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Scientific tools capable of identifying distribution patterns of species are important
as they contribute to improve knowledge about biodiversity and species dynamics.
The present study aims to estimate the spatiotemporal distribution of sardine (Sardina
pilchardus, Walbaum 1792) in the Portuguese continental waters, relating the spatiotem-
poral variability of biomass index with the environmental conditions. Acoustic data was
collected during Portuguese spring acoustic surveys (PELAGO) over a total of 16,370
hauls from 2000 to 2020 (gap in 2012). We propose a spatiotemporal species distribution
model that relies on a two-part model for species presence and biomass under presence,
such that the biomass process is defined as the product of these two processes. Environ-
mental information is incorporated with time lags, allowing a set of lags with associated
weights to be suggested for each explanatory variable. This approach makes the model
more complete and realistic, capable of reducing prediction bias and mitigating outliers
in covariates caused by extreme events. In addition, based on the posterior predictive
distributions obtained, we propose a method of classifying the occupancy areas by the
target species within the study region. This classification provides a quite helpful tool
for decision makers aiming at marine sustainability and conservation.
Supplementary materials accompanying this paper appear on-line.
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1. INTRODUCTION

Models describing the distribution patterns of species are important scientific tools
for improving our understanding of biodiversity and species abundance, thereby enabling
informed decisions for sustainable biodiversity management. This significance is particu-
larly pronounced in the marine environment, where numerous species, habitats, and ecosys-
tems have experienced substantial declines (McCauley et al. 2015), also due to climate
change (Hoegh-Guldberg and Bruno 2010; Pires et al. 2018).

To effectively monitor fishery resources, spatiotemporal analyses of abundance indexes
have been developed [e.g., Paradinas et al. (2017); Pennino et al. (2020); Dambrine et al.
(2021)]. Particularly, species distribution modeling (SDM) has been employed to compre-
hend species dynamics, identify and assess the impacts of climate change, define species
habitats, and design protected areas (Martínez-Minaya et al. 2018).

Several approaches have been established in the realm of SDMover the past few decades.
Indeed, SDMs can be employed to establish connections between species occurrence and/or
abundance processes and environmental conditions. They also aid in identifying species’
ecological niches and drawing inferences regarding species distribution. Leathwick et al.
(2005) employed multivariate adaptive regression splines to elucidate nonlinear relation-
ships between environmental factors and species in New Zealand’s freshwater ecosystems.
Reiss et al. (2011); Attorre et al. (2011) conducted comparative studies involving diverse
SDM techniques, encompassing regression, classification, envelope models, machine learn-
ing approaches, and spatial interpolation models. Their studies evaluated the environmental
impacts on marine benthic species in the North Sea and tree species in the Italian Peninsula,
respectively. To accommodate zero-inflated data within six bird species abundance indexes,
Joseph et al. (2009) utilized zero-inflated N-mixture models. The growing recognition of
the importance of integrating prior knowledge about species ecology and complex dynam-
ics into the modeling process has driven an increased adoption of Bayesian approaches
(Martínez-Minaya et al. 2018). Notably, negative binomial hidden Markov models, as well
as hierarchical Bayesian models, were applied by Spezia et al. (2014); Paradinas et al.
(2017); Adde et al. (2020), respectively.

Species distribution data often exhibits residual spatial autocorrelation, indicating that
observations are not conditionally independent in space. The spatial autocorrelation fre-
quently arises due to the oversight of significant environmental factors, such as climate
conditions that influence species distribution, as well as intrinsic factors like competition,
dispersal, and aggregation (Miller 2012; Guélat and Kéry 2018). Indeed, contrasting the
application of spatial and non-spatial methods on the same dataset can yield different con-
clusions (Kühn 2007; Kneib et al. 2008). Moreover, a simulation study conducted by Guélat
and Kéry (2018) revealed that neglecting spatial autocorrelation can lead to erroneous pre-
dictions, even when dealing with extensive datasets. Hence, it is imperative to account for
spatial autocorrelation in SDM (Martínez-Minaya et al. 2018). However, certain case studies
may involve regions of interest with distinctive shapes or boundaries, such as coastlines,
introducing physical barriers. In such cases, the application of classical spatial models like
the Matérn field may be misleading due to inherent smoothing over these physical barriers
(Bakka et al. 2019).
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In addition to the spatial distribution, the temporal scale constitutes an important compo-
nent that merits consideration within the modeling process since species abundance exhibits
variability both in time and space (Hefley and Hooten 2016) and its temporal evolution rep-
resents an ecological interest (Paradinas et al. 2017; Martínez-Minaya et al. 2018). Time
series analysis operates on a similar principle as spatial statistics, where observations closer
in time are more closely related than distant ones.

The objective of the present study is to estimate the spatiotemporal distribution of the
European sardine (Sardina pilchardus, Walbaum 1792) in the Northern part of the Canary
upwelling system (Portuguese shelf). The study seeks to pinpoint the environmental drivers
influencing sardine spatial dynamics, comprehend sardine dynamics across both time and
space, and characterize the study region based on sardine occupancy.

