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Abstract 

Background:  Soil microbiomes are important to maintain soil processes in forests and confer protection to plants 
against abiotic and biotic stresses. These microbiomes can be affected by environmental changes. In this work, soil 
microbial communities from different cork oak Portuguese forests under different edaphoclimatic conditions were 
described by using a metabarcoding strategy targeting ITS2 and 16S barcodes.

Results:  A total of 11,974 fungal and 12,010 bacterial amplicon sequence variants (ASVs) were obtained, revealing 
rich and diverse microbial communities associated with different cork oak forests. Bioclimate was described as the 
major factor influencing variability in these communities (or bioclimates/cork oak forest for fungal community), fol‑
lowed by boron and granulometry. Also, pH explained variation of fungal communities, while C:N ratio contributed 
to bacterial variation. Fungal and bacterial biomarker genera for specific bioclimates were described. Their co-occur‑
rence network revealed the existence of a complex and delicate balance among microbial communities.

Conclusions:  The findings revealed that bacterial communities are more likely to be affected by different edaphocli‑
matic conditions than fungal communities, also predicting a higher impact of climate change on bacterial communi‑
ties. The integration of cork oak fungal and bacterial microbiota under different bioclimates could be further explored 
to provide information about useful interactions for increasing cork oak forest sustainability in a world subject to 
climate changes.
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Background
Soil microbial communities are affected by environ-
mental changes [1] and remain affected even after 
the end of extreme events, like drought [2]. Besides 
weakening plants, such extreme events have serious 
impacts on the structure of microbial communities 
[3], including the increase on the relative abundance 
of rare species [2] and emergence of pathogens able 
to infect plants [4]. On the other hand, stressed plants 
are able to recruit specific rhizosphere microbes, 
by changing the composition of their root exudates, 

thus modulating their adaptation and survival to such 
adverse conditions [5, 6]. Rhizosphere soil microbiome 
is composed by different microorganisms, including 
fungi and bacteria, which live in a complex environ-
ment [7] and respond differently to environmental 
changes [8–11]. Such microorganisms can establish 
symbiotic relationships with plants [12, 13] and inter-
act with each other for influencing the biotic and abi-
otic environment [14]. For example, the interaction 
between mycorrhizal fungi and mycorrhiza helper bac-
teria (MHB) can increase root colonization and myc-
orrhiza formation, reducing plant stress [15, 16] and 
enhancing mineralization of organic phosphorus on 
soil [17]. Also, bacteria are important for the develop-
ment of ectomycorrhizal fruit bodies [18]. The eco-
logical services played by microbial soil communities, 
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including plant growth promotion, stress tolerance, 
disease resistance, and their participation on bio-
geochemical cycles (mainly carbon, nitrogen and 
phosphorous) [19], turns the study of such soil com-
munities an important issue for understanding climate 
change outcomes.

Climate models are showing that the Mediterranean 
region is a climate change hotspot [20]. The com-
bined effects of decreasing precipitation and increas-
ing temperature place Mediterranean forests as one 
of the most vulnerable ecosystems [21]. Among these, 
cork oak (Quercus suber L.) forests cover a large area 
of the western Mediterranean, having a high ecologi-
cal and socio-economic importance [22]. The impact 
of climate changes on these forests have fostered cork 
oaks decline, which has been increasingly reported 
within the Mediterranean region [23]. Cork oak health 
is expected to be even more affected by drought events 
due to the emergence and spread of pathogens result-
ing from climate changes [23]. As generally recognized 
for woody plants [24], the microbial communities 
residing in cork oak forests could play a crucial role for 
preserving this ecosystem biodiversity and function-
ality. In soils of cork oak forest, the fungal communi-
ties have been better described than bacterial ones. 
Most studies relied on the identification of fungal 
communities using fruiting bodies surveys (e.g. [25]), 
culture-based methods (e.g. [26]) or root tips barcod-
ing (e.g. [27, 28]). Fewer studies have used metabar-
coding approaches for studying fungal communities 
associated with cork oak forests and the existent were 
focused on the fungal diversity found in different land-
uses of these forests [29, 30]. For studying the impact 
of land management intensity on soil microbial diver-
sity, a single study reported the simultaneous survey 
of bacterial and fungal microbiota by using a high 
throughput sequencing approach [31]. The integration 
of data obtained from fungal and bacterial microbiota 
is of utmost importance for understanding the func-
tioning of any ecosystem and could provide important 
clues for the conservation of soil health, even when 
considering climate change scenarios [32]. Taking this 
into account, using a metabarcoding approach we aim 
to understand: (i) the divergence in microbial (bacteria 
and fungi) composition of cork oak forests located in 
regions with different bioclimates (combination of pre-
cipitation and temperature data), (ii) which edapho-
climatic factors have more influence in shaping these 
communities, and (iii) the correlation between fungal 
and bacterial biomarkers in different bioclimates. Final 
outcomes are expected to provide new information for 
a better management of cork oak forests under pre-
dicted climate changes.

Material and methods
Sampled forests
Soil samples were collected from eight cork oak Portu-
guese forests with different bioclimate classifications 
(Table S1; Fig. S1). Bioclimate classification was per-
formed using Emberger climatogram and Emberger 
index Q = (2000 x P)/(M2 - m2), where P is the annual 
precipitation (mm), M is the maximum temperature 
in the warmest month (K) and m is the minimum tem-
perature in the coldest month (K) [33–35]. Precipitation 
and temperature data spanning 10 years (2006–2016) 
previous to sampling were extracted from TerraClimate 
dataset [36], using QGIS [37] with a 0.05 buffer for each 
location. Sampled forests also presented different forest 
systems [sobreiral (about 400 trees/ha) or montado (60–
100 trees/ha)], use of forest (wild forest or forest pasture) 
and tillage (tilled or non-tilled).

