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Abstract: Detecting and recognizing different kinds of urban objects is an important problem,
in particular, in autonomous driving. In this context, we studied the potential of Mueller matrix
polarimetry for classifying a set of relevant real-world objects: vehicles, pedestrians, traffic
signs, pavements, vegetation and tree trunks. We created a database with their experimental
Mueller matrices measured at 1550 nm and trained two machine learning classifiers, support
vector machine and artificial neural network, to classify new samples. The overall accuracy of
over 95% achieved with this approach, with either models, reveals the potential of polarimetry,
specially combined with other remote sensing techniques, to enhance object recognition.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Fully autonomous vehicles (AVs) are an increasing reality already being tested on public roads
[1,2]. Self-driving vehicles promise to be a disruptive innovation in transportation, as it is
predicted that they will have a significant impact on road safety, on transport efficiency and on the
environment, at both the individual and population level [1,3–7]. One of the main challenges in
developing AVs is to make them aware of their surroundings to accurately detect and recognize
different kinds of static or moving objects, such as pedestrians, vehicles, traffic signs and different
kinds of obstacles. RADARs, LiDARs, SONARs, video cameras and road condition sensors are
examples of exteroceptive sensors that are being developed to solve this problem [7–9]. These
sensors generate a massive amount of data that needs to be processed and analyzed in real-time
[9]. To this end, artificial intelligence is used to identify the most appropriate driving maneuver
to be performed due to their adaptivity, reliability, flexibility and capability of making real-time
decisions, conventionally made by humans [10–12].

The sensors referred above are based directly or indirectly on intensity measurements of
radiation. However, there are other techniques that allow enhancing information to analyze
a scene. In particular, light-matter interactions can modify the polarization of light and its
characterization allows expanding the volume and nature of the acquired information. The
polarization state of an optical beam interacting with matter can change by varying the amplitudes,
the relative phase of its orthogonal field components, or by changing its degree of polarization.
One approach used to analyze polarization changes produced by samples is based on the Stokes
vector-Mueller matrix formalism. This formalism is the most appropriate representation of
polarization when considering not fully polarized light [13]. The Stokes vector describes the
state of polarization of any light beam, whereas the Mueller matrix (MM), consisting of 4×4 real
elements, provides information related to the samples. The first element (m00) is related to the
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irradiance of the sample and the remaining 15 elements encode the polarimetric information,
such as diattenuation, retardance and depolarization. Taking into account that different materials
could result in different polarimetric responses, the measurement of the Stokes vector of scattered
light or the Mueller matrix of samples could provide additional information useful to distinguish
materials of relevant objects, which could be an advantage compared to conventional intensity
data. There is a vast amount of literature available on polarimetry used in many research fields
[14], such as biomedicine [15–17], materials characterization [18–20] and astronomy [21–23].

In the last decades, polarimetry has shown its potential in remote sensing applications
[14,24,25]. More recently, due to the enhancement of information detected by this technique,
with great potential for autonomous driving, there has been a growing interest in using artificial
intelligence with polarimetric measurements for materials identification. Complete interpretation
of polarimetric results and their relation to the physical properties of light-scattering objects
requires a quantitative electromagnetic model for the latter, which is not feasible for the vast
majority of real-world objects (such as, e.g. tree leaves). The use of phenomenological relations
between the polarimetric response and the type of the object, which can be established using
machine learning algorithms, is a solution for this practical problem.

Depending on the illumination used to characterize the scene polarimetrically, two approaches
can be found in the literature. On the one hand, different research works have studied the benefits
of active polarimetry (by controlling the state of polarization that illuminates the scene) to classify
materials [26–28]. In addition, much work evaluating the potential of polarimetry and, more
specifically, MM measurements of real-world materials have been conducted [29,30], enabling
material recognition not only by their shape or color, but also by their structural information.
On the other hand, by using passive polarization (i.e. polarization modifications of diffuse
skylight in sunlit outdoor scenes), several studies have demonstrated that polarimetric images
together with deep learning can improve object detection in road scenes [31–33], even in adverse
weather conditions. Moreover, passive polarimetry can be combined with other optical techniques
and deep learning to effectively detect and classify objects [34,35]. For instance, Brown et
al. [36] developed a hybrid LiDAR and passive polarimetric imager combination for material
classification. By using machine learning, they classified materials with great accuracy.

