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a b s t r a c t 

It is generally believed that the choice of the yield criterion used to describe the plastic behaviour of 

isotropic metallic materials does not affect much the accuracy of the predictions of forming operations. 

For this reason, the von Mises yield criterion is used for modelling the plastic behaviour. However, ac- 

cording to the von Mises yield criterion, irrespective of the material, the ratio between the yield stresses 

in simple shear and in uniaxial tension is the same. In this paper, it is presented a numerical study which 

reveals that even for one of the simplest deep drawing processes, namely the forming of a cylindrical cup, 

the yielding description influences the predictions of the plastic strains and the final profile of the part. 

For the description of yielding, an isotropic yield criterion which allows to differentiate between isotropic 

materials was used. Specifically, this yield criterion involves a parameter α which is expressible solely in 

terms of the ratio between the yield stresses in shear and in uniaxial tension; for α = 0 it reduces to the 

von Mises yield criterion. The results of the numerical study are revealing and are believed to provide a 

new point of view when considering material requirements for drawing performance and models to be 

used for prediction of the plastic behaviour in deep-drawing processes. From the analysis of the loading 

paths that the materials experience during the forming of the cup, it appears that the prevalent belief 

that the yielding properties in the tension-tension quadrant of the yield surface dictate the final profile 

should be reconsidered. Indeed, the simulations results indicate that for isotropic materials characterized 

by α > 0 ( σT / τY > 

√ 

3 ), the cup height is greater than for a von Mises material ( α = 0), which is higher 

than the one obtained for materials with α < 0 ( σT / τY < 

√ 

3 ), i.e. lower values of the ratio between the 

yield stresses in shear and in uniaxial tension lead to greater cup heights. It is shown that this is mainly 

related to the plastic deformation of the material initially located in the flange region, which is dictated 

by the shape of the yield surface in the compression-tension quadrant (i.e. normal to the yield surface in 

the region between uniaxial compression and pure shear stress states). 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Owing to advances in numerical modelling and finite element 

ethods, numerous studies have been devoted to the numerical 

imulation of forming processes of metallic materials using or- 

hotropic yield functions of increasing levels of complexity (see e.g. 

1] ). The focus of these works has been put mainly on the improve-

ent of the predictions of the cup height profile, namely the de- 

cription of the non-uniformity of the height of the cup which is 

ue to the plastic anisotropy of the sheet. However, for any given 

rthotropic yield criterion, the predicted shape of the yield locus 

epends strongly on the identification procedure adopted as well 
∗ Corresponding author. 

E-mail address: marta.oliveira@dem.uc.pt (M.C. Oliveira). 

q

c

o

ttps://doi.org/10.1016/j.mechrescom.2021.103693 

093-6413/© 2021 Elsevier Ltd. All rights reserved. 
s on the type and extent of the data selected for the determina- 

ion of the anisotropy coefficients. Very recently, it was shown that 

ll orthotropic yield criteria obtained using a linear transformation 

f the stress tensor can be identified analytically using formulas 

nvolving only four yield points or only four Lankford coefficients 

 2 , 3 ]. Moreover, the new equivalent expressions for the Barlat et al.

4] and the Karafillis and Boyce [5] orthotropic yield criteria that 

ere presented in the above referenced papers enable to recog- 

ize that these orthotropic yield functions are simple polynomi- 

ls in terms of the stress components. Nevertheless, the analysis 

f the stress states that occur during deep drawing using these 

rthotropic yield functions remains a very complex task. Conse- 

uently, it is very difficult to ascertain the importance of capturing 

ertain yielding characteristics and the implications of neglecting 

thers. For metallic sheets for which the plastic anisotropy induced 

https://doi.org/10.1016/j.mechrescom.2021.103693
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Fig. 1. Biaxial yield surface according to the proposed isotropic yield criterion given 

by Eq. (1) for different values of the parameter α. 
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y their fabrication process can be neglected, the analysis of form- 

ng processes is done with the von Mises yield criterion [6] . 

