynes et al., 2001). As mentioned earlier, GR are nuclear 

receptors which act as potent transcription factors; previous work from this laboratory showed that DEX can 

trigger a molecular death cascade in both the hippocampus (Almeida et al., 2000) and a neural cell line 

(Crochemore et al., 2002). 

 

To address the specific question of whether DEX treatment directly causes apoptosis in the hippocampus, we 

here used primary hippocampal cultures which we demonstrated to express both MR and GR. The experiments 

were aided by the following pharmacological tools: the MR agonist aldosterone (ALDO), the MR antagonists 

spironolactone (SPIRO) and RU28318 (oxprenoate), and the GR agonist DEX. Exposure of cultures to DEX at 

a dose of 10-5 M led to a significant loss of mature (MAP-2 positive) neurons, an event accompanied by a 

significant increase in the incidence of apoptosis. The results from these studies involving a system in which 

DEX can directly access hippocampal cells, therefore demonstrate that DEX has the intrinsic potential to 

induce neuronal cell death, and that its effects occur independently of the HPA axis and other confounding 

factors. Consistent with previous results which suggested that low, MR-activating doses of corticosterone in 

rats (in vivo) may be neuroprotective (Hassan et al., 1996; Sousa et al., 1999; Almeida et al., 2000), it was 

observed here that the apoptotic actions of DEX could be significantly attenuated when the MR agonist ALDO 

(10-5 M) was added to the culture medium. Since ALDO on its own did not alter apoptotic cell and neuronal 

numbers, our results add currency to the view that MR can trigger neuroprotective mechanisms; this 

interpretation is supported by reports from other laboratories that either ALDO or low levels of corticosterone 

prevent or reverse ADX-induced apoptosis (Woolley et al., 1991; Sloviter et al., 1993; Hu et al., 1997). In light 

of the results showing the ability of ALDO to counteract the apoptotic actions of DEX, and the fact that our 

culture medium contained low levels of cortisol (which has pharmacological properties and biological actions 



 

which are comparable to those of corticosterone), it was hypothesized that the blockade of ‘medium-activated’ 

MR would accentuate the effects of GR stimulation. Analysis of apoptosis after concomitantly treating cultures 

with either SPIRO or RU28318 and a sub-optimal dose of DEX (10-6 M) proved our hypothesis correct – 

whereas DEX at a dose of 10-6 M did not induce cell death, its combination with a range of doses of SPIRO or 

RU28318 (10-8-10-5 M) significantly exacerbated the occurrence of neuronal apoptosis. Besides acting on MR, 

SPIRO can also antagonize androgen and progesterone receptors (Nirdé et al., 2001); since similar results were 

however obtained with the more receptor-selective drug RU28318, the inference that neuroprotective effects 

are mediated by MR appears to be warranted.  

 

Together, results obtained using a cellular model provide clear evidence that glucocorticoids can lead to 

hippocampal cell death without the participation of other aggravating factors (e.g. excitotoxins), so long as 

their effects are not masked by previously-activated MR. The presented results also bolster the view previously 

advanced by this laboratory that hippocampal neuronal survival depends on the tonic occupation of MR, and 

exemplify that the ‘receptor balance hypothesis,’ originally generated on the basis of endocrinological and 

behavioral data (de Kloet et al., 1998), can be extended to include hippocampal survival and death.  

 

C. NMDA regulation of neuronal survival vs. death depends on site of action of NMDA  

As mentioned in the General Introduction (Chapter 1), glucocorticoids and GluR share an intimate relationship. 

Previous work showed that GluR stimulation can result in excitotoxicity and that the latter can be amplified by 

pre-treatment with glucocorticoids (Goodman et al., 1996; Behl et al., 1997; Abraham et al., 2001; Johnson et 

al., 2002) prompted us to examine the effects of NMDA pre-treatment on DEX-induced apoptosis (Chapter 4). 

To do this, we treated hippocampal cultures with NMDA at doses ranging from 1 to 10 µM for a brief period 

(15 min) before exposure to DEX (1 µM) for 72 h. We observed a complete abolition of the apoptotic actions 

of DEX when cells were pre-exposed to NDMA at 1 and 5 µM; at a dose of 10 µM, NMDA resulted in a rapid 

necrotic response.  

 

The NMDA.R represents the most-intensely studied GluR, especially in the context of neurotoxicity. These 

receptors are heteromeric in nature, consisting of a common NR1 subunit and one or more NR2 subunits 

(NR2A-D), whose insertion in the NMDA.R complex varies during development and maturity of synapses (Li 

et al., 1998; Stocca and Vicini, 1998; Tovar and Westbrook, 1999). For example, it is known that whereas 

NR2A is predominantly found in NMDA.R located at the synapse, NR2B features almost exclusively in 

NMDA.R at extrasynaptic (non-synaptic) sites. An important concept that has emerged from recent studies is 

that synaptic NMDA.R can initiate neuroprotective mechanisms; in contrast, activation of extrasynaptic 

NMDA.R results in cell death (Hardingham et al., 2002). The results reported in Chapter 4 demonstrate that 

selective inhibition of NR2B with ifenprodil results in a suppression of DEX-induced apoptosis; this finding is 

consistent with the documented efficacy of ifenprodil in retarding cell death in various animal models of 

neurodegenerative disease (for review, see Chenard and Menniti, 1999). Thus, blockade of extrasynaptic 

NMDA.R can counteract the apoptotic actions of glucocorticoids.  

 

In addition to the above experiments, studies of the other important ionotropic glutamate receptor AMPA.R 

were also undertaken. Selective blockade of AMPA.R with NBQX also proved effective at attenuating DEX-

induced apoptosis in hippocampal cultures. Further, the present studies revealed a role for metabotropic 

glutamate receptors (mGluR) insofar that E4CPG and CPPG, selective antagonists of mGluR I/II and II/III, 



 

respectively, were able to rescue hippocampal cells from DEX-induced apoptosis at very low doses. In general, 

the manifestations of mGluR-mediated actions are slow and involve gene activation. Type I mGluR have been 

associated with neuronal death while Type II/III mGluR have been shown to contribute to neuronal survival 

(Snyder et al., 2001; Allen et al., 2001; Miskevich et al., 2002; Heidinger et al., 2002). Together, these findings 

suggest the involvement of either complex regulatory interactions between the various mGluR or the 

upregulation of neurotoxic type I mGluR by DEX.  

 

The results reported in this section represent the first attempt to understand the mechanistic and functional 

nature of interactions between GluR and glucocorticoids. They demonstrate that the apoptotic actions of DEX 

are at least partly mediated by GluR of the NMDA and metabotropic types. In addition, the results reported 

herein show that low doses of NMDA, acting via synaptic NMDA.R can effectively block hippocampal cell 

death induced by DEX. Lastly, this work indicates that glucocorticoids can cause apoptosis in hippocampal 

cells by triggering rapid (NMDA.R-mediated) as well as slow (mGluR- or GR-mediated) responses, and that 

the final outcome of glucocorticoid treatment on hippocampal cell survival depends on the convergence and 

integration of transcriptional signals (e.g. GluR and agonist availability; regulation of apoptosis-related genes) 

and signals originating at the cell membrane (e.g. Ca2+ conductance). 

 

5.3. Mechanisms underpinning glucocorticoid, NMDA and cytokine actions on neural 

development and survival 
A. Glucocorticoid-glutamate interactions 

Glucocorticoids can exert rapid, transient effects on neuronal excitability involving increased cytosolic 

concentrations of Ca2+ (Nair et al., 1998). However, glucocorticoid actions are best known to be mediated 

through GR which are transcription factors; our laboratory has previously elucidated some of the cell death-

related molecular pathways triggered by exposure to the potent GR agonist DEX (Almeida et al., 2000). Thus, 

glucocorticoid effects on hippocampal structure and function do not necessarily result from one exclusive 

mechanism (electrophysiological vs. genomic) but may rather occur as a result of integrated signals arising 

from both the cell membrane and transcriptional activity. For example, by influencing the transcription of Ca2+ 

channel and Ca2+ extrusion pump genes (Bhargava et al., 2000), glucocorticoids contribute to long-term 

alterations in the dynamics of intracellular Ca2+ levels, including those originating at the plasma membrane 

(Kerr et al., 1992; Elliott and Sapolsky, 1993; Nair et al., 1998; Bhargava et al., 2000).  

 

Exaggerated and chronic elevations in intracellular Ca2+ accompany glutamatergic excitotoxicity (Choi, 1991; 

Coyle and Puttfarcken, 1993) and have also been proposed to at least partially underlie the neurotoxic effects of 

glucocorticoids (Joëls, 2001). Increases in cytosolic Ca2+ concentrations result from the activation of both 

ionotropic glutamate receptors (iGluR) and mGluR, albeit through different mechanisms: iGluR stimulate the 

influx of Ca2+ from the extracellular space, whereas mGluR mobilize Ca2+ from intracellular reservoirs (Maiese 

et al., 1999; Otani et al., 2002). As mentioned before, glucocorticoids can increase NMDA.R expression and 

glutamate synthesis and accumulation (Weiland et al., 1997; Moghaddam et al., 1994), and potentiate 

glutamate-induced cell death (Goodman et al., 1996; Behl et al., 1997; Abraham et al., 2001; Johnson et al., 

2002). GluR are well-recognized triggers of neuronal cell death and may occur either acutely upon activation or 

after a period of delay (Choi, 1991). Apoptotic and necrotic cell death are distinguishable on the basis of their 

morphological characteristics and ionic dependence. The rapid-onset form is necrotic in nature (cell swelling 

and ultimate cell lysis). In contrast, the delayed form is Ca2+-dependent, and is accompanied by cell shrinkage, 



 

nuclear condensation and fragmentation; all of the latter features are typical of apoptosis (Choi, 1991). In the 

work described in Chapter 4, the dominant form of cell death observed following treatment of hippocampal 

cells with either NMDA or DEX was of the apoptotic type.  