The objective of this work was to study the feasibility of Mueller matrix measurements
for classifying real-world urban objects, which can be of interest for polarimetric sensors in
autonomous driving. In this context, a comprehensive study of the Mueller matrix of several
materials for several rotation angles is presented. Then, the performance of two classification
models (Support Vector Machine (SVM) and Artificial Neural Network (ANN)), developed to
classify the measured materials, is discussed in order to analyze the viability and potential of
polarimetry and machine learning to discriminate between real-world urban objects.

The article is organized as follows. In the next section, we provide the methodology,
a description of the samples used to develop this work, and a brief review of the studied
classification algorithms and the data preparation. Section 3 presents the data analysis of the
studied real-world samples based on their Mueller matrix results and their use for classifying them
into predefined classes by using SVM and ANN models. Section 4 is devoted to conclusions.

2. Methods

2.1. Mueller matrix imaging polarimeter

A complete Mueller matrix imaging polarimeter, operating in reflection, has been developed
for this study at the University of Minho. Considering that the main goal of this work is to
demonstrate the potential of Mueller matrix for classifying relevant urban objects in order to
provide additional environmental information for AVs, the choice of the wavelength is important.
The wavelength used in our MM polarimeter was chosen with the intention of reducing the
impact of solar background radiation and atmospheric attenuation [37], as well as complying with



Research Article Vol. 30, No. 16 / 1 Aug 2022 / Optics Express 28387

human eye safety. Note that, independently of the application, the highest average optical power
of the light source used to illuminate a scene where people can be present will always be limited
by the eye safety norms [38]. In this sense, light with wavelengths from 0.4 to 1.4 µm is easily
transmitted through the cornea and can be focused on the retina [38,39]. Therefore, we used a
laser with a wavelength of 1550 nm, because the eye safety regulations (EN 60825-1 standard)
permit a higher laser output power and the solar background radiation is reduced compared to
shorter wavelengths [39].

A comprehensive scheme of the MM imaging polarimeter is shown in Fig. 1. Light from the
laser (Thorlabs, Model LDM1550) is expanded by the lens system L1. Then, the beam passes
through a linear polarizer, LP1, with its transmission axis at 0° with respect to the laboratory
vertical and through two liquid crystal variable retarders, LC1 and LC2, from Meadowlark, with
their fast axes at 45° and 0° to the vertical, respectively. The combination of these polarization
optics forms the polarization state generator, PSG. The generated polarization states are controlled
by applying voltages to both LCs, since their retardances depend on the applied voltage [40]. The
generated polarized light illuminates the sample at a sample rotation angle, θ, that is controlled
by a motorized rotation stage. The samples were rotated to analyze the effect of the materials
orientation in the measured Mueller matrix and in the classification performance. The sample
rotation angle is measured with respect to the specular reflection condition, denoted by θ = 0°.
Note that, when θ ≠ 0°, off-specular reflection is being analyzed. Light reflected or scattered by
the sample passes through the polarization state analyzer, PSA, consisting of the same elements
of the PSG but in the inverse order. Finally, a camera lens, L2, images the sample on an InGaAs
SWIR camera (Allied Vision, with a 640(H)× 512(V) resolution, a cell size of 15 µm× 15 µm
and temperature stabilization via TEC features, Model GoldEye G-033 TEC1-C).

Fig. 1. Scheme of the Mueller matrix imaging polarimeter. The polarization state generator
(PSG) consists of a linear polarizer (LP1) with its transmission axis at 0° and two liquid
crystal variable retarders (LC1 and LC2) with their fast axis oriented at +45° and 0°,
respectively. The polarization state analyzer (PSA) is reciprocal to the PSG. β is the bistatic
angle (∼9°) between the illumination and detection arms and θ is the sample rotation angle,
measured with respect to the specular reflection condition. The picture corresponds to . The
lens system L1 expands the laser beam to illuminate a larger area of the samples and the lens
system L2 images the sample on the camera.

