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Physical models and probabilistic applications often guide the study and characterization of natural phe-
nomena in engineering. Such is the case of the study of air change rates (ACHs) in buildings for their com-
plex mechanisms and high variability. It is not uncommon for the referred applications to be costly and
impractical in both time and computation, resulting in the use of simplified methodologies and setups.
The incorporation of airtightness limits to quantify adequate ACHs in national transpositions of the
Energy Performance Building Directive (EPBD) exemplifies the issue. This research presents a roadmap
for developing an alternative instrument, a compliance tool built with a Machine Learning (ML) frame-
work, that overcomes some simplification issues regarding policy implementation while fulfilling practi-
tioners’ needs and general societal use. It relies on dwellings’ terrain, geometric and airtightness
characteristics, and meteorological data. Results from previous work on a region with a mild heating sea-
son in southern Europe apply in training and testing the proposed tool. The tool outputs numerical infor-
mation on the air change rates performance of the building envelope, and a label, accordingly. On the test
set, the best regressor showed mean absolute errors (MAE) below 1.02% for all the response variables,
while the best classifier presented an average accuracy of 97.32%. These results are promising for the gen-
eralization of this methodology, with potential for application at regional, national, and European Union
levels. The developed tool could be a complementary asset to energy certification programmes of either
public or private initiatives.
� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Airtightness in the EPBD

An Energy Performance Building Directive (EPBD) energy cer-
tificate labels a dwelling according to its performance against a ref-
erence baseline [1]. Regarding air change rates (ACHs), the EPBD
national transpositions often address the issue by imposing air-
tightness requirements.

Therefore, the chosen approach in the EPBD relates to the
impact of the airtightness level on the variability of ACHs over
time, as in leakier building envelopes, higher and less stable airflow
volumes tend to occur, especially in naturally ventilated dwellings
[2345].

Airtightness measures the resistance to inward or outward air
leakage through unintentional leakage points in the building
envelope [6]. In most of the naturally ventilated residential build-
ing stock the unintentional background leakages contribute to
most, if not the entirety, of the ACHs [7]. These are often referred
to as infiltration, and since they are unintentional, the quantifica-
tion of their contribution is challenging.

Thus, when addressed, airtightness requirements are commonly
bound to compliance with a limit validated by a blower door test
or a prescriptive path during construction [8]. While the first is
time and labour-intensive, the second is heavily reliant on assump-
tions. When not addressed, the EPBD national transpositions range
from providing recommendations to experiencing a full omission
on whole building airtightness requirements.
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One can explain this trend by the implicit clash of simultane-
ously maintaining the air change rates (ACHs) over a minimum
level most of the time, for health and comfort reasons, while avoid-
ing frequent high ACHs that potentially jeopardize energy effi-
ciency [910]. Which, when accruing to the assumptions and
efforts needed for addressment, helps to understand the lack of
requirements in the latter.

1.2. ML in ACH research

To tackle the inherent conflict and lack of awareness in regions
with predominantly mild climates, previous research [11] found
airtightness performance ranges that effectively provide adequate
ACHs in naturally ventilated dwellings through a labelling strategy.

From the required acquisition of the input data to the execution
of airflow simulations to the labelling process, the developed
research anchored itself in a complex and compound workflow,
which does not favour widespread implementation nor ease its
use by practitioners. What if the whole process could be simplified,
mathematically modelled, and structured in a way that provides a
complete, user-friendly tool that outputs information with low
errors and high accuracy compared with the original setup?

In the last decade, machine learning (ML) models have gained
greater application in building energy efficiency topics. These pre-
dictive models are natural add-ons to stochastic approaches
[1213]. Among other applications, ML models reduce simulation
time costs and often provide user-friendly tools to characterize
an existing dwelling or design one [1415].

A review on the perspectives for the future of natural ventila-
tion of dwellings indicates that surrogate models allow classifying
dwellings per the ventilation performance, emphasizing the added
value of combining passive strategies with renewable and sustain-
able energy solutions [16].