 

On the other hand, low doses of NMDA have been shown to elicit neurotrophic and anti-apoptotic mechanisms 

in neurons (Marini et al., 1998; Resink et al., 1996; Brandoli et al., 1998); moreover, one of the implicated 

neurotrophins, brain-derived nerve growth factor (BDNF), was found to stimulate (pro-survival) NR2A subunit 

expression and to suppress NR2B (death-promoting) expression (Glazner and Mattson, 2000). Because the 

experimental paradigm used in Chapter 4 involved chronic exposure to DEX, it is pertinent to mention that GR 

activation was previously found to upregulate NR2B subunit gene expression with a concomitant decrease in 

the expression of the gene encoding NR2A subunit (Nair et al., 1998).  

 

As noted above, NMDA.R which include the death-promoting NR2B subunit are predominantly localized at 

extrasynaptic sites; in contrast those comprising the pro-survival NR2A subunit have a synaptic location 

(Riccio and Ginty, 2002). Since the appearance of NR2A- and NR2B-containing NMDAR is correlated with 

the ontogeny of synapses (Tovar and Westbrook, 1999; Li et al., 1998; Stocca and Vicini, 1998), it is pertinent 

to note that although the  cultures used for the present studies were relatively young (experiments carried out 

after 6 days in vitro), cell-cell interactions were abundantly evident at the light microscopic level. In order to 

distinguish between synaptic and extrasynaptic NMDA.R in the mediation of the protective actions of low 

doses of NMDA against DEX-stimulated apoptosis, the recently described elegant pharmacological paradigm 

described by Hardingham et al. (2002) was adopted. Briefly, the paradigm which consists of briefly (15 min.) 

pre-treating  hippocampal cultures with the GABA antagonist bicuculline (to activate synaptic GluR) and 

MK801 (to block active NMDAR) prevents NMDA activation of neuroprotective signaling cascades, leaving 

only extrasynaptic NR2B-containing NMDAR available for NMDA binding. In the studies described in 

Chapter 4, bicuculline/MK801-pretreated cultures were exposed to 1 or 5 µM NMDA and DEX before analysis 

of apoptosis using the TUNEL assay. The observation that the bicuculline/MK801 pre-treatment abrogated the 

ability of NMDA to oppose the apoptotic actions of DEX is consistent with a synaptic site of NMDA-induced 

neuroprotection (Hardingham et al., 2002).  

 

In an experiment to examine the impact of NR2B subunit-containing NMDAR blockade on the neuroprotection 

afforded by low doses of NMDA against DEX-elicited apoptosis, NR2B blockade was achieved by pre-treating 

cells with NMDA and ifenprodil (Chapter 4). The rationale was that this design would ensure binding of 

ifenprodil (an activity-dependent antagonist), to extrasynaptic receptors and, at the same time, permit (or even 

enhance) the activity of synaptic NMDAR. Contrary to expectations, we observed NR2B blockade amplified 

the degree of apoptosis that was seen after DEX treatment alone.  In the absence of supporting evidence to the 

contrary, we tentatively propose that since the NMDA/ifenprodil pre-treatment was transient (i.e. drugs were 

washed out after 15 min.), the effects observed reflect changes in the sensitivity  and/or synthesis of NR2B-

containing (death-promoting) receptors; this could include upregulation of NR2B during the subsequent 

exposure (72 h) to DEX alone. Other likely events include pre-treatment- or DEX-induced downregulation of 

NR2A-containing (pro-survival) NMDA.R. Another plausible explanation would be that by employing 

transcriptional mechanisms to elevate glutamate synthesis (cf. Ábrahám et al., 1996), DEX would effectively 

make more neurotoxic glutamate available to NMDA.R (containing NR2B subunits), thus positively driving a 

vicious circle. These findings showing the involvement of NMDA.R in the apoptotic actions of DEX, do not 



 

necessarily exclude the possibility of direct, GR-mediated, apoptotic actions of DEX, as reported in Chapter 3. 

A model summarizing our views on how glucocorticoids and glutamate receptors interact to regulate the 

balance between hippocampal cell survival and death is depicted in the following figure. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

B. Pathways mediating TGF-β2 and BDNF signaling 

Studies focused on verifying the role of BDNF in the observed CMCerebellum-induced effects on hippocampal cell 

development (Chapter 2) included immunocytochemical demonstration that BDNF is strongly expressed in 

cerebellar cultures, but only weakly in hippocampal cultures. Treatment of hippocampal cultures with 

exogenous BDNF resulted in an inhibition of BrdU uptake and an increase in neuritic length as well as an 

increased MAP2ab-positive neuronal population. Transfection of cells with a BDNF-expressing plasmid 

provided similar results on BrdU incorporation. BDNF effects on neuronal differentiation are known to be 

mediated through TrkB receptors (Klein et al., 1991) and, depending on the strength and duration of the 

stimulus, BDNF either promotes or inhibits neuronal proliferation by activating the Trk-MEK-ERK pathway 

(Marshall, 1995; Du et al., 2003). The latter prompted us to examine whether TrkB or ERK signaling is 

involved in the biological actions of CMCerebellum, i.e. those ascribed to BDNF. Consistent with the literature, we 

observed that whether TrkB or ERK signaling is involved in the biological actions of CMCerebellum, i.e. those 

ascribed to BDNF. Consistent with the literature, we observed that blockade of TrkB by transfecting a 

dominant negative TrkB construct resulted in an attenuation of the pro-neuronal actions of CMCerebellum. In 

addition, blockade of MEK1/MAPK with UO126 also negated the actions of CMCerebellum, indicating the 

operation of more than a single mechanism or the convergence of several signaling pathways upon activation 

by a single ligand. These data contrast with previous findings that activation of ERK1/2 blocks the Smad 

pathway in Xenopus embryos (Pera, 2003); at present, we lack a plausible explanation for this discrepancy. 

Interestingly, however, as described in Chapter 2, BDNF treatment was shown to elicit a response from a TGF-

β reporter gene (3TP-Lux), and to mobilize Smad2 and Smad4, two key players in TGF-β signaling, from the 

cytoplasm to the nucleus in neuronal cultures. Thus, we tentatively hypothesize that BDNF may be able to 

activate the Smad pathway through ERK1/2-dependent phosphorylation through as yet undefined mechanisms. 

It is pertinent to note that other recent studies also alluded to BDNF-TGF cross-talk (Lutz et al., 2004) or 

interdependence/synergism (Unsicker and Strelau, 2000).  

 

Members of the TGF-β superfamily signal by sequentially binding to two TGFβ receptors (TGFβR) which are 

transmembrane protein serine/threonine kinases. In the case of TGF-β2, ligand binding to TGFβR-II activates 

TGFβR-I; both the developing and rat adult hippocampus express TGFβR-II mRNA (Böttner et al., 1996). 

Receptor-regulated SMAD proteins (R-SMADs) serve as TGFβR-I substrates which, upon phosphorylation, 

subsequently bind Co-Smad4 and translocate to the nucleus where they form a transcriptionally-active complex 

after association with DNA-binding partner(s). This last complex binds to promoter elements of target genes 

whose functions include regulation of the cell cycle, differentiation and cell adhesion, positioning, and 

movement (Moustakas et al., 2001; Chang et al., 2002; Shi and Massagué, 2003).  

 

TGF-β is a well-known inhibitor of proliferation, inducing cell cycle arrest by suppressing  the oncogene Myc, 

a repressor of the cyclin-dependent kinase inhibitors, p21 and p27 (Seoane et al., 2002; Gartel and Shchors, 

2003). In support of the view that the anti-mitogenic effects of CMCerebellum may be accounted for by TGF-β2 in 

the CM, we observed an upregulation of p21 and p27 after CMCerebellum treatment of proliferating hippocampal 

neurons (Chapter 2). Additional evidence for a key role of TGF-β2 in the hippocampal cell fate-determining 

actions of CMCerebellum was obtained in a series of experiments focused on the TGF-β signal-propagating SMAD 

proteins. Of the various SMAD proteins, Smad2 and Smad 3 mediate TGF-β signals. Smad4 is a requisite 

partner for transcriptional activity of  Smads2 and 3 (as well as Smads1, 5 and 8 which are BMP substrates); 

the generation of specific downstream responses is thought to depend on the formation of specific R-SMAD-



 

Smad4 complexes which then recruit different sequence-specific DNA-binding factors (Massagué and Wotton, 

2000). Data reported in Chapter 2 demonstrate that CMCerebellum induces nuclear translocation of EGFP-fused 

Smad2 and Smad4. Results showing essential roles for Smad3 and Smad4, based on expression of the 

dominant negative forms, are also presented: these manipulations prevented the transactivation of 3TP-Lux by 

CMCerebellum and abrogated the anti-proliferative and pro-differentiating effects of CMCerebellum in hippocampal 

cultures. Further support for the notion that TGF-β2, at least partially, accounts for the anti-proliferative 

activity present in CMCerebellum is provided by the observation that expression of a vector containing a dominant 

negative form of TβRII in either primary hippocampal cells or a hippocampus-derived cell line (Hib5) results 

in a abolition of the CMCerebellum-induced effects on BrdU incorporation and 3TP-Lux reporter activity 

compared to control.  

  

A model showing the mechanisms underlying BDNF and TGF-β2 control of proliferation and differentiation of 

hippocampal and cerebellar granule cells is presented in the scheme shown below. 



 

5.4. Summary and future directions 
The aims of the work undertaken for this thesis may be summarized as follows:  

• To identify factors which may be responsible for the differential developmental patterns followed 

by granule neurons in the hippocampus and cerebellum, and to analyse their signaling pathways 

(Chapter 2); 

• To examine the mechanisms underlying glucocorticoid-induced apoptosis in the hippocampus, in 

particular with regard to the role of glutamatergic transmission (Chapters 3 and 4).  

 

With respect to the first aim, the principal findings (Chapter 2) show that: 

• TGF-β2, supported by the Smad signaling machinery, plays a key role in determining hippocampal cell 

fate by inhibiting proliferation and, in parallel, inducing neuronal maturation.  

• BDNF, better known for Trk receptor-mediated promotion of neurogenesis and differentiation, exerts anti-

proliferative and pro-neuronal effects on developing hippocampal neurons by activating a MAP kinase 

cascade which ultimately converges onto the TGF-β signaling pathway. 

