
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tprs20

International Journal of Production Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tprs20

Modelling and control of manufacturing systems
subject to context recognition and switching

Luiz Fernando Puttow Southier, Dalcimar Casanova, Luis Barbosa, Cesar
Torrico, Marco Barbosa & Marcelo Teixeira

To cite this article: Luiz Fernando Puttow Southier, Dalcimar Casanova, Luis Barbosa, Cesar
Torrico, Marco Barbosa & Marcelo Teixeira (2023) Modelling and control of manufacturing
systems subject to context recognition and switching, International Journal of Production
Research, 61:10, 3396-3414, DOI: 10.1080/00207543.2022.2081631

To link to this article: https://doi.org/10.1080/00207543.2022.2081631

Published online: 10 Jun 2022.

Submit your article to this journal

Article views: 240

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=tprs20
https://www.tandfonline.com/loi/tprs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207543.2022.2081631
https://doi.org/10.1080/00207543.2022.2081631
https://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207543.2022.2081631
https://www.tandfonline.com/doi/mlt/10.1080/00207543.2022.2081631
http://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2022.2081631&domain=pdf&date_stamp=10 Jun 2022
http://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2022.2081631&domain=pdf&date_stamp=10 Jun 2022
https://www.tandfonline.com/doi/citedby/10.1080/00207543.2022.2081631#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00207543.2022.2081631#tabModule

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
2023, VOL. 61, NO. 10, 3396–3414
https://doi.org/10.1080/00207543.2022.2081631

Modelling and control of manufacturing systems subject to context recognition
and switching

Luiz Fernando Puttow Southiera, Dalcimar Casanovab, Luis Barbosac, Cesar Torricob, Marco Barbosab and
Marcelo Teixeira b

aPPGIA, Pontifical Catholic University of Parana, Curitiba, Brazil; bFederal University of Technology Parana, Pato Branco, Brazil; cUniversidade do
Minho, Braga, Minho, Portugal

ABSTRACT
Finite-State Automata (FSA) are foundations for modelling, synthesis, verification, and implemen-
tation of controllers for manufacturing systems. However, FSA are limited to represent emerging
features in manufacturing, such as the ability to recognise and switch contexts. One option is to
enrich FSAwith parameters that carry details about themanufacturing, whichmay favour design and
control. A parameter can be embedded either on transitions or states of an FSA, and each approach
defines its own modelling framework, so that their comparison and integration are not straight-
forward, and they may lead to different control solutions, modelled, processed and implemented
distinctly. In this paper, we showhow to combine advantages fromparameters inmanufacturing the
modelling and control. We initially present a background that allows to understand each parameter-
isation strategy. Then, we introduce a conversion method that translates a design-friendly model
into a synthesis-efficient structure. Finally, we use the converted models is synthesis, highlighting
their advantages. Examples are used throughout the paper to illustrate and compare our results and
tooling support is also provided.

ARTICLE HISTORY
Received 26 July 2021
Accepted 5 April 2022

KEYWORDS
Manufacturing systems;
supervisory control;
modelling integration;
context handling; finite-state
automaton

1. Introduction

Modern manufacturing systems aim to transform mate-
rial into products by properly, flexibly and efficiently
integrating people, equipment and technology (Esmaeil-
ian, Behdad, and Wang 2016). It is expected that manu-
facturing components can interact with each other and
with the environment in a concurrent manner, sharing
resources and behaving in a safe, controllable and maxi-
mally permissive way (Hu, Liu, and Zhou 2015). In con-
junction, those featuresmake it hard the task of program-
ming industrial controllers, as traditional paradigms for
software development are usually inappropriate (Dotoli
et al. 2017). Alternatives have been tested, for example,
with simulation (Mourtzis 2020), optimisation (Pedrielli
et al. 2018), and intelligent strategies (Guo et al. 2020;
Hu and Liu 2015). Another option is to apply formal
methods to exploit the event level of the system when
expressing its behaviour and requirements (Rosa, Bar-
bosa, and Teixeira 2019; Hu, Liu, and Yuan 2016). In
this case, automated operations can be processed in
order to calculate a controller that holds properties of
interest.

CONTACT Luiz Fernando Puttow Southier luizsouthier@gmail.com

When an industrial process is seen as a Discrete Event
System (DES) (Cassandras and Lafortune 2009), the con-
trol objective is to obtain sequences of events to be
allowedunder control. Events are assumed to occur spon-
taneously in the system plant, and they are restricted by
specifications, which are in general modelled using Finite
State Automata (FSA). Then, formal approaches, such
as the Supervisory Control Theory (SCT) (Ramadge and
Wonham 1989), can be applied to synthesise controllers
to be finally implemented in hardware (Qamsane, Tajer,
and Philippot 2017).

Despite their practical relevance and formal back-
ground, FSA face significant limitations when modelling
large and complex systems. Advanced features of flexi-
ble DES, such as context recognition and switching, are
difficult to be expressed by ordinary FSA and they are
usually associated with large state-spaces, which chal-
lenges both modelling and processing (Silva, Ribeiro,
and Teixeira 2017). Parameterized FSA allow to address
complexity issues in modelling and control of DESs. A
so-called parameter is an engineered argument, embed-
ded on a modelling formalism, that captures and carries

© 2022 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2022.2081631&domain=pdf&date_stamp=2023-03-31
http://orcid.org/0000-0002-1008-7838
mailto:luizsouthier@gmail.com

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 3397

context semantics throughout an FSA. This expands the
information potential of a DES model and extends the
related control techniques to cover a broader class of
problems.

Technically, a parameter can be embedded either on
transitions (Cury et al. 2015) or on states (Teixeira
et al. 2015) of a DES model. In the first case, Event-
parameterised FSA (EpFSA) are mechanisms that sys-
tematically map events into sets of new events, called
parameterized events, that carry a given context seman-
tic for the modelled DES. On the other hand, State-
parameterised FSA (SpFSA) are variable-based models
that can be designed by Extended Finite State Automata
(Chen and Lin 2001), and control can be implement
by disabling events based on the evaluation of logical
formulas that manipulate variables.

In theory, both EpFSA and SpFSA play a similar role
in modelling and control of DES, so that their choice
should be straightforward. However, it does not exist so
far in the literature an explicit way to compare them
and expose their advantages. As each approach is struc-
tured within a specific framework, their integration is
not direct and they may lead to different control solu-
tions, modelled, computed and implemented distinctly
(Teixeira et al. 2015; Cury et al. 2015; Rosa et al. 2017).

It has been reported that EpFSA benefitmodelling and
synthesis (Cury et al. 2015), besides to be modular (Teix-
eira, Cury, and de Queiroz 2018) and to have potential
to reduce implementation costs (Rosa et al. 2017). But,
in this case, the entire parametrization structure depends
on an engineer to be constructed by hands. Differently,
SpFSA are more suitable for modelling as they allow to
express behaviour and control restrictions by manipulat-
ing simple formulas, instead of complex state-machines.
However, variables of a SpFSA are natively atomic struc-
tures, whichmay limit modularisation, reducing the pos-
sibilities for taking advantages in the synthesis and imple-
mentation phases.

This paper shows how to combine advantages from
EpFSA and SpFSA. We initially present a background
that allows us to understand each parameterisation strat-
egy, discussing their motivations and presenting exam-
ples. Then, we formally introduce a conversion method
that translates a design-friendly model into a synthesis-
efficient structure. Algorithms are provided to systemati-
cally extractmeanings (parameters) from the states-space
of a SpFSA, transferring them to an event-based EpFSA
that expresses equivalent behaviour. Then, we show how
the resulting EpFSA models can be exploited in modular
synthesis, which leads to a set of controllers that tend to
be obtained more efficiently with respect to the classical
SpFSA-based synthesis. The impact of the resulting set
of controllers on implementation issues is also discussed.

We finally reproduce some classical results and examples
from the literature, then we solve them using ourmethod
in order to evidence advantages. A tool (Southier 2021)
is provided to support the algorithms presented in the
paper.

The manuscript is structured as follows: the back-
ground about FSA, EpFSA and SpFSA is presented in
Section 2; the conversion methods is introduced, dis-
cussed and exemplified in Section 3; synthesis aspects
are exploited in Section 4; finally, Section 5 brings some
conclusions and perspectives.

A first attempt to theoretically combine advantages
from EpFSA and SpFSA was made (Southier et al. 2019).
However, in that study, we do not consider: modular-
synthesis advantages, modular conversion, tool imple-
mentation, and test cases. All these items feature in this
paper.

2. Background

Many real world systems share the feature of being event-
driven, i.e. their evolution in time is guided by the occur-
rence of asynchronous signals, called events, in opposi-
tion to time-driven behaviours. Systems that share these
features are calledDiscrete Event Systems (DES) (Cassan-
dras and Lafortune 2009) and they cover a wide range of
domains, such as robotics, manufacturing, logistics, etc.

ADES canbemodelled by formal languages (Hopcroft,
Motwani, and Ullman 1939). Events define the basic
structure of a language, and they are taken from a finite
alphabet�, such that�∗ denotes the set of all strings pos-
sibly built using events in�, including the empty string ε.
Two strings s, t ∈ �∗ can be concatenated as st, and a sub-
set L ⊆ �∗ is said to be a language. The prefix-closure of
L ⊆ �∗ is L = { s ∈ �∗ | st ∈ L for some t ∈ �∗ }.

In practice, when modelling a DES, it is usual to
be interested in a class of languages called regular. A
language is regular if it can be represented by a Finite-
State Automata (FSA) (Cassandras and Lafortune 2009),
which is a tuple A = (

� ,Q, q◦,Qω,�
)
, where � is the

alphabet; Q is the set of states; q◦ ∈ Q is the initial state;
Qω ⊆ Q is the subset of marked states; and � ⊆ Q ×
� × Q is the transition relation.

The transition between any two states q1, q2 ∈ Q with
the event σ ∈ � is represented by q1

σ−→ q2, and it can be
extended to a string s ∈ �∗ by q1

s−→ q2. Notation q1
σ−→

means q1
σ−→ q2 for some state q2, and the same notation

is used for strings in �∗, and A s−→ means q◦ s−→ q for
some state q ∈ Q, while A −→ q means q◦ s−→ q for some
s ∈ �∗.

The set of events originating from q is given by�(q) =
{ σ ∈ � | q σ−→}, which can be restricted to a given subset

3398 L. F. P. SOUTHIER ET AL.

�′ by ��′(q) = { σ ∈ �′ ⊆ � | q σ−→} and the enable-
ment of an event σ from q is captured by �σ(q) = true.

When a DES is modelled by an FSA A, its behaviour
can be described byL(A) = { s ∈ �∗ | A s−→ q ∈ Q }, i.e.
a language that includes all possible sequences generated
by A. Its marked behaviour Lω(A) ⊆ L(A), associated
with the tasks accomplished by A, is defined asLω(A) =
{ s ∈ �∗ | A s−→ q ∈ Qω }. A language L(A) is said to be
non-blocking if L(A) = (Lω(A)).

