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ABSTRACT: Continuum-based numerical methods have played a leading role in the numerical
solution of problems in soil and rock mechanics. However, for stratified soils and fractured rocks,
a continuum assumption often leads to difficult parameters to define and over-simplified geometry
to be realistic. In such cases, approaches that consider the micro-structure of the material can be
adopted. In this paper, two of such approaches are detailed, namely limit analysis incorporating
fractures and individual blocks, and elastoplastic homogenization of layered soils.

1 INTRODUCTION

The present paper addresses the inelastic behavior of heterogeneous media, such as soils and rocks.
This problem can be, basically, approached from two directions. A possible direction is to gather,
collate and interpret extensive experimental data and, ultimately, manipulate it in the form of master
curves in terms of non-dimension variables. One step further can be to seek empirical analytical
expressions that fit the experimental data. However, this approach will not be followed here.
Even tough such an approach can be useful, the results are limited to the conditions under which
the data were obtained. New materials and/or application of a well known material in different
loading conditions lead to a new set of costly experimental programs. Here, a more fundamental
approach, with a predictive nature, is sought using two different tools, namely limit analysis and
homogenization techniques.

2 LIMIT ANALYSIS

A continuum assumption can lead to difficult parameters to define and over-simplified geometry to
be realistic, particularly in the case of fractured rocks. At least in such case, discrete representations
of fractures and individual blocks must be adopted. Different approaches are possible to represent
these heterogeneous media, namely, the discrete element method (DEM), the discontinuous finite
element method (FEM) and limit analysis (LAn).

The explicit formulation of a discrete (or distinct) element method is detailed in the introductory
paper by Cundall and Strack (1985). The discontinuous deformation analysis (DDA), an implicit
DEM formulation, was originated from a back-analysis algorithm to determine a best fit to a
deformed configuration of a block system from measured displacements and deformations, Shi
and Goodman (1985). The relative advantages and shortcomings of DDA are compared with the
explicit discrete element method and the finite element method (Hart, 1991), even if significant
developments occurred in the last decade, particularly with respect to three-dimensional extension,
solution techniques, contact representation and detection algorithms. The typical characteristics of
discrete element methods are: (a) the consideration of rigid or deformable blocks (in combination
with FEM); (b) connection between vertices and sides/faces; (c) interpenetration is usually possible;
(d) integration of the equations of motion for the blocks (explicit solution) using the real damping
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coefficient (dynamic solution) or artificially large (static solution). The main advantages are an
adequate formulation for large displacements, including contact update, and an independent mesh
for each block, in case of deformable blocks. The main disadvantages are the need of a large
number of contact points required for accurate representation of interface stresses and a rather time
consuming analysis, especially for 3D problems.

The finite element method remains the most used tool for numerical analysis in solid mechanics
and an extension from standard continuum finite elements to represent jointed rock was developed
in the early days of non-linear mechanics, Goodman et al. (1967). On the contrary, limit analysis
received far less attention from the technical and scientific community for jointed rock, while
being very popular for soil problems, Fredlund and Krahn (1977). Still, limit analysis (kinematic
approach) has the advantage of being a simple tool, while having the disadvantages that only
collapse load and collapse mechanism can be obtained and loading history can hardly be included.
Here, a novel implementation of limit analysis is detailed and applied to an illustrative example.

2.1 General formulation

The limit analysis formulation for a rigid block assemblage detailed next adopts the following
basic hypotheses: the joint between two blocks can withstand limited compressive stresses and the
Coulomb’s law controls shear failure, which features non-associated flow given by a zero dilatancy
angle.

The static variables, or generalized stresses, at a joint k are selected to be the shear force, Vk , the
normal force, Nk , and the moment, Mk , all at the center of the joint. Correspondingly, the kinematic
variables, or generalized strains, are the relative tangential, normal and angular displacement rates,
δnk , δsk and δθk at the joint center, respectively. The degrees of freedom are the displacement rates
in the x and y directions, and the angular change rate of the centroid of each block: δui, δvi and δωi

for the block i. In the same way, the external loads are described by the forces in x and y directions,
as well as the moment at the centroid of the block. The loads are split in a constant part (with a
subscript c) and a variable part (with a subscript v): fcxi, fvxi, for the forces in the x direction, fcyi,
fvyi, for the forces in the y direction, and mci, mvi, for the moments. These variables are collected
in the vectors of generalized stresses Q, generalized strains δq, displacements rates δu, constant
(dead) loads Fc, and variable (live) loads Fv. Finally, the load factor α is defined, measuring the
amount of the variable load vector applied. The load factor is the limit (minimum) value that the
analyst wants to determine and is associated with collapse.

