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ABSTRACT 

Composition of Loureiro and Alvarinho wines from the Vinhos Verdes region, 

respecting free volatile compounds as well as glycosidically bound aroma precursors, 

was exhaustively determined by GC-MS after adsorption on XAD-2 resin. On the 

whole, were identified and quantified 120 volatile compounds in the free fraction and 

77 glycosidically bound compounds, belonging to C6-compounds, alcohols, fatty acids 

ethyl esters, esters of organic acids, acetates, monoterpenic alcohols, monoterpenic 

oxides and diols, C13-norisoprenoids, volatile phenols, volatile fatty acids and carbonyl 

compounds. Globally, the wines of the two cultivars present similar composition on 

volatiles. However, respecting varietal compounds, Loureiro wines are richer than 

Alvarinho ones with regard to C6-compounds and monoterpenic compounds, occurring 

the opposite for volatile phenols. It was also demonstrate that wines of both varieties 

may benefit the aroma reserve, present as glycoconjugates, as it is susceptible of 

being technologically explored. Linalool, Ho-trienol, α-terpineol, contributing with 

fruity and floral notes, and β-damascenone mostly for Alvarinho, confering tropical 

fruit notes, are the varietal compounds which may particularly influence the aroma of 

these wines. Respecting fermentative compounds, Alvarinho is also particularly rich in 

fatty acids ethyl esters related to lipid metabolism and acetates of fusel alcohols, 

which can provide it a fruity character; Loureiro contains higher levels of esters of 

organic acids and 2-phenylethanol, conferring fruity and floral notes. Sensory analysis 

agree with chemical analyses showing a pronounced tree and tropical fruit character 

for Alvarinho wines while Loureiro wines present more intense citrus fruit notes. 
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INTRODUCTION 

Wines with Appellation of Origin Vinhos Verdes are produced in a wide region in 

Northwestern Portugal, composed by 9 sub-regions (Amarante, Ave, Baião, Basto, 

Cávado, Lima, Monção, Paiva and Sousa). There are seven recommended white grape 

varieties (Alvarinho, Arinto, Avesso, Azal, Batoca, Loureiro and Trajadura) and eight 

red grape varieties (Amaral, Borraçal, Brancelho, Espadeiro, Padeiro de Basto, Pedral, 

Rabo de Ovelha and Vinhão) to produce these wines. Among the white cultivars, 

Alvarinho and Loureiro are employed to produce high quality monovarietal wines, 

which are characterized by freshness and floral and fruity flavors. In order to preserve 

these appreciated characteristics, traditional winemaking techniques are developed to 

encourage these notes and to avoid malolactic fermentation. The legislation stipulates 

ethanol concentrations of between 8.0 % and 11.5 %, but for Alvarinho wines it must 

be comprised between 11.5 % and 13.0 %; fix acidity, expressed as tartaric acid, 

must be at least 6 g/L (4.5 g/L for Alvarinho). 

Depending on the origin, and considering the biotechnological sequence of 

winemaking, wine flavor can be classified into four different groups (Drawert, 1974; 

Cordonnier and Bayonove, 1978; Bayonove et al., 1998): varietal aroma, typical of 

grape variety, which depends essentially on soil, climate, phytotechny, sanitary 

conditions and degree of ripeness; pre-fermentative aroma, originated during grape 

processing and subsequent operations, namely transport, pressing, maceration, and 

clarification; fermentative aroma, produced by yeasts during alcoholic fermentation 

and lactic acid bacteria during malolactic fermentation, which depends mainly on 

fermentation temperature and microorganism species; post-fermentative aroma, 

which results from transformations occurred during conservation and ageing of wine. 

Because Vinhos Verdes are usually consumed young, the first three groups are the 

most important for the present work. 

The wine constituents linked to grape variety are the monoterpenols, abundant in 

Muscat varieties, the methoxypyrazines, which characterize the Cabernet family, the 

C13-norisoprenoids, numerous in Chardonnay, volatile thiols in Sauvignon, volatile 

phenols in ”Traminer aromatico” and dimethyl sulfide in Syrah, but these compounds 

could also contribute significantly to the aroma of several other varieties (Versini, 

1985; Allen et al., 1991; Sefton et al., 1993; Tominaga et al., 2000; Segurel et al., 

2004 and 2005). Except for the methoxypyrazines, these constituents occur in grapes 

in the form of non-volatile precursors like fatty acids, glycosides, carotenoids, cysteine 

S-conjugates and phenolic compounds, which can originate flavour compounds during 

or after the technological sequence of winemaking (Bayonove et al., 1998). However, 

monoterpenols are also abundant as free odorants in some grape varieties, like Muscat 



or Gewürztraminer. Pre-fermentative compounds are essentially C6-alcohols and C6-

aldehydes formed from grape lipids, by a sequence of enzymes (Crouzet et al., 1998). 

Fermentative compounds are alcohols, esters, fatty acids, carbonyl compounds and 

some phenols (Bayonove et al., 1998); they contribute to the vinous character of 

wine. 

Glycosidic precursors are of greater importance as they can be hydrolyzed to a certain 

extent during winemaking, wine conservation and ageing, chemically or by 

microorganisms or endogenous enzymes, and also by the addition of exogenous 

enzymes. It makes possible the production of aromatic wines, with varietal 

characteristics, from non-aromatic varieties (Günata et al., 1990 and 1993; D’Incecco 

et al., 2004). 

Since Vinhos Verdes, namely Loureiro and Alvarinho, are quite important for the 

economy of this demarcated region and because they are over all appreciated by their 

aromatic characteristics, it is very important to study the volatile composition as well 

as the aroma precursors of these wines. Former studies indicate that Loureiro can be 

classified among monoterpene dependent aromatic varieties, and that Loureiro and 

Alvarinho varieties have an important reserve of volatile compounds that can be 

exploited technologically (Oliveira et al., 2000); furthermore, terpenol profile of both 

fractions, free and glycosidically bound, are largely different (Oliveira et al., 2004). 

Except for the Galician congeners Loureira and Albariño wines (Versini et al., 1994), 

were not found any published data referring to free volatile compounds or 

glycoconjugates of Loureiro and Alvarinho wines, neither exhaustively nor 

concomitantly. 

The aim of this work was to study the global composition of Loureiro and Alvarinho 

young wines, in terms of free volatile compounds and also of glycosidically bound 

precursors. To reach these purposes, 3 Alvarinho and 2 Loureiro wines were 

elaborated from grapes harvested at different terroirs inside the Vinhos Verdes 

Region. Chemical and sensory analyses were conducted. 

 

MATERIALS AND METHODS 

The evaluation of the volatile composition of wines was made after 8 months of 

conservation in bottle, the recommendable time for the wine to be drunk, in expert’s 

opinion. General analyses of wines was done at Comissão de Viticultura da Região dos 

Vinhos Verdes. 



Grape Samples 

Grapes from Loureiro and Alvarinho varieties were manually harvested in 1998 in two 

different vineyards; both soils are from granitic origin. The most recommended sub-

regions (Lima and Monção) for the monovarietal wine production and an alternative 

sub-region (Cávado and Lima) inside the Vinhos Verdes Region were selected. For the 

Alvarinho variety, an additional vineyard cultivated in a pebble soil was chosen. The 

codes attributed to the samples were the following: LCT – Loureiro, Casa da Tapada, 

sub-region of Cavado; LAV – Loureiro, Estação Vitivinícola Amândio Galhano (Arcos de 

Valdevez), sub-region of Lima; AAV – Alvarinho, Estação Vitivinícola Amândio Galhano 

(Arcos de Valdevez), sub-region of Lima; ASS – Alvarinho, Solar de Serrade, sub-

region of Monção; ACR – Alvarinho, Lagoa Verde (Calhau Rolado – pebble), sub-region 

of Monção. 

Vinifications 

The wines which correspond to samples referred above were made according to the 

traditional technology applied in Vinhos Verdes Region. The must, obtained by 

crushing, pressing and static sedimentation, was inoculated with the yeast 

Saccharomyces cerevisiae bayanus QA23. Fermentations took place at 18 oC, in 10 L 

vessels, and were done in duplicate for precaution. The produced wines were 

combined and the blend was treated with 0.4 g/L of sodium bentonite –Volclay KWK 

Food Grade, 20−70 mesh, 10 % in aqueous solution. Next, the SO2 content was 

corrected to 35 mg/L, and finally submitted to cold stabilization (between 0 oC and 3 

oC) before bottling. The conservation of the wines occurred at cellar temperature and 

in the dark. These wines do not perform malolactic fermentation. 