The European sardine, a small pelagic fish, inhabitats the eastern North Atlantic Ocean
(from the North Sea to Senegal), the Mediterranean Sea, the Sea of Marmara, and the
Black Sea (Whitehead 1985). It holds socioeconomic importance for Portugal and Spain,
emerging as a key species for the purse-seine fishery (Mendes et al. 2019). The late 1990s
witnessed a positive phase in the sardine stock, the past decade recorded persistently low
biomass levels (ICES 2017; Pennino et al. 2020; Izquierdo et al. 2022), whereas recent
years have witnessed a revival (Cabrero et al. 2019). These fluctuations may be attributed
to oceanographic conditions variability, including climate-driven changes that have been
demonstrated to affect small pelagic fish generally (Checkley et al. 2017), and the dynamics
of the European sardine population specifically (Cabrero et al. 2019; Garrido et al. 2017).

Numerous studies have been undertaken to unravel the intricate aspects of sardine dis-
tribution, its habitat preferences, and its interplay with the marine ecosystem. Noteworthy
examples include investigations into the effects of environmental conditions on sardine
abundance and distribution in Mediterranean waters (Bellido et al. 2008; Voulgaridou and
Stergiou 2003; Gordó-Vilaseca et al. 2021), the northwest coast of Africa witnessed (Bacha
et al. 2017), the Alboran Sea (Jghab et al. 2019), the Bay of Biscay (Alvarez and Chif-
flet 2012), and the Portuguese continental coast and the northern Spanish waters (Santos
et al. 2012). Despite the socioeconomic importance of this species, the understanding of
sardine distribution on the Portuguese shelf remains limited. While Santos et al. (2012);
Zwolinski et al. (2010); Rodríguez-Climent et al. (2017) delved into the temporal distri-
bution of sardine and its association with environmental conditions, the spatial dimension
was regrettably overlooked. In a different vein, Izquierdo et al. (2022) employed a Bayesian
spatiotemporal approach to model the standardized sardine catch-per-unit-effort (CPUE)
along the west coast of Portugal. Nonetheless, strong relationships between sardine CPUE
and environmental conditions remained elusive.

This paper presents a proposal for hierarchical spatiotemporal SDM designed to estimate
the sardine distribution. The modeling of spatiotemporal dynamics for species distribution
poses significant challenges, stemming from the growing complexity of the data, data col-
lection methodologies, and the specific characteristics and evolutionary patterns of each
species. Moreover, addressing hurdles such as the semi-continuous nature of the response
variable, excessive zero values, discrepancies between presence and biomass processes,
and the complex geomorphology of the study region adds further complexity. To effec-
tively address these challenges, we propose a two-part model that decomposes the problem
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into a series of interconnected levels through probability functions. Our approach adopts a
Bayesian framework formodeling species distribution, with the inference process facilitated
by the integrated nested Laplace approximation (INLA) methodology (Rue et al. 2009).
INLA enables the approximation of posterior marginals of latent Gaussian fields (GFs).
Additionally, we utilized the stochastic partial differential equation (SPDE) technique to
approximate a Barrier spatial GF (Bakka et al. 2019) with Matérn covariance functions into
a discretely indexed Gaussian Markov random field (GMRF) (Lindgren et al. 2011). This
choice is made due to the computationally intensive nature of factorizing dense covariance
matrices. Moreover, our proposed model encompasses spatiotemporal and temporal effects,
incorporating environmental conditions from the recent past. This facet permits the sug-
gestion of different time lags, each accompanied by associated weights for every covariate.
Finally, the introduced framework facilitates the construction of maps of species occupancy
that can provide valuable insights for decision makers striving for marine sustainability.

Thismanuscript is structured into fourmain sections. Section2 outlines the data, the study
area, and the methodology employed. In Sect. 3, we present the obtained results, followed
by a comprehensive discussion of the findings in Sect. 4.

2. MATERIAL AND METHODS

2.1. DATA

The spatial distribution of sardine biomasswas evaluated based on Spring annual acoustic
surveys from the Portuguese sprinc acoustic (PELAGO) series, conducted by the Portuguese
Institute for the Sea and Atmosphere (IPMA) in Continental Portuguese waters (Fig. 1).
Positioned at the northern extent of the Canary upwelling ecosystem, this marine region
exhibits distinct topographic and oceanographic features along its western (west of 9◦W)
and southern (east of 9◦W) coasts.

On the west coast, the presence of coastal upwelling dominates during spring/summer,
characterized by a southward flowing upwelling jet over the shelf, cold water fronts, and
filaments. These features arise due to the persistent northerly winds (Relvas et al. 2007;
Teles-Machado et al. 2016). In contrast, winter on the west coast is dominated by the
Iberian Poleward current, transporting warmer and saltier waters northward. The season is
marked by warm fronts, eddies (Teles-Machado et al. 2016), and buoyant plumes of lower
salinity arising from enhanced winter runoff (Peliz et al. 2002).