With the above notation, the total load vector F is given by

2.2 Yield function

The yield function at each joint is composed by the crushing-hinging criterion and the Coulomb
criterion. For the crushing-hinging criterion, it is assumed that the normal force is equilibrated by
a constant stress distribution near the edge of the joint, see Figure 1a. Here, a is half of the length
of a joint and w is the width of the joint normal to the plane of the block. The stress value is fcef ,
given by Eq. (2), borrowed from concrete limit analysis (Nielsen, 1998). Here, fc is the compressive
strength of the material, and ν is an effectiveness factor, which takes into account reductions in
the compressive strength due to the fact that limit analysis assumes a rigid-plastic behavior, while,
in fact, softening occurs. Eq. (3) is an expression for the effectiveness factor commonly used for
concrete (Nielsen, 1998), where fc is expressed in N/mm2.
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Figure 1. Joint failure: (a) generalized stresses and strains for the crushing-hinging failure mode;
(b) geometric representation of a half of the yield surface.

The constant stress distribution hypothesis leads to the yield function ϕ given by Eq. (4), related
to the equilibrium of moments; note that Nk represents a non-positive value. The Coulomb crite-
rion is expressed by Eq. (5), related to the equilibrium of tangential forces. Here, µ is the friction
coefficient or the tangent of friction angle at the joint. The equilibrium of normal forces is auto-
matically ensured by the rectangular distribution of normal stresses. It is noted that the complete
yield function is composed by four surfaces, two surfaces given by Eq. (4) and two surfaces given
by Eq. (5), in view of the use of the absolute value operator. Figure 1b represents half of the yield
surface (M< 0), while the other half (M > 0) is symmetric to the part shown.

2.3 Flow rule

Figure 1a illustrates also the flow mode corresponding to crushing-hinging, in agreement with
the normality rule. It is noted that, for the Coulomb criterion, the flow consists of a tangential
displacement only. The flow rule at a joint can be written, in matrix form, as given by Eq. (6), and,
in a component-wise form, as given by Eq. (7), in which the joint subscripts have been dropped for
clarity. Here, N0k is the flow rule matrix at joint k and δλk is the vector of the flow multipliers, with
each flow multiplier corresponding to a yield surface, and satisfying Eqs. (8-9). These equations
indicate that plastic flow must involve dissipation of energy, Eq. (8), and that plastic flow cannot
occur unless the stresses have reached the yield surface, Eq. (9). For the entire model, the flow rule
results in Eq. (10), where the flow matrix N0 can be obtained by assembling all joints matrices.
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Figure 2. Representation of main geometric parameters.

2.4 Compatibility

Compatibility between joint k generalized strains, and the displacement rates of the adjacent blocks
i and j, is given in Eq. (11), being the vector δui defined in Eq. (12) and the compatibility matrix
Ck ,i, given in Eq. (13). Similarly, the vector δuj and the matrix Ck ,j can be obtained. In this last
equation γk , βi, βj , are the angles between the x axis and, the direction of joint k , the line defined
from the centroid of block i to the center of joint k , and the line defined from the centroid of block
j to the center of joint k , respectively. Variables di, dj , represent the distances from the center of
joint k to the centroid of the blocks i and j, respectively, see Figure 2.

Compatibility for all the joints in the model is given by Eq. (14), in which the compatibility
matrix C is obtained by assembling the corresponding matrices for the joints of the model.

2.5 Equilibrium

Applying the contragredience principle, the equilibrium requirement is expressed by Eq. (15).