Solvents 

All solvents were analytical grade and further purified. Diethyl ether (Merck) was 

distilled on iron (II) sulphate (Merck). Dichloromethane (Merck) was washed with de-

ionised water, and then distilled. Pentane (Carlo Erba) was washed with H2SO4 

(Merck), KMnO4 (Carlo Erba) and de-ionised water, and next it was distilled on 

potassium hydroxide (Merck). Azeotrope pentane-dichloromethane was distilled after 

combination of pentane and dichloromethane (2:1, v/v) and it was redistilled 

whenever necessary. 

Extraction of Volatiles and Glycoconjugates from Wines 

To 100 mL of wine, previously centrifuged (25 min, RCF = 12 225, 4 oC) and diluted 

with de-ionised water to reduce ethanol content to less than 5 %, were added 14.5 µg 



of 4-nonanol (Merck). The solution was passed through an Amberlite XAD-2 resin 

(20−60 mesh, Supelco) column according to the method of Günata et al. (1985). Free 

and glicosidically bound fractions were eluted successively with 50 mL of azeotrope 

pentane-dichloromethane and 50 mL of ethyl acetate. Pentane-dichloromethane eluate 

was dried over anhydrous sodium sulphate and concentrated to about 2 mL by solvent 

evaporation at 34 oC through a Vigreux column, prior no analysis. The ethyl acetate 

eluate was concentrated to dryness in vacuum (40 oC) and dissolved in 100 µL of 

citrate-phosphate buffer (pH=5). Residual free compounds were extracted five times 

with azeotropic mixture and discarded. 14 mg of enzyme AR2000 (Gist-Brocades) was 

added to the glycosidic extract and the mixture was incubated at 40 oC for 12 h. 

Released aglycons were extracted with pentane-dichloromethane; 7.25 µg of 4-

nonanol, as internal standard, was added to the organic phase and it was 

concentrated to 200 µL, through a Dufton column. Analyses were made in triplicate. 

Gas-chromatography-Mass Spectrometry (GC-MS) 

Gas chromatographic analysis of volatile compounds was performed using a GC-MS 

composed by a Varian 3400 Chromatograph and an ion-trap mass spectrometer 

Varian Saturn II. Each 1 µL injection was made separately in two capillary columns, 

coated with CP-Wax 52 CB or CP-Wax 57 CB (both with 50 m x 0.25 mm i.d., 0.2 µm 

film thickness, Chrompack), respectively. The temperature of the injector (SPI – 

septum-equipped programmable temperature) was programmed from 20 oC to 250 

oC, at 180 oC/min. The temperature of the oven was held at 60 oC, for 5 min, then 

programmed from 60 oC to 250 oC (60 oC to 220 oC for the second column), at 3 

oC/min, then held 20 min at 250 oC (30 min at 220 oC) and finally programmed from 

250 oC to 255 oC at 1 oC/min (220 oC to 225 oC at 2 oC/min). The carrier gas was 

helium N60 (Air Liquide), at 103 kPa. The detector was set to electronic impact mode 

(70 eV), with an acquisition range (m/z) from 29 to 360, and an acquisition frequency 

of 610 ms. 

Identification and Quantification of Volatile Compounds 

Identification was performed using the software Saturn, version 5.2 (Varian), by 

comparing mass spectra and retention times with those of pure standard compounds. 

In some cases, the identification was achieved by comparing retention index and mass 

spectra with those of published data. The quantification was performed using the data 

obtained in CP-Wax 52 CB column, mainly. The second column, CP-Wax 57 CB, served 



essentially to confirm spectra of the co-eluted compounds and, in general, it was 

useful for the alcohols. All the compounds were quantified as 4-nonanol equivalents. 

Sensory Analyses 

Wines were submitted to sensory evaluation, by 7 tasters, at Comissão de Viticultura 

da Região dos Vinhos Verdes (CVRVV). Judges were chosen amongst wine experts and 

they had a full knowledge about the products. Loureiro and Alvarinho wines, in 

duplicate, were coded randomly and tasted independently using the distribution 

prepared according to aleatory tables. Normalized glasses were used (ISO 3591) and 

the room was kept at 21 oC and 65 % of relative humidity. The wine score card was 

that used by the Tasting Room of CVRVV, evaluating several attributes (scale 0 to 5) 

relating to visual, olfactory and gustative observations. Tasters also classified global 

appreciation (scale 0 to 20). 

Statistical Analyses 

Statistical differences between wines, respecting chemical analysis, were checked by 

Analysis of Variance (ANOVA). Homogeneity of variances was checked with the Levene 

test and normality of the variables was checked by the Kolgomorov-Smirnov test with 

Lilliefors correction, both at a significance level of 5 %. Whenever one of these two 

conditions fails, the non-parametric Kruskall-Wallis test was applied. Also, global 

classification obtained in sensory analysis was studied by means of Analysis of 

Variance in order to evaluate hypothetical differences between wines of the same 

variety. 

Similarities between wines, respecting specific compounds, were analysed by Principal 

Component Analysis, being component extraction achieved by correlation matrix and 

their number fixed according to Kaiser criterion, i. e., all the components with 

eigenvalues over 1. 

The software used was SPSS 14.0 for Windows. 

 

RESULTS AND DISCUSSION 

General Analyses 

General characteristics of wines are summarized in Table 1. Loureiro wine fulfils the 

criteria to obtain the Appellation of Origin Vinho Verde label. However, ASS and ACR 

Alvarinho wines had an alcoholic content above the permitted limit of 13.0 %. 



Volatile Composition of Loureiro and Alvarinho Wines 

The volatile extracts were obtained by solid phase extraction of diluted wines 

(lowering the alcoholic content below 5 %) using XAD-2 resin as report previously 

(Voirin et al., 1992; Aubert et al., 1997). GC-MS analysis of these extracts allowed the 

identification and quantification of 120 volatiles belonging to C6-compounds (5), 

alcohols (24), fatty acid ethyl esters related to lipid metabolism (6) and to nitrogen 

metabolism (3), esters of organic acids (10), acetates (7), monoterpenic alcohols (8), 

monoterpenic oxides and diols (14), C13-norisoprenoids (13), volatile phenols (13), 

volatile fatty acids related to lipid metabolism (8) and to nitrogen metabolism (3), 

carbonyl compounds (4) and also pantolactone and N-(2-phenylethyl)-acetamide. This 

classification takes into account the chemical structure of the volatile compounds, the 

pathways leading to their formation and the olfactory perception threshold. 

Table 2 shows the mean level obtained for each compound in the five samples 

analysed. These levels were determined as 4-nonanol equivalents. 

Varietal Compounds 

They are, mainly, monoterpenic compounds (alcohols, oxides and diols), C13-

norisoprenoids and some volatile phenols. Unsaturated C6-alcohols are related to 

varietal origin because they can be formed, via C6-aldehydes, through enzymatic 

reactions from linolenic and linoleic acids present in grapes (Crouzet et al., 1998). 

Therefore, they will be considered as constituents of potential varietal aroma (Nicolini 

et al., 1996). However, because of their mainly fermentative origin, 1-hexanol, 4-

ethylphenol, 4-vinylguaiacol and 4-vinylphenol were excluded from the varietal group 

(Joslin and Ough 1978; Chatonnet et al., 1992 and 1993). 

Regarding the 5 samples studied, although the profiles of varietal compounds are 

similar, ANOVA shows that Loureiro presents globally higher contents of varietal C6-

compounds and monoterpenic compounds (alcohols, oxides and diols), mainly for LAV, 

but the difference between the levels of monoterpenols in ASS and LCT was not 

statistically significant (p>0.05). Contrarily, Alvarinho wines have higher levels of 

varietal volatile phenols. Alternative sub-regions (LCT and AAV) are systematically poor 

than recommended sub-regions (LAV and ASS) respecting monoterpenic compounds 

(including alcohols, oxides and diols) and C13-norisoprenoids (p<0.05). 