The southern coast is demarcated by Cape Santa Maria, a geographical boundary seg-
regating distinct oceanographic regimes. To the west, a cyclonic cell, representative of the
spring/summer circulation, propels west coast upwelling waters eastward into the Gulf of
Cadiz (García-Lafuente et al. 2006).

Themain objective of this survey series is tomonitor the spatial distribution of abundance,
biomass, and various biological parameters of sardine and other small pelagic fish. The
survey design entails continuous daytime acoustic measurements along parallel transects,
facilitated by a calibrated 38-kHz echosounder. To process the data, the resulting backscatter
from the water column is integrated and averaged over 1nm intervals, expressed as nautical
area-scattering coefficients [NASC; SA (in m2nm−2)]. The inter-transect distance varies is
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Figure 1. Study area map. Dashed and black lines indicate bathymetric contours at 100m and 200m depths,
respectively.

6nm. The methodology underpinning the PELAGO series is detailed in Doray et al. (2021).
Throughout the analyzed timeframe, 2000–2020 (with a gap in 2012), a total of 16,370
sardine NASC values were collected (refer to Table 1 of Supplementary Material S.1). Each
NASC value, serving as a proportionate representation of fish density, is adopted as a proxy
for biomass henceforth for a specific pair of coordinates (longitude and latitude). A visual
representation of the data’s spatial distribution is available in Fig. 2.

To explore the relation between sardine distribution and environmental variables, a com-
prehensive dataset of daily environmental information was procured from the COPER-
NICUS server (https://resources.marine.copernicus.eu/products), encompassing the study
region and time frame. Specifically, the dataset includes satellite-derived sea surface temper-
ature (SST) measured in degrees Celsius (ESA SST CCI and C3S reprocessed sea surface
temperature analyses https://doi.org/10.48670/moi-00169), as well as chlorophyll-a con-
centration in mg m−3 (Global Ocean Colour project https://doi.org/10.48670/moi-00281),
bathymetry inmeters, intensity inm s−1, and direction in degrees of ocean currents (Atlantic-
Iberian Biscay Irish-Ocean Physics Reanalysis https://doi.org/10.48670/moi-00029).

The Portuguese coastline undergoes an abrupt change in direction, forming a “L” shape.
This geographical feature introduces significant biomass index variability, particularly in the
meridional (N-S) orientation along the west coast and in the zonal (E-W) orientation along

https://resources.marine.copernicus.eu/products
https://doi.org/10.48670/moi-00169
https://doi.org/10.48670/moi-00281
https://doi.org/10.48670/moi-00029
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Figure 2. Mapsdepicting the sardine biomass index (NASC,n2nm−2) for each annual PELAGOsurvey conducted
between 2000 and 2020 in Portuguese waters.
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south coast (refer to Fig. 2). This distinct pattern prompted the incorporation of a binary
covariate, representing the coast with values “south” and “west” to capture discrepancies
not accounted for by the environmental conditions.

2.2. SPATIOTEMPORAL SPECIES DISTRIBUTION MODEL

2.2.1. Two-Part Model

The species biomass distribution is articulated as the outcomeof two distinct components:
the presence distribution and the biomass distribution under presence (Eq. 1).

Let Yst be the spatiotemporal distributed biomass process at year t = 1, . . . , T and
location s ∈ D ⊂ R

2 where D represents the study region. Zst denotes the presence
sub-process, taking the binary value 0 if no species was observed at location s and year t ,
and 1 otherwise. I.e., NASC = 0 indicates absense, while positive NASC values signify
presence. Yst |(Zst = 1) takes the positive value of biomass index (i.e., positive values of
NASC) observed at location s and year t . Consequently, the distribution of (represented by [.]
in Eq. 1) the process of interest, species biomass index, is given by:

[Yst ] = [Zst ] [Yst |(Zst = 1)] =
{
1 − πst , yst = 0
πst [Yst |(Zst = 1)] , yst > 0

(1)

Considering the semi-continuous nature of the data, the process governing presence is
assumed to come from a Bernoulli distribution with probability πst . For the biomass process
under the presence, a continuous distribution is required such as Gamma or log-Normal.
In our case, we employed the Gamma distribution, parameterized by shape (ast ) and scale
(bst ) parameters.

The proposed hierarchical model can be written as follows:

Zst ∼ Bernoulli(πst )

logi t (πsti ) = α′ + β ′XCsti +
p′∑
j

f ′
j (K (X ′

jsti , c, l)) + γ ′
t + Wst

Yst | (Zst = 1) ∼ Gamma(ast , bst )

log(μsti ) = log(asti/bsti ) = α + βXCsti+
p∑
j

f j (K (X jsti , c, l)) + γt + kWst (2)

where i designates the i th day of the survey during year t . For modeling the biomass index
μsti under presence, we adopted the logarithmic link function, whereas the probability of
presence πst was represented through the logistic function (Eq. 2). The functions f j (.) and
f ′
j (.) denote smoother functions, particularly B-splines, thin plate, and cubic regression

splines. The intercepts α and α′ serve as regression constants. XCsti signifies the binary
covariate with a value of 0 assigned to the west part of the study region and 1 to the south
part. Consequently, β and β ′ capture the impact of the south coast in comparison to the west
coast for each respective process.