The literature presents several recent examples of models
developed to predict the airtightness performance of building
envelopes, based on Multiple Linear Regression (MLR) [17], cluster-
ing after Principal Component Analysis (PCA) [18], and Generalized
Linear Models (GLM) [19], achieving moderate to considerable
success.

Research on the effect of building characteristics on heating and
cooling loads showed that random forests outperformed linear
regressions in predicting their relationship [20]. The authors high-
light the implicit advantages of decision tree mechanisms in deal-
ing with statistical assumptions, such as multicollinearity between
input variables [21].

A probabilistic approach to weather data and dwelling charac-
teristics in the United Kingdom’s built stock found artificial neural
networks to be the best predictors of indoor air quality parameters
[22]. The probabilistic approach overpasses several limitations of
learning algorithms, such as training ranges and limited datasets
[23].

Recently, an optimization system for building envelope design
based on gradient boosting machines was successfully applied,
providing mean absolute errors below 3.5 % between predicted
and actual operative energy consumption [24]. Work on relating
air infiltration predictions by converting ACH between 50 Pa and
4 Pa of pressure difference, based on the Persily-Kronvall model,
only found modest coefficients of determination between actual
and predicted values, despite the application of nonlinear fitting
methods [25]. A regression tree designed from several Computa-
tional Fluid Dynamics (CFD) simulated values of ACH presented
itself as a better substitute for the latter [26].

Gradient boosting models displayed higher accuracy than mul-
tivariate linear regression in predicting building ventilation poten-
tial in urban locations [27]. Random Forests (RFs) and Support
Vector Machines (SVM) are some of the other applied surrogate
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models with the highest performance in predicting ventilation
and energy performance [282930].

A Support Vector Regressor (SVR) requiring 29 building param-
eter inputs predicted the performance of approximately 50.000
detailed energy and airflow simulations with high accuracy [31].
Other implementations of SVR in building performance showed
similar results [3233]. The authors highlight that the developed
model could form a comfort performance labelling program for
naturally ventilated commercial buildings.
1.3. Gaps and objectives

The connection between labelling programs and ML seems
encouraging. When dealing with passive strategies, particularly
natural ventilation, a single classification or regression output
often does not compute a comprehensive characterization [31].
Still, a thorough literature review could only find one study [22]
addressing infiltration and airtightness characteristics with detail
to a broad built stock with ML techniques. The study refers to
the United Kingdom, in line with the northern European context.

On a southern European mild climate context, the work from
Cardoso et al. [11] outputted a large dataset on dwelling character-
istics, their respective ACHs time series and labels. Thus, it provides
the needed data for this research.

By developing and applying a methodology based onMLmodels
to assess the air change rates performance of naturally ventilated
dwellings, the main objective of the current research is to explore
the potential of a tool in checking the airtightness compliance of
these dwellings regarding health and energy efficiency issues.
The present work aims to:

� Emulate the whole process of airflow balance for a representa-
tive meteorological dataset, reducing computational costs and
time;

� Train regression models to predict a dwelling average ACH and
the percentage of time the ACH is below, between, and above
the lower (LL) and upper (UL) limits, respectively;

� Train classification models to predict the label of new dwellings,
either non-compliant by default (NCd), compliant (Com), or
non-compliant by excess (NCe);

� Provide the structure for a possible user-friendly airtightness
compliance tool, which is the set of regression and classification
trained models.

Since the initial dataset is the product of a simulation campaign,
one expects the applied ML models to generally output low errors
regarding regression and high accuracies regarding classification.
However, using an air mass flow balance model for design or retro-
fit strategies is time and labour-intensive and requires expert
knowledge. As such, it may not be the best approach in fulfilling
practitioners’ needs and general societal use, particularly regarding
large-scale applications, i.e., regional or countrywide. Thus, the
focus is on overcoming these limitations.
2. Methodology

The methodology presented in Fig. 1 maps the workflow ratio-
nale, the data used, and the processes followed to achieve the com-
pliance tool. Two parts divide it: (1) dataset creation; and (2)
machine learning framework. Subsections 2.1 and 2.2 describe
these parts in detail, while subsection 2.3 adds information to
the applied machine learning models.



