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Abstract: The possibility to control friction through surface micro texturing could offer invaluable 14 

advantages in many fields, from wear and pollution reduction in the transportation industry to improved 15 

adhesion and grip. Unfortunately, the texture optimization problem is very hard to solve using 16 

traditional experimental and numerical methods, due to the complexity of the texture configuration 17 

space. In this work, we apply machine learning techniques to perform the texture optimization, by 18 

training a deep neural network to predict, with extremely high accuracy and speed, the Stribeck curve 19 

of a textured surface in lubricated contact. The deep neural network was used to completely resolve 20 

the mapping between textures and Stribeck curves, enabling a simple method to solve the texture 21 

optimization problem. This work demonstrates the potential of machine learning techniques in texture 22 

optimization for friction control in lubricated contacts. 23 
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2 

1 Introduction 25 

Our world is overwhelmed by the environmental impact of human activity and there is an imperative 26 

need to reduce pollution and mitigate its effects to avoid an irreversible global warming. The 27 

transportation industry, one of the largest contributors to polluting emissions, wastes a significant part 28 

of fuel and energy in overcoming friction forces between moving parts in contact [1] , meaning that 29 

any solution to reduce friction would provide huge environmental and economic benefits. Because of 30 

this, research on friction reduction has always been at the forefront of tribology research and many 31 

possible solutions exist, such as the application of surface coatings [2] and the use of more performing 32 

and environmentally friendly lubricant formulations [3]. One of the most promising ways to control 33 

the friction between contacting surfaces is provided by surface texturing, a process that is increasingly 34 

more efficient due to significant processing advances [4] allowing for rapid generation of patterned 35 

surfaces. It is well known that a fine control of friction through surface texturing can be achieved in 36 

nature. For example, sharks are covered in a regular array of denticles which help to achieve drag 37 

reduction [5]. The same reduction has been seen in the skin of snakes and certain lizards that developed 38 

scales to reduce dry contact friction [6]. Specific nano-hierarchically structured patterns found in the 39 

feet of tree toads [7], [8] and geckos [9] have been shown to provide a strong boundary friction, 40 

granting them better grip on vertical surfaces. In engineering applications, many different kinds of 41 

nature-inspired patterns have also been tested for friction control [8]. 42 

However, the design of these textures is in general based on trial-and-error methods, meaning that 43 

the optimal texture for a specific application is extremely hard to find. From an experimental 44 

perspective, textured samples need to be fabricated and tested, thus optimizing a specific pattern would 45 

require an extensive sampling of the texture parameter space, resulting in time and resource costs that 46 

are prohibitive [10], [11]. The same problem occurs when using numerical approaches to evaluate the 47 

tribological performance of a system, where the Stribeck curve [12] is calculated by solving the 48 

Reynolds equation [13], [14], for multiple sliding speeds, coupled with a model for treating the contact 49 
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friction [15]. Even if the simulation process is faster as a whole when compared to a single experiment, 50 

the calculations still require typically minutes to complete, meaning that our ability to sample the 51 

possible configuration space is incredibly limited [16]. Moreover, the relationship between patterns 52 

and resulting Stribeck curves is expected to be highly non-linear, based on current experimental and 53 

numerical understanding [4], [17]–[19]. A possible solution to the apparently insurmountable texture 54 

optimization problem might be offered by machine learning techniques. Machine learning (ML) 55 

encompasses a large range of algorithms and modeling tools used for large data processing tasks [20], 56 

[21] with typical applications being classification and regression problems in information technology 57 

[22], [23]. One of the most prominent ML techniques is represented by deep neural networks (DNN), 58 

which are used with considerable success in many fields of physics, from applications in condensed 59 

matter [24], [25] and materials science [25], [26] to the solution of complex nonlinear equations [27], 60 