Two FSA, A1 = (
�1,Q1, q

◦
1,Q

ω
1 ,�1

)
and A2 =(

�2,Q2, q
◦
2,Q

ω
2 ,�2

)
, can be composed as A1 ‖ A2 =

(�1 ∪�2,Q1 × Q2, (q
◦
1, q
◦
2),Q

ω
1 × Qω

2 ,�A1‖A2), where
�A1‖A2 is defined as:

• (q1, q2)
σ−→ (q′1, q

′
2), if σ ∈ �1 ∩�2, q1

σ−→ q′1, and
q2

σ−→ q′2;
• (q1, q2)

σ−→ (q′1, q2), if σ ∈ �1 \�2 and q1
σ−→ q′1;

• (q1, q2)
σ−→ (q1, q′2), if σ ∈ �2 \�1 and q2

σ−→ q′2;
• undefined, otherwise.

The operation ‖ synchronises shared events and inter-
leaves the others. Notation A‖ means a composition of
a set {A1, . . .An} of FSA, i.e. A‖ = A1‖ · · · ‖An.

2.1. Example of amanufacturing system

Consider the DES in Figure 1. Machines 1 and 2 receive
external raw material (events a and c), manufacture
workpieces types B and D, and deliver them to a buffer
(events b and d) in arbitrary ordering. Machine 3 assem-
bles pairs of workpieces typeD in the buffer (event g), and
it is disabled for other types. Machine 4 picks up work-
pieces from the buffer (event e), packs, and removes them
from the system (event f).

Machines 1, 2, 3 and 4 can bemodelled by the FSAG1,
G2,G3, andG4 shown in Figure 2, so that the plantmodel
is given by the composition G = G1 ‖ G2 ‖ G3 ‖ G4.

For control, it is assumed that the buffer has capacity
of 2 workpieces, and one aims to prevent its overflow and
underflow. In addition, machine 4 can only remove a pair
type D from the buffer after they are paired bymachine 3;
otherwise (the buffer is not full or it includes only type B
workpieces) machine 4 is enabled anytime and machine
3 is disabled. The specification E = E1 ‖ E2 ‖ E3, shown

Figure 1. Manufacturing system with intermediate buffering.

Figure 2. Plant and specification models for the example.

Table 1. Number of states (and transitions) for the example.

G E K = E ‖ G
8 (32) 7 (12) 56 (136)

in Figure 2, is modelled to control G. Dashed lines mean
events disablement in E.

Model E1 disables the event ewhen the buffer is empty
(state r0). Also, the events b and d are disabled by E2
when the buffer is full (state r5). Furthermore, E3 dis-
ables e and enables g when the buffer has exactly two type
D workpieces (state r8), forcing in this case g to occur
before e.

The composition K = E ‖ G models the behaviour
expected for G under the control of E and Table 1 shows
the number of states of these models.

Model K can then be used as input to synthesis algo-
rithms. This Section discusses only options for FSA-
based DES modelling, while control synthesis frame-
works are approached in Section 2.

2.2. Amotivating gap of ordinary FSAmodels

Despite the recognised role ever played by FSA for
DESs modelling, they face significant limitations when
applied on real industry-scale problems. It can be shown
Mohajerani, Malik, and Fabian (2017), Gohari andWon-
ham (2000), Cury et al. (2015), Teixeira et al. (2015),
Rosa, Teixeira, andMalik (2018), and Teixeira, Cury, and
de Queiroz (2018) that workflows commonly found in
factory automation, such as recycling, buffering, and par-
allel manufacturing, may require hundreds of thousands
of states to be expressed by ordinary FSA.

In Figure 1, for example, the activation of machine 3
depends on memorising certain sets of components in
the buffer in order to ensure their correct manufacture.
For a buffer with capacity of n workpieces, for instance,
thismodellingmight require n+ 1 states to be handled. If
more than one type of workpiece were to be traced in the
buffer, then this modelling could be far more complex.

As these are manual tasks, memorising complex
sequences of events and states relies entirely on the

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 3399

designer and it is not rarely unworkable. Alternatively, the
literature (Teixeira et al. 2015; Cury et al. 2015) has sug-
gested the possibility of enriching FSA with parameters
that model extra information or meaning about specific
parts of a DES behaviour. When properly engineered, a
parameter allows identifying and isolating certain con-
texts from others, throughout the system model, and
this can simplify design tasks. A formalism that sup-
ports embedding parameters into FSA is presented in the
following.

2.3. Parameterisation of events

Event-parameterised FSA (EpFSA) are state-machines
similar to ordinary FSA, but extended with a mechanism
that stores parameters of a DES model in the form of
instances of events, systematically mapped from the orig-
inal event set. The result is a model that provides addi-
tional information of a DES, which in general benefits
modelling.

Formally, a EpFSA maps each event σ ∈ � into a set
of instances�σ = {δ1, δ2, . . . , δn}, and δi aims to store cer-
tain context semantics, which is to be further defined. In
this way, � becomes a reference event set for an instanti-
ated event set �=⋃

σ∈� �σ .
The mapping from� to the reference� can be imple-

mented by 	 : �∗ −→ �∗, defined recursively such that
	(ε) = ε and 	(tδ) = 	(t)σ for t ∈ �∗, δ ∈ �σ and
σ ∈ � (Cury et al. 2015). This map can be generalised
to any language LD ⊆ �∗ by 	(LD) = {s ∈ �∗ | ∃t ∈
LD,	(t) = s}. Inversely, 	−1 : �∗ −→ 2�∗ maps from
the reference set� to the dilated domain�, and it can be
defined as 	−1(s) = {t ∈ �∗ | 	(t) = s}, and extended
to any language L by 	−1(L) = {t ∈ �∗ | 	(t) ∈ L}.

For an FSA A, the map 	−1(A) means replacing the
event of each transition by the respective set of instances
AD. Inversely, 	(AD) recovers each original event, so
that

	(−1(A)) = A (1)

follows Cury et al. (2015). This process is illustrated in
Figure 3.

When a DES plant is modelled by G, the correspond-
ing EpFSA GD = 	−1(G) represents G with enriched

Figure 3. Event dilatation and recovering.

context semantics carried by instances of events, and
the return to G is well defined from 	(GD) = G as in
Equation (1). However, note that GD is a particular ver-
sion of G that may enable more than one instance for
each event enabled inG. In practice, thismeans thatGD is
capable of recognising different context semantics for G,
but it is unable to choose which one applies at each step.

The choice for instances in �σ = {δ1, δ2, . . . , δn} of an
event σ ∈ � depends on an additional model to filter GD,
assigning its appropriate semantics. A filter, denotedHD,
has the unique role of imposing context switching to the
plant composition GD‖HD. That is, HD has no intention
to restrict GD by disabling events completely, as specifi-
cations do. Instead, it simply chooses which instance of
event should survive in GD when more than one are eli-
gible. Furthermore, in this paper a filter is assumed to be
precise, as follows.

Definition 2.1: For a DES plant G, let GD = 	−1(G)

and let HD be the filter for GD. HD is precise if, for every
state q ∈ QGD‖HD

, and every event σ ∈ �, it follows that
|��σ

(q)| ≤ 1.

Definition 2.1 ensures a single instance δi ∈ �σ is eligi-
ble upon a transition inGD ‖HD. It represents the context
to be enabled and all others are disabled.

2.3.1. Example with EpFSA
For the example in Section 2.1, the corresponding EpFSA
are depicted in Figure 4.

Events b and d are instantiated such that �b =
{b0, b1, b2} and �d = {d0, d1, d2} and they aim to carry
extra information about the number of workpieces types
B and D in the buffer, respectively. Events e and g are also
parameterised as �e = {e0, en, ed} and �g = {g0, gn, gd}
such that: e0 and g0 mean that the buffer is empty; ed and
gd represent a set of type D workpieces in the buffer; and
en and gn represent all other combinations.

Then, the plant models Gi
D, i = 1, . . . , 4 enrich the

corresponding plants Gi by recognising more contexts,
but they are unable to choose which context applies at

Figure 4. Plant and specification models for the example.

3400 L. F. P. SOUTHIER ET AL.

Figure 5. Filter for the example.

Table 2. Number of states (and transitions) for the example.

Plant Specification Filter Composition

FSA 8 (32) 7 (12) – 56 (136)
EpFSA 8 (72) 2 (11) 6 (24) 56 (136)

every step of the plant. For example, transition q1
b0,b1,b2−−−−→

q0 is labelled with all instances of b, while it should pre-
cisely enable one. Such a complement is provided for the
plant GD by HD. For the plant in Figure 4, a precise HD
can be designed as in Figure 5.

Note in Figure 5 that each state of HD enables at
least one event in the instantiated event set �HD =
{bi, di, ej, gj}, for i = 0, 1, 2 and j = 0, n, d, for each event
in the corresponding reference set	(�HD) = {b, d, e, g}.
This means thatHD acts strictly as a complement forGD,
not ever restricting it. Furthermore, HD enables exactly
one instance for each event in 	(�HD) at each state,
whichmeans that it is precise. Therefore, when composed
with GD, HD leads to a plant that keeps a single string
t ∈ L(GD ‖HD) for each corresponding s ∈ L(G), while
still simplifying the specification ED with respect to E,
besides to make it independent on buffer capacity.

In the example, overflow and underflow can be
avoided by ED

1 and ED
2, and the correct actioning of

Machine 3 is guaranteed by ED
3. Table 2 shows the num-

ber of states of these models.

2.4. Amotivating gap of EpFSAmodels

In comparison with FSA, EpFSA are more efficient to
design and memorise contexts of a DES, at the price of
modelling the filter HD to complement its plant model.
Besides to be an additional step included in the design of
DESs, modellingHD is also a manual task with complex-
ity difficult to be estimated in advance.

Therefore, although the instantiated version of the
DES model clearly benefits the project of specifica-
tions (as shown in the example of Section 2.3.1 and in
the literature (Cury et al. 2015; Teixeira, Cury, and de

Queiroz 2018)), it in contrast transfers modelling effort
to the plant, reverting parts of its advantages and making
its usefulness at least questionable.

In the following, we show that the filter HD can nev-
ertheless be derived from a different notion of mod-
elling, which tends to bemore tunned with the designer’s
perception, alleviating the burden added to the plant
modelling by EpFSA. We also exploit the automatic con-
struction of a modular version of HD = HD1‖ · · · ‖HDm,
which can further benefit other steps of the project of
controllers, such as control synthesis (see Section 4), in
addition to design issues.

2.5. Parameterisation of states

State-parameterised FSA (SpFSA) are similar to ordinary
FSA, but their transitions include formulas over vari-
ables. Formally, a SpFSA can be expressed as a tuple
AE =

(
�,V,Q, q◦,Qω,PV ,�

)
(Chen and Lin 2001; Teix-

eira et al. 2015) where � is the alphabet of events; V =
{v1, . . . , vn} is the set of variables; Q is the set of states1;
q◦ ∈ Q is the initial state;Qω ⊆ Q is the subset ofmarked
states; PV is the set of formulas over V ; and � ⊆ Q ×
� × PV × Q is the transition set that leads from a state in
Q to another, with an event taken from �, and formulas
taken from the set of formulas PV .