D. Silva et al.

K (·) represents aweighted average of environmental covariates X jsti observed at location
s and day i of year t such that:

K (X jsti , c, l) =
l∑

q=−l

wc−q X jst (i−(c−q)). (3)

The weights wc−q are determined through a Gaussian kernel density (GKD) function, as
proposed by Sheather (2004). In this context, c represents the central day, indicating the
mode of theGKD, for a time interval prior to day i when the process of interest was observed.
Additionally, l denotes the distance between the mode and the minimum (or maximum) of
the GKD. Notably, the constraint 0 ≤ l ≤ c is upheld. The GKD function necessitates
the bandwidth parameter for its computation. In our study, this bandwidth parameter was
estimated using the maximum likelihood cross-validation (MLCV) method (Habbema et al.
1974; Duin 1976). This approach involves estimating the log-likelihood of the density at
the kth observation, with all observations except the kth being considered. The utilization
of the K (·) function stems from the requirement to account for the effects of environmental
conditions with a temporal delay relative to the date when the species biomass index was
either estimated or observed. In essence, this function permits the incorporation of covariates
fromspecific pastmoments and their amalgamation, assigningdistinct degrees of importance
to different past moments. SupplementaryMaterials S.3 provide illustrative examples of this
concept.

Wst denotes a progressive spatiotemporal phenomenon (Paradinas et al. 2017). Underly-
ing this phenomenon is a precision matrix Q, governed by the structure matrix RW , where
Q = τWRW and τW is an unknown scalar. Consequently, the structure matrix delineates
the nature of temporal and/or spatial interdependencies among elements of W, and it can
be factorized as the Kronecker product of structure matrices of the corresponding interact-
ing main effects. In our analysis, the phenomenon exhibits temporal change following a
first-order autoregressive process, as defined by the equation:

Wst = δWs(t−1) + ξst (4)

where t = 2, . . . , T , |δ| < 1, andWs1 ∼ N (0, σ 2
W /(1−δ2)). The selection of the first-order

autoregressive model was motivated by the limited temporal span of the data (20 years)
and the evident rapid shifts in species distribution, driven largely by climatic changes.
Meanwhile, ξst denotes a zero-mean GF, assumed to be temporally independent. Thus,
Cov(ξst , ξuh) = Cov(ξs, ξu) for t = h and s �= u.

To address discrepancies between the west and south coasts and the unique geomor-
phology of the Portuguese continental coast (as depicted in Fig. 2), ξs embodies a Barrier
spatial GF (Bakka et al. 2019). This approach is rooted in the Matérn covariance function,
albeit diverging from conventional methods of computing distances between two points.
The methodology accommodates two distinct sets of paths: one confined solely to the study
region and the other traversing a physical barrier. For the former set, a stationary Matérn
field with marginal variance σ 2 and a range denoted by φ is utilized. The latter set involves
a Matérn field with the same σ 2 and a range that approximates zero. Defining this range
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close to zero effectively nullifies correlation over the physical barrier, which is extraneous
to the region of interest.

The interconnection between the two linear predictors is performedby a shared spatiotem-
poral latent field, Wst , governed by a scaling parameter k. This parameter serves to assume
the same spatiotemporal correlation structure, while accommodating distinct covariance
structures for each process. The proper interpretation of k within the presence probability
linear predictor warrants attention. A value of k = 1 corresponds to equivalent covariance
structures. Moreover, |k| < 1 signifies lower variability in presence process when compared
to species biomass process, while |k| > 1 denotes a higher variability in presence process.
In the context of INLA, this approach can be effectively implemented through the copy
model, as elucidated by Krainski et al. (2019).

Additionally, temporal dynamics are accounted for throughunstructured temporal effects,
denoted by γt and γ ′

t , characterized by a Gaussian exchangeable prior with a mean of zero
and precisions τγ and τγ ′ , respectively. These effects are introduced to model variability that
cannot be explained by environmental conditions or the spatiotemporal structure. Instead,
they encompass variations stemming from survey-related factors, such as disparities in
survey timing or the utilization of different vessels.

In order to maintain minimal informativeness, prior distributions were assigned as fol-
lows: α, α′ ∼ N (0,∞), β, β ′ ∼ N (0, 1000), k ∼ N (1, 0.1), log(τγ ), log(τγ ′) ∼ log-

Gamma(1, 0.00005) and log
(
1+δ
1−δ

)
∼ N

( 20
3

)
. Forσ 2 andφ, the prior specification adhered

to the PC prior framework (Simpson et al. 2017). A sensitivity analysis about the priors of
parameters was performed (see Supplementary Material S.6).