2.6 The mathematical programming problem

The solution to a limit analysis problem must fulfill the previously discussed principles. In the pres-
ence of non-associated flow, there is no unique solution satisfying these principles and the actual
failure load corresponds to the mechanism with a minimum load factor (Baggio and Trovalusci,
1998). The proposed mathematical description results in the non-linear programming (NLP) prob-
lem expressed in Eqs. (16–22). Here, Eq. (16) is the objective function and Eq. (17) guarantees both
compatibility and flow rule. Eq. (18) is a scaling condition of the displacement rates that ensures
the existence of non-zero values. This expression can be freely replaced by similar equations, as,
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at collapse, the displacement rates are undefined and it is only possible to determine their relative
values. Equilibrium is given by Eq. (19), and Eq. (20) is the expression of the yield condition,
which together with the flow rule, Eq. (21), must fulfill Eq. (22).

Subject to:

This set of equations represents a case known in the mathematical programming literature as
a Mathematical Problem with Equilibrium Constraints (MPEQ) (Ferris and Tin-Loi, 2001). This
type of problems is hard to solve because of the complementarity constraint, Eq. (22). The solution
strategy adopted here is that proposed by Ferris and Tin-Loi (2001). It consists of two phases, in the
first, a Mixed Complementarity Problem (MCP), constituted by Eqs. (17–22) is solved. This gives
a feasible initial solution. In the second phase, the objective function, Eq. (16), is reintroduced
and Eq. (22) is substituted by Eq. (23). This equation provides a relaxation in the complementarity
constraint, turns the NLP easier to solve, and allows to search for smaller values of the load factor.
The relaxed NLP problem is solved for successively smaller values of ρ to force the complementarity
term to approach zero.

It must be said that trying to solve a MPEQ as a NLP problem does not guarantee that the solution
is a local minimum (Ferris and Tin-Loi, 2001). Nevertheless, this procedure seems computationally
efficient and provides solutions of better quality than other strategies tried previously, see Orduña
and Lourenço (2001).

2.7 Computer implementation

The main objective of this work is to develop an analysis tool suitable to be used in practical
engineering projects. For this reason, the computer implementation is done resorting to AutoCAD,
in which the geometry of the blocky medium is drawn. The application, developed with Visual
Basic for Applications within AutoCAD (ActiveX and VBA 1999), extracts the geometric data
and pre-processes it. Complementary data is added such as volumetric weight, block thickness
(typically 1 m for 2D geotechnical problems), friction coefficient and compressive strength. The
limit analysis is done within the modeling environment GAMS (GAMS, 1998), which allows the
user to develop large and complex mathematical programming models, and solve them with state of
the art routines. The previously mentioned CAD package is used as post-processor to draw failure
mechanisms.

2.8 Application

Validation of the formulation and the implementation of the 2D model is given in Orduña and
Lourenço (2003), while the extension to 3D is fully detailed in Orduña and Lourenço (2005a,b).
Here, to demonstrate the applicability of limit analysis to geotechnical problems, an example of
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Figure 3. Evolution of a possible collapse mechanism in a tunnel excavated in a jointed rock mass.

shallow depth tunnel in fractured rock under increasing surface loads is simulated in Figure 3,
see Jing (1998) for additional details. The problem geometry is formed by a rectangular domain
containing two sets of random fractures.A rectangular tunnel is assumed to be excavated at the centre
of the area. A vertical downward load due to self-weight appears and the other three boundaries
are fixed in their respective normal directions. This problem has no practical implications and just
serves as a demonstration.

3 HOMOGENIZATION TECHNIQUES

The chief disadvantage of the methods addressed in the previous section is the requirement for
knowing the exact geometry of fracture systems in the problem domain. This condition can rarely
be met in practice. This difficulty, however, exists for all mathematical models including those
based on a continuum approach. The difference is how different approaches deal with this intrinsic
difficulty. The continuum approach chooses to trade the geometrical simplicity over the material
complexity by introducing complex constitutive laws and properties for an equivalent continuum
through a proper homogenization process, which is only valid on the foundation of a “representative
elementary volume”(REV). If this REV cannot be found or becomes too large (larger than the size
of the excavation concerned, for example) then the continuum approach cannot be justified. But,
in several cases, the continuum approach can be of relevance. Here, the problem of layered natural
or reinforced soils is addressed by means of homogenization techniques.