During the experiment, the detection arm was adjusted to be as close as possible to the
illumination arm, in order to mimic backscattering remote sensing studies. The angle between
them (β in Fig. 1) was fixed at ∼9°. Thirty-six intensity images were acquired for a certain
combination of voltages applied to the LCs of the PSG and PSA. Then, the experimental Mueller
matrix image was calculated on a pixel-by-pixel basis from the polarimetric data reduction
equation described in Ref. [13]. Obtained experimental Mueller matrix images correspond
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to an illuminated area on the samples of 40×40 mm2. The calibration of the Mueller matrix
polarimeter is discussed in Section 1 of Supplement 1.

2.2. Samples description

For this study, the experimental Mueller matrices of several urban objects were measured for a
set of angles θ from −50° to 50° by using the MM imaging polarimeter described above. In this
context, it is important to note that the bistatic angle β was fixed (Fig. 1), which implies that,
except for θ = 0° (specular reflection), diffuse light was measured.

The studied samples were chosen to be representative of real-world objects that can be found in
urban environments. With this in mind, we decided to group real-world objects into six classes,
which we consider relevant for being recognized by AVs and for demonstrating the potential
of Mueller matrix assisted by artificial intelligence models. Note that, in urban environments,
many materials can be typically associated with a certain class (for example, fabrics are typically
associated with clothes used by pedestrians). Thus, we carried out measurements and posterior
classification of samples from the classes listed in Table 1, with their brief description provided
in the second column.

Table 1. Classes of urban objects and associated samples selected to be measured in this study.

Urban Objects Description of the measured samples

Vehicles Car paints (with metallic flakes and solid paints)

Pedestrians Clothes (cotton, polyester, viscose, nylon, wool, . . . )

Pavements Granite cobblestones

Traffic Signs Danger warning, mandatory, information, priority traffic signs, . . .

Vegetation Leaves from: trees (cherry (Prunus avium), oak (Quercus faginea), Platanus occidentalis, . . . .)
and grass (Eruca vesicaria, Amaranthus blitum, Plantago major, . . . )

Tree trunks Tree logs from: pine (Pinus pinaster Aiton), eucalipt (Eucalyptus globulus), olive tree (Olea
europaea), loquat (Eriobotrya japonica), cherry tree (Prunus avium), walnut (Juglans
regia), . . .

For the vehicles’ class, we studied automotive paint samples which correspond to real paints
of diverse car brands, such as Opel, Mercedes, Fiat, Ford, among others. Two kinds of car paints
were characterized, solid paints (no sparkle effects) and metallic paints (containing metallic
flakes). Moreover, in order to study the behavior of the metallic automotive paints, several
samples containing different flake sizes were analyzed. Apart from that, clothes of diverse textiles
or fabrics, compositions (e.g. cotton, nylon, wool, polyester, among others) and types, as well as
of different seasons and genders were measured. For the pavements’ class, granite cobblestones
were studied because they are commonly used in low-speed zones in Portugal. Furthermore,
different types of traffic signs (such as danger warning, mandatory, information or priority signs)
with several inks and sheeting were analyzed. Both the front side and back side of the traffic signs
were characterized. Finally, diverse types of vegetation (tree, grass and bush leaves) and tree logs
from local gardens and fields were characterized. Some of the studied samples were provided
by municipal services in Braga and “BOSCH Car Multimedia”. See Table S1 in Supplement 1
for more details on the studied urban objects. Some examples of samples of each one of the six
studied classes are shown in Fig. 2.

2.3. Classification algorithms

Artificial intelligence is particularly suitable for recognition applications because of its capacity
of analyzing large amounts of data and detecting patterns which can be used, for example, to
make predictions. Based on the previous knowledge of data and the final application, there
are different learning forms that can be used [41]. In our case, we are interested in supervised

https://doi.org/10.6084/m9.figshare.19222551
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Fig. 2. Images of a set of measured samples of a) metallized and solid car paints, b) clothes,
c) granite cobblestones, d) traffic signs, e) leaves and f) tree logs.

learning methods since not only the inputs (or features) are known (MM and sample rotation
angle, θ), but also the outputs (the object classes described in Table 1). In particular, we focus on
multiclass methods because they are suitable for determining whether a variable belongs to a
class when considering more than two possibilities [42].