Cork oak soil samples
From each forest, cork oak trees [6 in Limãos (LI), Alco-
baça (AL), Gavião (GV), Grândola (GR), Herdade da 
Contenda (HC-CT and HC-MA); and 5 in Parque da 
Peneda-Gerês (PG-ER and PG-RC)] were randomly 
selected and three equidistant soil core samples were col-
lected from the middle of each tree canopy, at 2–10 cm 
in depth, in 2017 (Table S1). Soil samples were stored 
in sterile plastic bags at 4 °C, until processing. For phys-
icochemical analyses, soil samples from each forest 
were thoroughly mixed and sent to a service provider 
(A2 - Análises Químicas, Portugal). Analyses comprised 
granulometry, pH (H2O and CaCl2), electric conductivity 
(μS/cm), organic matter, organic carbon, total nitrogen, 
carbon:nitrogen ratio and elements [phosphorus (P2O5), 
potassium (K2O), calcium (CaO), magnesium (MgO), 
sulfur, iron, manganese, boron, and sodium] (Table S2). 
The remaining soil was sieved (45-mesh sieve) to remove 
root tissues and other larger components of soil, thor-
oughly homogenized and three soil replicates per forest 
were created and stored at − 80 °C.

DNA samples preparation and Illumina sequencing of soil 
microbes
DNA extraction was performed for each soil replicate 
using DNeasy PowerSoil Kit (Qiagen, Germany), accord-
ing to manufacturer recommendations. DNA amplifica-
tion was assessed by PCR assays using a) ITS1-F (CTT​
GGT​CAT​TTA​GAG​GAA​GTAA, [38]) and ITS2 (GCT​
GCG​TTC​TTC​ATC​GAT​GC, [38]) primers for the inter-
nal transcribed spacer 1 (ITS1) region of fungi, and b) 
799F (AACMGGA​TTA​GAT​ACC​CKG, [39]) and 1492R 
(GGT​TAC​CTT​GTT​ACG​ACT​T, [39]) primers for the 
16S V5-V9 bacterial region. The PCR reaction mix-
tures (25 μl) contained 1x Complete NH4 reaction buffer 
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(Bioron GmbH, Germany), 200 μM of each dNTP (NZY-
Tech, Portugal), 5 μM of each primer, 1.25 U DFS-Taq 
DNA Polymerase (Bioron GmbH, Germany) and 1 μl of 
DNA template (20 ng/μl). Amplifications were performed 
in a T100™ Thermal Cycler (Bio-Rad, USA), using the fol-
lowing protocol: initial denaturation for 4 min at 94 °C; 
35 cycles of 30 s at 94 °C, 30 s at 52 °C (ITS1) or 54 °C (16S) 
and 30 s at 72 °C; final elongation at 72 °C for 10 min. PCR 
products were run on a 1% (w/v) agarose gel, stained with 
Green Safe Premium (NZYTech, Portugal). DNA samples 
that resulted in amplification were quantified using a flu-
orescent DNA quantification assay with dsDNA HS Assay 
Kit (ThermoFisher Scientific, USA) and detected with a 
Qubit 3.0 Fluorometer (ThermoFisher Scientific, USA).

DNA samples presenting a concentration higher than 
20 ng/μl (three samples/forest) were sequenced using 
an Illumina MiSeq® sequencer with the V3 chemis-
try, through paired-end sequencing (2 × 300 bp) by 
a service provider (Genoinseq, Portugal). To deter-
mine fungal community, a first PCR reaction was per-
formed to target hypervariable region of ITS2 using a 
pool of forward primers [ITS3NGS1_F (CAT​CGA​TGA​
AGA​ACG​CAG​), ITS3NGS2_F (CAA​CGA​TGA​AGA​
ACG​CAG​-3), ITS3NGS3_F (CAC​CGA​TGA​AGA​ACG​
CAG​), ITS3NGS4_F (CAT​CGA​TGA​AGA​ACG​TAG​
), ITS3NGS5_F (CAT​CGA​TGA​AGA​ACG​TGG​-3), and 
ITS3NGS10_F (CAT​CGA​TGA​AGA​ACG​CTG​)] and 
the reverse primer ITS4NGS001_R (TCCTSCGC​TTA​
TTG​ATA​TGC) [40]. Separately, to determine bacterial 
community a first PCR reaction was performed to tar-
get hypervariable V5-V7 region of 16S using the forward 
primer 799F-Y (AACMGGA​TTA​GAT​ACC​CKG) and the 
reverse primer 1193R (ACG​TCA​TCC​CCA​CCT​TCC​) [39, 
41]. A second PCR reaction, for each community, added 
indexes and sequencing adapters to both ends of the 
amplified target region, according to manufacturer’s rec-
ommendations [42].