2.2.2. Model Evaluation

Concerning the evaluation and comparison ofmodels, establishedmetrics rooted in good-
ness of fit and complexity were employed to guide the selection of covariates and optimal
parameter combinations for c and l in Eq. (3). Different combinations were examined for
each covariate, with the exception of bathymetry, as it was considered a static covariate
across time.

One metric frequently used for assessing model fit within the Bayesian framework is the
deviance information criterion (DIC), introducedbySpiegelhalter et al. (2002).This criterion
serves to identifymodels that best explain observed data,minimizing uncertainty concerning
observations generated under similar conditions and at the same temporal juncture. The
DIC comprises two components, one appraising model fit and the other gauging model
complexity.

The conditional predictive ordinate (CPO) represents a metric rooted in the posterior
predictive distribution and derived through cross-validation methods (Roos and Held 2011).
Specifically, the CPO index is constructed using the posterior predictive distribution at the
kth observation, wherein the data is generated while excluding the kth observation itself.
In the context of two-part models, the CPO encompasses posterior predictive distributions
of both estimated processes, denoted as P(z̃|z) and P((ỹ|z̃)|(y|z)). A global measure of
model fitting is given by the log-conditional predictive ordinates (LCPO).
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Consequently, the selection of covariates, smoother terms, and c and l parameter combi-
nationswas guided by the pursuit ofminimizedDIC andLCPOvalues. The decision-making
process is elucidated in detail in Supplementary Material S.4.

2.2.3. Areas of Occupancy

Given the acknowledged impact of ecosystem conditions on species distribution and
behavior, the characterization of the study area in terms of species occupancy holds signifi-
cant value for marine ecology and fisheries management. Four distinct categories of biomass
index were delineated: rare, low occasional, high occasional, and preferred. The classifica-
tion process was based on predictions of the biomass index and its associated uncertainty.
Biomass index predictions were determined through the median of posterior predictive dis-
tribution, F−1

Ỹst
(0.5), derived for each new location using Equation (2) of Supplementary

Material S.2. Concurrently, the level of uncertainty was defined by the uncertainty linked
with the posterior distribution of the interest process, P

(|Wst | > 4
5σ

)
, since Wst encapsu-

lates unexplained variability inherent to the interest process, beyond the scope of considered
covariates. σ denotes the estimated posterior mean of the marginal standard deviation, while
4
5 serves as a scaling parameter for the explained variability encapsulated by the spatial struc-
ture, the marginal standard deviation itself.

Two distinct thresholds were established, one for the biomass index and another for the
uncertainty measure. These thresholds were informed by the annual median of the predicted
biomass values within the study area, as well as the median of the uncertainty support -
fixed at 0.5. Consequently, rare areas are characterized by biomass values falling below
the biomass threshold and possessing low uncertainty (below the uncertainty threshold).
low occasional areas feature low biomass values coupled with high uncertainty (above the
uncertainty threshold). In contrast, high occasional areas are marked by elevated biomass
values exceeding the biomass threshold, accompanied by high uncertainty. Preferred areas
are distinguished by high biomass values and low uncertainty.

Furthermore, the exploration of the temporal evolution of these distinct areas can facilitate
the identification of both favorable and unfavorable habitats—an integral aspect in defining
species habitat and comprehending species dynamics. In this particular study, favorable
areas are defined as those exhibiting a sustained period of preferred occupancy, while unfa-
vorable areas are characterized by rare and persistent species occupancy. For the purposes
of this study, persistence was defined by a duration of 3 years due to the limited time
series. Two-part model was performed using the INLA approach in R software. The R
code corresponding to the creation ok kernel time-lagged covariates, the fit of Barrier and
the definition of occupancy areas is available on Github (https://github.com/SilvaPDaniela/
Environmental-Effects-on-the-Spatio-Temporal-Variability-of-Sardine-Distribution).

3. RESULTS

Bathymetry, chlorophyll-a concentration, andocean current intensity surfaced as explana-
tory variables for both sardine presence and the biomass index, whereas SST exclusively
contributed to explaining the species’ biomass index (Table 1, Fig. 3).

https://github.com/SilvaPDaniela/Environmental-Effects-on-the-Spatio-Temporal-Variability-of-Sardine-Distribution
https://github.com/SilvaPDaniela/Environmental-Effects-on-the-Spatio-Temporal-Variability-of-Sardine-Distribution
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Table 1. Illustration of the most effective sardine biomass model for the Portuguese continental coast based on
performance metrics, DIC and LCPO

Presence process Zst Biomass process under presence Yst (Zst = 1)

Coast + K(CHL,2,2)+ Bathymetry + K(INT,24,4) + K(SST,0,0) + K(CHL,17,0) + Bathymetry + K(INT,10,6) +
Strucst + Unstruct Structst + Unstruct

Key components highlighted in bold include random factors, spatiotemporal effect (Strucst ), and unstructured
annual effect (Unstruct ). Specific covariates are indicated by acronyms (SST: sea surface temperature, CHL:
chlorophyll-a concentration, INT: intensity of ocean currents). The “Coast” variable signifies the coast indicator
(0 for West, 1 for South)

The best model embraced purely unstructured annual effects, symbolized by γt and γ ′
t ,

for the biomass and presence processes (Table 1), respectively. Although structured annual
effects, characterized by linear effects or autoregressive processes with varying orders,
were also considered, their incorporation did not yield a discernible enhancement in model
performance.