The classification process consists of three parts. First, the database containing our six classes
is prepared by checking for anomalies or missing data, cleaning data, etc. In this part, the best
set of inputs are determined. Secondly, the classifier is trained with the training data, tuning
the model parameters for the database. This process is repeated until the classification error on
the training data is small enough to make accurate predictions. Finally, the performance of the
classifier is estimated by processing new data (not present in the training database) and classifying
the new samples into one of the previously defined classes. In this work, we created a database
with several predictors/outputs (the object classes presented in Table 1) and features/inputs (15
normalized MM elements, all except the normalizing element m00, and the rotation angle of the
sample, θ).

For this study, two types of classifiers were trained and tested, namely, the SVM and ANN.
These two models were selected because they have proven to be robust and effective in similar
classification problems [27,28,36,42].

2.3.1. Support Vector Machine (SVM)

The objective of SVM algorithm is to find the optimal hyperplane that accurately separates data
points belonging to different classes (see Fig. 3). In this sense, multiple hyperplanes can separate
data points so, during the training process, the maximum margin hyperplane is selected by using
support vectors (i.e., the small subset of the training data that lie the closest to the hyperplane)
[41,43]. That is to say, the algorithm looks for the hyperplane that maximizes the perpendicular
distance, called margin, between the support vectors and the decision boundary (as shown in
Fig. 3). When data points are not separable, they are projected into a higher dimension by using
mathematical equations, called kernel functions, transforming original data into a new feature
space [43]. Two of the most used kernels are the polynomial and the Gaussian ones (the latter is
also called Gaussian Radial Basis Function, RBF).

SVM was conceived to classify two classes (binary classification), however this method can
be extended to perform multiclass classifications [44]. Several methods can be employed to
use binary classification algorithms for multiclass classification problems. In this work, we
have employed the one-vs-one and one-vs-all methods. On the one hand, the one-vs-one (also
known as all-pairs) approach compares all pairs of classes to each other by constructing a binary
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Fig. 3. Illustration of SVM algorithms for classifying 2 classes, red circles and blue triangles.
The inputs, x1 and x2, are represented in the axes. The training data (left side) is transformed
by a kernel, f (x1, x2) to a new plane, where the optimal hyperplane is obtained.

training sequence. With this method, the problem is divided into N(N−1)/2 binary classification
models, with N being the number of classes [41,44]. For new classifications, each N(N−1)/2
model is used to predict new data. The selected class is the one that has the highest number of
predictions. One of the main advantages of the one-vs-one method is that new classes can be
added to the existing set of classes without the need to fully perform new computation. This can
be useful when working with a significant number of classes. However, the number of binary
classifiers will increase significantly as a function of the number of classes. On the other hand,
the one-vs-all (also known as one-versus-rest) method creates a binary classification model for
each class, discriminating each class from the rest of classes [41]. That is, this method is based
on maximizing the margin from each class to the remaining classes. By contrast to one-vs-one,
N binary classification models are trained in the one-vs-all method, requiring less training time.
More details on the SVM algorithms are given in Refs. [44,45].

2.3.2. Artificial Neural Network (ANN)

An alternative to SVMs are the artificial neural networks. ANNs computation is performed
by a mesh of computing nodes/neurons and connections/edges, that operate collectively and
simultaneously on the data and inputs [41]. Each node has a defined number n of inputs, xn,
their associated weights, wn, (strength of a connection) and the bias initialization, w0, that are
summed and evaluated by an activation function, g, to derive the output. These weights can be
modified until the result of the activation function is above a threshold, i. e., a desired output is
produced. Note that, in contrast to SVM, where the previously defined basis functions (kernels)
are centered on the training data, ANNs allow the used basis function (activation function) to be
adapted during training [44]. In the case of a single node, the output y is defined by [44]:

y = g

(︄
n∑︂

i=0
wixi

)︄
, (1)

where x0 has the constant value 1. Common activation functions (g) are the logistic (sigmoid),
the rectified linear unit (ReLU) and the hyperbolic tangent functions which are chosen depending
on the nature of the training data. Nodes are grouped in layers in a way that an ANN can have
multiple layers. A simplified diagram of an ANN is shown in Fig. 4. Typically, neural networks
are formed by an input layer (including the inputs), a few hidden layers (in our diagram, two
hidden layers are shown) and an output layer (containing the output signal).