[28]. 61 

 Tribo-informatics has recently emerged as a new research area combining tribology with big data 62 

methods such as machine learning and artificial intelligence techniques [29]–[31]. These approaches 63 

can help in establishing new correlations in tribological data to predict the behavior of novel materials, 64 

provide novel insights and a broader understanding of the friction and wear mechanisms [32].  A recent 65 

example is the development by Almqvist of a physics-informed neural network (PINN) capable of 66 

solving the one-dimensional Reynolds equation [33]. This approach is meshless, thus it solves one of 67 

the main bottlenecks in traditional numerical solutions of lubricated contacts, that is the reliance on a 68 

mesh. What makes DNNs particularly appealing for the texture optimization problem is their universal 69 

approximation capability [22], [23], coupled with their extreme speed when compared to traditional 70 

methods [28]. In texture optimization problems, DNNs have been used to optimize the features of 71 

periodic patterns of nanopillars in optic metamaterials to achieve the desired properties, i.e., high 72 

electromagnetic wave absorption in some frequency windows [28]. In these works, a DNN replaced 73 
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the Maxwell equations solver, and it could predict -in millisecond time- an absorbance spectrum based 74 

solely on the periodic pattern features. 75 

In this work we developed an effective method for the optimization of surface texturing patterns for 76 

friction applications based on a deep neural network. The DNN was designed and trained to accurately 77 

predict the Stribeck curve of a dimple textured surface, thus replacing the standard Reynolds equation 78 

solver in the solution of the forward problem. Moreover, to solve the inverse problem, a fast search-79 

based approach was implemented to predict a set of candidate surface parameters (dimple pattern and 80 

dimple radius) that yield a set of closely matching Stribeck curves. The performance and accuracy of 81 

the DNN and the inverse approach were validated by comparing with the solutions provided by a 82 

numerical solver of the Reynolds and contact friction model equations. 83 

 84 



 

5 

Figure 1.  Schematic representation of the implementation of the DNN solution for the forward and 85 

inverse problem in texture optimization. (a) Non-conformal contact of surfaces subject to load F 86 

moving relative to each other with speed U, modeled as a height profile function 𝐡(𝐱, 𝐳). (b) Machine 87 

learning approach to predict the Stribeck curve of a textured surface, defined as the forward problem. 88 

The texture has 25 possible dimples (in a 5x5 grid with their presence represented in binary) and a 89 

fixed dimple radius for every dimple, therefore 26 parameters are capable of fully describing the 90 

texture.  The output is a set of 7 parameters that allows for the reconstruction of the Stribeck curve. (c) 91 

Machine learning approach to solve the texture optimization problem (inverse problem). The Stribeck 92 

curves of the full configuration space are obtained by using the forward DNN. A cost value is then 93 

assigned to each pattern/Stribeck pair and a sorting algorithm is applied to obtain the extreme cases. 94 

 95 

2 Methods 96 

2.1 Model for lubricated non-conformal contact of textured surfaces 97 

We consider a parabolic shape fully lubricated non-conformal contact of total area A similar to a 98 

lubricated journal bearing. Let ℎ0 ≡ ℎ0(𝑥, 𝑦) describe the untextured gap geometry (height profile) 99 

between the two surfaces moving in relative motion with speed 𝑈 while subject to an external load 𝐹, 100 

as it is schematically represented in Fig. 1(a). The texturing is introduced by creating a 5x5 grid of 101 

cosine square shaped dimples. The dimple profile heights hd are added to the untextured profile so that 102 

the textured gap geometry is defined as  103 

 ℎ ≡ ℎ0(𝑥, 𝑦) + ℎ𝑑(𝑥, 𝑦) (1) 

where ℎ is the total height profile, ℎ0  is the untextured gap geometry height profile and ℎ𝑑  is the 104 

dimple textured gap geometry height profile (further details on the contact geometry can be found in 105 

SI, Section I). 106 

 To obtain the pressure profile p within the lubricant we solve the Reynolds equation, derived from 107 

the Navier-Stokes equations [14] after considering the lubricant film to be at constant temperature 𝑇, 108 
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constant density ρ, and constant viscosity μ. Additionally, we do not consider any surface deformation 109 

effects, therefore the shape of the height profile remains constant throughout the simulations. The 110 

influence of the divergent domain on the film density is the possible formation of film rupture caused 111 

by cavitation (formation of vapor filled cavities) [34]–[37]. To consider this effect we introduce a 112 

system of equations for the pressure p and cavitation fraction 𝜃 profiles: 113 

 𝛻 ⋅ (ℎ3𝛻𝑝) + 6𝜇𝑈
𝜕(ℎ𝜃)

𝜕𝑥
= 6𝜇𝑈

𝜕ℎ

𝜕𝑥
 (2) 

 𝑝θ = 0 (3) 

 𝑝 ≥ 0 (4) 

 θ ≥ 0 (5) 