Reads processing and data analysis
Raw reads were extracted from Illumina MiSeq® System 
in fastq format. Sequencing adapters and reads with less 
than 100 bases were removed with PRINSEQ version 
0.20.4 [43]. Trimming, based on quality scores, was per-
formed using default parameters in Sickle [44]. Before 
merging, correction of errors in reads was performed 
using Bayeshammer module from SPAdes package [45]. 
The merging of overlapping paired-end reads (Merged 
reads; Table S3) and further quality filtering was per-
formed using Usearch version 8.0.1623 [46]. Fastq-mcf 
from ea-utils package [47] was used to filter merged 
reads based on sequence size. The software micca version 
1.7.0 [48] was used to create a single FASTQ file (micca 
merge) and to discard sequences with an expected error 

rate greater than 1% (micca filter). This software (micca 
otu) was also used to cluster amplicon sequence vari-
ants (ASV), by using UNOISE3 protocol and chimeric 
sequences removal (Reads clustered into ASV; Table 
S3). Taxonomy was assigned to each ASV using a refer-
ence database [UNITE database version 8.2 [49] for fungi 
and qiime-compatible Silva release 132 [50] for bacteria] 
with micca classify. ASV assigned as unclassified were 
removed from bacterial dataset. In fungal dataset, those 
ASV assigned as unclassified, Viridiplantae, Algae or 
others not corresponding to fungal ASV were removed. 
Biom-format tables were created, and each dataset was 
subsampled using Qiime version 1.9.0 [51] to the num-
ber of sequences in the sample with the lowest number 
(Table S3; fungi to 26,787 that was found in GR1; bacteria 
to 25,087 sequences that was found in AL3).

Diversity and statistical analysis
All analyses were performed using the subsampled data-
sets in RStudio version 4.0.2 [52], except when stated 
otherwise. Fungal and bacterial richness (S) and diver-
sity [Gini-Simpson’s index (1-D) and Shannon’s index 
(H′)] were determined for the different groups of samples 
using alpha() function of microbiome package [53]. While 
1-D index measures the evenness of a community and 
represents the probability that two individuals randomly 
selected from a sample will belong to different species 
[54, 55], H′ index measures the diversity by taking into 
account the number of individuals as well as the number 
of taxa [54, 56]. These ecological parameters were com-
pared between samples from different bioclimates, where 
hyper-humid comprised results from PG-ER and PG-RC 
forests, humid from LI and AL forests, sub-humid from 
GV and GR forests, and semi-arid from HC-CT and 
HC-MA forests. Statistical analysis were performed using 
stat_compare_means() from ggpubr package [57]. Rar-
efaction curves were computed to determine sampling 
effort using rarecurve() of vegan package. Fungal and bac-
terial abundance and richness were determined for the 
different bioclimates using microbiome [53] and phyloseq 
[58] packages.

Non-metric multidimensional scaling (NMDS) was 
performed using square root transformation of data 
for all samples to understand community distribution. 
NMDS was performed using vegdist() of vegan package 
[59] to calculate Bray-Curtis dissimilarity indices matrix, 
envfit() to understand goodness of fit (999 permutations) 
of environmental variables and metaMDS() of the same 
package to obtain the ordination graph. Goodness of fit-
ness of the model was measured using Kruskal’s stress 
(values lower than 0.2 represent a good ordination; [60]. 
For evaluating differences on microbial communities 
from distinct bioclimates, ANOSIM was performed in 
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Community Analysis Package 5.0 [61], using the Bray-
Curtis dissimilarity matrix. This matrix was also used to 
perform multivariate statistical tests of significance (PER-
MANOVA), by using adonis() function of vegan package 
[59] with 999 permutations and homogeneity of group 
dispersions (PERMDISP). To determine which edapho-
climatic factors were more important in shaping fungal 
and bacterial communities a redundancy analysis (RDA) 
was performed using the package vegan [59]. Trend sur-
face analysis was performed to transform latitude-longi-
tude data into flat Cartesian coordinates using geoXY() 
of SoDA package [62] and polynomials of degree 3 were 
computed using poly() of STATS package [52]. Flat Car-
tesian coordinates (designated as cork oak forest) were 
included in RDA with other edaphoclimatic variables 
(bioclimate, forest system, tillage, and soil parameters). 
The function rda() was used to perform redundancy anal-
ysis, while anova.cca() was used to perform Monte Carlo 
permutation test (1000 permutations) and to evaluate the 
significance of global model. Most parsimonious model 
was found by forward selection of explanatory variables 
using ordistep() with 999 permutations. Multicollinear-
ity of variables was evaluated using vif.cca() and excluded 
if variance inflation factors (vif ) > 20. The variation 
explained by the model was tested using RsquareAdj() 
and Monte Carlo permutation test (1000 permutations) 
to evaluate significance. To understand the contribution 
of each variable for the variation of microbial commu-
nity, variation partitioning was performed for the most 
parsimonious model using varpart() function. Statistical 
significance of variables and conditional variables was 
assessed using test_vp4() from comecol package [63].

The remaining analyses were performed using only 
ASVs classified up to genus level. The fungal and bacte-
rial core community were related with bioclimate clas-
sification using heatmap.2() function of gplots package 
[64]. Linear discriminant analysis Effect Size (LEfSe) 
was used (LDA score > 4; p < 0.05) to discover biocli-
mate biomarkers [65], which consist in those micro-
bial genera that could explain differences in bioclimate 
(the most significant environmental factor revealed by 
RDA). An adjacent matrix was created using Hmisc 
[66] and Matrix [67] packages, to perform a co-occur-
rence network of biomarker genera considering Pear-
son’s correlation coefficient higher than 0.75 (p < 0.05). 
Adjacent matrix was open in Gephi version 0.9.2 [68] 
to visualize co-occurrence network. The functional 
groups of biomarker fungal and bacterial genera were 
assessed using FunGuild [69] and FAPROTAX version 
1.2.4 [70], respectively. For correlating biomarker gen-
era and functional groups, correlation matrixes were 
computed using Pearson’s correlation coefficient with 

rcorr() function of Hmisc package [66]. Corrplot() func-
tion from corrplot package [71] was used to visualize 
correlation matrixes, by only presenting statistically 
significant correlations (p < 0.05).