 

Results presented in Chapter 3 show that: 

• The glucocorticoid dexamethasone (DEX) can directly induce apoptosis in hippocampal cell cultures via 

the mediation of GR so long as neuroprotective MR are not occupied. However, the actions of 

glucocorticoids can be modulated depending on the prevailing state of glutamatergic transmission 

(Chapter 4, see below). 

• Suggestions in the literature that the apoptotic effects of DEX reflect the effects of ‘chemical 

adrenalectomy’ are therefore not tenable. 

• Mature, rather than immature, granule neurons are targeted by glucocorticoids for apoptosis.  

 

Studies on the likely interaction between glucocorticoids and glutamatergic transmission (Chapter 4) revealed 

that: 

• The apoptotic actions of DEX are, at least partly, mediated by GluR of the NMDA and metabotropic types. 

• Low doses of NMDA, acting via synaptic NMDAR can effectively block hippocampal cell death induced 

by DEX.  

• Gluccorticoids can cause apoptosis in hippocampal cells by triggering rapid (NMDA.R-mediated) as well 

as slow (mGluR- or GR-mediated) responses. The final outcome of glucocorticoid treatment on 

hippocampal cell survival depends on the convergence and integration of transcriptional signals and signals 

originating at the cell membrane. 

 

Here follow some considerations which may be pertinent to attempts to integrate the novel observations made 

in this work and to identify further lines of investigation.  

• Both the TGF-β and glucocorticoid signaling pathways contribute to the regulation of a variety of 

neurodevelopmental and physiological processes. For example, this work demonstrates that both factors 

inhibit proliferation of hippocampal granule cell progenitors, and other studies have demonstrated that 

they are both inducers of apoptosis in a variety of cell types (Schmidt et al. 2004; Zalavras et al., 2003; 

Druilhe et al., 2003; Lee et al., 2002; Siegel and Massague, 2003; Schuster and Krieglstein, 2002). These 

observations suggest that a certain degree of interaction between these pathways must exist in order to 

ensure manifestation of coordinated responses. Indeed, GR have been reported to inhibit TGF-β signaling 



 

by directly targeting Smad3 in Hep3B cells and COS cells (Song et al., 1999; Li et al., 2003). On the other 

hand, TGF-β can block GR signaling through AP-1-mediated transcriptional repression in mouse 

fibrosarcoma L929 cells (Periyasamy and Sanchez, 2002). At the same time, glucocorticoids upregulate 

TGF-β mRNA expression in various cell types (AyanlarBatuman et al., 1991; Boulanger et al., 1995; 

Reyes-Moreno et al., 1995; Wang et al., 1995; Oursler et al., 1993) while the anti-proliferative effects of 

glucocorticoids are abrogated by TGF-β neutralizing antibodies (AyanlarBatuman et al., 1991; Johnson et 

al., 1993; Reyes-Moreno et al., 1995). To what extent these findings apply to the regulation of 

neurodevelopmental processes remains to be elucidated.  

• With respect to their mechanisms of action, recent evidence suggests that glucocorticoids can also act 

through pathways independent of binding of GR to glucocorticoid response elements (GRE) function 

through GRE (Di et al., 2003; Qiu et al., 2003; Evans wt al., 2003); similarly, apparently not all TGF-β 

actions are mediated through Smad pathways (Massague and Chen, 2000). It will be interesting to identify 

whether TGF-β and glucocorticoids share common signaling pathways which result in the inhibition of 

neurogenesis and stimulation of neuronal differentiation and/or apoptosis; in addition, their utilization of 

GRE- and Smad-dependent and/or GRE- and Smad-independent mechanisms will be worth investigating.  

• The first evidence of cross-talk between TGFβ and BDNF in the control of hippocampal granule cell 

maturation deserves more thorough analysis. In particular, it will be important to know whether the ability 

of BDNF to enhance the Smad signaling pathway results from its stimulation of ERK1/2 or indirectly, 

increased TGFβ secretion. Further, clarification is needed as to how ERK1/2 stimulates (rather than 

inhibits) Smad activity, and interactions of TGFβ with MAPK cascades also need further investigation.  

• Although TGFβ and BDNF were here identified as key molecules in the control of granule cell 

development, the involvement of other factors which might also fulfil such roles cannot be excluded. The 

application of more efficient CM screening (e.g. 2-D gel electrophoresis and MS-MS approaches and/or 

antibody array assays, will greatly facilitate the search for other candidates.  

• Recent studies have identified GR in mitochondria, organelles which are intimately involved in the 

apoptotic process (Koufali et al., 2003; Demonacos et al., 1995, 1996). The role of mitochondrial GR in 

DEX-induced neuronal cell death, conventionally ascribed to nuclear GR, deserves evaluation.  
 
 
References 
- Abe, K., Chu P.J., Ishihara, A., Saito, H. (1996). Transforming growth factor-beta 1 promotes re-elongation 

of injured axons of cultured rat hippocampal neurons. Brain Res. 723, 206-209.  

- Abraham, I.M., Harkany, T., Horvath, K.M., Luiten, P.G. (2001) Action of glucocorticoids on survival of 

nerve cells: promoting neurodegeneration or neuroprotection? J. Neuroendocrinol. 13, 749-760. 

- Abraham, I., Juhász, G., Kékesi, K.A., Kovács, K.J., (1996). Effect of intrahippocampal dexamethasone on 

the levels of amino acid transmitters and neuronal excitability. Brain Res. 733, 56-63. 

- Ahmad I., Dooley C.M., Afiat S. (1998) Involvement of Mash1 in EGF-mediated regulation of differentiation 

in the vertebrate retina. Dev Biol. 194, 86-98.  

- Allen, J.W., Vicini, S., Faden, A.I., (2001) Exacerbation of neuronal cell death by activation of group I 

metabotropic glutamate receptors: role of NMDA receptors and arachidonic acid release. Exp. Neurol. 169, 

449-460. 



 

- Almeida O.F.X., Condé G.L., Crochemore C., Demeneix B.A., Fischer D., Hassan A.H.S., Meyer M., 

Holsboer F.,  Michaelidis T.M. (2000) Subtle shifts in the ratio between pro- and antiapoptotic molecules 

after activation of corticosteroid receptors decide neuronal fate. FASEB J. 14, 779-790. 

- AyanlarBatuman O., Ferrero A.P., Diaz A., Jimenez S.A. (1991) Regulation of transforming growth factor-

beta 1 gene expression by glucocorticoids in normal human T lymphocytes. J Clin Invest. 88,1574-1580.  

- Bandtlow C.E., Meyer M., Lindholm D., Spranger M., Heumann R., Thoenen H. (1990) Regional and cellular 

codistribution of interleukin 1 beta and nerve growth factor mRNA in the adult rat brain: possible relationship 

to the regulation of nerve growth factor synthesis. J Cell Biol. 111, 1701-1711. 

- Barbany G., Persson H. (1992) Regulation of neurotrophin mRNA expression in the rat brain by 

glucocorticoids. Eur J Neurosci. 4, 396-403.  

- Behl C., Lezoualc'h F., Trapp T., Widmann M., Skutella T., Holsboer F. (1997) Glucocorticoids enhance 

oxidative stress-induced cell death in hippocampal neurons in vitro. Endocrinology 138, 101-106. 

- Benitez-Diaz P., Miranda-Contreras L., Mendoza-Briceno R.V., Pena-Contreras Z., Palacios-Pru E. (2003) 

Prenatal and postnatal contents of amino acid neurotransmitters in mouse parietal cortex. Dev Neurosci. 25, 

366-374.  

- Benraiss A., Chmielnicki E., Lerner K., Roh D., Goldman S.A. (2001) Adenoviral brain-derived neurotrophic 

factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the 

adult forebrain. . Neurosci. 21, 6718-6731. 

- Bertrand N., Castro D.S., Guillemot F. (2002) Proneural genes and the specification of neural cell types.  Nat 

Rev Neurosci. 3, 517-530. 

- Bhargava, A., Meijer, O. C., Dallman, M. F., Pearce, D. (2000). Plasma membrane calcium pump isoform 1 

gene expression is repressed by corticosterone and stress in rat hippocampus. J. Neurosci. 20, 3129-3138. 

- Borghesani P.R. Peyrin J.M., Klein R., Rubin J., Carter A.R., Schwartz P.M., Luster A., Corfas G., Segal 

R.A. (2002) BDNF stimulates migration of cerebellar granule cells. Development. 129,1435-1442. 

- Böttner, M., Krieglstein, K., Unsicker, K.  (2000) The transforming growth factor-betas: structure, signaling, 

and roles in nervous system development and functions. J. Neurochem. 75, 2227-2240. 

- Böttner, M., Unsicker, K., Suter-Crazzolara, C. (1996) Expression of TGF-beta type II receptor mRNA in the 

CNS. Neuroreport, 7, 2903-2907.  

- Boulanger J., Reyes-Moreno C., Koutsilieris M. (1995) Mediation of glucocorticoid receptor function by the 

activation of latent transforming growth factor beta 1 in MG-63 human osteosarcoma cells. Int J Cancer. 61, 

692-697.  

- Brandoli, C., Sanna, A., De Bernardi, M.A., Follesa, P., Brooker, G., Mocchetti, I. (1998). Brain-derived 

neurotrophic factor and basic fibroblast growth factor downregulate NMDA receptor function in cerebellar 

granule cells. J. Neurosci. 18, 7953-7961. 

- Cameron, H.A., Hazel, T.G., McKay, R.D. (1998) Regulation of neurogenesis by growth factors and 

neurotransmitters. J. Neurobiol. 36, 287-306. 

- Chang, H., Brown, C. W., Matzuk, M.M. (2002) Genetic analysis of the mammalian transforming growth 

factor-beta superfamily. Endocr. Rev. 23, 787-823.  

- Chenard, B.L., Menniti, F.S., (1999) Antagonists selective for NMDA receptors containing the NR2B 

subunit.  Curr. Pharm. Des. 5, 381-404. 

- Chmielnicki E, Goldman SA. (2002) Induced neurogenesis by endogenous progenitor cells in the adult 

mammalian brain. Prog Brain Res.138, 451-464.  