The system of Eqs. (1)-(4) represents a linear complementarity problem (LCP) [38]–[40], which 114 

was solved using the inexact Newton (INE) method [41] by restructuring the system of equations into 115 

a damped Newton iteration. The INE method ensures that the solution follows the non-negativity 116 

conditions at every iteration, thus providing a correct physical description of cavitation boundaries 117 

[16]. 118 

Depending on sliding speed, applied load and viscosity, the system admits three different regimes 119 

of lubricated contact: boundary, mixed and hydrodynamic, which differ in their main friction 120 

mechanisms. In this work only the mixed and hydrodynamic regimes have been considered since they 121 

occur in the presence of lubricant within the contact whereas in the boundary regime the surfaces are 122 

in direct contact (dry friction). To treat the mixed contact regime, both the hydrodynamic and asperity 123 

contact forces need to be considered in the same model. To this end, we decided to adopt a load-sharing 124 

approach [42], where the total friction force results from the combination of the hydrodynamic and 125 

contact terms: 126 

 127 
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 𝑓𝑡 = 𝑓ℎ𝑦𝑑𝑟𝑜 + 𝑓𝐺𝑇. (6) 

The first term, valid only in regions where film rupture does not occur, represents the hydrodynamic 128 

component of friction, and depends on the pressure gradient generated within the lubricant film, 129 

 𝑓ℎ𝑦𝑑𝑟𝑜 = (
ℎ

2

∂𝑝

∂𝑥
+

𝑈μ

ℎ
) 𝐴𝑓 , (7) 

where 𝐴𝑓 is the area of the full film domain. The second term of Eq. (5) represents the contact 130 

component of friction, that was calculated using the Greenwood-Tripp (GT) contact model [15, 42], 131 

which considers the roughness of both contacting surfaces. The GT contact model was chosen because 132 

it is simpler to implement while providing a qualitative treatment of friction [43]. Clearly, the GT 133 

contact model is not the best choice, as it is known to underestimate the pressure [44]–[46] and more 134 

accurate choices exist [47]. However, the focus of this work is to demonstrate the applicability of a 135 

DNN to solve the optimization problem of textured surfaces in lubricated contact, which does not 136 

depend on the particular choice of the solver used to generate training data.  137 

In the GT model, the total load carried is defined as 138 

 𝑓𝐺𝑇 = 𝜏0𝐴𝑎 + 𝜇𝑎𝑠𝑝𝑊𝑎𝑠𝑝, (7) 

where τ0  is the Eyring shear stress, 𝐴𝑎  is the asperity contact area,  𝑊𝑎𝑠𝑝  is the load carried by 139 

asperities in the contacting surfaces, 𝜇𝑎𝑠𝑝 is the coefficient of friction of the asperities [43], [48]. The 140 

load carried by asperities is defined as 141 

 𝑊𝑎𝑠𝑝 =
16√2

5
𝜋(𝜂𝑘𝜎)2√

𝜎

𝑘
𝐴𝐸′𝐹5/2 (

ℎ

𝜎
). (8) 

The asperity contact area is similarly defined as 142 

 𝐴𝑎 = π2(η𝑘σ)2𝐴𝐹2 (
ℎ

σ
), (9) 

The functions 𝐹𝑛/𝑚(ℎ/σ) are statistical functions that account for the Gaussian distribution of 143 

asperities and can be approximated through a parametric fit [49]. The chosen values of the parameters 144 

𝜂, 𝑘, and 𝜎 present in Eqs. (8)-(9) reflect the typical values for a well-polished steel surface [15]. It 145 
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should be noted that this roughness scale is much smaller than dimple characteristic dimensions. A 146 

table of numerical values for the parameters used in data generation in the training of the deep neural 147 

network is available in Section 3 of SI. 148 

An open-source finite element implementation of the solver for the system of Eqs. (1)-(6), FELINE 149 

[50], was specifically developed and used to generate the training data and validate DNN results.  150 

 151 

 152 

2.2 Method of solution and Stribeck curve calculation 153 

To obtain the Stribeck curve, one must compute the coefficient of friction (COF) for each relevant 154 

sliding speed as the surface integral of the total friction force in (5), written as: 155 

 𝐶𝑂𝐹(𝐻) =
1

𝑊𝐴
∫ 𝑓𝑡(𝐻)

Ω

 𝑑Ω, (10) 

where 156 

 𝐻 =
μ𝑈

𝐹
 (11) 

is a dimensionless parameter dependent of the relative sliding speed termed Hersey number, and W is 157 

the total load carried, including both the hydrodynamic and contact term. A total of 50 different Hersey 158 

number values, equally spaced in a logarithmic scale, were used for each Stribeck curve in the interval 159 