Results and discussion
Fungal and bacterial dataset processing
Fungal and bacterial communities of soil from cork 
oak forests with different bioclimates were analysed 
by pair-end Illumina MiSeq platform, using ITS2 and 
16S barcodes, respectively. Using ITS2 as a barcode, a 
total of 2,365,263 raw reads were obtained from 24 cork 
oak soil samples, ranging from 40,904 to 172,166 raw 
reads per sample (Table S3). Processed reads (1958803) 
contained around 3.2% of non-fungal ASVs, including 
1.9% unclassified sequences, 1.3% Viridiplantae, 0.03% 
Alveolata and 0.008% Metazoa reads. Sequences cor-
responding to these ASVs were removed, resulting in 
1,897,062 high quality fungal sequences, which were 
clustered into 11,997 ASVs (amplicon around 400 bp). 
To mitigate potential bias introduced by different 
sequencing depth in each sample, dataset subsampling 
was performed to the sample with least number of fun-
gal sequences (GR1; 26,787 sequences). After subsam-
pling, a total of 642,888 sequences were clustered into 
11,974 fungal ASVs (Table S4A), which were assigned 
to 15 phyla, 37 classes, 91 orders, 170 families, 302 gen-
era and 178 species. The same methodology was used 
for the bacterial dataset. From all cork oak soil samples 
(24), a total of 1,610,298 raw reads were obtained by 
using V5-V7 region of 16S region as a barcode, ranging 
from 50,673 to 91,233 raw reads per sample (Table S3). 
Processed reads (819012) contained 0.1% non-bacte-
rial sequences, all of which corresponding to unclassi-
fied ASVs. After non-bacterial ASVs removal, a total of 
818,092 high-quality bacterial sequences were obtained, 
which were clustered into 12,035 ASVs (amplicon 
around 400 bp). Bacterial dataset subsampling was per-
formed to the sample with the least number of bacterial 
sequences (AL3; 25,087 sequences). After subsampling, 
a total of 602,088 sequences were clustered into 12,010 
bacterial ASVs (Table S4B), which were assigned to 22 
phyla, 53 classes, 107 orders, 142 families, 248 genera 
and 16 species. Although in this work the percentage 
of unclassified microorganisms was low (1.9 and 0.1%, 
when using ITS2 and 16S barcodes, respectively), there 
were many ASVs that did not match lower taxonomic 
levels, such as genus (Fungi 60%; Bacteria 46.9%) or 
species (Fungi 92%; Bacteria 99.7%). This result sup-
ports the assumption that much of the microbial diver-
sity present in soils still remains to be discovered and 
studied [72, 73].
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Cork oak forests microbial communities: diversity 
and composition
Microbial communities varied in richness and diversity 
in cork oak soils from different forests (Fig. S2) and bio-
climates (Fig.  1). Rarefaction curves agreed with these 
results and revealed the good representation of microbial 
communities, especially when considering all soil sam-
ples from a certain bioclimate (Fig. S3). Although rarefac-
tion curves for different individual forests did not reach 
a plateau (Fig. S3A, C), the sampling effort was good 
enough to represent microbial communities from differ-
ent bioclimates (Fig. S3B, D). Taking this into account, 
and due to the meaningful ecological outcomes, results 
will be always discussed considering bioclimates. Soils 

taken from sub-humid bioclimates always presented the 
richest and more diverse microbial assemblages, both for 
bacterial and fungal communities (Fig.  1). Interestingly, 
semi-arid soils were particularly poor in fungal taxa and 
diversity (Fig. 1A) but were rich and diverse concerning 
bacterial communities (Fig.  1B). This result agrees with 
previous studies that described higher bacterial rich-
ness and abundance on soils subjected to drought [74, 
75]. Such results have been explained by the theory of 
low pore connectivity, in which water-filled soil pores 
are poorly connected to each other in dried soils, affect-
ing competitive interactions between bacterial species, 
which result in an increased bacterial diversity [74]. Pre-
vious studies also revealed the influence of climate on 

Fig. 1  Diversity of fungal (A) and bacterial (B) communities found in cork oak forest soils from each bioclimate. Each bioclimate is represented 
by two different forests [hyper-humid comprising PG-ER and PG-RC forests (n = 6); humid, LI and AL forests (n = 6); sub-humid, GV and GR forests 
(n = 6); semi-arid, HC-CT and HC-MA forests (n = 6)]. S represents microbial richness, 1-D Gini-Simpson’s index and H′ Shannon’s index. Different 
letters mean statistically significant differences, determined by ANOVA followed by Kruskal-Wallis test (p ≤ 0.05)
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fungal communities [76]. In the present work, the most 
humid places were the ones that displayed higher fun-
gal diversity and richness compared to semi-arid for-
ests. This result could arise from the facilitation of fungal 
development under high relative humidity [77, 78]. Fur-
thermore, this result is in line with the diversity found in 
ectomycorrhizae (ECM) root tips from cork oak stands 
[28], suggesting that was the higher diversity found in 
soils that contributed to the increased number of ECM 
root tips and not the promotion of mycorrhization pro-
cess by itself.