3.1 General considerations

Composite materials consist of two or more different materials that form regions large enough to
be regarded as continua and which are usually bonded together by an interface. Two kinds of infor-
mation are needed to determine the properties of a composite material: the internal constituents’
geometry and the physical properties of the phases. Many natural and artificial materials are imme-
diately recognized to be of this nature, such as: laminated composites (as used in the aerospace and
tire industry), alloys, porous media, cracked media (as jointed rocked masses), masonry, laminated
wood, etc. However a lot of composite materials are normally assumed homogeneous. For example,
this is the case of concrete, even if at a meso-level aggregates and matrix are already recognizable,
and metals, in fact polycrystalline aggregates.
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Figure 4. Representative volume element in a composite body.

The existence of randomly distributed constituents was one of the first problems to be discussed
by researchers, see Paul (1960), Hashin and Shtrikman (1962) and Hill (1963). The Hashin-
Shtrikman bounds were derived from a variational principle and knew some popularity but they are
only valid for arbitrary statistically isotropic phase geometry, see Figure 4. An additional condition
for the practical use of these bounds is that the constituents stiffness ratios are small, see Hashin and
Shtrikman (1962) and Watt and O’Connell (1980). They cannot obviously provide good estimates
for extreme constituent stiffness ratios such as one rigid phase or an empty phase (porous or cracked
media). This precludes the use of the above results for inelastic behavior where extremely large
stiffness ratios will be found.

The basis underlying the above approach is however important. It is only natural that techniques
to regard any composite as an homogeneous material are investigated, provided that the model size
is substantially larger than the size of the inhomogenities. In fact all phenomena in a composite
material are described by differential equations with rapidly oscillating coefficients. This renders
numerical solutions practically impossible since too small meshes must be considered.

Consequently, effective constitutive relations of composite structures are of great importance in
the global analysis of this type of media by numerical techniques (e.g. the Finite Elements Method).
For this reason the rather complicated structure of a particular composite type is replaced by an
effective medium by using a technique known as homogenization method or effective medium
theory. Several mathematical techniques of different complexity are available to solve the prob-
lem, Sanchez-Palencia (1980, 1987), Suquet (1982) but for periodic structures the method of
“Asymptotic Analysis” has renown some popularity, see also Bakhvalov and Panasenko (1989)
and Bensoussan et al. (1978). The extension of these methods to inelastic behavior is however not
simple. Knowledge of the actual macro- or homogenized constitutive law requires knowledge of
an infinite number of internal variables, namely the whole set of inelastic micro-strains. However
some simplified models with piecewise constants inelastic strains can be proposed (as carried out
in this paper).

The objective of the homogenization process is to describe the composite material behavior from
the behavior of the different components. This problem has known a large importance in the last
decade due to the increasing use and manufacture of composites. To solve the present problem
some simplifications are necessary and attention is given only to the special case of laminated
or layered composites. This means that the geometry of the phases are known, which simplifies
enormously the task of finding equivalent elastic properties for the medium. The composite material
examined is made of laminae stacked at various orientations, the only restriction being imposed
on the periodicity of the lamination along the structures (see Figure 5), which is usually fulfilled
in numerous engineering applications. Examples include aerospace industries, laminated wood,
stratified or sedimentary soils, stratified rock masses, etc.
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Figure 5. The periodic laminated composite material and the structure of the unit cell.

Figure 6. Unit cell. Representative prism for system of parallel orthotropic layers.

3.2 Theory

In the previous section a reference is made to the mathematical techniques of homogenization
of periodic structures. The asymptotic expansion of the displacement and stress fields is used
for example in Paipetis et al. (1993) to obtain the elastic stiffness of a homogenized continuum.
The solution is however presented in an explicit form for each coefficient of the stiffness matrix.
This solution is not practical for computational implementation and almost precludes the use of
homogenization techniques for inelastic behavior.

Here, the approach originated in the field of rock mechanics will be discussed, see Salamon
(1968) and Gerrard (1982), and recast in matrix form. For that purpose the layered material shown
in Figure 5 is considered again, built from a repeating system of parallel layers, each of which
consists of orthotropic elastic material. This means that the material properties of each layer have
three mutually perpendicular planes of symmetry. The layers are aligned so that each set of three
planes are respectively perpendicular to a single set of Cartesian coordinates (x1, x2 and x3). The
notation selected for the axes is intentionally different than the usual (x, y, z axes) to draw the
attention to the fact that the x1, x2 and x3 axes are placed on the material symmetry axes. The unit
cell, in the form of a representative prism, is shown in Figure 6. The homogenization direction (x3)
is normal to the layering planes and, hence, for each layer, one of the planes of elastic symmetry
is parallel to the layering planes. In this direction the dimension of the prism is defined by the
periodicity of the structure and in the other two directions a unit length can be assumed.