The ANN is trained iteratively until the classification loss (prediction error) is minimized. For
this, a loss function (also known as cost function) is used to compute this error and quantify the
model performance. The most popular choice of the loss function is the Mean Squared Error
(MSE). Since in multilayer networks the error may contain several local minima, several trainings
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Fig. 4. Diagram of a simplified feed-forward Artificial Neural Network with 2 hidden
layers. The input, hidden, and output variables are represented by nodes and the weights are
represented by the lines connecting nodes. The inputs are the Mueller matrix elements (m01,
m02, . . . m33), normalized by the m00 element, and the sample rotation angle (θ), and the
outputs correspond to the classes described in Table 1.

should be performed in order to obtain the best classifier. When compared with SVM, ANN
is more suitable for large datasets, but it has the disadvantage of higher computing cost during
training.

2.3.3. Data preprocessing and feature analysis

ANN and SVM models for classification work by determining similarities and differences in the
training data, requiring large amounts of data to successfully train the classifiers. The quality,
amount and format of the training data as well as its information are important to lead a reliable
classifier. For this reason, the database must be prepared in order to improve the quality of the
models. Thus, several data preprocessing techniques were performed for our database.

First, the data was cleaned by filtering the experimental measurements to obtain physically
realizable MMs [46,47]. Then, the training data was balanced and standardized, to give the
same weight to all features (MM, normalized by the m00 element, and sample rotation angle,
θ). During the training process, one class could be considered less important if it is imbalanced
(less represented compared to the other ones). Some classification algorithms, such as ANN, are
very sensitive to unequal distributions of classes in the training data. Therefore, our training data
contain the same number of measurements per object class. Note that a balanced classifier is a
useful solution inside the laboratory to verify the accuracy of individual object class recognition,
but for a real-world sensor application, a weighted classification could be a better solution, since
the proportion of objects and their importance in an urban environment are not the same.

Moreover, features measured at different scales do not contribute equally to the model, giving
more weight to the larger range inputs. Our training data was transformed to improve the
performance during the training process and the stability of the model [41]. Typically, data is
transformed when the original inputs have significantly different variability. In this study, we
have standardized our data in a way that the units of the features are comparable. The data, xi,
is centered around the mean, µ, of each feature and scaled by their standard deviation, σ. The
transformation is described as [41]:

zi =
xi − µ

σ
. (2)
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Furthermore, in order to choose the most relevant features for the training process, it is
important to analyze the quality of the inputs. In this sense, by selecting only the most important
features, the classification accuracy and predicting performance could be improved and effects
from noise or irrelevant variables and computation cost could be reduced. The analysis of the
features’ importance of our training data was made by applying the Boruta algorithm [48,49].
This algorithm is capable of capturing non-linear relationships in the data by running a random
forest classifier on an extended information system (created by adding shuffled copies to all
features, known as shadow features, and comparing the importance of real inputs with those
random shadow features). As a result, the Boruta algorithm quantifies the importance of each
feature.

2.3.4. Multiclass evaluation metrics

Different metrics were calculated to evaluate the performance of the trained ANN and SVM
models. In particular, by using additional measurements (different from the training data), the
classification performance of the models was analyzed by calculating the overall accuracy and
the confusion matrix. The overall classification accuracy is defined as the proportion of correctly
classified samples out of all the evaluated samples. The confusion matrix is a table that allows
the visualization of the performance of a classifier, summarizing the prediction results of the
model (correct and incorrect predictions). The confusion matrices presented in Section 3.2
show the true (in the rows) and the predicted (in the columns) classes of the data. The correct
classifications are given by the diagonal elements of these matrices, while the non-diagonal ones
are the incorrect predictions (misclassifications).

