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Abstract

The number of Shared Autonomous Vehicles (SAV) will increase in the coming years. The absence of human driver will create
a new paradigm for in-car safety. This paper addresses this problem by presenting an approach to estimate the human body pose
inside a vehicle. We propose to use a customized version of the OpenPose framework, to perform the task of human body pose
detection for the front passengers inside a vehicle. The OpenPose method was been evaluated with three different backbones:
VGG19, MobileNetV1 and MobileNetV2, using different hyperparameters and ablation scenarios. Moreover, synthetic images
were used, which simulate a depth sensor perspective from the center of the front seats. The dataset is comprised by images with
1 and 2 passengers, from 18 different subjects inside of 7 different vehicles, thus making a total of 45360 different images. The
OpenPose method with the MobileNetV2 backbone showed the most efficient results between precision and performance, achieving
a mean Average Precision (mAP) of 90%, Area Under ROC Curve (AUC) of 73%, and 0.0189 seconds per image (s/img).
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1. Introduction

Shared autonomous vehicles (SAVs) present themselves as the transport approach of the future, with a positive
relationship between cost and safety. But the fact that there is no driver, as someone responsible for the environment,
can create safety issues. The quality of service can be directly or indirectly hampered by passengers, for example, their
behavior is unpredictable and can generate many risks. Hence the need arises to study the human pose of passengers
inside the car in order to monitor their behavior and subsequently be able to detect human actions and predict them
optimally. To ensure the safety of passengers and the monitoring of the interior of a SAV, several works have been
developed. Torres et al. [1] proposed a passenger monitoring system using a Deep Learning (DL) strategy to accurately
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detect the driver human body pose. DL strategies require a considerable amount of data, Borges et al. proposed tools
for automatically generating synthetic [2] and real [3] in-car datasets for human body pose detection. The synthetic
dataset presents a custom vehicle environment that simulates humans, sensors, and car models, however, these may
lack some of the realism from a real dataset. Furthermore, the real dataset approach combines optical and inertial-
based systems to achieve in-car motion capture.

In this paper, a solution based on DL techniques was developed for body pose detection in order to overcome this
existing problem in SAVs, thus providing relevant features for action recognition algorithms, which focus on the
detection of violent actions among passengers [5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16]. Moreover, a dataset of synthetic
images, based on depth frames, inside vehicles was used. The OpenPose method was evaluation through different
permutations of backbones, hyperparameters and ablation configurations. Finally a specific OpenPose configuration
was identified. The main contributions of the paper are as follows:

e OpenPose precision and performance study in regard to multiple backbone, hyperparameter, ablation permuta-
tions;
o OpenPose architecture for multi passenger in-vehicle body pose detection.

The rest of the paper is organized as follows. Section 2 presents the state-of-the-art of different methods for human
body pose estimation in different environments. The dataset creation and model implementation is described in section
3. Experiments are described in section 4, with their corresponding results. The discussion is presented in section 5.
In section 6, the paper is concluded and some future work presented.