All the C6-compounds follow the group tendency except (Z)-3-hexen-1-ol which is 

more abundant in Alvarinho wines; moreover, the relative abundance of (E) and (Z) 

isomers varies according to the cultivar, being (E) isomer always greater than (Z) 

isomer for Loureiro, occurring the opposite for Alvarinho. The (E)/(Z) isomer ratio is 



almost constant for the wines of each variety, with mean values of 6.81 ± 0.76 (n=6) 

and 0.64 ± 0.06 (n=9) for Loureiro and Alvarinho, respectively (95 % confidence 

level). As already mentioned, these results seem to indicate the possibility to 

discriminate wines from these two varieties (Oliveira et al., 2006). 

Wines made with grapes from the recommended sub-regions (LAV and ASS/ACR) present 

levels of monoterpenic alcohols higher than those from the selected alternative sub-

regions (LCT and AAV) (p<0.05). These compounds are always globally more abundant 

in Loureiro wines, except ASS which presents similar levels to LCT, and myrcenol has 

only been detected in Loureiro´s. Linalool contributes certainly to the fruity and floral 

aroma of these wines, as its olfactory perception threshold is 25 μg/L (Escudero et al., 

2004; Ribéreau-Gayon et al., 2000). Also Ho-trienol and α-terpineol, with perception 

thresholds of 110 μg/L and 330 μg/L, respectively, may also influence contribute with 

similar notes (Meilgaard, 1975; Simpson, 1979; Ribéreau-Gayon et al., 2000; 

Escudero et al., 2004). It must be noted that linalool is present in Loureiro wines at 

lower concentrations than in grapes, probably due to inefficient extraction during 

winemaking procedures. On the contrary, its level in Alvarinho wines is much higher 

than in grapes, very poor in this compound (Oliveira et al., 2000) which could be 

attributed to the hydrolysis of precursors. In addition, the levels of Ho-trienol and α-

terpineol in wines of both varieties were much higher than in the corresponding 

grapes. That could be explained by the chemical modifications of some monoterpene 

compounds occurring at acidic pH (Williams et al., 1980 and 1982) since the 

corresponding glycoconjugates hardly occurred in grapes. Finally, the quantitative 

determination of geraniol in most samples was not possible due to its co-elution with 

hexanoic acid. 

Concerning monoterpenic oxides and diols, Loureiro is richer than Alvarinho for the 

majority of compounds, particularly pyran linalool oxides and 3,7-dimethylocta-1,7-

dien-3,6-diol; on the contrary, (Z)-8-hydroxylinalool is more abundant for Alvarinho 

wines, although AAV, LCT and LAV showed no significant differences (p>0.05). Two other 

compounds, exo-2-hydroxy-1,8-cineole and p-1-menthen-7,8-diol, have only been 

detected in Loureiro wines, but at trace levels. It must be emphasized that this group 

of compounds is much more abundant in wines than in the free fraction of grapes, 

showing their origin from glycosylated precursors or chemical modification of some 

monoterpenols (Williams et al., 1980 and 1982). 3,7-dimethylocta-1,5-dien-3,7-diol 

for the samples of both varieties, 3,7-dimethylocta-1,7-dien-3,6-diol and linalool 

oxides for Loureiro and trans-pyran linalool oxide for Alvarinho are the compounds 

which show higher increase from grapes to wines. As observed for monoterpenic 

alcohols, wines made with grapes from the recommended sub-regions (LAV and 



ASS/ACR) present levels of monoterpenic oxides and diols higher than those from the 

selected alternative sub-regions (LCT and AAV) (p<0.05).  

Regarding C13-norisoprenoids, only few micrograms per liter of some compounds were 

quantified, being 3-oxo-α-ionol, megastigm-7-ene-3,9-diol and β-damascenone the 

most abundant. Total levels are similar for the wines of both varieties, but those from 

the chosen alternative sub-regions (LCT and AAV) present the lowest levels (p<0.05). 

Total levels found in wines are much higher than those found in the corresponding 

grapes, probably due to precursor hydrolysis. Additionally, β-damascenone with 

perception threshold of 45 ng/L may influence certainly the aroma of these wines, 

particularly Alvarinho ones, contributing with floral and tropical fruit notes (Ribéreau-

Gayon et al., 2000). Vitispiranes, 1,1,6-trimethyl-1,2-dihydronaphtalene (TDN), β-

damascenone and, partly, 3-hydroxy-β-damascone appear in wines due to the 

chemical transformation at wine pH of some C13-norisoprenoid aglycons, some of them 

quantified and presented in Table 3. It is known that TDN may derive from 3-hydroxy-

β-ionone, 3,4-dihydroxy-β-ionol, 3,4-dihydroxy-7,8-dihydro-β-ionol, 3,9-

dihydroxytheaspirane and 3,4-dihydroxy-7,8-dihydro-α-ionone and vitispirane from 

3,4-dihydroxy-7,8-dihydro-β-ionol, megastigm-4-ene-3,6,9-triol and 3,4-dihydroxy-

6,9-epoxymegastigmane (Winterhalter 1993; Winterhalter and Schreier 1994; 

Wintherhalter and Skouroumounis 1997; Winterhalter et al., 1998); β-damascenone 

and 3-hydroxy-β-damascone have also different precursors, 3-hydroxy-7,8-dehydro-β-

ionol and 3,6,9-trihydroxymegastigma-6,7-diene (Winterhalter and Schreier 1994; 

Puglisi et al., 2005). 

Volatile phenols arising from glycoconjugates hydrolysis are present also at low levels, 

but 4-vinylguaiacol and 4-vinylphenol (having also a fermentative origin) are more 

abundant. 

Wines of the two varieties can be discriminated by means of Principal Component 

Analysis, applied to the varietal compounds (Figure 1). The two first components 

represent 91.8 % of the initial variance. Component 1 (55.2 %) permits to 

discriminate between Alvarinho and Loureiro wines based mainly on the higher levels 

of monoterpene compounds for the last variety. Component 2 (36.6 %) distinguishes, 

for both varieties, recommend sub-region from alternative sub-region; as described 

above, wines from recommended sub-regions are richer in norisoprenoids and 

monoterpenic compounds. It must be emphasised that if fermentative compounds 

were considered, this discrimination was not possible. 

According to Meilgaard (1975), who has classified the volatile compounds of beer 

according to their odour activity values (OAV), defined as the ratio between 



concentration and olfactory perception threshold (OPT), any constituent having OAV 

above 0.1 units would influence the overall flavour. If this rule may be applicable to 

wines, apart from the forementioned varietal compounds, also (Z)-3-hexen-1-ol (OPT 

= 400 μg/L; grass and green leaves descriptors) for Alvarinho and citronellol (18 μg/L; 

citronella), neroloxide (100 μg/L; fragrant, green) and guaiacol (11 μg/L; phenolic, 

chemical) may contribute, although marginally, to the overall falvour of these wines 

(Meilgaard, 1975; Simpson, 1979; Ribéreau-Gayon et al., 2000; Escudero et al., 

2004); their OAVs are near or slightly above 0.1 units. Geraniol, with OPT of 36 μg/L, 

may also confer floral notes to the wines (Ribéreau-Gayon et al., 2000); nevertheless, 

its level determination was not possible except for LCT. 

Fermentative Compounds 

This group comprises alcohols, fatty acid ethyl esters, esters of organic acids, 

acetates, volatile fatty acids and carbonyl compounds. Other compounds like volatile 

phenols (4-vinylguaicol, 4-vinylphenol and 4-ethylphenol), pantolactone and N-(2-

phenylethyl)-acetamide are also included.  

It is well known that concentration of individual fermentative compounds depends 

overall on the adopted winemaking procedures; additionally, most of the technological 

parameters, e. g. clarification practices, fermentation temperature, yeast strain, fining 

procedures, etc, can be controlled by the winemaker (Henschke and Jiranek 1993; 

Lubbers et al., 1993; Bayonove et al., 1998). In this way, although the 5 samples 

studied in this work were made exactly using the same procedures, comparison of 

monovarietal wines respecting groups of fermentative compounds does not assume an 

important role, as it happen with varietal compounds. 