 

- Choi, D. W. (1991). Excitotoxicity on cultured cortical neurons. In: Ascher, P., Christen, Y., Choi, D. W. 

(Eds.), Glutamate, Cell Death and Memory. Springer-Verlag, Berlin, pp. 125-136. 

- Constam, D. B., Schmid, P., Aguzzi, A., Schachner, M., Fontana A. (1994) Transient production of TGF-beta 

2 by postnatal cerebellar neurons and its effect on neuroblast proliferation. Eur. J. Neurosci. 6, 766-778. 

- Coyle, J.T., Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 

689-695. 

- Crochemore C., Michaelidis T.M., Fischer D., Loeffler J.P., Almeida O.F.X. (2002) Enhancement of p53 

activity and inhibition of neural cell proliferation by glucocorticoid receptor activation. FASEB J. 16, 761-

770.  

- de Kloet E.R., Vreugdenhil E., Oitzl M.S., Joels M. (1998) Brain corticosteroid receptor balance in health and 

disease. Endocr. Rev. 19, 269-301. 

- de Kloet R., Wallach G., McEwen B.S. (1975) Differences in corticosterone and dexamethasone binding to 

rat brain and pituitary. Endocrinology. 96, 598-609.  

- Demonacos C.V., Djordjevic-Markovic R., Tsawdaroglou N., Sekeris C.E. (1995) The mitochondrion as a 

primary site of action of glucocorticoids: the interaction of the glucocorticoid receptor with mitochondrial 

DNA sequences showing partial similarity to the nuclear glucocorticoid responsive elements. J Steroid 

Biochem Mol Biol. 55, 43-55.  

- Demonacos, C.V., Karayanni N., Hatzoglou E., Tsiriyiotis C., Spandidos D.A., Sekeris C.E. (1996) 

Mitochondrial genes as sites of primary action of steroid hormones. Steroids. 61, 226-232.  

- Di Giorgi Gerevini V.D., Caruso A., Cappuccio I., Ricci Vitiani L., Romeo S., Della Rocca C., Gradini R., 

Melchiorri D., Nicoletti F. (2004) The mGlu5 metabotropic glutamate receptor is expressed in zones of active 

neurogenesis of the embryonic and postnatal brain. Dev Brain Res. 150, 17-22.  

- Di S., Malcher-Lopes R., Halmos K.C., Tasker J.G. (2003) Nongenomic glucocorticoid inhibition via 

endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci. 23, 4850-4857.  

- Druilhe A., Letuve S., Pretolani M. (2003) Glucocorticoid-induced apoptosis in human eosinophils: 

mechanisms of action. Apoptosis.8, 481-495.  

- Du, J., Cai, S., Suzuki, H., Akhand, A. A., Ma, X., Takagi, Y., Miyata, T., Nakashima, I., Nagase, F. (2003) 

Involvement of MEKK1/ERK/P21Waf1/Cip1 signal transduction pathway in inhibition of IGF-I-mediated 

cell growth response by methylglyoxal. J. Cell Biochem. 88, 1235-1246.  

- Elliott E.M., Mattson M.P., Vanderklish P., Lynch G., Chang I., Sapolsky R.M. (1993) Corticosterone 

exacerbates kainate-induced alterations in hippocampal tau immunoreactivity and spectrin proteolysis in 

vivo. J. Neurochem. 61, 57-67. 

- Elliott, E. M., Sapolsky, R. M., (1993). Corticosterone impairs hippocampal neuronal calcium regulation--

possible mediating mechanisms. Brain Res. 602, 84-90. 

- Evans S.J., Murray T.F., Moore F.L. (2000) Partial purification and biochemical characterization of a 

membrane glucocorticoid receptor from an amphibian brain. J Steroid Biochem Mol Biol. 72, 209-221.  

- Finch, C. E, Laping, N, J., Morgan, T. E., Nichols, N. R., Pasinetti, G. M. (1993) TGF-beta 1 is an organizer 

of responses to neurodegeneration. J. Cell Biochem. 53, 314-322. 

- Flanders, K.C., Ludecke, G., Engels, S., Cissel, D.S., Roberts, A.B., Kondaiah, P., Lafyatis, R., Sporn, M.B., 

Unsicker, K. (1991) Localization and actions of transforming growth factor-beta s in the embryonic nervous 

system. Development 113, 183-191. 

- Gartel, A.L., Shchors, K. (2003) Mechanisms of c-myc-mediated transcriptional repression of growth arrest 

genes. Exp. Cell Res. 283, 17-21.  



 

- Glazner, G.W., Mattson, M.P. (2000) Differential effects of BDNF, ADNF9, and TNFalpha on levels of 

NMDA receptor subunits, calcium homeostasis, and neuronal vulnerability to excitotoxicity. Exp. Neurol. 

161, 442-452. 

- Goodman, Y., Bruce, A.J., Cheng, B., Mattson, M.P. (1996) Estrogens attenuate and corticosterone 

exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. J. 

Neurochem. 66, 1836-1844. 

- Gursoy E., Cardounel A., Kalimi M. (2001) Pregnenolone protects mouse hippocampal (HT-22) cells against 

glutamate and amyloid beta protein toxicity. Neurochem Res. 26, 15-21.  

- Hardingham, G.E., Fukunaga, Y., Bading, H. (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by 

triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405-414. 

- Hassan A.H.S., von Rosenstiel P., Patchev V.K., Holsboer F., Almeida O.F.X. (1996) Exacerbation of 

apoptosis in the dentate gyrus of the aged rat by dexamethasone and the protective role of corticosterone. 

Exp. Neurol. 140, 43-52. 

- Haynes L.E., Griffiths M.R., Hyde R.E., Barber D.J., Mitchell I.J. (2001) Dexamethasone induces limited 

apoptosis and extensive sublethal damage to specific subregions of the striatum and hippocampus: 

implications for mood disorders. Neuroscience 104, 57-69. 

- Heidinger V., Manzerra P., Wang X.Q., Strasser U., Yu S.P., Choi D.W., Behrens M.M. (2002). Metabotropic 

glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-

family kinase pathway in cortical neurons. J Neurosci. 22, 5452-5461. 

- Hofer M., Pagliusi S.R., Hohn A., Leibrock J., Barde Y.A. (1990) Regional distribution of brain-derived 

neurotrophic factor mRNA in the adult mouse brain. EMBO J.,9, 2459-2464. 

- Hu Z., Yuri K., Ozawa H., Lu H., Kawata M. (1997) The in vivo time course for elimination of 

adrenalectomy-induced apoptotic profiles from the granule cell layer of the rat hippocampus. J. Neurosci. 17, 

3981-3989. 

- Ishihara, A., Saito, H., Abe, K. (1994) Transforming growth factor-beta 1 and -beta 2 promote neurite 

sprouting and elongation of cultured rat hippocampal neurons. Brain Res. 639, 21-25. 

- Ito H., Nakajima A., Nomoto H., Furukawa S. (2003) Neurotrophins facilitate neuronal differentiation of 

cultured neural stem cells via induction of mRNA expression of basic helix-loop-helix transcription factors 

Mash1 and Math1. J. Neurosci Res., 71, 648-658.  

- Jaarsma D., Postema F., Korf J. (1992) Time course and distribution of neuronal degeneration in the dentate 

gyrus of rat after adrenalectomy: a silver impregnation study. Hippocampus 2,143-150.  

- Joëls, M. (2001) Corticosteroid actions in the hippocampus. J. Neuroendocrinol. 13, 657-69.  

- Johnson B.H., Gomi M., Jakowlew S.B., Moriwaki K., Thompson E.B. (1993) Actions and interactions of 

glucocorticoids and transforming growth factor beta on two related human myeloma cell lines. Cell Growth 

Differ. 4, 25-30.  

- Johnson, E.A., O'Callaghan, J.P., Miller, D.B., (2002) Chronic treatment with supraphysiological levels of 

corticosterone enhances D-MDMA-induced dopaminergic neurotoxicity in the C57BL/6J female mouse. 

Brain Res. 933, 130-138. 

- Kane, C.J., Brown, G.J., Phelan, K.D. (1996) Transforming growth factor-beta 2 both stimulates and inhibits 

neurogenesis of rat cerebellar granule cells in culture. Dev. Brain Res. 96, 46-51.  

- Kerr, D.S., Campbell, L.W., Thibault, O., Landfield, P.W. (1992) Hippocampal glucocorticoid receptor 

activation enhances voltage-dependent Ca2+ conductances: relevance to brain aging. Proc. Natl. Acad. Sci. 

U. S. A. 89, 8527-8531. 



 

- Klein, R., Nanduri, V., Jing, S A., Lamballe, F., Tapley, P., Bryant, S., Cordon-Cardo, C., Jones, K.R., 

Reichardt, L. F., Barbacid, M. (1991) The trkB tyrosine protein kinase is a receptor for brain-derived 

neurotrophic factor and neurotrophin-3. Cell. 66, 395-403.  

- Koufali M.M., Moutsatsou P., Sekeris C.E., Breen K.C. (2003) The dynamic localization of the 

glucocorticoid receptor in rat C6 glioma cell mitochondria. Mol Cell Endocrinol. 209, 51-60 

- Lee A.L., Ogle W.O., Sapolsky R.M. (2002) Stress and depression: possible links to neuron death in the 

hippocampus.  Bipolar Disord. 4, 117-128. 

- Li G., Wang S., Gelehrter T.D. (2003) Identification of glucocorticoid receptor domains involved in 

transrepression of transforming growth factor-beta action. J Biol Chem. 278, 41779-41788.  

- Li, J.H., Wang, Y.H., Wolfe, B.B., Krueger, K.E., Corsi, L., Stocca, G., Vicini, S. (1998) Developmental 

changes in localization of NMDA receptor subunits in primary cultures of cortical neurons. Eur. J. Neurosci. 

10, 1704-1715. 

- Lin X., Cui H., Bulleit R.F. (1998) BDNF accelerates gene expression in cultured cerebellar granule neurons. 

Dev Brain Res. 105, 277-286.  