The dominant phyla in fungal community were Asco-
mycota and Basidiomycota, representing 41 and 22% 
of richness and 34 and 39% of abundance, respectively 
(Fig. S4). The prevalence of these phyla agrees with 
other studies in cork oak [29–31]. Agaricomycetes 
(21% richness; 37% abundance), Eurotiomycetes (10% 
each) and Sordariomycetes (9% each) were the richest 
and most abundant classes. Agaricomycetes was mostly 
represented by Agaricales (9% richness, 16% abun-
dance) and Russulales (4% richness, 13% abundance). 
As expected from a Fagaceae forest [79], ectomycorrhi-
zal species dominated in diversity (18% of richness), but 
particularly in abundance (37%), mainly regarding the 
fungal families Russulaceae (13% of total abundance), 
Inocybaceae (5%), Cortinariaceae (3%) and Thele-
phoraceae (3%). These results are in line with other fun-
gal metabarcoding studies on Fagaceae forests that also 
described an enriched ECM Basidiomycota community 
[80, 81]. Besides, these ECM families were considered 
as ubiquitous in Mediterranean cork oak forests [82]. 
When comparing the composition of soil forest fun-
gal assemblages among different bioclimates, a similar 
richness profile was found (Fig. S5A), but differences 
in fungal abundance were detected in different biocli-
mates (Fig.  2A). More humid forests were particularly 
enriched in Russulaceae [ECM, 16.2% in most humid 
(hyper-humid and humid) forests against 9.2% in driest 
(sub-humid and semi-arid) ones] and Mortierellaceae 
(non-ECM, 9.6% against 3.6%), but also displayed high 
levels of Amanitaceae (ECM, 4.5% against 0.6%) and 
Cantharellaceae (ECM, 1.5% against 0.2%). The oppo-
site pattern was observed for Inocybaceae (ECM, 2.7% 
against 7.6%), Cortinariaceae (ECM, 1.6% against 4.8%), 
and Hydnangiaceae (ECM, 0.4% against 3%) families. 
The same family distribution trend was observed for 
ECM root tips [28], suggesting once more the relation 
of ECM fungal abundance and mycorrhization of cork 
oaks. Other non-ECM families also displayed higher 
abundance in less humid bioclimates, like Piskurozy-
maceae family (0.2% in most humid forests against 2% 
in driest ones). But the most noteworthy difference of 

non-ECM fungi among different bioclimates was the 
higher occurrence of the abundant Mortierellaceae 
family in humid and sub-humid forests. Besides being 
humid, these forests are characterized by lower annual 
temperatures throughout the year, which could favour 
the development of these fungi, as warmed soils were 
recently reported to reduce the abundance of Mor-
tierellaceae members [83]. As the most humid forests 
are mostly wild forests with high density of trees, the 
prevalence of Mortierellaceae members in these forests 
could be also related with their ecological function as 
saprophytic fungi, decomposing forest litter through 
chitin and lignin degradation [84]. However, bioclimate 
seems to be more important for Mortierellaceae abun-
dance (PERMANOVA: R2 = 0.66, p = 0.001) than forest 
use (PERMANOVA: R2 = 0.25, p = 0.001).

Regarding bacterial community, Proteobacteria, Act-
inobacteria and Acidobacteria were the most preva-
lent phyla with 35, 29 and 19% richness and 37, 32 and 
18% abundance, respectively (Fig. S6). Similar profiles 
have been detected in other forest soils (e.g., [85]) and 
cork oak forests ([75]). The richest and more abundant 
classes were Alphaproteobacteria (19% richness; 22% 
abundance), Actinobacteria (17%; 21%), Acidobacteriia 
(16%; 17%) and Gammaproteobacteria (12%; 13%). Of 
relevance was the dominance of Xanthobacteraceae 
(Alphaproteobacteria, 10% of total abundance), fol-
lowed by Acidothermaceae (Actinobacteria, 6%) and 
Burkholderiaceae (Gammaproteobacteria, 5%) fami-
lies, all including well-known members able to interact 
with plants. For example, Xanthobacteraceae comprise 
species with plant growth promotion abilities [86] and 
nitrogen fixation in legumes [87]. The highest preva-
lence of Acidothermus sp. (Acidothermaceae) and Bur-
kholderia sp. (Burkholderiaceae) have been described 
in different forests, including cork oak forests [75, 88]. 
As detected for fungal communities, a similar profile 
of richness was found in cork oak forests from differ-
ent bioclimates (Fig. S5B). Regarding taxa abundance, 
differences between bioclimates were perceived, but 
not as clearly as in fungal community (Fig. 2B). Besides 
presenting a general high abundance, Acidothermaceae 
and Burkholderiaceae, as well as Mycobacteriaceae 
were more abundant in the most humid forests (4.2, 
6.6 and 4.8%, respectively) than in the drier ones (2.6, 
4.2 and 2.6%, respectively). The opposite pattern was 
shown for Solirubrobacteraceae (2.9% against 4.8%) and 
Nitrosomonadaceae (1.8% against 3.1%). The most arid 
bioclimates also seem to favour bacterial proliferation 
of Geodermatophilaceae (0.4% in most humid against 
3% in the driest forests). Taken together, these results 
suggest a bioclimate impact on the abundance of some 
microbial taxonomic groups.
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Environmental factors influencing microbial community 
structure
The influence of different edaphoclimatic factors (Table 
S1 and S2) in shaping fungal and bacterial communities 
was evaluated by fitting the environmental factors onto a 
NMDS ordination plot (Fig.  3). NMDS analyses shown a 
good representation of the distribution of microbial com-
munities (Kruskal’s stress < 0.2), revealing that they grouped 

differently according to the sampled forest, location and 
bioclimate. The microbial communities from semi-arid 
regions were the most distant from the other communi-
ties in moister regions. These results were corroborated 
by ANOSIM analyses that revealed highly dissimilar com-
munities in different bioclimate groups (fungi: R = 0.954, 
p = 0.001; bacteria: R = 0.935, p = 0.001). These results were 
reinforced by homogeneity of group dispersions (fungi: 