It is assumed that the system of layers remains continuous after deformation and that no relative
displacement takes place in the interfaces between layers. The latter assumption simplifies the
problem to great extent but, at least mathematically, discontinuities in the displacements field can
be incorporated, see Bakhalov and Panasenko (1989). The prism representative of the composite
material is further assumed to be subjected to homogeneous distributions of stress and strain,
meaning that the volume of the prism must be sufficiently small to make negligible, in the equivalent
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medium, the variation of stresses and strains across it. The objective is to obtain a macro- or
homogenized constitutive relation between homogenized stresses σ and homogenized strains ε,

where Dh is the homogenized stiffness matrix.

3.3 Elastic formulation

The macro-constitutive relation is obtained from the micro-constitutive relations. For the ith layer
the relation between the (micro-)stress σ i and the (micro-)strains εi is given by the (micro)stiffness
matrix Di and reads

In order to establish the relationships between stresses and strains in a homogenized continuum,
the following averaged quantities in an equivalent prism are defined:

where V is the volume of the representative prism and j indicates all the components of the stress
and strain tensors.

Auxiliary stresses (t1, t2 and t12) and auxiliary strains (e3, e13 and e23) are introduced as a deviation
measure of the ith layer stress/strain state from the averaged values. Under the assumptions given
above, the stress components for the ith layer read

and the strain components for the ith layer read

Now let the thickness of the ith layer be hi and the normalized thickness pi be defined as

where L is the length of the representative prism in the x3 direction. Substitution of Eqs. (27) in
Eqs. (26.1) yields the following conditions for the auxiliary stress components:

Similarly, from Eqs. (28) and Eqs. (26.2), the auxiliary strain components are constraint by

Note that, if the conditions given in the above equations are fulfilled, then the strain energy
stored in the representative prism and the equivalent prism are the same.

A vector of auxiliary stresses is now defined as t i, given by
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and the vector of auxiliary strains ei is defined as

It is noted that half of the components of the auxiliary stress and strain vectors are zero, see Eqs.
(27,28). If the non-zero components are assembled in a vector of unknowns, xi, defined as

where the projection matrix into the stress space, P t , and the projection matrix into the strain space,
Pe, read

for homogenization along the axis x1,

for homogenization along the axis x2 and

for homogenization along the axis x3.
Now, the auxiliary stresses can be redefined as

and the auxiliary strains as

The stresses and strains in the ith layer read

Incorporating these equations in Eq. (25) leads to

By using Eqs. (38, 39), further manipulation yields

which can be recast as

This equation yields, finally, the relation between averaged stresses and strains, as
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Here, the homogenized linear elastic stiffness matrix, Dh, reads

Once the averaged stresses and strains are known, also the stresses and strains in the ith layer can
be calculated. Using Eq. (42), the vector of unknowns xi can be calculated. Algebraic manipulation
yields

and

Here, the transformation matrices T ti and T ei read

where I is the identity matrix.

3.4 Elastoplastic formulation

For plasticity the form of the elastic domain is defined by a yield function f < 0. Loading/ unloading
can be conveniently established in standard Kuhn-Tucker form by means of the conditions

where
.

λ is the plastic multiplier rate. Here it will be assumed that the yield function is of the form

where κ is introduced as a measure for the amount of hardening or softening and �, σ represent
generic functions. The usual elastoplastic relation hold: the total strain increment �ε is decomposed
into an elastic, reversible part �εeand a plastic, irreversible part �εp

the elastic strain increment is related to the stress increment by the elastic constitutive matrix D as

and the assumption of associated plasticity yields

The scalar κ introduced before reads, in case of strain hardening,

where the diagonal matrix Q = diag{ 1, 1, 1, ½, ½, ½, ½}, and, in case of work hardening,
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The integration of the constitutive equations above is a problem of evolution that can be regarded
as follows. At a stage n the total strain and plastic strain fields as well as the hardening parameter(s)
(or equivalent plastic strain) are known:

Note that the elastic strain and stress fields are regarded as dependent variables that can be always
be obtained from the basic variables through the relations

Therefore, the stress field at a stage n + 1 is computed once the strain field is known. The problem
is strain driven in the sense that the total strain ε is trivially updated according to the exact formula

It remains to update the plastic strains and the hardening parameter(s). These quantities are deter-
mined by integration of the flow rule and hardening law over the step n → n + 1. In the frame of a
fully implicit Euler backward integration algorithm this problem is transformed into a constrained
optimization problem governed by discrete Kuhn-Tucker conditions as shown by Simo et al (1988).