𝐻 ∈ [10−5, 10−2]. This is equivalent to a procedure where the relative sliding speed is changed in the 160 

interval U ∈ [0.043, 43] 𝑚/𝑠. 161 

For every value of H, the COF is calculated when the total load carried balances the applied load F. 162 

For this purpose, we first perform a solver run with an initial condition for the minimum separation 163 

hmin. The total carried load W is then calculated and compared with F, andthe minimum separation hmin 164 

is  adjusted by lowering (raising) it if W is smaller (larger) than F.  After three iterations a spline 165 

interpolation is used to accelerate convergence, which is reached when 𝐹−1(𝑊 − 𝐹) < 10−3.  166 

 167 
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2.3 Design and training of the DNN 168 

 The textured surface in a lubricated contact is defined by a set of parameters: the dimple map 𝐷𝑚𝑎𝑝 169 

of dimension (𝐷𝑥, 𝐷𝑦) which describes the presence and position of dimples on the surface (see 170 

Section 1 of S.I.), the dimple depth 𝐷𝑑, the dimple radius 𝐷𝑟, the parabolical edge 𝐸0, and the surface 171 

roughness parameters 𝜂𝑘𝜎. The value of dimple depth was fixed to 𝐷𝑑
0 = 6 μ𝑚 to isolate the influence 172 

of dimple radius. This way, the complexity of the optimization problem is greatly reduced, with only 173 

one tunable parameter present in addition to the dimple map. Further details regarding the effect of  𝐷𝑟 174 

and  𝐷𝑑 on load carrying capacity (LCC) and hmin of textured contacts can be found in SI.  175 

 Due to the fact that we considered a 5 × 5 grid of dimples with 6 possible 𝐷𝑟 values in the interval 176 

[40, 60] μ𝑚 , our network input consists of 26 parameters, that is 25 possible spots for dimple 177 

placement represented as Boolean variables and a globally applied value for dimple radius. The 𝐷𝑟 178 

interval was selected since it provides a sufficient range for optimization while remaining within the 179 

validity conditions of the Reynolds equation. Even if such configuration space appears simple at a first 180 

glance, it contains a total of 𝑁 = 6 × 225 ≈ 2.01 × 108 possible texture configurations, rendering the 181 

texture optimization problem impossible to solve for any traditional solution approach. 182 

 In order to represent all Stribeck curves in the configuration space with the same number of 183 

parameters, we performed a fit of our data calculated with FELINE using a rational polynomial form 184 

defined as 185 

 𝑓𝑛
𝑚(𝑥) =

𝑝1𝑥𝑛 + 𝑝2𝑥𝑛−1 + ⋯ + 𝑝𝑛𝑥 + 𝑝𝑛−1

𝑥𝑚 + 𝑞1𝑥𝑚−1 + ⋯ + 𝑞𝑚−1𝑥 + 𝑞𝑚
, (12) 

with polynomial degrees (𝑛, 𝑚) = (3, 3) . This rational polynomial was found to be the best 186 

compromise between accuracy and total number of parameters when representing a Stribeck curve.  187 

 As a result, the DNN output consists of 7 rational fit parameters that allow the reconstruction of the 188 

Stribeck curve, thus reducing the overall number of output parameters while not significantly affecting 189 

precision. This fitting step regularizes the output of the network.  190 
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 Regarding the DNN architecture, we adopted a simple topology consisting of 6 fully connected 191 

hidden layers with a number of neurons {32, 64, 96, 96, 64, 32} under no regularization using the 192 

ReLU activation function with He normal initialization [51] due to its performance and simplicity [52], 193 

[53].Since the number of hidden layers in our network is small and the width of these layers is 194 

sufficiently large, we do not expect the "dying ReLU problem" in this study [54] . The optimizer of 195 

choice was Nadam as it incorporates Nesterov momentum (with default hyperparameters) and can 196 

improve the convergence of the learning process [55]–[57]. To further optimize the training process, 197 

we sampled the validation set loss as a function of learning rate after 10 steps of training. This allowed 198 

us to carefully select a value for the learning rate (10−3). The RMSE of the predicted rational fit 199 

coefficients was used as the network loss function. The training and testing process was implemented 200 

with Python 3.9 using the Keras high-level API [58] of TensorFlow version 2 [59]. 201 