Fig. 2  Mean relative abundance of soil fungal (A) and bacterial (B) communities in forests from each bioclimate. Results display communities at 
family level, being indicated the corresponding classes and phyla
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F-value = 44.911; p = 4.52e− 09; bacteria: F-value = 12.281; 
p = 8.87e− 05). Less dissimilarities were found among humid 
and sub-humid forests (fungi: R = 0.783, p = 0.001; bacteria: 
R = 0.780, p = 0.001), as well as between sub-humid and 
semi-arid bioclimates (bacteria: R = 0.665, p = 0.001). Com-
munities between all the other bioclimates were almost 
completely dissimilar (R ≥ 0.941, p = 0.001 for both micro-
bial communities). These results suggest that particular 
drivers could have specifically shaped the microbial com-
munities in arid and humid environments.

According to the environmental factors fitted to NMDS 
ordination plot, most of the tested edaphoclimatic param-
eters influenced the microbial communities, with exception 
of ‘Tmin’, ‘forest system’, ‘tillage’, and ‘total N, P, S, Fe’ (Fig. 3). 
For both microbial communities, the highest R2 values were 
found for ‘cork oak forest’, ‘forest location’, ‘bioclimate’, and 
‘precipitation’ factors (all above R2 > 0.8), but ‘Tmax’, ‘boron’ 
and ‘C:N ratio’ (in both communities) and ‘manganese’ 
(in fungal communities) were also particularly relevant 
(R2 > 0.7). The importance of bioclimate in shaping fungal 
and bacterial communities is in line with previous studies 
that revealed the influence of climate factors in bacteria [75] 
and ectomycorrhizal tips distribution in cork oak soils [28]. 
In the present work, the redundancy analysis (RDA) also 
revealed ‘bioclimate’ as the factor that better explained the 
differences among microbial communities (Fig. 4). A higher 
contribution of ‘bioclimate’ was found when considering the 
variation of bacterial communities (R2 = 0.903, p = 0.001, 
NMDS; 28.1% of variation, p = 0.001, RDA) in relation to 
variation of fungal communities (R2 = 0.889, p = 0.001, 
NMDS; 9.8% of variation, p = 0.001, RDA). However, ‘bio-
climate’ and ‘cork oak forest’ were collinear variables (vari-
ables are correlated) for fungal community and these results 
should be taken with caution. Detected differences could be 
related with the different role of drier environments in shap-
ing bacterial and fungal communities. While driest samples 
presented a significant reduction on fungal richness and 
diversity, bacterial communities increased both ecological 
parameters in semi-arid forests (Fig. 1). These results agree 
with other studies that revealed a much stronger impact of 
drought on bacterial than on fungal networks [89].

Besides ‘bioclimate’, both microbial communities were 
strongly affected by ‘cork oak forest’ and distance among 
cork oak forests (‘forest location’), both at R2 > 0.947, p = 0.001 
(NMDS). But, neither of these factors revealed to significantly 
contribute to the shaping of bacterial community (Fig. 4). For 

shaping fungal communities besides collinear variables ‘bio-
climate’ or ‘cork oak forest’, RDA displayed soil ‘pH’, ‘boron’ 
and ‘granulometry’ as playing a significant role in fungal 
community shaping (7.1%, p = 0.001, 6.7 and 3.8%, p = 0.001, 
respectively). All the other environmental factors were found 
to not contribute significantly for shaping fungal commu-
nities. A different picture was revealed by the factors that 
mostly shape bacterial communities (Fig. 4). The ‘C:N ratio’ 
and ‘boron’ factors played a major role in shaping bacterial 
communities (21.9%, p = 0.001 and 18.6%, p = 0.001, respec-
tively), followed by soil granulometry (9.4%, p = 0.001). Alto-
gether, ‘bioclimate’ and these three factors explained more 
than 60% of bacterial variation. This contrasts with the sig-
nificant factors that shape fungal communities (‘bioclimate/
cork oak forest’, ‘pH’, ‘boron’ and ‘granulometry’) that together 
only explained 27.4% of fungal variation. These results sug-
gest that bacterial and fungal communities are shaped by dif-
ferent edaphoclimatic features at distinct levels, as previously 
reported by Shen et al. [90]. These authors suggested that pH 
and temperature were the best predictors for bacterial and 
fungal composition, respectively. In the present work, com-
munities were not significantly affected by temperature alone, 
but bioclimate was distinguished as the main driver of bacte-
rial communities. Interestingly, soil pH only explained varia-
tions detected on fungal community and was not significant 
for bacterial composition. This contrasts with multiple stud-
ies that report pH as the most important driver for bacterial 
diversity (e.g. [90, 91]). Detected differences could be related 
with the influence of other soil factors for shaping bacterial 
community. On the other hand, pH was found to be a sig-
nificant factor influencing arbuscular communities [92] and 
was considered as the second most important driver of fun-
gal communities on cork oak forests in Morocco, as reported 
by Maghnia et al. [29]. In the present work, pH was also the 
second most relevant driver for structuring studied fun-
gal communities. Other edaphic features were also relevant 
for driving microbial communities, like it was the case of 
granulometry (for both communities). Accordingly, distinct 
soil granulometry contributed to different fungal communi-
ties in cork oak forests [26] and impacted bacterial diversity 
[93]. In addition, the structure of microbial communities was 
conditioned by ‘boron’ (both communities) and ‘C:N ratio’ 
(bacterial community). Boron is considered as a micronu-
trient essential for plant growth, but in high doses is known 
to influence microbial community composition by inhibit-
ing soil microbial respiration [94]. However, fungi have been 