It has been shown in different studies, e.g. Ortiz and Popov (1985) and Simo and Taylor (1986),
that the implicit Euler backward algorithm is unconditionally stable and accurate for J2-plasticity.

This algorithm results in the following discrete set of equations:

in which �κn+1 results from Eq. (54) or Eq. (55) and the elastic predictor step returns the value of
the elastic trial stress σ trial

Application of the above algorithm to the homogenized material equivalent to the layered material
shown in Figure 6 results in increasing difficulties. The homogenized material consists of several
layers with individual elastic and inelastic properties. As given in Eqs. (46–47), different stresses
and strains are obtained for each layer, which are again different from the average stresses and
strains.

Due to this feature and the fact that inelastic behavior is considered for the layers, for a given strain
increment in the equivalent material it is not possible to calculate immediately the correspondent
strain increments for each layer. This precludes the use of a standard plasticity algorithm due to the
fact that the algorithm is strain driven. An equivalent return mapping must be carried out, in which
all the layers are considered simultaneously. The equivalent return mapping is, therefore, a return
mapping in all the layers (or a return mapping in terms of average strains and average stresses).
This has some similitude with the fraction model, Besseling (1958).

Here only the simple case of J2-plasticity is addressed, being the reader addressed to Lourenço
(1995) for other cases. The Von Mises yield criterion can be written in a matrix form and reads

44



where the projection matrix P reads

For this yield surface, holds the well-known relation

both for a strain or work hardening rule. From the standard algorithm shown above, cf. eq. (59), it
is straightforward to obtain the update of the stress vector σn+1 as

where the mapping matrix A reads

Note that the mapping matrix is only a function of �λn+1, i.e. A =A(�λn+1). If the individual
layers are considered, Eq. (64) for the ith layer must be rewritten as

where the mapping matrix, Ai, is a function of �λn+1,i and the elastic trial stress σ trial
i , cf. Eq. (60),

reads

If all the layers are now considered simultaneously, the question arises whether one particular
layer is elastic or plastic, but this will be considered trivial in the present note. In fact, in case of an
elastic layer, Eq. (67) remains valid if the mapping matrix is redefined as the identity matrix (i.e.
�λn+1 = 0),

Inserting Eq. (40) in Eq. (66), the latter can be rewritten in terms of average stresses and strains
(σ and ε) and auxiliary stresses and strains of the ith layer (t i and ei) at stage n + 1 as

If a modified trial stress for the ith layer is defined as

(note that the average strain is included in the expression instead of the strain of the ith layer), Eq.
(69) reads
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Inserting Eqs. (38,39) in this equation and further manipulation, see Lourenço (1996), leads to
the update of the average stress as

Note that the summation above is extended to all the layers (elastic and plastic). The return
mapping procedure is now established in a standard way. From the average stresses it is possible to
calculate the stresses in the ith layer. At this point it is clear that a system of non-linear equations in
�λn+1

′s can be built: fi(�λn+1,1, . . . , �λn+1, j) = 0, i = 1, . . . , j. This system of non-linear equations
can be solved by any mathematical standard technique and has so many unknowns (and equations)
as the number of plastic layers. Finally, when convergence is reached the state variables (ε, εp

and κ) can be updated. For a discussion of the algorithm implementation and the calculation of the
consistent tangent operator the reader is referred to Lourenço (1996).

3.5 Extension to a Cosserat continuum

Physical arguments in favor of a Cosserat approach in granular materials have been put forward in
Mühlhaus and Vardoulakis (1987). However, the very important feature of a Cosserat continuum
is the introduction of a characteristic length in the constitutive description, thus rendering the
governing set of equations elliptic while allowing for localization of deformation in a narrow, but
finite band of material. The excessive dependence of standard continua upon spatial discretization
can be then obviated or, at least, considerably reduced.