3. Results

3.1. Measurement results

The Mueller matrix images of ∼50 samples per urban object class (described in Table 1) were
measured with the MM imaging polarimeter described in Section 2.1. In order to consider real
situations where the illumination angle could vary as a function of the object orientation, we
characterized the samples at multiple rotation angles from −50° to 50°. The experimental images
were filtered to obtain physically realizable MMs [46,47]. Some images of the experimental
MMs of the studied urban objects are presented on Figs. S3 to S10 in Section 3 of Supplement 1.
The obtained results show significant pixel-to-pixel variations due to spatial inhomogeneities and
roughness of the inspected samples (for example irregularities in tree barks and granite pavements,
or scratches in traffic signs). To mitigate these effects, the 16 elements of each MM image were
averaged across the same illuminated area, obtaining several averaged Mueller matrices per
measurement. The created database was divided into two parts, a set of balanced data, which
was used for training the classification models (training data: 4000 measurements per object
class), and another set to be used during the validation process (test data: 1000 measurements per
object class). In order to test the classifiers performance, training and test data contains Mueller
matrices of different measured samples. That is to say, a new set of samples (not previously
analyzed) was measured for creating the test dataset, such as clothes made with other fabrics and
colors, leaves from other trees and grass, and car paint of other car brands.

First, training data was visualized in order to observe the differences between the studied
classes. Figure 5 represents the relationship between some averaged Mueller matrix elements,
normalized by the element m00, of each set of urban objects and sample rotation angles. In
Fig. 5(a), m11 as a function of the rotation angle, θ, for each object class is shown. The normalized
MM elements m11 as a function of m22 and m10 as a function of m33 are represented in Fig. 5(b)
and (c), respectively. For both representations, the rotation angle θ varies from −50° to 50°.

https://doi.org/10.6084/m9.figshare.19222551


Research Article Vol. 30, No. 16 / 1 Aug 2022 / Optics Express 28393

Fig. 5. Representation of various Mueller matrix elements for the measured samples: a)
m11 as a function of the sample rotation angle (θ), b) m11 as a function of m22, and c) m10
as a function of m33 for six urban object classes: traffic signs (front side (red) and back side
(magenta)), vehicles (metallic paint (dark blue) and solid paint (cyan)), vegetation (dark
green), tree trunks (brown), clothes of pedestrians (orange) and pavements (grey).

As expected, we observed that the Mueller matrix depends on the rotation angle of the measured
sample. In addition, it was noticed that some samples considered of the same real-world object
class, but made with different materials, result in different Mueller matrices. For instance, the
vehicle class has distinct polarimetric behaviors for metallic paints, with different flake sizes and
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orientations (dark blue dots in Fig. 5), and for non-metallic or solid paints (cyan dots in Fig. 5).
These two different behaviors for car paints are related with the Umov Effect [50] and agree with
the study of linear polarization carried out in Ref. [51]. Different responses can also be observed
with the measured parts of the front side and back side of traffic signs (red and magenta dots in
Fig. 5, respectively). In particular, the back side of the traffic signs (magenta dots in Fig. 5) shows
two behaviors corresponding to the kind of paint used to protect them. Hence, we considered
creating subclasses for the vehicle and traffic sign classes. Note that separating classes into
subclasses can reduce the complexity of the input data, improving classifiers performance. The
criteria for creating subclasses were the materials from which the surface of the urban objects is
made and the advantage of recognizing them. By taking into account the composition of the
studied automotive paints, we divided the vehicles class into two subclasses named metallic and
solid car paints. Nevertheless, for the traffic signs class, we created just two subclasses: the
front side and back side of the traffic signs, because only these two subclasses are of interest for
autonomous driving.

We have observed in Fig. 5 that the solid paint subclass of vehicles and the back side of the
traffic signs have great differences between specular (θ = 0°) and diffuse reflections. Moreover,
samples with high roughness, such as clothes of pedestrians and pavements, exhibit significant
depolarization and small variations with the rotation angle. As a consequence, their MM elements
are distributed in specific small regions (see Fig. 5(b) and (c)). From the obtained results and
because different materials have different polarimetric responses, we conclude that some Mueller
matrix elements are essential for identifying these predefined classes.