Fig. 1. Roadmap on the compliance tool, including the creation setup of the used dataset and the ML framework. P(ACH condition) stands for the percentage of time the ACH
complies with the stated condition.
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2.1. Creation of the used dataset

The input dataset encompasses the terrain and dwelling charac-
teristics, the resulting ACH time series global descriptors, and the
respective dwellings’ airtightness performance labels that resulted
3

from the probabilistic approach developed in [11]. The following
describes the creation of this dataset, providing contextualization
of the respective rationale behind it.

Table 1 presents the categorical and continuous input variables.
These relate to geometry, terrain, and airtightness variables con-



Table 1
Geometry, terrain, and airtightness variables considered.

Categorical variables Levels

Location (terrain) (a) 0.14/0.22
Side ratio (SR) 1:1/2:1
Roof slope (RS) 0�/20�
Number of exposed vertical surfaces (ES) 2/3/4
Number of vertical ducts (VD) 2/3/4
Number of floors (NF) 1/2
Total of combinations 144

Continuous variables Distribution Median Std. Dev.
Floor Area (AF) [m2] LogNormal 129.24 70.13
Ceiling Height (CH) [m] LogNormal 2.62 0.28
Airtightness at 50 Pa (n50) [h�1] LogNormal 6.45 3.50
Airflow exponent (n) [–] LogNormal 0.60 0.04
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sidered to characterize the dwellings. The categorical variables
agree with representative reference dwellings of the Portuguese
built stock [34] to achieve a higher diversity of terrain and dwelling
characteristics, totalling 144 combinations.

Spanish INFILES project [35] provided data on the continuous
variables. These fitted to statistically significant lognormal distri-
butions, from which a smart sampling method outputted 300
pseudo-random events. Comparison with previous Portuguese
studies showed that the dwellings have similar overall distribu-
tions on airtightness (n50) [11]. The product of the 300 events with
the 144 discrete combinations provided a full dataset for simula-
tion of 43,200 dwellings.

From the Porto/Pedras Rubras weather station, near Sá Carneiro
Airport, in the Porto region of Portugal, for a representative month
(720 h) of its heating season, the hourly average air temperature,
wind speed and direction were used as meteorological data. The
original data provides a probabilistic approach on the Portuguese
residential built stock considering dwellings, terrain, and meteo-
rology influential variables on air change rates across building
envelopes, providing the needed data complexity to the input data-
set of the present research.

Inputting the data in a single-zone air mass flow balance model
allowed simulating the hourly ACHs for each dwelling. The process
presented for airflow convergence has the same architecture as
method 1 in the current version, EN 16798-7:2017 [36], the itera-
tive method of the superseded EN 15242:2007 [37]. The MATLAB
Optimization Toolbox [38] provided access to the implementation
of the gradient descent method that performed the iterative pro-
cess [39].

There are theoretical and practical limitations of the commonly
applied types of air mass flow balance models in capturing the
complexity of the natural ventilation phenomenon. In fact, a theo-
retical model such as the used single zone model is a compromise
between: an empirical model that often overfit the original dataset
it originates from [4041]; and the more complex theoretical mod-
els such as multizone air mass flow balance with Computational
Fluid Dynamics (CFD) coupling [4243]. The latter are increasingly
sensitive to discretization [44].

Common sources of uncertainty in the application of these
models relate to accuracy issues regarding data on building leakage
distribution, internal and external geometry properties, and
weather [4445]. Two examples can be pointed: time steps on
meteorological data readings often result in loss of information
since the variability in the meantime is ignored [446]; and the
use of wind pressure coefficients from wind tunnel studies with
limited scope requires additional extrapolation leading to system-
atic errors in the final calculations [4748]. Still, even though airflow
models simplifications, either in the model architecture, either in
the input data, populate all simulated scenarios, they are widely
4

applied and accepted, providing useful information for decision-
making.