Notably, the coastal indicator solely demonstrated relevance in explaining the species’
presence, with the corresponding parameter yielding a posterior mean of 0.89 (Figure 3
of Supplementary Material S.5). This finding indicates that, on average, the probability
of sardine occurrence is more than twice as high in the southern region compared to the
western coast. Chlorophyll-a observed in the four days leading up to, and including, the
day of biomass index determination emerged as influential factors in explaining sardine
presence. Interestingly, the effect of chlorophyll-a exhibited a pronounced inflection point
at 0.45mgm−3, with a decreasing impact up to this threshold followed by an ascending effect
beyond it. Noteworthy patterns also emerged in relation towater depth, where the probability
of presence exhibited a peak at 30m before declining. Bathymetry demonstrated limited
influence, becoming irrelevant beyond a depth about 615m. The probability of sardine
presence was positively correlated with lower current intensity values observed within time
interval from 20 to 28 days prior to biomass index determination (peaking around 0.08m
s−1, 0.16m s−1, and 0.22m s−1) while exhibiting a negative relationship beyond 0.26m s−1,
though the intensity effect became irrelevant beyond a threshold of 0.37m s−1.

The sardine biomass index showcases a distinctive pattern in relation to SST, where an
ascending trend is evident up to 14◦C, followed by a relevant decline starting at 15.3◦Cwith
increasing SST. The biomass index displays an increasing trend aligned with chlorophyll-a
levels, observed 17 days prior to sardine biomass estimation, up to 1.14mg m−3. Subse-
quently, a prominent decrease manifests up to 1.25mg m−3, followed by another relevant
upsurge within the range of 10 to 30mg m−3. The relationship between sardine biomass
and bathymetry also reveals noteworthy insights, with a positive correlation observed. This
influence is most pronounced at depths of up to 125m, beyond which its effect becomes
marginal, ultimately tapering off at depths exceeding 420m. The impact of intensity, within
the temporal interval spanning from 4 to 16 days prior to biomass index determination. On
sardine biomass index, it is characterized by oscillating patterns, featuring four distinctive
peaks of positive effect at 0.02, 0.1, 0.18, and 0.67m s−1. Beyond the threshold of 0.7m s−1,
the influence of ocean current intensity becomes negligible.
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Figure 3. Fixed (environmental) effects for sardine presence (first column) and sardine biomass (second column)
derived from biomass index modeling during the PELAGO surveys conducted between 2000 and 2020. Certain
covariates are represented by acronyms (SST: sea surface temperature, CHL: chlorophyll-a concentration, INT:
intensity of ocean currents). Vertical lines depict the 80% quantiles for each observed covariate, and K () refers to
the function defined in Eq. (3).
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The obtained posterior predictive distributions for the spatial covariance parameters as
well as for the time correlation parameter were relevant (Figure 4 Supplementary Material
S.5). The spatial autocorrelation was almost null from about 86Km, while the mean annual
dependence was estimated at approximately 0.18. The unstructured annual effects conveyed
an annual variability of 2.38 for presence and 0.41 for the biomass index.

Both processes hinged on an identical spatiotemporal structure, scaled by the parameter k.
The estimated mean of k stood at−0.48, indicating that the remaining unexplained variance
in the biomass process under presence diverges notably from that in the presence process.

Upon completing the modeling process, we gained the capacity to map the mean of the

posterior predictive distributions of presence probability (E
[
Z̃st

]
) (Fig. 4) and the median

of the posterior predictive distribution of the biomass index (F−1
Ỹst

(0.5)) (Fig. 5) for specific
days. In this endeavor, we opted to employ the central days corresponding to the surveys
under investigation, while also designating May 10, 2012, as a representative day for the
omitted year within the dataset. This choice emerged from its positioning midway between
the chosen days for 2011 and 2013. An examination of the resulting maps reveals predomi-
nant instances of low presence probability across the majority of the study area, particularly
concentrated between Peniche and Lisboa. Remarkably, regions situated between Viana
do Castelo and Porto, as well as those stretching from Aveiro to Figueira da Foz, often
manifested elevated biomass values.

Figure 6 enables the identification of sustained sardine distribution areas over time.
Noteworthy is the observation of a preferred occupancy of the species along the coastal
expanse between Porto and Aveiro. Conversely, deeper zones along the west coast and
along with coastal areas at the south coast, typified occasional occupancy of sardine.