By visualizing our training data, we observed that our inputs have significant scale differences
(e.g. m10 ranges from −0.087 to 0.243, while the rotation angle θ ranges from −50° to 50°).
Therefore, our database was standardized by using Eq. (2). Then, we studied the importance
of our sixteen standardized features to train our models, looking for those features that are
uncorrelated and non-redundant. For that the Boruta algorithm [48,49] was applied. Figure 6
shows the importance among our inputs, where green box-plots represent Z scores of confirmed
important attributes. The obtained results allow us to infer that although the variations between
different studied classes for some normalized MM elements are small, they carry significant
amounts of information and could be used to classify new samples into our predefined classes.
As expected, the Boruta algorithm classified the normalized MM element m00 as not important
to train our model, since its value is always 1.

The elements m33, m10 (represented in Fig. 5(c)) and m01 show the greater importance. In the
case of the rotation angle, the Boruta algorithm indicates that it is less important than the MM
elements (see Fig. 6). That is because the rotation angle information is parametrically present in
the Mueller matrices of the studied samples and implicitly determines the MM-rotation angle
correlation. This result is of interest for some remote sensing applications, since to measure the
rotation angle of an object could be impractical.

3.2. Classifiers training and implementation

SVM results
Several SVMs models were trained with different kernels and multiclass methods using 5-fold

cross-validation. The best performance for the training data was obtained for the RBF kernel
function and for the one-vs-all multiclass classification method, when considering as features
the whole normalized MM and the rotation angle θ, all of them standardized, and as outputs the
classes and subclasses described above. The overall classification accuracy obtained for the test
data was 95.25%. Figure 7 presents the normalized confusion matrix of the test data, which
shows the excellent performance of this trained model for classifying real-world objects, even
for materials with similar polarimetric properties, such as clothes, vegetation, tree trunks and
pavements (see Fig. 5). In fact, the most relevant object classes for autonomous driving (the two
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Fig. 6. Boruta algorithm results for our training data. Green box-plots represent Z
scores of confirmed important attributes and the blue box-plots correspond to the shadow
attributes (shadowMin, shadowMean and shadowMax corresponding to minimal, average
and maximum Z score of a shadow attribute [48,49]).

types of car paints, the clothes of the pedestrians and the traffic signs) are classified above 95%.
However, there is a misclassification between some urban objects. In particular, 9% of the actual
vegetation is misclassified as pavements. From the point of view of the final application, this
misclassification error is not as critical as misclassifying clothes of pedestrians, car paints of
vehicles or traffic signs. Despite this, there is a good agreement between actual and predicted
classes and subclasses.

Fig. 7. Normalized confusion matrix showing the performance of our SVM classifier for
the previously discussed urban object classes and subclasses. The selected features were:
the normalized Mueller matrix and the rotation angle, θ, both of them standardized. The
subclasses, solid (Sol.) and metallic (Met.) car paints, and front side (FS) and back side
(BS) of traffic signs are presented separately.
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ANN results
As stated above, various ANNs were trained in order to determine the optimum set of

parameters and hyperparameters for our training data. In this sense, we evaluated a different
number of learning rates, activation functions and hidden layers with different numbers of nodes
per layer, among others, using 5-fold cross-validation. The most accurate ANN for the training
data was obtained for two hidden layers with 36 and 29 nodes per layer respectively, and the
tanh function as the activation function. The performance of this classifier was analyzed by
classifying the test data and calculating its confusion matrix (shown in Fig. 8). Considering as
features both the whole normalized MM and the rotation angle θ, all of them standardized, we
obtained an overall classification accuracy of 95.18%. The performance of the ANN classifier
is similar to the performance of the SVM model discussed above. Small differences between
these two models can be observed within each class (see Figs. 7 and 8). In the case of the ANN,
all classes and subclasses have an accuracy equal or greater than 90%. Note that vegetation
classification is more accurate for our ANN than for our SVM model, although there is also some
slight misclassification error between vegetation and pavements. Nevertheless, the relevant urban
classes have similar classification accuracy for both models.