Since the dataset has time-invariant variables (those related to
dwelling geometry and terrain characteristics) and time-variant
variables (the meteorological variables and the dwellings ACHs
over time), the latter were abstracted to global descriptors by
applying the defined ACH limits to the outputted ACH time series.

A total of four global descriptors characterized the outputted
ACH time series, namely: (1) ACH mean; (2) ACH’s percentage of
time below the defined LL (0.4 h�1); (3) ACH’s percentage of time
between the LL and the UL (0.7 h�1); and (4) ACH’s percentage of
time above the UL. The LL considered was 0.4 h�1. The UL was
defined at 0.7 h�1. These correspond to the default predefined ven-
tilation airflow rates for residential buildings of categories IV and I,
respectively, of EN 16798–1:2019 [49]. These categories relate to
indoor environmental quality and occupants’ expectations.

To label the dwellings as compliant (Com), non-compliant by
default (NCd), or non-compliant by excess (NCe), constraints on
ACH dataset global descriptors applied, particularly the percentage
of time the ACHs were above, below, or between the defined LL and
UL (Fig. 2).

Those with an ACH below 0.4 h�1>20 % of the time are labelled
as non-compliant by default (NCd). This percentage aligns with
category II of EN 16798-1 standard on the expected rate of dissat-
isfied occupants based on CO2 levels [49]. From 1000 ppm, around
20 % of users are expected to feel dissatisfied with indoor air qual-
ity [50].

After applying the NCd threshold, the criterion shifts to the per-
centage of time the ACH is above the 0.7 h�1 upper limit for the
remaining dwellings. A step increment of 2.5 % in time above this
upper limit increment until a sample size of 5 % of the initial data-
set gets encompassed. This group of dwellings is labelled as com-
pliant (Com), and they are the top performers. The remaining
dwellings are labelled as non-compliant by excess (NCe).

Obtaining a functional labelling strategy required ordering the
features by relative importance, which helped better understand
the impacts of meteorological, geometrical, airtightness, and ter-
rain features. Most importantly, identifying and removing low rel-
ative importance features reduced the dataset size, helping to
establish clear cut-off rules. Finally, this strategy classified the
dwellings, which allowed to materialize airtightness performance
ranges.

2.2. ML framework

For a comprehensive tool, and since surrogate models benefit
from large datasets for training, this work uses the whole dataset,
43,200 dwellings. As hard labelling confers a significant loss of
information on the amount of time the dwelling performs, in par-
allel, multi-output regression models apply in predicting the per-
centage of time the ACH of each dwelling is below 0.4 h�1,
between 0.4 h�1 and 0.7 h�1, and above 0.7 h�1 and its respective
mean ACH.

The dataset undergoes pre-processing operations regarding fea-
ture scaling and oversampling, which subsection 3.1 discloses.
After, for both classification and regression, it divides randomly
into training and test sets in a proportion of 80 % and 20 %, respec-
tively, following the Pareto principle [51], a common practice in
machine learning studies [5253], and theoretically supported [54].

In regression, a five K fold cross-validation (CV) applies to the
training set for each model to assess the average Mean Absolute
Error (MAE). A K fold cross-validation splits the dwellings into K
equal-sized subsets, in other words, K consecutive folds, without
shuffling. Each fold applies once as a validation set while the others
form the training set. A K of 5 follows the same principle exposed
in the last paragraphs since the data splits into an 80 % and 20 %



Fig. 2. Dwelling labelling strategy according to the defined lower (LL) and upper (UL) ACH limits.
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proportion of the training set, in each fold. Additionally, a larger K
introduces less bias in estimating the true expected error, but
higher variance and a larger running time [5556]. Alternative CV
procedures can be found in the literature [57].

In classification, a five stratified K-fold cross-validation is
applied to the training set to determine the average accuracy.
The stratified K-fold differentiates from the standard version by
ensuring that the folds preserve the same percentage of events
for each class, an important procedure to avoid bias in
classification.