 The DNN training set was populated by randomly sampling sets of dimple maps 𝑫𝒎𝒂𝒑, whose 202 

corresponding patterns were solved for all the 𝐷𝑟 values to obtain the corresponding Stribeck curves. 203 

In total, around 60000 different combinations of patterns and dimple radii were computed using the 204 

FELINE solver, which required 6 days of computation time on 300 simultaneously running processes 205 

on Intel(R) Xeon(R) CPU E5-2697 v2 cores. This dataset was standardized according to the 206 

StandardScaler utility in the scikit-learn python package [60]. 207 

 Owing to the fact that the boundary pressure is the same at 𝑦 = 0 and 𝑦 = 𝐿, we expect that a mirror 208 

reflection of any pattern over the 𝑦 = 𝐿/2 axis does not change the corresponding Stribeck curve. This 209 

symmetry was explicitly included in the dataset by assigning the same Stribeck curve both to a pattern 210 

and to its reflection. This step is important in enhancing the overall physical accuracy of the DNN, 211 

while requiring no additional generation of data. From the generated dataset we selected 10% as a 212 

validation set, thus our resulting training set contains 54000 pairs of surface parameters and Stribeck 213 

curves and accounts for only 0.05% of the total configuration space.  214 

 215 
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3 Results and discussion 216 

3.1 Solution of the forward problem 217 

The forward problem, schematically represented in Fig. 1(b), was solved and examples of the DNN 218 

predictions are shown in Fig. 2 for a few cases in the validation set compared to data produced with 219 

the FELINE solver. The median RMSE of cases in the validation set is 5.7 × 10−4, meaning that the 220 

network predictions are very accurate and show no appreciable difference with the Stribeck curves 221 

calculated with FELINE. 222 

  223 

Figure 2. Network prediction of the Stribeck curves for randomly selected patterns in the validation 224 

set. The prediction accuracy is evaluated in terms of the root mean squared error (RMSE) in 225 

comparison to true data. The DNN results (crosses) have been down sampled for clarity.  226 

 227 

Fig. 3(a) shows a histogram of the RMSE distribution for the validation set predictions of the full 228 

Stribeck curve and, for two separate regimes of the Stribeck curve, that is the mixed regime and the 229 

hydrodynamic regime. The same analysis was performed on a test set of patterns (~4000 samples) and 230 

it was verified that the network performs well on an arbitrary set of patterns (see SI, section X). To 231 

correctly establish boundaries for these regimes we used the lambda parameter criteria [61]: 232 
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 λ =
ℎ𝑚𝑖𝑛

σ
, (83) 

where ℎ𝑚𝑖𝑛 denotes the minimum thickness of the lubricant film (or minimum distance between the 233 

contacting films) and σ is one of the surface roughness parameters. For λ >  3 the contact regime is 234 

said to be hydrodynamic, while the mixed regime occurs for 1 <  𝜆 < 3. After taking an average of 𝜆 235 

for all curves in the validation set we found that the averaged value 𝐻 = 0.0015 represents well the 236 

point in which the lubrication regime changes. Therefore, for 𝐻 ∈ [0, 0.0015] we have the mixed 237 

regime and for 𝐻 ∈ [0.0015, 0.01] we have the hydrodynamic regime. 238 

The corresponding median, 95th and 99th percentile of the different histograms is reported in  239 

Table 1. Low RMSE values (< 10−3) are consistently encountered in all regimes, indicating that the 240 

trained DNN is reliable across all the data. However, a better accuracy of the DNN in the mixed region 241 

was observed, compared to the hydrodynamic region. This is likely due to the larger span of COF 242 

values in the hydrodynamic region, for the same number of training samples, resulting in a lower 243 

accuracy prediction of the DNN therein. 244 

 245 

Table 1 Median, 95th and 99th percentile of the RMSE values shown in the histogram in Fig. 3(b). 246 