Fig. 8. Normalized confusion matrix showing the performance of our ANN classifier for
the previously discussed urban object classes and subclasses. The selected features were:
the normalized Mueller matrix and the rotation angle, θ, both of them standardized. The
subclasses, solid (Sol.) and metallic (Met.) car paints, and front side (FS) and back side
(BS) of traffic signs are presented separately.

3.2.1. Reduced number of features

In addition, by taking into account that the rotation angle, according to the Boruta criterion, is the
least important feature (see Fig. 6), new classifiers were trained, reducing the number of inputs to
the standardized Mueller matrix. This approach could be useful in remote sensing applications
where usually the rotation angle is not measured. As a result, the overall accuracy was slightly
reduced compared to the models including θ as an input. In fact, the overall accuracy for the
SVM was 94.23%, while for the ANN was 94.50%. Despite some reduction of the accuracy, the
relevant classes were already well classified. A comprehensive comparison of the performance
of the SVM and ANN models with both sets of features for classifying the previously discussed
classes is shown in Fig. 9. The observed decrease in some classes’ accuracy (blue circles in
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Fig. 9) is attributed to the elimination of the sample’s orientation in the training and validation
processes.

Fig. 9. Performance of the a) SVM and b) ANN classifiers for a different set of features:
the Mueller matrix and the rotation angle θ (red squares), and only the Mueller matrix (blue
circles).

It can be observed that pavements and vegetation have a higher misclassification rate than the
remaining classes for both models. However, in the case of autonomous vehicles, this misclassifi-
cation error is not critical since these classes are related to static landscape elements, contrary to
car paints or clothes, and their discrimination, in an autonomous driving context, probably is
not as relevant as distinguishing vehicles, traffic signs or pedestrians. The misclassification rate
between pavements, vegetation classes and tree trunks is comparable for both trained models and
is related to the similar polarimetric response of these three urban object classes.

4. Conclusions

We presented results that highlight the potential of Mueller matrix measurements to classify urban
objects. We demonstrated how the determination of the MM of several real-world urban objects
combined with classification models (in particular, SVM and ANN) can be used for vehicles,
pedestrians and traffic signs (among others) recognition. With this aim, a quantitative analysis
of the MM of several real urban objects has been provided, such as traffic signs, automotive
(metallic and solid) paints, vegetation, tree trunks, clothes of pedestrians and pavements. For
that, a complete Mueller matrix imaging polarimeter working at 1550 nm was developed. The
wavelength used for this study was chosen by considering eye safety, lower solar background and
atmospheric attenuation reduction. Moreover, the samples were illuminated at different angles in
order to study its importance in urban objects classification. The measured experimental Mueller
matrices show differences between the considered groups of urban objects.

The Boruta algorithm was used to identify the most relevant features of our database. Among
the different studied inputs, it showed that the knowledge of the angle of illumination of the
samples is less important than the knowledge of all (normalized) MM elements, while m33,
m10 and m01 are the features with the highest importance. Afterwards, we developed two
different types of classifiers: the ANN and SVM. Both models provided a good performance
for classifying new samples into the predefined object classes, with an overall accuracy higher
than 95%, proving that polarimetric measurements combined with machine learning can be
successfully used for road scene recognition and classification applications, even for materials
with similar polarimetric properties (such as clothes, vegetation, tree trunks and pavements).
Moreover, we also studied the ANN and SVM classifiers when considering only the elements of
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the MM as features with only a slight decrease in the overall accuracy. These results suggest
that a remote sensor intended to measure the MM of urban objects and afterwards to classify
this information by using a pre-trained ANN or SVM would be an additional valuable method
for outdoor environments recognition, even if the rotation angle of the objects is unknown. To
reduce misclassification errors, we propose to study the benefits of combining polarimetry with
image processing techniques. This method could be of interest to improve the performance in the
classification of real urban objects.

The results of this study can be of interest for autonomous driving, highlighting the use
of machine learning models for identifying different categories of real-world objects based
on Mueller matrix measurements. Future work will focus on implementing this technique in
sensors used by autonomous vehicles, such as LiDAR sensors. In addition, the possibility of
determination of the angle of incidence from the set of MMs will be investigated.
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