The main goal of this study is to improve the understanding of 

he yielding characteristics that affect the plastic behaviour dur- 

ng deep drawing of isotropic materials. Specifically, the focus is to 

rovide improved understanding of the loading paths that the ma- 

erial experiences and the influence of the yielding description on 

he predictions of the plastic strains and the plastic strain distribu- 

ion in the part. To this end, numerical simulations are conducted 

or a typical forming process: the drawing of a cylindrical cup. We 

egin with the brief presentation of the isotropic yield criterion 

sed in this study. The details about the cylindrical cup geometry 

elected and the numerical model are given in Section 3, which 

lso includes the presentation of the results concerning the height 

nd the thickness distribution along the final profile of the part. 

n Section 4, the evolution of the stress and strain states that the 

aterial experiences during the process are analysed in detail. We 

onclude with a summary of the main findings (Section 5). 

. Cazacu (2018) isotropic yield criterion 

From experimental observations that the extrusion force de- 

ends only on the shear stresses, and earlier studies of Coulomb 

n failure of soils, Tresca arrived at the conclusion that a mate- 

ial deforms plastically once the maximum shear stress reaches a 

ritical threshold [7] . In 1913, von Mises [6] proposed an isotropic 

ield criterion valid for general three-dimensional loadings, which 

s quadratic in stresses and insensitive to hydrostatic pressure. This 

riterion has the simplest mathematical form compatible to the in- 

ariance requirements dictated by isotropy (for overviews of the 

arly contributions to the mathematical theory of plasticity see 

lso the monographs of Prager and Hodge [8] , and Cristescu [9] ). 

n isotropic yield criterion that involves both the invariants of 

he stress deviator was proposed by Drucker [10] . It was shown 

hat this criterion captures the mechanical response of certain alu- 

inium alloys with greater accuracy than the ones proposed by 

resca and von Mises (see [11] ). For more details and analysis of 

he capabilities of Drucker’s criterion for combined tension-torsion 

oadings, see for example the monograph of Cazacu et al. [12] . 

In this paper, we consider the isotropic form of Cazacu’s 

11] yield criterion, which is expressed as: 

 

4 
2 − αJ 2 J 

2 
3 = τ 8 

Y , (1) 

here J 2 and J 3 denote the second and third-invariants of the de- 

iator of the Cauchy stress tensor σ , defined as s = σ − ( tr σ/ 3 ) I ,

here tr denotes the trace operator and I the second-order iden- 

ity tensor. In Eq. (1) , τ Y denotes the yield stress in pure shear, 

nd α is a material constant. This constant is expressible only in 

erms of the ratio between τ Y and σ T , the yield stress in uniaxial 

ension, as: 

= 

27 

4 

[ 

1 −
(√ 

3 τY 

σT 

)8 
] 

. (2) 

It can be easily shown that if the parameter α belongs to the 

ollowing range: 

−27 

5 

≤ α ≤ 3 , (3) 

he yield function is convex (see [11] ). Note that for α = 0, the von

ises yield criterion is recovered. For α > 0, the yield criterion 

redicts σT > 

√ 

3 τY and the corresponding yield surface is interior 

o the von Mises one; on the other hand, for α < 0, the yield cri-

erion predicts σT < 

√ 

3 τY and the corresponding yield surface is 

xterior to the von Mises one. 

Fig. 1 shows the projection of the yield surface given by 

q. (1) in the biaxial plane (i.e. a plane corresponding to one of 
2 
he eigenvalues of the stress tensor being equal to zero) for several 

alues of the parameter α. In this figure, the principal stresses are 

enoted by σ RD and σ TD . This is done in order to facilitate the dis- 

ussion and analysis of the forming results presented in the next 

ection. For isotropic sheets, the rolling direction (RD) is no longer 

 preferential direction of deformation (just a reference direction 

n the plane of the sheet) while the transverse direction (TD) is 

he direction normal to RD in the plane of the sheet. 

Note that for α = 3.0, the curvature of the yield surface is zero 

or shear loadings, while for α = −5.4 this occurs for axisymmet- 

ic stress states. In summary, Fig. 1 highlights the fact that this 

riterion differentiates between materials characterized by differ- 

nt ratios between τ Y and σ T , whereas according to the von Mises 

riterion ( α = 0) this ratio is fixed. 