- Lutz, M., Krieglstein, K., Schmitt, S., ten Dijke, P., Sebald, W., Wizenmann, A., Knaus, P. (2004) Nerve 

growth factor mediates activation of the Smad pathway in PC12 cells. Eur. J. Biochem. 271, 920-931.  

- Mahanthappa, N.K., Schwarting, G.A. (1993) Peptide growth factor control of olfactory neurogenesis and 

neuron survival in vitro: roles of EGF and TGF-betas. Neuron. 10, 293-305.  

- Maiese, K., Ahmad, I., TenBroeke, M., Gallant, J. (1999). Metabotropic glutamate receptor subtypes 

independently modulate neuronal intracellular calcium. J. Neurosci. Res. 55, 472-485. 

- Marini, A.M., Rabin, S.J., Lipsky, R.H., Mocchetti, I. (1998). Activity-dependent release of brain-derived 

neurotrophic factor underlies the neuroprotective effect of N-methyl-D-aspartate. J. Biol. Chem. 273, 29394-

29399. 

- Marshall, C.J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular 

signal-regulated kinase activation. Cell. 80, 179-185.  

- Massague J, Chen YG. (2000) Controlling TGF-beta signaling. Genes Dev.14, 627-644.  

- Massague, J., Wotton, D. (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 

19, 1745-1754.  

- Meijer O.C., de Lange E.C., Breimer D.D., de Boer A.G., Workel J.O., de Kloet E.R. (1998) Penetration of 

dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. 

Endocrinology 139, 1789-1793. 

- Minichiello L., Klein R. (1996) TrkB and TrkC neurotrophin receptors cooperate in promoting survival of 

hippocampal and cerebellar granule neurons. Genes Dev. 10, 2849-2858. 

- Miskevich, F., Lu, W., Lin, S.Y., Constantine-Paton, M. (2002) Interaction between metabotropic and NMDA 

subtypes of glutamate receptors in sprout suppression at young synapses. J. Neurosci. 22, 226-238. 

- Moghaddam B., Bolinao M.L., Stein-Behrens B., Sapolsky R. (1994) Glucocorticoids mediate the stress-

induced extracellular accumulation of glutamate. Brain Res. 655, 251-254.  

- Moustakas, A., Souchelnytskyi, S., Heldin, C.H. (2001) Smad regulation in TGF-beta signal transduction. J. 

Cell Sci. 114, 4359-4369. 

- Nair, S.M., Werkman, T.R., Craig, J., Finnell, R., Joëls, M., Eberwine, J.H. (1998) Corticosteroid regulation 

of ion channel conductances and mRNA levels in individual hippocampal CA1 neurons. J. Neurosci. 18, 

2685-2696. 



 

- Nirde P., Terouanne B., Gallais N., Sultan C., Auzou G. (2001) Antimineralocorticoid 11beta-substituted 

spirolactones exhibit androgen receptor agonistic activity: a structure function study. Mol. Pharmacol. 59, 

1307-1313. 

- Ohnuma S., Hopper S., Wang K.C., Philpott A., Harris W.A. (2002) Co-ordinating retinal histogenesis: early 

cell cycle exit enhances early cell fate determination in the Xenopus retina. Development. 129, 2435-2446.  

- Otani, S., Daniel, H., Takita, M., Crepel, F. (2002). Long-term depression induced by postsynaptic group II 

metabotropic glutamate receptors linked to phospholipase C and intracellular calcium rises in rat prefrontal 

cortex. J. Neurosci. 22, 3434-3444. 

- Oursler M.J., Riggs B.L., Spelsberg T.C. (1993) Glucocorticoid-induced activation of latent transforming 

growth factor-beta by normal human osteoblast-like cells. Endocrinology. 133, 2187-2196.  

- Pera, E.M., Ikeda, A., Eivers, E., DeRobertis, E.M. (2003) Integration of IGF, FGF, and anti-BMP signals via 

Smad1 phosphorylation in neural induction. Genes Dev. 17, 3023-3028.  

- Periyasamy S., Sanchez E.R. (2002) Antagonism of glucocorticoid receptor transactivity and cell growth 

inhibition by transforming growth factor-beta through AP-1-mediated transcriptional repression. Int J 

Biochem Cell Biol. 34,1571-1585.  

- Pratt, B.M., McPherson, J.M. (1997) TGF-beta in the central nervous system: potential roles in ischemic 

injury and neurodegenerative diseases. Cytokine Growth Factor Rev. 8, 267-292.  

- Qiu J., Wang C.G., Huang X.Y., Chen Y.Z. (2003) Nongenomic mechanism of glucocorticoid inhibition of 

bradykinin-induced calcium influx in PC12 cells: possible involvement of protein kinase C. Life Sci. 72, 

2533-2542.  

- Resink, A., Villa, M., Benke, D., Hidaka, H., Mohler, H., Balazs, R. (1996). Characterization of agonist-

induced down-regulation of NMDA receptors in cerebellar granule cell cultures. J. Neurochem. 66, 369-377. 

- Reyes-Moreno C., Frenette G., Boulanger J., Lavergne E., Govindan M.V., Koutsilieris M. (1995) Mediation 

of glucocorticoid receptor function by transforming growth factor beta I expression in human PC-3 prostate 

cancer cells. Prostate. 26, 260-269.  

- Riccio, A., Ginty, D.D. (2002) What a privilege to reside at the synapse: NMDA receptor signaling to CREB. 

Nat. Neurosci. 5, 389-390. 

- Rocamora N. Garcia-Ladona F.J., Palacios J.M., Mengod G. (1993) Differential expression of brain-derived 

neurotrophic factor, neurotrophin-3, and low-affinity nerve growth factor receptor during the postnatal 

development of the rat cerebellar system. Mol Brain Res.,17, 1-8. 

- Roskoden T., Otten U., Schwegler H. (2004) Early postnatal corticosterone administration regulates 

neurotrophins and their receptors in septum and hippocampus of the rat. Exp Brain Res., 154, 183-191.  

- Schinkel A.H., Wagenaar E., van Deemter L., Mol C.A., Borst P. (1995) Absence of the mdr1a P-

glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and 

cyclosporin A. J. Clin. Invest. 96, 1698-1705. 

- Schmidt S., Rainer J., Ploner C., Presul E., Riml S., Kofler R. (2004) Glucocorticoid-induced apoptosis and 

glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ. Suppl 1:S45-55.  

- Schuster N., Krieglstein K. (2002) Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res 307, 1-14.  

- Segal R.A. Pomeroy S.L., Stiles C.D. (1995) Axonal growth and fasciculation linked to differential 

expression of BDNF and NT3 receptors in developing cerebellar granule cells. J Neurosci.,15, 4970-4981. 

- Seoane, J., Le, H.V., Massague J. (2002) Myc suppression of the p21(Cip1) Cdk inhibitor influences the 

outcome of the p53 response to DNA damage. Nature. 419, 729-734.  



 

- Shi Y, Massague J. (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus.  Cell.113, 

685-700.  

- Shou J., Rim P.C., Calof A.L. (1999) BMPs inhibit neurogenesis by a mechanism involving degradation of a 

transcription factor. Nat Neurosci. 2(4):339-45.  

- Siegel P.M., Massague J. (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat 

Rev Cancer. 3, 807-821.  

- Sloviter R.S., Dean E., Neubort S. (1993) Electron microscopic analysis of adrenalectomy-induced 

hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system. J. Comp. 

Neurol. 330, 324-336. 

- Snyder, E.M., Philpot, B.D., Huber, K.M., Dong, X., Fallon, J.R., Bear, M.F., (2001). Internalization of 

ionotropic glutamate receptors in response to mGluR activation. Nat. Neurosci. 4, 1079-1085. 

- Song C.Z., Tian X., Gelehrter T.D. (1999) Glucocorticoid receptor inhibits transforming growth factor-beta 

signaling by directly targeting the transcriptional activation function of Smad3. Proc Natl Acad Sci U S A. 96, 

11776-11781 

- Sousa N., Madeira M.D., Paula-Barbosa M.M. (1997) Structural alterations of the hippocampal formation of 

adrenalectomized rats: an unbiased stereological study. J Neurocytol. 26,423-438.  

- Sousa N., Paula-Barbosa M.M., Almeida O.F.X. (1999) Ligand and subfield specificity of corticoid-induced 

neuronal loss in the rat hippocampal formation. Neuroscience  89,1079-1087. 

- Stocca, G., Vicini, S. (1998) Increased contribution of NR2A subunit to synaptic NMDA receptors in 

developing rat cortical neurons. J. Physiol. 507 (Pt. 1), 13-24. 

- Tovar, K.R., Westbrook, G.L. (1999) The incorporation of NMDA receptors with a distinct subunit 

composition at nascent hippocampal synapses in vitro. J. Neurosci. 19, 4180-4188. 

- Unsicker K., Strelau J. (2000) Functions of transforming growth factor-beta isoforms in the nervous system. 

Cues based on localization and experimental in vitro and in vivo evidence. Eur J Biochem. 267, 6972-6975.  

- Unsicker, K., Flanders, K.C., Cissel, D.S., Lafyatis, R., Sporn, M.B. (1991) Transforming growth factor beta 

isoforms in the adult rat central and peripheral nervous system. Neuroscience. 44, 613-625.  

- von Bartheld C.S., Heuer J.G., Bothwell M. (1991) Expression of nerve growth factor (NGF) receptors in the 

brain and retina of chick embryos: comparison with cholinergic development. J Comp Neurol.,310, 103-129. 

- Wang J., Kuliszewski M., Yee W., Sedlackova L., Xu J., Tseu I., Post M. (1995) Cloning and expression of 

glucocorticoid-induced genes in fetal rat lung fibroblasts. Transforming growth factor-beta 3. J Biol Chem. 

270, 2722-2728.  

- Weiland N.G., Orchinik M., Tanapat P. (1997) Chronic corticosterone treatment induces parallel changes in 

N-methyl-D-aspartate receptor subunit messenger RNA levels and antagonist binding sites in the 

hippocampus. Neuroscience. 78, 653-662.  