During the time span of 2000–2002, a predominance of favorable zones contrasted
with unfavorable counterparts, exhibiting a converse trend during the period of 2018–2020
(Fig. 7). In the first period, most of favorable zones were concentrated north of Lisboa,
while these zones were more dispersed in the latter period. Despite distinct persistent zones
being identified within each period, certain similarities can be discerned. An area located
proximate to the coast and situated to the south of the western coastal region was consis-
tently deemed unfavorable in both epochs. Upon juxtaposing the two periods, substantial
changes become evident in thewestern extent of the study region, particularly in the northern
vicinity of Lisboa. Furthermore, a proliferation of unfavorable zones materialized in recent
years, with two distinguishable regions emerging—one betweenViana doCastelo and Porto,
and another between Peniche and Lisboa. The paucity of persistent zones aligns with the
marginal value of the time correlation parameter (Figure 4 of Supplementary Material S.5).

4. DISCUSSION

Within the realm of SDM, a central aim lies in devising comprehensive methodologies
that encapsulate the intricate interplay between the species and its ecosystem. However,
reliance solely on environmental factors might fall short in capturing the nuanced relation-
ship between species and environment, particularly in the case of small pelagic species,
known for their heightened sensitivity to environmental fluctuations (Schickele et al. 2021).
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Figure 4. Map depicting the mean of the posterior predictive distribution for the probability of sardine presence
(E[Z̃st ]) on the representative day of each survey, obtained from the modeling of the biomass index during the
PELAGO surveys conducted between 2000 and 2020.

In this study, we put forth a dynamic spatiotemporal SDM, tailored to predict sardine dis-
tribution across the waters of the Portuguese shelf and relate the sardine behavior with
environmental conditions in a flexible way. We used a hierarchical Bayesian spatiotemporal
approach capable of dealing with the complex spatiotemporal dynamics underlying biolog-
ical phenomena. Environmental information was incorporated referenced in both time and
space, in a temporally lagged way, to relate the ecosystem conditions with the process of
interest.
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Figure 5. Mapdepicting themedian of the posterior predictive distribution for the biomass index, F−1
Ỹst

, (m2 nm−2,

on the representative day of each survey, obtained from the modeling of the biomass index during the PELAGO
surveys conducted between 2000 and 2020.

Paradinas et al. (2017) and Izquierdo et al. (2022) have made substantial contributions
to our current comprehension of the two-part model framework within the realm of spa-
tiotemporal SDM. However, a crucial distinction emerges: both models lack the capability
to accommodate the effects of environmental conditions with temporal lags. This omission
becomes particularly significant due to the pivotal role of temporal lags in shaping envi-
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Figure 7. Representation of favorable (preferred and persistent) and unfavorable (rare and persistent) sardine
zones for two distinct 3-year periods: 2000–2002 (left) and 2018–2020 (right).

ronmental influences. Therefore, we elevated its capacity to encapsulate the intricacies of
ecological marine dynamics.

Several studies have employed distributed lag approaches in their analyses. For instance,
Gordó-Vilaseca et al. (2021) incorporated covariates with time lags to elucidate the spawn-
ing patterns of sardine and anchovy, while Tredennick et al. (2016) utilized time-lagged
covariates to investigate the impact of climate change on plant populations. When compar-
ingwith these approaches, our proposedmethodology gains dynamism, as it employs shorter
time lags (measured in days rather than months) and permits a diverse array of time period
combinations, each with distinct weights. In essence, our approach affords the flexibility for
time lags to encompass intervals, rendering the model a more comprehensive and realistic
framework capable of mitigating prediction bias and addressing outliers stemming from
extreme events. Heaton and Peng (2012) proposed a generalized linear model that incorpo-
rates temporal lags to capture the effects of heat on mortality in various US metropolitan
areas. This approach necessitates the consideration of temporal lags over a wide interval,
encompassing recent and distant past lags that exhibit decreasing correlation as the lag
duration increases. However, recent past lags may not always be pertinent, as illustrated
by the effect of chlorophyll-a on fish distribution and abundance. In this case, favorable
chlorophyll-a conditions may require several weeks to influence zooplankton abundance
and consequently attract fish to the area (Bellido et al. 2008). Pugh et al. (2019) introduced
a spatiotemporal model for crop yield, incorporating soil water content as a weighted aver-
age observed at different temporal lags. The weighting was determined by a spatiotemporal
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kernel utilizing separable effects, which were discretized over a grid of time periods and
locations due to computational constraints. However, this approach may prove restrictive
when applied to species distribution data, considering that sampling locations evolve over
time, and nonlinear effects of covariates need to be accounted for. Our proposed approach
circumvents these limitations by accommodating a broader range of lag intervals and treat-
ing the spatial domain as continuous. It is important to highlight that applying time lags to
static covariates may lack conceptual relevance in certain contexts.