In this definition, a variable v is an entity with a finite
domain Dom(v) and an initial value vo ∈ Dom(v). Then,
V = {v1, . . . , vn} has a domain Dom(V) = Dom(v1)×
· · · × Dom(vn). In order to manipulate variables, SpFSA
use formulas from PV = {p1, . . . , pm}. In conjunction,
variables and formulas establish a new transition mech-
anism, also denoted differently (Chen and Lin 2001): a
transition from q0 to q1 in Q, with the event σ ∈ � and
formula p ∈ PV ,is exposed as q0

σ :p−→ q1. Notation q0
σ:p−→

means q0
σ:p−→ q1 for some state q1 ∈ Q.

In order to differentiate variable values before and
after the transition, a next-state variable set V ′ =
{v′1, . . . , v′n}, with Dom(V) = Dom(V ′), is associated to
V. Then, v ∈ Dom(v) and v′ ∈ Dom(v′) mean the value
assumed by the variable v respectively in the current and
next-state.

Structurally, each formula p ∈ PV is constructed using
a set of current-state variables, denoted Vp, and a set
of next-state variables, V ′p, such that Vp ⊆ V and V ′p ⊆
V ′. Then, the effect of evaluating formulas upon tran-
sitions can be described by their impact on variable
values associated with current and next-states. This
can be captured by the variation imposed to the gen-
erated tuple v̂′p = (vi′, . . . , vj′) ∈ Dom(V ′p) = Dom(v′i)×
· · · × Dom(v′j) with respect to the source tuple v̂p =

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 3401

(vn, . . . , vm) ∈ Dom(Vp) = Dom(vn)× · · · × Dom(vm),
which are called valuations.

A formula p ∈ PV can either update or test variable
values upon transitions. An update p replaces the valua-
tion v̂p, associated to the current-state, to a new valuation
v̂′p in the reached state, which is denoted by v̂′p = p(v̂p).
A valuation v̂p is said to be valid for p if v̂p ∈ Dom(Vp),
and v̂′p ∈ Dom(V ′p). Differently, test formulas (or guards)
do not change any variable value (V ′p = ∅), they simply
test values associated to the current state (v̂p), disabling
or not the transition depending on the test result, i.e.
p(v̂p) = true or p(v̂p) = false. Therefore, any valuation
v̂p ∈ Dom(Vp) is valid over test formulas.

For the results in this paper, it is sometimes neces-
sary to infer about some particular variable values inside
a larger tuple. Let V1 = {vi, . . . , vj} be a set of variables
and v̂1 = (vi, . . . , vj) be a valuation on V1. We denote by
v̂1(V2) the values in v̂1 that correspond to variables inV2,
for any V2 ⊆ V1.

To exemplify, let x and y be two variables such that
Dom(x) = Dom(y) = {1, 2, 3}, and V = {x, y}. Now let
x′ = x+ y+ 1 be a formula p1 ∈ PV that changes the
value of x′, with Vp1 = {x, y}, V ′p1 = {x}, Dom(Vp1) =
Dom(V), and Dom(V ′p1) = Dom(x). The current-state
valuations v̂p1 are in the form of (x, y) and the next-state
valuations v̂′p1 are in the form of (x).

Then, for a valuation v̂p1 = (1, 1), it follows that
p1(v̂p1) = (3) and v̂p1 = (1, 1) is valid with respect to
p1. For v̂p1 = (2, 2), then p1(v̂p1) = (5) /∈ Dom(V ′p1), and
v̂p1 = (2, 2) is not valid for p1. For a test formula, for
example y>2, it follows that Vp2 = {y}, Dom(Vp2) =
Dom(y), and the valuations v̂p2 are in the form of (y).
Then, p2(v̂p2) is true for the valuation v̂p2 = (3), and false,
otherwise.

Next, plant SpFSA are assumed to implement only
updates. This is because we want updates to be context
selectors for the plant, without imposing any restriction.
Differently, specifications only test value combinations,
from those enabled by the plant, and have the purpose
of disabling transitions upon false evaluations. These
assumptions are necessary conditions for the synthesis
algorithmswith SpFSA to hold (Teixeira et al. 2015;Malik
and Teixeira 2016, 2020, 2021).

Furthermore, in order for the context selection to be
precise, i.e. for it to enable a single value combination at
each state, updates are assumed to be exact, i.e. for each
valuation v̂p, an update p(v̂p) leads to a unique valuation
v̂′p. This differs from approaches that also handle variable
abstraction, which in general deal with nondeterminism
of variable values (Teixeira et al. 2015; Malik and Teix-
eira 2020). Finally, updates are all required to be conver-
gent, i.e. for any two transitions x1

σ :p1−−→ y1 and x2
σ :p2−−→

y2 with the same event σ ∈ �, it holds that v̂′p1 = v̂′p2 .

Thismeans that two updates cannot implement divergent
changes on a variable, upon a same event.

Remark that, so far, a SpFSA is exposed in its implicit
form, i.e. including all formulations. In this case, the
value combination to be associated with each state is
unknown until each formula is in fact evaluated. After
that, the SpFSA becomes explicit, as each variable value
is revealed in each state and the state-space is unfolded.
In this paper, we use unfolded SpFSA for quantifications,
such as state-space, which is ameasure for computational
effort.

Given a SpFSA Av =
(
�,V,Q, q◦,Qω,PV ,�

)
, the

explicit version of a transition q0
σ:p−→ q1 is written as

(q0, v̂p)
σ−→ (q1, v̂′p), such that v̂p and v̂′p are the valuations

in q0 and q1′, respectively. This can be extended to strings
s ∈ �∗ by (q0, v̂p0)

s−→ (q1, v̂′p1). Notation (q0, v̂p)
σ−→

means (q0, v̂p)
σ−→ (q1, v̂′p), i.e. v̂p in q0 enables the event σ

leading to some state q1 ∈ Q and some next-state valua-
tion v̂′p. The samenotation is used for strings in�∗, where
Av

s−→ means (q◦, v̂p0)
s−→ (q, v̂′p1) for some state q ∈ Q

and some next-state valuation v̂′p1 , while A −→ q means

(q◦, v̂p0)
s−→ (q, v̂′p1) for some s ∈ �∗. Then, L(Av) =

{ s ∈ �∗ | Av
s−→ q ∈ Q } is the language of Av.

2.5.1. Example with SpFSA
Here, we show how the example presented in Section 2.1
can be remodelled using SpFSA andwe highlight possible
benefits of that.

Let the FSA G1, G2, G3 and G4 from Figure 2 be now
modelled respectively by the SpFSA G1

E, G
2
E, G

3
E and G4

E
as in Figure 6. Structurally, they are essentially the same,
except that the SpFSA update variables x, y ∈ V . They are
defined with domains Dom(x) = Dom(y) = {0, 1, 2, 3}
and initial values xo = yo = 0, in order to memorise the
number of workpieces inserted in the buffer byMachines
1 and 2, respectively. The variables are updated by formu-
las on transitions with the events b and d (insertion) and
e (removal).

Figure 6. SpFSA models for the example.

3402 L. F. P. SOUTHIER ET AL.

Table 3. Number of states (and transitions) for the example.

Plant Specification Filter Composition

FSA 8 (32) 7 (12) - 56 (136)
EpFSA 8 (72) 2 (11) 6 (24) 56 (136)
SpFSA 72 (380) 2 (14) - 56 (136)

The benefits brought by updating x and y in the system
plant can be really seen when remodelling E. Underflow
and overflow can now be prevented respectively by the
modular specifications EE

1 and EE
2, while the correct

activation of machine 3 (occurrence of g only for a pair
type D) is controlled by the specification EE

3, depicted in
Figure 6.

Model EE
i tests the values of x and y before enabling

the events b, d, e and g, which is independent on buffer
capacity. This comes at the price of constructing the
updates in the plant model, but this is rather an intuitive
task, in general.

For SpFSA, the plant model is given by the compo-
sition GE = G1

E ‖ G2
E ‖ G3

E ‖ G4
E, and the specification is

modelled by EE = EE
1 ‖ EE

2 ‖ EE
3 ‖ EE

4, so that KE =
GE ‖ EE expresses the behaviour expected fromGEwhen
controlled by EE. Table 3 shows the number of states and
transitions for these models. For the sake of clarity, it also
repeats the statistics for all approaches.

Note that KE is modelled with 56 unfolded states,
therefore the same number as K (and KD). This suggests
that the computational cost to process both models is the
same, but the modelling of KE and KD is much simpler
and it remains simple for any buffer size to be considered.

Actually, the difference betweenKE andKD is thatKE

can keepmemory of aDESmodel bymanipulating simple
formulas, engineered over a high-level viewof the system.
Differently, obtaining KD requires the manual construc-
tion of a filter HD, which is unsystematic and it can be
complex (see Figure 5). In practice, the construction of
KD only transfers modelling effort from the specification
to the filter, so that its real advantages are unclear to be
claimed.

2.5.2. Amotivating gap of SpFSAmodels
Despite possible modelling advantages brought by the
easy way behaviours and restrictions are expressed,
SpFSA do not fully exploit modularisation under control
synthesis. There are abstraction techniques
(Teixeira et al. 2015) that work modularly (Malik and
Teixeira 2016, 2020) by removing unnecessary variables
from synthesis. Variables to be ruled out are chosen
according to the role they play in control, and this
reduces the computational effort needed to process syn-
thesis. However, those techniques do not work with par-
tial abstractions, i.e. abstractions that, besides removing

unnecessary variables, also remove unnecessary parts of
necessary variables.

Partial abstractions are more complicate to be con-
structed, as variable domains are intrinsically insepara-
ble, so that they are usually taken entirely in synthesis.
When a variable domain is large and combined with
other variable domains, it tends to create huge states-
spaces that limit algorithmic treatment and prevent, to
some extent, modelling advantages to propagate through
synthesis and implementation phases. Parallel advan-
tages can be taken by converting SpFSA into EpFSA, as
shown in the following.

3. Proposed conversionmethod

This Section shows how EpFSA can be derived from
SpFSA. The idea is to conduct modelling using SpFSA,
converting then into EpFSA for synthesis. Advantages of
this method are quantified in Section 4, and the general
context of the conversion is illustrated in Figure 7.

The first column illustrates the usual case where a DES
and its specifications are respectively modelled by the
FSA G and E, where K = G ‖ E is the synthesis input
using the classic monolithic SCT framework (Ramadge
and Wonham 1989).

In the third column, SpFSA are used to handle mod-
elling. It uses the same event set � as for FSA, but it is
helped in modelling by variables and updates. The result
is that FSA G and E are now expressed by SpFSA GE and
EE, which leads to a composition KE that can be used as
synthesis input for the algorithm in Teixeira et al. (2015).

The second column structures modelling on a differ-
ent, dilated, set of events, �. This leads to a plant GD that
is complemented with HD for context recognition and
switching. In the same way, E turns to be modelled by
ED and the synthesis input is then given by the compo-
sition KD = GD ‖ ED ‖ HD, such that 	(KD) and K are
expected to be language equivalent2 (Cury et al. 2015).

Summarizing, FSA, SpFSA and EpFSA are expected
to compose equivalent synthesis inputs. However, ordi-
nary FSA are usually limited for modelling. Differently,
SpFSA are more suitable for modelling, but not directly
for synthesis.