- Woolley C.S., Gould E., Sakai R.R., Spencer R.L., McEwen B.S. (1991) Effects of aldosterone or RU28362 

treatment on adrenalectomy-induced cell death in the dentate gyrus of the adult rat. Brain Res. 554, 312-315. 

- Zalavras C., Shah S., Birnbaum M.J., Frenkel B. (2003) Role of apoptosis in glucocorticoid-induced 

osteoporosis and osteonecrosis. Crit Rev Eukaryot Gene Expr. 13, 221-235. 

- Zhou X.F., Rush R.A. (1994) Localization of neurotrophin-3-like immunoreactivity in the rat central nervous 

system. Brain Res. 643, 162-172. 



 

 

 

 

 

 

 

 

 

 

 

AAnnnneexxeess  
 



 

 

 

 

 

 

 

 

 

 

 

Annex I 

 
Silva R., Lu J., Goula D., Almeida O.F.X. and Sousa N. (2004). Gradients and hemispheric asymmetries in cell 

proliferation and apoptosis in the dentate gyrus. Journal of Comparative Neurology. 

(Manuscript under review) 

 



 

 
 

 

Gradients and hemispheric asymmetries in cell proliferation and apoptosis in the 

dentate gyrus 

Rui Silva1, Jie Lu2, Daniel Goula2, Osborne F.X. Almeida2 and Nuno Sousa1,* 

 

1 Neuroscience Group, ICVS-Life and Health Sciences Research Institute, University of Minho, 

4710-057 Braga, Portugal.  

2 Neuroadaptations Group, Max Planck Institute for Psychiatry, 80804 Munich, Germany. 

 

Number of pages: 24; Number of figures: 3; Number of tables: 1 

 

Abbreviated title: Hippocampal granule cell turnover 

Associated Editor: Dr. John L. R. Rubinstein 

Key-words: hippocampus; plasticity; hemispheric asymmetry. 

Correspondence to:    Nuno Sousa  
 Neuroscience Group, ICVS-Life and Health Sciences Research Institute,  
 University of Minho, Campus de Gualtar CPII Piso 3,  
 4710-057 Braga, Portugal.  
 Phone: +351-253604806  
 Fax: +351-253604809 
 e-mail: njcsousa@ecsaude.uminho.pt 
 

Supporting grant: This work was supported by GRICES/DAAD (grant number: 423/DAAD). Rui 

Silva is a PhD student supported by Foundation for Science and Technology; grant number 

SFRH/BD/9756/2003. 

Under review: Journal of Comparative Neurology 



 

 

Summary  
Cell proliferation and death occur contemporaneously in the hippocampal dentate gyrus. On the premise that 

the positioning and survival of newly-born neurons are important determinants of hippocampal function, we 

here analyzed the topographical distribution of cell proliferation (bromodeoxyuridine incorporation) and 

apoptosis (morphological criteria and TUNEL histochemistry) in 1-month old rats. Our analysis included 

comparisons between left-right hemispheres, dorsal-ventral hippocampus and suprapyramidal-infrapyramidal 

blades of the dentate gyrus; since newly-generated cells appear in the subgranular zone (SGZ) before migrating 

inwards, we also compared the granular cell layer (GCL) versus SGZ. Highest proliferation indices were found 

in the SGZ (47%), followed by the GCL (29%), hilus (16%) and molecular layer (8%). Whereas proliferation 

rates did not differ between hemispheres, analysis along the rostro-caudal axis revealed higher cellular division 

in the ventral SGZ. In addition, gradients of proliferation were observed in the subdivisions of the GCL with 

the external, infrapyramidal and ventral zones showing highest proliferative potential. The total number of 

apoptotic cells was evenly distributed throughout the dentate gyrus, although the incidence of apoptosis 

decreased gradient-wise from the tip of the suprapyramidal layer and was highest in the external third of the 

GCL and lowest in its internal third, in marked contrast to the proliferation profile. Curiously, more apoptosis 

was observed in the left hippocampus. This study shows that neurogenesis and apoptosis occur in specific 

‘niches’ and provides a useful basis for future investigations into the relationship between hippocampal 

structure, function and plasticity.  



 

Introduction 
New neurons are continually generated from a local population of stem or progenitor cells in the dentate gyrus 

of the hippocampus (Altman and Das, 1965; Cameron et al., 1993; Kuhn et al., 1996). Our previous 

stereological studies indicated that the total number of hippocampal granule cells increases by some 25% (ca. 

250,000 cells) during the first 6 months of life and by some 5% during the subsequent 6 months (Sousa et al., 

1999, 2000); these observations are commensurate with data showing that the rate of granule cell acquisition 

declines with increasing age (e.g. Kuhn et al., 1996; Kempermann et al., 1998; Cameron and McKay, 1999, 

2001; Nacher et al., 2003).  

The cytoarchitecture of the dentate gyrus ultimately results from neurogenesis and the concurrent physiological 

elimination of neurons through apoptosis (Gould et al., 1991; Lossi and Merighi, 2003). Interestingly, 

neurogenesis and neuronal apoptosis share a number of common regulatory factors, e.g. adrenal steroids and 

excitatory amino acids (Gould and McEwen, 1993; Cameron and Gould, 1994). This, together with the 

aforementioned temporal overlap strongly suggests that the two processes are intimately related and that the 

balance between them determines the rate of postnatal granule cell turnover. Despite numerous studies on 

neuronal birth and death in the postnatal dentate gyrus, there is a conspicuous lack of information with respect 

to the topographic distribution of proliferating and dying neurons (e.g. rostro-caudal, inter- and intra-layer and 

hemispheric asymmetry). Such maps could help promote our understanding (i) of why individual granule cells 

show differing electrophysiological properties (Wang et al., 2000), (ii) how specific functions result from the 

suprapyramidal vs. infrapyramidal and intra-layer positions of individual granule cells (Scharfman et al., 2002), 

(iii) what structural and neurochemical mechanisms operating during dentate development provide the ventral 

and dorsal hippocampus with functionally-distinct properties (Moser and Moser, 1998) and (iv) whether 

hemispheric asymmetry in granule cell turnover accounts for hemispherical differences in hippocampal volume 

and function in both rodents (Verstynen et al., 2001) and humans (Zaidel et al., 1998; Utsunomiya et al., 1999).  

 

In order to determine whether neuronal proliferation and death in the hippocampus occur according to 

subregion-specific patterns or in a stochastic fashion, we undertook a systematic stereology-based mapping of 

these events in young (1 month old) rats under basal conditions. Cell proliferation was assessed 

immunohistochemically after incorporation of the thymidine analogue bromodeoxyuridine (BrdU) into the 

DNA of cells in S-phase; apoptosis was evaluated using established morphological criteria coupled with 

terminal deoxynucleotidyl transferase-mediated dUTP-nick-end labeling (TUNEL) histochemistry. Disturbed 

granule cell proliferation is increasingly being proposed as one of the neurobiological mechanisms responsible 

for psychiatric and neurological disorders (Jacobs et al. 2000; Duman et al., 2001; Eisch, 2002). However, only 

one previous study (Ekdahl et al., 2001) has addressed the issue of likely concomitant cell death and none has 

studied subregion-specific changes in neuronal turnover. The information gained here will allow more critical 

analysis and exploitation of the factors directing birth and functional organization of dentate neurons.   

 



 

Materials and Methods 

Animals 

Six male Wistar rats (Charles River, Barcelona, Spain), aged 4 weeks and with a mean weight of 120g, were 

used in this study. Animals were housed under standard laboratory conditions (12 hours light cycle; 22ºC, 55% 

humidity; food and water available ad libitum). Experiments were conducted in accordance with local 

regulations (European Union Directive 86/609/EEC) and NIH guidelines on animal care and experimentation. 

 

Tissue preparation 
Rats received daily intraperitoneal injections of 50 mg/kg BrdU (Sigma, St. Louis, MO) on 3 consecutive days 

and were killed by rapid decapitation 24 hours after the last injection. Brains were carefully removed, placed in 

cryoprotectant and snap-frozen in liquid nitrogen. Serial coronal sections (20 µm), extending over the entire 

length of the hippocampus, were obtained using a cryostat and mounted on poly-L-lysine-coated slides.  

 

Histochemical procedures  
BrdU labelling 

BrdU incorporation was detected by immunocytochemistry on every 8th section (Fig. 1A). Briefly, sections 

were fixed in 4% paraformaldehyde (PFA) for 30 minutes, permeabilized for 10 minutes in a solution 

containing 0.2% Triton X-100 in Tris buffer saline (TBS), microwaved (20 minutes) while immersed in citrate 

buffer (0.1 M), and acidified in 2 M HCl (30 minutes). Endogenous peroxidase activity was blocked with 3% 

H2O2 in TBS (10 minutes) and non-specific staining was blocked with 4% bovine serum albumin (BSA) in 

TBS (30 minutes). Subsequently, sections were incubated overnight with a mouse monoclonal anti-BrdU 

(1:100, Chemicon, Temecula/California). Antigen visualization was carried out using a universal detection 

system (BioGenex, San Ramon, CA) and diaminobenzidine (DAB: 0.025% and 0.5% H2O2 in Tris-HCl 0.05M, 

pH 7.2). Specimens were lightly counterstained with hematoxylin. 

TUNEL 

One out of eight sections containing the hippocampal formation was used for TUNEL histochemistry (Fig. 1B). 

Sections were fixed as described above, permeabilized in a two-step procedure (0.1% trypsin in PBS, pH 7.2 at 

37 ºC, followed by 0.1% Triton X-100 in PBS, 5 minutes at room temperature) and treated with 3% H2O2 in 

PBS (3 minutes) to block endogenous peroxidases. Sections were then pre-incubated in terminal 

deoxynucleotidyl transferase (TdT) buffer before incubation (37º C, 1 hour) in a cocktail consisting of 13.5 µL 

TdT (MBI Fermentas, Hanover/MD ), 6.75 uL dUTP-Biotin (Roche, Basel/Switzerland), 90 µL TdT buffer, 20 

µL TdT enzyme buffer (MBI Fermentas) and 770 µL distillate water. Development and visualization was 

achieved using a commercial avidin-biotin/DAB system (Vector Labs, Burlinghame, CA). Hematoxylin was 

used as a counterstain. 