Regime Median 99% 95% 

Mixed 
2.4 × 10−4 7.9 × 10−4 6.0 × 10−4 

Hydrodynamic 9.4 × 10−4 6.1 × 10−3 3.8 × 10−3 

Total 5.7 × 10−4 3.4 × 10−3 2.1 × 10−3 

 247 

To assess the quality of the trained network, it is also important to verify its ability to interpolate 248 

and extrapolate results in terms of the dimple radius, since it was trained only with 6 possibilities for 249 

it. In this regard, we compared both the network and the FELINE solver solutions for values in-between 250 

and outside the dimple radius interval 40 µm to 60 µm.  251 
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A pattern was randomly picked and its corresponding Stribeck curve was computed with the DNN 252 

and FELINE in order to obtain a RMSE of their difference, which was plotted in Fig. 3(c) as a function 253 

of 𝐷𝑟. As one can see in Fig. 3(c), in region (II), the interpolation region, there is a small difference 254 

between the interpolation results from the DNN and the corresponding ones from the FELINE solver, 255 

showing that the network is capable of accurate interpolating behavior. 256 

 257 

Figure 3. (a) Histogram of the RMSE for all patterns in the validation set in different regimes. The 258 

medians for the mixed, hydrodynamic, and total regions are also shown. (b) Interpolation and 259 

extrapolation study of dimple radius versus RMSE where: (I) indicates the lower extrapolation bound 260 

𝐷𝑟 ∈ [35,39], (II) the interpolated values 𝐷𝑟 ∈ [42, 46, 50, 54, 58] and the values used in training, 261 

(III) the upper extrapolation bound 𝐷𝑟 ∈ [61, 65]. 262 

 263 

For the extrapolation cases, regions (II) and (III), we see that the lower extrapolation bound works 264 

significantly worse than the upper extrapolation bound. In the hydrodynamic regime of lubrication, the 265 

COF increases linearly with increasing Hersey number. Contrary to this, in the mixed regime of 266 

(a) 

(b) 
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lubrication, the COF increases exponentially with decreasing Hersey number. Extrapolation is 267 

typically more accurate for linear behavior, hence resulting in a larger extrapolation error for the lower 268 

bound of extrapolation. 269 

In terms of timing, the DNN is 106  times faster when compared to the FELINE solver. In 270 

conclusion, we have successfully designed a DNN that meets the requirements of speed and accuracy 271 

needed to fully solve the texture optimization problem for tribological applications. 272 

 273 

3.2 Solution of the inverse problem 274 

The inverse problem, schematically represented in Fig. 1(c), consists in the ability to predict optimal 275 

patterns starting from desired characteristics of a particular system. With our capable forward problem 276 

DNN solver it is possible to obtain the Stribeck curve for every case in the full configuration space 277 

defined by 25 possible dimples and 6 possible radii, that is a total of about 3.3 × 108  cases. Let 278 

(𝑝𝑘, 𝑠𝑘) stand for the k-th Pattern/Stribeck pair in the configuration space and consider a value, or cost, 279 

𝐶 ≡ 𝐶(𝑝𝑘, 𝑠𝑘) that we can assign to each pair, such as the minimum of the Stribeck curve 𝑠𝑘. By 280 

sorting the list of possible cases by their cost, we obtain the cases with smallest COF minimum and 281 

also highest COF minimum at the top and bottom of the list, respectively. The simple and 282 

straightforward algorithm Quicksort [62] was employed for this task. 283 

 The resulting optimal pattern for obtaining the smallest COF minimum using this method is shown 284 

in Fig. 4(a) and the corresponding Stribeck curve (solved with both FELINE and the DNN) is also 285 

reported in Fig. 4(b), compared with the untextured case. We observe that in this case the dimples are 286 

present only in a small region right after ℎ𝑚𝑖𝑛. The pressure and cavitation profiles of the contact 287 

obtained using FELINE, for the predicted optimal texture at the lowest friction point in the Stribeck 288 

curve are reported in Fig. 5(a) and 5(b), respectively. We observed an increase in pressure in the 289 

convergent gap and also a smaller pressure increase in the divergent gap. Furthermore, a significant 290 

drop in the cavitation profile led to an overall reduction of the size of the cavitation region in the 291 
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divergent gap. The presence of dimples right after the ℎ𝑚𝑖𝑛 zone appears to hinder the formation of 292 

the cavitation region.  Thus, the optimal pattern results in smaller film rupture areas and larger 293 

pressures in the convergent area. 294 

 The configuration space sorting also allows us to find the pattern that yields the largest COF 295 

minimum. We found a family of very similar patterns that generated almost indistinguishable Stribeck 296 

curves, as shown in Fig. 4(c)-(d). In this case, the convergent region of the contact is fully textured, 297 

including the ℎ𝑚𝑖𝑛  area. By looking at the pressure profile (Fig. 5(c)) we observed a significant 298 

pressure drop in the convergent gap. This is caused by the presence of dimples in a region that produces 299 