As previously mentioned, although the drawing of a cylindrical 

up is a rather simple forming process, it puts into evidence phe- 

omena that are encountered in more complex deep drawing pro- 

esses. For this reason, in this paper we focus on the modelling of 

he cup forming process. Specifically, the influence of the shape of 

he yield locus on the geometry of the fully drawn cup is investi- 

ated. For this purpose, numerical simulations using an elastoplas- 

ic model with yielding described by the criterion given by Eq. (1) , 

onsidering an associated flow rule, and isotropic hardening were 

onducted. 

. Numerical simulation of the cylindrical cup drawing 

The tools selected for the cylindrical cup example have the 

ollowing dimensions: die and the punch diameters of 62.4 and 

0 mm, respectively; shoulder radius of 10 mm for the die and 

 mm for the punch. The blank is circular with a diameter of 

20 mm and a nominal thickness of 1.0 mm. In order to minimize 

he occurrence of stress components normal to the sheet plane in 

he flange region, the simulations were performed considering a 

onstant value for the gap between the blank-holder and the die 

see Fig. 2 ). In order to avoid the occurrence of any ironing of the

up’s wall, the punch height was assumed equal to 17 mm, i.e. the 

ap of 1.2 mm between the punch and the die is only valid until 

his height. The contact was assumed frictionless. 
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Fig. 2. Schematic representation of the forming tools used in the cup drawing sim- 

ulations (dimensions in mm). 

Fig. 3. Evolution of the punch force with displacement for materials characterized 

by α = −5.4 and α = 3.0 in comparison with a von Mises material ( α = 0). 
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Fig. 4. Evolution of the cup height with the angle from the RD for materials charac- 

terized by α = −5.4 and α = 3.0 in comparison with a von Mises material ( α = 0). 

Fig. 5. Thickness evolution from the centre to the wall in fully drawn cups of mate- 

rials characterized by α= −5.4 and α= 3.0 in comparison with a von Mises material 

( α= 0.0). 
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The finite element (FE) simulations were conducted for materi- 

ls characterized by α = 3.0, α = −5.4, and α = 0.0 (von Mises). 

sotropic elastic behaviour was considered, with Young modulus, E , 

f 210 GPa and Poisson ratio, ν , of 0.3. As previously mentioned, 

he hardening behaviour is considered to be isotropic and gov- 

rned by the equivalent plastic strain, ε̄ p . Therefore, 

¯ = Y ( ̄ε p ) , (4) 

here σ̄ is the equivalent stress associated with the yield criterion 

iven by Eq. (1) and ε̄ p is the work-equivalent measure of σ̄ . A 

ower-law variation was assumed for the yield stress, Y , i.e.: 

 = A ( ε 0 + ε̄ p ) 
n 

(5) 

here A = 529.6 MPa, ε0 = 0.0044 and n = 0.268 (initial yield 

tress equal to 123.7 MPa). Moreover, an associated flow rule was 

dopted. 

The blank was discretized with 8-node hexahedra solid finite 

lements, combined with a selective reduced integration technique 

13] . Due to geometrical and material symmetries, only one-fourth 

f the blank was considered in the model, with a total of 15,982 

lements (24,402 nodes). Two layers (4 Gauss points) of elements 

hrough the thickness were used, to allow an accurate evaluation 

f the contact forces and the stress gradients through the thick- 

ess. All numerical simulations were performed with DD3IMP in- 

ouse finite element solver [ 14 , 15 ]. 

Fig. 3 presents the punch force vs. displacement. Note that the 

ighest value for the maximum force is attained for the material 

ith α = −5.4 and the minimum for the material with α = 3.0. 

he blanks lost contact with the blank-holder for a punch dis- 

lacement of around 35 mm. The slight difference in the punch 

isplacement value for which the loss of contact occurred is con- 

istent with the difference in the cup height between the three 

aterials (see Fig. 4 ). The difference in the final cup height be- 

ween materials is also reflected in the differences between the fi- 

al punch displacement (i.e. the displacement at which the punch 

orce becomes null). Fig. 4 presents the evolution of the cup height 
3 
s a function of the angle from the RD. As expected, the yield cri- 

erion being isotropic there is no variation in the cup height along 

ts circumference (see Fig. 4 ). However, it is to be noted that the 

eight of the fully drawn cup depends on the parameter α. The 

reatest height is obtained for the material with α = 3.0, while 

he smallest height corresponds to the material with α = −5.4. 