A grid search with cross-validation applies to the regression
model with the lowest average MAE and the classification model
with the highest average accuracy. A grid search uses all the possi-
ble combinations of the provided ranges of hyperparameters to fit
and score a training set to a certain model. The method keeps the
hyperparameters that output the best score. The resulting models
with the tuned hyperparameters are used in both regression and
classification to fit the test set.

In the proposed workflow (Fig. 1), the joint output of the best
performing classifier, the one with the highest accuracy, and the
best performing regressor, the one with the lowest MAE, will be
a vector of five cells, with numerical information on the dwelling
performance and a categorical label. The numerical output will
be the three ACH percentages and the ACH mean. This approach
fully characterizes the dwelling ACHs due to airtightness perfor-
mance, including the outputted label’s respective performance
class.
2.3. Applied ML models

As reviewed in Subsection 1.2, both single and ensemble ML
models provided promising results in replacing complete simula-
tion setups. From the reviewed literature, SVM and DT-based
methods obtained high performance in studies predicting ventila-
tion, airflow, and energy performance [28293031], and as such
these were the ones considered for the present research. Five mod-
els were applied, two single models: Support Vector Machines
(SVM) and Decision Tree (DT); and three ensemble models: Ran-
dom Forest (RF), Extreme Gradient Boosting (XGB) and Categorical
Boosting (CB). These apply to both the classification and regression
problems.

SVMs were first developed for classification purposes and rely
on finding a suitable equation to divide an input dataset [58].
5

When facing two input features, the equation translates into a line,
whereas, with more, the equation represents a hyperplane. The
determination of the equation parameters corresponds to a convex
optimization problem. Extension to regression changes the error
function [59].

DTs encompass two main elements: branches and nodes [60].
Branches set true or false paths for the node conditions they
depart. Nodes divide further into root, intermediate, and leaves.
The root node uses the feature that best splits the data. The inter-
mediate nodes can use the same feature as the root node or others
[61]. Leaf nodes represent predictions, either a category in a classi-
fication setup or a numerical value in a regression one. After the
learning process, the resulting flowchart is a roadmap for predict-
ing newly presented observations. In classification, inspecting the
impurity at each node informs on the quality of splits. Gini or
entropy criteria usually apply in quantifying impurity. In regres-
sion, the mean squared error (MSE), or the mean absolute error
(MAE) are the alternatives.

While a DT method offers increased interpretability compared
to other single methods, such as SVMs, it has several disadvantages
that result in a trend of the developed model overfitting the train-
ing data. At this point, ensemble methods are of interest, such as
the case of RF [62]. A RF is an ensemble method that performs pre-
dictions by weighting several decision trees, commonly referred to
as weak learners [63]. The weighting includes bootstrap resam-
pling and random feature selection, among other methodologies.
A randomly selected subsample from the training data trains each
tree in bootstrap resampling. A reduced number of input variables
are used at each node to split the observations in random feature
selection. These processes mitigate the drawbacks of single DT
models.

Proposed by Friedman [64], gradient boosted decision trees
combine the advantages of RF, but instead of bagging homoge-
neous weak learners, they fit sequentially, adapting from the pre-
vious iterations. Each iteration focuses on the misclassified
observations or those with the highest errors from the previous
one. It can often lead to overfitting of the model to the training
dataset. Furthermore, the sequential architecture increases compu-
tational costs compared to bagging methods. XGB [65] adds a reg-
ularisation term to the objective function, improving model
generalization and reducing the number of iterations on finding
the loss function minimum by computing the second partial
derivatives.
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Although CB [66] introduces changes in leaf growth, feature
importance, and the encoding of categorical features, the main dif-
ference to XGB comes from the split criteria. CB applies Minimal
Variance Sampling [67], which is a weighted version of stochastic
gradient boosting [68] that resulted in increased quality models
compared to XGB implementations [697071].
3. Results and discussion

3.1. Pre-processing

The correct implementation of the regression and classification
models requires the execution of pre-processing operations. The
procedures in this work were feature scaling and oversampling.