Fig. 3  Evaluation of the main environmental factors affecting fungal (A) and bacterial (B) diversity. Non-metric multidimensional scaling (NMDS) 
analyses were performed using Bray-Curtis dissimilarity coefficients. Each symbol represents a different soil sample (three samples from each forest), 
with colours representing different forest bioclimates. Environmental variables were fitted onto the NMDS ordination. The arrows directions indicate 
positive correlations between continuous environmental factors and microbial assemblages. Tmax represents the maximum temperature in the 
warmest month, Tmin is the minimum temperature in the coldest month), Organic C is the organic carbon, Total N is the total nitrogen and C:N 
ratio is the carbon:nitrogen ratio. Only those factors that were significantly correlated with NMDS ordination axes (p < 0.05) are represented

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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reported as more sensitive to boron in relation to bacteria 
[95], which contrasts with the finding of the strongest influ-
ence of boron levels on driving bacterial assembling when 
compared to its effect on fungal community shaping. Also, 

C:N ratio (representing the soil nutrient availability) modu-
lates the bacterial community, as detected in different soil 
systems (e.g. [96, 97]). Although in the present work different 
land management practices (forest use and tillage) revealed 

Fig. 4  Contribution of edaphoclimatic factors in shaping fungal (A) and bacterial (B) communities. The most parsimonious model resulting from 
redundancy analysis is shown. The best explanatory variables were identified and their combined contribution for microbial shaping is displayed. 
Statistically significance values based on 999 permutations are represented as *** p < 0.001, ** p < 0.01 and *p < 0.05
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none or little direct impact on soil microbial communities, 
they may have an indirect influence due to their influence 
on different soil properties, such as pH, carbon, nitrogen 
and phosphorus [98, 99]. The prominent influence of ‘biocli-
mate’ for the structure of microbial communities dictates the 
urgent need to understand the impact of climate change on 
microbial communities and final outcomes for cork oak for-
ests sustainability.

Correlation of microbial communities in different 
bioclimates
The microbial taxa present in all soil samples included 
102 fungal genera and 188 bacterial genera (core commu-
nities), which presented different abundances in distinct 
forest bioclimates (Fig. S7). Among fungi, many core 
ECM genera (Russula, Inocybe, Laccaria, Cenococcum, 
Amanita, Lactarius, Tuber, Sebacina, Tomentella and 
Hebeloma) have been previously described as core genera 

of Mediterranean cork oak forests [82]. The abundance of 
genera from the core fungal community in hyper-humid 
and humid forests clustered together, differently from 
the cluster formed by genera abundance in sub-humid 
and semi-arid forests. In contrast, the abundance of core 
bacterial community found in sub-humid and semi-arid 
bioclimates were the most similar, different from those 
present in humid forests, and even more dissimilar from 
the ones present in hyper-humid forests. The most abun-
dant core genera were Russula (Russulaceae, 22% of core 
reads), Inocybe (Inocybaceae, 10%), Mortierella (Mor-
tierellaceae, 8%), Penicillium (Aspergillaceae, 7%) and 
Amanita (Amanitaceae, 5%) (Fig. 5A). Following the gen-
eral trend (Fig.  2A), Russula, Mortierella and Amanita 
decreased their presence from most humid to most arid 
bioclimates, which was particularly evident in Russula 
genus. In contrast, Inocybe and Penicillium were more 
present in semi-arid and sub-humid forests, respectively. 

Fig. 5  Heatmap depicting the most abundant core fungal (A), and bacterial (B) genera present in each bioclimate. Core communities were 
assessed considering those ASVs present in all bioclimates and classified up to genus level. Color represents differences in abundance, where dark 
red represents high abundance and dark blue low abundance. This figure is a detail of the heatmap depicting all core genera represented Fig. S7
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Regarding the core bacterial community, the most abun-
dant core genera were Acidothermus (Acidothermaceae, 
11% of core reads), Bradyrhizobium (Xanthobacte-
raceae, 10%), Mycobacterium (Mycobacteriaceae, 7%) 
and Burkholderia-Caballeronia-Paraburkholderia (Bur-
kholderiaceae, 5%) (Fig.  5B). These genera were mostly 
correlated with the most humid bioclimates. The families 
of all these bacterial genera were already reported as core 
families in cork oak forests [75].

For identifying biomarker taxa for each bioclimate, a 
linear discriminant analysis was performed with all data-
set. Different fungal and bacterial genera revealed to be 
biomarkers for the analysed bioclimates at a LDA score 
higher than 4 (Fig. S8). A total of 49 fungal (10 hyper-
humid; 18 humid; 11 sub-humid; 10 semi-arid; Fig. S8A) 
and 69 bacterial genera (10 hyper-humid; 23 humid; 10 
sub-humid; 26 semi-arid: Fig. S8B) were defined as bio-
markers with statistical significance (p < 0.05). Most of 