Fig. 5 presents the thickness distribution along the wall of the 

ully drawn cups (i.e. at the end of the forming process). Note that 

he predicted distribution presents the usual trend (see e.g. [16] ), 

.e. constant thickness at the bottom of the cup and minimum in 

he zone corresponding to the transition between the punch radii 

nd the vertical wall. Note also that the thickness increase along 

he vertical wall of each cup. It is worth noting that of the three 

aterials, the material with α = −5.4 presents most thinning in 

he bottom region of the cup and the largest increase in the thick- 

ess at the wall. However, this material did not accommodate well 

lastic strains during the process, i.e. the thinning at the bottom 

as not sufficient to compensate by plastic incompressibility the 

verall increase in the thickness of the cup’s wall resulting in this 

aterial having the lowest cup (see Fig. 4 ). The absolute difference 

etween the thickness at the same location in the cup with re- 

pect to the von Mises material is similar for the materials with 

= 3.0 and α = −5.4, respectively. Specifically, for the material 

ith α = 3, the cup bottom is slightly thicker than for a von Mises 

aterial (~ 2%) while it experienced less increase in thickness at 
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Fig. 6. Analysis of the stress states for material points located in the flange: (a) def- 

inition of the coordinate systems; (b) schematic representation of the stress states 

on the cross-section of the yield surface (adapted from Yoon et al. [17] ); and (c) 

position of the material points considered for the analysis of the strain and stress 

paths (note that the blank thickness is exaggerated). 
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Fig. 7. Comparison of the major-minor strains at the end of the forming process 

and strain-path followed for nine material points (small dashed lines) located on 

the exterior (E) side of the cup for materials characterized by different values of 

the parameter α: (a) α = 3.0; (b) α = 0.0 (von Mises material) and (c) α = −5.4, 

respectively. 

f
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t
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t

he wall (about 10%). In contrast, for the material with α = −5.4, 

t the bottom the cup thickness is lower than that of a von Mises 

aterial (~2%) while at the vertical wall it is higher (almost 8%). 

As an example, in the Appendix are presented simulation re- 

ults for the same materials obtained using a Voce-type harden- 

ng law. Note that the same conclusions can be reached concern- 

ng the influence of the ratio between the yield stresses in pure 

hear and uniaxial tension (i.e. the value of α). This indicates that 

he isotropic hardening law has a marginal influence on the cup 

eight and the thickness distribution. It is thus confirmed that the 

nal cup profile and thickness are mainly controlled by the shape 

f the yield locus. 

. Analysis of the F.E. results and discussion 

In order to gain understanding of the reasons for the differences 

n the height and in the thickness of the cups, we analyse what 

appens in the flange during this forming process. Fig. 6 (a) shows 

 schematic representation of the stress states occurring in the 

ange, using two coordinate systems: one is associated with the 

artesian orthogonal system (RD; TD; ND) where ND denotes the 

hrough-thickness direction (or normal to the plane of the sheet), 

hile the other is a cylindrical coordinate system, which is most 

ppropriate for analysing the geometry of the cup. Note that since 

he materials are isotropic, it is sufficient to analyse the mechanical 

esponse for materials points located along the RD direction. 

As shown in Fig. 6 , the points located on the exterior side of the

ange (initial radius R 0 = 60 mm) are subjected to compression in 

he TD 

≡ θ direction, while the interior points (i.e. with smaller 

 0 values) will be subjected to tension in the radial direction, and 

ompression in the circumferential direction; the ratio between the 

ircumferential ( σ θθ ≡ σ TD ) and the radial ( σ rr ≡ σ RD ) stress com- 

onents depending on the location along the RD. Moreover, this 

atio evolves during the forming process. Nevertheless, as long as 

he stress component normal to the sheet plane (i.e. σ zz ≡ σ ND ), 

s kept close to zero, the shear stresses can be neglected, so the 

tress state will be located in the fourth quadrant of the yield sur- 
4 
ace (tension-compression quadrant) in the σ RD − σ TD plane, as 

llustrated in Fig. 6 (b). 