2. Related Work

Several studies have focused on the detection of human body pose in various environments, and for one or multi-
ple persons. Toshev et al. [4] presented in 2014 one of the first major methods to apply deep learning techniques to
estimate body pose. The prediction of body pose is formulated as a linear regression problem and outperformed all
existing models so far. Demirdjian et al. [20] presented in 2009 the problem of vision-based driver pose estimation,
i.e., estimating the location and orientation of the driver’s limbs. For pose estimation, a variant of the articulated ICP
algorithm, a 3D model fitting approach, was proposed, which is able to incorporate the uncertainty in visual obser-
vation and model data into the pose estimation framework. Ye ef al. [22] presents a new system for estimating body
pose configuration from a single depth map. It combines pose detection and pose refinement. Ye et al. [21] presents
in 2014 a new real-time algorithm for simultaneous pose and shape estimation for articulated objects, such as hu-
mans and animals. The novelty consisted in the pose estimation component incorporating the articulated deformation
model with parameterization based on exponential maps into a Gaussian mixture model. Sigalas et al. [23] presents
a model-based approach for extracting and tracking markerless articulated whole-body poses and tracking in RGB-D
sequences. The performance of the proposed method was compared with Microsoft’s Kinect SDK and NiTE, and the
results validated the approach presented by the author. Shotton er al. presents two papers for the task of body pose
estimation [24, 25]. [24] proposed a method to quickly and accurately predict 3D positions of body joints from a
single depth image without using temporal information. The evaluation shows high accuracy on synthetic and real
test sets and investigates the effect of various training parameters. [25] presents two new approaches for human pose
estimation. Both can quickly and accurately predict the 3D positions of body joints from a single depth image without
using any temporal information. The key to both approaches is the use of a large, realistic and highly varied synthetic
set of training images. Tsai et al. [26] proposes the use of a new two-stage method to estimate the probability maps
of users’ upper body parts. These maps are then used to evaluate the fitness of the body part region for pose retrieval.
It was shown to have satisfactory real-time results with a moderate size of training data. Buys et al. [27] presents a
new method for generating training data of human postures with attached objects. The results showed a significant
increase in body part classification accuracy for subjects from 60% to 94% using the generated image set. Su et al.
[28] proposed a cascade type feature aggregation network which consists of several hourglass networks for obtaining
more accurate human body pose estimation in terms of robustness to partial occlusion and low resolution. Their pro-
posed network works with a ResNet backbone and executes feature aggregation by using features attained in previous
stages as an input for current one, fusing all estimated body heatmaps derived from all stages to enhance network



Sandra Dixe et al. / Procedia Computer Science 204 (2022) 479—487 481

performance. They evaluated their model on MPII and LIP datasets, obtaining an accuracy of 93.9% and 91% for total
joints, respectively. Cao et al. [17] presented a multi-stage Convolutional Neural Network (CNN) based architecture
for multi-person 2D body pose detection. The proposed architecture consisted of two branches: the first branch, esti-
mates the confidence map of body joints, and the second one predicts the Part Affinity Field (PAF) that represent the
links between joints, and the final prediction will be made by fusing the outputs of the two stages. Evaluations done
on COCO 2016 and MPII datasets shows good accuracies; 68.2% and 79.7%, respectively. Although several methods
have been proposed for human body pose detection, these methods have mainly been applied for pose estimation in
open spaces, with the in-car scenario receiving little attention in the research world [28, 29, 30].

3. Implementation

This work aims to study the detection of human body pose for front seat passengers inside vehicles, to be subse-
quently used in monitoring systems for detecting passenger actions inside SAVs. Thus our focus is to reach a better
understanding between algorithmic configurations, precision and performance. For this purpose, all implementations
were based on the OpenPose method, which was trained and tested on a synthetic dataset with depth images of one
and two people inside several vehicles. The tool used for the generation of our dataset was presented by Borges et al.

[2].
3.1. Dataset Generation

The generated dataset, from the toolchain [2], is comprised by NST Depth frame, b, , features (as shown in Figure
1), and 20 human body joints per-pixel position, i.e. labels (Figure 2). The synthetic dataset includes data generated
for one (Figure 1 (a)) and two passengers (Figure 1 (b)), using 7 car models, N, and 18 subjects, Z, with associated
Gaussian poses, Ny, for a total of 22680 samples for one passenger and a total of 22680 for two passengers. Care
was taken to ensure that no identical subjects were ever crossed in the generation of the two-subject dataset, thus
ensuring variability.

3.2. Model OpenPose

From the state-of-the-art models, the OpenPose model was adopted [17]. There were several factors that con-
tributed to the choice of this method, one of the main reasons being the fact that it is one of the most successful
methods for estimating human body pose and, moreover, being open source [18]. This method presents very good
results in estimating the pose of multiple subjects in real time, this robustness is relevant in this scenario because the
space where the subjects are is reduced, i.e. inside the vehicle, and this generates added difficulties in the detection
of their body pose. The architecture of OpenPose consists of an input auxiliary CNN (i.e. backbone) that extracts a

(b)