Regarding the first, a standard scaler centred the data at a mean
of 0 and a standard deviation of 1. The data is then transformed
according to the fitted scaler, ensuring that the original magnitude
of each feature does not affect its impact on the model. The dwell-
ing features in the test set transform according to the fitted scaler.
The test set is not included in fitting the scaler, so it does not intro-
duce bias in the training set.

Unbalanced label representation relates to the second proce-
dure. Oversampling deals with the unbalanced groups that popu-
late the dataset, which could result in several drawbacks when
applying the classification models [72]. The groups of dwellings
by label result from the described labelling limits and criteria. In
a rural terrain, the numbers are 1257 dwellings labelled as Com,
10,377 as NCd, and 9966 NCe. In urban terrain, these numbers
are 847 dwellings as Com, 13,482 as NCd, and 7271 as NCe.
Descriptive statistics of the highest-performing dwellings are
available in Table 2.

Thus, a Synthetic Minority Oversampling Technique for Nomi-
nal and Continuous features (SMOTE-NC) was applied, which
allows for continuous and categorical features [73]. The process
does not add information or variability to the original dataset. This
solution overcomes the overfitting problem of random oversam-
pling when classes have disparate representativeness [72]. As so,
being NCd the majority class with 23,859 dwellings, the final input
dataset is 71,577 dwellings, three times the majority class size, and
equally divided by the three classes.

SMOTE-NC is a data augmentation technique that synthetically
samples the minority classes into the size of the majority class
Table 2
Descriptive statistics of the groups of highest performing dwellings, the compliant
(Com) labelled, in a rural and an urban terrain for the whole dataset.

Feature Metric Rural (N = 1257) Urban (N = 847)

ACH [h�1] Mean 0.65 0.55
Std. dev. 0.25 0.15

ACH < 0.4 h�1 Mean 14.24 % 13.27 %
Std. dev. 4.69 % 4.82 %

0.4 h�1 < ACH < 0.7 h�1 Mean 52.08 % 72.44 %
Std. dev. 6.43 % 5.40 %

ACH > 0.7 h�1 Mean 33.68 % 14.29 %
Std. dev. 5.25 % 3.92 %

n50 [h�1] Mean 5.36 5.86
Std. dev. 1.21 1.35

n [–] Mean 0.60 0.60
Std. dev. 0.04 0.04

AF [m2] Mean 124.79 101.06
Std. dev. 57.30 32.98

CH [m] Mean 2.62 2.61
Std. dev. 0.21 0.26

SR [–] Mean 1.45 1.50
RS [�] Mean 10.64 12.04
ES [–] Mean 3.15 3.12
NF [–] Mean 1.61 1.54
ND [–] Mean 3.19 3.33
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based on nearest neighbours judged by the Euclidean distance
between data points in feature space. It mainly differs from the
default SMOTE technique by adding to the distance calculation
the medians of the standard deviations of all continuous features
for the minority class, if the nominal features of an instance are dif-
ferent to those of its potential nearest neighbours [73]. For datasets
populated by continuous features only, there are several alterna-
tives, such as BorderLine SMOTE [74], focused on synthesizing
instances close to the target class boundaries, Adaptive Synthetic
Sampling (ADASYN) [75], which synthesizes new instances accord-
ing to the data density, among others [76]. More recently, the
SMOTE-ENC [77] emerged as an alternative to treat mixed contin-
uous and categorical datasets, from which one of the most relevant
advantages compared to the SMOTE-NC is working correctly with-
out any continuous feature, while the latter requires at least one.

3.2. Multi output regression

Table 3 presents the average training, CV mean, and CV stan-
dard deviation MAE from applying the considered regression mod-
els. Only test set predictions portray the separate MAE for each
output. Therefore, since not all of them have the same unit, the
MAEs presented in Table 3 also do not present one.