The process conditions adopted are such that the punch is ini- 

ially located at z = 1 mm, and it moves downward (negative z val- 

es, see Fig. 6 (c)). Our analysis of the stress and strain paths will

e performed for integration points (Gauss points) located close to 

he top and bottom surfaces of the flange. Since in the forming 

rocess the material points initially located on the top surface of 

he flange will end up in the interior part of the cup, these ma- 

erial points are designated with the label "I"; the material points 
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Fig. 8. Predicted evolution of the stress state for four material points, located on the exterior part of the cup (E) for materials characterized by different values of the 

parameter α. The arrows mark the stress states corresponding to the onset of plastic deformation. 
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hich are initially located on the bottom surface of the flange will 

nd up on the exterior part, and will be referred to with label "E". 

he bending along the die radius results in σ rr ≡ σ RD being ten- 

ile for the I material points, and compressive for the E points. Fi- 

ally, we analyse the stress states experienced during the process 

or points that are initially located between R 0 = 60 mm (outer 

urface) and R 0 = 25 mm, with increments of 5 mm (see Fig. 6 (c)).

ote that, since the punch diameter is of 60 mm, the point initially 

t R 0 = 25 mm will be located at the bottom of the cup. 

In order to gain an overall idea of the plastic strains distribu- 

ion, in Fig. 7 are the major and minor in-plane strains at the end

f the forming process, for the material points located in the exte- 

ior part of the cup. Note that the major (positive) and the minor 

negative) strains are associated with the radial, εrr , and the cir- 

umferential, εθθ , directions, respectively. The minimum negative 

alue for the εθθ strain is similar for the three materials, because it 

s related to the change in the blank radius. Nevertheless, the max- 

mum value of the εrr strain is quite different, particularly along 

he cup wall, i.e. (initial location in the blank between R 0 = 60 mm

nd R 0 = 40 mm). 

As mentioned, the evolution of the major and minor strain dur- 

ng the process is analysed for material points located on the exte- 

ior surface, having different initial radial coordinate (see Fig. 6 (c)). 

he results are shown in Fig. 7 for material points initially located 

n the blank between R 0 = 60 mm and R 0 = 25 mm (increments

f 5 mm). Moreover, the strain path for the material point located 

t the centre is also shown, for all three cups. The simulation re- 

ults show that this material point ( R 0 = 0 mm) follows an equib-

axial strain path. However, the other points located at the bot- 
5 
om region are subject to strain paths in between the equibiaxial 

train and the plane strain (see points with R 0 = 25 mm and R 0 =
0 mm). Most importantly, the points initially located in the flange, 

ollow a strain path close to uniaxial compression along θ (see the 

rey dashed line used for reference), the deviation from the uni- 

xial compression path depending on α. Nevertheless, it is possi- 

le to state that for the material with α = 3.0 the ratios between 

he minor ( εθθ ) and the major ( εrr ) strains have absolute values 

igher than for the von Mises material ( α = 0) and the material 

ith α = −5.4. This means that for the same decrease in the ini- 

ial blank radius, the material with α = 3.0 experiences a higher 

eformation in the radial direction and, consequently, a lower de- 

ormation in the thickness direction (i.e. less thickening). This is 

onsistent with the FE results presented in Fig. 5 . 

In order to better understand the differences in the strain dis- 

ributions in the three materials during the process, the stress evo- 

ution during the forming process was also analysed for the same 

aterial points (i.e. at Gauss points located closer to the exterior 

nd interior surfaces, as shown in Fig. 6 (c)). Specifically, we moni- 

ored the stress components for material points initially located at 

 0 = 60 mm, 55 mm, 50 mm and 45 mm, i.e. close to the exterior

E) and the interior surface (I), respectively. All the stress compo- 

ents other than σ rr and σθθ have negligible values. These stress 

omponents normalized by the corresponding value of flow stress, 

 , are shown for each material point on the respective yield sur- 

aces in the σ RD − σ TD plane. Fig. 8 and 9 present the results for 

he material points located close to the exterior (E) and interior 

urface, respectively. Note that for material points located on the 

xterior surface of the cup, the circumferential compression com- 
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Fig. 9. Evolution of the stress state predicted for four material points, located in the interior part of the cup (I) for materials characterized by different values of the 