most of the hydrostatic pressure that counters the applied load. Such dimple placement disrupts the 300 

pressure profile. The cavitation profile (Fig. 5(d)) also displayed a decrease in magnitude, but the total 301 

cavitation area was not affected by this. 302 

  303 

 304 

 305 

 306 
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Figure 4. Resulting patterns and Stribeck curves from the cost assignment and sorting method used to 307 

find the optimal friction reducing/increasing patterns in the mixed regime. (a) Optimal pattern that 308 

yields the Stribeck curve with the smallest minimum. The corresponding Stribeck curve, calculated 309 

with both FELINE and the DNN, is reported in panel (b), where it is compared with the untextured 310 

case. (c) Family of textures that yield nearly matching Stribeck curves with the largest COF minimum. 311 

The Stribeck curve of pattern (i) calculated with both FELINE and the DNN is reported in panel (d), 312 

where it is compared with the untextured case. The DNN results (crosses) have been down sampled 313 

for clarity. 314 

 315 

 Curiously, the two families of patterns that provide a significant decrease (Fig. 4(a)) and increase 316 

(Fig. 4(c)) in COF, have been already observed and described by Tala and collaborators [63]. The 317 

reasoning behind the friction increase/decrease phenomena described in Tala et. al. accurately matches 318 

the observations of our own neural network predictions and further investigation done with FELINE. 319 

This fact demonstrates that our solution of the inverse problem is capable of correctly identifying the 320 

optimal texturing pattern. In terms of accuracy, the DNN solutions are basically indiscernible from the 321 

FELINE ones.  322 

 323 

(a) (b) 

(c) (d) 



 

17 

Figure 5. Pressure and cavitation profiles, determined at the Hersey number of the COF minimum of 324 

the untextured case Stribeck curve. For the optimal pattern in Fig. 4(a) for friction reduction and for 325 

friction gain in Fig. 4(c). (a) Pressure difference between the untextured and textured case in Fig. 4(a). 326 

(b) Cavitation difference between the untextured and textured case in Fig. 4(a).  (c) Pressure difference 327 

between the untextured and textured case in Fig. 4(c). (d) Cavitation difference between the untextured 328 

and textured case in Fig. 4(c).   329 

 330 

The collection of similar patterns (i)-(iv) shown in Fig. 4(c) exemplifies an important feature of a 331 

method like this, which is the ability to find nearly identical solutions generated by different patterns. 332 

This can be extremely important from an experimental point of view because, at parity of performance, 333 

a particular texture may be better in terms of manufacturing cost/speed in a laboratory. 334 

To further test our inverse problem solver, we looked for a pattern that reduces friction in the 335 

hydrodynamic regime. To achieve this, we defined a more elaborate form of the cost:  336 

 𝐶(𝑝𝑘, 𝑠𝑘) = ∫ [𝑠𝑘(𝐻) − 𝑠0(𝐻)]
𝐻2

𝐻1

 𝑑𝐻, (9) 

where 𝐻1, 𝐻2 encompass the hydrodynamic range. This function computes the area under the Stribeck 337 

curve in the hydrodynamic region for some Stribeck curve 𝑠𝑘 ∈ 𝐿 minus the area under the Stribeck 338 

curve of the untextured case, 𝑠0 . The lowest value of 𝐶  should correspond with the pattern that 339 

maximizes the reduction of the COF in the hydrodynamic regime. 340 

 The resulting optimal pattern for maximizing the reduction of the COF in the hydrodynamic 341 

regime using this method is shown in Fig. 6(a), and the corresponding Stribeck curve (solved with 342 

both FELINE and the DNN) is also reported in Fig. 6(b), compared with the untextured case. The 343 

corresponding pressure and cavitation profile differences with the untextured cases are reported in  344 

Fig. 7(a) and 7(b), respectively. It is possible to observe an increase of pressure in the convergent and 345 
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divergent gaps (Fig. 7(a)). Concerning cavitation, only a slight reduction of the size of the cavitation 346 

region in the divergent gap was observed. 347 

 348 

Figure 6. Resulting pattern and Stribeck curves from the cost assignment and sorting method used to 349 

find the optimal friction reducing pattern in the hydrodynamic regime. (a) Optimal pattern that yields 350 

the Stribeck curve with the overall smallest COF in the hydrodynamic regime. The corresponding 351 