For example, the algorithm in Teixeira et al. (2015)
synthesises for controllability and least restrictiveness of
SpFSA, but it does not work for nonblocking results. Fur-
thermore, a supervisor computed from SpFSA is another
SpFSA that makes implementation more difficult, as it
still includes formulas and updates. Finally, the SpFSA
synthesis result is also difficult to be compared with an
ordinary supervisor, as SpFSA and FSA do not usually
share the same properties (Malik and Teixeira 2020).

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 3403

Figure 7. Structural comparison of FSA, SpFSA and EpFSA.

This motivates us to take advantages from SpFSA
in modelling, but using their ordinary EpFSA version,
obtained from our conversion method, for the further
steps of control engineering. EpFSA have the advantage
of keeping modularity by renaming events according to
contexts, which in synthesis is essential to split compu-
tation in smaller, simpler, parts (Teixeira, Cury, and de
Queiroz 2018). Next, we present the proposed conversion
method in details.

3.1. Converting SpFSA into EpFSA

Recall that, in a SpFSA, a transition with a given event
σ ∈ � may implement formulas p ∈ PV that use or test
variables values (vi, . . . , vj) = v̂p ∈ Dom(Vp), leading to
a deterministic valuation (vk′, . . . , vl′) = v̂′p ∈ Dom(V ′p)
at every state.

Variables in the sets Vp and V ′p, and their valuations
v̂p and v̂′p, are parameters that represent the DES con-
text in its current and next-states, respectively. In order to
reproduce similar effect using parameterised events, one
option is concatenating each original event to a param-
eters describing the change from current to next con-
text. This notion leads to a new set of parameterised
events.

Systematically, if there is no context switching upon
a transition, i.e. the transition does not implement any
formula and Vp ∪ V ′p = ∅, then there is no need for cre-
ating a parameterised event. However, if Vp ∪ V ′p �= ∅,
then at least one variable value has been modified or
tested upon the transition and parameters representing
this modification must be added to the in-construction
EpFSA. This construction is formalised by first defining

a set of variables Vσ =⋃
j Vpj ∪ V ′pj , for all

σ :pj−−→. Then,

for a valuation V̂
σ
i ∈ V̂σ , such that V̂σ = Dom(Vσ), the

context switching can be captured by the parameterised

event σ
Vσ V̂

σ
i
, meaning that the variables in Vσ have the

valuation V̂
σ
i before the transition with σ .

For instance, consider the transitions σ :w′←0−−−−→ and
σ :z′←w−−−−→ such that Dom(z) = Dom(w) = {0, 1}. First,
Vσ = {w, z} is created, because Vw′←0 = {w}, V ′w′←0 =
∅, Vz′←w = {z}, and V ′z′←w = {w}. Observe that all vari-
ables involved in the updates related to σ are elements in
Vσ . Then, V̂σ = Dom(Vσ) = {(0, 0), (0, 1), (1, 0), (1, 1)}
includes all valid combinations for variables in Vσ . Now,
by concatenating the event σ , the variables Vσ , and each
possible combination V̂

σ
i ∈ V̂σ , one creates the param-

eterised events as σ
Vσ V̂

σ
i
, i.e. σwz00, σwz01, σwz10, and

σwz11.
By doing this for all events, and all possible variable

changes, an EpFSA can preserve exactly the same seman-
tic of updates as a SpFSA, but using a different mecha-
nism, which enriches transitions instead of states. In this
paper, the entire conversion is founded on the four-steps
procedure in Figure 8.

The first step extracts all contexts to be possibly
assumed by the SpFSA plant GE and specification

Figure 8. Conversion process from SpFSA to EpFSA.

3404 L. F. P. SOUTHIER ET AL.

Algorithm 1: Context extraction from SpFSA to EpFSA

input : plant GE =
(
�G,VG,QG, q

◦
G,Q

ω
G, PVG,�G

)

specification EE =
(
�E,VE,QE, q

◦
E,Q

ω
E , PVE,�E

)

output: set of parameterized events �

1 begin
2 �← ∅
3 foreach σ ∈ �G do
4 �σ ← ∅, Vσ ← ∅, V̂σ ← ∅
5 foreach transition q1

σ :p−→ q2 ∈ �G ∪ �E , such that
q1, q2 ∈ QG ∪ QE , p ∈ PVG ∪ PVE and Vp ∪ V ′p �= ∅
do

6 V
σ ← V

σ ∪ Vp ∪ V ′p
7 end
8 foreach V̂

σ
i ∈ Dom(Vσ), such that V

σ = {vj, . . . , vk}
and Dom(Vσ) = Dom(vj)× · · · × Dom(vk) do

9 V̂
σ ← V̂

σ ∪ V̂
σ
i , such that V̂

σ
i (Vp ∪ V ′p) is valid

with respect to p ∀ transitions
q1

σ :p−→ q2 ∈ �G ∪ �E
10 end
11 �σ ← �σ ∪ {σ

Vσ V̂
σ
i
}, for each V̂

σ
i ∈ V̂

σ

12 if V
σ = ∅ then

13 �σ ← σ

14 end
15 �← �∪�σ

16 end
17 return �

18 end

EE (Algorithm 1). This generates a set of parame-
terised events �, each representing a context. Then, the
SpFSA plant GE is converted into an EpFSA plant GD
(Algorithm 2). As initially GE may not be precise, a filter
is constructed in the third step by extracting the context
switching behaviour from variable updates (Algorithms 3
and 4). Finally, the fourth step maps the restrictions
modelled by the specification, from SpFSA to a EpFSA
(Algorithm 5). Each algorithm is introduced, discussed
and exemplified in details in the following.

3.1.1. Context extraction
For context extraction, Algorithm 1 initially takes the
new alphabet � as empty (line 2). Then, for each event
σ ∈ �, it constructs a set of parameterised events�σ rep-
resenting all possible contexts that σ can assume. Vσ is
the set of variables involved on context representation of
σ and V̂σ is the set of possible valuations for Vσ , that is,
V̂

σ
i ∈ V̂σ such that V̂

σ
i ∈ Dom(Vσ).

Initially, �σ , Vσ and V̂σ are all empty (line 4). Then,
all transitions labelled σ : p are read from the input
SpFSA GE and EE (line 5) in order to identify the vari-
ables that represent contexts for σ . Variables in Vp ∪
V ′p are added to the set Vσ . Next, each valuation V̂

σ
i ∈

Dom(Vσ) is inserted into the set V̂σ , as long as V̂
σ
i is

valid with respect to all formulas on transitions with σ

(line 8).

Finally, each parameterised event is created by asso-
ciating to σ the variables in Vσ and each of the valid
valuations V̂

σ
i in V̂σ . If no parameterised event have to be

created (i.e. Vσ = ∅) then σ is added to �σ . As a result,
Algorithm 1 identifies all possible contexts inGE and EE,
and reproduces them in � by using a mechanism that is
free from formulas and variables.

3.1.1.1. Example. For the input models in Figure 6, it
is possible to obtain the corresponding �D by using
Algorithm 1. Events a, c and f have no transitions
with formulas in Figure 6 (Vp = V ′p = ∅ follows for
all transitions), then �a = {a}, �c = {c}, and �f = {f }.
The formulas x′ ← x+ 1 and if x+ y < 2 are associ-
ated with the event b, then the set of variables asso-
ciated with b is V

b = {x, y}. The set of valuations
in the form (x, y) of V

b that are valid with respect
to all formulas associated to b in the plant is V̂b =
{(0, 0), (0, 1), (0, 2), (0, 3),(1, 0), (1, 1), (1, 2), (1, 3),(2, 0),
(2, 1), (2, 2), (2, 3)}. Because x == 3would assign a value
beyond the domain of x, the valuations (3, 0), (3, 1), (3, 2)
and (3, 3) are not valid. Therefore, the set of parame-
terised events for b is�b = {bxy00,bxy01, bxy02,bxy03, bxy10,
bxy11, bxy12, bxy13, bxy20, bxy21, bxy22, bxy23}.

In the same way, for the event d, V
d = {x, y}, V̂d =

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1),(1, 2), (2, 0), (2, 1),(2, 2),
(3, 0), (3, 1), (3, 2)}, and �d = {dxy00, dxy01, dxy02, dxy10,
dxy11, dxy12, dxy20, dxy21, dxy22, dxy30, dxy31, dxy32}; for e,
V

e = {x, y}, V̂e = {(0, 0), (0, 1), (0, 2),(0, 3), (1, 0),(1, 1),
(1, 2), (1, 3), (2, 0), (2, 1),(2, 2), (2, 3),(3, 0), (3, 1), (3, 2),
(3, 3)}, and �e = {exy00,exy01,exy02, exy03,exy10, exy11,exy12,
exy13, exy20, exy21, exy22, exy23, exy30, exy31, exy32, exy33}; and,
for g, V

g = {y}, V̂g = {(0), (1), (2), (3)}, and �g =
{gy0, gy1, gy2, gy3}.

3.1.2. Plant conversion
In order to convert the plant into an EpFSA, Algorithm 2
replaces each event σ of a transition in Gi

E by the corre-
sponding parameterised set of events �σ ∈ �. For that,
it initially constructs a structure of states identical to the
input SpFSA. As the new alphabet and transition relation
are undefined at this point, they are started as empty.

For each transition labelled with an event σ in the
input SpFSA Gi

E (line 4), the corresponding events �σ ∈
� are included into the output EpFSA alphabet �D

(line 5). Then, new transitions are created replacing the
eventσ by each of the parameterised events in�σ (line 6).
Finally, those transitions are included on set �D.

3.1.2.1. Example. By taking the alphabet �, generated
by Algorithm 1, it is possible to create the EpFSA in
Figure 9 by providing the SpFSA plants in Figure 6 as

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 3405

Algorithm 2: Plant conversion from SpFSA to EpFSA

input : SpFSA plant Gi
E =

(
�,V,Q, q◦,Qω , PV ,�

)

set of parameterized events �

output: EpFSA plant Gi
D =

(
�D ,QD , q◦D ,Qω

D ,�D

)

1 begin
2 QD ← Q, Qω

D ← Qω , �D ← ∅, �D ← ∅
3 q◦D ← q◦

4 foreach transition q1
σ :p−→ q2 ∈ �, such that q1, q2 ∈ Q,

σ ∈ � and p ∈ PV do
5 �D ← �D ∪�σ

6 �D ← �D ∪ {q1 δ−→ q2}, for all δ ∈ �σ

7 end
8 return Gi

D
9 end

Figure 9. Converted plant models.

input to Algorithm 2. The result is that each event σ ∈ �

is replaced by the corresponding �σ ∈ �.

3.1.3. Context switching
Note that the models resulting from Algorithm 2 require
to be complemented with a mechanism to select and
switch contexts. Without context switching, events of an
EpFSAmay occur ambiguously with respect to the source
event (signal) in the DES plant, from which they have
been created.

To avoid such a problem, Algorithms 3 and 4 explore
the updates inGE to create a set, denotedH, of additional
EpFSA, named filters. Models in H aim to implement
context switching based on how variables in V change
their values upon transitions.

In this paper, for the sake of clarity, the construction
ofH is illustrated in 2 steps: Initially, we use Algorithm 3
to calculate an intermediate setH′ of filtersHvi , each one
addressing the context switching of a particular variable
vi ∈ V ; Then, we use H′, and Algorithm 4, to calculate
the final set H of 2-state modular filters, such that HD =
H′‖ = H‖.