The single models all performed worse than the ensembles.
Nonetheless, the DT performed marginally worse than the XGB
regressor. RFR and CBR performed similarly, with CBR getting the
lowest average CV MAE and showcasing less overfitting to the
training data from the two. For this model, tuning occurs sepa-
rately for the number of trees, the maximum depth, and the learn-
ing rate to identify the ranges for grid search (Fig. 3).

The number of trees identified was 2000 and 3000. The maxi-
mum depths identified were 10 and 12. The learning rates deter-
mined were 0.3 and 0.4. The grid search between the eight
combinations, totalling 40 folds, resulted in the best parameters
being 3000 trees, with a maximum depth of 10 and a learning rate
of 0.3. The corresponding CV average MAE was 0.79 %, with a stan-
dard deviation of 0.007 %. It represents 50 % of the MAE before tun-
ing the hyperparameters.

As a final evaluation, one looks into the MAEs of the final model
in predicting: the ACH mean, the percentage of time below 0.4 h�1,
between 0.4 and 0.7 h�1, and above 0.7 h�1, with the test set.
Table 4 presents the MAEs. Fig. 4 plots the predicted and actual
outputs from the model application to the test set.

As the ACH between 0.4 and 0.7 h�1 has two boundaries com-
pared to the other two with only one each, the MAE is higher in
the first. Still, overall, tuning the best-performing model results
in a robust regressor with the MAE never exceeding 1.02 % of the
time the ACH of a dwelling is within a certain range. Regarding
the ACH mean, the MAE is residual.

3.3. Multi output classification

Table 5 displays the average training, CV mean, and CV standard
deviation accuracy from applying the considered classification
models.
Table 3
Average training MAE, CV average MAE, and standard deviation MAE for the
considered regression models.

MAE [–] Average training MAE CV average MAE CV std. dev. MAE

SVR 0.0456 0.0466 0.0004
DTR 0.0000 0.0241 0.0005
XGBR 0.0177 0.0210 0.0003
RFR 0.0058 0.0173 0.0001
CBR 0.0140 0.0156 0.0002



Fig. 3. Standalone CB regressor hyperparameters tuning using CV: a) the number of
trees; b) maximum depth of trees; c) learning rate.

Table 4
Resulting MAEs from predicting the test set outputs with the best-performing hyper-
tuned regression model. P(ACH condition) stands for the percentage of time the ACH
complies with the stated condition.

Output MAE

ACH mean 0.003 h�1

P(ACH < 0.4 h�1) 0.82 %
P(0.4 h�1 < ACH < 0.7 h�1) 1.02 %
P(ACH > 0.7 h�1) 0.63 %

Fig. 4. Predicted versus actual outputs with the test set.

Table 5
Average training accuracy, CV average accuracy, and standard deviation accuracy for
the considered classification models.

Model Average training
Accuracy

CV average
accuracy

CV std. dev.
accuracy

SVC 85.43 84.98 0.43
DTC 99.89 94.99 0.15
RFC 99.89 96.19 0.17
CBC 98.03 96.72 0.12
XGBC 98.60 96.78 0.18
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Again, the single models all performed worse than the ensem-
bles. Nevertheless, DT performed marginally worse than the RF
classifier. The ensemble methods performed similarly, with XGBC
getting the highest average CV accuracy and the lowest standard
deviation between fold scores. For this model, tuning of the num-
7

ber of trees, the maximum depth of each, and the learning rate
occurred separately to identify the ranges for grid search (Fig. 5).

The number of trees identified was 150 and 200. The maximum
depths determined were 7 and 8. The learning rates were 0.4 and
0.5. The results of the grid search in the eight combinations, total-
ling 40 folds, resulted in the best parameters being 150 trees, with
a maximum depth of 7 and a learning rate of 0.4. This best estima-
tor’s average CV accuracy was 97.27 %, with a standard deviation of
0.08 %.