Effective fish distribution monitoring is integral to harmonizing fisheries with marine
spatial planning (Janßen et al. 2018). Successful fisheries management hinges on compre-
hending fish population spatial dynamics. In this context, we introduced a classification
of the study region based on model outputs, offering an accessible alternative to complex
distribution maps. This classification, simpler to interpret yet equally essential, aids conser-
vation decisions and targeted management strategies in two scenarios. Firstly, it supports the
protection of one species while pursuing another, optimizing catch outcomes. The proposed
classification scheme identifies potential no-take zones, focusing on areas where protected
species tend to gather, thereby minimizing their capture while permitting other species’
capture within the fishery. Secondly, our classification framework proves invaluable for
conserving juvenile fish populations. By designating areas as preferred or even preferred
plus high occasional for juveniles, these regions can be established as no-take zones within
the stock’s habitat. Such spatial insight is pivotal for creating effective Marine Protected
Areas, as underlined by Grüss et al. (2019).

Our classification process centers on predicted biomass estimates and associated uncer-
tainties. To quantify these uncertainties, we examine the latent field probability in relation
to a chosen scale of the marginal standard deviation. For our investigation, we adopted a
scale of 4/5, albeit determined empirically. However, we advocate for a decision driven by
biological insights and expert judgment to ensure credible and meaningful outcomes. Fur-
thermore, exploring the persistence of rare and preferred zones offers valuable insights into
species distribution shifts. Although our delineation is temporally limited due to a short time
series, it is conceivable to extend this definition by incorporating multiple consecutive time
periods. Such adaptations guided by biological insights or empirical testing offer promising
avenues for further exploration.

Within the context of equivalent environmental conditions, a conspicuous divergence in
sardine presence emerged, with diminished occurrences along the west coast as compared to
the southern counterpart. This divergence couldpotentially be attributed to ahigher incidence
of species absences observed in the west comparing to the south during most surveys. The
zenith of sardine biomass index was concentrated in the northern vicinity near the coast,
emblematic of more prolific zones attributed to the presence of river mouths and estuaries
(Monteiro 2017; Zwolinski et al. 2010). The perpetuation of certain ecological niches over
time was particularly conspicuous along the west coast. Remarkably, the influence of depth
exhibited a nonlinear relationship with both occurrence and biomass, revealing sardine’s
affinity for shallowwaters (up to 85m).This affinity for shallowdepths has been corroborated
by other studies, including those conducted in Spanish Mediterranean waters (Bellido et al.
2008), the Northwestern Mediterranean Sea (Saraux et al. 2014), and the western Iberian
coast (Zwolinski et al. 2010). While the inclusion of current direction yielded minimal
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enhancement to the model, the incorporation of current intensity demonstrated discernible
improvement.Conversely, Izquierdo et al. (2022) noted a slight enhancement in theirmodel’s
performance with the inclusion of current intensity, although it was excluded from their
final model. In our point of view, the ocean current effect on sardine biomass is not easy to
understand and deserves further investigation, to try to identify the oceanographic processes
signaled by current velocity that might be affecting sardine distributions, such as, e.g., the
effect of the ocean fronts (Palomera 1992). Sardine biomass index exhibited pronounced
elevation in regions characterized by SST ranging between 13.1 and 14.6◦C, in line with
existing literature on the distribution of sardine eggs (Coombs et al. 2006), sardine larvae
(Garrido et al. 2016), and sardine reproduction (Zwolinski et al. 2010). A similar trend in
the SST effect on sardine was discerned in the NW Mediterranean Sea (Gordó-Vilaseca
et al. 2021), albeit the optimal temperature was estimated around 13.5◦C, during a period of
lower temperatures.Chlorophyll-a, an indicator of primary productivity, emerged as a pivotal
determinant for both processes which resonates with studies by Bacha et al. (2017); Garrido
et al. (2017); Gordó-Vilaseca et al. (2021); Izquierdo et al. (2022). The temporal lag between
chlorophyll-a and sardine biomass potentially mirrors the lag between phytoplankton and
zooplankton blooms—a primary source of sustenance for sardines—spanning from larvae
to mature individuals (Garrido et al. 2008).

The spatiotemporal structure contributed to a modest annual dependency in the sardine
biomass index. Santos et al. (2012) discerned that sardine recruitment in a specific year is
contingent upon the recruitment observed in the preceding year. On the other hand, Borges
et al. (2003) conducted a time series analysis of sardine catch data spanning from 1946 to
1990, revealing that sardine catch is influenced by catches recorded up to 14 years earlier.
Indeed, the last decades have been characterized by more recurrent and impactful environ-
mental changes (Tang 2019) which makes it difficult to detect strong annual dependencies.

Studying the dependency between the fish abundance and environmental variables
augments our understanding of abundance dynamics, facilitates habitat delineation, and
enhances our capacity to prognosticate marine species trends. Our study underscored the
utility of Bayesian spatiotemporal modeling in elucidating species distribution patterns.
While our investigation focused on a specific species inhabiting the Portuguese shelf, the
proposed approach can be readily extrapolated to diverse species sets and geographical
domains. We advocate for the exploration of various time lag combinations for covariates,
guided by prior knowledge (e.g., ecological insights), given the inherent computational
challenges of Bayesian methodologies, especially in higher-dimensional datasets.
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