The reasoning behindAlgorithm3 can be stated as fol-
lows. First, the set H′ is initialised as empty. Then, for
each variable vi ∈ V a EpFSA filter Hvi is created and
added to set H′. The process of creating each Hvi is as
follows: first, a set of states Qvi , representing each possi-
ble value in the domain of variable vi, is created (line 4);

Algorithm 3: Switching extraction from SpFSA to EpFSA

input : plant model GE =
(
�,V,Q, q◦,Qω , PV ,�

)

set of parameterized events �

output: set H′ of non-modular EpFSA representing the plant
context switching

1 begin
2 H′ ← ∅
3 foreach variable vi ∈ V, such that Dom(vi) = {vi1, . . . , vin}

and voi ∈ Dom(vi) do
4 Qvi ← {qvi1 , . . . , qvin }
5 q◦vi ← qvoi , Q

ω
vi ← Qvi

6 �vi ← ∅, �vi ← ∅
7 foreach transition q

σ :p−→ ∈ � do
8 foreach parameterized event σ

Vσ V̂σ ∈ �σ , such
that vi ∈ V

σ do
9 curr← V̂

σ (vi)
10 if vi ∈ V ′p then
11 next← p(V̂σ (Vp))

12 else
13 next← curr
14 end
15 �vi ← �vi ∪ {σ

Vσ V̂σ }
16 �vi ← �vi ∪ {qcurr

σ
Vσ V̂σ−−−−→ qnext}

17 end
18 end
19 Hvi ← (�vi ,Qvi , q◦vi ,Q

ω
vi ,�vi)

20 H′ ← H′ ∪ {Hvi }
21 end
22 return H′
23 end

second, the initial state q◦vi is defined to include the initial
value voi ∈ Dom(vi) of the variable vi; third, all states are
marked (Qω

vi = Qvi) and sets �vi and �vi are initialised
(line 6); then, all transitions and parameterised events of
Hvi are created based on how the variable vi changes its
values upon transitions.

In this way, each event σ of a transition q
σ :p−→∈ � has

a corresponding parameterised event set �σ . And, each
parameterised event σ

Vσ V̂σ ∈ �σ identifies: (i) which
variable has changed its value upon the occurrence of σ ,
in Vσ ; and (ii) what was the value of this variable before
σ , in V̂σ , i.e. the current-state value. The value assumed
after σ can be calculated by simply applying formula p to
V̂σ .

Therefore, as each state in Qvi maps a value of vi, it is
possible to create transitions in �vi labelled σ

Vσ V̂σ , such
that: the current-state (qcurr) identifies the current value
of vi (i.e. V̂σ (vi) (line 9)); and the next-state (qnext) iden-
tifies the value assumed by vi after the transition (i.e.
p(V̂σ (Vp)) (line 11)). When q

σ :p−→ does not changes the
value of vi, i.e. vi /∈ V ′p, the current and next-state are
assumed as the same (line 13).

The event σ
Vσ V̂σ ∈ �σ is added to the event set �vi

(line 15) and the created transition is added to �vi . The
created non-modular filter model Hvi is added to set H′,
which is returned by the end of the algorithm.

3406 L. F. P. SOUTHIER ET AL.

3.1.3.1. Example. Given the alphabet �, resulting from
Algorithm 1, one can automate the design of the EpFSA
filters in Figure 10, by giving the SpFSA plants in Figure
6 as input to Algorithm 3. As V = {x, y}, Algorithm 3
creates the filters Hx and Hy, for the variables x and y,
respectively.

Consider the variable x, for example. A state set
Qx = {q0, q1, q2, q3} is created to map the values of
Dom(x) = {0, 1, 2, 3} (line 4). The initial state is defined
as q0, because xo = 0, and all states are marked.
Then, for each transition q

σ :p−→ ∈ � in the plant
model, and based on the corresponding events σ

Vσ V̂σ ∈
�σ , for x ∈ Vσ , the transitions of Hx are created as
follows:

• for q
b:p−→, with p = x′ ← x+ 1:

o transitions q0
bxy00−−→q1, q0

bxy01−−→q1, q0
bxy02−−→q1, and

q0
bxy03−−→q1 are created, because the current-state

value of x is 0 and the next-state value of x is
p(0) = 1;

o transitions q1
bxy10−−→q2, q1

bxy11−−→q2, q1
bxy12−−→q2, and

q1
bxy13−−→q2 are created, because the current-state

value of x is 1 and the next-state value of x is
p(1) = 2;

o transitions q2
bxy20−−→q3, q2

bxy21−−→q3, q2
bxy22−−→q3, and

q2
bxy23−−→q3 are created, because the current-state

value of x is 2 and the next-state value of x is
p(2) = 3;

Figure 10. Non-modular filters.

Figure 11. Example of superstates.

• for q
e:p−→, with p = x′ ← 0:

o transitions q0
exy00−−→q0, q0

exy01−−→q0, q0
exy02−−→q0, q0

exy03−−→
q0, q1

exy10−−→q0, q1
exy11−−→q0, q1

exy12−−→q0, q1
exy13−−→

q0, q2
exy20−−→q0, q2

exy21−−→q0, q2
exy22−−→q0, q2

exy23−−→q0,

q2
exy30−−→q0, q2

exy31−−→q0, q2
exy32−−→q0 and q2

exy33−−→q0
are created, because regardless the current-state
value of x, the next-state value of x is always 0;

• for
d:p−→, such that p does not update x, it follows that:

o transitions q0
dxy00−−→q0, q0

dxy01−−→q0, q0
dxy02−−→q0, q1

dxy10−−→
q1, q1

dxy11−−→q1, q1
dxy12−−→q1, q2

dxy20−−→q2, q2
dxy21−−→

q2, q2
dxy22−−→q2, q3

dxy30−−→q3, q3
dxy31−−→q3 and q3

dxy32−−→
q3 are created as self-loops, because regardless
the current-state value of x, the next-state value
is the same;

The same reasoning applies for the variable y, which leads
to the EpFSA filter Hy shown in Figure 10. Then, HD =
H′‖ = {Hx,Hy} can be exposed as set of non-modular
filter models. Next we show how to obtain the modular
version of H′.

3.1.3.2. Non-modular to modular conversion. The idea
of superstate plays an essential role for the modular
derivations that follow. For an FSA A, it is possible to
create an FSAA′, such that a group of states inA is repre-
sented by only one state in A′, which is called a superstate
(Bassino, Béal, and Perrin 1998). Each different grouping
of states in A leads to a different FSA Ai, and it follows
for all cases that A � Ai, which denotes that Ai includes
A and may be a more permissive model.

Figure 11 illustrates this idea by an example of an FSA
Awith three states (q0, q1 and q2) and three 2-state mod-
els (A0 A1 and A2). In A0, the states q1 and q2 from A are
combined into a superstate q{1,2}, while state q0 remains
unchanged. Transitions between the states q1 and q2 in A
are now self-loops on the superstate q{1,2}. The same fol-
lows for A1 and A2, which could include two superstates
q{0,2} and q{0,1}. Note that L(A0‖A1‖A2) = L(A).

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 3407

Algorithm 4: non-modular to modular filter conversion

input : set H′ of non-modular EpFSA filters
output: set H of 2-state modular EpFSA filters

1 begin
2 H← ∅
3 foreachmodel H′j ∈ H′, such that H′j = (�′j,Q′j, q◦j

′,Qω
j
′,�′j)

do
4 C←⋃{uij, cij}, such that uij �= ∅, cij �= ∅,

uij ∪ cij = Q′j, uij ∩ cij = ∅ and |uij| = 1
5 foreach {uij, cij} ∈ C do
6 �ij ← �′j
7 Qij ← {quij , qcij }
8 if q◦j

′ ∈ uij then
9 q◦ij ← quij

10 else
11 q◦ij ← qcij
12 end
13 Qω

ij ← Qij

14 �ij ← ∅
15 foreach transition q1

δ−→ q2 ∈ �ij do
16 if q1 ∈ uij and q2 ∈ uij then
17 �ij ← �ij ∪ {quij

δ−→ quij }
18 else if q1 ∈ cij and q2 ∈ cij then
19 �ij ← �ij ∪ {qcij

δ−→ qcij }
20 else if q1 ∈ uij and q2 ∈ cij then
21 �ij ← �ij ∪ {quij

δ−→ qcij }
22 else
23 �ij ← �ij ∪ {qcij

δ−→ quij }
24 end
25 end
26 Hij ← (�ij,Qij, q◦ij,Q

ω
ij ,�ij)

27 H← H ∪ {Hij}
28 end
29 end
30 return H
31 end

The idea of superstates is now used to rebuild the com-
ponents in H′i ∈ H′. This leads to very compact models
that, as shown in Section 4, have potential to benefit syn-
thesis. The following Algorithm 4 takes as input the set
H′ and it constructs the set H that includes only 2-states
EpFSA.

The key idea of the algorithm is established on line 4,
that creates all possible combinations j of two sets of states
uij and cij. We assume that uij is a unitary set including a
state fromQ′i, while cij is its complement set that includes
all other states from Q′i, except uij. In conjunction, each
combination j of uij and cij models a state quij and a
superstate qcij of a 2-state modular filter Hij.

The reasoning behind Algorithm 4 is explained as fol-
lows. Firstly, the event set �ij is assumed to be the same
as �′i. Then, the state set is created based on the two sets,
uij and cij, such that Qij = {quij , qcij} (lines 6 and 7). The
initial state q◦ij is defined as quij , if q◦i

′ ∈ uij, or as qcij oth-
erwise. The marked state set and the transition relation
are then initialised.

For each transition q1
δ−→ q2 ∈ �ij in H′i , a new tran-

sition is created in Hij by verifying if the states q1 and
q2 are either the state quij or combined into the super-
state qcij (lines 17 to 23). On line 26 the modular filter
Hij is constructed and added toH. By repeating this pro-
cedure for all components in H′, the algorithm leads to
a set H = {H1, . . . ,Hij} that can be composed to form
HD = H‖. When composed to the plant model GD, HD
represents equivalently the context updated by variables
and formulas in GE, using a different construction.

The following proposition confirms that the proposed
method preserves the same behaviour after conversion,
i.e. thatGD‖HD is equivalent to the explicit version ofGE.

Proposition 3.1: Let GE be a SpFSA modelling a DES
plant, and let GD and HD be EpFSA computed from GE
by Algorithms 2, 3, and 4. Then, it follows that

L(GE) = L((GD‖HD)).

Proof: Given a SpFSA plant model GE =
(
�E,VE,QE,

q◦E,Q
ω
E,PVE,�E

)
, converted EpFSA plantGD=

(
�D,QD,

q◦D,Qω
D,�D

)
, and filter model HD =

(
�H ,QH , q

◦
H ,

Qω
H ,�H

)
, let s ∈ �∗ and σ ∈ �E, such that sσ ∈ L(GE),

we show that also sσ ∈ L((GD ‖HD)).
First, sσ ∈ L(GE) implies, by construction, that

there exists a valuation v̂p ∈ Dom(Vp) that is valid for
some p ∈ PV , which also implies that there exists v̂′p ∈
Dom(V ′p) such that, for q0, q1 ∈ QE, the transitionGE

s−→
(q0, v̂p)

σ−→ (q1, v̂′p) exists. Also, as by assumption in this
paper updates are all exact, then the valuation v̂p leads to
a single possible next state valuation v̂′p.