However, these compounds make up the background of the aroma of all these varietal 

wines. Fusel alcohols seem to have a positive influence on the fermentative aroma as 

their levels do not exceed 300 mg/L (Rapp and Mandery, 1986). Analysing the other 

groups of fermentative compounds, it can be observed that Alvarinho wines show 

significantly higher levels than Loureiro ones (p<0.05) for fatty acid ethyl esters 

related to lipid metabolism (only ASS and ACR), acetates of fusel alcohols and volatile 

phenols having fermentative origin, particularly 4-vinylphenol and 4-vinylguaicol. 

Contrarily, esters of organic acids and 2-phenylethanol are slightly more abundant for 

LAV, LCT and AAV wines than for ASS and ACR ones (p<0.05). 

Individually and considering the Odour Activity Values, it is interesting to observe that 

ethyl octanoate, having an olfactory perception threshld (OPT) of 5 μg/L (Escudero et 

al., 2004) with apple and fruity descriptors (Meilgaard, 1975), is the most powerful 



flavour compound, with values of about 100 for Loureiro wines as well as for AAV, and 

considerably above 100 for ASS and ACR ones. Also ethyl hexanoate (OPT = 14 μg/L), 

3-methylbutyl acetate (30 μg/L) –except for LCT–, ethyl butyrate (20 μg/L) –ASS and 

ACR, only–, and the sum 2-methyl-1-butanol + 3-methyl-1-butanol (7000 μg/L), 

present values above 10 (Escudero et al., 2004). The sum 2-methylbutyric acid + 3-

methylbutyric acid (34 μg/L) also present OAV near 10, except for LAV. Additionally, 

there were found 2 volatile fatty acids, hexanoic (420 μg/L) and octanoic (500 μg/L) 

having OAV between 5 and 10. It is well recognized that esters may contribute to the 

overall flavour of wines with fruity notes (e. g. papaya, banana and apple) while 

volatile fatty acids may give essentially unpleasant fatty acid, cheese and vegetable oil 

notes (Meilgaard, 1975; Escudero et al., 2004). Additionnaly, there were found 4 

compounds having OAV values between 1 and 5: ethyl decanoate (200 μg/L; fruity, 

apple, fatty acid), 2-phenylethanol (7500 μg/L; roses), ethyl 3-methylbutyrate (3 

μg/L; fruity, apple) and decanoic acid (1000 μg/L; waxy, rancid, soapy) (Salo, 1970; 

Meilgaard, 1975; Escudero et al., 2004). 

As referred for varietal compounds, and considering those fermentative compounds 

with OAV between 0.1 and 1 units, 1-hexanol (OPT = 8000 μg/L; coconut, green 

leaves descriptors), ethyl 2-methylbutyrate (18 μg/L; fruity), 4-vinylguaiacol (130 

μg/L; phenolic, clove, smoky) and 4-vinylphenol (180 μg/L; stramonium, almond 

shell) may contribute to the overall flavour of these wines (Meilgaard, 1975; Boidron 

et al., 1988; Escudero et al., 2004) 

Glycosidically Bound Composition of Loureiro and Alvarinho Wines 

Glycosidically bound compounds were eluted after the volatiles from the XAD-2 

column, and the aglycons released from these extracts with adequate glycosidase 

activities were analyzed by GC-MS, as reported previously (Voirin et al 1992; Aubert 

et al., 1997). That allowed the identification and quantification of 77 compounds 

belonging to C6-compounds (6), alcohols (15), monoterpenic alcohols (7), 

monoterpenic oxides and diols (14), C13-norisoprenoids (15), volatile phenols (14), 

volatile fatty acids (5) and carbonyl compounds (1). 

Table 3 shows the mean level obtained for each compound in the five samples 

analyzed. These levels were semi-quantitative data only, determined as 4-nonanol 

equivalents. 

It can be observed that C6-compounds present negligible levels and there were not 

relevant differences between samples of the two varieties, except between LAV and ASS 

(p<0.05). Respecting alcohols, it can be observed higher levels for LAV wine, only. 



Linalool (except for AAV) and mainly geraniol present higher concentration for 

Alvarinho wines which is in agreement with that found in grapes (Oliveira et al., 

2000). Total levels of monoterpenic alcohols in wines of both varieties are lower than 

in the corresponding grapes, indicating precursor hydrolysis and/or partial extraction 

of glycosidic compounds from grape to must. However, they are statistically (p<0.05) 

more abundant for LAV, ASS and ACR, which correspond to the recommended sub-

regions for Loureiro and Alvarinho wines production, respectively. 

Monoterpenic oxides and diols are more abundant in LAV, ASS and ACR, as found for 

monoterpenic alcohols (p<0.05). Isomer trans of furan linalool oxide is more abundant 

in LAV wine, whereas Alvarinho wines are richer in isomer cis; also p-1-menthen-7,8-

diol is characteristic of Loureiro wines, presenting LAV the higher levels. The levels of 

(Z)-8-hydroxylinalool are significantly higher in ASS and ACR wines (p<0.05), as found 

in grapes (12.0 µg/L – LCT, 13.8 µg/L – LAV, 82.2 µg/L – AAV, 183.3 µg/L – ASS, 162.0 

µg/L – ACR); moreover, the ratio (Z)/(E) of 8-hydroxylinalool is significantly different 

for the two varieties (p<0.05), with mean values of 0.82 ± 0.26 for Loureiro (n=6) 

and 4.88 ± 0.87 for Alvarinho (n=9), as found in grapes of the same samples (Oliveira 

et al., 2000). This ratio could be used to differentiate Loureiro from Alvarinho wines, in 

addition to the ratio (E)/(Z) of free 3-hexen-1-ol isomers. 

As observed for monoterpenic compounds, C13-norisoprenoids are more abundant in 

LAV than in LCT and in ACR and ASS than in AAV (p<0.05). 

The levels of bound volatile phenols were low and generally lower than the 

corresponding free ones. This difference was much more important regarding the 

volatile fatty acids. These compounds found in the glycoside fractions could be 

analytical artefacts, as no such glycoside was ever identified in grape. Finally, the 

trace levels of benzaldehyde could be explained by the occurrence of mandelonitrile 

glycosides, but these compounds were also never reported in grapes. 

Sensory Analysis of Loureiro and Alvarinho Wines 

Loureiro wines were clear, both revealing a pale citrus colour. They were classified of 

medium quality respecting overall sensations, including olfactory and gustative ones 

(LAV=LCT=3; scale 0–5); LCT and LAV wines reveal similar characteristics. Statistically, 

reporting on global classification (mean values: LCT=13.8 and LAV=13.5; scale 0-20), 

there was no difference between the two wines (F=0.292, p>0.05). 

Alvarinho wines were clear and show a medium quality color, characterized as open 

straw. Respecting overall sensations, AAV reveals a difference with ACR and ASS; ASS is 

slightly better, respecting gustative examination. Analysis of Variance on final 



classification shows significant differences between wines (F=6.513, p<0.01); AAV 

shows lower classification being different from the other two (AAV=13.6; ACR=15.4; 

ASS=15.6). Final classification reflects the mentioned characteristics for the individual 

examinations, particularly the olfactive (AAV=3; ACR=ASS=4) and the gustative ones 

(AAV=ACR=3; ASS=4). It must be remarked that AAV is made from grapes harvested 

outside the Monção sub-region, the only one recommend for Alvarinho wines 

production; AAV also reveals a poor concentration, respecting free and bound aroma 

compounds (Table 2 and Table 3). 

As can be observed in Figure 2, which represents the olfactory descriptors, wines from 

Alvarinho variety are characterized by a more intense tropical fruit, dried fruit and tree 

fruit characters, while Loureiro wines have a more pronounced citrus fruit aroma. 

These descriptors agree with results from chemical composition, namely those 

compounds presenting OAV near or above the unity. 

In summary, the presented work showed that Loureiro wines are globally richer than 

Alvarinho ones respecting monoterpenic compounds in both free and glycosidically 

bound forms. Moreover, wines produced with grapes harvested at recommended sub-

regions contain higher levels of the generality of volatiles and glycoconjugates. Pebble 

soil originated wines with lesser concentration compared to granitic soil. 

Apart from compounds having fermentative origin, e. g. esters, alcohols, acids and 

some phenols, the varietal compounds which could influence particularly the aroma of 

these wines seem to be only linalool, Ho-trienol, α-terpineol and β-damascenone. 

Terpenols seem to be more important to Loureiro wines and the C13-norisoprenoids for 

Alvarinho ones. Fermentation compounds seem to contribute in a larger extent to the 

aroma of Alvarinho wines. 