Stribeck curve, calculated with both FELINE and the DNN is reported in panel (b), where it is 352 

compared with the untextured case. The DNN result (crosses) has been down sampled for clarity. 353 

 354 

Figure 7. Pressure and cavitation profiles, determined at the Hersey number of the COF minimum of 355 

the untextured case Stribeck curve. For the optimal pattern in Fig. 7(a) for friction reduction. (a) 356 

Pressure difference between the untextured and textured case in Fig. 7(b). (b) Cavitation difference 357 

between the untextured and textured case in Fig. 7(b). 358 

 359 

 The absolute values of ℎ𝑚𝑖𝑛 and the percent deviations of the difference of ℎ𝑚𝑖𝑛 relative to the 360 

untextured case for the optimal texture cases for friction reduction/gain are represented, respectively, 361 

(a) (b) 
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in Fig. 8(a) and 8(b). For the optimal texture for friction reduction in the mixed regime (orange line in 362 

Fig. 8), a ~12% increase in the ℎ𝑚𝑖𝑛in the mixed regime and a ~10% decrease of ℎ𝑚𝑖𝑛 at larger H 363 

numbers was observed. Additionally, for the mixed regime, calculations also show a ~5% increase in 364 

the LCC coupled with a ~22% decrease in the overall cavitation region area, resulting in a smaller 365 

COF for these sliding speeds. For the optimal texture for friction gain (cyan line in Fig. 8), an 80-90% 366 

decrease in ℎ𝑚𝑖𝑛 in the mixed regime was observed, stabilizing around a 60% decrease at larger H 367 

numbers. Concerning LCC and cavitation area, a 33% decrease and no change in the overall cavitation 368 

region were found, explaining the significant increase in COF for this pattern.  Finally, for the 369 

optimal texture for friction reduction in all regimes (green line in Fig. 8), a ~5% increase in ℎ𝑚𝑖𝑛 in 370 

the mixed regime was observed, while no appreciable variation could be seen at larger H numbers.  371 

A ~3% increase in the LCC, coupled with a ~16% decrease in overall cavitation region area, shows a 372 

similar performance compared to the Fig. 4(a) pattern. The combination of these effects results in a 373 

slight decrease of COF for nearly all sliding speeds. Textures that are capable of an effective reduction 374 

of friction and increase in LCC can highly contribute to extend the service life of the lubricated contact 375 

 376 

Figure 8. Effect of texturing on the minimum film thickness as a function of the Hersey number. (a) 377 

Comparison between the untextured case and the three cases determined by the neural network, where 378 

Minimum is the texture of Fig. 4(a), Maximum is the texture of Fig. 4(c)(i) and Minimum All is the 379 

texture of Fig. 6(a). (b) Percentual deviation of the difference of ℎ𝑚𝑖𝑛 with respect to the untextured 380 

case. 381 

 382 

(a) (b) 
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 The above optimal textures, and in particular the ones in Fig. 4(a) and Fig. 4(c), clearly demonstrate 383 

the capability of our approach for texture optimization problems. In fact, the solution of the inverse 384 

problem for the lowest and highest COF values returned the expected optimal textures [63]. The 385 

strength of this method is that the proposed solutions are actually the best ones, since all of the possible 386 

configuration space has been explored. This demonstrates how the texture optimization problem turns 387 

in to a very simple task using a DNN to solve forward problem, which allowed for a very efficient 388 

solution of texture configuration space. 389 

 390 

4 Conclusions 391 

We have successfully designed and trained a deep neural network capable of accurately predicting 392 

the resulting Stribeck curve generated by a dimpled texture with median root mean square errors of 393 

5.7 × 10−4. This type of texture, composed of an array of 5 × 5 possible dimples with dimple radius 394 

𝐷𝑟 has an unpredictable and highly non-linear effect on the surface friction coefficient. The DNN can 395 

efficiently compute all possible cases of a total of around 300 million possibilities, trained with only 396 

0.05% of them, thus enabling us to solve the texture optimization problem which is otherwise 397 

impossible to treat by traditional experimental and numerical methods. We determined both extremes 398 

of an optimization problem by taking advantage of the incredible performance of our DNN, predicting 399 

the relevant optimal textures in the process. We investigated properties of the developed DNN such as 400 

accuracy, extrapolation, and interpolation capabilities, demonstrating its robustness and reliability. 401 

This work paves the way for the use of deep learning as a tool to realize careful friction control of 402 

surfaces through optimally designed textures. 403 
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