The final evaluation concerns its application to the test set. The
classification metrics (Table 6) and the confusion matrix (Fig. 6) for
these predictions portray the model performance on the test set.

Since classes NCd and NCe share the least similarity, the risk of
misclassification is lower. More false positives are present in class
Com, as precision scores are lower than in the other classes. Still,
this class scores the highest recall, the ratio of correctly predicted



Fig. 5. Standalone XGB classifier hyperparameters tuning using CV: a) the number
of trees; b) maximum depth of trees; c) learning rate.

Table 6
Classification metrics resulting from the prediction of the test set classes with the
best-performing hyper tuned classification model.

Labels Precision Recall F-Score Support

NCd 98.04 % 97.12 % 97.58 % 4695
Com 95.89 % 97.67 % 96.77 % 4725
NCe 98.06 % 97.18 % 97.62 % 4896
Average 97.33 % 97.33 % 97.32 % 14,316

Fig. 6. Confusion matrix of the test set.
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observations to all the true observations in the same class. It is the
preferable outcome since one prefers to label dwellings as compli-
ant if they are close to the boundaries of compliance in a non-
compliant group. The alternative is to label the dwelling as non-
compliant when it is compliant. Overall, the achieved accuracy of
97.32 % in test set predictions supports the robustness of the clas-
sification model.
8

4. Conclusions

The current research presented a thorough workflow on the cre-
ation of a tool through a Machine Learning framework to check air-
tightness compliance in naturally ventilated dwellings and
successfully validated it. For training models of such a tool, it needs
a dataset on buildings characteristics, a meteorological dataset,
and the time series from the resulting air exchanges. The present
research used datasets of previous work as case study.

The tool communicates the air change rates performance and
classifies a dwelling, in the studied geography, according to a label-
ling strategy. It requires a dwelling’s geometric features and the
result of an airtightness test to be inputted into the set of trained
models to obtain an estimate of air change rates performance
and a corresponding label. It successfully reduces the needed
knowledge expertise, time, labour, and computational power
needed to assess air change rates performance and airtightness
compliance, without incurring in large errors and inaccuracies.

From the existing Machine Learning models identified as
promising in the literature, this research applied a total of five.
These models focused on the regression capabilities of predicting
mean ACH, percentage of time below the defined lower ACH limit,
between the lower and the upper limits, and above the upper ACH
limit. Regarding classification, the models focused on labelling the
dwellings as non-compliant by default (NCd), non-compliant by
excess (NCe), and compliant (Com). The drawn conclusions are as
follows:

� The developed methodology produced robust predictions. The
regression model identified as the best predictor was the Cate-
gorical Boosting Regressor (CBR). The test set MAE on the per-
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centages of time predicted with this model was: 0.82 % for the
ACH below 0.4 h�1; 1.02 % for the ACH between 0.4 and 0.7 h�1;
and 0.63 % for the ACH above 0.7 h�1. Regarding the mean ACH,
the MAE was 0.003 h�1;

� The classification model identified as the best predictor was the
eXtreme Gradient Boosting Classifier (XGBC). The average accu-
racy of the test set, predicted with this model, was 97.33 %, with
an F-score of 97.58 %, 96.77 %, and 97.62 % for dwellings non-
compliant by default (NCd), compliant dwellings (Com), and
dwellings non-compliant by excess (NCe), respectively.

The results of both regression and classification methods
demonstrate robustness by having low errors and mispredictions.
The used case study showcased the potential of applying the devel-
oped methodology, encouraging future works towards its applica-
tion to different case studies for further validation.

Generalization requires an extensive campaign for wider mete-
orological time frames and dwellings datasets. In this work, the
trained models relied on a single month representative of the heat-
ing season in a southern European mild climate. In the long run,
the presented roadmap can fully map the meteorological condi-
tions of several locations and typify the diversity of dwellings
and terrain characteristics. It would form the groundwork for a
possible airtightness compliance tool, with potential for applica-
tion at regional, national, and EU levels, as a complementary asset
to energy certification programs of either public or private
initiatives.
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