 

Stereological procedures 
Estimates of cell density in the different subdivisions of the hippocampus were obtained using the optical 

fractionator method in combination with the StereoInvestigator software (MicroBrightField, Williston/VT). 

Briefly, each 8th section was used for sampling the different areas of interest. Starting at a random position, 

visual fields were sampled by step-size movements of 150 µm in the x-axis and 200 µm in the y-axis for all 

subdivisions analyzed, except the hilus (Hl) and molecular layer (MCL) in which the step-size was 350 µm in 

both axis. Counting frames areas were 625 µm2 at tissue level. Cells were counted under a x100 lens, thus 

obtaining a resolution sufficient to easily identify the different layers and cells types. Cellular discrimination 



 

was based on morphological and staining criteria: apoptotic cells were identified by TUNEL coloration and, in 

addition, by their small size, chromatin condensation, and vesicular formation; cells that were positively 

labeled with BrdU were considered as cells which had been recently generated, i.e. within the timeframe of the 

experiment. 

The following criteria were used to define transversal divisions within the granular cell layer (GCL) and 

subgranular zone (SGZ): the angular subdivision (Ang) was considered as the area extending from the tip of the 

crest up to the end of its curve; the remaining area was divided into two equal parts, delineating the 

intermediate (Med) and extreme (Ext) subdivisions (Fig. 1C). These subdivisions were further distinguished in 

terms of their position within the suprapyramidal (Supra) and infrapyramidal (Infra) blades. Longitudinal 

divisions of the GCL (internal, intermediate and external) were defined by dividing the thickness of the GCL 

into 3 equal parts. The SGZ was considered to be a 4-cell-body-wide zone at the border between the GCL and 

Hl. The division between dorsal and ventral hippocampus was based on the relative position of the dentate 

gyrus with respect to the third ventricle or cerebral aqueduct: areas located superior to a transverse plane 

passing at the top of these structures were considered dorsal, whereas those located inferior were considered 

ventral. 

 

Statistical analysis  
Results are expressed as mean + SEM. SEM and coefficient of error (CE) were calculated accordingly to 

Gundersen and Jensen (1987). Data were analyzed using one- or two-way analyses of variance (ANOVA), 

followed by Tukey post-hoc multiple comparisons. Differences were considered statistically significant if p≤ 

0.05. 

 



 

Results  

Volumes of the dentate gyrus 

Analysis of the volumes of the different layers of the left dentate gyrus revealed a slight, but not significant 

(F(7,47)= 0.097; p=0.8), predominance of the left dentate gyrus (Table 1). Yet, a significant effect of location 

along the rostral-caudal axis was revealed by ANOVA (F(7,47)= 32.1; p≤ 0.0005). Comparisons between dorsal 

and ventral divisions showed increased volumes in the dorsal component of the molecular cell layer (MCL), 

granular cell layer (GCL), subgranular zone (SGZ), except in the hilus (Hl) where the volume of the ventral 

division outweighed that of the dorsal division (Table 1). 

BrdU staining  
As illustrated in Fig. 2A, significant differences (F(3,23)= 237.8; p≤ 0.0005) were observed in the total number of 

BrdU-positive cells within the various divisions of the dentate gyrus: molecular cell layer (MCL), granular cell 

layer (GCL), subgranular zone (SGZ) and hilus (Hl). The ratio of cellular proliferation was as follows: 

subgranular zone >> granule cell layer >> molecular cell layer = hilus. 

Whereas no significant hemispherical differences in the densities of BrdU-incorporating cells were detected in 

any of the divisions of the dentate gyrus (Fig. 2B), there were significant differences in proliferation along the 

rostro-caudal axis of this hippocampal subfield (F(3,23)= 56.6; p≤ 0.0005). Post-hoc comparisons revealed that 

mitotic cells predominate in the ventral SGZ (Fig. 2C).  

As shown in Fig. 2D, ANOVA revealed a significant effect (F(3,23)=416.5; p≤ 0.0005) of location of 

proliferating cells into supra- and infra-pyramidal blades, as well as in subdivisions of the dentate gyrus (F(3,23)= 

49.7; p≤ 0.0005). Post-hoc comparisons demonstrated a significant increase in the numerical density of BrdU-

labeled cells in the infra-pyramidal blade of both areas (Fig. 2D).    

Within the GCL, proliferation was higher in the internal third of the cell layer (F(2,15)= 238; p≤ 0.0005) (Fig. 

2E)]. 

Analysis of the densities of BrdU-positive cells in the GCL and SGZ sub-divisions revealed a significant effect 

of location within supra- vs infra-pyramidal blades (F(5,35)= 57.9; p≤ 0.0005) and in the transversal position 

within these blades (F(5,35)= 4.3; p= 0.03). A gradient of proliferation increasing from the extreme portion of the 

suprapyramidal blade to the angular zone of the infrapyramidal blade was found, with a decrease from the 

angular zone to the extreme portion of this blade (Fig. 2F).  

Apoptosis 
As illustrated in Fig. 3A, and confirmed by ANOVA (F(3,23)=14.5; p≤ 0.0005), analysis of densities of apoptotic 

cells between the main divisions of the dentate gyrus showed the GCL and SGZ to have the highest levels of 

apoptosis (Fig. 3A). In addition, a significant effect of hemispheric location (F(7,47)=12.4; p=0.001) was 

detected by ANOVA; comparisons for potential differences between hemispheres revealed that apoptotic cells 

were more abundant in the left dentate gyrus, although the differences were significant only in the SGZ (Fig. 

3B). 

There were no significant differences (F(7,47)= 1.3; p=0.27 ) in the occurrence of apoptosis along the rostro-

caudal axis of the dentate gyrus (Fig. 3C). ANOVA revealed an effect of location of apoptosis in the supra- and 

infra-pyramidal blades (F(3,23)= 415; p≤ 0.0005), as well as in the subdivisions of the dentate gyrus (F(3,23)= 

49.5; p≤ 0.0005), with higher levels of apoptosis in the supra-pyramidal blade of the GCL (Fig. 3D). Scrutiny 

of the sublayers within the GCL revealed an increasing gradient of apoptosis from the internal third to the 

external third of the GCL (F(2,17)= 381.4; p≤ 0.0005) (Fig. 3E). Further, it was found a significant effect of both 

supra- vs infra-pyramidal blade location (F(5,35)=5.0; p=0.003) and transversal position within these blades 



 

(F(3,23)=3.4; p=0.04) for apoptotic cells; post-hoc comparisons demonstrate that the highest index of apoptosis 

occurs in the extreme portion of the supra-pyramidal blade (Fig. 3F). 



 

Discussion 

Granule cell turnover 

The postnatal dentate gyrus displays remarkable plastic properties, reflected, for example, by its ability to 

generate new granule cells from progenitors cells located in the SGZ throughout life (Altman and Das, 1965; 

Cameron et al., 1993; Kuhn et al., 1996). Despite a decline in proliferative potential with increasing age, 

postnatal neurogenesis contributes significantly to the number of granule cells, with estimates of an additional 

1500-9000 new granule cells being born each day (Biebl et al., 2000; Cameron and McKay, 2001; Fisher et al., 

2002) but the net increase in the volume and total cell number of the dentate gyrus during postnatal life is 

considerably smaller due to the continuous loss of granule cells through apoptotic mechanisms (Sousa et al., 

1998, 1999).  

The programmed elimination of cells is an essential component of the neural cell turnover process and is 

important for the shaping and maintenance of brain structures (Raff et al., 1993; Burek and Oppenheim, 1996; 

Rubin, 1997). Hippocampal granule cells undergo apoptosis during postnatal development and aging and 

following exposure to various stimuli (Gould et al., 1991; Sloviter et al., 1993; Gould and Cameron, 1996; 

Hassan et al., 1996; Almeida et al., 2000). Under basal conditions, the rates of neurogenesis and apoptosis 

show a strong inverse correlation during development and early life, and tend to equalize thereafter. It is thus 

conceivable that an inappropriate balance in these rates will predispose the individual to pathology, including 

accelerated aging of the neural substrate and impaired function. Supporting the view that neurogenesis and 

apoptosis occur in a coordinated and inter-dependent fashion are the facts that the two phenomena occur in 

tandem and share several intrinsic and extrinsic triggers (e.g. Gould and McEwen, 1993; Cameron and Gould, 

1994; Lossi and Merighi, 2003).  

The starting premise for this study was that evidence for differential occurrence of these events could 

eventually contribute to improving understanding of the relationship between structure and function. 

Accordingly, we here aimed to determine gradients and laterality in the incidence of neurogenesis and 

apoptosis in the dentate gyrus of the young male rat, rather than to establish the precise daily ratio between 

neuronal birth and death in this hippocampal area; while the latter would demand a different experimental 

design because of the complex dynamics of each of these events, the protocol that was used allows comparison 

with the majority of published studies pertaining to the issue examined in this paper.  

 

Topographical specificity of proliferation 

A major objective of this study was to analyze the precise location and extent of neurogenesis and apoptosis in 

the dentate gyrus. Our results show that proliferating cells are predominantly located in the SGZ and the 

adjacent (inner third) GCL, confirming observations by Kempermann et al., (2003). Further, this topographical 

analysis revealed that the density and total number of newly-generated cells is greater in the ventral than in the 

dorsal hippocampus, and greater in the infrapyramidal than in the suprapyramidal blade of the dentate gyrus. 

The prevailing consensus is that newly-generated cells migrate inwards from the SGZ, reaching their final 

location within a few days-weeks of birth, where they ultimately differentiate (e.g. Kempermann et al., 2003). 

Assuming a role for paracrine factors and synaptic inputs in differentiation, it is highly plausible that location 

plays a crucial role in determining the final functional phenotype of newly-born granule cells. Generation of 

cellular diversity is perhaps the most intriguing question of brain development, and there are numerous 

examples of phenotypically-similar neurons displaying differing functions, presumably because of subtle 

differences in topography and the physicochemical characteristics of the niche in which individual cells find 

themselves (e.g. Green and Juraska, 1985; Claiborne et al., 1990; Scharfman et al., 2002).  