From Algorithm 1, the valid valuations v̂p upon
the event σ lead to a set {δ0, . . . , δn} = �σ of events
(line 11). Then, by Algorithm 2, there exists transi-

tions q3
δi−→ q4, for all δi ∈ �σ , with q3, q4 ∈ QD. Fur-

thermore, from Algorithm 4, each possible valuation
is represented by a state, i.e. v̂p and v̂′p can be repre-
sented by states q5 and q6 ∈ QH . Because the valuations
are exact, for each different valuation v̂p there is only

one corresponding transition q5
δi−→ q6 ∈ �H , such that

δi ∈ �σ . Therefore, after γ ∈ L(GD ‖HD), for 	(γ) =
s, also γ δi ∈ L(GD ‖HD), and as 	(δi) = σ by con-
struction, then sσ ∈ L((GD ‖HD)), which generalised
shows L(GE) ⊆ L((GD ‖ HD))

For the inverse inclusion, let δ ∈ �, and γ ∈ �∗, such
that γ δ ∈ L(GD ‖HD). We show that 	(γ δ) ∈ L(GE).

Construct GD ‖HD

γ−→ q0
δ−→ q1, for q0, q1 ∈ QH . From

Algorithm 4, the transition q0
δ−→ q1 is constructed

univocally from a set of transition (Algorithm 2) for
events in �σ , such that 	(δi) = σ , for every δi ∈ �σ

3408 L. F. P. SOUTHIER ET AL.

(Algorithm 1). As �σ �= ∅, there exists at least one
valid valuation so that q2

σ :p−→ q3 in GE, for σ ∈ �E

and q2, q3 ∈ QE. In the explicit notation, there exists

GE

	(γ)−−−→ (q2, v̂p)
σ−→ (q3, v̂′p) and 	(γ)σ ∈ L(GE). �

3.1.3.3. Example. From the EpFSA filters in Figure 10,
Algorithm 4 can calculate a set of 2-states EpFSA to be
themodular filter. For instance, consider themodelHx =
(�x,Qx, q◦x,Qω

x ,�x) and the corresponding 2-state mod-
els in Figure 12. The set of possible combinations ofQx is
C = {{{q0}, {q1, q2, q3}}, {{q1}, {q0, q2, q3}}, {{q2}, {q0, q1,
q3}}, {{q3}, {q0, q1, q2}}}, that is, u1 = {q0} implies c1 =
{q1, q2, q3}; u2 = {q1} implies c2 = {q0, q2, q3}; u3 =
{q2} implies c3 = {q0, q1, q3}; and u4 = {q3} implies
c4 = {q0, q1, q2}. Then, for each uj there exists a 2-
state filter model Hxj , with construction exemplified
as follows.

Given u1 = {q0} and c1 = {q1, q2, q3}, the initial state
is qu1 , because q◦x ∈ u1 (line 9) and the set of states
is Qx1 = Qω

x1 = {qu1 , qc1} = {q{0}, q{1,2,3}}. Also, for each
transition in �x, a transition in �x1 is created, such
that:

Figure 12. Modular Filters for variable x.

• transitions labelled exy00, exy01, exy02, exy03, dxy00, dxy01,
and dxy02, are a selfloops on the state q0 ∈ Qx. There-
fore, the created corresponding transitions on �x1 are
also a selfloops on state qu1 , because q0 ∈ u1;

• transitions labelled bxy00, bxy01, bxy02, and bxy03, depart
from q0 to q1 ∈ Qx. Then, the created corresponding
transitions in �x1 are from qu1 to qc1 , because q0 ∈ u1
and q1 ∈ c1;

• transitions labelled exy10, exy11, exy12, exy13, exy20, exy21,
exy22, exy23, exy30, exy31, exy32, and exy33, depart from q1,
q2 or q3, to q0 ∈ Qx. Then, the created corresponding
transitions in �x1 are from qc1 to qu1 , because q0 ∈ u1
and q1, q2, q3 ∈ c1;

• all other transitions from �x do not leave or reach
q0. Therefore, the created corresponding transitions in
�x1 are selfloops in qc1 , because q0 /∈ c1;

Now, we can repeat this: for u2 = {q1} and c2 =
{q0, q2, q3}, which results in the filter Hx2 ; for u3 = {q2}
and c3 = {q0, q1, q3}, resulting in the filter Hx3 ; and for
u4 = {q3} and c4 = {q0, q1, q2}, resulting in the filter
Hx4 . Similarly, the set of EpFSA filters Hy1 ,Hy2 ,Hy3 ,Hy4
can be obtained from Hy, and they are shown in
Figure 13.

Figure 13. Modular Filters for variable y.

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 3409

3.2. Specification conversion

One remains to show how control specifications mod-
elled by SpFSA can be converted into EpFSA that express
equivalent control rules. This construction is structured
as in Algorithm 5. For each model EE

i, it is created a cor-
responding event-parameterisedmodel ED

i that imposes
equivalent restrictions to the plant. However, instead of
disabling transitions using test formulas, ED

i exploits the
dilated alphabet to reproduce the same effect.

To construct ED
i, the algorithm applies a very simple

strategy: it reads EE
i and identifies the variable value that

have been prohibited by test formulas. Then, it disables in
ED

i transitions including events that correspond exactly
to those variable values.

Initially, Algorithm 5 creates a structure of states iden-
tical to the input SpFSA and starts the alphabet and
transition relation of ED

i as empty. Next, it reads all tran-
sitions

σ :p−→ from EE
i to create the alphabet and the tran-

sition relation for the output ED
i. Based on each event

σ read, the parameterised events in �σ are added to the
output alphabet (line 5). Then, transitions in the out-
put EpFSA are created for the parameterised events σ

VV̂

in �σ , such that p(V̂(Vp)) = true, that is, transition for
which the valuation in V̂ is true for the formula p (line 7).
Transitions inEE

i that do not have formulas associated to,
are directly added to the set of transitions�D (line 9). All
other are disabled, because p(V̂(Vp)) = false.

3.2.1.1 Example
The SpFSA specifications of Figure 6 are given as input
to Algorithm 5 and the resulting EpFSA are shown in
Figure 14.

For example, EE
1 enables an event e only when

x+ y>0 is true. Equivalently, ED
1 disables the instance

Algorithm5: Specification conversion fromSpFSAtoEpFSA

input : SpFSA specification EE
i = (

�,V,Q, q◦,Qω , PV ,�
)

set of parameterized events �

output: EpFSA specification ED
i = (

�D ,QD , q◦D ,Qω
D ,�D

)

1 begin
2 QD ← Q, Qω

D ← Qω , �D ← ∅, �D ← ∅
3 q◦D ← q◦

4 foreach transition q1
σ :p−→ q2 ∈ �, such that q1, q2 ∈ Q,

σ ∈ �, p ∈ PV and Vp is the set of variables in p do
5 �D ← �D ∪�σ

6 if Vp �= ∅ then
7 �D ← �D ∪ {q1

σ
VV̂−−→ q2}, for all σVV̂

∈ �σ

such that p(V̂(Vp)) = true
8 else
9 �D ← �D ∪ {q1 σ−→ q2}, for all σ ∈ �σ

10 end
11 end
12 return ED

i

13 end

Figure 14. Converted specification models.

exy00 of e, representing x = y = 0, as p(0, 0) = false. In
the same way, EE

2 enables b and d when x+ y<2 is true.
Then, ED

2 disables the parameterised events that model
p(x, y) = false.

3.3. Test cases

Now we test our approach with respect to other exam-
ples in the literature. Four cases are selected, and they
represent workflows typically found in a industrial envi-
ronments, described briefly as follows:

• Example 1 (Wonham 2010): two machines intercon-
nected by a buffer with capacity n (we fix in 2 for test).
This example exploits the memory necessary to trace
all possibilities of insertion and removal in a buffer;

• Example 2 (Aguiar et al. 2013): a manufacturing
line where two concurrent machines produce differ-
ent types of workpieces, that are then delivered to
a shared 2-positions buffer. Depending on the order
in which the workpieces are manufactured by the
two machines, they are treated throughout the pro-
cess. This means that a model for this example has
to memorise every combination of workpieces all the
way out the manufacturing line (Rosa, Teixeira, and
Malik 2018).

• Example 3 (Zhong and Wonham 1990): an industrial
transfer line that allows rework ofmaterial. This exam-
ple remounts to Zhong and Wonham (1990), and it
has been revisited several times since then by the liter-
ature. It fairly illustrates a possible blocking problem
(Wonham 2010), besides to be a good measure for
design and synthesis complexity (Cury et al. 2015),
and modularisation alternatives (Teixeira, Cury, and
de Queiroz 2018);

• Example 4 (Silva, Ribeiro, and Teixeira 2017): a flex-
ible manufacturing system that receives two types of

3410 L. F. P. SOUTHIER ET AL.

Table 4. Number of states (and transitions) for literature problem
models and corresponding converted models.

Domain 1 2 3 4

GE 14 (22) 3640 (15604) 288 (888) 921600 (7937280)
EE 1 (2) 21 (193) 4 (26) 128 (2438)
KE 10 (14) 3500 (9236) 624 (1180) 14580 (56376)
GD 4 (16) 40 (7104) 12 (200) 2048 (108032)
ED 1 (6) 21 (2443) 4 (70) 128 (5632)
HD 4 (6) 169 (546) 65 (306) 1200 (13200)
KD 10 (14) 3500 (9236) 624 (1180) 14580 (56376)

workpieces from an external feeder. Machines and
operations throughout the system are orchestrated
according to the type of workpiece that has entered
the line. As the system is expected to produce multi-
ples types of workpieces in simultaneously, one has to
trace every possible combination of products through-
out the line, which has potential to require a huge
amount of memory and modelling effort (Malik and
Teixeira 2020).

The four examples were firstly modelled using SpFSA,
and then converted into EpFSA using the proposed algo-
rithms. For the sake of brevity, we do not show these
models explicitly, but we summarise the results in terms
of number of state and transition for the SpFSA plant
(GE), specification (EE) and the synthesis input model
KE = GE‖EE; and for the respective converted EpFSA
plant (GD), specification (ED), filter (HD) and the syn-
thesis input model KD = GD‖ED‖HD. Table 4 shows the
results.

As expected, KE and KD have the same number of
states and transitions for all examples, which suggests that
they are equivalent, as it can be confirmed by checking,
for example, language inclusion.

It remains to be shown that also synthesis results are
equivalent. It is also of interest to know how easy synthe-
sis becomes if we provide the converted EpFSA model as
input, instead of SpFSA. These subjects are approached
in the following.

4. Control synthesis frameworks

This Section presents synthesis frameworks that use FSA,
SpFSA, andEpFSAmodels to obtain controllers forDESs.
It also illustrates each framework by extending the exam-
ple of manufacturing system in Section 4.4.

4.1. Supervisory control theory

When plant and specifications are designed as FSAG and
E, a key question is to know whether G can be restricted
through control in such a way that E is satisfied.