parameter α. The arrows mark the stress states corresponding to the onset of plastic deformation. 
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ε  
onent σθθ ≡ σ TD has always an absolute value higher than the 

adial σ rr ≡ σ RD . However, for material points located on the in- 

erior surface, the σ rr ≡ σ RD component can have a value higher 

han the absolute value of the σ θθ ≡ σ TD component, particularly 

hen the material starts to deform plastically. Overall, the range 

f stress states experienced by each material point is similar, irre- 

pective of the material (i.e. the value adopted for α). 

For the same material points for which the stress paths were 

lotted in Figs. 8 and 9 , the ratio between the circumferential and 

he radial strains, ε θθ / ε rr are depicted in Fig. 10 . Since the points 

ocated at R 0 = 60 mm are subjected to compression in the circum- 

erential direction, it means that for these points this ratio should 

e equal to −2. Fig. 10 shows that irrespective of the material, this 

alue of the ε θθ / ε rr ratio is indeed attained as soon as plastic de- 

ormation occurs, and ε θθ / ε rr remains practically constant during 

he process. For the other material points, for similar values for 

he circumferential strain εθθ , the radial strain εrr increases. This 

ncrease in the absolute value of ε θθ / ε rr is more pronounced for 

he material characterized by α = 3.0. On the other hand, for the 

aterial characterized by α = −5.4 the ε θθ / ε rr ratio is close to 

2.0, whatever the ratio between the radial and the circumferen- 

ial stress components. These results are consistent with the ones 

resented in Fig. 7 (a). 

The ratio between the radial and the thickness strain, ε rr / ε zz , is 

hown in Fig. 11 , for material points located on the exterior and 

nterior surface. Since the points located at R 0 = 60 mm are sub- 

ected to compression in the circumferential direction, the ε rr / ε zz 

atio should be equal to 1.0. Irrespective of the material, the re- 

ults in Fig. 11 show that ε rr / ε zz = 1.0 as soon as plastic deforma- 
6 
ion occurs, and this ratio remains constant. For the other material 

oints closer to the centre (i.e. away from the flange end), with 

he increase of the radial stress component, the ratio ε rr / ε zz be- 

omes greater than 1.0, which means that either the radial strain 

ncreases and/or the thickness strain decreases. Note that the in- 

rease of the ε rr / ε zz ratio is particularly pronounced for the mate- 

ial characterized by α = 3.0, while it remains almost equal to 1.0 

or the material with α = −5.4. 

Based on the analysis of the ε θθ / ε rr ratio (see Fig. 10 ) it may 

e concluded that the material with α = 3.0 experiences a higher 

ncrease in the radial strain than the other materials. However, the 

ronounced increase of the ratio ε rr / ε zz is correlated to the fact 

hat for this material there is less thickening of the flange (see 

ig. 5 ). Indeed, for the material with α = 3.0, the points flow- 

ng from the flange into the die cavity have a reduced increase of 

hickness, whereas the reverse holds true for the material charac- 

erized by α = −5.4. Since the radial strain is slightly higher for 

he material with α = 3.0, its cup height is the highest (see Fig. 4 ).

It is also worth examining whether the FE results presented 

bove are consistent with the plastic strain ratios that can be 

btained analytically for biaxial loadings (i.e. in the σ RD − σ TD 

lane) using Eq. (1) and the normality rule. Fig. 12 shows the evo- 

ution of the strain ratios as a function of the applied loading, 

here tan φ = σ RD / σ TD (see Fig. 6 (b)). The strain ratios repre- 

ented in this figure were obtained by direct analytical calculations 

or loadings in the fourth and first quadrant of the yield surface, 

.e. φ ∈ [ − 90 °, 90 °]. 
The strain ratio, ε TD / ε RD , is null for plane strain states such that 

TD = 0, it is equal to −1.0 for pure shear, and it has an infinite
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Fig. 10. Evolution of the ratio between the predicted circumferential and radial strains with the punch displacement for three material points located on the exterior part 

of the cup (E) and three material points located on the interior part of the cup (I) for materials characterized by different values of the parameter α: α = 3.0 (left), α = 0.0 

(von Mises) and α = −5.4 (right). 