The implementation carried out is based on the original work of de Borst (1991, 1993) on the
two-dimensional elastoplastic Cosserat continuum and the extension of Groen et al. (1994) to the
three-dimensional case, see Lourenço (1996) for details.

3.6 Validation

In the following examples the described algorithm is tested by considering a material built from two
layers, viz. a “weak” and a “strong” layer. Different elastic and inelastic behavior is assumed for
both layers. Large scale calculations are carried out in (average) plane strain and three-dimensional
applications. The objective is to assess the performance of the theory in a different class of problems
ranging from highly localized to distributed failure modes. For this purpose, different calculations
of the same model with increasing number of layers are carried out (note that layer in this section
will be generally assumed as the repeating pattern, i.e. one layer contains two different materials, a
weak and a strong layer). Convergence to the homogenized solution must be found upon increasing
the number of layers.

The same fictitious material, described in Lourenço (1996), is used throughout this section. In
the large calculations, 2D quadratic elements (8-noded quads) with 2 × 2 Gauss integration are
used and 3D quadratic elements (20-noded bricks) with 3 × 3 Gauss integration are used. For the
elastoplastic calculations a (local) full Newton-Raphson method is used in the return mapping
algorithm with a 10−7 tolerance for all equations and a (global) full Newton-Raphson method is
used to obtain convergence at global level. The tolerance is set to an energy norm of 10−4.

The first example is a rigid foundation indented into a stratified soil (see Figure 7). Only half of
the mesh is considered due to symmetry conditions. This example is meant to assess the performance
of the homogenization technique under plane strain conditions in situations not only constrained
by the material behavior, but also by geometric constraints. Clearly a localized failure is obtained
around the indentation area.

A comparison is given between the 2D (plane strain) homogenized continuum and three different
2D (plane strain) layered discretizations: 8, 16 and 32 equivalent material layers (see Figure 8).
Note that the zero normal strain condition introduces a three dimensional state of stress, meaning
that all the calculations can be carried out under plane strain conditions. The results obtained in a
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Figure 7. Geometry of rigid foundation indentation test.

Figure 8. Different discretizations, homogenized and layered.

Table 1. Linear analysis results for d = 1.0 mm. Homogenized
vs. layered model.

Layered

Homogenized 8 layers 16 layers 32 layers

p [kN/mm] 4.056 4.170 4.074 4.020
Error reference 2.8% 0.4% −0.9%

linear analysis are given in Table 1 for a vertical displacement d of the foundation with a value of
1.0 mm and the different discretizations. Very good agreement is found.

The results obtained in a non-linear analysis for the different discretizations are illustrated in
Figure 9. Note that all the nodes under the foundation are tied to have equal displacements. Direct
displacement control of the foundation is applied in 30 equally spaced steps of 0.1 mm. The results
show indeed that a convergence exists to the homogenised 2D solution with an increasing number of
layers. A plateau of the force-displacement diagram was not found, even if in one the examples the
calculation was carried out until a later stage (d = 6.0 mm). This can be due to a bad performance
of the elements but, in principle, see Groen (1994), 8-noded elements with reduced integration
do not show volumetric locking. The author believes that the behavior found can be explained
by the geometric constraints. It is reasonable to assume that under the above circumstances the
“weak layers” show (quasi) infinite hardening due to the three dimensional state of stress induced
(towards the volumetric axis). From the results obtained it is clear that such behavior occurs with
minor plastification of the “strong layers”.
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Figure 9. Force-displacement diagrams for different discretisations.

Figure 10. Deformed mesh for different discretizations (×15).

Figure 11. Equivalent plastic strain for different discretizations (>0.5 × 10−4).

Fig. 10 shows the deformed meshes and Fig. 11 illustrates the plastic points at failure for the
different discretizations. The deformation patterns of the layered models show some bending of
the strong layers. This cannot be reproduced in the homogenized model.

It is important to point out that the foundation was assumed to be located in the middle plane
of the strongest material. For examples with a small number of layers, due to the extremely large
stress gradients around the geometrical discontinuities, some differences can be expected.