Fig. 1. Representation of NST Depth frames (resolution is 352x287 pixels, with a depth range of 2.5m) that constitute the dataset. a) Examples of
images of a person inside a vehicle; b) Examples of images of two people inside a vehicle.
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Fig. 2. Default human model labels presented in [2]. A total of 20 body part segmentation labels are used and enumerate by the author, and are
directly related with human body joints and body segments that represent joint connectivity. In our work, 20 joints are defined and used as shows
in each circled number.

set of feature maps from the input data, these feature maps, F, are used as input data for the two-branch network: one
to estimate the confidence maps, heatmaps, of the positions of the body joints, where the set S = (S1, 52, ..., SJ)
has J confidence maps, one per human body joint, where S ; € R¥*" | j € {1...J}; and another that estimates the PAF,
i.e. the association/linkage between the different joints, where the set L = (L1,L2, ...,LC) has C vector fields, one per
limb, where Lc € "2, C € {1...C} (shown in Figure 2). An example of a label for a confidence map is for instance
joint 1, S'1, in Figure 2, an example of a vector field, C1, is for instance the link S 1 — §2 in Figure 2. In this work we
consider a total of 20 confidence maps, J = 20, represented in Figure 2.

In this work we propose to study the application of this method with different backbone configurations, thus aiding
to improve precision and performance metrics for in-vehicle human body pose detection. Figure 3, on the right side,
shows the arquitecture of the OpenPose model and respectively the backbones used in this study. Backbone configu-
rations are as follow: CMU consists of the first 10 layers of VGG19; MobileNetV1 consists of the first 8 layers with
added concatenated features; and MobileNetV2 consists of the first 14 layers with added concatenated features. The
3 backbones used for the study of the OpenPose method are highlighted in green in Figure 3.
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Fig. 3. Schematic of the OpenPose model and respective backbones used in this study.
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4. Experiments

All tests were performed in Tensorflow 1.4.1, using the OpenPose [18] source code, running on an Intel (R) Xeon
(R) Gold 6140 CPU 2.30 Ghz processor, with 128GB RAM and 1x NVIDIA Tesla V100-PCIE-16GB GPU.

4.1. Synthetic Dataset
The synthetic dataset generated, i.e. using the specifications mentioned in Section 3.1, was splited in train, valida-

tion and test parts, as shown in Table 1. Thus avoiding the presence of the same subjects between train, validation and
test datasets.

Table 1. Dataset division for evaluations.

Train | Validation | Test
Number of Subjects 12 4 2
Subjects Id Zisiz1s | Zrsarz | Zogo
Number of Images 33684 11228 5614

4.2. Evaluations

To better understand which is the best model configuration (i.e. ablation and hyperparameter), in terms of precision
and performance, an iterative evaluation procedure was defined, due to its training time consuming nature. Moreover,
a first extensive evaluation was done with the default backbone configuration, the CMU, EV1. Based on the best
combination of parameters obtained for the previous backbone, it was then defined an additional set of evaluations
with the MobileNetV1 and MobileNetV2 backbones, EV2 and EV3 respectively. All evaluations used a maximum
number of epochs equal to 30, batch size of 16, an initial learning rate of 0.001 and a learning rate decay of 0.0005.

4.2.1. EVI: CMU

In order to extend the evaluations to the different ablation and hyperparameter parameters, with a reduced evaluation
time penalty, isolated parameter evaluations were defined while considering a base permutation, EV1; (as shown in
Table 2). Moreover, Aug represents the enabling of spatial transformation techniques (i.e. translation, rotation, zoom),
omiting traditional RGB augmentation due to the input images being depth based. Image represents the input image
resolution, o controls the spread of the peak of the gaussian heatmap of each joint ground-truth position, R-LR-p
represents the enabling of Reduce-LearningRate-plateau technique [19], and T represents the number of stages of
refinement, ¢ € {1, ..., T} (as shown in Figure 3). All evaluations results are presented in Table 4 and Figure 4.

4.2.2. EV2: MobileNetV1 and EV3: MobileNetV2

Following EV1 evaluations, the best configuration was selected, EV1;. Morevover, its parameter configurations
were fixed for all EV2 and EV3 evaluations. For EV2 and EV3, MobileNetV1 and MobileNetV2 respectively, other
hyperparameters were added to help manipulate and enhance the evaluations metrics (as shown in Table 3). These
parameters are Convl, Conv2 and the feature map, F, output size, Fy,.