Fig. 6  Co-occurrence network of fungal and bacterial biomarkers of different bioclimates. Pearson’s correlation coefficient was calculated for the 
top 50 genus displayed in LEfSe (R2 = 0.75, p < 0.05). Fungal nodes are represented by dashed circles and bacterial nodes by full circles. Size of 
the node corresponds to node degree (bigger nodes represent higher number of connections). Nodes are colored to represent biomarkers from 
different bioclimates (Hyper-humid in blue, Humid in yellow, Sub-humid in orange and Semi-arid in brown). Weighted edges in blue represent 
positive correlations and red represents negative correlations. Details of Pearson correlation matrix can be found in Fig. S9
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them (34 fungal and 66 bacterial taxa) were also identi-
fied as core genera, reinforcing the previous suggestion 
that specific bioclimates may favour the colonization by 
certain genera, even when they are generally widespread 
in all cork oak soils. As expected, correlations between 
fungal and bacterial biomarkers from a specific bioclimate 
were positively correlated, mainly concerning those from 
the most extreme (hyper-humid and semi-arid) biocli-
mates (Fig. 6; Fig. S9). Also, fungal biomarkers from the 
hyper-humid forests revealed the most negative correla-
tions with bacterial biomarkers from other forests, par-
ticularly from semi-arid forests. Although not so evident 
the same trend was observed for bacterial in relation to 
fungal biomarkers. This result suggests that genera found 
in most humid (hyper-humid and humid) bioclimates are 
not prone to develop in the most arid (sub-humid and 
semi-arid) ones and vice versa. Interestingly, certain bio-
marker fungi revealed a complementary correlation with 
bacterial biomarkers from all the other bioclimate. For 
example, Clavulina (humid biomarker) was positively cor-
related with all biomarker bacteria from all bioclimates, 
except from those of hyper-humid. On the other hand, 
Lactifluus (humid biomarker) displayed positive correla-
tion with most humid bacterial biomarkers and negative 
from those of drier forests. The same was found for cer-
tain biomarker bacteria (e.g., Burkholderia-Caballero-
nia-Paraburkholderia vs. Sphingomonas). These results 

suggest that bioclimate modulates a complex co-occur-
rence network within both communities, determining 
microbial interactions with possible outcomes to forest 
sustainability. The recognition of physical and molecular 
fungal-bacterial interactions for plant health and for eco-
system functioning has been reported [13, 14]. For exam-
ple, fungal communities were recently described to have 
an effect on bacterial composition in deadwood [100].

The ecological functions of identified fungal and bac-
terial biomarkers in the ecosystem were predicted using 
FunGuild and FAPROTAX, respectively, and the rela-
tive abundance in each bioclimate is displayed (Fig.  7). 
The main ecological functions of biomarker fungi were 
as ectomycorrhizal (ECM) and saprophytic (SPT) fungi, 
being ECM prevalent in the most extreme environments 
(hyper-humid and semi-arid bioclimate, Fig. 7A). Indeed, 
ECM distribution have been related with climatic condi-
tions (e.g., [101]), including in cork oak forests [27, 28]. 
The identified bacterial biomarkers were mainly related 
with chemoheterotrophy (33.30%) and aerobic chemo-
heterotrophy (32.97%). Bacteria with these ecological 
functions presented significantly higher abundance in 
hyper-humid than in semi-arid bioclimates (Fig. 7B; Table 
S5). Also, bacteria that perform cellulolysis represented 
6.63% of total abundance and presented significantly 
higher abundance in hyper-humid bioclimate compared 
with all other bioclimates. These results suggest that 

Fig. 7  Relative abundance of functional groups of fungal (A) and bacterial (B) biomarkers in the different bioclimates and Pearson’s correlation 
matrix between functional groups (C). Only fungal and bacterial biomarkers obtained by LEfSe were used. Only more abundant bacterial functional 
groups are displayed in B. Full list of bacterial functional groups can be found in Table S5. ECM refers to ectomycorrhizae, SPT to saprotrophs and 
ERM to ericoid mycorrhiza. Blue and red circles represent statistically significant positive and negative correlations at p < 0.05, respectively. Color 
intensity is proportional to the correlation coefficients and circle size to statistical significance
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different functional bacterial groups are thriving in dif-
ferent bioclimates, being the hyper-humid bioclimates 
more related with plant matter decomposition. When 
correlating different ecological functions within micro-
bial communities (Fig. 7C), a significant negative correla-
tion was observed among ECM and SPT fungi. Besides, 
these fungal guilds correlated differently with all the 
other bacterial functions. The different lifestyle of ECM 
and SPT and distinct nutrient acquisition strategies are 
able to create soil niches with discrete nutrient provisions 
that allow the propagation of bacteria with distinctive 
metabolic features [102]. Other ECM have been highly 
correlated with well-known mycorrhizae helper bacteria, 
and also with some not so well described bacteria, which 
reinforces the importance of fungi-bacteria interactions 
for forest sustainability [16, 103]. These results suggest 
once more the complex and delicate balance that occurs 
among microbial communities that is strongly dependent 
on bioclimate.

Conclusions
Soil microbiomes are essential to maintain forest health 
and sustainability. Their role will be even more important 
under the pressure of ongoing climate changes. Among 
others (pH, boron levels, granulometry for fungi; C:N 
ratio, boron levels, granulometry for bacteria), biocli-
mate was the factor that contributed the most to shaping 
bacterial communities, while bioclimate/cork oak forest 
influences the structure of fungal communities in cork 
oak forests. These reinforces the concerns about these 
forests’ sustainability under a climate changing scenario. 
Forest soils with less water availability can develop richer 
and more abundant bacterial communities in compari-
son to fungal communities. However, differences on spe-
cific taxa abundance among bioclimates are more notable 
in fungi than in bacteria, raising the question about the 
effects of bioclimate in both microbial communities. The 
higher contribution of bioclimate for shaping bacterial 
communities predicts a higher impact of climate change 
on these compared to fungal communities. Final out-
comes to cork oak forest sustainability will be dictated by 
the complex microbial network occurring between fungi 
and bacteria. More studies on specific microbial interac-
tions will provide valuable information about which can 
be further explored for the protection of cork oak forests.
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