The collapse of a 45◦ slope subjected to its own weight (g) is now considered (see Figure 12).
Again different discretizations are considered: the plane strain homogenized model and the plane
strain layered model (4, 8 and 16 layers). The results of the maximum vertical displacement in
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Figure 12. Different discretizations, homogenized and layered.

Table 2. Linear analysis results for g = 1.0 N/mm3. Homogenized
vs. layered model

Layered

Homogenized 4 layers 8 layers 16 layers

Disp. y [mm] −25.47 −27.88 −26.70 −26.09
Error reference 9.5% 4.8% 2.4%

Figure 13. Force-displacement diagrams for different discretizations.

the slope obtained in a linear analysis are given in Table 2 for a weight value g with a value of
1.0 N/mm3 and the different discretisations. Good agreement is found.

The results obtained in a non-linear analysis for the different discretizations are illustrated in
Figure 13. Indirect displacement control of the top left corner is applied in 30 equally steps of
0.2 mm. In this case even for a small number of layers the difference is minimal (1.8%). Figure 14
shows the deformed meshes and it is remarkable that such a close agreement is found in respect
to the shear band formation. Figure 15 illustrates the plastic points at failure for the homogenized
model in the two different materials (these results agree well with the layered model). The plastic
points of the different materials are not shown in a single picture because different scales are used.
The inelastic behavior of the weak material close to the bottom support is substantially larger than
the diagonal shear failure.

It is important to point out that the bottom layer was assumed to be from the weak material. This
has some influence on the results, especially if only a few layers are considered. This assumption
is also the reason for the force-displacement diagram of the layered models being less stiff than
the homogenized result (remember that the slope is subjected to self weight loading). If the bottom
layer was assumed to be from the strong material, the force-displacement diagram of the layered
models would be stiffer than the homogenized result.

Finally, a last example is considered in order to assess the formulation of the homogenization
continuum for truly three-dimensional finite elements. For this purpose, the collapse of an embank-
ment subjected to its own weight (g) is analyzed. Again different discretizations are considered:
the 3D homogenized model and the 3D layered model with 4 and 8 equivalent material layers
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Figure 14. Deformed mesh for different discretizations (×15).

Figure 15. Equivalent plastic strain for different discretizations (>0.5 × 10−4).

Figure 16. Different discretizations, homogenized and layered.

Table 3. Linear analysis results for g = 1.0 N/mm3 (displacement
of the free corner). Homogenized vs. layered model

Layered

Homogenized 4 layers 8 layers

Disp. z [mm] −29.06 −30.29 −29.63
Error reference 4.2% 2.0%

(see Figure 16). The results obtained in a linear analysis are given in Table 3 for a weight g with a
value of 1.0 N/mm3 and the different discretizations. Good agreement is found.

The results obtained in a non-linear analysis for the different discretizations are illustrated in
Figure 17. Indirect displacement control of the free corner is applied in 20 equally spaced steps of
0.3 mm. The results show indeed that a convergence exists to the 3D homogenised solution with
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Figure 17. Force-displacement diagrams for different discretizations.

Figure 18. Total deformed mesh for different discretizations (×10).

Figure 19. Incremental deformed mesh for different discretizations (×300).

an increasing number of layers. In this case even for a small number of layers the difference is
minimal (1.5%). Figures 18 and 19 show the deformed meshes at failure (total and incremental) for
the different discretizations. Note that, even for the incremental displacements, a good agreement is
found between the 3D homogenised model and the 3D layered model (8 layers). As in the previous
example, it is important to point out that the bottom layer was assumed to be from the weak material.

4 CONCLUSIONS

The difficulties involved the numerical modeling of non-homogeneous continuum media are well
known. Different approaches are possible to represent heterogeneous media, namely, the discrete
element method, the finite element method and limit analysis. Here, two approaches have been
detailed.

The first approach considered is limit analysis of fracture or slip lines, together with individual
rigid blocks. The adopted formulation assumes, besides the standard Coulomb friction law, a
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compression limiter and non-associated flow. This results in a non-linear optimization problem
that can be successfully solved with state of the art techniques. An example of application to the
excavation of a tunnel in fractured rock is shown.

The second approach considered is the elastoplastic homogenization of layered media. A matrix
formulation is proposed with straightforward extension to inelastic problems. Several examples of
validation and application to stratified or reinforced soils are shown.
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