The presented results also seem to indicate the possibility of discriminating Loureiro 

from Alvarinho wines by the ratio between (E) and (Z) isomers of 3-hexen-1-ol, in free 

form, and of 8-hydroxylinalool, in the glycosidically bound form. Nevertheless, 

additional studies, with a larger number of grape samples and various degrees of 

ripness may be conducted in order to confirm these evidences. 
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Table 1. General analysis of Loureiro and Alvarinho wines 

 Loureiro Alvarinho

 LCT LAV AAV ASS ACR 

Ethanol/(% vol.) 11.3 10.2 12.6 13.5 13.9 

Reducing sugars/(g/L) 2.3 1.1 1.5 3.4 2.9 

Total acidity*/(g/L) 9.3 10.6 11.1 7.6 6.9 

Volatile acidity**/(g/L) 0.39 0.33 0.37 0.40 0.40 

pH 2.87 2.81 3.02 3.03 3.06 

nomenclature for LCT, LAV, AAV, ASS and ACR was referred in Materials and Methods section 

*, as tartaric acid 

**, as acetic acid 

 

  



Table 2. Mean levels* (C) with 95 % confidence limits for the volatile compounds 

found in Loureiro and Alvarinho wines 

   LCT    LAV    AAV   

  
ASS   

  
ACR   

  roi  RI C/(µg/L)   ±  C/(µg/L)   ±  C/(µg/L)   ± 
  

C/(µg/L)   ± 
  

C/(µg/L)   ± 

C6-compounds (5)         
 

  
 

  

1-hexanol  a 1348 722.0 38.8 976.8 109.4 806.2 77.1 
 

739.5 152.0 
 

686.9 221.3 

(E)-3-hexen-1-ol a 1358 166.0 12.5 182.7 11.6 54.3 5.3 
 

46.6 4.9 
 

44.8 16.9 

(Z)-3-hexen-1-ol  a 1379 22.3 3.1 29.6 3.9 96.9 9.5 
 

71.3 4.8 
 

62.6 29.5 

(E)-2-hexen-1-ol  a 1400 tr  0.2 0.7 tr  
 

tr  
 

––  

(Z)-2-hexen-1-ol  a 1410 1.9 0.3 2.0 0.5 1.2 0.4 
 

0.8 0.1 
 

0.7 0.3 

total   912.2    1191.3    958.6   
  

858.2   
  

795.0   

Alcohols (24)         
 

  
 

  

2-methyl-3-buten-2-ol a 1068 5.2 3.2 6.7 2.8 ?  
 

3.7 0.9 
 

?  

2-methyl-1-propanol a 1082 991.3 509.8 775.1 100.2 1733.5 183.3 
 

1067.2 344.2 
 

1342.8 788.2 

1-butanol a 1140 23.2 13.5 18.3 1.8 48.4 4.8 
 

50.0 15.0 
 

85.3 55.5 

1-penten-3-ol a 1162 tr  tr  tr  
 

tr  
 

tr  

4-methyl-2-pentanol a 1164 49.5 16.2 41.6 10.6 56.7 8.0 
 

52.4 11.7 
 

50.0 20.4 

2-methyl-1-butanol + 3-methyl-1-butanol a 1204 61467.3 22370.4 54741.1 12317.2 78960.6 37919.4 
 

71637.3 29248.7 
 

67852.1 30478.6 

3-methyl-3-buten-1-ol  a 1243 4.1 1.7 3.6 0.9 6.1 0.4 
 

4.1 1.6 
 

5.7 1.6 

1-pentanol a 1244 5.2 1.2 6.5 2.9 14.4 1.1 
 

10.0 4.5 
 

15.2 9.1 

2-methyl-1-pentanol b,c 1298 0.3 0.5 0.6 0.1 ––  
 

––  
 

––  

4-methyl-1-pentanol a 1309 22.6 4.9 24.3 3.7 19.0 4.2 
 

32.5 4.9 
 

20.9 8.3 

(Z)-2-penten-1-ol a 1313 0.7 0.2 0.3 0.1 1.0 0.4 
 

0.4 0.3 
 

0.7 0.8 

3-methyl-2-buten-1-ol + 2-heptanol a 1316 2.3 0.5 2.8 0.7 1.9 0.4 
 

1.3 0.3 
 

1.8 1.0 

3-methyl-1-pentanol a 1322 76.8 7.3 54.5 29.1 53.7 3.5 
 

113.7 8.7 
 

74.2 34.8 

3-ethoxy-1-propanol a 1369 44.8 1.5 58.2 7.4 108.1 10.6 
 

54.2 11.5 
 

127.9 79.7 

1-octen-3-ol a 1445 0.9 0.5 1.0 0.4 1.2 0.2 
 

0.6 0.3 
 

0.5 0.1 

1-heptanol a 1449 17.9 2.3 14.7 0.9 41.1 1.4 
 

12.3 2.8 
 

7.5 1.4 

2-nonanol a 1541 0.8 0.3 1.0 0.3 1.8 0.5 
 

2.7 5.1 
 

2.2 1.6 

1-octanol a 1552 7.4 1.5 13.5 3.1 8.7 0.8 
 

8.3 0.6 
 

7.8 1.0 

3-(methylthio)-1-propanol a 1709 145.2 6.8 79.8 11.8 80.8 7.6 
 

98.5 20.6 
 

54.1 36.0 

benzyl alcohol a 1869 15.5 1.7 18.2 8.3 10.8 3.6 
 

13.7 1.8 
 

9.5 2.5 

2-phenylethanol a 1908 37117.9 14846.1 23561.6 3908.8 21167.5 4985.5 
 

15894.8 6174.5 
 

16610.0 5182.0 

tyrosol a 3008 138.9 51.4 152.1 30.8 68.4 30.5 
 

123.0 30.0 
 

98.3 44.3 

total   100137.8    79575.5    102383.7   
  

89180.7   
  

86366.5   

total**   1552.6  1272.8  2255.6  
 

1648.6  
 

1904.4  

Fatty acid ethyl esters – lipid metabolism (6)         
 

  
 

  

ethyl butyrate a 1032 99.6 8.1 141.7 4.7 124.4 15.7 
 

211.2 28.6 
 

246.6 12.4 

ethyl hexanoate a 1234 312.7 12.1 422.8 51.1 324.9 26.9 
 

488.5 46.4 
 

621.9 75.8 

ethyl octanoate a 1434 468.9 22.8 545.5 48.3 510.4 25.0 
 

672.7 170.3 
 

861.9 247.3 

ethyl decanoate a 1636 124.2 5.7 107.1 16.8 155.6 11.5 
 

240.1 104.9 
 

256.7 98.1 

ethyl 9-decenoate b,c 1688 65.5 0.7 52.7 8.5 93.7 6.6 
 

67.5 28.2 
 

55.4 18.3 

ethyl dodecanoate a 1855 2.5 1.7 3.8 1.8 6.1 0.6 
 

6.3 4.6 
 

8.3 5.1 

total   1073.4  1273.6  1215.1  
 

1686.3  
 

2050.8   

Fatty acid ethyl esters - nitrogen metabolism (3)         
 

  
 

  

ethyl 2-methylbutyrate a 1049 5.6 1.9 3.2 1.4 1.8 0.7 
 

5.1 2.5 
 

2.8 1.5 

ethyl 3-methylbutyrate a 1066 12.4 5.1 8.5 2.2 7.8 1.1 
 

11.3 0.8 
 

9.3 1.7 

ethyl benzeneacetate a 1782 5.3 1.4 2.0 0.6 1.7 0.4 
 

2.8 0.8 
 

1.2 0.4 

total   23.3  13.7  11.3  
 

19.2  
 

13.3   

Esters of organic acids (10)         
 

  
 