 

Natural and induced postnatal neurogenesis is increasingly being implicated in improved hippocampal function 

(e.g. see Kempermann, 2002; Korovitskiy and Gould, 2003). In this respect, the positional aspects discussed 

above increase in importance given that, as the organism ages, new neurons are acquired and incorporated into 

neuronal networks of ever-growing complexity. The herein reported data provides the first systematic and 

quantitative evidence for topographical differences in the incidence of granule cell turnover; appreciation of 

these subtle patterns in the distribution of newly-generated and apoptotic neurons should facilitate a better 

definition of structure-function relationships under healthy and pathological states.  

 

Apoptosis as a counterbalance to neurogenesis 
The demonstration that the topographic distribution of apoptosis and neuronal proliferation in the dentate gyrus 

differ significantly was unexpected given that neurogenesis and apoptosis in this area share several common 

stimuli. In contrast to the distribution of proliferating granule cells, apoptotic cells were predominantly found in 

the suprapyramidal blade. While adrenalectomy-induced apoptosis was previously shown to mainly occur in 

this blade (Sloviter et al., 1993; Sousa et al., 1997), the current findings are the first to demonstrate such a 

skewed distribution under basal conditions, and suggest the particular susceptibility of granule cells in this 

subdivision to apoptosis. Since apoptosis significantly contributes to neural tissue reorganization (Raff et al., 

1993; Burek and Oppenheim, 1996; Rubin, 1997) and may underlie reduced hippocampal volumes in 

pathological states (Lupien et al., 1999; Honig and Rosenberg, 2000; Friedlander, 2003; Sheline et al., 2003), 

the role of subregion-specific neuronal loss to the plasticity and function of the hippocampus deserves critical 

assessment in the future. Although at this age neurogenesis exceeds apoptosis in terms of absolute numbers, 

apoptosis, driven by changing external and internal conditions, is likely to be an integral component of normal 

granule cell turnover, ensuring structural stability and appropriate connectivity. Our findings point to the 

necessity of considering apoptosis when evaluating the potential pathologic and therapeutic roles of 

neurogenesis.  

 

Hemispherical asymmetry in incidence of apoptosis  
Our observation that neurogenesis occurs to an equal extent in both the left and right hippocampal formations 

whereas the degree of apoptosis is greater in the left hippocampus bolsters the notion that apoptosis has a 

significant impact on hippocampal structure and function. Under basal conditions, standard morphometric and 

magnetic resonance imaging analyses revealed that the right hippocampus of the male rat is thicker (Diamond 

et al., 1982) and has a greater volume than its left counterpart. Interestingly, these hemispherical differences 

can be permanently manipulated by exposing rats to certain stimuli during postnatal development (Verstynen et 

al. 2001). Whether the present finding - that there is a greater incidence of apoptosis in the left hippocampus - 

can explain these differences waits more rigorous testing. Meanwhile, it is pertinent to mention that the loss of 

a relatively small number of granule cells is reflected in a major decrease in hippocampal volume owing to the 

concomitant loss of neuritic extensions (Sousa et al. 2000).  

Asymmetry in hippocampal volumes in humans appears to be a consistent finding; according to one study, up 

to 91% of healthy subjects have larger right hippocampal formations (Utsunomiya et al., 1999). The potential 

importance of this asymmetry may be reflected in clinical data which strongly indicate a higher incidence of 

certain psychiatric disorders (e.g. post-traumatic stress disorder and major depression) in subjects with smaller 

absolute and normalized left hippocampal volumes (Bremner et al., 1997; Mervaala et al., 2000). Lending 

support to this are the findings that (i) mood scores correlate negatively with left hippocampal volumes 

(Villarreal et al., 2002), (ii) the normal left-right differences in hippocampal volume are exaggerated in patients 



 

with affective disorders (Mervaala, et al, 2000), and (iii) early life events, which have been causally implicated 

in psychopathology (Gutman and Nemeroff, 2003; McEwen, 2003), selectively reduce the size of the left 

hippocampus (Teicher et al., 2003).  

 

Concluding remarks 
The herein reported data serves to alert researchers to the potential importance and functional implications of 

topographical differences in the incidence of granule neuron proliferation and death in the hippocampus. 

Further, the reported findings provide a much-needed basis for relating the neurodevelopmental positioning of 

proliferating and dying cells to the final functional phenotype displayed by individual granule cells.  
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Table  

 

Table 1. Volumes of the subdivisions of the dentate gyrus in left and right hemispheres (mm3)  

 

 

Values are expressed as mean (SEM). No significant differences are found between the values of left versus 

right subdivisions of the dentate gyrus. Comparisons between dorsal and ventral subdivisions of dentate gyrus. 

Left hemisphere: MCL: p≤ 0.0005; GCL: p=0.001; SGZ: p= 0.002; Hl: p= 0.008. Right hemisphere: MCL: p≤ 

0.0005; GCL: p≤ 0.0005; SGZ: p≤ 0.001; Hl: p≤ 0.002. Mean CE= 0.04.  

Left 

  Dorsal Ventral Total 

ML 2.15 (0.02) 1.59 (0.06) 3.74 

GCL 0.52 (0.01) 0.39 (0.02) 0.91 

SGZ 0.30 (0.01) 0.22 (0.01) 0.52 

Hl 0.64 (0.03) 0.83 (0.04) 1.47 

  Right   

  Dorsal Ventral Total 

ML 2.03 (0.06) 1.48 (0.07) 3.51 

GCL 0.51 (0.02) 0.36 (0.02) 0.87 

SGZ 0.28 (0.01) 0.21 (0.01) 0.49 

Hl 0.62 (0.01) 0.80 (0.04) 1.42 



 

 

Figure legends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Photomicrographs illustrating the localization of (A) BrdU immunoreactive cells (arrowheads) and (B) 
TUNEL positive cells (arrowheads) in dentate gyrus. Scale bar: 50µm. (C) Representation of the dentate gyrus 
divisions including the transversal subdivisions used for the cell counting with the StereoInvestigator software. 
Molecular cell layer (MCL), granular cell layer (GCL), subgranular zone (SGZ) and hilus (Hl). Scale bar: 350µm. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 (A) Graphic representation of the distribution of BrdU-positive cells in the dentate gyrus divisions: 
molecular cell layer (MCL), granular cell layer (GCL), subgranular zone (SGZ) and hilus (Hl). Comparisons 
among divisions showed SGZ as having the highest levels of BrdU-positive cells followed by GCL. GCL vs 
MCL: p≤ 0.0005; GCL vs SGZ: p≤ 0.0005; GCL vs Hl: p≤ 0.0005; SGZ vs MCL: p≤ 0.0005; SGZ vs Hl: p≤ 
0.0005. Mean CE=0.04. (B) Total number of BrdU-positive cells in left and right dentate gyrus (DG). Mean 
CE=0.05. (C) Comparison between cellular proliferation in dorsal and ventral hippocampus. SGZ: p≤ 0.0005. 
Mean CE=0.05.  (D) Analysis of the densities of BrdU-positive cells between the supra- (Supra) and infra-
pyramidal (Infra) blades. GCL: p≤ 0.0005; SGZ: p≤ 0.0005. Mean CE=0.02. (E) Distribution of BrdU-
incorporating cells within GCL longitudinal subdivisions. The highest mitotic levels were found in the internal 
sublayer. External vs Internal: p≤ 0.0005; Intermediate vs Internal: p≤ 0.0005. (F) Comparison of the densities 
of BrdU-positive cells between transversal subdivisions of the GCL and SGZ revealed Inf Ang as having the 
highest levels of mitosis. This sub-division is statistically different from all the others sub-division with the 
exception of Inf Intmed. Inf Ang vs Sup Ext: p≤ 0.0005; Inf Ang vs Sup Intmed: p≤ 0.0005; Inf Ang vs Sup 
Ang: p≤ 0.0005; Inf Ang vs Inf Ext: p≤ 0.0005. Mean CE=0.03. * p≤ 0.005 



 

Fig. 3 (A) Graphic representation of the distribution of apoptotic cells in the dentate gyrus (DG) divisions: molecular cell layer 
(MCL), granular cell layer (GCL), subgranular zone (SGZ) and hilus (Hl). GCL vs MCL: p=0.002, GCL vs Hl: p=0.006; SGZ vs 
MCL: p≤ 0.0005; SGZ vs Hl: p≤ 0.0005. Mean CE=0.07. (B) Comparison between total number of apoptotic cells in left and right 
subdivisions of the dentate gyrus. SGZ: p≤ 0.0005. Mean CE=0.13. (C) Comparison of densities of apoptotic cells in dorsal vs 
ventral hippocampus. Mean CE=0.10. (D) Analysis of apoptotic cells density in granular supra- (Supra) and infra-pyramidal 
(Infra) cell layer in GCL and SGZ. GCL: p≤ 0.0005. Mean CE=0.07. (E) Analysis of apoptotic cell level in GCL longitudinal 
subdivisions. This comparison showed a gradient from internal to external layers and external layer as having the highest apoptotic 
levels. External vs Internal: p≤ 0.0005; External vs Intermediate: p≤ 0.0005; Intermediate vs Internal: p≤ 0.0005. (F) Comparison 
of apoptotic cells between transversal divisions in GCL and SGZ indicates superior external as having the highest levels of 
apoptosis. Sup Ext vs Sup Intmed: p=0.006; Sup Ext vs Sup Ang: p=0.0005; Sup Ext vs Inf Ang: p≤ 0.0005; Sup Ext vs Inf 
Intmed: p=0.006; Sup Ext vs Inf Ext: p=0.038. Mean CE=0.07]. * p≤ 0.005 



 

 

 

 

 

 

 

 

 

 

 

Annex II 

 

J. Lu, Zs. Némethy, J.M. Pego, J.J. Cerqueira, N. Sousa and O.F.X. Almeida, (2004). Cellular and 

molecular analysis of stress-induced neurodegeneration–methodological considerations.  

Handbook of Stress and the Brain. 15, 729-750. 
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