Where Convl defines a percentage of the original number of filters in the convolutional layers of the backbone,
which is used to extract the feature maps, F, Conv2 defines a percentage of number of filters in the convolutional
layers of each branch from the OpenPose architecture network (i.e. for all stages, ), and the parameter F,, defines the
expected size of the backbone output, F, that will serve as input to the two branches of the OpenPose architecture.

All evaluations results are presented in Table 4 and Figure 4.
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Table 2. EV1: CMU evaluations. Where Augmentation represents the enabling of spatial transformation techniques, omiting traditional RGB
augmentation due to the input images being depth based. Image represents the input image resolution, o~ controls the spread of the peak of the
gaussian heatmap of each joint ground-truth position, R-LR-p represents the enabling of Reduce-LearningRate-plateau technique [19], and T
represents the number of stages of refinement, ¢ € {1, ..., 7} (as shown in Figure 3). Parameters in bold represent the different permutations from the
base evaluation EV1;.

Aug Image o | RLR-p | T
EV1, | FALSE | 368x304 | 8 | FALSE | 1
EV1, TRUE | 368x304 | 8 | FALSE | 1
EV1; | FALSE | 368x304 | 8 TRUE | 1
EV1y | FALSE | 368x304 | 8 | FALSE | 2
EV1s | FALSE | 368x304 | 8 | FALSE | 6
EV1g | FALSE | 304x256 | 8 | FALSE | 1
EV1; | FALSE | 256x208 | 8 | FALSE | 1
EV1g | FALSE | 368x304 | 4 | FALSE | 1
EVle | FALSE | 368x304 | 6 | FALSE | 1
EV1yy | FALSE | 368x304 | 10 | FALSE | 1
EV1,, | FALSE | 368x304 | 12 | FALSE | 1
EV1y, | FALSE | 368x304 | 14 | FALSE | 1

Table 3. EV2: MobileNetV1 and EV3: MobileNetV3 evaluations. Where Convl defines a percentage of the original number of filters in the
convolutional layers of the backbone, which is used to extract the feature maps, F, and Conv2 defines a percentage of number of filters in the
convolutional layers of each branch from the OpenPose architecture network (i.e. for all stages, ), and the parameter F,, defines the expected size
of the backbone output, F, that will serve as input to the two branches of the OpenPose architecture, and 7 represents the number of stages of
refinement, ¢ € {1, ..., T} (as shown in Figure 3). Parameters in bold represent the different permutations from the base evaluation EV2:3;.

Convl | Conv2 Fyy T
EV2:3, 1 1 28x28 | 1
EV2:3, 1 1 28x28 | 2
EV2:3; 1 1 28x28 | 6
EV2:3, 14 1 28x28 | 1
EV2:3;5 14 14 28x28 | 1
EV2:3¢ | 0.75 0.75 | 28x28 | 1
EV2:3, 0.75 1 28x28 | 1
EV2:3g 1 1 56x56 | 1

5. Discussion

This paper proposes the use of the OpenPose model to estimate the human pose inside of vehicles. Different back-
bone, ablation and hyperparameter experiments were performed, in order to obtain the best compromise between
precision and performance. Based on the results obtained in the different evaluations (Table 4 and Figure 4), it is pos-
sible to conclude that the trained models perform well in estimating the location of the joints of the subjects inside the
vehicles. Besides the sensor position, the vehicle structure itself hinders the visibility of some joints, such as the joints
in the lower part of the body that are not captured, which is why they were excluded from the quantitative results of the
tests, j ¢ {13, 14,15,17,18, 19}. Analyzing the results of the metrics for EV1:3, and despite the lightest backbones,
EV2:3, presenting good results, the best ones were obtained in EV1, namely EV1s, EV1; and EV1,y with, 96%, 92%
and 94% mAP, respectively. Moreover, EV15 is considered the best result due to its highest computational efficiency,
%, (i.e. 745% for EV15 and 200% for EV'1}j). Moreover, the difference between precisions can be seen from
the different permutations: (EV1; to EV1s) the reduced input image resolution and lack of refinement stages, reduce
the spatial information and label refinement (i.e. confidence map and vector fields), respectively; (EV1; to EV1g)
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Table 4. Ablation and hyperparameter test results for CMU (EV1), MobileNetV1 (EV2), MobileNetV2 (EV3). The bold line represents the best
results. Performance is assessed in mean accuracy (mAP), area under curve (AUC) and seconds per image (s/img). Bold line represents best results

for each backbone evaluation.