  

ethyl pyruvate a 1267 8.9 3.0 7.1 1.6 9.1 4.3 
 

9.6 0.0 
 

6.0 4.4 

ethyl lactate a 1338 456.8 51.0 472.3 103.5 635.6 31.8 
 

437.7 72.9 
 

573.2 132.5 



ethyl 3-hydroxybutyrate a 1512 29.4 2.6 36.2 4.2 71.2 8.6 
 

58.4 7.9 
 

98.7 61.1 

diethyl malonate a 1574 1.7 0.1 1.7 0.2 4.2 0.2 
 

3.1 0.2 
 

3.3 0.9 

ethyl 2-furoate a 1618 2.0 0.6 2.2 0.5 3.1 0.6 
 

4.4 1.3 
 

4.8 0.9 

diethyl succinate a 1672 1192.6 27.5 896.4 7.1 977.2 77.9 
 

966.3 101.5 
 

758.7 68.2 

diethyl glutarate a 1774 6.4 0.7 6.2 0.2 11.2 0.5 
 

8.2 1.1 
 

12.2 2.7 

diethyl malate a 2037 2351.7 275.4 2477.7 292.6 3609.2 243.6 
 

1248.8 108.7 
 

1152.1 91.7 

diethyl tartrate a 2351 32.2 10.8 43.2 10.4 4.0 1.6 
 

10.6 5.2 
 

8.0 4.1 

monoethyl succinate a 2377 3941.4 712.0 3473.8 525.2 2215.1 947.8 
 

3305.1 604.4 
 

2544.1 125.0 

total   8023.1    7416.8    7539.9   
  

6052.2   
  

5161.1   

Acetates (7)         
 

  
 

  

2-methylpropyl acetate a 1009 6.2 4.7 11.3 6.6 19.8 6.9 
 

16.9 12.0 
 

40.3 19.3 

butyl acetate a 1071 2.6 1.5 tr  6.7 1.0 
 

1.5 1.0 
 

4.4 2.5 

3-methylbutyl acetate a 1125 209.0 24.6 331.3 16.4 701.4 120.1 
 

823.5 36.8 
 

1584.6 344.8 

hexyl acetate a 1272 23.2 0.8 47.1 1.4 56.9 1.8 
 

64.5 8.8 
 

108.4 19.2 

(Z)-3-hexenyl acetate a 1307 1.8 0.8 2.7 0.7 1.2 0.2 
 

1.3 0.2 
 

2.9 0.3 

2-phenylethyl acetate a 1810 145.0 12.0 93.2 8.5 152.4 4.5 
 

189.4 10.1 
 

279.9 27.8 

tryptophyl acetate b,c 3369 25.0 3.9 6.1 1.4 ––  
 

3.9 1.7 
 

5.2 1.1 

total   412.8    491.7    938.4   
  

1101.0   
  

2025.7   

Monoterpenic alcohols (8)         
 

  
 

  

myrcenol b,c 1533 4.7 2.3 8.0 5.6 ––  
 

––  
 

––  

linalool a 1541 58.1 2.5 68.6 5.3 27.3 1.4 
 

78.4 5.5 
 

49.6 8.1 

4-terpineol  a 1597 1.3 0.3 1.0 0.1 0.6 0.3 
 

0.8 0.4 
 

0.4 0.5 

Ho-trienol a 1605 50.6 9.8 102.0 24.7 35.6 6.2 
 

60.8 15.9 
 

44.0 11.4 

α-terpineol a 1691 77.0 3.3 111.6 11.5 23.9 1.9 
 

67.8 8.3 
 

41.1 11.9 

citronellol a 1760 2.1 0.5 2.6 0.4 2.5 0.6 
 

4.0 0.8 
 

3.0 1.8 

nerol a 1793 3.3 3.6 3.1 1.3 3.0 1.3 
 

5.7 2.1 
 

3.1 1.7 

geraniol a 1847 11.1 21.1 ?  ?  
 

?  
 

?  

total   208.2    296.9    92.9   
  

217.5   
  

141.2   

Monoterpenic oxides and diols (14)         
 

  
 

  

trans- furan linalool oxide a 1436 17.4 2.8 29.1 3.3 9.7 3.6 
 

13.6 5.8 
 

17.0 3.8 

cis- furan linalool oxide a 1464 5.9 0.4 11.5 0.1 2.4 0.3 
 

3.6 0.9 
 

3.0 1.3 

neroloxide b,c 1467 11.8 0.6 16.3 0.6 8.2 1.2 
 

11.6 1.7 
 

9.9 3.4 

trans- pyran linalool oxide a 1732 62.7 15.2 73.3 7.8 17.2 1.9 
 

7.0 1.1 
 

12.3 1.7 

cis- pyran linalool oxide a 1756 11.0 1.5 17.9 2.8 1.1 0.3 
 

0.5 0.2 
 

0.7 0.2 

exo-2-hydroxy-1,8-cineole a 1857 0.9 0.4 0.9 0.5 ––  
 

––  
 

––  

3,7-dimethylocta-1,5-dien-3,7-diol a 1935 186.4 30.2 297.7 32.4 70.6 15.4 
 

217.1 17.3 209.4 19.5 

linalool hydrate a 1967 29.9 9.7 47.6 5.3 5.1 1.9 
 

15.1 5.9 11.9 2.3 

terpin hydrate a 2087 4.4 0.2 11.0 3.5 tr  
 

3.2 1.1 2.7 0.8 

3,7-dimethylocta-1,7-dien-3,6-diol a 2121 28.9 4.2 64.4 7.2 5.8 1.8 
 

12.3 6.0 11.9 5.0 

citronellol hydrate a 2196 1.0 1.3 1.0 0.2 0.8 0.5 
 

0.7 0.4 0.6 0.3 

8-hydroxy-6,7-dihydro-linalool a 2197 0.8 0.3 1.1 0.6 0.7 0.1 
 

1.9 0.9 1.6 0.1 

(Z)-8- hydroxy-linalool a 2302 1.1 1.1 2.0 0.4 1.1 0.5 
 

15.8 4.2 11.4 0.9 

p-1-menthen-7,8-diol a 2517 1.0 0.7 1.4 0.6 ––  
 

––  ––  

total   363.2    575.2    122.7   
  

302.4   
  

292.4   

C13-norisoprenoids (13)         
 

    

vitispirane I a 1524 tr  1.4 0.7 1.0 0.4 
 

2.1 0.5 1.8 0.5 

vitispirane II a 1527 tr  0.8 0.3 0.8 0.2 
 

1.8 1.1 1.5 0.4 

1,1,6-trimethyl-1,2-dihydronaphtalene b,c 1741 ––  tr  ––  
 

––  ––  

β-damascenone a 1816 1.1 0.3 1.3 0.3 2.1 0.2 
 

3.4 0.2 2.3 0.7 

3-hydroxy-β-damascone a 2529 tr  tr  0.4 2.4 
 

0.7 0.2 tr  

3-hydroxy-7,8-dihydro-β-ionone a 2553 ––  tr  ––  
 

––  ––  

megastigm-7-ene-3,9-diol d 2568 1.9 0.7 4.4 0.9 1.1 1.6 
 

4.8 0.5 3.9 3.1 

3-oxo-α-ionol a 2628 9.8 2.9 7.6 1.5 8.2 2.6 
 

7.0 0.7 8.4 2.7 

3-hydroxy-7,8-dihydro-β-ionol a 2654 0.5 2.3 0.6 0.3 1.1 1.0 
 

0.8 0.5 0.6 0.4 



3-oxo-7,8-dihydro-α-ionol a 2702 tr  0.5 0.0 0.6 0.1 
 

0.9 0.3 tr  

3-hydroxy-5,6-epoxy-β-ionone a 2721 ––  ––  ––  
 

tr  ––  

3-hydroxy-7,8-dehydro-β-ionol a 2742 ––  tr  0.3 1.4 
 

0.7 0.1 tr  

vomifoliol  3139 1.4 0.6 2.4 0.3 tr  

 
tr  0.7 0.4 

total   14.7    19.0    15.6   
  

22.2   
  

19.2   

Volatile phenols (13)               

methyl salicylate a 1770 tr  tr  tr  
 

tr  tr  

guaiacol a 1852 1.5 2.1 1.2 1.5 1.5 2.8 
 

2.7 2.0 1.9 1.1 

phenol a 2006 2.1 1.1 1.6 0.5 2.4 1.6 
 

1.1 0.2 1.6 0.8 

4-ethylphenol a 2172 0.9 0.6 0.5 0.3 1.3 0.3 
 

1.2 0.5 2.1 0.9 

4-vinylguaiacol a 2192 21.2 6.7 24.5 1.3 44.8 7.5 
 

62.9 12.9 85.3 22.1 

4-vinylphenol a 2409 tr  tr  17.7 5.2 
 

20.9 5.9 18.0 7.7 

vanillin a 2560 0.9 2.6 ––  tr  
 

tr  4.4 1.8 

methyl vanillate a 2601 tr  tr  11.3 9.1 
 

7.9 1.6 8.0 3.9 

acetovanillone a 2635 9.8 2.1 10.8 1.7 12.3 1.0 
 

11.6 0.7 11.8 3.1 

3,4-dimethoxyphenol a 2759 ––  ––  0.3 0.4 
 

0.7 0.1 0.5 0.3 

2-(4'-guaiacyl)-ethanol a 2844 2.4 1.6 6.7 2.5 1.0 0.1 
 

2.5 0.2 tr  

3,4,5-trimethoxybenzyl alcohol a 2879 3.9 1.2 5.1 1.8 5.0 0.1 
 

8.0 0.8 8.3 2.0 

3,4,5-trimethoxyphenol a 3060 0.6 0.3 2.6 1.2 1.0 0.7 
 

1.9 0.8 2.1 0.6 

total   43.3    53.0    98.6   
  

121.4   
  

144.0   

Volatile fatty acids – lipid metabolism (8)         
 