For this purpose, the event set is partitioned into the
sets�c and�u, including controllable and uncontrollable
events, respectively. Events in �c can be disabled by the
controller, while events in �u cannot be directly pre-
vented from occurring. Then, the control synthesis, a clas-
sical result of the Supervisory Control Theory (Ramadge
andWonham 1989), is processed to calculate a controller
for G.

Given a prefix-closed plant behaviour L(G) ⊆ �∗ and
a specification K ⊆ Lω(G), it is desired to construct a
so-called supervisor S that restricts L(G) to K by dis-
abling only controllable events. Anecessary and sufficient
condition for the existence of S is controllability: K is
controllable with respect to L(G) if K�u ∩ L(G) ⊆ K.

If K is controllable, then a supervisor achieving this
behaviour can be implemented by an automaton V rep-
resenting K , which disables any controllable event not
eligible in K . If the specification is not controllable, then
it can be reduced to the supremal controllable sublanguage

supC(K,G)

=
⋃
{K ′ ⊆ K|K ′ is controllable with respect to L(G)}

that represents the largest, or the least restrictive, sub-
behaviour of K that can be achieved by controlling G.
If it is additionally nonblocking, then it is said to be an
optimal control solution for G.

4.2. Supervisory control with SpFSA

If plant and specification of aDES aremodelled as SpFSA,
controllability and nonblocking have to be extended to
also consider variable values, in addition to events (Teix-
eira et al. 2015).

ForGE and EE respectively modelling plant and spec-
ification of a DES, EE is said to be V-controllable with
respect toGE if the following holds for all s ∈ �∗, allμ ∈
�u, and all valuations v̂p, v̂′p: if EE

s−→ (q0, v̂v) and GE

s−→
(q1, v̂v)

μ−→ (q3, v̂′v), then there exists q2 ∈ QE such that
EE

s−→ (q0, v̂v)
μ−→ (q2, v̂′v).

V -controllability differs from standard controllability
in the sense that a specification must not only be able to
process all uncontrollable events that are possible in the
plant, but on the occurrence of an uncontrollable event
it must also update the variables in the same way as the
plant. Differently, for controllable events, the specifica-
tion can disable some or all of the associated variable
updates.

Synthesis with SpFSA is defined on the composition
EE ‖ GE and, similarly to the ordinary case, the SpFSA
supervisor, denoted supCV(EE,GE) (Teixeira et al. 2015),
represents the most permissive behaviour that can be

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 3411

implemented in GE while satisfying EE. Nonblocking of
a SpFSA Av =

(
�,V,Q, q◦,Qω,PV ,�

)
can be ensured if

Av
s−→ (q0, v̂p) implies (q0, v̂p)

t−→ (q1, v̂′p) for some q1 ∈
Qω. For SpFSA, nonblocking is a post synthesis check, not
generally included into the supCV calculation.

If, besides to be controllable, supCV(EE,GE) is also
nonblocking, then it is the optimal solution to the con-
trol problem. Under the assumption of determinism of
both, events and variable values (see Teixeira et al. 2015),
it can be shown that

supC(L(EE ‖ GE),L(GE)) = L(supCV(EE,GE)).

That is, the control problem with SpFSA can be han-
dled either using the ordinary language-based synthe-
sis operation (supC) or its version extended to SpFSA
(supCV). In both cases, under determinism, the result is
expected to be the same, so that the choice impacts only
on modelling.

4.3. Supervisory control with EpFSA

When plant and specifications of a DES are given as
EpFSA, synthesis algorithm is the same as for FSA. How-
ever, the resulting supervisor will control equivalently the
plant only under the following assumptions.

Let the FSA plant G be given as an EpFSA GD‖HD,
such that, 	(GD‖HD) = G follows from (1). Let also the
FSA specification E, with events in �, be replaced by the
simpler EpFSA ED that uses events in � to express E.
In this case, it is expected that, for K = G‖E and KD =
GD‖HD‖ED,

L((KD)) = L(K). (2)

From (2), and under the assumption that HD is precise,
then either KD or K can be used as input to the classi-
cal SCT framework (Cury et al. 2015), and the resulting
control solution will be such that

supC(K ,G) = 	(supC(KD,GD‖HD)). (3)

That is, EpFSA and FSA are equivalent under synthesis
(Equation (3)), but EpFSA addsmodelling benefits, at the
price of ensuring Equations (1) and (2), and of designing
and enforcingHD to be precise. As these aremanual tasks,
they can be complex to handle.

From our conversion method, nevertheless, we can
centralise these manual steps on SpFSA formulas that are
more tunned with the engineer’s perception and can cap-
ture better advanced features of modern cyber-physical
DES, without changing the control result. Next Section
exemplifies this by using the previous examples.

Table 5. Number of states (and transitions) for literature problem
models and corresponding converted models.

Domain 1 2 3 4 5

KE 10 (14) 3500 (9236) 624 (1180) 14580 (56376) 56 (136)
KD 10 (14) 3500 (9236) 624 (1180) 14580 (56376) 56 (136)
supCV 8 (10) 742 (1816) 58 (102) 1551 (4596) 28 (57)
supC 8 (10) 742 (1816) 58 (102) 1551 (4596) 28 (57)

4.4. The example revisited

Now, we synthesise solutions for the four examples
in Table 4, and also for the manufacturing example
in Section 2.1 (labeled as 5). As shown, the solutions
obtained from the converted EpFSA are the same as the
ones obtained using FSA and SpFSA (Table 5).

4.5. Efficient supervisory control with EpFSA

This Section exploits additional aspects of EpFSA-based
synthesis in order to reinforce the benefits of the pro-
posed conversion mechanism.

Remark that, if on one hand the conversion method
removes from the designer the burden of having to
model a precise HD, on the other hand it does not
return any computational advantage. In fact, precise fil-
ters are in general associated with large state-spaces,
which compensates possible simplifications in the speci-
fication model. In general, the effort to process any ver-
sion of the problem, with FSA, SpFSA and EpFSA, is the
same.

It has been reported (Cury et al. 2015), however, that
under certain conditions synthesis with EpFSA can be
simplified by including only a part of the filter HD, while
the same controller is still obtained. The plant model
that abstracts part of a precise filter HD is called an
approximation.

Definition 4.1: For a DES plant G, let GD = 	−1(G)

and let HD be a precise filter for GD. GA is said to be an
approximation forGD‖HD if there exists at least one event
σ ∈ � in G such that |��σ

(q)| > 1, for q ∈ QGA
.

Definition 4.1 implies that there exists a pair δi, δj ∈
�σ , such that their occurrences are not precise after at
least one state inGA. In practice this means that a context
to be enabled by the plant will be ambiguous, eventually.

In control, approximations may lead to more restric-
tive solutions, as synthesis may not be able to distinguish
contexts, so it disables any context that is unsafe. For a
given approximation GA, a precise filter HD, and a speci-
fication ED, such thatKA = GA‖ED, it follows fromCury
et al. (2015) that supC(KA,GA) ∩HD ⊆ supC(KD,GD).

Equality can be obtained by systematically select-
ing parts of HD to construct GA (Rosa, Teixeira, and

3412 L. F. P. SOUTHIER ET AL.

Table 6. Number of states (and transitions) for literature problem
models and corresponding converted models.

Domain 1 2 3 4 5

KE 10 (14) 3500 (9236) 624 (1180) 14580 (56376) 56 (136)
KD 10 (14) 3500 (9236) 624 (1180) 14580 (56376) 56 (136)
KA
′ 8 (16) 2400 (8976) 68 (502) 13680 (153616) 56 (136)

supCV 8 (10) 742 (1816) 58 (102) 1551 (4596) 28 (57)
supC 8 (10) 742 (1816) 58 (102) 1551 (4596) 28 (57)
supC′ 8 (10) 742 (1816) 58 (102) 1551 (4596) 28 (57)

Malik 2018). For that, it is essential that HD can be
exposed modularly, which highlights the results in this
paper. When HD is given modularly, as in the out-
put of Algorithm 4, the approach in Rosa, Teixeira,
and Malik (2018) selects all and only the parts of HD
that are really necessary to synthesis. This leads to a
composition HA of modules, for L(HD) ⊆ L(HA). Then
an improved approximation GA

′ = GD‖HA can be con-
structed such that, for KA

′ = GA
′‖ED, it always implies

supC′ = supC(KA
′,GA

′) ∩HD = supC(KD,GD).

4.5.1. Example for efficient synthesis withmodular
EpFSA
Finally, we synthesise a solution for each examples, with
and without approximations, in order to show their
equivalences and the simplification brought by synthesis.

As shown in Table 6, the solutions obtained using the
input SpFSAmodels (row 5), using the converted EpFSA
(row 6), and using approximations (row 7) are all the
same. However, the cost to synthesise with approxima-
tions tends to be reduced, as it in general explores a
smaller state-space. Such a reduction can be more sub-
stantial if supported by appropriate tooling to select fil-
ters to be included in synthesis which, in this paper, is
suggested as a future aim.

5. Conclusion

This paper discusses how parameters can be exploited to
simplify modelling and control of DESs. Two methods
are presented, each one constructed on a specific formal
background, so that they do not directly combine advan-
tages. A conversion method is then proposed to allow
conducting modelling using a design-friendly approach,
and systematicallymigrate it to another framework,more
tuned with synthesis and implementation issues.

The algorithms presented in the paper are all poly-
nomials in the number of states of the input automata
models. The provided tooling support allows them to be
immediately used for industrial engineering tasks.

Several examples are used to illustrate the approach,
some extended from the literature and others introduced
in the manuscript. In particular, they share the feature

of requiring the memory of intricate sequences of events
in order to decide about control aspects of the DES. By
using the proposed method, nevertheless, this memory
becomes shorter during modelling phase, and it can be
easily handled by formal structures that depend mini-
mally on the engineer.

Prospects of future research aim to extend our
approach over modular control frameworks because,
large DES problems can be intractable by the mono-
lithic versions of the SCT. We also intend to investigate
more about implementation issues, besides to extend the
respective tooling support.

Notes

1. The SpFSA literature usually refers to states as locations,
composed by a state and associated parameters, which is
here generalised indistinctly.

2. The equivalence between K and 	(KD) (and similarly K
and KE) follows, in general, but it depends on modelling
tasks, which we assume here to be well defined from the
engineering point of view.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

Luiz Fernando Puttow Southier is a Ph.D.
student in Applied Informatics at the
Pontifical Catholic University of Paraná
(PUCPR). He is a scholarship holder from
the Brazilian National Council for Sci-
entific and Technological Development
(CNPq). He holds a master’s degree in
Electrical Engineering from the Federal

University of Technology - Parana (UTFPR), having developed
research in Modeling and Control of Discrete Event Systems.
As a graduate in Computer Engineering, from UTFPR with
a period at Pennsylvania State University, he carried out a
research internship at the Department of Computer Science
at the New York University, USA. In addition, he performed
Scientific Initiation researching and developing Web solutions
for Linear Programming and Linear Algebra, Economic Engi-
neering and Public Management. His research interests are in
the field of Process Mining, Discrete Event Systems, Economic
Process Analysis and Economic Engineering, among others.