Fig. 11. Evolution of the ratio between the predicted radial and thickness strains with the punch displacement, for three material points located on the exterior part of the 

cup (E) and three material points located on the interior part of the cup (I) for materials characterized by different values of the parameter α: α = 3.0 (left), α = 0.0 (von 

Mises) and α = −5.4 (right). 
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alue for plane strain such that εRD = 0 (see Fig. 12 (a)). It is worth

oting the different trend in the ε TD / ε RD ratio for the three ma- 

erials considered (see Fig. 12 (a)). Given that for isotropic materi- 

ls, the principal directions for stresses and strains coincide, it can 

e considered that for the material points analysed on the three 

ups: ε θθ ≡ ε TD and ε rr ≡ ε RD . Note that the FE results presented 

n Fig. 10 corroborate with the evolution presented in Fig. 12 (a). All 
7 
ix material points are mainly subjected to loadings between uni- 

xial compression along TD ( φ = −90 °) and pure shear ( φ = −45 °).
ith the increase of the radial stress component, for the material 

ith α = 3.0, the ε TD / ε RD strain ratio tends rapidly to −1.0. On 

he other hand, for the material with α = −5.4, this strain ratio is 

loser to −2.0, for a wider range of loading directions (stress ra- 

ios). 
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Fig. 12. Strain ratio evolution as a function of the loading direction obtained ana- 

lytically with the Cazacu [11] yield function ( Eq. (1) ): (a) ε TD / ε RD and (b) ε min / ε ND . 
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Fig. 12 (b) shows the evolution of the ratio ε min / ε ND be- 

ween the strain with the smallest absolute value ( εmin ), which 

an be either εTD or εRD , and the thickness strain, εzz ≡
 ND = −( ε RD + ε TD ). For reference, the ratio ε min / ε ND is null for

lane strain conditions while for pure shear it has an infinite value. 

ince the materials points located initially in the flange follow a 

ath close to uniaxial compression (see also Fig. 7 ) εmin = εrr . 

ote that the ε min / ε ND values obtained analytically and plotted 

n Fig. 12 (b) are consistent with the FE results in Fig. 11 . It is

orth noting that, as previously mentioned, the material points 

nder analysis are mainly subjected to loadings between compres- 

ion along TD (strain ratio equal to 1.0) and pure shear (corre- 

ponding to infinite strain ratio). For the material characterized by 

= 3.0, the slope of ε min / ε ND vs. φ is very sharp, meaning that 

he strain ratio ε min / ε ND presents a strong increase even for small 

alues of the radial stress component. On the other hand, for the 

aterial characterized by α = −5.4, the ratio ε min / ε ND presents 

alues closer to 1.0, for a wider range of loading directions (stress 

atios). 

The results presented in Fig. 12 also provide further under- 

tanding of the differences in thickness between the cups, in par- 

icular the reason for the differences at the bottom of the cup 

i.e. the FE results of Fig. 5 ). As shown in Fig. 7 , the material

oints located at the bottom of the cup experience stress states 

etween equibiaxial stress ( φ = 45 °) and plane strain. As shown 

n Fig. 12 (a), the values of the ε TD / ε RD ratio for these loading di- 

ections are 1.0 and zero, respectively. However, for the material 

ith α = 3.0, the ε TD / ε RD ratio decreases from 1.0 to zero very 

apidly (as seen from the very strong slope), while for the material 

ith α = −5.4 this ratio is close to 1.0 for a wide range of loadings
8 
stress ratios). Thus, for the material with α = −5.4, same values of 

he radial strain ε rr ≡ ε RD lead to higher values of the circumferen- 

ial strain ε θθ ≡ ε TD . This explains the results shown in Fig. 7 . On

he other hand, Fig. 12 (b) shows that for loadings between equibi- 

xial stress and plane strain, the ε min / ε ND ratio evolves from −0.5 

o 0. For the material with α = 3.0, the ε min / ε ND ratio increases 

rom −0.5 to zero with a very strong slope, while for the material 

ith α = −5.4 this ratio is closer to −0.5 for a wide range of bi-

xial loadings. Thus, for the material with α = −5.4, the thickness 

eduction that occurs during forming is much higher than for the 

ther materials. 