    

acetic acid a 1453 12.8 8.4 9.4 4.2 17.6 10.1 
 

16.1 6.1 18.9 3.9 

butanoic acid a 1626 103.0 8.5 125.3 20.1 135.8 15.1 
 

139.2 33.5 168.7 118.2 

hexanoic acid a 1841 2320.5 197.6 3045.0 497.4 2845.6 155.2 
 

3643.4 326.3 4003.5 1216.4 

(E)-2-hexenoic acid a 1964 16.8 1.9 23.0 5.9 18.6 3.9 
 

16.9 3.4 18.4 3.5 

octanoic acid a 2057 2668.4 156.0 3565.4 264.1 2971.1 331.0 
 

3419.2 218.5 4403.7 259.9 

decanoic acid a 2269 1288.8 35.6 1418.4 111.3 1193.6 82.2 
 

1542.7 311.6 1579.7 358.6 

dodecanoic acid a 2481 9.5 0.3 12.6 3.9 12.2 3.0 
 

13.7 4.9 17.3 6.4 

hexadecanoic acid a 2903 tr  tr  tr  
 

tr  tr  

total   6419.8  8199.1  7194.5  
 

8791.2  
 

10210.2  

Volatile fatty acids – nitrogen metabolism (3)         
 

    

2-methylpropanoic  acid a 1567 58.6 6.3 52.1 7.6 75.5 8.0 
 

56.7 10.8 63.5 28.7 

3-methylbutyric acid + 2-methylbutyric acid a 1667 359.7 30.6 206.9 16.7 318.9 21.7 
 

311.7 50.4 238.3 133.1 

total   418.3  259.0  394.4  
 

368.4  
 

301.8  

Carbonyl compounds (4)         
 

    

2-nonanone a 1386 –– 0.2 1.5 0.1 2.1 0.3 
 

2.7 0.5 1.8 0.5 

2-furaldehyde a 1460 0.5 0.0 0.3 0.3 1.6 0.4 
 

0.6 0.1 0.8 0.7 

benzaldehyde a 1517 7.0 0.6 7.1 0.7 7.6 0.3 
 

7.9 0.8 7.5 4.7 

4-ethylbenzaldehyde a 1703 26.2 3.4 25.7 8.7 26.9 1.1 
 

27.2 5.1 26.0 13.7 

total   33.7    34.6    38.2   
  

38.4   
  

36.1   

Other (2)         
 

  
 

  

pantolactone a 2026 3.4 2.6 6.9 2.0 6.6 0.6 
 

4.8 1.2 4.7 2.6 

N-(2-phenylethyl)-acetamide a 2575 171.7 3.4 89.5 6.5 90.6 10.2 
 

53.5 8.2 21.2 9.4 

total   175.1    96.4    97.2   
  

58.3   
  

25.9   

Total   120063.1  100956.1  123321.9  
 

110295.5  109097.0  

Total**   21477.9  22653.4  23193.8  
 

22763.4  24634.9   

roi, reliability of identification 
RI, linear retention index on column CP-Wax 52 CB 
a, identified by comparing retention time and mass spectra with those of a pure standard 
b, identified by comparing retention index with published data 
c, identified by comparing mass spectra with published data 
d, tentative identification: molecular weight = 212 g/mol; m/z (%) = 43 (100.0), 41 (42.8), 39 (30.9), 29 (25.2), 79 (20.4), 55 (18.2), 97 

(18.0), 120 (16.6), 94 (15.4), 77 (14.4); other characteristic ions, m/z (%) = 212 (int, M+), 179 (int, M+-H2O-CH3), 161 (int, M+-2H2O-
CH3) 

*, levels were determined as 4-nonanol equivalents 



**, without 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol 
?, quantification not possible 
––, not detected 
tr, traces 

  



Table 3. Mean levels* (C) with 95 % confidence limits for the volatile aglycons of 

glycosidically bound compounds found in Loureiro and Alvarinho wines 

   LCT  LAV   AAV  ASS   ACR  

 roi  RI C/(μg/L) ± C/(μg/L) ±  C/(μg/L) ± C/(μg/L)  ±  C/(μg/L) ±

C6-compounds (6)               

hexanal a 1089 0.2 0.2 tr   tr  0.1 0.0  0.3 0.2 

1-hexanol a 1348 8.1 3.9 10.0 2.1  8.4 3.1 6.0 0.5  8.7 6.3 

(E)-3-hexen-1-ol a 1358 tr  0.2 0.1  tr  tr   tr  

(Z)-3-hexen-1-ol a 1379 0.8 0.5 1.2 0.3  1.5 0.5 0.8 0.1  0.9 0.5 

(E)-2-hexen-1-ol a 1400 2.9 1.4 1.9 0.5  1.2 0.2 0.5 0.0  0.8 0.2 

(Z)-2-hexen-1-ol a 1410 ––  tr   ––  ––   ––  

total   12.0  13.1     11.1  7.4    10.7  

Alcohols (15)               

2-methyl-1-propanol a 1082 2.1 2.1 2.2 1.2  5.2 2.1 0.9 0.1  0.8 0.4 

1-butanol a 1140 0.7 0.6 0.9 0.4  2.3 1.2 1.3 0.5  2.5 1.4 
2-methyl-1-butanol  
       + 3-methyl-1-butanol a 1204 57.2 19.7 33.7 17.6  77.4 15.9 17.1 1.5  22.8 12.3 

3-methyl-3-buten-1-ol + 1-pentanol a 1243 1.9 1.0 3.2 0.9  1.9 0.6 1.5 0.5  2.6 1.6 
(Z)-2-penten-1-ol 
       + 3-methyl-2-buten-1-ol  
       + 2-heptanol a 1316 1.1 1.0 1.8 0.5  1.0 0.4 1.2 0.5  1.6 1.1 

1-octen-3-ol a 1445 0.7 0.1 0.6 0.4  0.9 0.3 0.4 0.0  1.1 0.4 

1-heptanol a 1449 ?  0.5 0.1  ?  0.3 0.1  ?  