EV1 mAP | AUC | s/img | EV2 | mAP | AUC | sfimg | EV3 | mAP | AUC | s/img
EV1, 92% | 74% | 0.0509 | EV2; | 88% | 71% | 0.0249 | EV3; | 90% | 73% | 0.0189
EV1, 83% | 66% | 0.0499 | EV2, | 89% | 74% | 0.0459 | EV3, | 90% | 74% | 0.0209
EV1; 83% | 66% | 0.0509 | EV2; | 90% | 75% | 0.1257 | EV33 | 90% | 73% | 0.0269
EVly | 90% | 71% | 0.0808 | EV24 | 90% | 75% 0.04 | EV34 | 91% | 75% | 0.024
EV1s 9% | 75% | 0.208 | EV2s | 90% | 74% | 0.0376 | EV3s | 91% | 75% | 0.027
EVlg | 91% | 76% | 0.0369 | EV2s | 89% | 72% | 0.0247 | EV3¢ | 89% | 72% | 0.0209
EV1; | 92% | T2% | 0.0279 | EV2; | 89% | 72% | 0.0269 | EV3; | 90% | 72% | 0.0216
EVig 87% | 70% | 0.0499 | EV2g | 88% | 73% | 0.0625 | EV3g | 90% | 74% | 0.0269
EVlg | 91% | 73% | 0.0509
EVly | 94% | 75% | 0.0559
EV1y | 91% | 73% | 0.0499
EV1p | 93% | 74% | 0.0519
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Fig. 4. Representative graph of mAP and s/img time metrics for each trial of each evaluation (EV1, EV2 and EV3)..

the increase of o parameter from 8 to 10, allows a better convergence of the method, without significant loss of the
localization ability. Considering EV2:3 results, EV2s and EV3, present the best results for each backbone configu-
ration. Despite their reduced precision, comparatively to EV1 results, they present new oportunities for performance
optimization (i.e. as shown in E'V2¢ with its reduced number of filter calculations). As such, EV3; can be seen as the
best algorithmic configuration, with 90%, 73% and 0.0189 of mAP, AUC and s/img respectively, thus reaching a better
compromise of precision and performance, achieving 1100% of computational efficiency with a loss of 6% and 2% of
mAP and AUC respectivey, compared to the highest precision model EV1s. Qualitative results for this configuration
are shown in Figure 5.

6. Conclusions and Future Work

In this paper, we show the customization of the OpenPose method for the estimation of the human body pose, to
later use this kind of approach in the detection of human actions in SAVs.
To solve this task, we use of the OpenPose model with three different backbones (CMU, MobileNetV1 and Mo-
bileNetV2), ablation and hyperparameter configurations. The method that proved to be the best approach was the
OpenPose method with: Depth based features; MobileNetV2 backbone; spatial and RGB augmentation disabled;
256x208 input resolution; oo = 8; Reduced LearningRate plauteau disabled; refinement stages removed (i.e. T = 1);
feature map, F, output resolution 28x28. Moreover, reaching a mean Average Accuracy (mAP) of 90%, Area Under
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Fig. 5. Result of human pose inference on 4 different test images, with visualization of the estimated skeleton (top left graph), the predicted
confidence maps (top right graph) and their respective connections (lower left and right graphs for X and Y coordinate coordinate, respectively).

Curve (AUC) of 73%, and 0.0189 seconds per image (s/img). From a qualitative point of view, it was observed that
sometimes the trained models confused the left side of the body with the right side, and this may be associated with
the depth images that are simpler and devoid of textures, making it more difficult for the trained model to interpret the
captured image.

For future work a possible improvement could be to add links between joints in order to improve the network’s ability
to model spatial dependencies, and to test the algorithms on a real dataset.
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