As shown in Fig. 3 , the punch force required to promote the 

unch movement is higher for the material with α = −5.4, which 

s associated with the fact that the yield surface of this material is 

xternal to the yield surface corresponding to the materials with 

= 0 and α = 3, respectively. Therefore, for the same punch dis- 

lacement the bottom of the cup is subjected to a slightly higher 

orce, which provides an explanation for the increase of the cir- 

umferential and radial strains at the centre of the cup bottom 

 R 0 = 0 mm) obtained in the numerical simulations (see Fig. 7 ).

ote that the bottom of the cup does not deform anymore for a 

unch displacement > 25 mm, which also corresponds to the max- 

mum punch force value. 

. Conclusions 

Generally, it is assumed that for isotropic materials the only test 

eeded for characterization of the plastic behaviour is the tensile 

est, and the data concerning the plastic behaviour in tension is 

eemed sufficient for prediction of the deformation during forming 

perations. 

Numerical simulations using an isotropic yield criterion that al- 

ows to differentiate between isotropic materials that display dif- 

erent ratios, τY / σT , between the yield stresses in shear and in uni- 

xial tension have put into evidence the correlation between this 

atio and the deformation during forming. It was shown that the 

eight of a fully drawn cup correlates with this ratio, namely the 

ower the value of τY / σT the greater is the cup height that can be 

chieved. Moreover, a detailed analysis of the stresses and strains 

hat the material experiences during the forming process was con- 

ucted. It was shown that in the flange region the material ex- 

eriences a variety of loading paths in the compression-tension 

uadrant (stress states mainly located between uniaxial compres- 

ion and pure shear). 

Accordingly, the plastic strain distribution in the formed part is 

ffected by the shape of the yield locus in this quadrant. The sim- 

lations results indicate that for isotropic materials with lower val- 

es of the ratio between the yield stresses in shear and in uniaxial 

ension, compared to von Mises, lead to greater cup heights. 
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Fig. A.2. Voce-type isotropic hardening law: thickness evolution from the centre to 

the wall in fully drawn cups of materials characterized by α= −5.4 and α= 3.0 in 

comparison with a von Mises material ( α= 0.0). 
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ppendix 

To study the influence of the choice of the isotropic hardening 

aw on the predictions, simulations were also carried out for the 

ame three materials using a Voce-type law for the variation of 

he yield stress, Y , with the equivalent plastic strain, i.e.: 

 = A − B exp ( −C ̄ε p ) (A.1) 

here A = 370.9 MPa, B = 247.3 MPa and C = 10.8 (initial yield

tress equal to 123.7 MPa). The evolution of the cup height as a 

unction of the angle from the RD is presented in Fig. A.1 , while

he thickness distribution in the three cups is presented in Fig. A.2 . 

ote that the greatest height is obtained for the material with 

= 3.0, while the smallest height corresponds to the material 

ith α = −5.4, i.e. the same trends as in the case when the hard- 

ning behaviour is modelled with a power-type law (see Fig. 4 ). 

As previously discussed in Section 3, there is a correlation be- 

ween the cup’s height and the thickness distribution. Note that 

he material with α = −5.4 presents higher thinning in the bottom 

egion of the cup and the largest increase in the thickness at the 

all, while the material with α = 3.0 shows an opposite behaviour, 

.e. the same trends observed for the case when hardening is de- 

cribed by the power-law given by Eq. (5) (see Fig. 5 ). Therefore, 

rrespective of the isotropic hardening law used the same conclu- 

ions can be reached concerning the influence of the ratio between 

he yield stresses in pure shear and uniaxial tension (i.e. the value 

f α) on the final cup profile. This indicates that the choice of the 

sotropic hardening law has a marginal influence; the differences 

n height and in thickness between the cups being mainly due 

o the differences in the shape of the yield loci of the respective 
aterials. 

ig. A.1. Voce-type isotropic hardening law: evolution of the cup height with the 

ngle from the RD for materials characterized by α = −5.4 and α = 3.0 in compar- 

son with a von Mises material ( α = 0). 
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