1-octanol a 1552 0.6 0.5 0.8 0.3  0.4 0.0 0.8 0.0  0.7 0.5 

1-phenylethanol a 1809 1.3 0.3 2.0 0.7  0.9 0.1 0.6 0.1  1.0 0.7 

benzyl alcohol a 1869 68.1 36.7 190.1 43.6  52.9 18.8 73.2 30.6  79.5 66.3 

2-phenylethanol a 1908 78.9 33.0 133.6 13.1  64.9 14.9 48.3 8.1  59.9 46.1 

Total   212.6  369.4   207.8  145.6   172.5  

Monoterpenic alcohols (7)                  

Linalool a 1541 1.1 0.7 0.7 0.1  1.3 0.4 4.4 0.5  4.0 2.7 

4-terpineol a 1597 tr  tr   ––  ––   ––  

Ho-trienol a 1605 1.5 0.5 4.7 1.0  2.3 0.8 5.4 0.2  4.3 2.6 

α-terpineol a 1691 7.6 3.6 15.1 2.5  0.5 0.2 2.3 0.1  1.4 0.6 

citronellol a 1760 0.2 0.3 0.1 0.1  0.1 0.1 0.1 0.0  tr  

nerol a 1793 1.4 0.3 3.9 0.5  1.0 0.4 3.0 0.1  2.0 1.4 

geraniol a 1847 4.7 0.5 4.1 0.4  11.2 3.2 19.1 1.3  18.5 5.3 

total   16.5  28.6     16.4  34.3    30.2  

Monoterpenic oxides and diols (14)               

trans- furan linalool oxide a 1436 34.8 16.6 56.7 8.9  15.2 4.9 18.6 0.5  30.1 19.2 

cis- furan linalool oxide a 1464 6.6 3.1 7.7 1.3  11.0 2.8 14.6 0.0  17.1 9.7 

trans- pyran linalool oxide a 1732 7.3 3.6 14.5 2.1  6.1 2.4 15.6 4.3  17.0 14.0 

cis- pyran linalool oxide a 1756 1.6 0.2 2.4 0.6  2.8 0.8 3.5 0.6  4.5 4.0 

exo-2-hydroxy-1,8-cineole a 1857 1.5 0.8 3.6 0.9  0.4 0.1 tr   0.6 0.4 

3,7-dimethylocta-1,5-dien-3,7-diol a 1935 13.9 5.7 11.4 1.9  16.5 16.8 16.3 1.2  30.1 13.5 

linalool hydrate a 1967 5.2 1.9 8.1 0.9  1.9 1.5 1.8 0.1  2.5 1.0 

3,7-dimethylocta-1,7-dien-3,6-diol a 2121 4.4 2.9 22.3 1.9  0.8 0.3 5.4 0.2  2.8 2.0 

citronellol hydrate 
       + 8-hydroxy-6,7-dihydro-linalool a 2196 1.5 0.7 6.6 1.2  1.6 1.0 6.1 1.2  4.4 2.1 

(E)-8-hydroxylinalool a 2265 8.0 3.7 28.7 1.7  6.5 2.6 27.9 6.1  17.7 15.4 

(Z)-8-hydroxylinalool a 2302 8.2 2.8 17.2 2.3  25.1 12.5 123.7 28.6  111.5 90.8 

geranic acid a 2342 3.7 1.7 4.5 0.9  6.1 2.8 14.9 1.0  9.3 6.1 

p-1-menthen-7,8-diol a 2517 6.7 3.4 13.1 1.0  tr  1.8 0.1  0.8 0.4 

total   103.4  196.8   94.0  250.2   248.4  

C13-norisoprenoids (15)                  

3,4-dihydro-3-oxo-actinidol I a 2428 tr  1.0 0.5  0.6 0.7 0.9 0.3  1.0 1.0 



3,4-dihydro-3-oxo-actinidol II a 2463 1.1 0.9 3.8 1.3  1.6 0.6 2.0 0.6  2.1 1.9 

3,4-dihydro-3-oxo-actinidol III a 2466 2.0 0.9 6.8 1.2  2.2 0.9 2.5 0.8  3.2 2.8 

3-hydroxy-β-damascone 
       + 3,4-dihydro-3-oxo-actinidol IV a 2529 9.1 3.8 15.3 1.5  12.6 3.1 21.3 1.6  16.4 10.9 

3-hydroxy-7,8-dihydro-β-ionone a 2553 2.1 2.0 8.8 1.8  tr  1.9 0.1  0.4 0.5 

megastigm-7-ene-3,9-diol b 2568 2.0 0.2 5.0 0.5  1.5 0.9 5.0 2.0  4.9 3.8 

3-oxo-α-ionol a 2628 22.0 11.3 48.1 4.9  24.1 9.4 47.3 14.2  53.3 39.2 

3-hydroxy-7,8-dihydro-β-ionol a 2654 6.6 3.3 21.7 1.5  1.6 0.7 4.2 2.2  3.4 2.4 

4-oxo-7,8-dihydro-β-ionol a 2673 4.5 2.9 9.0 0.4  2.5 0.4 4.2 0.5  2.7 0.5 

3-oxo-7,8-dihydro-α−ionol a 2702 3.7 2.7 7.9 2.2  7.0 0.8 11.7 1.6  12.4 10.1 

3-hydroxy-5,6-epoxy-β-ionone a 2721 tr  1.0 0.1  tr  0.2 0.0  tr  

3-oxo-α-retroionol a 2735 tr  1.1 0.4  tr  0.7 0.1  0.5 0.1 

3-hydroxy-7,8-dehydro-β-ionol a 2742 3.8 1.9 7.1 0.7  6.4 1.8 8.6 1.6  7.8 6.9 

vomifoliol a 3139 20.3 8.7 34.3 8.2  14.4 5.6 19.2 1.0  21.1 9.6 

total   77.2  170.9     74.5  129.7    129.2  

Volatile phenols (14)               

methyl salicylate a 1770 1.5 1.2 2.3 0.7  1.2 0.4 1.9 0.3  2.2 1.5 

guaiacol a 1852 1.0 0.2 0.7 0.1  0.9 0.4 0.3 0.1  0.9 0.2 

o-cresol + phenol a 2005 0.8 0.4 1.7 0.4  0.9 0.4 1.4 0.1  0.8 0.8 

p-cresol a 2085 0.2 0.1 0.6 0.1  0.3 0.1 0.5 0.2  0.5 0.5 

m-cresol a 2093 0.2 0.1 0.3 0.2  0.2 0.1 0.3 0.2  0.2 0.1 

eugenol a 2165 0.9 0.1 1.7 0.6  1.7 0.8 3.2 0.1  2.5 1.9 

vanillin a 2560 tr  tr   tr  tr   tr  

methyl vanillate a 2601 0.4 0.2 tr   tr  0.8 0.1  0.7 0.3 

3,4-dimethoxyphenol a 2759 tr  0.8 0.2  0.6 0.2 0.8 0.2  0.8 0.5 

zingerone a 2805 tr  tr   tr  tr   tr  

2-(4'-guaiacyl)-ethanol a 2844 0.7 0.9 3.5 0.5  0.5 0.1 0.9 0.2  1.0 0.3 

3,4,5-trimethoxybenzyl alcohol a 2879 1.8 1.7 3.0 1.5  4.0 2.7 2.8 0.1  3.0 2.6 

3,4,5-trimethoxyphenol a 3060 2.7 1.4 5.5 1.0  2.0 1.5 3.9 0.2  3.0 1.9 

total   10.2  20.1   12.3  16.8   15.6  

Volatile fatty acids (5)                  

acetic acid a 1453 6.6 2.8 3.5 3.1  7.7 2.5 5.0 0.3  4.8 1.6 

butyric acid a 1626 0.8 0.3 0.5 0.1  1.0 0.2 0.5 0.1  1.0 0.2 

hexanoic acid a 1841 8.6 0.4 10.5 2.7  11.0 4.0 9.8 0.5  19.4 9.1 

octanoic acid a 2057 8.7 4.6 11.6 1.3  11.0 2.2 9.4 0.0  12.6 7.0 

hexadecanoic acid a 2903 tr  tr   tr  tr   tr  

total   24.7  26.1     30.7  24.7    37.8  

Carbonyl compounds (1)               

benzaldehyde a 1517 0.5 0.2 0.9 0.3  0.5 0.3 0.3 0.1  0.5 0.2 

total   0.5  0.9   0.5  0.3   0.5  

TOTAL   416.6  825.9     447.3  609.0    644.9  

roi, reliability of identification 
RI, linear retention index on column CP-Wax 52 CB 
a, identified by comparing retention time and mass spectra with those of a pure standard 
b, tentative identification: molecular weight = 212 g/mol; m/z (%) = 43 (100.0), 41 (42.8), 39 (30.9), 29 (25.2), 79 (20.4), 55 (18.2), 97 (18.0), 120 (16.6), 94 

(15.4), 77 (14.4); other characteristic ions, m/z (%) = 212 (int, M+), 179 (int, M+-H2O-CH3), 161 (int, M+-2H2O-CH3) 
*, levels were determined as 4-nonanol equivalents 
––, not detected 
tr, traces 

 
  



Figure 1. Discrimination of Loureiro and Alvarinho wines by principal component 

analysis applied to varietal compounds (by groups) of the free volatile fraction. 

Ellipsoids represent the 95 % confidence level. 
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Figure 2. Aromatic descriptor intensity (median) for Loureiro and Alvarinho wines. 
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