Dalcimar Casanova holds a bachelor’s
degree in Computer Science from the
Universidade do Oeste de Santa Cata-
rina UNOESC (2005), a master’s degree
in Computer Science and Computational
Mathematics from the Institute of Math-
ematical and Computer Sciences ICMC-
USP (2008), a Ph.D. candidate in Com-

putational Physics from the Institute of Physics of São Carlos
IFSC-USP (2013) and post-doctoral fellow at the Institute of

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 3413

Physics of São Carlos IFSC-USP (2015). He is currently a pro-
fessor at the Federal TechnologicalUniversity of ParanáUTFPR
andpermanent professor at PPGEE.Hehas experience inCom-
puter Science, Computational Physics, and applications inmul-
tidisciplinary areas, working mainly on the following topics:
computer vision, complex networks, fractals, machine learning
and bioinformatics.

Luís Soares Barbosa is a full professor
at the Computer Science Department,
Universidade do Minho, and a senior
researcher at the High Assurance Soft-
ware laboratory, HASLab INESC TEC.
Recently he has joined INL, the Inter-
national Iberian Nanotechnology Labora-
tory, to lead the new Quantum Software

Engineering Group. His main research focuses on programme
semantics, logics and calculi applied to rigorous software anal-
ysis, design, and construction. Most of his work is framed on
Coalgebra and Modal Logic.

César Rafael Claure Torrico holds a
degree in Electrical Engineering from the
Universidad Mayor de San Simón (1995),
a master’s degree in Electrical Engineer-
ing from the Federal University of Santa
Catarina (1999) and a Ph.D. in Electrical
Engineering from the Federal University
of Santa Catarina (2003). He is currently

a professor at the Federal Technological University of Paraná-
UTFPR. He has experience in the field of Industrial Automa-
tion and Control, working mainly on the following topics:
microcontrollers, discrete event systems, supervisory control,
and vector control of induction motors.

Marco Barbosa graduated in Informat-
ics at Universidade de Cruz Alta (1998).
He has a master’s degree in Computer
Science from Universidade Federal do
Rio Grande do Sul (2001) and Ph.D. at
Informatics from University of Minho
(2009). He has experience in Computer
Science, focussing on Analysis of Algo-

rithms and Computational Complexity, acting on the fol-
lowing subjects: algorithm complexity, automatic algorithm
analysis, teaching support, informatics in education and
coinduction.

Marcelo Teixeira is a Computer Scien-
tist with master’s in Computer Engineer-
ing and Ph.D. in Automation & Systems
Engineering. His research interests cover
some topics in Computer Engineering,
Electrical Engineering and Automation
Sciences, with special focus on Discrete-
Event Systems, Cyber-Physical Systems,

FlexibleManufacturing Systems, Industry 4.0, Synthesis of con-
trollers for industrial processes, industrial automation, and
automatic synthesis of software. He’s been an active member
of the IEEE since 2016, participating of the Industrial Elec-
tronic Society (IES), Technical Committee on Factory Automa-
tion, Subcommittee Industrial Automated Systems and Con-
trol. In 2020, he received a Research Productivity Grant from
CNPq.

Data availability statement

Data sharing is not applicable to this article as no new data were
created or analysed in this study.

ORCID

Marcelo Teixeira http://orcid.org/0000-0002-1008-7838

References

Aguiar, R. S. S., A. E. C. Cunha, J. E. R. Cury, and M. H.
Queiroz. 2013. “Heuristic Search of Supervisors by Approx-
imated Distinguishers.” In Dependable Control of Discrete
Systems (DCDS’13), York, UK, 121–126.

Bassino, Frédérique, Marie-Pierre Béal, and Dominiqu Per-
rin. 1998. “Super-State Automata and Rational Trees. Latin
American Symposium on Theoretical Informatics. Brazil.

Cassandras, Christos G, and Stephane Lafortune. 2009. Intro-
duction to Discrete Event Systems. Springer, Boston, MA:
Springer Science & Business Media.

Chen, Yi-Liang, and Feng Lin. 2001. “Safety control of dis-
crete event systems using finite state machines with parame-
ters. Proceedings of the 2001 American Control Conference.
Arlington, VA, USA.

Cury, José E. R., Max Hering de Queiroz, Gustavo Bouzon,
andMarceloTeixeira. 2015. “SupervisoryControl ofDiscrete
Event Systems with Distinguishers.”Automatica 56: 93–104.

Dotoli, Mariagrazia, Alexander Fay, Marek Miskowicz, and
Carla Seatzu. 2017. “Advanced Control in Factory Automa-
tion: A Survey.” International Journal of Production Research
55 (5): 1243–1259.

Esmaeilian, Behzad, Sara Behdad, and Ben Wang. 2016. “The
Evolution and Future of Manufacturing: A Review.” Journal
of Manufacturing Systems 39: 79–100.

Gohari, P., and W. M. Wonham. 2000. “On the Complex-
ity of Supervisory Control Design in the RW Framework.”
IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 30 (5): 643–652.

Guo, Daqiang, Ray Y. Zhong, Shiquan Ling, Yiming Rong,
and George Q. Huang. 2020. “A Roadmap for Assembly
4.0: Self-configuration of Fixed-Position Assembly Islands
under Graduation Intelligent Manufacturing System.” Inter-
national Journal of Production Research 58 (15): 4631–4646.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman.
1939. Introduction to Automata Theory, Languages, and
Computation. 2nd. Boston, MA: Pearson Education.

Hu, HeSuan, and Yang Liu. 2015. “Supervisor Synthesis and
Performance Improvement for Automated Manufacturing
Systems by Using Petri Nets.” IEEE Transactions on Indus-
trial Informatics 11 (2): 450–458.

Hu, Hesuan, Yang Liu, and Ling Yuan. 2016. “Supervisor Sim-
plification in FMSs: Comparative Studies and New Results
Using Petri Nets.” IEEE Transactions on Control Systems
Technology 24 (1): 81–95.

Hu, Hesuan, Yang Liu, and Mengchu Zhou. 2015. “Maxi-
mally Permissive Distributed Control of Large Scale Auto-
mated Manufacturing Systems Modeled With Petri Nets.”
IEEE Transactions on Control Systems Technology 23 (5):
2026–2034.

Malik, Robi, and Marcelo Teixeira. 2016. “Modular Supervi-
sor Synthesis for Extended Finite-State Machines Subject

http://orcid.org/0000-0002-1008-7838

3414 L. F. P. SOUTHIER ET AL.

to Controllability.” In International Workshop on Discrete
Event Systems (WODES), 91–96. IEEE. China.

Malik, R., and Marcelo Teixeira. 2020. “Synthesis of Least
Restrictive Controllable Supervisors for Extended Finite-
State Machines with Variable Abstraction.” Discrete Event
Dynamic Systems 30: 211–241.

Malik, R., and Marcelo Teixeira. 2021. “Optimal Modular
Control of Discrete Event Systems with Distinguishers
and Approximations.” Discrete Event Dynamic Systems 31:
659–691.

Mohajerani, Sahar, Robi Malik, and Martin Fabian. 2017.
“Compositional Synthesis of Supervisors in the Formof State
Machines and State Maps.” Automatica 76: 277–281.

Mourtzis, Dimitris. 2020. “Simulation in the Design and Oper-
ation of Manufacturing Systems: State of the Art and New
Trends.” International Journal of Production Research 58 (7):
1927–1949.

Pedrielli, Giulia, Andrea Matta, Arianna Alfieri, and Mengyi
Zhang. 2018. “Design and Control of Manufacturing
Systems: A Discrete Event Optimisation Methodology.”
International Journal of Production Research 56 (1–2):
543–564.

Qamsane, Yassine, Abdelouahed Tajer, and Alexandre Philip-
pot. 2017. “A Synthesis Approach to Distributed Super-
visory Control Design for Manufacturing Systems with
Grafcet Implementation.” International Journal of Produc-
tion Research 55 (15): 4283–4303.

Ramadge, Peter J. G., and W. Murray Wonham. 1989. “The
Control of Discrete Event Systems.” Proceedings of the IEEE
77 (1): 81–98.

Rosa, Marcelo, Marco A. C. Barbosa, and Marcelo Teixeira.
2019. “Service-Based Manufacturing Systems: Modelling
and Control.” International Journal of Production Research
57 (11): 3421–3434.

Rosa, M., M. Teixeira, G. W. Denardin, C. R. C. Torrico, and
J. E. R. Cury. 2017. “Efficient Implementation of Distin-
guished Controllers for Discrete-Event Systems.” In IFAC
World Congress, WC’17, Toulouse, France, 1215–1220.

Rosa, Marcelo, Marcelo Teixeira, and Robi Malik. 2018.
“Exploiting Approximations in Supervisory Control with
Distinguishers.” In InternationalWorkshop on Discrete Event
Systems, Sorrento, Italy.

Silva, André Lucas, Richardson Ribeiro, and Marcelo Teix-
eira. 2017. “Modeling and Control of Flexible Context-
Dependent Manufacturing Systems.” Information Sciences
421: 1–14.

Southier, Luiz Fernando Puttow. 2021. Extended State Machine
Converter. Federal University of Technology Parana. https://
luizsouthier.github.io/conversor.html.

Southier, Luiz F. P., Muriel Mazzetto, Dalcimar Casanova,
Marco A. C. Barbosa, Luis S. Barbosa, and Marcelo Teixeira.
2019. “Combining Advantages from Parameters in Model-
ing and Control of Discrete Event Systems.” In 2019 24th
IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), 370–377. IEEE. Spain.

Teixeira,M., J. E. R. Cury, andM.H. deQueiroz. 2018. “Exploit-
ing Distinguishers in Local Modular Control of Discrete-
Event Systems.” IEEE Transactions on Automation Science
and Engineering 15 (3): 1431–1437.

Teixeira, Marcelo, Robi Malik, José E. R. Cury, and Max
H. de Queiroz. 2015. “Supervisory Control of Des with
Extended Finite-State Machines and Variable Abstraction.”
IEEE Transactions on Automatic Control 60 (1): 118–129.

Wonham, W. M. 2010. Supervisory Control of Discrete Event
Systems. Canada: University of Toronto.

Zhong, H., and W. M. Wonham. 1990. “On the Consistency of
Hierarchical Supervision in Discrete-Event Systems.” IEEE
Transactions on Automatic Control 35 (10): 1125–1134.

https://luizsouthier.github.io/conversor.html

	1. Introduction
	2. Background
	2.1. Example of a manufacturing system
	2.2. A motivating gap of ordinary FSA models
	2.3. Parameterisation of events
	2.3.1. Example with EpFSA

	2.4. A motivating gap of EpFSA models
	2.5. Parameterisation of states
	2.5.1. Example with SpFSA
	2.5.2. A motivating gap of SpFSA models

	3. Proposed conversion method
	3.1. Converting SpFSA into EpFSA
	3.1.1. Context extraction
	3.1.2. Plant conversion
	3.1.3. Context switching

	3.2. Specification conversion
	3.3. Test cases

	4. Control synthesis frameworks
	4.1. Supervisory control theory
	4.2. Supervisory control with SpFSA
	4.3. Supervisory control with EpFSA
	4.4. The example revisited
	4.5. Efficient supervisory control with EpFSA
	4.5.1. Example for efficient synthesis with modular EpFSA

	5. Conclusion
	Notes
	Disclosure statement
	ORCID
	Data availability statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

